Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/46671
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAzevedo, Diego Marques de-
dc.contributor.authorRodrigues, Guilherme Souza-
dc.contributor.authorLadeira, Marcelo-
dc.date.accessioned2023-10-11T20:07:51Z-
dc.date.available2023-10-11T20:07:51Z-
dc.date.issued2022-11-19-
dc.identifier.citationAZEVEDO, Diego Marques de; RODRIGUES, Guilherme Souza; LADEIRA, Marcelo. A probabilistically-oriented analysis of the performance of ASR Systems for brazilian radios and TVs. In: BRACIS, 11., 2022, Campinas. Anais [...]. Campinas: Springer, 2022. p. 169-180. DOI: https://doi.org/10.1007/978-3-031-21689-3_13. Disponível em: https://link.springer.com/chapter/10.1007/978-3-031-21689-3_13. Acesso em: 11 out. 2023.pt_BR
dc.identifier.urihttp://repositorio2.unb.br/jspui/handle/10482/46671-
dc.language.isoengpt_BR
dc.publisherSpringerpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleA probabilistically-oriented analysis of the performance of ASR Systems for brazilian radios and TVspt_BR
dc.typeTrabalho apresentado em eventopt_BR
dc.subject.keywordReconhecimento automático da vozpt_BR
dc.subject.keywordRedes neurais (Computação)pt_BR
dc.subject.keywordInteligência artificialpt_BR
dc.subject.keywordÁudio - propriedadespt_BR
dc.rights.license© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG.pt_BR
dc.identifier.doihttps://doi.org/10.1007/978-3-031-21689-3_13pt_BR
dc.description.abstract1With the use of neural network-based technologies, Automatic Speech Recognition (ASR) systems for Brazilian Portuguese (BP) have shown great progress in the last few years. Several state-of-art results were achieved by open-source end-to-end models, such as the Kaldi toolkit and the Wav2vec 2.0. Alternative commercial tools are also available, including the Google and Microsoft speech to text APIs and the Audimus System of VoiceInteraction. We analyse the relative performance of such tools – in terms of the so-called Word Error Rate (WER) – when transcribing audio recordings from Brazilian radio and TV channels. A generalized linear model (GLM) is designed to stochastically describe the relationship between some of the audio’s properties (e.g. file format and audio duration) and the resulting WER, for each method under consideration. Among other uses, such strategy enables the analysis of local performances, indicating not only which tool performs better, but when exactly it is expected to do so. This, in turn, could be used to design an optimized system composed of several transcribers. The data generated for conducting this experiment and the scripts used to produce the stochastic model are public available.pt_BR
dc.contributor.affiliationUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Estatísticapt_BR
dc.contributor.affiliationUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Estatísticapt_BR
dc.contributor.affiliationUniversity of Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computaçãopt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Computação Aplicada, Mestrado Profissionalpt_BR
Aparece nas coleções:Trabalhos apresentados em evento

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.