Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/30982
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_RogérioGomesLopes.pdf1,3 MBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorLadeira, Marcelo-
dc.contributor.authorLopes, Rogério Gomes-
dc.date.accessioned2018-01-04T20:36:56Z-
dc.date.available2018-01-04T20:36:56Z-
dc.date.issued2018-01-04-
dc.date.submitted2017-07-31-
dc.identifier.citationLOPES, Rogério Gomes. Predição da recuperação da inadimplência em operações de crédito. 2017. xv, 82 f., il. Dissertação (Mestrado Profissional em Computação Aplicada)—Universidade de Brasília, Brasília, 2017.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/30982-
dc.descriptionDissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2017.pt_BR
dc.description.abstractEste trabalho propôs a indução de classificadores, a partir da aplicação de técnicas de mineração de dados,para identificar clientes inadimplentes com potencial de regularização da dívida visando auxiliar uma instituição financeira a reduzir a Provisão para Créditos de Liquidação Duvidosa (PCLD). Estes modelos poderão contribuir para reversão de despesas da instituição financeira. Foram utilizados as técnicas Generalized Linear Models (GLM), Distributed Random Forest (DRF), Deep Learning (DL) e Gradient Boosting Methods (GBM), implementados na plataforma H2O.ai. Alguns aspectos que afetam o comportamento do cliente inadimplente foram identificados, como o perfil de sua renda e a época do ano. Estratégias de recuperação de crédito foram propostas e simulações identificaram possibilidades de redução de despesas operacionais.pt_BR
dc.language.isoPortuguêspt_BR
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titlePredição da recuperação da inadimplência em operações de créditopt_BR
dc.typeDissertaçãopt_BR
dc.subject.keywordMineração de dados (Computação)pt_BR
dc.subject.keywordInadimplência (Finanças)pt_BR
dc.subject.keywordAprendizagem de máquinapt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.pt_BR
dc.description.abstract1This works proposes the induction of classifiers, from the application of data mining techniques, to identify defaulting clients with debt settlement potential to assist a financial institution in reducing its provision for doubtful debits. These models may contribute to the reversal of expenses of the financial institution. The techniques Generalized Linear Models (GLM), Distributed Random Forest (DRF), Deep Learning (DL) and Gradient Boosting Methods (GBM) algorithms implemented in the H2O.ai platform were used. Some aspects that affect the behavior of the defaulting customer, such as the profile of their income and the period of the year, have been identified. Strategies of credit recovery strategies were proposed and simulations identified possibilities of reducing operating expenses.pt_BR
dc.description.unidadeInstituto de Ciências Exatas (IE)pt_BR
dc.description.unidadeDepartamento de Ciência da Computação (IE CIC)pt_BR
dc.description.ppgPrograma de Pós-Graduação em Computação Aplicada, Mestrado Profissionalpt_BR
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.