UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS

ESTUDO DO COMPORTAMENTO DO SINAL ELETROMIOGRÁFICO DURANTE A RECUPERAÇÃO DA FADIGA ISOMÉTRICA DO BÍCEPS BRAQUIAL

Luciana Roberta Tenório Peixoto

Orientador: Carlos Alberto Gonçalves

Dissertação de Mestrado em Ciências Médicas

UNIVERSIDADE DE BRASÍLIA FACULDADE DE MEDICINA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS

ESTUDO DO COMPORTAMENTO DO SINAL ELETROMIOGRÁFICO DURANTE A RECUPERAÇÃO DA FADIGA ISOMÉTRICA DO BÍCEPS BRAQUIAL

Luciana Roberta Tenório Peixoto

Orientador: Carlos Alberto Gonçalves

Dissertação de Mestrado em Ciências Médicas submetida ao Programa de Pósgraduação em Ciências médicas da Faculdade de Medicina da Universidade de Brasília, como parte dos requisitos necessários para obtenção do título de Mestre em Ciências Médicas.

FICHA CATALOGRÁFICA

Peixoto, Luciana Roberta Tenório

Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga isométrica do bíceps braquial [Distrito Federal] 2008.

73p. 210 x 297 mm (FM/UnB, Mestre, Ciências Médicas, 2008). Dissertação de Mestrado – Universidade de Brasília. Faculdade de Medicina.

1. Eletromiografia de superfície

2. Recuperação da fadiga

3. Fadiga muscular

4. EMG

REFERÊNCIA BIBLIOGRÁFICA

Peixoto, LRT (2008). Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga isométrica do bíceps braquial. Dissertação de Mestrado em Ciências Médicas. Faculdade de Medicina, Universidade de Brasília, Brasília, DF. 73 p.

TRANSFERÊNCIAS DE DIREITOS AUTORAIS

Autora: Luciana Roberta Tenório Peixoto

Título: Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga isométrica do bíceps braquial.

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado, emprestar tais cópias para propósitos acadêmicos e pesquisa. A autora reserva outros direitos de publicação ou nenhuma parte dessa pesquisa pode ser reproduzida sem autorização por escrito da autora.

Luciana Roberta Tenório Peixoto

ESTUDO DO COMPORTAMENTO DO SINAL ELETROMIOGRÁFICO DURANTE A RECUPERAÇÃO DA FADIGA ISOMÉTRICA DO BÍCEPS BRAQUIAL

Luciana Roberta Tenório Peixoto

Banca examinadora:

Prof^o. Carlos Alberto Gonçalves, Doutor (CFS/ IB/ UnB) – Orientador

Prof^o. Adson Ferreira da Rocha, Ph.D. (FM/ UnB) – Examinador interno

Prof^o. Joaquim Pereira Brasil Neto, Ph.D. (CFS/ IB/ UnB) – Examinador interno

Suplente:

Profa. Ana Cristina de David, Doutora (FEF/ UnB) – Examinadora externa

AGRADECIMENTOS

A minha família pelo amor incondicional, pelo incentivo e referência de fortaleza.

Aos meus amigos inseparáveis.

Aos amigos que conquistei em Brasília sempre terei lembranças maravilhosas.

Ao meu orientador Profo. Carlos Gonçalves por sua lição de vida profissional e pessoal.

Aos meus professores pesquisadores (Euclides, Alberto e Aldemar) da Universidade de Ciências da Saúde de Alagoas, por acreditarem em mim desde a iniciação científica durante a graduação em Fisioterapia.

Sou muita grata à família Universidade de Brasília. Principalmente a equipe do Laboratório Integrado e a Coordenação de Pós-graduação em Ciências Médicas.

A todos os profissionais da Universidade Católica de Brasília pelo apoio oferecido tanto pessoal como para realizar a coleta dos dados no Laboratório de Avaliação Física e Treinamento (LAFIT/ UCB).

A cooperação de todos os voluntários da pesquisa, sem eles nada teria saído do papel.

Ao Distrito Federal (Plano Piloto, Taguatinga, Águas Claras) que sempre me acolheu com muito carinho e vem me ensinando a superar os desafios.

Ao apoio financeiro em forma de bolsa de mestrado da instituição CAPES em parceria com a Universidade de Brasília.

DEDICATÓRIA

Dedico este trabalho a todos àqueles que acreditam em seus próprios sonhos e os realizam.

Resumo

Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga muscular do bíceps braquial

Autora: Luciana Roberta Tenório Peixoto Orientador: Carlos Alberto Gonçalves Programa de Pós-graduação em Ciências Médicas - FM/ UnB

Brasília, 2008

O objetivo deste trabalho foi o de verificar se o eletromiograma de superfície (EMG-S) poderia fornecer dados para a determinação do tempo de recuperação da fadiga muscular. Para isso, dados eletrofisiológicos (Freqüência Mediana, FMD; Root Mean Square, RMS) e mecânicos (Contração Voluntária Máxima, CVM) do músculo bíceps braquial cabeça longa (BBL) foram registrados por até 48 h. Sessenta homens saudáveis praticantes de musculação foram aleatoriamente distribuídos por seis grupos experimentais (n=10 por grupo). Todos os grupos passaram por três fases: REF (fase de referência, correspondente ao repouso), RES (fase de resistência à fadiga, na qual se produziu a fadiga em exercício fatigante isométrico) e REC (fase de recuperação da fadiga). A diferença do protocolo experimental entre os grupos se deu apenas na fase REC, que ocorreu em seis diferentes tempos de gravação, a saber, 1 h, 2 h, 4 h, 8 h, 24 h e 48 h após a fase RES. Na fase REF, todos os voluntários produziram, além do parâmetro CVM, mais dois registros EMG-S, realizados com 0% e 20% da CVM, dos quais foram extraídos os parâmetros FMD e RMS. Na fase RES todos realizaram um exercício fatigante isométrico com carga de 60% da CVM. Na fase REC, os voluntários dos seis grupos, nos seis respectivos intervalos de gravação, produziram os mesmos registros e parâmetros da fase REF. Todos os registros foram produzidos com o cotovelo em 90º de flexão. A análise de dados consistiu em comparar os registros REF com os correspondentes REC, para verificar se os parâmetros monitorados retornavam aos mesmos valores de REF e para identificar o tempo de recuperação. Para essa comparação, visto que os dados nem sempre seguiam uma distribuição normal, foi utilizado o teste Wilcoxon pareado. Nossos resultados sugerem que, pela CVM, a recuperação se daria em duas horas depois de RES. A FMD, que não acusou claramente uma recuperação, sugere uma tendência que pode se concluir depois de 48 h. RMS parece não funcionar como indicador de recuperação. O comportamento do RMS e a inconsistência observada entre FMD e CVM levantam questionamentos sobre a necessidade de estudar melhor os esses parâmetros, por tempos maiores de REC e com cargas superiores a 20% da CVM.

Palavras-chave: Eletromiografia superficial, EMG, fadiga muscular, recuperação da fadiga, bíceps braquial.

Abstract

Study of the behavior of electromyographic signal of the brachial biceps muscle during recovery from fatigue

Author: Luciana Roberta Tenório Peixoto Advisor: Carlos Alberto Gonçalves

University of Brasília (Programa de Pós-graduação em Ciências Médicas-FM)

Brasília (Brazil), 2008

This work aimed to check the ability of the surface electromyogram (EMG-S) to provide useful data for settling the recovery time from muscular fatigue. For that purpose, electrophysiological (Median Frequency, MDF, and RMS value) and mechanical (Maximum Voluntary Contraction, MVC) signals were recorded up to 48 h from biceps brachial long head (BBL). Sixty healthy men practicing muscular exercise were randomly allocated in six groups (n=10 per group). Each group underwent three experimental phases: REF (reference phase, corresponding to rest), RES (phase of resistance to fatigue, produced by fatiguing isometric exercise) and REC (recovery phase). The experimental protocol was the same for all the groups, except for the six different REC phases corresponding to records made at 1 h, 2 h, 4 h, 8 h, 24 h and 48 h after RES phase. At the REF phase, all the subjects produced, in addition to MVC, two EMG-S signals recorded at 0% of MVC and 20% of MVC of which the parameters MDF and RMS were computed. At the RES phase, each subjetc underwent fatiguing isometric exercise at 60% of MVC load. At the REC phase, the six groups yielded signals corresponding to the six different acquisition times a producing the same records and parameters of the REF phase. All the records were constantly attained with the elbow flexed by 90°. The data analysis consisted in comparing the corresponding REF and RES data in order to verify whether the monitored parameters returned to the REF levels and to identify the recovery time. As our data were qualified as non-normal, we used the Wilcoxon matched pairs test. Our results concerning MVC suggest that recovery could be achieved in two hours after RES. Albeit the MDF didn't reveal an evident recovery behavior, it pointed towards a possible recovery above 48 h. RMS seems not to perform well in the role of a recovery indicator. The RMS behavior as well the inconsistency of MDF and MVC call in question the requirement of studying better those factors, for longer REC time periods and for loads higher than 20% of MVC.

Keywords: surface electromyography, EMG, muscular fatigue, recovery from fatigue, biceps brachial.

ÍNDICE

LISTA DE ABREVIAÇÕES, SIGLAS E SÍMBOLOS	x i
LISTA DE FIGURAS	xii
LISTA DE TABELAS	xiii
1. Introdução	14
1.1. Contexto	14
1.2. Fundamentação teórica	16
1.2.1. Eletromiograma e estimadores da fadiga	16
1.2.2. Estimador de força máxima e controle da carga em registros EMG	17
1.2.3. Recuperação da fadiga isométrica	18
1.2.4. Aspectos anatômicos, biomecânicos e fisiológicos do músculo estud	lado19
1.2.5. O membro dominante e o EMG	19
1.2.6. Sobre o perfil dos voluntários	20
1.3. Hipótese	21
1.4. Objetivos	21
2. Métodos	22
2.1. Tipo de estudo	22
2.2. Local	22
2.3. Participantes da pesquisa	22
2.3.1. Critérios de inclusão	22
2.3.2. Critérios de exclusão	22
2.3.3. Amostragem	23
2.3.4. Consentimento livre e esclarecido	23
2.4. Procedimentos	23
2.4.1. Produção dos Registros REF (fase de referência)	24
2.4.2. Produção dos Registros RES (fase de resistência à fadiga)	24
2.4.3. Produção dos Registros REC (fase de recuperação da fadiga)	24
2.5. Variáveis	25
2.5.1. Sinal de Força	25
2.5.2. Sinal Eletromiográfico	26

2.5.2.1. Processamento do sinal EMG	28
2.5.3. Análise dos Dados do Sinal biológico	29
2.6. Método estatístico	29
2.6.1. Cálculo do tamanho da amostra	29
2.6.2. Análise estatística	30
3. Resultados	31
3.1. Desvios do projeto	31
3.2. Características da amostra	32
3.3. Variáveis	32
3.3.1. Parâmetros freqüenciais do EMG-S	33
3.3.2. Parâmetro temporal do EMG-S	36
3.3.3. Parâmetro mecânico	39
4. Discussão	42
4.1. Discussão dos métodos	42
4.2. Discussão dos resultados	42
4.3. Implicações para a pesquisa	46
5. Conclusões	48
6. Referências	50
APÊNDICE	54
APÊNDICE A – Dados experimentais completos	55
APÊNDICE B – Formulários do Comitê de Ética em Pesquisa	60
APÊNDICE C - Protocolo experimental detalhado	64
APÊNDICE D – Tabela de medidas antropométricas (Modelo)	70
ANEXOS	71
ANEXO A - Questionário para avaliação clínica osteoarticular e neuromuscular	72
ANEXO B - Teste de lateralidade manual: Inventário de Edinburgh	73

LISTA DE ABREVIAÇÕES, SIGLAS E SÍMBOLOS

A/D analógico-digital

BBL bíceps braquial cabeça longa

CVM contração voluntária máxima

EMG eletromiografia/eletromiograma

EMG-S eletromiograma/eletromiografia de superfície

FM Faculdade de Medicina

FMD freqüência mediana

FMN freqüência média

H/L high/ low relation (relação entre as altas e baixas freqüências)

Hz Hertz

kg quilogramas

Kgf quilograma-força

 $k\Omega$ Kilo-ohms

REC fase de recuperação à fadiga

REF fase de referência

RES fase de resistência à fadiga

RMS Root Mean Square (valor quadrático médio)

T_i Tempo de recuperação

UCB Universidade Católica de Brasília

UnB Universidade de Brasília

LISTA DE FIGURAS

Figura 1. Representação gráfica da curva de força (em kgf) adquirido do membro superior pelo transdutor (strain gauge) durante uma contração voluntária
Figura 2. Ilustração do monitoramento do sinal de força usando o transdutor (strain gauge) acoplado ao ergômetro e a pulseira ajustada no voluntário26
Figura 3. Demonstração durante a aquisição do sinal de EMG-S, em detalhe o posicionamento dos eletrodos bipolares passivos no bíceps braquial do voluntário "06T ₁ "
Figura 4. Ilustração do sinal bruto (em azul) e de seu respectivo espectro (em vermelho) que foram descartados por haver ruído na faixa de 60 Hz observado na faixa espectral.
Figura 5. Comportamento característico do valor RMS (em unidades arbitrárias) e da Freqüência Mediana durante a fase de resistência a fadiga (fase RES). Gráficos gerados pelo programa SPEC. Sinal de EMG do voluntário "05T ₁ "31
Figura 6: Valores médios (n=10) de FMD_0 nos grupos REF e REC, conforme os dados da Tabela 2. As barras indicam o Desvio Padrão com 95% de confiabilidade.34
Figura 7: Valores médios (n=10) de FMD_{20} nos grupos REF e REC, conforme os dados da Tabela 4. As barras indicam o Desvio Padrão com 95% de confiabilidade.35
Figura 8: Valores médios (n=10) de RMS ₀ nos grupos REF e REC, conforme os dados da Tabela 6. As barras indicam o Desvio Padrão com 95% de confiabilidade.37
Figura 9: Valores médios (n=10) de RMS $_{20}$ nos grupos REF e REC, conforme os dados da Tabela 8. As barras indicam o Desvio Padrão com 95% de confiabilidade.38
Figura 10: Valores médios (n=10) de CVM nos grupos REF e REC, conforme os dados da Tabela 10. As barras indicam o Desvio Padrão com 95% de confiabilidade
Figura 11: Valores médios de CVM (n=10, em quilogramas-força), e Reta de Regressão para os dados dos seis protocolos da fase REF. As barras indicam o Erro Padrão

LISTA DE TABELAS

Tabela 1: Características da amostra com valores médios e desvio padrão (n=10) para cada protocolo de recuperação32
Tabela 2: Estatística Descritiva dos experimentos referentes à FMD ₀ (Freqüência Mediana do músculo realizando exercício com carga igual a 0% da CVM)33
Tabela 3: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável FMD ₀ (Freqüência Mediana com carga de 0% da CVM)34
Tabela 4: Estatística Descritiva dos experimentos referentes à FMD ₂₀ (Freqüência Mediana do músculo realizando exercício com carga igual a 20% da CVM)35
Tabela 5: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável FMD ₂₀ (Freqüência Mediana com carga de 20% da CVM). *p<0,0536
Tabela 6: Estatística Descritiva dos experimentos referentes à RMS ₀ (valor RMS do músculo realizando exercício com carga igual a 0% da CVM)36
Tabela 7: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável RMS ₀ (Root Mean Square, em inglês, com carga de 0% da CVM). **p<0,01; *p<0,0537
Tabela 8: Estatística Descritiva dos experimentos referentes à RMS ₂₀ (valor RMS do músculo realizando exercício com carga igual a 20% da CVM)38
Tabela 9: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável RMS ₂₀ (Root Mean Square,em inglês, com carga de 20% da CVM). **p<0,01; *p<0,0539
Tabela 10: Estatística Descritiva dos experimentos referentes à CVM (Contração Voluntária Máxima)39
Tabela 11: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável CVM (Contração voluntária máxima). *p<0,0540

1. Introdução

1.1. Contexto

O estudo da fadiga muscular pode ser descrito por duas fases. A primeira, que podemos chamar de fase de resistência à fadiga (RES), é a fase que começa com o músculo repousado (por nós denominada fase de referência, REF) iniciando um exercício extenuante e termina com a entrada em fadiga, quando o músculo não consegue mais realizar o exercício de forma adequada. Nesta fase observam-se alterações que modificam a eficácia da força contrátil e interferem no controle cortical do movimento (Chabran 2002). Na segunda fase, a de recuperação da fadiga (aqui denominada REC), ocorre o retorno do músculo ao estado REF (Elfving et al 2002). O estudo do processo completo, formado pelas duas fases, pode ser realizado segundo diversas abordagens, como a metabólica (Béliveau et al 1992, Enoka 1992, Linnamo 1998) ou a eletrofisiológica (Kroon e Naeije 1988, Rainoldi 1999).

Concernente à segunda abordagem, ganhou força nos últimos tempos o estudo da fadiga baseado na análise do sinal eletromiográfico de superfície, EMG-S (Farina 1999, Clancy 2005). A maioria absoluta dos estudos se refere à fase de resistência (RES) e as justificativas para tal interesse são convincentes: encontrar um indicador de fadiga baseado em métodos não-invasivos e passível de ser calculado em tempo real interessa a áreas que vão da Fisioterapia ao Treinamento Esportivo de alto nível. Basicamente, os estudos da área concentravam-se na análise do comportamento da Freqüência Mediana do espectro do EMG-S (FMD) (Roy et al 1990). Entretanto, dificuldades de diversas ordens enfrentadas por essa linha de pesquisa levaram a uma nova situação, que é a da atual reavaliação da proposta (Rainoldi et al 1999). Como exemplo desses obstáculos, podemos citar: a dificuldade em padronizar os métodos de registro e processamento do sinal; a necessidade de ter que basear todo o cálculo em poucos parâmetros – no caso um único parâmetro, a FMD – para garantir o cálculo em tempo real; e o pequeno intervalo disponível para análise que restringe o número de observações possíveis e

aumenta o erro (a fase de resistência dura poucos minutos em exercícios de fadiga isométrica).

A análise da fase REC pode, ao permitir contornar algumas dessas dificuldades, resgatar o interesse do uso do EMG-S no estudo da fadiga. Primeiramente, essa fase é certamente maior que a fase RES: alguns autores falam em horas ou mesmo dias (Kroon e Naeije 1988, Linnamo 2000, Ng 2002). Essa maior duração permite um processamento mais complexo e, provavelmente, menos sujeito a erros. Em segundo lugar, se o EMG-S puder funcionar como um marcador do retorno do músculo às suas condições fisiológicas de partida, de referência, pode-se tornar uma excelente ferramenta para os pesquisadores da área, já que a identificação correta do tempo da fase REC parece gerar polêmica até hoje (Larivière et al 2003, Blangsted et al 2005).

Nós adotamos a hipótese de que o EMG-S pode cumprir esse papel desde que seu registro e sua análise estejam associados a uma metodologia adequada.

Este trabalho se prontificou a desenvolver e testar uma nova metodologia para o cálculo do tempo da fase REC. Para isso, estamos introduzindo a proposta de monitorar vários parâmetros temporais e freqüenciais do EMG-S na fase que antecede o exercício de fadiga (Kroon e Naeije 1988, Krogh-Lund e Jorgensen 1993), durante o exercício e ao longo de 48 h após o exercício de fadiga. A Contração Voluntária Máxima (CVM), que foi registrada em paralelo, serviu como parâmetro suplementar de controle: o momento, após a fadiga, em que o voluntário for capaz de realizar a mesma CVM da fase REF indicaria o final da fase REC.

Em nossa hipótese, o final da REC definido pela CVM deverá coincidir com o retorno dos parâmetros temporais e freqüenciais do EMG-S às condições de referência.

1.2. Fundamentação teórica

1.2.1. Eletromiograma e estimadores da fadiga

Muitos são os trabalhos que buscam uma associação clara entre as mudanças fisiológicas e bioquímicas que ocorrem durante um exercício de fadiga localizada. Um dos protocolos básicos, em exercício isométrico, consiste em pedir que um voluntário mantenha uma carga elevada (acima de 50% da sua CVM) pelo maior tempo possível. O momento em que ele deixa de manter a carga define, ao mesmo tempo, a chegada do músculo à fadiga e o final da fase RES. Imediatamente após o final da fase RES, com o músculo de volta à sua atividade natural, inicia-se a fase REC. O EMG-S registrado ao longo desse protocolo permite o estudo da primeira fase, RES (De Luca 1997, Merletti 1999) ou da segunda, REC (Felici 1997, Linnamo 2000, Sbriccoli et al 2001), por meio do monitoramento de parâmetros temporais ou freqüenciais.

Dentre os parâmetros do EMG-S, rapidamente verificou-se que os espectrais eram ricos em informações referentes à fase RES. Dentre os estudados, como as Freqüências Média (FMN), Mediana (FMD) e Centróide, ou a relação H/L (razão entre as faixas de altas e baixas freqüências), a preferência recaiu em uma das duas primeiras, FMN ou FMD, que apresentam um claro declínio durante a fase RES (Karlsson e Gerdle 2001, Masuda et al 1999).

Adotar apenas um parâmetro, que foi a tendência nos últimos anos, possui a vantagem de reduzir e simplificar o número de cálculos, fato decisivo quando se pensa em processamento em tempo real. Em contrapartida, apresenta a desvantagem de atrelar toda a qualidade da análise ao desempenho desse único parâmetro, o que exige a manutenção de sua variabilidade restrita a uma faixa rígida.

Dentre os parâmetros temporais, o mais utilizado na análise do EMG é o valor RMS (de Root Mean Square, em inglês), que corresponde, fisicamente, à potência média do sinal (Basmajian e De Luca 1985).

1.2.2. Estimador de força máxima e controle da carga em registros EMG

Neste trabalho, adotamos a contração voluntária máxima (CVM) como outro possível estimador não-invasivo da recuperação fadiga, representando um parâmetro mecânico para monitorar o músculo. A CVM corresponde ao maior valor de força conseguido pelo voluntário e, normalmente, é calculada a partir de uma média de três tentativas curtas, 2-5 segundos cada (Rainoldi et al 1999) (Figura 1). É oportuno recordar que esse parâmetro também serve para normalizar os registros eletromiográficos, permitindo a comparação dos sinais EMG entre diferentes aquisições, mesmo existindo variabilidade do sinal entre tentativas e sujeitos. Essa técnica utiliza uma percentagem da CVM como valor referência enquanto ocorre a aquisição do sinal EMG do músculo estudado, padronizando também as cargas usadas durante os registros EMG como uma porcentagem da CVM (Petrofsky 1981).

Quanto às cargas utilizadas nos registros EMG, elas merecem um capítulo à parte em qualquer discussão detalhada sobre este tema (Rainoldi et al 1999). Esse assunto assume importância maior em protocolos que demandam registros repetidos, dado que pode haver efeito acumulativo entre eles. Autores como Rohmert (1973), por exemplo, sugerem que 15% da CVM seria um ponto limítrofe para evitar a produção de fadiga em exercícios isométricos. Para contornar esse inconveniente, a tendência natural seria a de usar uma carga baixa ou nula no momento da coleta de sinais EMG. No entanto, em cargas muito baixas, o padrão de recrutamento das fibras musculares produz um sinal EMG correspondente de baixa amplitude e com grande variabilidade, características que dificultam a análise e a comparação de dados (Basmajian e De Luca 1985). Uma solução para a questão, e que representa um compromisso interessante, pode ser dada pela utilização de cargas intermediárias, em torno de 20% da CVM.

Sabe-se que, logo após um exercício de fadiga, o voluntário não consegue repetir os mesmos valores de CVM do repouso (Tschoepe 1994). Após um período de recuperação, no entanto, ele deve ser capaz de reproduzí-los. O momento desse retorno da CVM aos valores de referência pode ser utilizado, portanto, como um indicador do tempo de recuperação da fadiga.

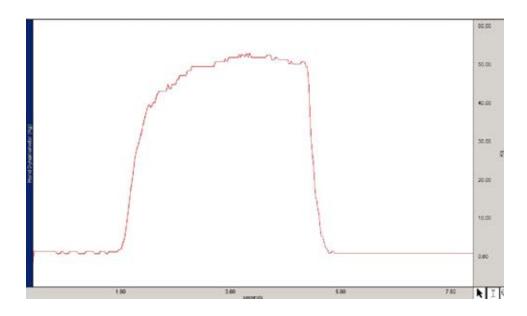


Figura 1. Representação gráfica da curva de força (em kgf) adquirido do membro superior pelo transdutor (strain gauge) durante uma contração voluntária.

1.2.3. Recuperação da fadiga isométrica

A quantificação do tempo de recuperação da fadiga interessa a várias áreas do conhecimento. Para os pesquisadores da área da fisiologia muscular, por exemplo, esse dado define o intervalo mínimo adequado entre dois experimentos subseqüentes que envolvam fadiga do músculo (Lavière et al 2003). Entretanto, a revisão bibliográfica dos trabalhos envolvendo EMG mostra que ainda não há um consenso sobre a definição desse valor que, dependendo do trabalho, pode ser de minutos, horas ou mesmo dias (Kroon e Naeije 1988, Komi et al 2000, Linnamo 2000, Ng 2002). E, ainda sobre o mesmo assunto, quando a consulta bibliográfica se estende para trabalhos envolvendo parâmetros metabólicos, as inconsistências se reforçam (Choi et al 1994, Sbriccoli et al 2001). As justificativas mais comuns para as discrepâncias giram em torno das diferenças entre as metodologias adotadas pelos grupos de pesquisa. Acreditamos que respostas simples e claras podem contribuir para essa área do conhecimento. Neste trabalho, por exemplo, houve a pretensão de responder a questões como as seguintes: é possível definir um protocolo experimental que permita definir o tempo da fase REC? Há ou não correspondência

entre as variáveis mecânicas (como a força produzida) e as eletrofisiológicas que medem a duração da REC?

1.2.4. Aspectos anatômicos, biomecânicos e fisiológicos do músculo estudado

Por diversas razões, o bíceps braquial, cabeça longa (BBL) foi o músculo escolhido para este estudo: é superficial e bem definido pelos Atlas anatômicos, facilitando sua identificação e o registro do EMG-S; tem volume suficiente para permitir a adequada fixação dos eletrodos; é um dos mais estudados nos trabalhos de pesquisa em nossa área de interesse, o que aumenta a possibilidade de comparar os resultados (Krogh-Lund e Jorgensen 1992, Komi et al 2000, Sbriccoli et al 2001).

Morfologicamente, o BB apresenta características equilibradas de cada uma das duas grandes classes - um músculo fásico, pouco resistente à fadiga possuindo 46,5% de fibras do tipo I (Johnson et al 1973). E, entremeado a essas, coexistem fibras tônicas (tipo II) com capacidade oxidativa e de resistência. Dentre os músculos do membro superior, o BB é o único que apresenta essa característica associada à facilidade de acesso pelo EMG-S.

Na análise biomecânica, o BBL, além de motor primário na flexão de cotovelo, é sinérgico na flexão do ombro e na supinação do antebraço contra resistência. Apresenta maior torque isométrico na posição supina do antebraço. O ângulo de 90° é o preferido nos protocolos de contração isométrica do BB, pois esse ângulo corresponde ao comprimento intermediário das suas fibras, situação em que a curva tensão-comprimento favorece o melhor desempenho (Hamill 1999).

1.2.5. O membro dominante e o EMG

Em nossa revisão bibliográfica foi observada a predileção pela avaliação do braço direito (Krogh-Lund e Jorgensen 1992, Tschoepe 1994, Linnamo 2000, Sbriccoli et al 2003). No entanto, somente um autor explicou o motivo de tal preferência (Krogh-Lund e Jorgensen 1993) outros nem mencionaram qual foi o membro estudado e muito menos apontaram uma preocupação com a dominância

manual. Petrofsky (1981) e Rainold (1999) estudaram a fadiga do membro dominante em protocolo isométrico, mas também não citaram nenhum teste de classificação.

Estudo realizado por Oliveira (2003) avaliando a influência da variável dominância do braço com análise EMG, não encontrou diferenças nas respostas entre os membros direito e esquerdo em praticantes de musculação. Vale ressaltar que esse exercício favorece o desenvolvimento muscular simétrico. Estudo realizado por Clark et al (2003), onde se analisaram os músculos lombares paraespinhais direito e esquerdo, tampouco revelou qualquer diferença estatística. A falta de consenso sobre o membro ideal para estudo pode ser identificada inclusive no SENIAM 8 (1999), um documento europeu de padronização do estudo de eletromiografia superficial.

Assim, neste trabalho, na tentativa de minimizar o efeito de variáveis perturbadoras do estudo da fadiga muscular, como as que podem ser introduzidas pelas atividades cotidianas repetitivas, optou-se pelo estudo do membro contradominante que foi identificado pelo Teste de lateralidade manual - Inventário de Edinburgh.

1.2.6. Sobre o perfil dos voluntários

A grande variabilidade dos parâmetros biológicos sempre será um grande obstáculo para um correto delineamento experimental e para uma correta análise estatística dos dados. A definição de um perfil mais restrito dos voluntários participantes da pesquisa pode ajudar a contornar parte desses problemas.

Outra dificuldade inerente ao bom delineamento experimental é o tamanho amostral. A escolha da população de onde foram retirados nossos voluntários sujeitos experimentais foi, por isso, outro ponto de reflexão. Em nosso caso, a população mais acessível era aquela formada por pessoas entre 19 e 35 anos, geralmente estudantes. Atualmente, essa população possui, como uma de suas características, o fato de muitos dos seus elementos serem praticantes de musculação ou de outras atividades físicas. Em paralelo, nosso protocolo experimental poderia ter seus parâmetros fortemente influenciados, em termos de variabilidade, pelo tipo de exercício praticado.

Foram essas observações que nos levaram a limitar os voluntários participantes da pesquisa àqueles praticantes de musculação.

1.3. Hipótese

Nosso estudo testou a hipótese da existência de "assinaturas" ou "marcas" eletrofisiológicas (FMD e RMS) e mecânicas (CVM) que definam o final da fase de recuperação da fadiga. Para isso, resolvemos testar:

H₀: REF = REC (as médias das variáveis estudadas dos grupos nas fases referência e recuperação são iguais). Durante a fase REC, deverão ser observados os retornos da FMD, do RMS e da CVM aos valores de referência. O momento em que esses retornos se completem definirá o final da fase REC. Sendo possível, no final da REC um ponto de coincidência, com o retorno dos parâmetros temporais e freqüenciais do EMG-S às condições de referência.

H₁: REF ≠ REC (as médias das variáveis dos grupos nas duas fases são diferentes). Durante a fase REC, não serão observados os retornos da FMD, do RMS e da CVM aos valores de referência. Assim, não será detectada a recuperação da fadiga.

1.4. Objetivos

Verificar a possibilidade de definir o tempo de recuperação da fadiga (realizada em contração isométrica) do músculo bíceps braquial, tomando como base os comportamentos da CVM e do EMG-S (FMD e RMS) durante um período de 48 horas.

2. Métodos

Este projeto de pesquisa foi submetido ao Comitê de Ética em Pesquisa - FM da Universidade de Brasília (Protocolo n º 007/2006, aprovado em 02/08/2006).

2.1. Tipo de estudo

O estudo foi organizado em ensaio clínico prospectivo em seres humanos com seguimento de até quarenta e oito horas.

2.2. Local

Graças a um acordo de cooperação técnica e científica entre pesquisadores da Universidade de Brasília (UnB) e da Universidade Católica de Brasília (UCB), o protocolo experimental foi realizado, entre os meses de maio e dezembro de 2007, no Laboratório de Avaliação Física e Treinamento – LAFIT/ UCB. E o processamento e a análise dos sinais foram realizados, entre janeiro e abril de 2008, no Laboratório Integrado/Engenharia Biomédica do Departamento de Ciências Fisiológicas, CFS/ IB - UnB.

2.3. Participantes da pesquisa

2.3.1. Critérios de inclusão

Homens saudáveis praticantes de musculação (mínimo de seis meses de treino ininterrupto e freqüência mínima de três vezes por semana), faixa etária entre 19 a 35 anos e com escolaridade mínima equivalente ao segundo grau completo.

2.3.2. Critérios de exclusão

Foram excluídos do estudo os portadores de patologias osteoarticular ou neuromuscular, indivíduo fazendo uso medicamentoso de antiinflamatórios,

23

relaxantes musculares ou outros fármacos que interfiram na atividade muscular ou neurológica.

2.3.3. Amostragem

Os voluntários para participação na pesquisa foram recrutados através de cartazes afixados nos murais da Universidade Católica de Brasília. Os 60 candidatos selecionados foram alocados aleatoriamente em 6 grupos distintos (n=10 por grupo). Os seis grupos seguiram o mesmo protocolo experimental, sendo que a única diferença entre eles foi o tempo em que ocorreu o registro do sinal EMG correspondente à fase de recuperação (REC), a saber, 1 h, 2 h, 4 h, 8 h, 24 h e 48 h após a fase RES.

2.3.4. Consentimento livre e esclarecido

Todos os indivíduos receberam orientações prévias sobre a pesquisa (dormir no mínimo 8 horas na noite anterior, não fumar, não realizar atividade física e não consumir bebida alcoólica ou cafeinada no período anterior ou durante a pesquisa). Participaram voluntariamente após a assinatura do Termo de Consentimento Livre e Esclarecido (Apêndice)

2.4. Procedimentos

O protocolo básico que deu origem a todas as mensurações e registros seguintes consiste na contração isométrica do BB do membro contradominante posicionado em ângulo de 90° do cotovelo. Inicialmente foram obtidos os dados individuais (os voluntários responderam a um questionário); conheceram o laboratório bem como os equipamentos e o protocolo experimental; realizaram um teste de lateralidade manual - Inventário de Edinburgh - para escolha do membro não dominante; e tiveram realizadas suas medidas antropométricas (ver modelo dos questionários e protocolo detalhado no Apêndice). Em seguida foi determinada a Contração Voluntária Máxima, CVM, de cada voluntário, a partir da média de 3 tentativas (3 contrações de 2-7 segundos, separadas por 3 min de descanso). Toda a coleta dos registros foi feita pelo mesmo pesquisador.

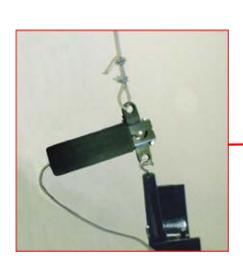
2.4.1. Produção dos Registros REF (fase de referência)

Em um período limitado entre 48 horas e 2 semanas após a determinação da CVM, todos passaram pela etapa de coleta dos sinais iniciais, que serviram como referência e a quem denominamos registros REF. Nesta fase, de acordo com as normas de coleta de dados definidas pelo SENIAM 8 (1999), foi registrado, para cada indivíduo, o EMG em duas situações: com carga 0% da CVM (esforço nulo) e com carga de 20% da CVM. Cada registro teve duração de um minuto.

2.4.2. Produção dos Registros RES (fase de resistência à fadiga)

Iniciando a segunda fase, todos foram submetidos ao exercício de fadiga isométrica, com carga de 60% da CVM. Durante esta fase do experimento, que durou até o momento em que o voluntário era incapaz de manter a carga indicada, foram continuamente monitorados e registrados o EMG-S e o sinal de força. Esses sinais foram identificados como registros RES e são correspondentes à fase de resistência à fadiga.

2.4.3. Produção dos Registros REC (fase de recuperação da fadiga)


Uma hora após a coleta dos registros RES, o primeiro grupo foi submetido a uma nova bateria constituída de três registros: registro de um EMG com carga igual a 0% da CVM (esforço nulo) e com um minuto de duração; registro de um EMG com carga de 20% da CVM e com um minuto de duração; e a determinação de uma CVM atualizada (CVM-T₁), resultante de uma média de 03 tentativas, cada uma de 2-7 segundos de duração. Todas as mensurações desta fase constituíram os registros REC-T₁, que são correspondentes à primeira hora da fase de recuperação (T₁ foi utilizado para representar o Tempo1, que corresponde à primeira hora após a fase RES, na qual foi produzida a fadiga). Os outros 5 grupos seguiram os mesmos passos do Grupo 1, com exceção dos intervalos entre RES e os próximos registros, que foram diferentes e correspondentes às 2 h, 4 h, 8 h, 24 h, e 48 h. Dessa forma, o segundo grupo produziu os registros REC-T₂, o terceiro grupo os REC-T₄ e assim por diante até os registros REC-T₄₈, produzidos pelo sexto grupo.

2.5. Variáveis

2.5.1. Sinal de Força

Foi utilizado um ergômetro projetado para este fim, fabricado pelo Centro de Manutenção de Equipamentos – CME/ UnB e validado previamente por nosso grupo de pesquisa (Oliveira 2003, Di Oliveira 2005). Esse dispositivo teve a função de manter constante o ângulo articular proposto (antebraço do voluntário em supinação com o cotovelo em 90°), com dedos flexionados em preensão cilíndrica (auxiliado por um rolo), e o tronco na postura ortostática com o pé contralateral posicionado à frente.

O monitoramento foi realizado com o auxílio de um transdutor de força (strain gauge) Hand Dynamometer, modelo SS25L (Biopac Systems Inc®, EUA) tensionado por um cabo de aço que unia perpendicularmente, com auxílio de uma pulseira, o punho do voluntário ao gancho do ergômetro (Figura 2). A realimentação visual do voluntário foi fornecida pelo monitor do computador posicionado a uma distância aproximada de 1,3 m; em paralelo, ele recebia motivação verbal do avaliador. Simultaneamente, o sinal de força era adquirido e numerizado por um circuito amplificador e conversor A/D (amplificação de 1.000 vezes e freqüência de amostragem igual a 500 Hz). A filtragem escolhida para essa operação tinha banda passante entre 38,5 e 66,5 Hz, com opção para filtro "rejeita-faixa" em 60 Hz (notch). Após esse tratamento, os dados eram armazenados em arquivos no computador (tipo IBM-PC) para o posterior processamento usando o sistema operacional Windows 98 (Microsoft®, EUA).

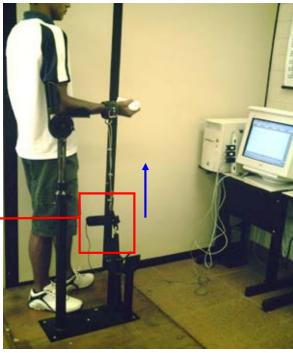


Figura 2. Ilustração do monitoramento do sinal de força usando o transdutor (strain gauge) acoplado ao ergômetro e a pulseira ajustada no voluntário.

2.5.2. Sinal Eletromiográfico

O sinal eletromiográfico da cabeça longa do músculo bíceps braquial (BBL) foi adquirido por eletrodos bipolares passivos Ag/ AgCl, com gel e auto-adesivo (Kendall, MediTrace®, EUA) de formato circular com 35 mm de diâmetro, sendo 10 mm correspondente à região de captação. Eles eram posicionados paralelamente às fibras musculares, em pares, com uma distância intereletrodos (entre os centros) igual a 20 mm (Figura 3). A pele foi preparada (SENIAM 1999) até que a impedância intereletrodos fosse igual ou inferior a 30 KΩ, monitorada por um multímetro digital. Também foi medido o diâmetro do braço na posição tensa. Em seguida, o eletrodo de referência foi colocado no pulso contra lateral ao membro estudado. Esta escolha, pouco convencional, já que o recomendado seria a colocação no membro ipsilateral, se deveu ao pouco espaço disponível no membro testado após a colocação dos eletrodos e da pulseira com o transdutor de força. O gel eletrolítico foi o da marca Carbogel® Com a finalidade de diminuir variáveis indesejadas associadas à mensuração, adotamos não retirar os eletrodos nos grupos de 1 h, 2 h e 4 h durante as fases REF, RES e REC. No entanto, por motivo de desconforto dos

voluntários, o par de eletrodos descartáveis foi retirado após a fase RES e reposto, na fase REC, nos grupos 8 h, 24 h e 48 h, tomando-se como guia para reprodução dos sítios de registro a marcação prévia feita com lápis dermatográfico (Mitsu-Bishi® 7600, Japão).

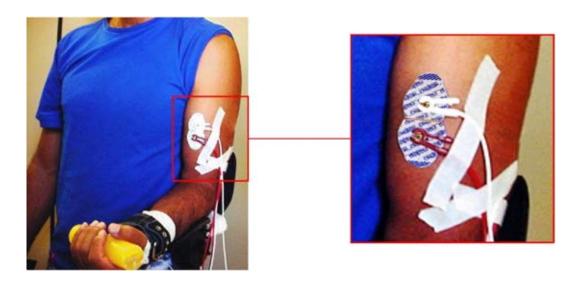


Figura 3. Demonstração durante a aquisição do sinal de EMG-S, em detalhe o posicionamento dos eletrodos bipolares passivos no bíceps braquial do voluntário "06T₁".

Antes de adquirir o sinal na fadiga, foi medida a relação sinal/ruído, sem carga, para verificar se havia interferências eletromagnéticas ou de movimento. Caso houvesse, e as interferências não pudessem ser suprimidas, o experimento era postergado ou suspenso (Figura 4). Durante a fase de resistência à fadiga, uma inspeção visual servia para avaliar o comportamento do sinal, verificando se havia queda da freqüência mediana e aumento da amplitude, que são características da fadiga e foram determinantes para a continuidade do experimento. Para que fosse realizada a comparação dos sinais brutos válidos, foi feita a normalização desses pela porcentagem da CVM mensurada na fase REF (20% ou 60%, a depender da etapa do protocolo). Considerando a porcentagem da CVM como um "valor alvo" a ser mantido pelo voluntário durante o exercício, foi possível registrar o sinal EMG já normalizado.

O equipamento utilizado na aquisição do sinal EMG-S foi o sistema Biopac modelo MP30 (Biopac Systems Inc®, EUA) acompanhado do software BSL PRO

versão 3.6.5 - ajustado para uma freqüência de amostragem de 2.500 Hz, banda passante de 30-500 Hz, filtro notch de 60 Hz e ganho de 2.500 vezes.

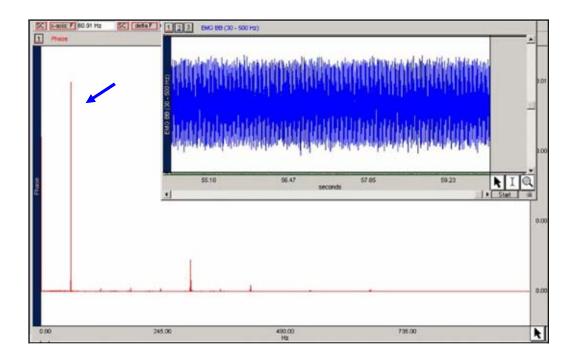


Figura 4. Ilustração do sinal bruto (em azul) e de seu respectivo espectro (em vermelho) que foram descartados por haver ruído na faixa de 60 Hz observado na faixa espectral.

2.5.2.1. Processamento do sinal EMG

O processamento do sinal EMG foi feito para analisar as três fases do experimento, REF, RES e REC. Em todas as fases, o processamento era composto de duas etapas, a de recorte e a de cálculo. O recorte foi realizado com o programa BSL PRO sobre o sinal ainda bruto, com o objetivo de, com base no sinal de força, eliminar as fases iniciais e finais do sinal de EMG correspondente, em que frequentemente a força não era estável dentro das faixas aceitáveis, definidas arbitrariamente como 60% da CVM ± 5% ou 20% da CVM ± 5%, dependendo do protocolo. O sinal EMG restante, recortado, foi utilizado na fase dos cálculos.

Usando um software (SPEC) desenvolvido por nosso grupo de pesquisa em linguagem MatLab 6.5 (MathWorks®, Natick, EUA), conforme algoritmos descritos em Gonçalves (1982). Para cada sinal recortado, o programa aplicava as ferramentas necessárias para estimar os valores da raiz quadrática média (em inglês

Root Mean Square, RMS) e da freqüência mediana (FMD). Para aumentar a eficácia dos estimadores, a amostragem empregou janelas de Hamming, deslizantes, com largura de 1 s e com sobreposição de 0,5 s, de acordo com o método de subjanelamento de Welch (Merletti e Parker 2004).

Antes da análise estatística, fizemos à normalização dos dados das fases REF e REC utilizando o software Origin® onde foram elaboradas as tabelas agrupando as médias da FMD e do RMS em trinta e quatro pontos para cada sinal a serem analisados no eixo Y nos gráficos.

2.5.3. Análise dos Dados do Sinal biológico

Os parâmetros eletrofisiológicos (FMD e RMS) calculados para os grupos T_1 a T_{48} , da fase REC, foram comparados aos seus parâmetros correspondentes dos registros REF, com o propósito de identificar o momento em que as igualdades ocorriam. Essas igualdades, se existissem, seriam interpretadas como o retorno às condições de referência, e o menor dos intervalos, como o tempo mínimo necessário para que o músculo BB se recupere completamente, sob a ótica eletrofisiológica, após um exercício fatigante. Esse tempo mínimo marcará o final da fase REC.

Restaria verificar, ainda, se essa "recuperação eletrofisiológica" estaria acompanhada de uma "recuperação mecânica". Em nossa proposta, para que isso ocorra, o voluntário deveria ter recuperado, nesse mesmo intervalo mínimo citado acima, a capacidade de realizar a mesma CVM da fase REF.

2.6. Método estatístico

2.6.1. Cálculo do tamanho da amostra

O cálculo do n necessário (Statistica 7.0, Statsoft®, Tulsa, EUA) foi realizado com base em dados de testes pilotos, quando o n era igual a 5.

Para esses cálculos foram consideradas as médias e desvios-padrões das variáveis FMD₂₀, RMS₂₀ e CVM, correspondentes aos registros de REF e REC-T₁,

 α =5%, poder do teste de 80% e r=0,9. Para as variáveis citadas, foram obtidos os n iguais a 83, 15 e 8, respectivamente, por registro. O n destacadamente grande (igual a 83) exigido para FMD₂₀ foi, inicialmente, atribuído à grande variabilidade desses dados. Essas suposições ratificaram-se com uma estimação suplementar, que fizemos apenas para FMD₂₀, considerando os registros REF e REC-T₄; neste caso, o n estimado foi de 6. Frente à pequena probabilidade de conseguir o número total de voluntários estimado para FMD (83 x 6= 498) ou RMS (15 x 6 = 90), decidimos limitar nosso estudo a um n igual a 10 por grupo experimental, o que demandaria um total de 60 voluntários. O preço a pagar por essa opção seria a perda do poder do teste, que cairia, nos piores casos, para 14% (FMD) e 60% (RMS).

2.6.2. Análise estatística

Para análise estatística utilizamos o programa Statistica 7.0 (StatSoft Inc®). Inicialmente, os dados foram submetidos ao teste de Shapiro-Wilk W, para verificar o perfil da sua distribuição. Os resultados mostraram que, para um nível de significância de 5%, muitos dos dados não seguiam uma distribuição normal, o que implicou o uso subseqüente de testes não-paramétricos. Assim, para testar as diferenças entre as variáveis REF e REC de cada protocolo, que são dependentes porque originadas do mesmo grupo de indivíduos, foi eleito o teste pareado de Wilcoxon.

3. Resultados

3.1. Desvios do projeto

Compareceram ao laboratório 83 candidatos para participar da pesquisa. Desse total, treze foram dispensados por não satisfazerem os critérios de inclusão.

Durante os registros da fase RES, foram rejeitados outros sete voluntários, porque os seus sinais não confirmaram, durante a inspeção visual do EMG, o comportamento característico representado pelo aumento do valor RMS e declínio da FMD (Figura 5).

Na fase REC, ocorreram três abandonos. Sessenta voluntários, concluíram, portanto, todas as etapas do experimento.

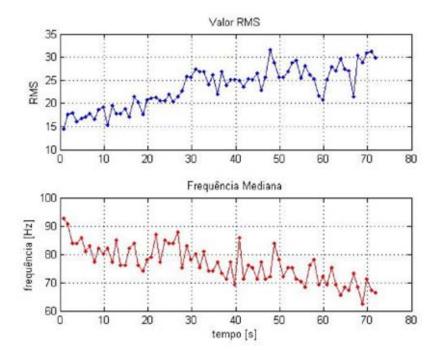


Figura 5. Comportamento característico do valor RMS (em unidades arbitrárias) e da Freqüência Mediana durante a fase de resistência a fadiga (fase RES). Gráficos gerados pelo programa SPEC. Sinal de EMG do voluntário "05T₁".

3.2. Características da amostra

A Tabela 1 apresenta alguns dados característicos da amostra participante do experimento, formada exclusivamente por voluntários do sexo masculino, em termos de média e desvio-padrão. Por serem praticantes de musculação durante o período mínimo de 6 meses ininterruptos, possuíam experiência em exercício resistido. Essa habilidade mostrou-se útil, pois observamos que eles não tiveram dificuldades em manter o controle muscular para alcançar a fadiga.

Tabela 1: Características da amostra com valores médios e desvio padrão (n=10) para cada protocolo de recuperação.

Protocolo	Idade	Massa corporal (kg)	Estatura (cm)	Perímetro do braço (cm)	Membro dominante	CVM-REF (kgf)	Tempo de treino (anos)
T ₁	23,11± 5,06	82,3± 7,75	180,5± 8,54	37,62± 3,19	90% destro, 10% sinistro moderado	42,46± 6,76	5,54± 4,81
T ₂	28,1± 5,36	79,19±10,46	177,04± 7,10	37,52± 3,74	100% destro	39,94± 6,87	5,48± 5,15
T ₄	27,89± 5,03	75,74±10,84	172,65± 5,72	35,76± 2,15	100% destro	45,30± 9,79	2,86± 1,69
T ₈	28,5± 4,74	84,1± 9,94	182,46± 7,04	36,56±2,11	80% destro, 10% fraco ambidestro e 10% sinistro	44,54± 7,88	6,35± 4,22
T ₂₄	24,2± 5,05	74,69±11,08	177,18± 6,01	35,27± 3,09	70% destro, 20% destro moderado e 10% fortemente sinistro	35,93± 7,69	4,12± 2,75
T ₄₈	25,1± 4,07	81,18±10,52	177,56± 5,01	36,92± 2,23	100% destro	42,53± 5,05	3,61± 1,75

3.3. Variáveis

Inicialmente, um esclarecimento sobre os gráficos dos vários parâmetros relacionados aos grupos REF e REC que serão apresentados mais abaixo. Objetivando facilitar a leitura e a análise dos resultados, optamos por uma representação pouco convencional. Deve-se observar que, para um dado protocolo T_i, correspondente a um dado tempo de recuperação, os dados dos grupos REF e REC são pareados (foram obtidos a partir dos mesmos voluntários), mas não

coincidentes no tempo. Isto é, em T₁, por exemplo, enquanto os dados de REC foram coletados uma hora após a fase RES, os dados de REF foram coletados antes de RES. Apesar de REF não ter sido coletado em T₁, no gráfico ele aparece nessa posição, visto que essa será a comparação a ser feita estatisticamente. O mesmo vale para T₂, com a diferença que os voluntários que forneceram este novo par de dados, REF e REC, foram outros e que REC foi registrado duas horas após RES. O método vale para os outros tempos, até T₄₈. Outra observação: nos gráficos, utilizamos o artifício de interligar os pontos REF entre si (protocolos T₁ a T₄₈) com uma linha, da mesma forma que interligamos os pontos REC. Tal artifício, que não possui grande significado fisiológico – visto que os indivíduos de um protocolo são diferentes dos do outro protocolo – objetivou, mais uma vez, facilitar a interpretação dos dados.

Na Estatística Inferencial foi eleito o teste pareado de Wilcoxon para verificar as diferenças entre as variáveis REF e REC de cada protocolo, que são dependentes porque foram originadas do mesmo grupo de indivíduos.

Os dados experimentais completos encontram-se no Apêndice A. A seguir, apresentamos o resumo da Estatística Descritiva acompanhado dos gráficos e da Estatística Inferencial correspondentes.

3.3.1. Parâmetros fregüenciais do EMG-S

Tabela 2: Estatística Descritiva dos experimentos referentes à FMD_0 (Freqüência Mediana do músculo realizando exercício com carga igual a 0% da CVM). As colunas T_i apresentam os dados dos protocolos de 1 hora de recuperação (T_1), duas horas (T_2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de FMD em Hz.

						FMD ₀						
	T ₁		T ₂		Т	T_4		- 8	T ₂₄		T ₄₈	
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC
Média (n=10)	46,50	46,76	40,03	55,91	37,74	33,16	37,95	32,82	34,49	32,50	34,97	38,88
Desvio Padrão	23,50	28,50	27,86	19,86	32,29	30,97	27,56	34,19	28,84	23,11	26,56	30,32

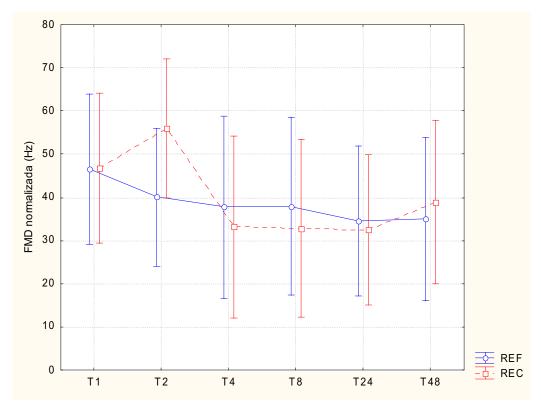


Figura 6: Valores médios (n=10) de FMD_0 nos grupos REF e REC, conforme os dados da Tabela 2. As barras indicam o Desvio Padrão com 95% de confiabilidade.

Tabela 3: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável FMD_0 (Freqüência Mediana com carga de 0% da CVM).

REF x REC (FMD ₀)										
Protocolo	N	Т	Z	Valor de p						
T ₁	10	20	0,765	0,445						
T_2	10	10	1,481	0,139						
T ₄	10	20	0,296	0,767						
T ₈	10	21	0,663	0,508						
T ₂₄	10	26	0,153	0,878						
T ₄₈	10	21	0,663	0,508						

Tabela 4: Estatística Descritiva dos experimentos referentes à FMD_{20} (Freqüência Mediana do músculo realizando exercício com carga igual a 20% da CVM). As colunas T_i apresentam o dados dos protocolos de 1 hora de recuperação (T_1), duas horas (T_2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de FMD em Hz.

FMD_{20}												
	T ₁		T_2		T ₄		T ₈		T ₂₄		T ₄₈	
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC
Média (n=10)	68,71	66,87	69,54	54,50	67,26	42,03	70,06	58,96	69,76	41,31	70,22	50,51
Desvio Padrão	4,88	9,85	6,50	28,27	18,45	29,49	14,47	30,22	10,91	30,86	5,74	25,16

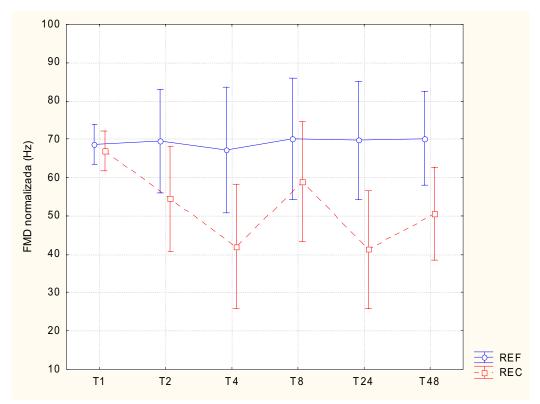


Figura 7: Valores médios (n=10) de FMD_{20} nos grupos REF e REC, conforme os dados da Tabela 4. As barras indicam o Desvio Padrão com 95% de confiabilidade.

Tabela 5: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável FMD_{20} (Freqüência Mediana com carga de 20% da CVM). *p<0,05

REF x REC (FMD ₂₀)										
Protocolo	N	Т	Z	Valor de p						
T ₁	10	22	0,561	0,575						
T ₂	10	12	1,244	0,214						
T_4	10	7	2,09	0,037*						
T ₈	10	22	0,561	0,575						
T ₂₄	10	3	2,497	0,013*						
T ₄₈	10	4	2,395	0,017*						

3.3.2. Parâmetro temporal do EMG-S

Tabela 6: Estatística Descritiva dos experimentos referentes à RMS_0 (valor RMS do músculo realizando exercício com carga igual a 0% da CVM). As colunas T_i apresentam o dados dos protocolos de 1 hora de recuperação (T_1) , duas horas (T_2) , e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de RMS em valores arbitrários.

						RMS_0						
	T ₁		T_2		T_4		T ₈		T ₂₄		T ₄₈	
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC
Média (n=10)	0,924	5,624	0,876	4,281	0,993	5,784	1,854	11,012	0,646	6,991	0,744	4,904
Desvio Padrão	0,739	3,023	0,534	2,395	0,808	6,505	2,452	14,326	0,279	4,325	0,381	2,779

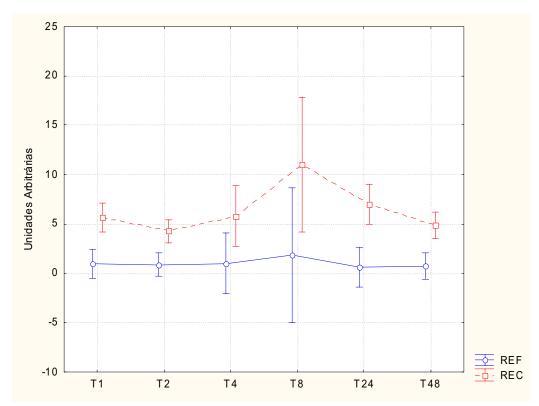


Figura 8: Valores médios (n=10) de RMS₀ nos grupos REF e REC, conforme os dados da Tabela 6. As barras indicam o Desvio Padrão com 95% de confiabilidade.

Tabela 7: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável RMS₀ (Root Mean Square, em inglês, com carga de 0% da CVM). **p<0,01; *p<0,05

REF x REC (RMS ₀)							
Protocolo	N	Т	Z	Valor de p			
T ₁	10	0	2,803	0,005**			
T ₂	10	0	2,803	0,005**			
T ₄	10	0	2,803	0,005**			
T ₈	10	3	2,497	0,013*			
T ₂₄	10	0	2,803	0,005**			
T ₄₈	10	0	2,803	0,005**			

Tabela 8: Estatística Descritiva dos experimentos referentes à RMS₂₀ (valor RMS do músculo realizando exercício com carga igual a 20% da CVM). As colunas Ti apresentam o dados dos protocolos de 1 hora de recuperação (T1), duas horas (T2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de RMS em valores arbitrários.

	RMS ₂₀											
	T_1 T_2		2	T_4		T ₈		Т	24	T ₄₈		
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC
Média (n=10)	5,624	6,981	4,281	6,419	5,784	4,920	11,012	10,054	6,991	4,470	4,904	5,358
Desvio Padrão	3,023	3,682	2,395	5,633	6,505	3,957	14,326	10,835	4,325	3,053	2,779	4,088

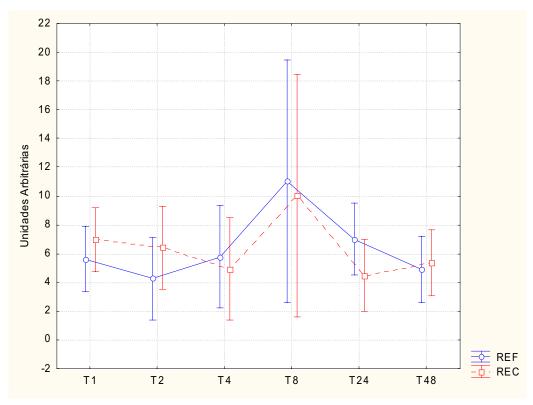


Figura 9: Valores médios (n=10) de RMS_{20} nos grupos REF e REC, conforme os dados da Tabela 8. As barras indicam o Desvio Padrão com 95% de confiabilidade.

Tabela 9: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável RMS₂₀ (Root Mean Square,em inglês, com carga de 20% da CVM). **p<0,01; *p<0,05

REF x REC (RMS ₂₀)								
Protocolo	N	Т	Z	Valor de p				
T ₁	10	13	1,478	0,139				
T ₂	10	14	1,007	0,314				
T ₄	10	18	0,968	0,333				
T ₈	10	19	0,866	0,386				
T ₂₄	10	1	2,701	0,007**				
T ₄₈	10	22	0,059	0,952				

3.3.3. Parâmetro mecânico

Tabela 10: Estatística Descritiva dos experimentos referentes à CVM (Contração Voluntária Máxima). As colunas T_i apresentam o dados dos protocolos de 1 hora de recuperação (T_1) , duas horas (T_2) , e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades da CVM em quilogramas-força.

						CVM						
	T ₁		T_2		Т	T_4		8	Т	24	Т	48
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC
Média (n=10)	42,47	38,35	39,94	42,29	45,30	43,37	44,54	42,52	35,93	35,74	42,52	39,73
Desvio Padrão	6,77	7,86	6,88	7,28	9,79	9,38	7,88	9,33	7,69	8,34	5,05	5,89

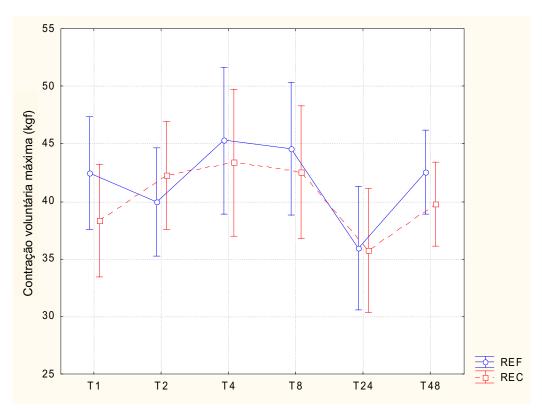


Figura 10: Valores médios (n=10) de CVM nos grupos REF e REC, conforme os dados da Tabela 10. As barras indicam o Desvio Padrão com 95% de confiabilidade.

Tabela 11: Resultados do teste pareado de Wilcoxon para as duplas REF-REC da variável CVM (Contração voluntária máxima). *p<0,05

REF x REC (CVM)								
Protocolo	N	Т	Z	Valor de p				
T ₁	10	8	1,988	0,047*				
T ₂	10	20	0,764	0,445				
T_4	10	10	1,784	0,074				
T ₈	10	18	0,968	0,332				
T ₂₄	10	24	0,357	0,721				
T ₄₈	10	9	1,886	0,059				

CVM (valores da fase REF)

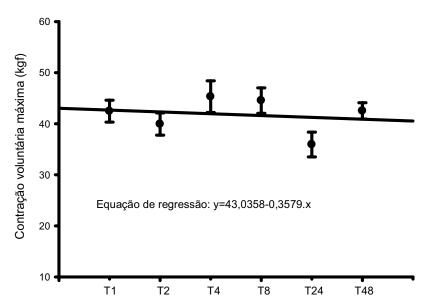


Figura 11: Valores médios de CVM (n=10, em quilogramas-força), e Reta de Regressão para os dados dos seis protocolos da fase REF. As barras indicam o Erro Padrão.

4. Discussão

4.1. Discussão dos métodos

Para ser coerente com os objetivos desta pesquisa, a análise dos resultados teve como foco principal a busca de um padrão que indicasse a recuperação do indivíduo, após a fadiga, para os patamares em que ele se encontrava antes dessa situação. Contamos, portanto, com cinco sinais, de origem eletrofisiológica e mecânica, que potencialmente podem desempenhar esse papel: FMD₀, FMD₂₀, RMS₀, RMS₂₀ e CVM.

A escolha do membro não-dominante poderia ser discutida, por estarmos diante de uma amostra de esportistas (praticantes de musculação) cuja característica é o desenvolvimento simétrico dos membros. Assim, apesar da falta de consenso sobre o assunto, mesmo no SENIAM 8, optamos por trabalhar apenas com o membro contra-dominante.

4.2. Discussão dos resultados

Análise da FMD

A análise dos comportamentos de REF e REC em FMD_0 (a partir dos dados da Tabela 2, da Figura 6 e da Tabela 3) e em FMD_{20} (a partir dos dados da Tabela 4, da Figura 7 e da Tabela 5) mostra que:

- em FMD₀, os dados do grupo REF não seguem exatamente o esperado, isto é, uma seqüência de resultados semelhantes de T₁ até T₄₈ que, quando interligados, formassem uma linha horizontal. Uma possível explicação para esse comportamento inesperado de REF seria a influência da carga baixa utilizada neste protocolo (0% da CVM). Sabendo-se que a FMD é influenciada pelo número de fibras musculares recrutadas e pela taxa e sincronismo de seus disparos, a variabilidade da Freqüência Mediana deve ser maior em protocolos com carga baixa. Essa especulação é compatível com o comportamento de REF em FMD₂₀. Neste caso,

onde a carga do exercício foi de 20% da CVM, os valores REF dos vários protocolos, quando interligados, formam praticamente uma horizontal.

- em FMD₀, os dados do grupo REC somente podem ser avaliados se comparados aos de REF. Visto que o comportamento de REF é anômalo neste caso, a análise de REC está definitivamente prejudicada. Em outras palavras, esses resultados sugerem que o protocolo com carga 0% da CVM talvez não seja adequado para estudar o que foi proposto neste trabalho de pesquisa.
- em FMD_{20} , as variabilidades de REF e REC são menores que as correspondentes em FMD_0 e os valores médios são superiores, como era de se esperar em função da carga superior agora utilizada. Os dados do grupo REF apresentam comportamento semelhante ao esperado, isto é, uma horizontal.
- em FMD₂₀, a análise dos dados do grupo REC, que apresenta comportamento muito diferente do de REF, sugere, inicialmente, que o exercício de fadiga surtiu algum efeito. Os resultados da Tabela 5 mostram que essas diferenças chegam a ser estatisticamente significativas em T_4 (p=0,037), T_{24} (p=0,013) e T_{48} (p=0,017).
- em FMD₂₀, agora focando na análise comparativa de REF e REC, chama a atenção o valor deste último em T₁. Hipoteticamente, a fadiga imposta ao grupo REC deveria levá-lo para valores abaixo dos de REF, que não passou pela mesma situação; a partir desse ponto, esperar-se-ia que REC se recuperasse continuamente após a fadiga, subindo para encontrar REF. Nessas bases, duas possibilidades devem ser computadas: (a) em T₁, REC deveria estar abaixo de REF, mas subindo; ou (b) em T₁, REC já retornou ao mesmo nível de REF, tendo completado, assim, sua recuperação. A posição relativa de REC em relação à REF, em T₁, apontaria para a segunda possibilidade, portanto. Surpreende, entretanto, o fato da queda de REC continuar até T₄, quando somente então parece haver uma tendência à estabilização.
- em FMD₂₀, os resultados surpreendem, sobretudo, porque estamos analisando pares de dados (REF-REC) que, apesar de pertencerem aos mesmos sujeitos experimentais no protocolo T₁, são produzidos por sujeitos diferentes no

protocolo T_2 , e assim por diante. Isso significa que esse comportamento de REC, de queda contínua até T_4 , é bastante consistente e contraria nossas hipóteses.

- em FMD₂₀, que novas conclusões poderiam ser feitas sobre a recuperação da fadiga? Os dados que possuímos não permitem concluir nada sobre a recuperação, apenas sobre uma possível estabilização que, em REC, ocorre entre T₄ e T₂₄, representada por uma oscilação em torno dos 50 Hz. Entre T₂₄ e T₄₈ aparece uma subida que pode pertencer a dois fenômenos: à oscilação, que continuaria, ou ao início de uma efetiva recuperação. Esses resultados sugerem, portanto, que os efeitos da fadiga muscular sobre a FMD podem durar mais de 48 horas, pois em T₄₈ as diferenças entre REF e REC ainda são significativas. Em conseqüência, protocolos experimentais que não respeitem esses prazos podem produzir resultados erráticos (Petrofsky 1981, Kroon e Naeije 1988, Roy et al 1990, Krogh-Lund 1992, Søgaard et al 2003).

Análise do RMS

A análise dos comportamentos de REF e REC em RMS_0 (a partir dos dados da Tabela 6, da Figura 8 e da Tabela 7) e em RMS_{20} (a partir dos dados da Tabela 8, da Figura 9 e da Tabela 9) mostra que:

- em RMS₀, os grupos REF comportam-se conforme o esperado, apresentando valores similares que, interligados por uma linha, formam uma reta próxima à horizontal. Destoam do conjunto os valores de T₈, tanto pela média quanto pela variabilidade maiores. Em relação ao controle formado pelo grupo REF, o grupo REC apresenta valores maiores, sempre de forma estatisticamente significativa, porém sempre seguindo uma constante de diferencial entre as curvas (desvio constante). E parece que essa é a única influência da fadiga. Em termos de tendências de REF e REC, elas são iguais; em nenhum momento se observam divergências ou convergências entre REF e REC, o que sugere que o RMS₀ é um sinal que não deve funcionar como indicador de recuperação de fadiga.

- em RMS₂₀, valem praticamente, as mesmas observações feitas para RMS₀, isto é, REF e REC apresentam comportamentos similares. Neste caso, nem mesmo diferenças estatísticas produzidas pelo desvio constante foram registradas. Em

conclusão, e com base em nossos dados, podemos afirmar que o sinal RMS₂₀ tampouco seria um bom candidato para indicar recuperação de fadiga. Esses resultados são reforçados pelos achados de alguns autores (Petrofsky 1981, Öberg 1995).

Análise da CVM

A análise dos comportamentos de REF e REC em CVM (a partir dos dados da Tabela 10, da Figura 10, da Tabela 11 e da Figura 11) mostra que:

Os resultados dos grupos REF seguem um comportamento esperado: as diferenças entre os protocolos (T_i), que correspondem às diferenças entre os indivíduos que participam dos diferentes protocolos, são exacerbadas em função de o experimento ocorrer em uma situação crítica, de extremo esforço. Essas diferenças são traduzidas, no gráfico, como um traçado distante de uma linha horizontal. Apesar disso, os valores de REF oscilam em torno de uma reta de regressão (Figura 11) que é quase uma horizontal, indicando que, na média, não há uma tendência marcada. Os testes estatísticos identificaram uma diferença significativa (p=4,7%) apenas em T₁, que corresponde à primeira hora após a fadiga. Nesse ponto, o grupo REC apresenta valores médios inferiores a REF, o que pode ser entendido como uma dificuldade do indivíduo, uma hora após a fadiga, em realizar a mesma força máxima que produzia em REF. Depois disso, os grupos REC acompanham muito bem os REF, permitindo concluir que, a partir de duas horas após a fadiga os voluntários recuperam a capacidade de produzir a mesma Contração Voluntária Máxima de referência.

Esses resultados indicariam, em um primeiro momento, que a CVM poderia ser um indicador de recuperação de fadiga. Surge um ponto bastante polêmico, entretanto, quando o "indicador" CVM é comparado ao "indicador" FMD₂₀: o tempo do término da recuperação do músculo. Enquanto CVM apontaria para o tempo de duas horas, FMD₂₀ sinalizaria que essa recuperação não ocorreria antes das 48 h. Essa incongruência pode ser uma das fontes para as divergências encontradas na literatura especializada, onde vários trabalhos indicam tempos diferentes de recuperação (Petrofsky 1981, Kroon e Naeije 1988, Kroon e Naeije 1991, Sbriccoli et

al 2001). Existiriam, então, mais de um indicador de recuperação da fadiga? Nossos resultados parecem sinalizar que sim, na medida em que parecem revelar as sensibilidades de FMD₂₀ e CVM para o fenômeno. Antes de qualquer afirmação mais conclusiva, no entanto, teríamos que responder a outras perguntas, como a que questionaria a existência de outros indicadores mais efetivos do que os apontados neste trabalho. Evidentemente que os mesmos parâmetros aqui analisados, mas associados a outras cargas, deveriam ser estudados com atenção. Especulando nesse sentido, nada impede que um sinal RMS₂₅, associado à carga de 25% da CVM, revele-se como mais um indicador.

Aparentemente, nossos resultados, por não permitirem afirmações conclusivas, parecem representar pouco como contribuição para o conhecimento do tema. Entretanto, algumas conclusões podem ser feitas. Primeiramente, nossos dados nos permitem concluir que, para fins de recuperação de fadiga, os sinais RMS e FMD relativos a cargas inferiores a 20% da CVM são inúteis. Esses achados, que estão de acordo com os de outros pesquisadores (Nagata 1990), podem levar ao questionamento da validade do uso desses parâmetros, nessas cargas, também nos estudos de entrada em fadiga, como acontece frequentemente no mundo científico (Nagata 1990, Rainoldi et al 1999, Ravier et al 2005). Por outro lado, a partir de cargas iguais a 20% da CVM, parece que a FMD começa a demonstrar alguma sensibilidade. Pra confirmar isso, o estudo com FMD₂₀ precisaria ser repetido, mas com uma extensão maior no tempo, para além das 48 h que limitaram nosso estudo.

O parâmetro CVM parece ser um candidato para indicar recuperação de fadiga, ao mostrar que a partir de 2 h o músculo volta a se comportar como fazia antes da fadiga. Resta saber que tipo de recuperação ele indica: voltar a realizar a CVM em sua plenitude pode não significar que o músculo recuperou todas suas funções (Sbriccoli et al 2001, Felici et al 2007).

4.3. Implicações para a pesquisa

Este trabalho teve utilidade na medida em que levanta algumas questões que como, por exemplo, sobre a necessidade de se estudar períodos de recuperação superiores a 48 h para verificar o comportamento da FMD nesse período. Outra

questão levanta a dúvida sobre a real eficácia dos parâmetros estudados como indicadores de recuperação de fadiga. Por isso, Sugere-se o acompanhamento de EMG com cargas entre 20% a 30% da CVM, ou até mesmo usar outro parâmetro como a velocidade de condução que descarta a necessidade de cargas altas, que foi uma das limitações da atual pesquisa, para monitorar a recuperação da fadiga muscular.

5. Conclusões

De uma forma geral, para fins de determinação do tempo de recuperação de fadiga, nossos dados mostraram que os parâmetros eletrofisiológicos obtidos a partir do EMG-S, FMD e RMS têm pouca chance de conter informações pertinentes se adquiridos em cargas de 0% da CVM e em contração isomérica. Mais particularmente, nossos dados sinalizam que o parâmetro RMS tampouco possui sensibilidade para medir a recuperação da fadiga muscular em exercícios isométricos com cargas correspondentes a 20% da CVM. Isso sugere que o uso do RMS em estudos de recuperação da fadiga e em exercícios com cargas baixas pode estar comprometido. Resta verificar o que ocorre em estudos com cargas superiores a 20% da CVM.

Nossos achados revelaram que FMD apresenta alguma sensibilidade à recuperação da fadiga em exercícios com 20% da CVM. Seu desempenho, entretanto, por não apresentar um retorno completo no intervalo estudado de 48 h, não permite classificá-lo como um candidato definitivo a indicador de recuperação de fadiga. Estudos por tempos superiores a 48 h e com cargas superiores a 20% da CVM podem eliminar essa dúvida.

Os estudos com a CVM mostraram que, ao mesmo tempo em que esse parâmetro pode ser um candidato a indicador de recuperação de fadiga, há uma inconsistência entre o seu desempenho e o da FMD: nossos dados sugerem que a recuperação da fadiga se completaria em 2 h pela CVM, mas não antes de 48 h pela FMD. Várias questões devem ser respondidas, a partir desses achados. Por exemplo, se a FMD fosse registrada com valores de cargas superiores a 20% da CVM, poderia retornar aos valores de repouso no mesmo intervalo de duas horas sinalizado pela CVM? Caso não haja convergência, em nenhuma situação de carga, entre os períodos de recuperação detectados por FMD e CVM, qual dos dois representaria melhor a recuperação da fadiga?

Enfim, os dois grandes parâmetros do eletromiograma de superfície, FMD e RMS, devem ser mais estudados, em outras situações experimentais, como em

cargas diferentes, por exemplo. Pelo menos um deles, a FMD, parece prometer sensibilidade à recuperação da fadiga.

6. Referências

- 1. Basmajian JV, De Luca CJ. Muscle Alive: Their functions revealed by Electromyography. 5 ed. Baltimore: Williams & Wilkings; 1985.
- Béliveau L, Van Hoecke J, Garapon-Bar C, Gaillard E, Herry JP, Atlan G, Bouissou P. Myoelectrical and metabolic changes in muscle fatigue. Int J Sports Med. 1992 Oct;13 Suppl 1:S153-5.
- 3. Blangsted AK, Sjogaard G, Olsen HB, Sogaard K. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography. J Electromyo Kinesiol. 2005;15: 138-48.
- 4. Chabran E, Maton B, Fourment A. Effects of postural muscle fatigue on the relation between segmental posture and movement. J Electomyo Kinesiol. 2002;12:67-79.
- 5. Choi D, Cole KJ, Goodpaster BH, Fink WJ, Costill DL. Effect of passive and active recovery on the resynthesis of muscle glycogen. Medicine and Science in Sports and exercise. 1994:992-6.
- 6. Clark BC, Manini TM, Thé DJ, Doldo NA, Ploutz-Snyder LL. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol. 2003; 94:2263-72.
- Clancy EA, Farina D, Merletti R. Cross-comparison of time and- frequencydomain methods for monitoring the myoelectric signal during a cyclic, forcevarying, fatiguing hand-grip task. J Electromyography and Kinesio. 2005;15:256-65.
- 8. De Luca CJ. The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics. 1997;13:135-163.
- Di Oliveira L. Fadiga dos músculos flexores do cotovelo e dos dígitos em contração isométrica. [Dissertação de Mestrado]. Brasília (DF): Universidade de Brasília; 2005.
- 10. Elfving B, Liljequist D, Dedering A, Nemeth G. Recovery of electromyograph median frequency after lumbar muscle fatigue analysed using an exponential time dependence model. Eur J Appl Physiol. 2002 Nov;88(1-2):85-93. Epub 2002 Sep 6.
- 11. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72:1631-48.

- 12. Farina D. Two methods for the measurement of voluntary contraction torque in the biceps brachial muscle. Medical Engineering & Physics. 1999;21(8):533-40.
- 13. Felici F, Colace L, Sbriccoli P. Surface EMG modifications after eccentric exercise. J Electromyo Kinesiol. 1997;7:193-202.
- 14. Felici F, Quaresima V, Fattorini L, Sbriccoli P, Filligoi GC, Ferrari M. Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises. J Electromyo Kinesiol. 2007Sep [Epub ahead of print]
- 15. Gonçalves CA. Techniques d'évaluation de la vitesse de conduction des potentiels d'action musculaires: application a l'interprétation de remaniements spectraux de l'electromyogramme. [Tese de Doutorado] Université Technologie de Compiègne, França, 1982.
- 16. Hamill J, Knutzen KM. Bases Biomecânicas do Movimento Humano. 1 ed. São Paulo: Manole; 1999.
- 17. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, et al. SENIAM 8 European Recommendations for Surface Electromyography: Roessingh Research and Development b.v.;1999.
- 18. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fiber types in thirty-six human muscles: An autopsy study. J Neurol Sciences. 1973;18:111-29.
- 19. Karlsson S, Gerdle B. Mean Frequency and Signal Amplitude of the Surface EMG of the Quadriceps Muscles Increase with Increasing Torque a Study Using the Continuous Wavelet Transform. J Electromyo Kinesiol. 2001;11:131-40.
- 20. Komi PV, Linnamo V, Silventoinen P, Sillanpaa M. Force and EMG power spectrum during eccentric and concentric actions. Med Sci Sports Exerc. 2000; 32 (10): 1757-62.
- 21. Krogh-Lund C, Jorgensen K. Myo-electric fatigue manifestations revisited: power spectrum, conduction velocity, and amplitude of human elbow flexor muscles during isolated and repetitive endurance contractions at 30% maximal voluntary contraction. Eur J Appl Physiol Occup Physiol. 1993;66(2):161-73.
- 22. Krogh-Lund C, Jorgensen K. Modification of myo-electric power spectrum in fatigue from 15% maximal voluntary contraction of human elbow flexor muscles, to limit of endurance: reflection of conduction velocity variation and/or centrally mediated mechanisms? Eur J Appl Physiol Occup Physiol. 1992;64(4):359-70.
- 23. Kroon GW, Naeije M. Recovery following exhaustive dynamic exercise in the human biceps muscle. Eur J Appl Physiol Occup Physiol. 1988;58(3):228-32.

- 24. Kroon GW, Naeije M. Recovery of the human biceps electromyogram after heavy eccentric, concentric or isometric exercise. Eur J Appl Physiol. 1991;63: 444-8.
- 25. Larivière C, Gravel D, Arsenault AB, Gagnon D, Loisel P. Muscle recovery from a short fatigue test and consequence on the reliability of EMG indices of fatigue. Eur J Appl Physiol. 2003 Apr;89(2):171-6. Epub 2003 Feb.
- 26. Linnamo V, Bottas R, Komi PV. Force and EMG power during and after eccentric and concentric fatigue. J Electromyo Kinesiol. 2000;10:293-300.
- 27. Linnamo V, Häkkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):176-81.
- 28. Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S. Changes in Surface EMG parameters during static and dynamic fatiguing contractions. J Electromyo Kinesiol. 1999Feb;9(1):39-46.
- 29. Merletti R, Knaflitz M, De Luca CJ. Electrically evoked myoelectric signals. Critical Review on Biomedical Engineering. 1999;19(4): 293-40.
- 30. Merletti R, Parker P. Electromyography: Physiology, Engineering, and Non-Invasive Applications. IEEE Press Series on Biomedical Engineering; 2004.
- 31. Nagata S, Arsenault AB, Gagnon D. EMG power spectrum as a measure of muscular fatigue at different levels of contraction. Med. & Biol. Eng. & Comput. 1990;28:374-8.
- 32. Ng GYF. Comparing fatigue and the rate of recovery between vastus medialis obliquus and vastus lateralis. Physical Therapy in Sport. 2002;3:118-23.
- 33. Öberg T. Muscle Fatigue and Calibration of EMG Measurements. J Electromyo Kinesiol. 1995;5(4):239-43.
- 34. Oliveira RMR. Influência do comprimento da fibra muscular no eletromiograma: aplicação à fadiga do bíceps em exercício isométrico. [Dissertação de Mestrado]. Brasília (DF): Universidade de Brasília; 2003.
- 35. Petrofsky JS. Quantification through the surface EMG of muscle fatigue and recovery during successive isometric contractions. Aviat Space Environ Med. 1981 Sep;52(9):545-50.
- 36. Rainoldi A, Galardi G, Maderna L, Merletti R. Repeatability of surface EMG variables during voluntary isometric contractions of the biceps brachii muscle. J Electromyo Kinesiol. 1999;9: 105-9.

- 37. Ravier P, Buttelli O, Jennane R, Couratier P. An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J Electromyo Kinesiol. 2005;15:210–21.
- 38. Rohmert W. Problems in determining rest allowances. Part 1: use of modern methods to evaluate stress and atrain in static muscular work. Appl Ergon. 1973Jun;4:91-95.
- 39. Roy SH, De Luca CJ, Snyder-Mackler L, Emley MS, Crenshaw RL, Lyons JP. Fatigue, recovery, and low back pain in varsity rowers. Med Sci Sports Exerc. 1990 Aug;22(4):463-9.
- 40. Sbriccoli P, Felici F, Rosponi A, Aliotta A, Castellano V, Mazzà C, Bernardi M, Marchetti M. Exercise induced muscle damage and recovery assessed by means of linear and non-linear sEMG analysis and ultrasonography. J Electromyo Kinesiol. 2001;11:73-83.
- 41. Sbriccoli P, Bazzucchi I, Rosponi A, Bernerdi M, De Vito G, Felici F. Amplitude and spectral characteristics of biceps Brachii sEMG depend upon speed of isometric force generation. J Electromyogr Kinesiol. 2003 Apr;13(2):139-47.
- 42. Søgaard K, Blangsted AK, Jørgensen LV, Madeleine P, Søgaard G. Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms. J Electromyo Kinesiol. 2003;13:441-50.
- 43. Tschoepe BA, Sherwood DE, Wallace SA. Localized muscular fatigue duration, EMG parameters and accuracy of rapid limb movements. J Electromyo Kinesiol. 1994; 4(4):218-29.

APÊNDICE

APÊNDICE A – Dados experimentais completos

Quadro 1. Estatística Descritiva completa dos experimentos referentes à FMD $_0$ (valor FMD do músculo realizando exercício com carga igual a 0% da CVM). Cada valor apresentado é a média da FMD normalizada de 34 amostras de cada sinal. As colunas T_i apresentam os dados dos protocolos de 1 hora de recuperação (T_1), duas horas (T_2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de FMD em Hz.

	FMD_0												
	Т	1	Т	2	T ₄ T ₈		Т	24	Т	48			
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	
	64,7978	64,1659	6,2902	67,0850	79,2739	72,5241	62,0692	19,0717	6,9508	56,4108	59,3405	57,9619	
	61,1500	62,9883	4,7392	70,6284	42,7964	41,1018	4,1073	83,9844	4,3084	3,9063	60,0873	65,7169	
	57,7608	69,8529	3,7339	46,9899	3,5329	3,9350	57,7321	4,0499	51,9876	14,8208	3,6190	48,5122	
	46,8750	64,7691	58,9671	63,0457	3,7914	69,4221	70,6572	3,2744	4,5381	39,3497	4,1073	6,5487	
	5,0839	3,6477	60,5182	62,6723	4,8254	22,8056	10,5411	4,0786	4,8254	5,5721	28,5788	3,0159	
	44,8357	67,3254	71,7199	71,4901	66,9520	79,7335	41,1305	64,6542	22,7769	60,6330	40,3263	64,5393	
	69,6519	13,9304	44,3474	54,6588	71,7199	3,7626	74,9655	73,2709	58,9671	52,7057	5,6296	3,8488	
	61,0639	73,0986	51,8153	51,8153	69,9391	4,0786	37,3966	64,9414	78,0101	49,7185	16,7452	3,8775	
	3,8775	4,0211	24,7875	66,3775	30,3883	30,3883	10,2539	3,6190	65,0276	37,7987	60,9490	63,5960	
	49,8909	43,7730	73,3571	4,3084	4,1648	3,8775	10,6273	7,2381	47,4782	4,0786	70,3125	71,1949	
Média (N=10)	46,4987	46,7572	40,0276	55,9071	37,7384	33,1629	37,9481	32,8182	34,4870	32,4994	34,9696	38,8812	
Desvio Padrão	23,5011	28,5045	27,8576	19,8637	32,2882	30,9714	27,5551	34,1925	28,8370	23,1084	26,5555	30,3215	

Quadro 2. Estatística Descritiva completa dos experimentos referentes à FMD_{20} (valor FMD do músculo realizando exercício com carga igual a 20% da CVM). Cada valor apresentado é a média da FMD normalizada de 34 amostras de cada sinal. As colunas T_i apresentam os dados dos protocolos de 1 hora de recuperação (T_1) , duas horas (T_2) , e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de FMD em Hz.

	FMD_{20}												
	Т	1	Т	2	Т	4	Т	8	Т	24	Т	48	
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	
	66,1477	68,8764	57,8182	57,8182	89,9012	85,3631	61,6671	74,9943	86,9715	75,7123	70,1114	64,5680	
	76,2580	61,1500	73,5869	4,7392	59,8001	42,7964	75,2815	4,1073	76,4304	4,3084	64,6542	60,0873	
	71,6050	62,9883	74,1613	70,6284	50,0057	41,1018	75,6549	83,9844	52,2174	3,9063	60,6905	65,7169	
	69,6232	76,2580	61,3511	73,5869	62,0404	59,8001	71,1742	75,2815	73,0699	76,4304	73,0411	64,6542	
	77,1772	80,3079	64,4531	75,0230	72,0646	57,2438	54,3716	83,9844	53,3663	62,1266	78,0101	65,7169	
	67,2679	57,7608	71,7199	3,7339	66,9520	3,5329	71,9784	57,7321	66,5499	51,9876	72,2369	3,6190	
	66,2052	69,8529	73,6156	46,9899	92,7160	3,9350	60,9490	4,0499	69,8242	14,8208	71,4327	48,5122	
	65,6020	71,6050	78,0101	74,1613	69,9391	50,0057	61,8681	75,6549	78,0101	52,2174	78,6707	60,6905	
	63,7638	73,0124	67,2966	79,3888	30,3883	72,6965	105,8996	59,1395	76,2293	67,0669	65,2574	67,4403	
	63,4766	46,8750	73,3571	58,9671	78,8143	3,7914	61,7819	70,6572	64,9414	4,5381	68,1147	4,1073	
Média (N=10)	68,7127	66,8687	69,5370	54,5037	67,2622	42,0267	70,0626	58,9585	69,7610	41,3115	70,2220	50,5113	
Desvio Padrão	4,8798	9,8452	6,5045	28,2692	18,4530	29,4881	14,4652	30,2158	10,9119	30,8558	5,7393	25,1620	

Quadro 3. Estatística Descritiva completa dos experimentos referentes à RMS $_0$ (valor RMS do músculo realizando exercício com carga igual a 0% da CVM). Cada valor apresentado é a média do RMS normalizado de 34 amostras de cada sinal. As colunas T_i apresentam os dados dos protocolos de 1 hora de recuperação (T_1), duas horas (T_2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de RMS em valores arbitrários.

	RMS_0												
		Γ ₁	Т	2	T_4 T_8 T_2		- 24	Т	- 48				
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	
	2,9237	7,7236	0,4185	1,2899	2,5930	4,5915	5,5916	3,3645	0,3972	8,1542	1,1453	11,1308	
	0,9829	6,5956	0,3765	3,2780	0,9624	5,4398	0,3228	6,6035	0,3718	4,8721	1,0364	3,2080	
	0,8794	9,0755	0,3443	9,6280	0,3701	0,6579	0,9050	6,5325	1,0063	3,8446	0,3749	4,7630	
	0,6803	1,5321	1,4769	5,9135	0,3789	9,1632	7,0948	7,1151	0,3982	4,5951	0,3735	2,0660	
	0,4056	3,7827	1,6414	4,8343	0,3572	1,8627	0,4598	8,3538	0,4009	1,5768	0,4929	4,1254	
	0,5910	4,5468	0,8107	1,7832	1,4886	3,9886	0,5916	12,7371	0,4971	12,6311	0,6649	7,8071	
	0,7163	10,2855	0,5831	4,3240	0,8107	22,8904	2,1751	50,8669	0,8752	7,5460	0,3993	3,2864	
	1,0660	6,4563	0,9200	4,1254	2,1000	2,3353	0,5372	2,5695	0,8607	4,1254	0,4617	4,3721	
	0,3576	5,2126	0,5048	5,1282	0,4986	1,5028	0,4086	8,6179	1,0757	6,7932	1,1721	5,9749	
	0,6385	1,0290	1,6831	2,5067	0,3682	5,4034	0,4499	3,3608	0,5796	15,7747	1,3210	2,3110	
Média (N=10)	0,9241	5,6240	0,8759	4,2811	0,9928	5,7836	1,8536	11,0122	0,6463	6,9913	0,7442	4,9045	
Desvio Padrão	0,7386	3,0233	0,5343	2,3955	0,8076	6,5050	2,4521	14,3263	0,2785	4,3246	0,3807	2,7794	

Quadro 4. Estatística Descritiva completa dos experimentos referentes à RMS_{20} (valor RMS do músculo realizando exercício com carga igual a 20% da CVM). Cada valor apresentado é a média do RMS normalizado em 34 amostras de cada sinal. As colunas T_i apresentam os dados dos protocolos de 1 hora de recuperação (T_1), duas horas (T_2), e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades de RMS em valores arbitrários.

	RMS_{20}												
	Т	1	-	Γ ₂	T ₄		Т	8	Т	24	Т	48	
	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	REF	REC	
	7,7236	7,7451	1,2899	1,2899	4,5915	4,9612	3,3645	4,8724	8,1542	3,7785	11,1308	16,4463	
	6,5956	6,5758	3,2780	3,4886	5,4398	4,3654	6,6035	3,4688	4,8721	4,0768	3,2080	4,2679	
	9,0755	14,6153	9,6280	10,8949	0,6579	5,7799	6,5325	2,3245	3,8446	3,0043	4,7630	4,0641	
	1,5321	6,8507	5,9135	7,2162	9,1632	7,6776	7,1151	3,7423	4,5951	3,3566	2,0660	1,9372	
	3,7827	3,4909	4,8343	3,3202	1,8627	1,6909	8,3538	5,1251	1,5768	1,4001	4,1254	4,0995	
	4,5468	5,1677	1,7832	20,6307	3,9886	3,1850	12,7371	15,4108	12,6311	11,2906	7,8071	6,0835	
	10,2855	9,9404	4,3240	3,4998	22,8904	14,5844	50,8669	35,4150	7,5460	7,5672	3,2864	3,2743	
	6,4563	8,1301	4,1254	4,3789	2,3353	0,5992	2,5695	2,5080	4,1254	3,7530	4,3721	4,2968	
	5,2126	6,3996	5,1282	4,5168	1,5028	3,7550	8,6179	21,0864	6,7932	5,5538	5,9749	5,9749	
	1,0290	0,8922	2,5067	4,9546	5,4034	2,5996	3,3608	6,5890	15,7747	0,9184	2,3110	3,1346	
Média (N=10)	5,6240	6,9808	4,2811	6,4191	5,7836	4,9198	11,0122	10,0542	6,9913	4,4699	4,9045	5,3579	
Desvio Padrão	3,0233	3,6819	2,3955	5,6331	6,5050	3,9567	14,3263	10,8353	4,3246	3,0525	2,7794	4,0882	

Quadro 5. Estatística Descritiva completa dos experimentos referentes à CVM. Cada valor apresentado é a média da CVM normalizada em 34 amostras de cada sinal. As colunas T_i apresentam o dados dos protocolos de 1 hora de recuperação (T_1) , duas horas (T_2) , e assim sucessivamente. REF e REC representam os dados colhidos antes e após a fase RES, de resistência à fadiga. Unidades dos valores da CMV em kgf.

		CVM											
	Т	1	Т	2	Т	4	Т	- 8	Т	24	Т	48	
	REF	REC											
	42,4100	41,5700	36,8800	48,3100	43,7500	37,3900	41,5100	43,5700	40,3100	43,3500	40,6300	30,9900	
	26,7800	18,1400	38,4800	39,8600	60,5300	61,6000	40,2900	39,0100	36,8300	32,2400	39,8600	34,0700	
	45,3000	42,8100	31,2600	43,4200	43,2800	44,1900	37,6100	36,5500	39,2300	49,2300	44,4800	39,0100	
	46,1900	42,4100	42,9900	39,0800	46,8200	46,9400	48,4100	47,2300	27,2300	28,3200	39,5200	45,3600	
	44,5400	35,9400	28,9200	44,2500	29,5900	28,2800	55,2300	57,5700	17,9400	19,8400	35,6100	35,4100	
	48,7800	44,1900	46,8200	42,2200	36,1100	35,0000	34,0300	31,1900	44,0800	43,4200	44,4400	40,5500	
	39,8600	45,7100	51,9800	56,7400	59,9500	50,3600	54,5500	55,8800	35,8300	36,9100	47,1500	46,7800	
	50,4900	35,7700	40,8400	37,0100	44,4200	42,4100	35,4300	34,2600	39,2900	35,9400	52,8600	49,3800	
	43,1700	39,0100	43,2500	43,2400	50,3700	49,3500	46,1800	32,9700	38,4000	34,1700	37,4800	36,7000	
	37,1300	37,9700	38,0000	28,8000	38,2200	38,1300	52,1300	46,9400	40,1600	34,0000	43,1700	39,0100	
Média (N=10)	42,4650	38,3520	39,9420	42,2930	45,3040	43,3650	44,5370	42,5170	35,9300	35,7420	42,5200	39,7260	
Desvio Padrão	6,7681	7,8635	6,8751	7,2811	9,7936	9,3825	7,8773	9,3308	7,6879	8,3393	5,0454	5,8925	

APÊNDICE B - Formulários do Comitê de Ética em Pesquisa

Termo de consentimento livre e esclarecido

Universidade de Brasília – UnB

Faculdade de Medicina - Programa de Pós-Graduação em Ciências Médicas

Pesquisadora: Luciana Roberta Tenório Peixoto - Contato: 61 3307-2294

Laboratório Integrado/Engenharia Biomédica - CFS/IB – Universidade de Brasília

N.º Registro CEP: 007/2006

Título do Projeto: Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga isométrica do bíceps braquial

Este termo de consentimento pode conter palavras que você não entenda. Peça ao pesquisador que explique as palavras ou informações não compreendidas completamente.

1) Introdução

Você está sendo convidado(a) a participar da pesquisa "Estudo do comportamento do sinal eletromiográfico durante a recuperação da fadiga isométrica do bíceps braquial". Se decidir participar dela, é importante que leia estas informações sobre o estudo e o seu papel nesta pesquisa. Você foi selecionado por sorteio e sua participação não é obrigatória. A qualquer momento você pode desistir de participar e retirar seu consentimento. Sua recusa não trará nenhum prejuízo em sua relação com o pesquisador ou com a instituição.

É preciso entender a natureza e os riscos da sua participação e dar o seu consentimento livre e esclarecido por escrito.

2) Objetivo

O objetivo deste estudo é conhecer o tempo adequado para a musculatura do braço descansar após um treino fatigante.

3) Procedimentos do Estudo

Se concordar em participar deste estudo você será solicitado a responder a um questionário de avaliação clínica osteoarticular e neuromuscular, ser examinado fisicamente para fornecer suas medidas antropométricas, permitir imagens fotográficas (se necessário) e coleta de sinais de força muscular e potencial elétrico dos músculos dos braços.

Os dados fornecidos serviram para estudar a recuperação da fadiga muscular e também poderá ser utilizada a qualquer momento para outras pesquisas e publicações realizadas por esse grupo de pesquisadores.

4) Riscos e desconfortos

Essa pesquisa não haverá riscos ao voluntário pois só será solicitado a ele executar movimentos comuns à natureza humana. O estudo é passível de um pequeno desconforto transitório na pele (escarificação local e leve) após o preparo da região a ser coletada o sinal elétrico. Lembrando que nesse estudo será utilizado eletromiografia de superfície que é um método não-invasivo, sendo assim não será usado em nenhum momento agulhas ou objetos perfurantes.

5) Benefícios

- 1. A participação na pesquisa não acarretará gasto para você, sendo totalmente gratuita. O conhecimento que você adquirir a partir da sua participação na pesquisa poderá beneficiá-lo com informações e orientações futuras em relação ao seu condicionamento físico.
- 2. Os exames e os procedimentos relacionados ao estudo serão inteiramente gratuitos. Você também pode ser desligado do estudo a qualquer momento sem o seu consentimento nas seguintes situações:
- a) você não use ou siga adequadamente as orientações/procedimento em estudo;
- b) o estudo termine.
- 6) Custos/Reembolso

Você não terá nenhum gasto com a sua participação no estudo. As avaliações, as consultas, os exames serão gratuitos e também não receberá pagamento pela sua participação. Você não receberá cobrança exame adicional ou qualquer outro procedimento feito durante o estudo.

7) Caráter Confidencial dos Registros

Algumas informações obtidas a partir de sua participação neste estudo não puderam ser mantidas estritamente confidenciais. Além dos profissionais de saúde que esta avaliando você, agências governamentais locais, o Comitê de Ética em Pesquisa da UnB onde o estudo está sendo realizado e os representantes podem precisar consultar seus registros a qualquer período anual. Você não será identificado quando o material de seu registro for utilizado, seja para propósitos de publicação científica ou educativa. Ao assinar este consentimento informado, você autoriza as inspeções em seus registros.

8) Participação

Sua participação nesta pesquisa consistirá em permitir a coleta do sinal elétrico dos músculos do braço e ser avaliado fisicamente.

É importante que você esteja consciente de que a participação neste estudo de pesquisa é completamente voluntária e de que você pode recusar-se a participar ou sair do estudo a qualquer momento sem penalidades ou perda de benefícios aos quais você tenha direito de outra forma. Em caso de você decidir retirar-se do estudo, deverá notificar ao profissional e/ou pesquisador que esteja atendendo-o.

9) Para obter informações adicionais

Você receberá uma cópia deste termo onde consta o telefone e o endereço do pesquisador principal, podendo tirar suas dúvidas sobre o projeto e sua participação, agora ou a qualquer momento. Caso você venha a sofrer uma reação adversa ou

tenha mais perguntas sobre o estudo, por favor, ligue para Luciana Roberta Tenório Peixoto, o telefone (61) 8117 0010.

10) Declaração de consentimento

Li ou alguém leu para mim as informações contidas neste documento antes de assinar este termo de consentimento. Declaro que fui informado sobre os métodos em estudo a ser utilizado, as inconveniências, riscos e benefícios que podem vir a ocorrer em consequência dos procedimentos.

Declaro que tive tempo suficiente para ler e entender as informações acima. Declaro também que toda a linguagem técnica utilizada na descrição deste estudo de pesquisa foi satisfatoriamente explicada e que recebi respostas para todas as minhas dúvidas. Confirmo também que recebi uma cópia deste formulário de consentimento. Compreendo que sou livre para me retirar do estudo em qualquer momento, sem perda de benefícios ou qualquer outra penalidade.

APÊNDICE C - Protocolo experimental detalhado

OBJETIVO: Definir o tempo de recuperação da fadiga do músculo bíceps braquial analisando os parâmetros do EMG-S (RMS e FMD) e a força.

DESCRIÇÃO: O protocolo será realizado em cinco etapas: detalhes da amostragem; preparo do eletromiógrafo; mensuração da CVM; aquisição e registro do sinal EMG; processamento do sinal.

MATERIAL NECESSÁRIO:

- pulseira ajustável em nylon conectada ao ergômetro por um cabo de aço
- microcomputador Pentium 3 (866 MHz, 256MB de memória RAM) com monitor de 15"
- eletromiógrafo (modelo MP30, Biopac System®) com software BSL PRO (Biopac System®, EUA)
- eletrodos bipolares passivos Ag/AgCl, com gel e auto-adesivos (Kendall, MediTrace®, EUA)
- eletrodo AgCl Ag de referência com pulseira plástica
- gel condutor (Carbogel®)
- fita adesiva (Micropore, 3M®)
- transdutor de força (Hand Dynamometer modelo SS25L, Biopac®)
- ergômetro
- outros materiais: lixas, gazes, detergente neutro, lápis dermográfico (Mitsu-bishi 7600), ataduras, buchas vegetais, lâminas de barbear descartáveis
- Software SPEC em linguagem MATLAB 6.5 (Mathworks®, Natick, EUA)

VOLUNTÁRIOS

60 homens praticantes de musculação.

DETALHES DA AMOSTRAGEM

1) Na entrevista, esclareça os voluntários quanto aos métodos da pesquisa. Se aceita a participação, entregue o termo de consentimento livre e esclarecido, solicitando a leitura e a assinatura de cada um. Preencha os questionários de lateralidade manual, da avaliação clínica e das medidas antropométricas.

Oriente-os sobre as recomendações necessárias para os dias que antecedem e sucedem o experimento, conforme os seguintes critérios: não consumir café, chá, álcool ou grande refeição; não fazer jejum prolongado; não fazer uso de qualquer medicamento; não praticar atividade física, não fumar; ter dormido ao menos por 8 h.

2) Alocação da amostra

Faça o sorteio dos voluntários para alocação dos voluntários pelos grupos, com a seguinte referência: Tempo 1 (para realizar a coleta da recuperação 1 hora após a fadiga); Tempo 2 (2 h após); Tempo 4 (4 h); Tempo 8 (8 h); Tempo 24 (24 h); Tempo 48 (48 h).

Entregue a cada voluntário uma cópia do termo de consentimento e seu respectivo cronograma de coleta, chamando a atenção para o local, data e horário anotados.

MONTAGEM DO ELETROMIÓGRAFO

- Observe o termômetro do laboratório (temperatura ideal: 21°C)
- Conecte o eletromiógrafo (modelo MP30) à entrada do microcomputador
- Conecte o transdutor de força na entrada1 do eletromiógrafo, e deixe-o em posição horizontal sobre a mesa
- Ligue todo o sistema de equipamentos (microcomputador, eletromiógrafo) pelo estabilizador de tensão elétrica
- Na tela principal do Windows, abra o software Biopac Student Lab Pro (BSL PRO), crie a pasta "UnB" incluindo as pastas "CVM referência", "CVM recuperação", "Resistência 60%", "Referência_0_20%", "Recuperação_0%_20%". Salve um arquivo-modelo para cada uma dessas pastas com a extensão: nome do voluntário_grupoX_faseX_data. Salve para cada arquivo-modelo com sua configuração de aquisição. Na opção MP30> escolher:
- 1 Em> setup channels configurar os canais (canal 1 = hand dynamometer; canal 2 = EMG)
- 2 Em> setup acquisition colocar 1.000 Hz, duração de 6s para aquisição de CVM; em EMG escolher 2.000 Hz de amostragem (para 0% e 20% da CVM colocar 1 min; e 1 hora para 60% CVM)
- 3 Na> barra de menu escolha os indicadores Mim, Max, Tmim, Tmax
- 4 Para os arquivos monitoração do EMG inicie uma aquisição teste, pare e depois irá aparecer a janela Scale vertical> (se pressionar sobre o botão direito do mouse sobre a barra de força no lado direito da tela). Coloque os seguintes parâmetros: Scale range upper 0 kgf; Lower (valor x= 2 * 60%CVM ou 20%CVM

ou valor x = 0); Major division (valor x = 5% da carga alvo kgf/dv); base point (carga alvo = 60% da CVM ou 20% da CVM)

- 5 Para os arquivos monitorando somente CVM inicie uma aquisição teste, pare e depois irá aparecer a janela Scale vertical> (se pressionar sobre o botão direito do mouse sobre a barra de força no lado direito da tela). Coloque os seguintes parâmetros: Scale range upper 70 kgf; midpoint 35 kgf; major division15 kgf; base point 0
- 6 Para calibrar o dinamômetro, escolha setup channels> botão ferramenta chanel 1 (hand dynamometer) scaling ao apertar o botão Cal1 aparecerá um valor x de referência que deverá ser base para o valor no Cal2 dado pela fórmula, x + 0.06575 mV= Cal 2 (coloque o valor Cal2 usando ponto). Teste a calibração, pressionando o botão start e verifique se na tela surge uma linha reta no ponto zero. Se não aparecer, repita a etapa calibração.
- 7 Expanda, na tela do monitor, sobre o local do canal da força do bíceps braquial
- 8 Monte o ergômetro acoplado ao transdutor de força por um cabo de aço com a pulseira ajustável

MENSURAÇÃO DA CONTRAÇÃO VOLUNTÁRIA MÁXIMA

- Com o auxílio do ergômetro, posicione o voluntário com o ombro aduzido, cotovelo flexionado a 90°, antebraço em supinação e dedos flexionados segurando objeto cilíndrico. Oriente-o a manter a perna contralateral à frente, enquanto permanece em pé ao lado do ergômetro.
- Oriente-o a não fazer movimentos compensatórios durante o teste
- Coloque a atadura de proteção no punho e a pulseira acoplada ao cabo de aço do ergômetro. Faça os ajustes na altura e comprimento, adaptando o ergômetro ao voluntário de modo confortável.
- Abra o software BSL PRO e um arquivo-modelo na pasta "CVM referência" ou "CVM recuperação"
- Calibre o dinamômetro
- Pedir ao voluntário para tracionar o cabo de aço acoplado ao transdutor de força sem modificar a posição das articulações do membro superior
- Mostre-o na tela do monitor a escala de força em quilogramas-força
- Peça-o a realizar uma contração mantida máxima no período de 6 s. Espere o período de repouso entre a próxima contração (3 min). E repita por três vezes.
- Anote na tabela "contração voluntária máxima" os valores máximos de cada contração (observe na barra de menu), e calcule a média das 3 tentativas a ser

chamada de CVM. Calcule o valor de 60% e 20% da CVM e guarde-os para normalizar o sinal EMG.

AQUISIÇÃO E REGISTRO DO SINAL ELETROMIOGRÁFICO

Esse procedimento deverá ser repetido na fase de resistência e recuperação. A fase de resistência será realizada entre 48 h e 2 semanas após medida a CVM do voluntário. Já a recuperação será registrada nos tempos: 1 h, 2 h, 4 h, 8 h, 24 h e 48 h após o exercício fatigante. Relembrar o voluntário dos passos do protocolo.

1) COLOCAÇÃO DOS ELETRODOS

Preparação da pele (no local destinado aos eletrodos de aquisição e de referência)

- Lave bem o local com água e sabão neutro com uso da bucha vegetal
- Faça a tricotomia
- Retire a camada córnea (lixando 20 vezes)
- Utilize gaze para retirar resquícios de tecido epitelial desprendido
- Determine a área para o sensor, marque com lápis dermatográfico

Fixação do sensor no local marcado

- Para posicionar os eletrodos no Bíceps braquial (BB), localizar a região 2/3 distal anterior sobre a linha média, entre o acrômio medial e a fossa cubital
- Colocar os eletrodos adesivos com distância intereletrodos de 2 mm (antes, corte uma parte adesiva de uma das extremidades de cada)
- Use o multímetro marcando a escala em 200 K Ω . Verifique a impedância intereletrodos. Repita a limpeza da pele caso indique um valor superior a 30 K Ω . Desligue o multímetro e anote a estimação da impedância
- Coloque o eletrodo de referência com gel eletrolítico no pulso contralateral ao braço estudado
- Conecte os fios aos eletrodos, prenda-os com fita gomada. Colete o sinal de EMG. Após a coleta dos dados retire os eletrodos e realize a limpeza de pele retirando o gel. Registre as observações diárias na ficha do voluntário.

2) COLETA DO SINAL ELETROMIOGRÁFICO

Será coletado em três fases: REF, RES e REC como descrição abaixo.

Fase Referência (REF)

- Abra a pasta na "CVM referência" e "Referência_0_20%" o ARQUIVO-MODELO.
 Preencha como nos outros arquivos-modelos (nome do voluntário_grupoX_faseX_data)
- Monitore o sinal de EMG sem carga e a 20% da CVM, usando o programa BSL PRO com os arquivos já previamente configurados.
- Abra o software BSL PRO do eletromiógrafo e um novo arquivo na pasta referência
- Posicione o voluntário e oriente-o novamente como na etapa de mensuração da CVM
- Inicie a coleta do EMG sem carga e 20% da CVM durante 1 minuto cada. Forneça cinco minutos de descanso e inicie o protocolo da resistência à fadiga. Salve o arquivo.

Fase de resistência à Fadiga (RES)

- Abra na pasta "Resistência_60%" o ARQUIVO MODELO. Preencha como nos outros arquivos-modelos (nome do voluntário grupoX faseX data)
- Monitore o sinal de EMG a 60% da CVM, usando o programa BSL PRO com os arquivos já previamente configurados.
- Verifique se o transdutor de força está calibrado
- Informe o voluntário quando iniciar o exercício de fadiga a 60% da CVM, coletando até o voluntário não conseguir manter a carga determinada. Salve o arquivo.
- Não retire os eletrodos adesivos e aguarde para a fase de recuperação.

Fase de recuperação à fadiga (REC)

- Abra nas pastas "CVM recuperação" e "Recuperação_0_20%" os ARQUIVOS MODELOS. Preencha como nos outros arquivos modelos (nome do voluntário_grupoX_faseX_data)
- Siga as mesmas instruções de coleta usadas na fase REF e acrescente a coleta da CVM recuperação. Salve o arquivo de coleta.

PROCESSAMENTO DO SINAL

Há duas etapas a serem seguidas, a de recorte e a de cálculo. Faça o mesmo processamento para as 3 fases do experimento REF, RES e REC.

1) Recorte

- Abra o programa BSL PRO, em seguida o arquivo bruto.
- Escolha display > reset chart display autoscale waveform (aperte o botão direito do mouse sobre o canal de EMG escolha autoscale waveform)
- Com base no sinal de força, recorte o sinal de EMG. Elimine as fases iniciais e finais do sinal EMG correspondente, em que frequentemente a força será estável. Cortar (manualmente) todos locais que ultrapassem os limites de 5% da força alvo
- Elimine o sinal de força> Remove waveform
- Save as> option selected section only. Salve com o nome do arquivo acrescentando "recortado"
- Visualize somente o canal do m. bíceps.
- Salvar com extensão .TXT e .ACQ (com o nome de arquivo e acrescentando sinal recortado).

2) Cálculo

- Na área de trabalho do Windows Abra o software MATLAB 6.5 (Mathworks, Natick, EUA), escolha a pasta SPEC e escreva a palavra <spec>
- Abrirá a janela do SPEC: coloque freqüência de amostragem 2.000 Hz, encontre o arquivo com extensão .TXT do voluntário
- Selecione a configuração> sem filtro, janela de Hamming, largura de 1s e com sobreposição de 0,5s, Transformada de Fourier> EXECUTAR.
- Após definido o gráfico de RMS e FMD, salve o arquivo também em JPEG e TXT.

APÊNDICE D – Tabela de medidas antropométricas (Modelo)

N	Nome	Protocolo	Data	Idade	Massa corporal (kg)	Estatura (cm)	Perímetro braço (cm)
1							
2							
3							
4							
5							
6							
7							
8							
9							
_10							
_11							
_12							
13							
_14							
_15							
16							
_17							
_18							
19							
20							
_21							
22							
23							
24							
25							
26							
27							
28							
29							
_30							

ANEXOS

ANEXO A - Questionário para avaliação clínica osteoarticular e neuromuscular (Modelo)

Nome:							
Nascimento: / / Idade:	Curso:						
Período do curso: Turno:	e-mail:						
Telefone residencial: Celular:Horário disponível							
- Pratica musculação há quanto tempo?	() inferior a 01 ano						
() 01 ano () superior a um ano. () I	Não sou praticante. () Já pratiquei, mas						
não pratico há meses Quanta	s horas por dia e vezes por semana?						
	<u> </u>						
- Pratica uma outra atividade física? () r	não. () Sim. Qual e quantas vezes por						
semana?							
- Faz alguma atividade laboral? () Não.	() Sim						
Qual? ()limpa () lava roupas () di	gita()e outras:						
- Já teve algum tipo de lesão que afetasse	e os membros superiores?						
() Não. () Sim. Do tipo: () fratura ()	neuropatia () cirurgia () miopatia						
() tendinite/ bursite () luxação/ subluxa	ção () outros:						
- Faz uso de algum medicamento? Se sim	ı, qual?						
- Faz uso de algum suplemento alimentar	? Se sim, qual?						
Declaro verdadeiras as informações por mim	fornecidas neste questionário.						
Brasília,/							
Ass.:							

ANEXO B - Teste de lateralidade manual: Inventário de Edinburgh

Avaliador_	Data	11	
Nome			

Inventário de Edinburgh (OLDFIELD, 1971)

Leia cada uma das perguntas abaixo. Decida que mão que você se usa para cada atividade e selecione então a resposta que o descreve mais adequadamente.

Com que mão normalmente você escreve?	Esquerda [1] Qualquer uma [2] Direita [3]
2. Com que mão você desenha?	Esquerda [1] Qualquer uma [2] Direita [3]
3. Qual mão você usaria para arremessar uma bola e acertar um alvo?	Esquerda [1] Qualquer uma [2] Direita [3]
4. Em que mão você usa sua raquete de tênis, squash etc.?	Esquerda [1] Qualquer uma [2] Direita [3]
5. Com que mão você usa sua escova de dentes?	Esquerda [1] Qualquer uma [2] Direita [3]
6. Que mão segura uma faca quando você corta algo? (Não usando um garfo)	Esquerda [1] Qualquer uma [2] Direita [3]
7. Qual mão segura o martelo quando você está batendo um prego?	Esquerda [1] Qualquer uma [2] Direita [3]
8. Quando você acende um palito de fósforo, qual mão segura o palito?	Esquerda [1] Qualquer uma [2] Direita [3]
9. Em qual mão você usaria uma borracha no papel?	Esquerda [1] Qualquer uma [2] Direita [3]
10. Que mão remove o topo da carta quando você entregando as cartas de um baralho?(ex., quando você é o participante que dá as cartas de um jogo, qual mão você usa para distribuir as cartas que são colocadas sobre a mesa?)	Esquerda [1] Qualquer uma [2] Direita [3]
11. Qual mão você segura a linha quando você está enfiando em uma agulha?	Esquerda [1] Qualquer uma [2] Direita [3]
12. Em que mão você seguraria um "mata mosca" (para matar uma mosca)?	Esquerda [1] Qualquer uma [2] Direita [3]
Resultado: 33-36 = Fortemente destro 29-32 = Moderadamente destro 25-28 = Fracamente destro 24 = Ambidestro 20-23 = Fracamente sinistro 16-19 = Moderadamente sinistro 12-15 = Fortemente sinistro	(é necessário você responder todas as 12 perguntas!) Parte inferior do formulário