Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46872
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBarboza, Flavio-
dc.contributor.authorSilva, Geraldo Nunes-
dc.contributor.authorFiorucci, José Augusto-
dc.date.accessioned2023-11-20T15:11:44Z-
dc.date.available2023-11-20T15:11:44Z-
dc.date.issued2023-04-02-
dc.identifier.citationBARBOZA, Flavio, SILVA, Geraldo Nunes, FIORUCCI, José Augusto. A review ofartificial intelligence quality in forecasting assetprices. Journal of Forecasting, v. 42, n. 7, 1708-1728, 2023. DOI: https://doi.org/10.1002/for.2979.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46872-
dc.language.isoengpt_BR
dc.publisherJohn Wiley & Sons Ltd.pt_BR
dc.rightsAcesso Restritopt_BR
dc.titleA review of artificial intelligence quality in forecasting asset pricespt_BR
dc.typeArtigopt_BR
dc.subject.keywordSéries temporaispt_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.identifier.doihttps://doi.org/10.1002/for.2979pt_BR
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/for.2979pt_BR
dc.description.abstract1Researchers and practitioners globally, from a range of perspectives, acknowl- edge the difficulty in determining the value of a financial asset. This subject is of utmost importance due to the numerous participants involved and its impact on enhancing market structure, function, and efficiency. This paper conducts a comprehensive review of the academic literature to provide insights into the reasoning behind certain conventions adopted in financial value estimation, including the implementation of preprocessing techniques, the selection of relevant inputs, and the assessment of the performance of computational models in predicting asset prices over time. Our analysis, based on 109 studies sourced from 10 databases, reveals that daily forecasts have achieved average error rates of less than 1.5%, while monthly data only attain this level in optimal circumstances. We also discuss the utilization of tools and the integration of hybrid models. Finally, we highlight compelling gaps in the literature that provide avenues for further research.pt_BR
dc.contributor.affiliationFederal University of Uberlândia, School of Business and Managementpt_BR
dc.contributor.affiliationSão Paulo State University, Institute of Biosciences, Humanities and Exact Sciences, Mathematics Departmentpt_BR
dc.contributor.affiliationUniversity of Brasilia, Department of Statisticspt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.