Skip navigation
Use este identificador para citar ou linkar para este item: http://repositorio.unb.br/handle/10482/15504
Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_LuisFelipeGoncalvesFonseca.pdf869,04 kBAdobe PDFVisualizar/Abrir
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorKrassilnikov, Alexei-
dc.contributor.authorFonseca, Luís Felipe Gonçalves-
dc.date.accessioned2014-04-25T11:15:24Z-
dc.date.available2014-04-25T11:15:24Z-
dc.date.issued2014-04-25-
dc.date.submitted2013-12-16-
dc.identifier.citationFONSECA, Luís Felipe Gonçalves. Identidades polinomiais graduadas de algumas álgebras sobre um domínio de integridade. 2013. xiv, 58 f., il. Tese (Doutorado em Matemática)— Universidade de Brasília, Brasília, 2013.en
dc.identifier.urihttp://repositorio.unb.br/handle/10482/15504-
dc.descriptionTese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, Programa de Pós-Graduação, 2013.en
dc.description.abstractSejam K um domínio de integridade infinito e Mn(K) a álgebra das matrizes n x n sobre K. Os objetivos da primeira parte desta tese serão:• Encontrar uma base para as identidades Z-graduadas de Mn(K); • Encontrar uma base para as identidades Zn-graduadas de Mn(K); • Encontrar uma base para as identidades graduadas de Mn(K) com uma graduação elementar cuja componente neutra coincide com a subálgebra das matrizes diagonais; • Descrever as identidades graduadas de Mn(K) equipada com uma graduação induzida das matrizes elementares; • Descrever os polinômios centrais Zp-graduados de Mp(K) quando p é um número primo; • Descrever os polinômios centrais Z-graduados de Mn(K). Com exceção do quarto item, todos os resultados listados acima têm versões conhecidas quando K é um corpo infinito; veja: [2],[3],[8] e [38]. Sejam K um corpo infinito de característica p > 2 e E a álgebra de Grassmann unitária gerada por um espaço vetorial de dimensão infinita V sobre K. Na segunda parte desta tese, nós descreveremos as identidades polinomiais Z2-graduadas de E para qualquer graduação em que uma base de V é homogênea com relação a essa graduação. _______________________________________________________________________________________ ABSTRACTen
dc.description.abstractLet K be an infinite integral domain and Mn(K) be the algebra of all n x n matrices over K. This thesis aims for the following goals:• Find a basis for the Z-graded identities of Mn(K);• Find a basis for the Zn-graded identities of Mn(K); • Find a basis for the graded identities for elementary grading in Mn(K) when the neutral component and diagonal components coincide; •Describe the matrix units-graded identities of Mn(K); • Describe the Zp-graded central polynomials of Mp(K) when p is a prime number; • Describe the Z-graded central polynomials of Mn(K). Except for the fourth item, all results listed above have known version when K is an infinite field; see [2],[3],[8], and [38]. Let K be a infinite field of characteristic p > 2 and let E be the unitary Grassmann algebra generated by an infinite dimensional vector space V over K. In the second part of this thesis, we found a basis of the Z2-graded polynomial identities for any non-trivial Z2-grading such that a basis of V is homogeneous in this grading.en
dc.language.isoPortuguêsen
dc.rightsAcesso Abertoen
dc.titleIdentidades polinomiais graduadas de algumas álgebras sobre um domínio de integridadeen
dc.typeTeseen
dc.subject.keywordMatrizes (Matemática)en
dc.subject.keywordÁlgebra abstrataen
dc.subject.keywordPolinômiosen
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.en
Aparece nas coleções:Teses, dissertações e produtos pós-doutorado

Mostrar registro simples do item Visualizar estatísticas



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.