Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/36547
Arquivos associados a este item:
Arquivo TamanhoFormato 
ARTIGO_SimpleAccuratePeriodic.pdf3,92 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLima, Fábio Menezes de Souzapt_BR
dc.date.accessioned2020-01-24T10:31:44Z-
dc.date.available2020-01-24T10:31:44Z-
dc.date.issued2019pt_BR
dc.identifier.citationLima, Fábio Menezes de Souza. Simple but accurate periodic solutions for the nonlinear pendulum equation. Revista Brasileira de Ensino de Física, v. 41, n. 1, e20180202, 2019. DOI: https://doi.org/10.1590/1806-9126-rbef-2018-0202. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413. Acesso em: 23 jan. 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/36547-
dc.language.isoenpt_BR
dc.publisherSociedade Brasileira de Físicapt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSimple but accurate periodic solutions for the nonlinear pendulum equationpt_BR
dc.typeArtigopt_BR
dc.subject.keywordPêndulopt_BR
dc.subject.keywordVibraçãopt_BR
dc.subject.keywordFourier, Séries dept_BR
dc.subject.keywordFunções elípticaspt_BR
dc.rights.license(CC BY) - LIcença Creative Commons.-
dc.identifier.doihttps://doi.org/10.1590/1806-9126-rbef-2018-0202pt_BR
dc.description.abstract1Despite its elementary structure, the simple pendulum oscillations are described by a nonlinear differential equation whose exact solution for the angular displacement from vertical as a function of time cannot be expressed in terms of an elementary function, so either a numerical treatment or some analytical approximation is ultimately demanded. Such solutions have been thoroughly investigated due to the abundance of distinct pendular systems in nature and, more recently, due to the availability of automatic data acquisition systems in undergraduate laboratories. However, it is well-known that numerical solutions to differential equations usually loose accuracy (due to accumulation of roundoff errors) and polynomial approximations diverge after long time intervals. In this work, I take a few terms of the Fourier series expansion of the elliptic function sn ( u ; k ) as a source of accurate periodic solutions for the pendulum equation. Interestingly, these approximations remain accurate for arbitrarily long time intervals, even for large amplitudes, which shows its adequacy for the analysis of experimental data gathered in classical mechanics classes.-
dc.identifier.orcidhttp://orcid.org/0000-0001-5884-6621-
Aparece nas coleções:Artigos publicados em periódicos e afins

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.