Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/8779
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2011_IvonildesRibeiroMartins.pdf559,6 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorRocco, Noraí Romeu-
dc.contributor.authorMartins, Ivonildes Ribeiro-
dc.date.accessioned2011-06-29T18:10:53Z-
dc.date.available2011-06-29T18:10:53Z-
dc.date.issued2011-06-29-
dc.date.submitted2011-03-16-
dc.identifier.citationMartins, Ivonildes Ribeiro. Uma apresentação policíclica para o quadrado q-tensorial de um grupo policíclico. 2011. iv, 80 f., il. Tese (Doutorado em Matemática)-Universidade de Brasília, Brasília, 2011.en
dc.identifier.urihttp://repositorio.unb.br/handle/10482/8779-
dc.descriptionTese (doutorado)-Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2011.en
dc.description.abstractNeste trabalho descrevemos uma apresentação policíclica para o quadrado q-tensorial não abeliano G q G de um grupo G, onde q é um inteiro não negativo. Obtemos primeiramente uma apresentação para o grupo q(G) e em seguida usamos a imersão do quadrado q-tensorial neste último grupo. A partir de uma apresentação policíclica consistente de G de nimos uma extensão q-central G q de G e provamos que esta de nição nos dá uma apresentação policíclica de G q . Usando métodos padrões para grupos policíclicos evoluimos dessa apresentação para uma apresentação policíclica consistente e provamos que o quadrado q-exterior G ^q G, o segundo grupo de homologia com coe cientes em Zq, H2(G;Zq); bem como o q-multiplicador Mq(G) de um grupo G, são isomorfos a subgrupos de G q . Isto permite calcular apresentações para esses grupos a partir da apresentação de G q. A partir da apresentação policíclica encontrada para G ^q G de nimos um grupo q(G) dado por uma apresentação policíclica e provamos que q(G) = q(G)= q(G), onde q(G) é um conveniente subgrupo central em q(G). Fazendo uma extensão q-central deste último grupo obtemos uma apresentação policíclica para o grupo q(G) e, em seguida, para o quadrado q-tensorial de G. Adicionalmente, estabelecemos um método para decidir se um grupo policíclico é capaz módulo q. Os resultados desta tese estendem métodos existentes do caso q = 0 para todo inteiro não negativo q. ______________________________________________________________________________ ABSTRACTen
dc.description.abstractIn this work we compute a polycyclic presentation for the non-abelian q-tensor square G q G of a group G, where q is a non-negative integer. Firstly we obtain a presentation of the group q(G) and then we use the embedding of the q-square tensor in this last group. From the consistent polycyclic presentation of G we de ne a q-central extension G q of G and prove that this de nition gives us a polycyclic presentation of G q . Using standard methods for polycyclic groups, such a presentation evolves to a consistent polycyclic presentation and thus we prove that the q-exterior square G^q G, the second homology group with coe cients in Zq, H2(G;Zq); and the q-multiplier Mq(G); of a group G; are all isomorphic to certain subgroups of G q. This provides us with presentations for these groups from the presentation of G q . From the polycyclic presentation found for G ^q G we de ne a new group q(G) given by a polycyclic presentation and prove that q(G) = q(G)= q(G), where q(G) is an appropriate central subgroup of q(G): Finally, by mean of a convenient q-central extension of q(G) we obtain a polycyclic presentation of q(G), from which we get a presentation for the q-tensor square of G. Aditionally, we establish a method to decide whether a polycyclic group is capable modulo q. The results in this thesis extend existing methods from the case q = 0 to all non-negative integers q.en
dc.language.isoPortuguêsen
dc.rightsAcesso Abertoen
dc.titleUma apresentação policíclica para o quadrado q-tensorial de um grupo policíclicoen
dc.typeTeseen
dc.subject.keywordTeoria dos gruposen
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.