http://repositorio.unb.br/handle/10482/51417
Título: | Strain-tuneable bipolaron stability on ultranarrow bilayer graphene nanoribbon |
Autor(es): | Cassiano, Tiago de Sousa Araújo Ribeiro Júnior, Luiz Antônio Silva, Geraldo Magela e Oliveira Neto, Pedro Henrique de |
ORCID: | orcid.org/0000-0003-1526-9371 orcid.org/0000- 0001-7468-2946 orcid.org/0000-0002-8336-7718 |
Afiliação do autor: | University of Brasília, Institute of Physics University of Brasília, Institute of Physics University of Brasília, Institute of Physics University of Brasília, Institute of Physics University of Brasília, Institute of Physics, International Center of Physics |
Assunto: | Bipolaron Nanofitas de grafeno |
Data de publicação: | 12-Jan-2024 |
Editora: | ACS Pulications |
Referência: | CASSIANO, Tiago de Sousa Araújo et al. Strain-tuneable bipolaron stability on ultranarrow bilayer graphene nanoribbon. The Journal of Physical Chemistry C, [S. l.], v. 128, n. 3, 1433−1442, 12 Jan. 2024. DOI: https://doi.org/10.1021/acs.jpcc.3c07052. |
Abstract: | Van der Waals bilayer systems are promoting unparalleled advance in optoelectronics. Much of their impact resorts to the exotic quantum properties of quasiparticle physics. They arise after manipulating the electronic interlayer hopping integral (t⊥). However, it remains unclear how this interaction affects the formation of higher-order quasiparticles. In this work, we investigate the influence of t⊥ on the formation of charged quasiparticles in bilayer graphene nanoribbons using a tight binding model with lattice relaxation terms. The results show the existence of two distinct spinless carriers with 2e charge, lattice deformation, and intragap levels. These quasiparticles are characterized as bipolarons. Depending on the magnitude of t⊥, a transition between the configurations occurs for t⊥ ≈ 0.52 eV. Moreover, the bipolaron binding energy (BE) is determined. Results show that interlayer bipolarons are always more stable than the usual carrier, i.e., two independent polarons. Moreover, the stability degree can be regulated with t⊥, leading to variations up to 58% in BE. Therefore, our findings reveal that the population of polarons and bipolarons are potentially controllable via transversal mechanical stress. Our work reveals an exciting pathway to envision new strain-tuneable nanoelectronics using graphene nanoribbon bilayers. |
Unidade Acadêmica: | Instituto de Física (IF) |
Versão da editora: | https://pubs.acs.org/doi/10.1021/acs.jpcc.3c07052# |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.