Skip navigation
Please use this identifier to cite or link to this item: http://repositorio.unb.br/handle/10482/45089
Files in This Item:
There are no files associated with this item.
Title: Existence of a least energy nodal solution for a class of quasilinear elliptic equations with exponential growth
Authors: Figueiredo, Giovany de Jesus Malcher
Nunes, Fernando Bruno M.
metadata.dc.contributor.email: mailto:giovany@unb.br
metadata.dc.contributor.affiliation: Universidade de Brasília
Universidade do Estado do Amapá
Assunto:: Solução nodal
p-Laplaciano
Equações quasilineares
Issue Date: 15-Dec-2021
Publisher: Division of Functional Equations, The Mathematical Society of Japan
Citation: FIGUEIREDO, Giovany M.; NUNES, Fernando Bruno M. Existence of a least energy nodal solution for a class of quasilinear elliptic equations with exponential growth. Funkcialaj Ekvacioj, Kobe, v. 64, n. 3, p. 293-322, 2021. DOI 10.1619/fesi.64.293. Disponível em: https://www.jstage.jst.go.jp/article/fesi/64/3/64_293/_article/-char/en. Acesso em: 03 nov. 2022.
Abstract: In this paper we prove the existence of a least energy nodal (i.e. sign-changing) solution for a large class of quasilinear problem in a smooth bounded domain of Euclidean space. Moreover, we show that solution has exactly two nodal domains i.e. it changes sign exactly once in this domain. The proof is based on a minimization argument and a quantitative deformation lemma.
DOI: https://doi.org/10.1619/fesi.64.293
metadata.dc.relation.publisherversion: https://www.jstage.jst.go.jp/article/fesi/64/3/64_293/_article/-char/en
Appears in Collections:Artigos publicados em periódicos e afins

Show full item record " class="statisticsLink btn btn-primary" href="/jspui/handle/10482/45089/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.