Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/40484
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_BiancaSouzadePaiva.pdf727,96 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGuevara Otiniano, Cira Etheowalda-
dc.contributor.authorPaiva, Bianca Souza de-
dc.date.accessioned2021-04-09T16:07:26Z-
dc.date.available2021-04-09T16:07:26Z-
dc.date.issued2021-04-09-
dc.date.submitted2020-11-30-
dc.identifier.citationPAIVA, Bianca Souza de. Distribuição generalizada de valor extremo bimodal. 2020. xvi, 79 f., il, Dissertação (Mestrado em Estatística)—Universidade de Brasília, Brasília, 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/40484-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Estatística, 2020.pt_BR
dc.description.abstractA distribuição de valor extremo generalizada, conhecida como GEV, é amplamente utilizada em hidrologia e finanças para modelar eventos extremos. Neste trabalho propomos o modelo bimodal gev, ou BGEV, que generaliza a distribuição GEV e apresenta bimodalidade para determinadas combinações dos parâmetros. Fazemos um estudo gráfico intenso do comportamento da BGEV, em seguida o estudo de suas medidas descritivas como: moda, quantis e momentos. Utilizamos o método de máxima verossimilhança (MV) para estimar os parâmetros da BGEV. Através de experimentos de simulação de Monte Carlo verificamos o bom desempenho dos estimadores de MV. Além disso, adicionamos uma aplicaçao à dados climáticos.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).pt_BR
dc.language.isoPortuguêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleDistribuição generalizada de valor extremo bimodalpt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordValor extremopt_BR
dc.subject.keywordDistribuição (Probabilidades)pt_BR
dc.subject.keywordDistribuição bimodalpt_BR
dc.subject.keywordSimulação de Monte Carlopt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1The generalized extreme value distribution, known as GEV, is widely used in hydrology and finance to model extreme events. In this work we propose the bimodal gev model, or BGEV, which generalizes the GEV distribution and presents bimodality for certain combinations of parameters. We make an intense graphic study of the behavior of BGEV, then the study of its descriptive measures such as: mode, quantiles and moments. We used the maximum likelihood (MV) method to estimate BGEV parameters. Through Monte Carlo simulation experiments, we verified the good performance of the MV estimators. In addition, we have added an application to climate datas.pt_BR
dc.contributor.emailbianca.unb@gmail.compt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Estatística (IE EST)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Estatísticapt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.