Skip navigation
Veuillez utiliser cette adresse pour citer ce document : http://repositorio.unb.br/handle/10482/24898
Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ARTIGO_EvaluationCassandraNoSQL.pdf1,31 MBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAniceto, Rodrigo-
dc.contributor.authorXavier, Rene-
dc.contributor.authorGuimarães, Valeria-
dc.contributor.authorHondo, Fernanda-
dc.contributor.authorHolanda, Maristela Terto de-
dc.contributor.authorWalter, Maria Emília Machado Telles-
dc.contributor.authorLifschitz, Sérgio-
dc.date.accessioned2017-10-30T13:54:11Z-
dc.date.available2017-10-30T13:54:11Z-
dc.date.issued2015-05-
dc.identifier.citationANICETO, R. et al. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency. Hindawi Publishing Corporation, Cairo, v. 2015, Art. ID 502795, 2015. Disponível em: <https://www.hindawi.com/journals/ijg/2015/502795/>. Acesso em: 19 out. 2017. doi: http://dx.doi.org/10.1155/2015/502795.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/24898-
dc.language.isoInglêspt_BR
dc.publisherHindawi Publishing Corporationpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleEvaluating the Cassandra NoSQL Database Approach for Genomic Data Persistencypt_BR
dc.typeArtigopt_BR
dc.subject.keywordBanco de dadospt_BR
dc.subject.keywordBiologia computacionalpt_BR
dc.rights.licenseCopyright © 2015 Rodrigo Aniceto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fonte: https://www.hindawi.com/journals/ijg/2015/502795/. Acesso em: 19 out. 2017.pt_BR
dc.identifier.doihttp://dx.doi.org/10.1155/2015/502795pt_BR
dc.description.abstract1Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.pt_BR
Collection(s) :Artigos publicados em periódicos e afins

Affichage abbrégé " class="statisticsLink btn btn-primary" href="/handle/10482/24898/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.