Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46884
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_ChargeTransportCove.pdf3,55 MBAdobe PDFVisualizar/Abrir
Título: Charge transport in cove-type graphene nanoribbons : the role of quasiparticles
Autor(es): Cassiano, Tiago de Sousa Araújo
Sousa, Leonardo Evaristo de
Ribeiro Júnior, Luiz Antônio
Silva, Geraldo Magela e
Oliveira Neto, Pedro Henrique de
Afiliação do autor: University of Brasilia, Institute of Physics
Technical University of Denmark, Department of Energy Conversion and Storage
University of Brasilia, Institute of Physics
University of Brasilia, Institute of Physics
University of Brasilia, Institute of Physics
Assunto: Grafeno
SSH
Polaron
Bipolaron
Transporte de carga
Nanofitas de grafeno
Data de publicação: 17-Mar-2022
Editora: Elsevier B.V.
Referência: CASSIANO, Tiago de Sousa Araújo et al. Charge transport in cove-type graphene nanoribbons: the role of quasiparticles. Synthetic Metals, v. 287, 117056, jul. 2022. DOI: https://doi.org/10.1016/j.synthmet.2022.117056. Disponível em: https://www.sciencedirect.com/science/article/pii/S0379677922000509?via%3Dihub. Acesso em: 21 nov. 2023.
Abstract: Previous reports indicate that cove-type graphene nanoribbons (CGNR) may present high intrinsic charge mobility of almost 15,000 cm2/Vs. Still, with experimental estimates varying from 150 to 15,000 cm2/Vs. Typically, theoretical mobilities are obtained from methods such as the Drude-Smith model, which tends to neglect the electron-phonon coupling mechanism, or the Boltzmann transport equation, that considers only acoustic phonons. As such, more thorough approaches are needed. In this work, we simulated charge transport in 4-CGNR by explicitly contemplating the lattice collective behavior. The nanoribbon is simulated by a two-dimensional Su-Schrieffer-Heeger (SSH) tight-binding model with electron-phonon coupling and considering all phonon modes. Results show the rise of two quasiparticles: polaron and bipolaron. We probed their dynamical properties by including the presence of an external electric field. Findings indicate that each carrier has a characteristic transport regime that is deeply related to phonon collision interactions. Model derived mobilities for polarons and bipolarons reach up to 18,000 cm2/Vs and 1500 cm2/Vs, respectively. Furthermore, calculations reveal the carriers to be highly efficient charge transporters, with a field independent low effective mass and notable mobility, delivering a better performance than other narrow GNRs. All presented features place the CGNR as a potential base material of future high-quality organic-based optoelectronic devices. The work also contributes to the theoretical understanding of transport physics in highly confined materials.
Unidade Acadêmica: Instituto de Física (IF)
Licença: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
DOI: https://doi.org/10.1016/j.synthmet.2022.117056
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.