http://repositorio.unb.br/handle/10482/44098
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Silva, Ricardo Parreira da | - |
dc.date.accessioned | 2022-07-05T14:10:58Z | - |
dc.date.available | 2022-07-05T14:10:58Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | SILVA, Ricardo Parreira da. Non-dissipative system as limit of a dissipative one: comparison of the asymptotic regimes. Bulletin of the Brazilian Mathematical Society, New Series v. 51, p.125-137, 2020. DOI: https://doi.org/10.1007/s00574-019-00146-z. | pt_BR |
dc.identifier.uri | https://repositorio.unb.br/handle/10482/44098 | - |
dc.language.iso | Inglês | pt_BR |
dc.publisher | Springer | pt_BR |
dc.rights | Acesso Restrito | pt_BR |
dc.title | Non-dissipative system as limit of a dissipative one : comparison of the asymptotic regimes | pt_BR |
dc.type | Artigo | pt_BR |
dc.subject.keyword | Sistemas dissipativos | pt_BR |
dc.subject.keyword | Sistemas não dissipativos | pt_BR |
dc.subject.keyword | Atratores globais | pt_BR |
dc.subject.keyword | Atratores não compactos | pt_BR |
dc.subject.keyword | Semicontinuidade superior | pt_BR |
dc.subject.keyword | Semicontinuidade inferior | pt_BR |
dc.identifier.doi | https://doi.org/10.1007/s00574-019-00146-z | pt_BR |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00574-019-00146-z | pt_BR |
dc.description.abstract1 | Let ⊂ Rn be a bounded smooth domain in Rn. Given u0 ∈ L2(), g ∈ L∞() and λ ∈ R, consider the family of problems parametrised by p 2, ⎧ ⎪⎨ ⎪⎩ ∂u ∂t − pu = λu + g, on (0,∞) × , u = 0, in (0,∞) × ∂, u(0, ·) = u0, on , where pu := div |∇u| p−2∇u denotes the p-laplacian operator. Our aim in this paper is to describe the asymptotic behavior of this family of problems comparing compact attractors in the dissipative case p > 2, with non-compact attractors in the non-dissipative limiting case p = 2 with respect to the Hausdorff semi-distance between then. | pt_BR |
Aparece nas coleções: | Artigos publicados em periódicos e afins |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.