Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/33120
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
EVENTO_Block-BasedMotion.pdf648,25 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorDórea, Camilo Chang-
dc.contributor.authorQueiroz, Ricardo Lopes de-
dc.date.accessioned2018-12-04T12:31:35Z-
dc.date.available2018-12-04T12:31:35Z-
dc.date.issued2018-10-
dc.identifier.citationDOREA, Camilo; QUEIROZ, Ricardo L. de. Block-based motion estimation speedup for dynamic voxelized point clouds. In: IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 25., 2018, Atenas. Papers [...]. Atenas: IEEE, 2018. DOI: 10.1109/ICIP.2018.8451647. Disponível em: https://ieeexplore.ieee.org/document/8451647. Acesso em: 04 dez. 2018.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/33120-
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleBlock-based motion estimation speedup for dynamic voxelized point cloudspt_BR
dc.typeTrabalhopt_BR
dc.subject.keywordComputação em nuvempt_BR
dc.subject.keywordImagem tridimensionalpt_BR
dc.identifier.doihttps://dx.doi.org/10.1109/ICIP.2018.8451647pt_BR
dc.description.abstract1Motion estimation is a key component in dynamic point cloud analysis and compression. We present a method for reducing motion estimation computation when processing block-based partitions of temporally adjacent point clouds. We propose the use of an occupancy map containing information regarding size or other higher-order local statistics of the partitions. By consulting the map, the estimator may significantly reduce its search space, avoiding expensive block-matching evaluations. To form the maps we use 3D moment descriptors efficiently computed with one-pass update formulas and stored as scalar-values for multiple, subsequent references. Results show that a speedup of 2 produces a maximum distortion dropoff of less than 2% for the adopted PSNR-based metrics, relative to distortion of predictions attained from full search. Speedups of 5 and 10 are achievable with small average distortion dropoffs, less than 3% and 5%, respectively, for the tested data set.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
Aparece nas coleções:Trabalhos apresentados em evento

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.