Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/39561
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBastos Júnior, Raimundo de Araújo-
dc.contributor.authorMelo, E. de-
dc.contributor.authorGonçalves, N.-
dc.contributor.authorNunes, R.-
dc.date.accessioned2020-10-20T13:55:29Z-
dc.date.available2020-10-20T13:55:29Z-
dc.date.issued2020-03-12-
dc.identifier.citationBASTOS, R. et al. Non-Abelian tensor square and related constructions of p-groups. Archiv der Mathematik, v. 114, p. 481-490, 2020. Disponível em: https://link.springer.com/article/10.1007/s00013-020-01449-0.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/39561-
dc.language.isoInglêspt_BR
dc.publisherSpringer Naturept_BR
dc.rightsAcesso Restritopt_BR
dc.titleNon-Abelian tensor square and related constructions of p-groupspt_BR
dc.typeArtigopt_BR
dc.subject.keywordP-grupos finitospt_BR
dc.subject.keywordQuadrado tensionalpt_BR
dc.subject.keywordComutatividade fracapt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s00013-020-01449-0pt_BR
dc.description.abstract1Let G be a group. We denote by ν(G) a certain extension of the non-Abelian tensor square [G,Gφ] by G×G. We prove that if G is a finite potent p-group, then [G,Gφ] and the k-th term of the lower central series γk(ν(G)) are potently embedded in ν(G) (Theorem A). Moreover, we show that if G is a potent p-group, then the exponent exp(ν(G)) divides p⋅exp(G) (Theorem B). We also study the weak commutativity construction of powerful p-groups (Theorem C).pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0002-5733-519Xpt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/39561/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.