http://repositorio.unb.br/handle/10482/45048
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Figueiredo, Giovany de Jesus Malcher | - |
dc.contributor.author | Argomedo Salirrosas, Segundo Manuel | - |
dc.date.accessioned | 2022-10-19T21:44:07Z | - |
dc.date.available | 2022-10-19T21:44:07Z | - |
dc.date.issued | 2020-07-28 | - |
dc.identifier.citation | FIGUEIREDO, Giovany M.; A. SALIRROSAS, Segundo Manuel. On multiplicity and concentration behavior of solutions for a critical system with equations in divergence form. Journal of Mathematical Analysis and Applications, v. 494, n. 1, art. 124446, fev. 2021. DOI 10.1016/j.jmaa.2020.124446. Disponível em: https://www.sciencedirect.com/science/article/pii/S0022247X20306089?via%3Dihub. Acesso em: 19 out. 2022. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/45048 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Science Direct | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | On multiplicity and concentration behavior of solutions for a critical system with equations in divergence form | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Schrödinger, Equação de | pt_BR |
dc.subject.keyword | Sistemas críticos elípticos | pt_BR |
dc.subject.keyword | Ljusternik-Schnirelmann, Teoria de | pt_BR |
dc.subject.keyword | Soluções positivas | pt_BR |
dc.identifier.doi | https://doi.org/10.1016/j.jmaa.2020.124446 | pt_BR |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0022247X20306089?via%3Dihub | pt_BR |
dc.description.abstract1 | We consider the system −ε2div(a(x)∇u) + u = Qu(u, v) + 1 2∗ Ku(u, v) in RN , −ε2div(b(x)∇v) + v = Qv (u, v) + 1 2∗ Kv (u, v) in RN , u, v ∈ H1(RN ), u(x), v(x) > 0 for each x ∈ RN where ∗ = 2N/(N − 2), N ≥ 3, ε > 0, a and b are positive continuous potentials, and Q and K are homogeneous function with K having critical growth. We obtain existence of a ground state solution and relate the number of solutions with the topology of the set where the potentials a and b attain their minima. We also show that at the maximum points of each solution, the potentials a and b converge to their points of minima points when ε converges to zero. | pt_BR |
dc.contributor.email | mailto:giovany@unb.br | pt_BR |
dc.contributor.email | mailto:semaarsa@gmail.com | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.