Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/39593
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBastos Júnior, Raimundo de Araújo-
dc.contributor.authorDantas, Alex Carrazedo-
dc.contributor.authorMelo, Emerson Ferreira de-
dc.date.accessioned2020-10-23T16:02:01Z-
dc.date.available2020-10-23T16:02:01Z-
dc.date.issued2020-03-17-
dc.identifier.citationBASTOS, Raimundo; DANTAS, Alex C.; MELO, Emerson de. Soluble groups with few orbits under automorphisms. Geometriae Dedicata, v. 209, p. 119-123, 2020. DOI: https://doi.org/10.1007/s10711-020-00525-7. Disponível em: https://link.springer.com/article/10.1007/s10711-020-00525-7.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/39593-
dc.language.isoInglêspt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleSoluble groups with few orbits under automorphismspt_BR
dc.typeArtigopt_BR
dc.subject.keywordExtensõespt_BR
dc.subject.keywordAutomorfismospt_BR
dc.subject.keywordGrupos solúveispt_BR
dc.identifier.doihttps://doi.org/10.1007/s10711-020-00525-7pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10711-020-00525-7-
dc.description.abstract1Let G be a group. The orbits of the natural action of Aut(G) on G are called “automorphism orbits” of G, and the number of automorphism orbits of G is denoted by ω(G). We prove that if G is a soluble group of finite rank such that ω(G)<∞, then G contains a torsion-free radicable nilpotent characteristic subgroup K such that G=K⋊H, where H is a finite group. Moreover, we classify the mixed order soluble groups of finite rank such that ω(G)=3.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5733-519Xpt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/39593/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.