Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/41197
Arquivos associados a este item:
Não existem arquivos associados a este item.
Título: Quasilinear equations involving critical exponent and concave nonlinearity at the origin
Autor(es): Figueiredo, Giovany de Jesus Malcher
Ruviaro, Ricardo
Oliveira Júnior, José Carlos de
Assunto: Equações quasilineares
Métodos variacionais
Expoentes críticos
Data de publicação: 15-Jul-2020
Editora: Springer
Referência: FIGUEIREDO, Giovany M.; RUVIARO, R.; OLIVEIRA JUNIOR, J.C. Quasilinear equations involving critical exponent and concave nonlinearity at the origin. Milan Journal of Mathematics, v. 88, p. 295-314, 2020. DOI: https://doi.org/10.1007/s00032-020-00315-6.
Abstract: We are interested in quasilinear problems as follows: {−Δu−uΔ(u2)=−λ|u|q−2u+|u|22∗−2u+μg(x,u),in Ω,u=0,on ∂Ω, (p) where Ω⊂RNis a bounded domain with regular boundary ∂Ω,N≥3,λ,μ>0,1<q<4,22∗:=4N/(N−2) and g has a subcritical growth and possesses a condition of monotonicity. We prove a regularity result for all weak solutions for a modified problem associated to (p) and, introducing a new type of constraint, we demonstrate a multiplicity result for solutions, including a ground state.
DOI: https://doi.org/10.1007/s00032-020-00315-6
Versão da editora: https://link.springer.com/article/10.1007/s00032-020-00315-6
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro completo do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.