Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/43775
Arquivos associados a este item:
Não existem arquivos associados a este item.
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorPetrogradsky, Victor-
dc.date.accessioned2022-05-23T14:37:13Z-
dc.date.available2022-05-23T14:37:13Z-
dc.date.issued2021-12-15-
dc.identifier.citationPETROGRADSKY, Victor. Nil restricted Lie algebras of oscillating intermediate growth. Journal of Algebra, v. 588, p. 349-407, 2021. DOI: https://doi.org/10.1016/j.jalgebra.2021.09.003.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/43775-
dc.language.isoInglêspt_BR
dc.publisherElsevierpt_BR
dc.rightsAcesso Restritopt_BR
dc.titleNil restricted Lie algebras of oscillating intermediate growthpt_BR
dc.typeArtigopt_BR
dc.subject.keywordÁlgebrapt_BR
dc.subject.keywordLie, Álgebra dept_BR
dc.subject.keywordP-grupospt_BR
dc.subject.keywordProblema Kuroshpt_BR
dc.identifier.doihttps://doi.org/10.1016/j.jalgebra.2021.09.003pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0021869321004324?via%3Dihubpt_BR
dc.description.abstract1The research is motivated by a construction of groups of oscillating growth by Kassabov and Pak [25] and a description of possible growth functions of finitely generated associative algebras by Bell and Zelmanov [9]. In this paper we address both, the question of possible growth functions in case of Lie algebras, and the Kurosh problem, because our examples of restricted Lie algebras have a nil p-mapping, which is an analogue of nillity for associative algebras or periodicity for groups. Namely, for any field of positive characteristic, we construct a family of 3-generated restricted Lie algebras of intermediate oscillating growth. We call them Phoenix algebras because, for infinitely many periods of time, the algebra is “almost dying” by having a quasi-linear growth, namely the lower Gelfand-Kirillov dimension is one, more precisely, the growth is of type , where , are constants. On the other hand, for infinitely many n the growth function has a rather fast intermediate behavior of type , λ being a constant determined by characteristic, for such periods the algebra is “resuscitating”. Moreover, the growth function is bounded and oscillating between these two types of behavior. These restricted Lie algebras have a nil p-mapping, thus addressing the Kurosh problem as well.pt_BR
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.