Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.unb.br/handle/10482/38288
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSousa, Leonardo Evaristo de-
dc.contributor.authorSilva Filho, Demétrio Antônio da-
dc.contributor.authorSilva, Piotr de-
dc.contributor.authorRibeiro, Luciano-
dc.contributor.authorOliveira Neto, Pedro Henrique de-
dc.date.accessioned2020-06-26T17:29:06Z-
dc.date.available2020-06-26T17:29:06Z-
dc.date.issued2020-
dc.identifier.citationSOUSA, Leonardo Evaristo de et al. A genetic algorithm approach to design principles for organic photovoltaic materials. Advanced Theory and Simulations, 2000042, 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/38288-
dc.language.isoInglêspt_BR
dc.publisherWiley-VCHpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleA genetic algorithm approach to design principles for organic photovoltaic materialspt_BR
dc.typePreprintpt_BR
dc.subject.keywordDispositivos fotovoltaicos orgânicospt_BR
dc.subject.keywordMétodos de simulaçãopt_BR
dc.subject.keywordAlgoritmos genéticospt_BR
dc.description.abstract1The increase in the efficiency of organic photovoltaic (OPV) devices relies on understanding the underlying science of several interconnected physical mechanisms that prevent 1D optimization strategies to succeed. Here, a combination of kinetic Monte Carlo simulations of exciton dynamics with a genetic algorithm to automatically optimize the external quantum efficiency of donor–acceptor interfaces under different scenarios is employed. Simulations include phenomena from light absorption to exciton diffusion, dissociation, radiative recombination, and internal conversion, thus modeling the main physical processes that define the overall efficiency of an OPV up to charge separation. It is shown that when internal conversion is kept in check, the combination of optimal transition dipole moments and absorption energies points at low bandgap polymers as the most promising candidates for donor materials. However, when non-radiative deexcitation mechanisms are stronger, the optimization strategy shifts toward higher bandgaps, focusing rather on increasing the fluorescence quantum yield of the donor. Finally, the approach shows that adjusting the energy levels of the acceptor so that exciton transfers across the interface become negligible produces important gains in efficiency and at the same time reduces the system’s dependence on large electronic couplings. The findings indicate pathways for engineering highly efficient organic interfaces.pt_BR
dc.description.unidadeInstituto de Física (IF)pt_BR
Aparece en las colecciones: Artigos publicados em periódicos e afins

Mostrar el registro sencillo del ítem " class="statisticsLink btn btn-primary" href="/handle/10482/38288/statistics">



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.