

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

PADRÕES DE VARIAÇÃO DO FORMATO DOS OVOS DE PASSERIFORMES NEOTROPICAIS EM RELAÇÃO AO CLIMA, ECOLOGIA E BIOLOGIA REPRODUTIVA

TATIANE LIMA DA SILVA

BRASÍLIA - DF JULHO/2024

TATIANE LIMA DA SILVA

PADRÕES DE VARIAÇÃO DO FORMATO DOS OVOS DE PASSERIFORMES NEOTROPICAIS EM RELAÇÃO AO CLIMA, ECOLOGIA E BIOLOGIA REPRODUTIVA

Tese apresentada ao programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas da Universidade de Brasília como requisito parcial para obtenção do título de Doutor em Ecologia.

Orientador: Dr. Miguel Ângelo Marini

BRASÍLIA - DF JULHO/2024

Universidade de Brasília Instituto de Ciências Biológicas Programa de Pós-Graduação em Ecologia

Tese de doutorado

PADRÕES DE VARIAÇÃO DO FORMATO DOS OVOS DE PASSERIFORMES NEOTROPICAIS EM RELAÇÃO AO CLIMA, ECOLOGIA E BIOLOGIA REPRODUTIVA

Tatiane Lima da Silva

Banca examinadora:

Prof. Dr. Miguel Ângelo Marini Orientador/Presidente Universidade de Brasília (UnB)

Prof. Dr. Fabricio Villalobos Membro externo Instituto de Ecología (INECOL)

Prof. Dr. Mauro Pichorim Membro externo Universidade Federal do Rio Grande do Norte (UFRN)

Prof. Dra. Rosana Tidon Membro interno Universidade de Brasília (UnB) *Prof. Dr. André Mendonça* Membro interno suplente Universidade de Brasília (UnB)

Brasília, 30 de julho de 2024

"É preciso derreter o ego. Derretê-lo com amor profundo, para que ele desapareça e a pessoa se torne parte do oceano".

"Somos responsáveis por nós mesmos. Ninguém é responsável por mim, é minha responsabilidade total e absoluta. O que quer que eu seja, sou a minha própria criação".

Osho. O Livro do Ego. Liberte-se da ilusão.

"Onde quer que você esteja, esteja por inteiro".

"Muitas pessoas estão tão aprisionadas em suas mentes que a beleza da natureza não existe para elas".

"Ao menos que você esteja presente no Agora, a mente vai continuar governado você".

Eckhart Tolle. O poder do Agora. Um guia para a iluminação espiritual.

Dedico essa tese àquelas pessoas que mesmo em seus momentos mais difíceis, onde a escuridão tomava o controle do corpo e da mente, conseguiram encontrar forças em si mesmos para seguir em frente.

AGRADECIMENTOS

Sou grata aos meus pais pela vida e apoio financeiro.

A grande força interior que me move a sempre seguir em frente.

Ao meu orientador, Miguel Ângelo Marini, por contribuir para o meu crescimento acadêmico e pessoal e pela paciência e humanidade nos momentos mais difíceis.

À Rísia Cabral, pelos conselhos, acolhimento e amizade sincera.

Às minhas terapeutas, Alessandra Ribeiro e Carolina Carvalho, pelos ensinamentos e apoio emocional.

Aos colegas do Laboratório de Ecologia e Conservação de Aves pelo companheirismo ao longo desses cinco anos.

Aos membros da banca, Fabricio Villalobos, Mauro Pichorim, Rosana Tidon e André Mendonça por aceitarem o convite de participar da minha defesa de doutorado e pelas contribuições ao meu trabalho.

Ao Programa de Pós-Graduação em Ecologia da Universidade de Brasília pelos serviços prestados ao longo do meu doutorado.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de doutorado.

Aos museus e coleções que permitiram o acesso da equipe do Laboratório de Ecologia e Conservação de Aves as coleções oológicas.

sumário

CAPÍTULO 1. Species-specific egg shape is affected by breed	ing and ecological traits
across Neotropical passerines	6
Abstract	6
1. Introduction	7
2. Methods	9
(a) Egg shape database	9
(b) Ecological and breeding data	
(c) Data analyses	
3. Results	
4. Discussion	

variation in Neotropical passerines	19
Abstract	19
1. Introduction	20
2. Methods	22
(a) Egg shape database	22
(b) Climate data	23
(c) Data analyses	24
3. Results	26
4. Discussion	32

capítulo	3.	Within-clutch	variation	of	egg	shape	in	Neotropical	passerines	is
affected by	clin	nate, clutch size	e and diet.		•••••	•••••	•••••	••••••		35

At	bstract	
1.	Introduction	
2.	. Methods	
	(a) Egg shape database	
	(b) Climate data	
	(c) Data analyses	40
3. I	Results	41
4. I	Discussion	45

CONCLUSÃO GERAL	48
REFERÊNCIAS	49
MATERIAL SUPLEMENTAR	60

RESUMO

Os ovos apresentam a mesma função geral de proteção e manutenção do embrião em desenvolvimento em todas as aves. Entretanto, exibem ampla variação quanto ao formato, partindo de formatos esféricos a extremamente alongados. O maior componente de variação ocorre em larga escala taxonômica e correlaciona-se majoritariamente a limitações alométricas e filogenéticas ligadas ao tamanho corporal, formato da pelve a estilo de vida das fêmeas. O menor componente de variação ocorreria em espécies mais próximas filogeneticamente e poderia representar a seleção por formatos que forneçam vantagens ao desenvolvimento dos embriões. Aqui, investigamos como o clima, e as características reprodutivas e ecológicas das espécies correlacionam-se com o formato dos ovos em espécies de Passeriformes da região Neotropical. O formato foi analisado a partir dos índices de alongamento (comprimento/largura) e assimetria (quanto um polo é mais pontiagudo). Os ovos foram medidos a partir de fotografias digitais obtidas durante a visita a 36 coleções oológicas em museus na Europa, EUA e América do Sul. O formato dos ovos foi avaliado em três capítulos a partir de modelos filogenéticos. No capítulo 1, avaliamos a influência das características reprodutivas (tamanho da ninhada, volume dos ovos e tipo de ninho) e ecológicas (habitat, dieta e comportamento migratório) no formato espécie-específico de 468 espécies. No capítulo 2, avaliamos o papel do macroclima (Köppen-Geiger e WorldClim) e das condições climáticas do mês da postura dos ovos em 4.095 ninhadas de 428 espécies. No capítulo 3, analisamos a influência de condições ambientais restringentes, dieta e características reprodutivas na variação intra-ninhada do formato dos ovos em 3.822 ninhadas de 420 espécies. Nossos resultados indicam que a filogenia, limitação aerodinâmica para voo, exposição ambiental dos ovos, tamanho e número de ovos por ninhada, precipitação, limitação de cálcio na dieta e movimentos migratórios podem atuar como fatores relevantes para explicar a variação do formato dos ovos em Passeriformes Neotropicais.

Palavras-chave: Aves, clima, coleções oológicas, modelos filogenéticos, reprodução

ABSTRACT

Birds' eggs exhibit the same general functions of protection and maintenance during embryo development. However, eggs show a wide variation in shape, ranging from spherical to highly elongated. Broad taxonomic scales are responsible for the most extensive variation in egg shape, which correlates with allometric and phylogenetic constraints related to female body size, pelvis shape, and lifestyle. Lower variation in egg shape would occur in closely related species and may represent selection for shapes that optimize embryonic development. Here, we investigate how climate and reproductive and ecological traits correlate with the egg shape of passerine species in the Neotropical region. Egg shapes were calculated through the elongation (length/breath) and asymmetry (pointedness) indexes. Eggs were measured from digital photographs taken during visits to 36 museum egg collections from Europe, the USA, and South America. Using phylogenetic-controlled models, we evaluated egg shape variation in three chapters. In Chapter 1, we explored the effects of reproductive (clutch size, egg volume, and nest type) and ecological (habitat, diet, and migration behavior) traits in the species-specific egg shape of 468 species. Chapter 2 evaluates the long-term (Köppen-Geiger and WorldClim) and short-term (month of egg laying) effects of climate conditions on the egg shape of 4,095 clutches from 428 species. In Chapter 3, we analyzed the influence of potentially stringent conditions, diet, and breeding traits in the within-clutch egg shape variation in 3,822 clutches from 420 species. Our results indicated that phylogeny, streamlined body adapted to powered flight, environmental exposure of eggs, clutch and egg size, precipitation, calcium-limited diets, and migratory behavior are relevant factors that help explain egg-shape variation in Neotropical passerines.

Keywords: Birds, climate, oological collections, phylogenetic models, reproduction

INTRODUÇÃO GERAL

Os ovos rígidos e calcificados da Classe Aves consistem em um complexo aparato de reprodução (Birkhead 2016). A parte externa apresenta uma casca calcárea que simultaneamente fornece proteção física e permite trocas de gases metabólicos por meio de poros, além de fornecer cálcio para a formação óssea do embrião (Rahn et al. 1987). A parte interna fornece a nutrição necessária para o embrião em desenvolvimento, composta principalmente pelo vitelo na região central, rico em lipídeos e circundado pelo albúmen, rico em água e proteínas (Sotherland and Rahn 1987; Hincke et al. 2012). Apesar de desempenharem as mesmas funções de proteção e manutenção, os ovos exibem ampla variação quanto a textura da superfície da casca (Igic et al. 2015), coloração de fundo (Wisocki et al. 2020), maculação (i.e., padrão de manchas) (Gosler et al. 2005), espessura da casca (Birchard and Deeming 2009), tamanho (Krist 2011), qualidade nutricional (Deeming 2007) e formato (Stoddard et al. 2017). O entendimento dos padrões de variação de tais características oológicas permite uma melhor compreensão da história de vida e biologia reprodutiva das aves.

Os ovos fornecem importantes informações acerca das estratégias reprodutivas das aves (Deeming and Reynolds 2015). O tamanho e o número de ovos por ninhada são as variáveis reprodutivas mais comumente estudadas e estão relacionadas ao investimento reprodutivo na qualidade a quantidade de filhotes por tentativa reprodutiva, respectivamente (Smith and Fretwell 1974). Entretanto, a funcionalidade do formato dos ovos na reprodução das aves ainda permanece incerta, apesar do prévio reconhecimento de sua variação (Lack 1968; Preston 1968). Lack (1968) sugeriu que a variação do formato dos ovos seria resultante de processos adaptativos, porém as causas responsáveis por tal variação seriam desconhecidas. Entretanto, a partir da última década, a variação no formato dos ovos passou a ser explorada, resultando no aparecimento de padrões associados ao clima (Duursma et al. 2018), reprodução (Deeming 2018; Birkhead et al. 2019) e morfologia (Stoddard et al. 2017; Montgomerie et al. 2021) das aves.

A limitada literatura acerca da variação do formato dos ovos pode ser atribuída, em grande parte, ás dificuldades metodológicas de quantificação do formato (Biggins et al. 2018). Isso porque, apesar de consistirem em objetos biológicos relativamente simples, o formato de um ovo é difícil de descrever ou quantificar numericamente (Ávila 2014). Fórmulas matemáticas descritoras do formato dos ovos são conhecidas há várias décadas (e.g., Preston 1953; Carter 1968; Baker 2002), entretanto sua empregabilidade estava limitada à escassez de métodos de fácil acesso ao público com pouco conhecimento técnico matemático. Tal limitação não existe atualmente, a partir do desenvolvimento de metodologias para a obtenção do formato dos ovos a partir de fotografias digitais (e.g., Troscianko 2014; Biggins et al. 2018).

Os fatores que afetam o formato dos ovos variam de acordo com a escala taxonômica avaliada (Montgomerie et al. 2021). Estudos em larga escala taxonômica mostram que o formato é ordem-específico, como por exemplo, ovos arredondados são prevalentes em espécies com pelve larga e de hábitos arbóreos (e.g. Columbiformes, Falconiformes, Accipitriformes e Strigiformes) e ovos alongados são comuns em aves de pelve estreita e hábito aquático (e.g. Anseriformes e Suliformes) (Stoddard et al. 2017; Shatkovska et al. 2018) e maior tamanho corporal e desenvolvimento precocial (i.e., filhotes que nascem emplumados e independentes dos adultos para alimentação e termorregulação) (e.g. Gaviiformes, Podicipediformes e alguns Gruiformes) (Mytiai et al. 2017). Entretanto, variações em menor escala dentro do formato característico dentro de determinada ordem são raramente exploradas. Duursma et al. (2018) relata que o formato dos ovos em espécies de Passeriformes na Austrália, com clima predominantemente árido, estaria relacionado a variação climática, mas não é conhecido se tal padrão seria seguido por espécies que evoluíram em climas diferentes, como polar, temperado ou tropical.

Apesar do aumento de estudos na última década, o entendimento acerca dos padrões de variação do formato dos ovos ainda está nos seus primeiros passos. Em vista disso, essa tese tem como objetivo geral avaliar e descrever os padrões de variação do formato dos ovos em espécies de Passeriformes da região Neotropical. Especificamente, procuramos entender se existe variação dentro do padrão elíptico típico da ordem entre as famílias e se tal variação poderia estar relacionada a diferenças climáticas, ecológicas e reprodutivas das espécies. Os Passeriformes consistem em um apropriado grupo de estudo por exibirem considerável variação no formato dos ovos (Mytiai et al. 2017), por todas as espécies apresentam desenvolvimento altricial, i.e., os filhotes nascem sem penas e dependentes dos adultos para alimentação e termorregulação (Dyke and Kaiser 2010) e por representam a ordem mais diversa entre as aves, com cerca de 6.000 espécies mundialmente e 2.200 espécies distribuídas em 45 famílias na região Neotropical (Ricklefs 2012)

A tese é formada por três capítulos, cada um explorando uma vertente dos possíveis fatores associados a variação no formato dos ovos de espécies de Passeriformes Neotropicais. No capítulo 1 avaliamos a influência das características ecológicas e reprodutivas das espécies na variação do formato dos ovos a nível espécie-específico. No capítulo 2 exploramos o papel das condições climáticas de longo e curto prazo na variação do formato dos ovos em comunidades de espécies. No capítulo 3 avaliamos o papel de condições ambientais potencialmente restringentes, dieta e características reprodutivas na variação intra-ninhada do formato dos ovos em comunidades de espécies. Tal divisão de capítulos foi realizada pois a exploração dos preditores avaliados requer diferentes filtros na base de dados dos ovos. O clima foi o principal filtro entre os capítulos. O capítulo 1 não apresenta preditores climáticos, sendo aquele com o maior número amostral por incluir ninhadas anteriores a 1901. Dados climáticos são disponíveis a partir de 1901, portanto apenas as ninhadas a partir desse ano e com dados do mês e ano de postura foram incluídas nos capítulos 2 e 3. Como o capítulo 3 explora o variação intra-ninhada do formato dos ovos a partir do coeficiente de variação, apenas as ninhadas com mais de um ovo medido foram incluídas, sendo excluídas as ninhadas contento ovos quebrados e apenas um ovo intacto. Tal seleção diminuiu o tamanho amostral do capítulo 3 em relação ao capítulo 2.

CAPÍTULO 1

Species-specific egg shape is affected by breeding and ecological traits across Neotropical passerines

Abstract

The species-specific variation in bird egg shape may result from allometry, phylogenetic relatedness, and environmental adaptation. In taxonomic closely related species, egg shape variation may be more related to environmental adaptation, such as climatic conditions, breeding, and ecological traits. However, few studies have explored egg shape variation on a large spatial scale among closely related species. Using phylogenetic-controlled models, we tested the influence of breeding (clutch size, egg volume, and nest type) and ecological (habitat, diet, and migration behavior) traits on the species-specific egg shape of 468 Neotropical passerines. We gathered data from 36 museum egg collections to calculate two egg shape indexes: egg elongation (length divided by breath) and asymmetry (pointedness). We found that egg elongation increases with egg volume, more shaded habitats, calcium-limited diets. Egg asymmetry increases with clutch size, more shaded habitats, calcium-limited diets, and migratory behavior. Our results suggested that egg elongation is more constrained by oviduct width, in which an increase in egg size accompanies an increase in egg elongation, and egg asymmetry is more affected by species traits, such as clutch size and migration behavior.

Keywords: clutch size, diet, egg shape, egg size, egg collections, bird migration

1. Introduction

The species-specific variation in bird egg shape may result from allometry, phylogenetic relatedness, and environmental adaptation (Montgomerie et al. 2021). Allometry and phylogeny effects are related to constraints on female body size and lifestyle and help explain most egg shape variation across high taxonomic levels, such as among avian orders (Deeming 2018; Shatkovska et al. 2018; Mytiai et al. 2021). On the other hand, egg shape variation in closely related species or with similar life histories may be more related to environmental adaptation, such as climatic conditions (Duursma et al. 2018), breeding (e.g., egg size, clutch size, nest type) and ecological (e.g., diet, habitat, and migration behavior) traits (Stoddard et al. 2017; Birkhead et al. 2019).

The shape of eggs is mainly described by elongation and asymmetry indexes. Egg elongation is the ratio between egg length and width, and egg asymmetry depicts how one egg end is more pointed than the other (Preston 1969). Previous studies found positive correlations between egg elongation and asymmetry, ranging from 0.36 to 0.54 (Preston 1969; Stoddard et al. 2017; Biggins et al. 2018). However, as these indexes describe different components of egg shape variation, they correlate with different aspects of bird ecology (Montgomerie et al. 2021).

Egg shape may reflect limitations of egg size and incubation efficiency. The shape of eggs is formed during egg development in the oviduct, where oviduct width constraints increase in egg size (Smart 1991). Therefore, increased egg size is commonly associated with increased egg elongation (Montgomerie et al. 2021; Mytiai et al. 2021). Clutch size may result from selecting egg shapes that promote a compact fit under the brood patch of incubating adults (Andersson 1978). Heat transfer occurs through the brood patch, a featherless hyper-vascularized skin area in the abdomen formed during reproduction (Redfern 2010). In most species, adults incubate eggs to maintain an optimal temperature for embryonic development (Deeming 2016). As the heat transfer between the brood patch and eggs is size-limited, egg shapes that maximize the fitting under the brood patch may be expected, such as more elongated and asymmetrical eggs in larger clutches (Barta and Székely 1997). However, previous studies reported decreased elongation in larger clutches (Gosler et al. 2005; Górski et al. 2015) or no effect (Janiga 1996; Encabo et al. 2001; Bańbura et al. 2018).

Most birds lay eggs in nests placed in a variety of habitats. Habitats with more vegetation cover, such as forests and woodlands, can increase shade availability, preventing overheating in unattended eggs (Sidis et al. 1994; Lusk et al. 2003). Bird nests range from ground scrapes to complex domed structures (Chia et al. 2023). Eggs laid in open nests (i.e., without a roof cover) may be more exposed to climatic conditions than domed nests (i.e., with a roof cover) or nests placed in cavities (Perez et al. 2020). Nests can buffer external environmental conditions through an internal microclimate of higher humidity and more temperature stability to allow egg and nestling development (Rahn and Paganelli 1990; Deeming 2011b). Therefore, egg shapes that decrease water loss through evaporation and heat transfer from thermal radiation could be more common when eggs face high exposure to environmental conditions, such as in open nests and less-shaded habitats (Duursma et al. 2018).

Calcium is an essential and limited resource for bird reproduction (Reynolds and Perrins 2010). Females must consume calcium-rich food items during the pre-laying period to allow eggshell formation (Perrins 1996). Calcium-poor diets, such as frugivores and nectarivores, may face more limitations in calcium acquisition than carnivore species (Birkhead 2016). Decreased eggshell thickness can increase breakage risk (Narushin and Romanov 2002). Therefore, investing in egg shapes with a lower surface-to-volume ratio may offset calcium limitation in calcium-poor diets. Previous studies on single passerine species reported more elongated eggs in environments with higher calcium availability (Gosler et al. 2005; Bańbura et al. 2018). However, in a broad-scale taxonomic study, eggs were more elongated in diets with low calcium intake (Stoddard et al. 2017).

Migratory species must allocate limited resources to migrate, reproduce, and molt annually (Hedenström 2007). As these events exhibit low overlapping, migratory species tend to invest less time in egg incubation and parental care (Minias and Włodarczyk 2020) and more in clutch size (Sousa et al. 2024) than resident species. Reduction in incubation periods may occur with an increased speed in gas exchange between the embryo and external environment through a higher eggshell porosity and superficial area (Rahn and Ar 1974; Whittow 1980). As more elongated eggs tend to have higher eggshell porosity (Zimmermann and Hipfner 2007), one could expect increased egg elongation in migratory species.

Here, we aim to evaluate the role of reproductive and ecological traits in the variation of the species-specific egg shape in passerines from the Neotropical region. We predict that egg elongation and egg asymmetry are positively correlated and increase in (i) larger clutches (best fit under adult brood patch), (ii) larger egg size (egg size constrained by oviduct width), (iii) open nests (higher egg exposure to weather), (iv) less-shaded habitats (higher egg exposure to weather), (v) calcium-poor diets (calcium limitation), and (vi) migratory species (decreased duration of incubation period).

2. Methods

(a) Egg shape database

We searched for passerines reproduction data in the Neotropical region from egg sets deposited in 36 museum egg collections in South and Central America, the USA, and Europe (Supplementary Material, Table S1) visited between 2014 and 2023. We also inspected online egg collections from the Field Museum of Natural History (FMNH, Chicago, USA) at https://collections-zoology.fieldmuseum.org/ and the Museum of Vertebrate Zoology (MVZ, California, USA) at http://arctos.database.museum/mvz_egg/ for photos of egg sets with black background and scale. During museum visits, we used a standardized procedure of camera distance and angle, black background contrast, lighting, and ruler position to photograph egg sets. We collected information about the date, location, clutch size (number of eggs in the clutch), and taxonomic classification from egg set labels/cards. To standardize and update taxonomy, we checked for synonyms starting from the oldest species name provided in museum labels and followed the chronological order of museum catalogs published from 1877 to 1979 (Supplementary Material, Table S2). Lastly, we updated the species' taxonomic names according to Jetz et al. (2012).

We filtered egg sets to exclude potentially biased clutches. First, we confirmed clutch size by checking the clutch size range for each species according to Billerman et al. (2020). Then, we used only egg sets with reliable clutch size, i.e., clutches not altered by incomplete clutch collecting (mostly with only one egg), within the clutch size range for each species, and not altered by collectors (Green and Scharlemann 2003). Lastly, we excluded clutches parasitized by *Molothrus* spp. or *Tapera naevia*, as the host eggs may be ejected from the nest (Soler 2018).

We measured eggs with the Egg Tools plugin (Troscianko 2014), using the digital photographs of egg sets obtained during museum visits and online egg collections (FMNH and MVZ) in ImageJ software (Rasband 1997). Egg measurements included length (mm), maximal width (mm), volume (mm³), and ellipse deviation (dimensionless) of eggs. We obtained two egg-shape indexes, elongation (length divided by maximal width) and asymmetry (pointedness), through the ellipse deviation. Here, asymmetry values indicated a deviation from a symmetric elliptical egg, with high values indicating more pointed eggs (Troscianko 2014). All reliable egg sets found for each species were used to calculate the species-specific mean of elongation and asymmetry.

(b) Ecological and breeding data

Here, we consider the Neotropical region from the USA border with Mexico and the West Indies to Argentina and the Falkland Islands (Stotz 1996). We obtained the species-specific clutch size (number of eggs per egg set) and egg size (as egg volume) through the mean and mode (only for clutch size) of all reliable egg sets. We excluded clutches with one egg for species-specific clutch size, as they may represent incomplete clutches. However, one-egg clutches were included in the mean volume calculation. We classified nests as open when eggs had no roof protection and closed when eggs were concealed in domed structures or cavities (Billerman et al. 2020). Habitat and diet classification was modified from Tobias et al. (2022). We considered open habitats as areas with low vegetation cover (i.e., less-shaded habitats), such as grasslands, shrublands, and rocky substrates with very little vegetation; closed habitats as areas with high vegetation cover, such as forests and woodlands; and waterassociated habitats as coastal, riverine and wetlands areas. We classified invertivores, aquatic predators, and vertivores as carnivores; frugivores, granivores, herbivore terrestrials, and nectarivores as herbivores; and omnivores (when consumed both plant and animal items in a roughly equal proportion). Migration behavior follows the classification proposed by Tobias et al. (2022). We considered species in which most populations migrate as migratory, species with a minority of migratory populations as partially migratory, and species that did not migrate as sedentary.

(c) Data analyses

We used the Phylogenetic Generalized Least Squares (PGLS) approach to account for the dependence between species due to shared ancestry (Martins and Hansen 1997). We ran PGLS models in the R package "nlme" (Pinheiro and Bates 2023). We computed the phylogenetic consensus tree from 1,000 random trees containing the species of interest gathered at <u>https://birdtree.org/</u> (Ericson et al. 2006; Jetz et al. 2012). We calculated the phylogenetic signal of Pagel's lambda (λ) between bird phylogeny and the egg's traits elongation and asymmetry. Pagel's lambda varies from 0 to 1; if $\lambda = 0$, traits had no phylogenetic signal and $\lambda=1$, traits evolved under the Brownian motion model with closely related species sharing higher trait similarity (Pagel 1999). The phylogenetic tree and the phylogenetic signal were obtained in the R packages "ape" (Paradis and Schliep 2019) and "phytools" (Revell 2024), respectively.

We transformed all numerical variables before modeling to improve normality using the R package "bestNormalize" (Peterson and Cavanaugh 2020; Peterson 2021), which chooses the best transformation to normalize data. Accordingly, we used the Yeo-Johnson transformation (Riani et al. 2023) for egg elongation, square root for egg asymmetry, and boxcox transformation for clutch size and volume (Sakia 1992). We evaluated multicollinearity in numerical predictors through Pearson correlation (threshold r < 0.7) and numerical and categorical predictors through variance inflation factor (VIF < 3) (Zuur et al. 2010). We calculated VIF in the R package "*car*" (Fox and Weisberg 2019).

We ran separate models for egg elongation and asymmetry as response variables. Predictor variables for multiple regression models included mean clutch, mean volume, nest type (open and closed), habitat (open, closed, and water-associated), diet (carnivore, herbivore, and omnivore), and migratory behavior (migratory, partially migratory, and sedentary). We confirmed the normality and homogeneity of model residuals using graphical inspections.

3. Results

We gathered 15,143 eggs from 5,873 clutches of 468 species belonging to 32 Neotropical passerine families. We used these breeding records to calculate each species-specific egg shape. Table S3 from the Supplementary Material provides the number of clutches available

per species evaluated. Phylogenetic signals were significant for egg elongation ($\lambda = 0.85$, LR = 186.99, p < 0.001) and asymmetry ($\lambda = 0.79$, LR = 100.41, p < 0.001). These results indicate that egg shapes are similar among closely related species (Fig. 1).

Fig. 1 Egg elongation and asymmetry distribution across the avian phylogeny based on Jetz et al. (2012). Asymmetry values were multiplied by 1,000 to improve plot visibility. Bird silhouettes gathered from <u>https://www.phylopic.org/</u>.

The correlation between egg elongation and asymmetry was low but significant (Pearson's r = 0.35, t = 8.15, p < 0.001), so passerine eggs tend to show a correlated increase in egg elongation and asymmetry (Fig. 2). Families with higher egg elongation were Ptiliogonatidae (1.47), Cinclidae (1.44), and Icteridae (1.43). Families with higher egg asymmetry included Ptiliogonatidae (0.00045), Laniidae (0.00038), and Vireonidae (0.00037).

Fig. 2 Egg elongation and asymmetry in 468 Neotropical passerines. Egg photographs depict maximum and minimum egg shape indexes. Grey shaded area represents the 95% confidence interval.

PGLS models show that egg elongation is higher in larger egg sizes, closed habitats, and herbivore and omnivore diets (Table 1, Fig. 3). Egg asymmetry is higher in larger clutch sizes, closed habitats, omnivore diets, and migratory species (Table 1, Fig. 4).

Table 1. Parameter estimates (Estim.), standard errors (SE), and tests for Phylogenetic Generalized Least Squares (PGLS) models with clutch size, egg volume, nest type (open and closed), habitat (open, closed, and water-associated), diet (carnivore, herbivore, and omnivore), and migration behavior (migratory, partially migratory = Part, and sedentary = Seden) as predictors and egg elongation and asymmetry as response variables. Bold lines show significant effects.

	Elongation				Asymmetry			
	Estim.	SE	t	Р	Estim.	SE	t	Р
(Intercept)	0.11	0.18	0.62	0.54	0.017	0.0006	26.14	< 0.01
Clutch size	-0.05	0.05	-1.17	0.24	0.0004	0.0001	2.98	<0.01
Egg volume	0.27	0.05	5.90	<0.01	0.0001	0.0001	0.66	0.51
Nest type: open	-0.19	0.10	-1.96	0.05	0.0005	0.0003	1.84	0.07
Habitat: open	-0.31	0.10	-3.25	<0.01	-0.0005	0.0003	-1.90	0.06
Habitat: water	-0.21	0.18	-1.17	0.24	-0.0012	0.0005	-2.31	0.02
Diet: herbivore	0.40	0.11	3.55	<0.01	0.0000	0.0003	0.04	0.97
Diet: omnivore	0.78	0.12	6.27	<0.01	0.0009	0.0004	2.33	0.02
Migration: Part	-0.09	0.16	-0.54	0.59	-0.0011	0.0005	-2.25	0.03
Migration: Seden	-0.13	0.14	-0.98	0.33	-0.0012	0.0004	-3.08	<0.01

Fig. 3 Phylogenetic Generalized Least Squares (PGLS) model effects on species-specific egg elongation in Neotropical passerines. A– Effect of egg volume. B– Effect of habitat type (close, open, and water-associated habitats). C– Effect of diet (Carn = carnivore, Herb = herbivore, Omni = omnivore). Grey shaded area represents the 95% confidence interval, and asterisks represent significant contrasts.

Fig. 4 Phylogenetic Generalized Least Squares (PGLS) model effects on species-specific egg asymmetry in Neotropical passerines. A– Effect of clutch size. B– Effect of habitat type (close, open, and water-associated habitats). C– Effect of diet (Carn = carnivore, Herb = herbivore, Omni = omnivore). D– Effect of migration behavior (Migr = migratory, Part = partially migratory, Seden = sedentary). Grey shaded area represents the 95% confidence interval and asterisks represent significant contrasts.

4. Discussion

Here, we investigated how breeding and ecological traits correlate with species-specific egg shape in 468 Neotropical passerines. We found support for most hypotheses tested, except for opposite responses in nest type and habitat. Egg elongation and asymmetry showed a weak positive correlation (r = 0.35), which helps explain their different responses to the predictors evaluated. Accordingly, only egg elongation was influenced by egg size, indicating that elongation is the more constrained component of egg shape variation.

Egg asymmetry but not egg elongation increased with clutch size. Increased egg asymmetry in larger clutches may optimize incubation efficiency through a compact fit under the adult brood patch (Andersson 1978; Barta and Székely 1997). However, previous studies reported contrasting effects, with increased egg asymmetry (Montgomerie et al. 2021), egg elongation (Kouidri et al. 2015), or no effect on egg shape (Briskie and Sealy 1990; Stoddard et al. 2017; Bańbura et al. 2018) in larger clutches. Besides the increased contact area between the eggs and the adult brood patch, more asymmetric eggs could also decrease the cooling rate in unattended eggs. As the pointed end of eggs cools faster than the blunt end due to a relatively larger surface area to volume ratio, a clutch arrangement with the pointed ends oriented towards the nest center can slow clutch heat loss (Šálek and Zárybnická 2015).

Our data supported the prediction of increased elongation but not asymmetry in larger eggs. Reduction in body mass to allow powered flight imposed a reduced abdominal cavity (Jenni-Eiermann and Srygley 2017) and, consequently, a smaller space for egg development (Inverson and Ewert 1991). As egg size is mainly constrained by oviduct width (Mytiai et al. 2021), increased egg length, and therefore egg elongation, is a way to allocate a larger egg in a size-limited body cavity (Inverson and Ewert 1991). On the other hand, egg asymmetry may be constrained by an interaction between oviduct width and egg mass relative to female body mass. More asymmetric eggs can be produced when relatively large eggs enter a narrow part of the oviduct, forcing its contents (yolk and albumen) backward (Deeming 2022).

Contrary to our predictions, egg elongation increased in closed nests and more shaded habitats. Although marginal (p = 0.05), egg elongation was higher in closed nests. Previous studies reported increased egg elongation in closed nests (Duursma et al. 2018; Montgomerie et al. 2021), shaded habitats (Duursma et al. 2018), and no nest effects (Stoddard et al. 2017). Eggs laid in nests with a roof cover or cavities are exposed to a microclimate of higher

humidity and lower temperature than the surrounding weather (Rahn and Paganelli 1990; Deeming 2011b). As the surface-to-volume ratio decreases in more elongated eggs (Tatiane Silva and Miguel Marini unpublished data, Chapter 2), we expected that less elongated (more rounded) eggs would be more common in open nests and less shaded habitats to decrease water loss and heat transfer. Thus, other factors may also be associated with increased egg elongation. For example, oviduct width may constrain albumen (water-rich) deposition around the central yolk (lipid-rich), resulting in more water content in elongated eggs (Astheimer and Grau 1985; Deeming 2018). Thus, water-limited habitats could restrain water investment in eggs.

Species with calcium-limited diets had more elongated and asymmetric eggs, confirming our predictions. Although poorly explored, previous studies reported an increase (Stoddard et al. 2017) and a decrease (Gosler et al. 2005) in egg elongation in diets low in calcium. Carnivore species eat more calcium-rich food than other diets, thus being able to spend more calcium on eggshell formation (Graveland and van Gijzen 1994; Reynolds and Perrins 2010). The lower surface-to-volume ratio in more elongated and asymmetric eggs (Tatiane Silva and Miguel Marini unpublished data, Chapter 2) allows less calcium investment, being more advantageous in calcium-limited diets. However, some species may compensate for eggshell thinning through increased pigmentation (Gosler et al. 2005).

Migratory species have more asymmetric eggs, as expected. Previous studies reported increased egg elongation and asymmetry in migratory species (Stoddard et al. 2017; Gómez-Bahamón et al. 2023). A streamlined body adapted to powered flight and dispersal may contribute to higher egg asymmetry and elongation in migratory species (Stoddard et al. 2017). Migratory species tend to invest less time in egg incubation than resident species due to not overlapping reproduction and migration activities over the annual cycle (Minias and Włodarczyk 2020). The larger pointed end in more asymmetric eggs can decrease the incubation period's duration through more concentration of pores in the blunt end, optimizing gas exchange (Smart 1991). Moreover, species that migrate farther distances tend to invest more in clutch size than egg size (Sousa et al. 2024). As our data showed that egg asymmetry is also positively related to clutch size, increased egg asymmetry in migratory species can be related to an interplay between body shape constraints and optimization of gas exchange.

In conclusion, our study showed that phylogenetic relatedness and reproductive and ecological traits influence egg-shape variation in Neotropical passerines. Egg elongation and

asymmetry were weakly correlated and distinctly affected by clutch size, egg size, nest type, and migratory behavior. In contrast, habitat and diet similarly affected both egg shape indexes. Therefore, distinct selective pressures may be acting on egg elongation and asymmetry.

CAPÍTULO 2

Climate, nest type and surface-to-volume ratio drive egg shape variation in Neotropical passerines

Abstract

Climatic conditions where bird species reproduce can exert selective pressures to optimize their embryonic development. Variation in egg morphology, such as egg shape, may face selective pressures at large and small climatic scales to prevent excessive water loss and maintain the exchange of metabolic gases. Here, we evaluated if the long-term climate and the weather of egg-laying months correlate with egg-shape variation in Neotropical passerines. We studied 4,095 clutches (10,994 eggs) of 428 Neotropical passerine species from egg sets deposited in 36 collections in South and Central America, the USA, and Europe. We used egg shape indexes of elongation (length divided by width) and asymmetry ("pointedness"). Eggs with higher elongation and asymmetry indexes showed a lower surface-to-volume ratio (SA:V). With a phylogenetic comparative approach, we showed that open-nesting species breeding in drier conditions had more elongated eggs than those in humid climates. Lower SA:V in elongated eggs may prevent embryo dehydration through decreased water loss in drier environments. Our findings suggest that egg shape has co-evolved with climatic conditions in nests with higher environmental exposure.

Keywords: bird reproduction, egg elongation, egg asymmetry, egg collections, Neotropics, precipitation.

1. Introduction

Egg shape varies from most spherical to pear-shaped in birds (Stoddard et al. 2017). From initial mathematical descriptions (Mallock 1925; Preston 1953, 1968; Todd and Smart 1984) and allometric relationships (Hoyt 1976; Rahn and Paganelli 1988), egg shape variation seemed to have no adaptative significance (Hoyt 1976). Instead, bird's egg shape had wrongly assigned functions, such as the pear-shaped eggs of Common Guillemot's *Uria aalge*, as an adaptation to prevent them from rolling off cliff edges (Birkhead et al. 2017b). However, recent studies have shown that egg shape is related to flight ability (Stoddard et al. 2017), breeding traits (Birkhead et al. 2019; Nagy et al. 2019), development mode (Mytiai et al. 2017), egg composition (Deeming 2018), allometry (Mytiai et al. 2021), morphological constraints (Montgomerie et al. 2021), and climate variation (Duursma et al. 2018).

Egg shape variation is phylogenetically constrained. Egg shape has a consistent phylogenetic effect, with an avian order-specific general shape associated with constraints in female pelvic morphology and habitat type (Shatkovska et al. 2018). For example, near-spherical eggs correlate with the wide pelvis of raptorial birds (Falconiformes, Accipitriformes, Strigiformes) and pigeons (Columbiformes), and elongated eggs with the narrow pelvis of some waterbirds (Anseriformes, Gaviiformes, Podicipediformes, Suliformes) (Preston 1969; Shatkovska et al. 2018). Egg measurements associated with egg elongation may explain up to 67% of the variation among bird orders, in which increased egg size is associated with increased egg elongation (Mytiai et al. 2021). However, egg-shape variation among and within families from an avian order may result from selection pressures that can enhance embryonic development across different nesting environments and levels of egg exposure (Duursma et al. 2018).

Egg shape may optimize gas exchange along climatic gradients. Embryonic development is a diffusion-limited process of gas exchange of O₂, CO₂, and water vapor between the environment and eggshell pores (Ar et al. 1974). Eggs laid in arid and hot environments may risk embryo dehydration due to increased water loss and exposure to solar radiation (Walsberg and Schmidt 1992). Egg shapes with a lower surface-to-volume ratio (SA:V) could decrease water diffusion and heat conduction of the eggshell (Kooijman 1986; Van Der Meer 2006; Rubin 2023). Therefore, one could expect that egg shapes with lower SA:V may be prevalent in arid and hot conditions. Previous studies reported the prevalence of asymmetric egg shapes in cold and humid environments (Stoddard et al. 2017) and elongated egg shapes in hot and dry climates (Duursma et al. 2018) in passerine species. However, those studies did not report the egg's SA:V. Therefore, the relation between egg shape and SA:V is poorly understood.

Nest structure can influence the microclimate around the eggs. Birds exhibit a great variety of nest types, including the absence of nests (eggs buried on the ground), nests with minimal substrate scratching or basic lining, constructed platforms, cups, domed structures, and primary or secondary use of cavities (Collias 1964; Chia et al. 2023). Such variety reflects the level of egg exposure to environmental conditions. Nests with enclosed structures, i.e., walls and roofs, provide better insulation for eggs from extreme environmental conditions (Martin et al. 2017; Perez et al. 2020). Nest walls can retain heat and humidity, optimizing the nest microclimate for embryo development (Deeming 2016). Therefore, according to the species' nest design, eggs may experience different exposure levels to climate conditions. A previous study reported less elongated eggs in open-nesting species from hot and arid regions in Australia (Duursma et al. 2018). The authors suggested that less elongated (more rounded) eggs had lower SA:V than more elongated eggs, reducing thermal stress from thermal radiation in hotter areas. However, no measurements of SA:V were conducted to confirm this assumption.

Passerines (Passeriformes) comprise the most speciose bird order, with more than 6,000 species worldwide and 2,200 species from 45 families in the Neotropical region (Ricklefs 2012; Billerman et al. 2020). All members have altricial development, characterized by helpless hatchlings and smaller egg sizes compared to precocial species, with more independent hatchlings and larger eggs (Dyke and Kaiser 2010). Passerines also display considerable variation from their general ovoid egg shape (Mytiai et al. 2017), bred from arid to polar habitats, and build nests with higher and lower egg exposure to abiotic conditions (Billerman et al. 2020). Therefore, they represent a well-suited taxonomic group for evaluating intra-order egg shape variation in relation to climatic conditions.

Several studies focused on egg-shape variation among avian orders (e.g., Stoddard et al. 2017; Deeming 2018; Montgomerie et al. 2021) and at species levels (e.g., Adamou et al. 2018; Bańbura et al. 2018; Dolenec 2019). However, few studies have evaluated egg-shape variation among passerines (but see Duursma et al. 2018). Here, we explored how the shape of Neotropical passerine eggs varies according to long-term climate and weather during egg-

laying months. As lower SA:V decreases the water diffusion and heat conduction (Rubin 2023), we predicted that if more elongated and asymmetrical eggs had a lower SA:V, they would be prevalent in drier and hotter conditions. This prediction would be expected for opennesting species because their eggs had more precipitation and solar radiation exposure than those of closed-nesting species. We tested these predictions in three steps. First, (i) we calculated the SA:V for different egg shapes. Second, (ii) we tested whether the egg shape similarity between closely related species is due to their shared ancestry. Third, (iii) after accounting for phylogenetic relatedness, we tested whether nesting in different climatic conditions can predict egg shape variation in Neotropical passerines species with higher (open nests) and lower (closed nests) levels of egg exposure.

2. Methods

(a) Egg shape database

We searched for data regarding reproduction of Neotropical passerines in 36 egg collections in South and Central America, the USA, and Europe (Supplementary Material, Table S1) visited between 2014 and 2023. We also checked the online egg collections of the Field Museum of Natural History (FMNH, Chicago, USA) at https://collections-zoology.fieldmuseum.org/ and the Museum of Vertebrate Zoology (MVZ, California, USA) at https://collections-zoology.fieldmuseum.org/ and the Museum of Neotropical passerine's egg sets with black background and ruler scale. We photographed egg sets using a standardized camera distance and angle procedure, background black contrast and lighting, and ruler position. We also collected information regarding egg-laying date (day/month/year), location (Country, State/Province, and Municipality/County), clutch size (number of eggs in the clutch), collector, and first taxonomic classification. As data from some museum egg collections had outdated taxonomy, we checked for synonyms starting from the oldest species name described in the museum labels/cards, followed by the chronological order in museum catalogs published from 1877 to 1979 (Supplementary Material, Table S2). Lastly, we updated the species' taxonomic names to Jetz et al. (2012).

Before egg measurement, we excluded clutches that could be biased or increased variance noise in the data analysis, i.e., egg sets parasitized by *Molothrus* spp. or *Tapera*

naevia, as they may eject host eggs from the nest (Soler 2018) and egg sets with uncertain clutch sizes due to loss, incomplete clutch collecting (with only one egg), and altered clutches by collectors (Green and Scharlemann 2003). We only included egg sets with clutch sizes within each species range gathered from Billerman et al. (2020). We measured all eggs from all digital photographs of egg sets found for each species through the plugin Egg Tools (Troscianko 2014) in the ImageJ software (Rasband 1997). Egg measurements included length (mm), maximal width (mm), surface area (mm²), volume (mm³), and ellipse deviation (dimensionless). Egg shape indexes were elongation, i.e., length divided by maximal width and asymmetry ("pointedness") through the ellipse deviation, which measured the deviation from a symmetric elliptical egg with high values indicating more pointed eggs (Troscianko 2014). After measuring all eggs from all clutches, we calculated the mean elongation and asymmetry for each clutch found for each species.

(b) Climate data

We consider the Neotropical region from the West Indies and the USA border with Mexico to the southernmost part of Argentina, including the Falkland Islands (Stotz 1996). Our dataset consists of longitudinal data, with multiple clutches (egg sets) for each species evaluated, displaying temporal (1901–2021) and spatial (latitude: -54° to 32° , longitude: -118° to -34°) variation. We used the coordinates (latitude and longitude) provided by museum labels/cards to classify the climate of each clutch found for each species. When not available, we obtained the centroid coordinates of the Municipality/County with a maximum error of ± 25 km through the geocode function in the R package "ggmap" (Kahle and Wickham 2013). We evaluated the correlation between climate and egg shape through long-term and short-term climate models.

In long-term climate models, we classify the local climate where the clutches were collected through a categorical and numerical approach. We used the Köppen-Geiger Main Climate classification (MKG) to categorize the climate of the Neotropical region. Köppen-Geiger classification is based on five vegetation groups, air temperature, and precipitation: Tropical, temperature $\geq 18^{\circ}$ C in the coldest month; Temperate, temperature of 10°C in the warmest month and 0 to 18°C in the coldest month; Arid, mean annual precipitation < 10 mm/year times a dryness threshold, which depends on the annual mean temperature and cycle of precipitation; Polar, temperature $\leq 10^{\circ}$ C in the warmest month; and Cold, temperature > 10°C in the warmest month and \leq 0°C in the coldest month (Beck et al. 2018). The Köppen-Geiger data is available at <u>https://www.gloh2o.org/koppen/</u>. We extracted the MKG for each locality through the R package "raster" (Hijmans 2023). For the numerical approach, we used the local long-term mean, i.e., the average of the climate variables between 1970 and 2000 obtained at 2.5 minutes spatial resolution from the WorldClim Bioclimatic database (Fick and Hijmans 2017) available at <u>https://www.worldclim.org/</u>. We extracted the annual total precipitation, mean, maximum, and minimal temperatures for the long-term climate models through the R package "raster" (Hijmans 2023).

In short-term climate models, we used the weather of the egg-laying month of each clutch gathered for each species. In this approach, we obtained the weather when (month/year) and where (latitude/longitude) each egg set was collected. We gathered the weather data from the Climatic Research Unit gridded Time Series (CRU TS), available on the Centre for Environmental Data Analyses (CEDA) at <u>https://archive.ceda.ac.uk/</u>. The CRU TS dataset represents worldwide land-based monthly variation in weather from 1901 to 2022 at 0.5° resolution (Harris et al. 2020). We extracted monthly values of total precipitation, mean, maximum, and minimal temperatures, and potential evapotranspiration (PET) through the R package "ncdf4" (Pierce 2019). Then, we calculated the aridity index through the division of precipitation by PET, in which higher aridity index values indicated more humid conditions and lower values indicated drier conditions (Cherlet et al. 2018; Marcelino et al. 2020). We extracted all climate data with R (R Core Team 2024).

For islands with unavailable climate data, we used nearby islands with similar latitudes and MKG as a proxy for their climates. For the Galapagos islands, we inferred the climate of Isla Floreana, Isla de San Cristóbal, Isla Seymour Norte, and Isla Pinta based on Isla Santa Cruz. For Mexican islands, we used the climate of Isla Tiburón for Isla San Pedro Martin (PET) and Isla San Lorenzo (precipitation) and the climate (PET) of Isla de Cedros for Isla Natividad and Islas de San Benito. We inferred the climate of Isla de Patos in Venezuela from Isla Cachachare in Trinidad and Tobago.

(c) Data analyses

We performed linear models between egg shape elongation and asymmetry (as predictors) and SA:V in mm⁻¹ (surface area divided by volume) for each egg of all clutches. We fitted separated models for species (all, open-nesting, and closed-nesting) and families.

To account for allometric relationships, we calculated the relative egg shape (model residuals) through linear models of each shape index (elongation and asymmetry) in relation to the mean species' body mass (log-transformed) obtained from (Tobias et al. 2022). We used Phylogenetic Generalized Linear Mixed Models (PGLMMs) to address the non-independence between species due to their shared ancestry (Ives and Helmus 2011). We ran separate PGLMMs for egg elongation and egg asymmetry as response variables, with species as a random effect to account for multiple observations from the same species through the R package "phyr" (Li et al. 2020). We obtained the phylogenetic consensus tree from a sample of 1,000 trees from Jetz et al. (2012) at <u>https://birdtree.org/</u>. We calculated the phylogenetic signal of Pagel's lambda (λ) values of 0 represent unrelated traits, and 1 represents traits that evolved following the Brownian motion model of evolution, with similar trait values among closely related species (Pagel 1999). The phylogenetic tree and phylogenetic signal were estimated using the R packages "ape" (Paradis and Schliep 2019) and "phytools" (Revell 2024), respectively.

We transformed all variables to improve normality using the R package "bestNormalize" (Peterson and Cavanaugh 2020; Peterson 2021), which selected the best transformation for each variable, being Yeo-Johnson transformation (Riani et al. 2023) for elongation and Ordered Quantile normalization (Peterson and Cavanaugh 2020) for egg volume and climate predictors. We checked collinearity in numerical predictors through Pearson correlation (threshold r < 0.7) and in numerical and categorical predictors through variance inflation factor (VIF < 3) (Zuur et al. 2010). We calculated VIF in the R package "*car*" (Fox and Weisberg 2019). Temperature variables were highly correlated (r > 0.8), so we only included the mean temperature in the models.

The MKG, annual precipitation, and annual mean temperature were predictors in the long-term climate models. The month aridity index and month mean temperature were predictors in models for the weather of egg-laying months. We ran separate models for openand closed-nesting species. We classified nests as open when eggs are mostly exposed to the environment without roof protection and closed when eggs are protected in domed structures or cavities (Billerman et al. 2020). We avoid pseudoreplication by including unique breeding records for a month/year per species. As other variables may also influence egg measurements (Covas 2011; Stoddard et al. 2017), we also included the covariates island (as a dummy variable, yes or no), clutch size (number of eggs in each egg set), and egg volume to control for their effects. Egg volume was included as a fixed variable to control the effect of egg size on egg shape. We rerun all models in a subset of species with ≥ 10 records to evaluate if species with smaller sample sizes (< 10 records) could affect model outputs. We also performed models for each passerine family with ≥ 20 records to evaluate differential family trends. We checked the normality and homogeneity of model residuals through graphical inspections and spatial autocorrelation with Moran's I test through the R package "moranfast" (Cooper 2020).

3. Results

We gathered 4,095 clutches (10,994 eggs) of 428 passerine species belonging to 30 families (Supplementary Material, Table S4) from the Neotropical region. Most breeding records were from the MKG Tropical region (47.2%, n = 1,932), followed by the MKG Temperate region (36%, n = 1,473), MKG Arid region (15.6%, n = 642), and the MKG Polar region (1.2%, n = 48) (Fig. 1). We did not find breeding records from the MKG Cold region.

Fig. 1 Distribution of passerine breeding records from museum egg collections and Köppen-Geiger Main Climates (MKG) in the Neotropical region

More elongated eggs showed a lower SA:V in all-species models ($\beta = -0.30 \pm 0.01$, p < 0.001) (Fig. 2A), as well as in open ($\beta = -0.41 \pm 0.01$, p < 0.001) and closed ($\beta = -0.2 \pm 0.02$, p < 0.001) nesting species. More asymmetric eggs also showed a lower SA:V in all-species models ($\beta = -0.00008 \pm 0.00002$, p < 0.001) (Fig. 2B) and in open ($\beta = -0.00009 \pm 0.00003$, p = 0.008) and closed ($\beta = -0.00008 \pm 0.00004$, p < 0.03) nesting species. Most families followed this overall trend for egg elongation (Corvidae, Furnariidae, Hirundinidae, Passerellidae, Pipridae, Thraupidae, Troglodytidae, Turdidae, Tyrannidae), except Fringillidae. However, more asymmetric eggs had a lower SA:V in Corvidae, Hirundinidae,

Pipridae, Thraupidae, and Tyrannidae and a higher SA:V in Cardinalidae, Furnariidae, Icteridae, Thamnophilidae, Tityridae, and Troglodytidae.

Fig. 2 Linear regressions between egg shape and SA:V (surface-to-volume ratio) in Neotropical passerines species. A–Egg elongation (length/maximum width). B–Egg asymmetry ("pointedness"). Grey shaded area represents the 95% confidence interval.

Relative egg elongation ($\lambda = 0.79$, LR = 151.63, p < 0.001) and asymmetry ($\lambda = 0.79$, LR = 75.41, p< 0.001) showed significant phylogenetic signals, indicating that closely related species have more similar egg shape.

Climate conditions only affected the egg shape of open-nesting species. PGLMMs for long-term climate showed that relative egg elongation decreased in more humid areas (Fig. 3A) and relative egg asymmetry was higher in eggs laid in the MKG Temperate compared to the MKG Arid climates (Table 1). Subset models (species ≥ 10 records) only supported the effect on elongation as the effect on asymmetry was weak (p = 0.04). PGLMMs for weather of egg-laying months showed that relative egg elongation decreased with higher aridity indexes (more humid months) (Fig. 3B) (Table 2). Subset models (species ≥ 10 records) supported those results. There was no spatial autocorrelation in elongation (Moran's I test; open nest: p = 0.23, closed nest: p = 0.83) and asymmetry (Moran's I test; open nest: p = 0.93, closed nest = 0.99) model residuals.
Table 1. Parameter estimates, standard errors (SE), and tests for Phylogenetic Generalized Linear Mixed Models (PGLMMs) with long-term climate variables as predictors (An. prec. = annual precipitation, An. mean temp. = annual mean temperature), relative egg elongation and relative egg asymmetry as response variables, and species as a random variable. Bold lines show significant effects.

		Oper	Closed	Closed nest				
	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р
Relative Elongation	on							
Intercept	-0.13	0.84	-0.15	0.88	0.15	0.92	0.17	0.87
An. prec.	-0.12	0.03	-4.01	<0.01	-0.02	0.04	-0.64	0.52
An. mean temp.	0.01	0.03	0.44	0.66	0.01	0.04	0.22	0.83
MKG-Polar	0.25	0.19	1.32	0.19	0.09	0.21	0.41	0.68
MKG-Temperate	0.05	0.07	0.72	0.47	-0.04	0.08	-0.48	0.63
MKG- Tropical	0.13	0.09	1.46	0.14	-0.04	0.11	-0.41	0.68
Relative Asymmetr	ry							
Intercept	-0.24	0.89	-0.27	0.79	-0.22	0.91	-0.24	0.81
An. prec.	-0.04	0.03	-1.29	0.2	0	0.04	0.13	0.89
An. mean temp.	0.03	0.03	0.82	0.41	0.02	0.04	0.44	0.66
MKG-Polar	0.23	0.19	1.24	0.22	0.11	0.22	0.5	0.62
MKG-Temperate	0.13	0.07	2.01	0.04	0.01	0.09	0.09	0.93
MKG-Tropical	0.05	0.09	0.59	0.55	0.05	0.11	0.44	0.66

Table 2. Parameter estimates, standard errors (SE), and tests for Phylogenetic Generalized Linear Mixed Models (PGLMMs) with weather of egg-laying month as predictors, relative egg elongation and relative egg asymmetry as response variables, and species as a random variable. Bold lines show significant effects.

		Oper	n nest	Closed nest				
	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р
Relative Elongation								
Intercept	-0.04	0.84	-0.05	0.96	0.13	0.92	0.14	0.89
Monthly Aridity index	-0.09	0.02	-4.16	<0.01	-0.04	0.03	-1.65	0.1
Monthly mean temperature	-0.01	0.02	-0.32	0.75	0.003	0.03	0.11	0.92
Relative Asymmetry								
Intercept	-0.15	0.89	-0.17	0.86	-0.17	0.9	-0.19	0.85
Monthly Aridity index	-0.02	0.02	-0.92	0.36	-0.01	0.03	-0.46	0.64
Monthly mean temperature	-0.02	0.02	-0.77	0.44	0.02	0.03	0.82	0.41

Fig. 3 Phylogenetically controlled linear regression depicting the humidity effects in relative egg elongation of Neotropical passerine species with open nests. A–Effect of annual precipitation. B– Effect of aridity index in egg-laying months (higher values indicate humid conditions). Grey shaded area represents the 95% confidence interval.

As climate only affected the egg shape of open-nesting species, we evaluated climate effects for 14 passerine families with open nests. Climatic conditions affected egg shape in 64% of the families. Egg elongation mainly decreased as humidity and cold increased (Fig. 4). Egg asymmetry decreased in humid areas in Pipridae and showed positive and negative temperature effects among families (Fig. 5).

Fig. 4 Estimates with a 95% confidence interval for Phylogenetic Generalized Linear Mixed Models (PGLMMs) of long-term climate (annual precipitation and annual mean temperature) and weather of egg-laying month (monthly aridity index and monthly mean temperature) with relative egg elongation as the response variable for Neotropical passerine families with opennesting species. Estimates were z-transformed. Asterisks indicate significant estimates.

Fig. 5 Estimates with a 95% confidence interval for Phylogenetic Generalized Linear Mixed Models (PGLMMs) of long-term climate (annual precipitation and annual mean temperature) and weather of egg-laying month (monthly aridity index and monthly mean temperature) with relative asymmetry as the response variable for Neotropical passerine families with opennesting species. Estimates were z-transformed. Asterisks indicate significant estimates.

4. Discussion

We evaluated how long-term and short-term (weather of the egg-laying month) climates affect the egg shape of Neotropical passerines. Our predictions were supported by the data, except for temperature effects. We showed that (i) SA:V decreased in more elongated and asymmetric eggs, (ii) closely related passerine species have more similar egg shapes due to shared ancestry, and (iii) climate conditions affected the egg shape of open-nesting species. Egg shape showed a consistent pattern in relation to precipitation, in which eggs tend to be more elongated and more asymmetric (only Pipridae) in drier conditions. However, the egg shape did not show a clear average temperature pattern, as family-level models revealed negative and positive temperature effects, resulting in no general temperature effect.

Passerine species with more elongated and asymmetric eggs tend to have smaller SA:V. If one compares eggs with the same volume, elongated eggs have higher SA:V than spherical eggs (Paganelli et al. 1974). However, increased egg elongation and asymmetry are usually related to increased egg size. This correlation between egg shape and egg size occurs because the pelvis width of female birds constrains egg development (Smart 1991; Deeming 2022). Indeed, double-yolked eggs usually have similar widths but are more elongated (Preston 1969; Deeming 2011a) and asymmetric (pointed) (Birkhead et al. 2017a) than single-yolked eggs. Thus, the decrease in SA:V in more elongated and asymmetric eggs reflected their larger size against more rounder and symmetric eggs.

Phylogenetic relatedness helped explain egg-shape similarity among closely related passerines. Previous studies have demonstrated high egg shape conservation in avian orders related to similar pelvis morphology, habitat, and breeding traits (Andersson 1978; Shatkovska et al. 2018; Montgomerie et al. 2021). We showed that egg shape is also conservative among and within passerine families. Therefore, studies addressing egg shape at higher and lower taxonomic scales should always account for phylogenetic relatedness.

More elongated eggs in open nests had a smaller SA:V and were prevalent in drier climatic conditions. Eggs from open nests are under higher environmental exposure than those from closed nests, and when in drier and hotter climates, they may have reduced egg hatchability through embryo dehydration (Walsberg and Schmidt 1992; Perez et al. 2020). Therefore, large and elongated eggs with lower SA:V may be more advantageous in arid and hot climates as they can decrease water vapor diffusion and heat conduction. Moreover, large and elongated eggs can have more water content in the albumen (Astheimer and Grau 1985), providing water supply in water-limited environments. However, contrary to our results, egg elongation decreased in hot and arid climates in passerines from Australia (Duursma et al. 2018). As most passerines from Australia belong to different families from those in the Neotropical region, phylogenetic characteristics may help explain such differences in passerine egg shape in different climates. Besides egg shape, several traits related to embryonic gas exchange, such as eggshell thickness (Peterson et al. 2020), coloration (Gómez et al. 2018), and parental behavior (Portugal et al. 2014), can optimize embryo development. Thus, further studies should explore if the interplay among morphological, physiological, and behavioral traits related to embryo development is responsible for egg-shape variation among related taxa in distinct geographical regions.

Temperature effects on egg shape showed opposite effects at family-level models. We expected that egg elongation and asymmetry associated with lower SA:V would increase in hotter climates, but Passerellidae, Cotingidae, and Thraupidae increased in colder climates. Sparrows presented lower SA:V in more elongated eggs, cotingas had no effect, and tanagers had lower SA:V in more elongated and asymmetric eggs. Sparrows and tanagers live in several habitat types, such as grasslands, deserts, and forests, and consume a wide variety of food types, including invertebrates, fruits, and seeds (Winkler et al. 2020a, b). On the other hand, cotingas are primarily herbivores (fruits and leaves) and live mostly in humid tropical forests (Winkler et al. 2020c). As egg shape had no effect in SA:V in cotinga eggs, increased egg elongation and asymmetry in colder climates could be related to other limiting factors. Birds require high consumption of calcium-rich food items during pre-laying periods to allow optimal eggshell formation (Reynolds 2001; McClelland et al. 2021). Calcium-poor diets, such as herbivores, may face more limitations in acquiring calcium-rich food items in hotter temperatures. Besides, many cotingas have clutch sizes of just one egg (Belmonte-Lopes et al. 2011; Winkler et al. 2020c), so more egg investment through egg size is expected. As increased egg sizes are constrained by oviduct width (Deeming 2018; Montgomerie et al. 2021), large eggs are commonly more elongated and asymmetric. Thus, distinct patterns in egg-shape responses to climate conditions among passerine families may be related to contrasting ecological and life-history traits.

In conclusion, our results showed that egg-shape variation in Neotropical passerines is associated with climate conditions both at spatial (large-scale climate) and temporal (weather during egg-laying months) scales. Egg shape is affected by an interplay between the level of environmental exposure of nests and SA:V. More elongated and asymmetric eggs with lower SA:V from open-nesting species are prevalent in drier climates, probably to prevent embryo dehydration.

CAPÍTULO 3

Within-clutch variation of egg shape in Neotropical passerines is affected by climate, clutch size and diet

Abstract

Egg shape exhibits wide variation among bird species due to phylogenetic-related morphological constraints and ecological and life-history traits. However, factors related to within-clutch variation are poorly understood. Here, we tested the influence of long-term and short-term precipitation and temperature anomalies, diet (carnivore, herbivore, and omnivore), egg volume, clutch size, and nest type (open and closed) on within-clutch egg shape variation in Neotropical passerines. Within-clutch variation was measured by the coefficient of variation (%) of two egg shape indexes, elongation (length divided by width) and asymmetry (pointedness). We gathered 3,822 egg sets (10,720 eggs) of 420 passerine species. We found higher within-clutch variation in egg asymmetry (CV = 31.63%) than in egg elongation (CV = 2.18%). Using phylogenetic-controlled models, we found that within-clutch variation of egg elongation increased in larger clutch sizes, egg volumes, and omnivore diets. Within-clutch variation of egg asymmetry increased with long-term precipitation anomalies on the year's driest month before egg-laying, larger clutch sizes, and herbivore diets. Our results suggest that besides variation among species, within-clutch egg shape variation can also respond to climate and life-history characteristics.

Keywords: breeding, climatic anomalies, coefficient of variation, egg shape, egg collections, Passeriformes.

1. Introduction

Egg shape exhibits wide variation among bird species. Large-scale differences occur mainly among orders due to phylogeny constraints and general morphological and ecological traits, such as flight efficiency (Stoddard et al. 2017), pelvic morphology and habitat type (Shatkovska et al. 2018), embryonic development mode (Mytiai et al. 2017), and breeding traits (Andersson 1978; Birkhead et al. 2019). Small-scale egg shape variations also occur in lower taxonomic levels. For example, egg shape correlates with nest type and climatic conditions in passerines (Passeriformes) (Duursma et al. 2018). Intraspecific egg shape variation reflects parental condition, such as age and body mass (Coulson 1963; Hõrak et al. 1995), clutch size (Johnson et al. 2001), breeding season (Adamou et al. 2018), and distinct populations (Bańbura et al. 2018). Egg shape within clutches would represent the lower portion of variation but is poorly investigated (but see Schmitz Ornés et al. 2023).

Breeding investment is widely limited by food availability (Martin 1987). Egg formation demands resource allocation to produce three main components: yolk, albumen, and shell. The yolk provides the energetic supply for embryonic development with 20 to 40% lipid content, whereas the albumen represents the water reserve with 85 to 90% water content (Ricklefs 1977). Eggshell production demands high calcium intake from feeding in periods close to egg-laying, increasing the energy cost of searching for high-level calcium food items, especially in species with calcium-poor diets (Reynolds and Perrins 2010). Resource acquisition for egg production can come from energy reserves stored long before the breeding season (capital breeders) or food consumed close to egg-laying (income breeders) (Drent and Daan 1980; Jönsson 1997).

Environmental stringent conditions may impact the clutch's energetic investment. Precipitation and temperature conditions influence food availability, such as insects and fruits (Houston 2013; Winkler et al. 2013; Arbeiter et al. 2016). A relatively constant food supply during mild climatic conditions ensures more energy input for adults to invest in egg production (Martin 1987). However, stringent conditions, such as heat waves, droughts, and high precipitation, may reflect in adults with poor body conditions or immunosuppressed due to decreased food availability and search efficiency (Machado-Filho et al. 2010; Renner and Zohner 2018; Marcelino et al. 2020). Consequently, limited resource acquisition can prevent optimal egg investment (i.e., large eggs), resulting in increased within-clutch variation in egg size (Martin 1987). Indeed, colder and wetter breeding seasons were correlated with decreased insect activity and female body mass in passerines, which laid smaller eggs in the laying sequence and increased within-clutch variation in egg size (Järvinen and Ylimaunu 1986; Golawski and Mitrus 2018).

Passerines are income breeders, gathering their energetic supply to produce eggs on a daily basis close to laying (Perrins 1996). Therefore, one would expect that only short-term extreme weather conditions during the breeding season impact their food acquisition. However, the carry-over effects of extreme weather during winter periods can also impact young survival and breeding investment through poor parental body condition (Guillemain et al. 2008; Duriez et al. 2012). Thus, both short- and long-term climatic conditions can affect egg production.

Egg shape can be associated with differential investment in egg yolk and albumen. Egg production begins with lipoprotein deposition in ovarian follicles to form the yolk, which moves through the oviduct where the albumen is secreted around it (Nager 2006). Yolk is inversely proportional to albumen (Sotherland and Rahn 1987). Increased yolk volume in the egg's central position forces albumen deposition in its extremities due to oviduct width constraint, which results in more elongated and asymmetric eggs (Cucco et al. 2012; Deeming 2018). Larger eggs are associated with increased lipid-rich yolk in precocial species and increased protein- and water-rich albumen in altricial species (Williams 1994). Because passerines exhibit altricial development, within-clutch variation in egg shape may result from differential albumen investment.

Egg shape variation within clutches may also be affected by life-history traits. Breeding investment occurs through clutch size and egg volume. Depending on clutch size, females may allocate energetic reserves differently among eggs within clutches (Stearns 1989; Roff 1992). A larger clutch size may constrain optimal egg investment if food is limited (Martin 1987). As egg shape may be related to differences in egg composition investment (Deeming 2018), increased clutch size may also be associated with increased variation in within-clutch egg shape.

Here, we aim to evaluate the effects of stringent conditions (calculated as climate anomalies) and life-history traits in within-clutch egg-shape variation in Neotropical passerines. We predict that within-clutch egg-shape variation would increase in (i) stringent conditions of precipitation and temperature in long- and short-term windows from the egglaying as limitations in egg investment may be constrained by the positioning of yolk and albumen contents, (ii) calcium-poor diets due to increased limitation of calcium supply, and (iii) egg size and (iv) clutch size due to limitation in egg composition investment.

2. Methods

(a) Egg shape database

We gathered reproductive data of Neotropical passerines from egg sets deposited in 33 museum egg collections in South and Central America, the USA, and Europe (Supplementary Material, Table S5) visited between 2014 and 2023. We also checked oological collections available online from the Field Museum of Natural History (FMNH, Chicago, USA) at <u>https://collections-zoology.fieldmuseum.org/</u> and the Museum of Vertebrate Zoology (MVZ, California, USA) at <u>http://arctos.database.museum/mvz_egg/</u> for digital photographs of egg sets with black background contrast and ruler scale. We used a standardized procedure of camera distance and angle, black background contrast, lighting, and ruler position to photograph egg sets. We collected information on date, location, clutch size (number of eggs in the clutch), and taxonomic classification from labels of egg sets. To standardize and update taxonomy, we checked for synonyms starting from the oldest species name provided in museum labels and followed the chronological order of museum catalogs published from 1877 to 1979 (Supplementary Material, Table S2). Lastly, we updated the species' taxonomic names according to Jetz et al. (2012).

We filtered available egg sets to exclude potential biases. First, we confirmed clutch size by checking the clutch size range for each species according to Billerman et al. (2020). Then, we used only egg sets with reliable clutch size, i.e., clutches not altered by incomplete clutch collecting (with only one egg), too large for the species, or altered by collectors (Green and Scharlemann 2003). Lastly, we excluded clutches parasitized by *Molothrus* spp. or *Tapera naevia*, as the host eggs may be ejected from the nest (Soler 2018).

We measured all eggs from all egg sets gathered for each species. The digital photographs of egg sets with a ruler scale were measured in ImageJ software (Rasband 1997) through the Egg Tools plugin (Troscianko 2014). Egg measurements included length (mm), maximal width (mm), surface area (mm²), volume (mm³), and ellipse deviation

(dimensionless) of eggs. We obtained two egg-shape indexes, elongation (length divided by maximal width) and asymmetry (pointedness), through the ellipse deviation. Asymmetry values indicated a deviation from a symmetric elliptical egg, with high values indicating more pointed eggs (Troscianko 2014). Lastly, we calculated the within-clutch variation of elongation and asymmetry for each clutch by the coefficient of variation (CV = standard deviation / mean x 100).

(b) Climate data

Here, we consider the Neotropical region from the USA border with Mexico and the West Indies to Argentina and the Falkland Islands (Stotz 1996). Our dataset consists of longitudinal data, with multiple clutches (egg sets) for each species evaluated, displaying temporal (1901– 2019) and spatial (latitude: -54° to 32°, longitude: -118° to -34°) variation. We obtained the climate for each clutch based on the coordinates (latitude and longitude) provided by museum labels. If coordinates were unavailable, we obtained the municipality/county centroid coordinates with a maximum error of \pm 25 km through the geocode function in the R package "ggmap" (Kahle and Wickham 2013).

We obtained long-term and short-term climate anomalies. Climate anomalies are variations in climate conditions during a particular period in relation to a baseline climate (i.e., an average from several decades) from the same particular period (American Meteorological Society 2000). For the long-term approach, we gathered the climate of the year before the egg-laying month of each clutch, including precipitation of the driest month, precipitation of the wettest month, minimum temperature of the coldest month, and maximum temperature of the warmest month. For the short-term approach, we obtained precipitation and minimum and maximum temperatures from the month before the egg-laying month of each clutch. We calculated climatic anomalies as the difference between the weather data (long-term and short-term) and the historical climate data for each egg set. We gathered the weather data from the Climatic Research Unit gridded Time Series (CRU TS), available on the Centre for Environmental Data Analyses (CEDA) at https://archive.ceda.ac.uk/. The CRU TS dataset represents worldwide land-based monthly variation in weather from 1901 to 2022 at 0.5° resolution (Harris et al. 2020). We extracted the weather of egg sets through the R package "ncdf4" (Pierce 2019). The historical climate data were the climatic average between 1970 and 2000 at a 2.5-minute resolution obtained from the WorldClim Bioclimatic database

(Fick and Hijmans 2017), available at <u>https://www.worldclim.org/</u>. We extracted historical climate data of egg sets through the R package "raster" (Hijmans 2023). We extracted all climate data with R (R Core Team 2024).

For islands with unavailable climate data, we used nearby islands with similar latitudes and MKG as a proxy for their climates. For the Galapagos islands, we inferred the climate of Isla Floreana, Isla de San Cristóbal, Isla Seymour Norte, and Isla Pinta based on Isla Santa Cruz. For Mexican islands, we used the climate of Isla Tiburón for Isla San Pedro Martin and the climate of Isla de Cedros for Isla Natividad and Islas de San Benito. We inferred the climate of Isla de Patos in Venezuela from Isla Cachachare in Trinidad and Tobago.

(c) Data analyses

We used Phylogenetic Generalized Linear Mixed Models (PGLMMs) to account for the dependence between species due to shared ancestry (Ives and Helmus 2011). We ran separate PGLMMs for within-clutch variation in egg elongation and egg asymmetry as response variables, with species as a random effect to address several records from the same species through the R package "phyr" (Li et al. 2020). We computed the phylogenetic consensus tree from 1,000 random trees containing the species of interest gathered at https://birdtree.org/ (Ericson et al. 2006; Jetz et al. 2012). We calculated the phylogenetic signal of Pagel's lambda (λ) between bird phylogeny and the egg's traits within-clutch variation of elongation and asymmetry. Pagel's lambda varies from 0 to 1; if $\lambda = 0$, traits had no phylogenetic signal and $\lambda = 1$, traits evolved under the Brownian motion model with closely related species sharing higher trait similarity (Pagel 1999). The phylogenetic tree and the phylogenetic signal were obtained in the R packages "ape" (Paradis and Schliep 2019) and "phytools" (Revell 2024), respectively.

We transformed all continuous variables before modelling to improve normality using the R package "bestNormalize" (Peterson and Cavanaugh 2020; Peterson 2021), which chooses the best transformation to normalize numeric variables. Accordingly, we used the box-cox transformation for within-clutch variation in egg elongation and asymmetry (Sakia 1992) and the ordered quantile normalization for egg volume and climate variables (Peterson and Cavanaugh 2020). We evaluated multicollinearity in numerical predictors through Pearson correlation (threshold r < 0.7) and in numerical and categorical predictors through variance inflation factor (VIF < 3) (Zuur et al. 2010). We calculated VIF in the R package "*car*" (Fox and Weisberg 2019).

We ran separate models for long-term and short-term anomalies as long-term minimum and maximum temperatures were highly correlated (r > 0.8) with short-term minimum and maximum temperatures. Long-term predictors for multiple regression models included precipitation of the driest month, precipitation of the wettest month, minimum temperature of the coldest month, and maximum temperature of the warmest month from the year before egg-laying months. Short-term predictors for multiple regression models were precipitation and minimum and maximum temperatures from the month before egg-laying months. We included in all models the covariates egg volume (average volume in each clutch), clutch size (number of eggs in each clutch), diet (carnivore, herbivore, and omnivore), and nest type (open and closed). Egg volume was included as a fixed variable to control the effect of egg size on egg shape. Diet classification was modified from Tobias et al. (2022). We classified invertivores, aquatic predators, and vertivores as carnivores; frugivores, granivores, herbivore terrestrials, and nectarivores as herbivores; omnivores remain omnivores. Because we had reproductive records from the mainland and islands, we also included the covariate island (as a dummy variable, yes or no) to account for possible island effects (Covas 2011). We classified nests as open when eggs had no roof protection and closed when eggs were concealed in domed structures or cavities (Billerman et al. 2020). We confirmed the normality and homogeneity of model residuals using graphical inspections and spatial autocorrelation with Moran's I test through the R package "moranfast" (Cooper 2020), respectively.

3. Results

We gathered 3,822 egg sets (10,720 eggs) of 420 passerine species from 30 families in the Neotropical region (Supplementary Material, Table S6). Phylogenetic signals were low for within-clutch variation in egg elongation ($\lambda = 0.09$, LR = 14.81, p < 0.001) and asymmetry ($\lambda = 0.16$, LR = 11.69, p < 0.001). However, they significantly differed from zero, indicating that closely related species have more similar within-clutch egg shape variation than expected by chance. There was no spatial autocorrelation in elongation (Moran's I test; long-term: p =

0.60, short-term: p = 0.59) and asymmetry (Moran's I test; long-term: p = 0.61, short-term = 0.72) model residuals.

The species analyzed showed higher within-clutch variation in egg asymmetry (CV = 31.63%) than in egg elongation (CV = 2.18%) (Fig. 1). Among families, Grallariidae had the highest within-clutch variation in egg asymmetry (CV = 55.12%) and Laniidae had the lowest (CV = 25.81%). Cotingidae had the highest within-clutch variation in egg elongation (CV = 2.81%) and Donacobiidae had the lowest (CV = 1.32%).

Fig. 1 Within-clutch variation of egg elongation and asymmetry measured by the coefficient of variation (%) in Neotropical passerine families evaluated. Point size represents the number of clutches measured.

PGLMM models showed that within-clutch variation of egg elongation increased in larger clutch sizes, egg volumes, herbivore (marginal effect) and omnivore diets (Table 1 and 2, Fig. 2).

Table 1. Parameter estimates (z-transformed), standard errors (SE), and tests for Phylogenetic Generalized Linear Mixed Models (PGLMMs) with long-term (one year before the egglaying month) climate anomalies (Prec. dri. m. - precipitation of the driest month, Prec. wet. m. - precipitation of the wettest month, Min. temp. col. m. - minimum temperature of the coldest month, and Max. temp. war. m. - maximum temperature of the warmest month), egg volume, diet (carnivore, herbivore, and omnivore), clutch size, and nest type (closed and open) as predictors. Within-clutch variation (coefficient of variation) of egg elongation and egg asymmetry are response variables, and species are the random variable. Bold lines show significant effects

		Elong	ation		Asymmetry					
	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р		
Intercept	-0.44	0.09	-4.88	< 0.01	-0.56	0.14	-3.94	< 0.01		
Prec. dri. m.	-0.01	0.02	-0.61	0.54	-0.04	0.02	-2.65	<0.01		
Prec. wet. m.	-0.01	0.02	-0.34	0.74	-0.01	0.02	-0.39	0.70		
Min. temp. col. m.	-0.01	0.02	-0.79	0.43	0.03	0.02	1.68	0.09		
Max. temp. war. m.	0.01	0.02	0.27	0.78	-0.04	0.02	-1.86	0.06		
Egg volume	0.09	0.02	4.75	<0.01	0.02	0.02	0.73	0.47		
Diet - herbivore	0.11	0.06	1.84	0.07	0.15	0.07	2.01	0.04		
Diet - omnivore	0.14	0.05	2.78	0.01	0.04	0.06	0.68	0.50		
Clutch size	0.14	0.02	7.32	<0.01	0.17	0.02	8.63	<0.01		
Nest type - open	-0.03	0.04	-0.85	0.39	0.08	0.05	1.55	0.12		

Table 2. Parameter estimates (z-transformed), standard errors (SE), and tests for Phylogenetic Generalized Linear Mixed Models (PGLMMs) with short-term (one month before the egglaying month) climate anomalies, egg volume, diet (carnivore, herbivore, and omnivore), clutch size, and nest type (closed and open) as predictors. Within-clutch variation (coefficient of variation) of egg elongation and egg asymmetry are response variables, and species are the random variable. Bold lines show significant effects

		Elong	ation		Asymmetry				
	Estimate	SE	Ζ	Р	Estimate	SE	Ζ	Р	
Intercept	-0.43	0.10	-4.49	< 0.01	-0.57	0.15	-3.88	< 0.01	
Precipitation	-0.01	0.02	-0.88	0.38	-0.01	0.02	-0.39	0.69	
Min. temperature	-0.03	0.02	-1.34	0.18	0.02	0.02	1.04	0.30	
Max. temperature	0.02	0.02	1.05	0.29	-0.01	0.02	-0.57	0.57	
Egg volume	0.10	0.02	4.99	<0.01	0.01	0.02	0.58	0.56	
Diet - herbivore	0.11	0.06	1.82	0.07	0.15	0.07	2.05	0.04	
Diet - omnivore	0.14	0.05	2.72	<0.01	0.05	0.06	0.80	0.43	
Clutch size	0.13	0.02	7.10	<0.01	0.17	0.02	8.61	<0.01	
Nest type - open	-0.03	0.04	-0.75	0.45	0.08	0.05	1.65	0.10	

Fig. 2 Phylogenetically controlled linear regressions showing effects on the within-clutch variation of egg elongation measured by the coefficient of variation in Neotropical passerine species. A– Effect of mean clutch volume. B– Effect of clutch size. C– Effect of diet (Carn = carnivore, Herb = herbivore, Omni = omnivore). Grey shaded area represents the 95% confidence interval, and asterisks represent significant contrasts

PGLMM models showed within-clutch variation of egg asymmetry increased with long-term negative anomalies of precipitation of the driest month and maximum temperature of the warmest month (marginal effect), larger clutch sizes, and herbivore diets (Table 1 and 2, Fig. 3).

Fig. 3 Phylogenetically controlled linear regressions showing effects on the within-clutch variation of egg asymmetry measured by the coefficient of variation in Neotropical passerine species. A– Effect of precipitation of the driest month anomaly one year before egg-laying months. B– Effect of clutch size. C– Effect of diet (Carn = carnivore, Herb = herbivore, Omni = omnivore). Grey shaded area represents the 95% confidence interval, and asterisks represent significant contrasts

4. Discussion

Here, we explored a little-known component of egg morphology, the within-clutch egg shape variation, and its correlation with long- and short-term climatic anomalies and life-history traits. We showed that within-clutch variation in passerine egg shape is related to precipitation anomalies, diet type, clutch size, and egg volume. Clutch size and diet affected both egg elongation and asymmetry. In contrast, egg volume only affected egg elongation, and long-term anomalies in precipitation during the driest month only affected egg asymmetry.

Therefore, our results suggest that besides variation among species, within-clutch egg shape variation can also respond to climate and life-history variation.

Previous studies reported within-clutch egg shape variation but showed contrasting effects of environmental conditions and life-history traits. Egg shape within-clutch repeatability (opposite of variation used here) was correlated with incubation period, coloniality, and ontogeny in bird species (Schmitz Ornés et al. 2023). Despite not evaluating climate variables, those authors included clutch size, nest type, and bird size (which positively correlated with egg volume) in model analysis but did not find significant effects. Their database included a broad taxonomic range, including species from several bird orders displaying consistent variation in incubation length, coloniality, and ontogeny levels. On the other hand, we focused on passerine species, which show lower variation in such traits, with all species having altricial ontogeny and shorter incubation periods (Ricklefs et al. 2017).

Our data showed that within-clutch variation in egg elongation and asymmetry increased with clutch size. Increased clutch size may constrain optimal investment between eggs in a clutch (Martin 1987). Within-clutch variations in egg size and shape are directly proportional to changes in egg composition, which in altricial passerines are related to differential investment in protein- and water-rich albumen (Williams 1994). Therefore, higher within-clutch variation in egg shape may indicate a limitation in resource acquisition for producing equally albumen-rich eggs during egg-laying periods. However, no relationship was found between clutch size and the within-clutch coefficient of variation of egg elongation in *Corvus monedula* (Corvidae) (Tryjanowski et al. 2001). Thus, this general clutch size effect on within-clutch egg-shape variation may not occur in some passerines species.

Egg shape variation may reflect differences in the egg's calcium allocation. We found a higher within-clutch variation of egg elongation in omnivores and egg asymmetry in herbivores compared to carnivores. Passerines do not store calcium before breeding, so they depend on calcium intake near egg laying (Graveland and van Gijzen 1994). Calcium-rich food is generally more prevalent in animal than plant-based diets (Graveland and van Gijzen 1994; Reynolds and Perrins 2010), so one can assume that calcium limitation follows herbivores > omnivores > carnivores. However, calcium intake from omnivores may vary according to the proportions of animal and vegetal items ingested, and birds tend to increase calcium-rich feeding during pre-laying periods (Reynolds and Perrins 2010). An increase in egg elongation and asymmetry may be associated with a decreased surface-to-volume ratio in passerine species (Silva and Marini unpublished data), resulting in lower calcium allocation to eggshell formation. However, more asymmetric eggs may also require larger amounts of calcium than symmetric eggs, as the pointed end demands more eggshell materials to be formed (Andersson 1978; Deeming 2018). Therefore, our results indicate that higher withinclutch variation in egg elongation and asymmetry in species with lower-calcium diets may result from limited calcium supply, resulting in egg shapes requiring less eggshell material when less calcium-rich food is consumed before laying.

Drier months than average a year before egg-laying increased within-clutch variation in egg asymmetry. Precipitation is associated with food availability, with increased rainfall followed by increased insect and fruit abundance (Houston 2013; Winkler et al. 2013; Arbeiter et al. 2016). According to our data, drier months during the year before breeding seem to be associated with carry-over effects in egg investment, reflected by higher withinclutch variation in egg asymmetry. Larger eggs are commonly more elongated and asymmetric and contain relatively less lipid-rich yolk than protein- and water-rich albumen (Deeming 2018). Therefore, our results suggest that higher limitations in egg investment during stringent years may result in less albumen-rich eggs represented by less elongated and asymmetric eggs within clutches of altricial passerines. As climate change increases the frequency of extreme climate events (Ummenhofer and Meehl 2017), within-clutch variation in egg shape may also increase, especially in species with calcium-poor diets.

In conclusion, egg-shape variation within clutches of passerines in the Neotropical region correlates with climate conditions and diet. Decreased precipitation from a year before egg-laying may cause carry-over effects on breeding investment, reflecting differential investment in eggshell formation. Such limitation could be more pronounced in calcium-limited diets.

CONCLUSÃO GERAL

- Essa tese indica que o formato dos ovos em Passeriformes Neotropicais é fortemente determinado pela filogenia, mas também responde a variação climática e as características reprodutivas e ecológicas das espécies.
- Os índices de alongamento e assimetria dos ovos apresentaram sinal filogenético significativo em todos os modelos analisados, seja a nível espécie-específico ou comunitário, e seja pelo valor médio ou pelo coeficiente de variação por ninhada. Tais resultados confirmam o papel relevante da filogenia na variação do formato dos ovos mesmo dentro de uma mesma ordem taxonômica.
- Em relação ao clima, a precipitação destaca-se entre as variáveis climáticas avaliadas, com efeitos de longo a curto prazo sobre a média e sobre a variação do formato dos ovos dentro das ninhadas.
- O alongamento e a assimetria dos ovos correlacionaram-se de maneira diferente às características reprodutivas das espécies avaliadas. O alongamento relaciona-se ao crescimento limitado em largura dos ovos, na qual ovos de maior tamanho resultam em ovos com maior alongamento. A assimetria dos ovos foi influenciada pelo número de ovos da ninhada, indicando um possível papel para a otimização da incubação dos ovos. O papel microclimático dos ninhos foi confirmado pela influência da variação climática dos meses de postura apenas em ovos de espécies com ninhos abertos.
- O habitat onde a espécie se reproduz, a limitação de cálcio na dieta e se a espécie realiza movimentos migratórios são também fatores relevantes para explicar a variação do formato dos ovos em Passeriformes Neotropicais.

REFERÊNCIAS

Adamou AE, Tabib R, Kouidri M, et al (2018) Egg size and shape variation in Rufous Bush Chats *Cercotrichas galactotes* breeding in date palm plantations: hatching success increases with egg elongation. Avian Biol Res 11:100–107. https://doi.org/10.3184/175815618X1520281116334

American Meteorological Society (2000) Glossary of Meteorology

Andersson M (1978) Optimal egg shape in waders. Ornis Fenn 55:105-109

- Ar A, Paganelli CV, Reeves RB, et al (1974) The avian egg: water vapor conductance, shell thickness, and functional pore area. Condor 76:153–158. https://doi.org/10.2307/1366725
- Arbeiter S, Schulze M, Tamm P, Hahn S (2016) Strong cascading effect of weather conditions on prey availability and annual breeding performance in european beeeaters *Merops apiaster*. J Ornithol 157:155–163. https://doi.org/10.1007/s10336-015-1262-x
- Astheimer LB, Grau CR (1985) The timing and energetic consequences of egg formation in the Adélie Penguin. Condor 87:256–268. https://doi.org/10.2307/1366891
- Ávila DD (2014) Application of the elliptic Fourier functions to the description of avian egg shape. Rev Biol Trop 62:1469–1480
- Baker DE (2002) A geometric method for determining shape of bird eggs. Auk 119:1186–2022
- Bańbura M, Gla dalski M, Kaliński A, et al (2018) A consistent long-lasting pattern of spatial variation in egg size and shape in blue tits (*Cyanistes caeruleus*). Front Zool 15:1–10. https://doi.org/10.1186/s12983-018-0279-4
- Barta Z, Székely T (1997) The optimal shape of avian eggs. Funct Ecol 11:656–662
- Beck HE, Zimmermann NE, McVicar TR, et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214
- Belmonte-Lopes R, Maurício GN, Bornschein MR (2011) Description of the nest and egg of an Atlantic Forest endemic, the Black-headed Berryeater, *Carpornis melanocephala* (Cotingidae). Wilson J Ornithol 123:819–822. https://doi.org/10.1676/11-013.1
- Biggins JD, Thompson JE, Birkhead TR (2018) Accurately quantifying the shape of birds' eggs. Ecol Evol 8:9728–9738. https://doi.org/10.1002/ece3.4412
- Billerman SM, Keeney BK, Rodewald PG, Schulenberg T (Eds) (2020) Birds of the World. In: Ithaca, Cornell Laboratory of Ornithology. https://birdsoftheworldorg.proxy.birdsoftheworld.org/bow/home

- Birchard GF, Deeming DC (2009) Avian eggshell thickness: scaling and maximum body mass in birds. J Zool 279:95–101. https://doi.org/10.1111/j.1469-7998.2009.00596.x
- Birkhead TR (2016) The most perfect thing: inside (and outside) a bird's egg. Bloomsbury Publishing, New York
- Birkhead TR, Thompson JE, Biggins JD (2017a) Egg shape in the Common Guillemot *Uria aalge* and Brunnich's Guillemot *U. lomvia*: not a rolling matter? J Ornithol 158:679–685. https://doi.org/10.1007/s10336-017-1437-8
- Birkhead TR, Thompson JE, Biggins JD, Montgomerie R (2019) The evolution of egg shape in birds: selection during the incubation period. Ibis 161:605–618. https://doi.org/10.1111/ibi.12658
- Birkhead TR, Thompson JE, Jackson D, Biggins JD (2017b) The point of a Guillemot's egg. Ibis 159:255–265. https://doi.org/10.1111/ibi.12458
- Briskie J V, Sealy SG (1990) Variation in size and shape of Least Flycatcher eggs. J Field Ornithol 61:180–191
- Carter TC (1968) The hen's egg: a mathematical model with three parameters. Br Poult Sci 9:165–171. https://doi.org/10.1080/00071666808415706
- Cherlet M, Hutchinson C, Reynolds J, et al (eds) (2018) World atlas of desertification. Publication Office of the European Union, Luxembourg
- Chia SY, Fang YT, Su YT, et al (2023) A global database of bird nest traits. Sci Data 10:923. https://doi.org/10.1038/s41597-023-02837-1
- Collias NE (1964) The evolution of nests and nest-building in birds. Am Zool 4:175-190
- Cooper M (2020) moranfast: conduct a quick and memory-efficient Moran's I test. In: R package version 1.0. https://github.com/mcooper/moranfast
- Coulson JC (1963) Egg size and shape in the Kittiwake (*Rissa tridactyla*) and their use in estimating age composition of populations. Proc Zool Soc Lond 140:211–226
- Covas R (2011) Evolution of reproductive life histories in island birds worldwide. Proc R Soc B 279:1531–1537. https://doi.org/10.1098/rspb.2011.1785
- Cucco M, Grenna M, Malacarne G (2012) Female condition, egg shape and hatchability: a study on the grey partridge. J Zool 287:186–194. https://doi.org/10.1111/j.1469-7998.2012.00902.x
- Deeming C (2011a) Double-yolked pheasant eggs provide an insight into the control of albumen secretion in bird eggs. Br Poult Sci 52:40–47. https://doi.org/10.1080/00071668.2010.538372ï
- Deeming D, Reynolds S (2015) Nests, eggs, and incubation: new ideas about avian reproduction. Oxford University Press, USA

- Deeming DC (2007) Effects of phylogeny and hatchling maturity on allometric relationships between female body mass and the mass and composition of bird eggs. Avian Poult Biol Rev 18:21–37. https://doi.org/10.3184/147020607X245039
- Deeming DC (2018) Effect of composition on shape of bird eggs. J Avian Biol 49:e01528. https://doi.org/10.1111/jav.01528
- Deeming DC (2016) How does the bird-nest incubation unit work? Avian Biol Res 9:103–113. https://doi.org/10.3184/175815516X14567543242701
- Deeming DC (2011b) Importance of nest type on the regulation of humidity in bird nests. Avian Biol Res 4:23–31. https://doi.org/10.3184/175815511X13013963263739
- Deeming DC (2022) Factors determining persistent asymmetry and egg shape in birds: a hypothesis. Ibis 166:551–559. https://doi.org/10.1111/ibi.13175
- Dolenec Z (2019) Within-clutch variation in size and shape of the Great Tit *Parus major* eggs. Larus 54:45–51. https://doi.org/10.21857/yq32oh4dw9
- Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252
- Duriez O, Ens BJ, Choquet R, et al (2012) Comparing the seasonal survival of resident and migratory oystercatchers: carry-over effects of habitat quality and weather conditions. Oikos 121:862–873. https://doi.org/https://doi.org/10.1111/j.1600-0706.2012.20326.x
- Duursma DE, Gallagher RV, Price JJ, Griffith SC (2018) Variation in avian egg shape and nest structure is explained by climatic conditions. Sci Rep 8:4141. https://doi.org/10.1038/s41598-018-22436-0
- Dyke GJ, Kaiser GW (2010) Cracking a developmental constraint: egg size and bird evolution. Rec Aust Mus 62:207–216. https://doi.org/10.3853/j.0067-1975.62.2010.1547
- Encabo SI, Barba E, Gil-Delgado JA, Monrós JS (2001) Fitness consequences of egg shape variation: a study on two passerines and comments on the optimal egg shape model. Ornis Fenn 78:83–92
- Ericson PGP, Anderson CL, Britton T, et al (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547. https://doi.org/10.1098/rsbl.2006.0523
- Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086
- Fox J, Weisberg S (2019) An R companion to applied regression, Third edition. Sage, Thousand Oaks, CA

- Golawski A, Mitrus C (2018) Weather conditions influence egg volume repeatability in clutches of the red-backed Shrike *Lanius collurio*. Zool Stud 57:1–8. https://doi.org/10.6620/ZS.2018.57-02
- Gómez J, Ramo C, Stevens M, et al (2018) Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Ecol Evol 8:8019–8029. https://doi.org/https://doi.org/10.1002/ece3.4335
- Gómez-Bahamón V, Chen ER, Tuero DT, et al (2023) Egg shape variation across the distribution of the partially migratory fork-tailed flycatcher *Tyrannus savana*. J Avian Biol 2023:e03006. https://doi.org/10.1111/jav.03006
- Górski A, Nowakowski JJ, Banbura J (2015) Variation in egg-size traits of the European Roller (*Coracias garrulus*) in eastern Poland. Ornis Fenn 92:213–220
- Gosler AG, Higham JP, Reynolds SJ (2005) Why are birds' eggs speckled? Ecol Lett 8:1105–1113. https://doi.org/10.1111/j.1461-0248.2005.00816.x
- Graveland J, van Gijzen T (1994) Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82:299–314. https://doi.org/10.5253/arde.v82.p299
- Green RE, Scharlemann JPW (2003) Egg and skin collections as a resource for longterm ecological studies. Bull Br Ornithol Club 123A:165–176
- Guillemain M, Elmberg J, Arzel C, et al (2008) The income–capital breeding dichotomy revisited: late winter body condition is related to breeding success in an income breeder. Ibis 150:172–176. https://doi.org/https://doi.org/10.1111/j.1474-919X.2007.00700.x
- Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly highresolution gridded multivariate climate dataset. Sci Data 7:109. https://doi.org/10.1038/s41597-020-0453-3
- Hedenström A (2007) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc Lond B Biol Sci 363:287–299. https://doi.org/10.1098/rstb.2007.2140
- Hijmans R (2023) raster: geographic data analysis and modeling. In: R package version 3.6-26. https://CRAN.R-project.org/package=raster
- Hincke MT, Nys Y, Gautron J, et al (2012) The eggshell: structure, composition and mineralization. Front Biosci 17:1266–1280
- Hõrak P, Mänd R, Ots I, Leivits A (1995) Egg size in the Great Tit *Parus major*: individual, habitat and geographic differencess. Ornis Fenn 72:97–114
- Houston WA (2013) Breeding cues in a wetland-dependent Australian passerine of the seasonally wet-dry tropics. Austral Ecol 38:617–626. https://doi.org/10.1111/aec.12007

- Hoyt DF (1976) The effect of shape on the surface-volume relationships of birds' eggs. Condor 78:343–349. https://doi.org/10.2307/1367694
- Igic B, Fecheyr-Lippens D, Xiao M, et al (2015) A nanostructural basis for gloss of avian eggshells. J R Soc Interface 12:20141210. https://doi.org/10.1098/RSIF.2014.1210
- Inverson JB, Ewert MA (1991) Physical characteristics of reptilian eggs and a comparison with avian eggs. In: Deeming DC, Ferguson MWJ (eds) Incubation: its effect on embryonic development in birds and reptiles. Cambridge Univ. Press, pp 87–100
- Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of community structure. Ecol Monogr 81:511–525. https://doi.org/10.2307/23047059
- Janiga M (1996) Variation in size and shape of eggs of the feral pigeon (*Columba livia*). Folia Zool Brno 45:301–310
- Järvinen A, Ylimaunu J (1986) Intraclutch egg-size variation in birds: physiological responses of individuals to fluctuations in environmental conditions. Auk 103:235–237
- Jenni-Eiermann S, Srygley RB (2017) Physiological aeroecology: anatomical and physiological adaptations for flight. In: Chilson PB, Frick WF, Kelly JF, Liechti F (eds) Aeroecology. Springer International Publishing, Cham, pp 87–118
- Jetz W, Thomas GH, Joy JB, et al (2012) The global diversity of birds in space and time. Nature 491:444–448. https://doi.org/10.1038/nature11631
- Johnson LS, Leyhe JE, Werner C (2001) The shape of eggs in different-sized clutches of the house wren (*Troglodytes aedon*). Can J Zool 79:1527–1531. https://doi.org/10.1139/cjz-79-8-1527
- Jönsson KI (1997) Capital and income breeding as alternative tactics of resource use in reproduction. Oikos 78:57–66. https://doi.org/10.2307/3545800
- Kahle D, Wickham H (2013) ggmap: Spatial Visualization with ggplot2. R J 5:144-161
- Kooijman SALM (1986) What the hen can tell about her eggs: egg development on the basis of energy budgets. J Math Biol 23:163–185. https://doi.org/10.1007/BF00276955
- Kouidri M, Adamou AE, Bańbura A, et al (2015) High egg size variation in African Blue Tits *Cyanistes caeruleus ultramarinus* on the periphery of species range. Acta Ornithol 50:205–212. https://doi.org/10.3161/00016454AO2015.50.2.008
- Krist M (2011) Egg size and offspring quality: a meta-analysis in birds. Biol Rev 86:692–716. https://doi.org/https://doi.org/10.1111/j.1469-185X.2010.00166.x
- Lack D (1968) Ecological adaptations for breeding in birds. Methuen & Co, London

- Li D, Dinnage R, Nell LA, et al (2020) phyr: An r package for phylogenetic speciesdistribution modelling in ecological communities. Methods Ecol Evol 11:1455– 1463. https://doi.org/10.1111/2041-210X.13471
- Lusk JJ, Wells KS, Guthery FS, Fuhlendorf SD (2003) Lark Sparrow (*Chondestes Grammacus*) nest-site selection and success in a mixed-grass prairie. Auk 120:120–129. https://doi.org/10.1093/auk/120.1.120
- Machado-Filho RAN, Balsamão GM, Marini MÂ (2010) Seasonal differences in immune profiles and body conditions of migratory and permanent resident neotropical flycatchers. Condor 112:579–590. https://doi.org/10.1525/cond.2010.090146
- Mallock A (1925) The shape of birds' eggs. Nature 116:311–312. https://doi.org/10.1038/116311a0
- Marcelino J, Silva JP, Gameiro J, et al (2020) Extreme events are more likely to affect the breeding success of lesser kestrels than average climate change. Sci Rep 10:7207. https://doi.org/10.1038/s41598-020-64087-0
- Martin TE (1987) Food as a limit on breeding birds: a life-history perspective. Annu Rev Ecol Evol Syst 18:453–487. https://doi.org/https://doi.org/10.1146/annurev.es.18.110187.002321
- Martin TE, Boyce AJ, Fierro-Calderón K, et al (2017) Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct Ecol 31:1231–1240. https://doi.org/https://doi.org/10.1111/1365-2435.12819
- Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667. https://doi.org/10.1086/286013
- McClelland SC, Cassey P, Maurer G, et al (2021) How much calcium to shell out? Eggshell calcium carbonate content is greater in birds with thinner shells, larger clutches and longer lifespans. J R Soc Interface 18:. https://doi.org/10.1098/rsif.2021.0502
- Minias P, Włodarczyk R (2020) Avian developmental rates are constrained by latitude and migratoriness – A global analysis. J Biogeogr 47:2156–2167. https://doi.org/https://doi.org/10.1111/jbi.13923
- Montgomerie R, Hemmings N, Thompson JE, Birkhead TR (2021) The shapes of birds' eggs: evolutionary constraints and adaptations. Am Nat 198:E215–E231. https://doi.org/10.5061/dryad.sj3tx9648
- Mytiai IS, Shatkovska OV, Ghazali M (2017) Size and shape of eggs of Neognathae: effects of developmental mode and phylogeny. Can J Zool 95:359–366. https://doi.org/10.1139/cjz-2016-0142

- Mytiai IS, Shatkovska OV, Ghazali M (2021) Allometry of egg size as a factor influencing egg shape in birds. Acta Ornithol 56:69–78. https://doi.org/10.3161/00016454AO2021.56.1.007
- Nager RG (2006) The challenges of making eggs. Ardea 94:323-346
- Nagy J, Hauber ME, Hartley IR, Mainwaring MC (2019) Correlated evolution of nest and egg characteristics in birds. Anim Behav 158:211–225. https://doi.org/10.1016/j.anbehav.2019.10.015
- Paganelli C V, Olszowka A, Ar A (1974) The avian egg: surface are, volume, and density. Condor 76:319–325. https://doi.org/10.2307/1366345
- Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877– 884. https://doi.org/10.1038/44766
- Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. https://doi.org/10.1093/bioinformatics/bty633
- Perez DM, Gardner JL, Medina I (2020) Climate as an evolutionary driver of nest morphology in birds: a review. Front Ecol Evol 8:566018. https://doi.org/10.3389/fevo.2020.566018
- Perrins CM (1996) Eggs, egg formation and the timing of breeding. Ibis 138:2-15
- Peterson RA (2021) Finding optimal normalizing transformations via bestNormalize. R J 13:310–329. https://doi.org/10.32614/RJ-2021-041
- Peterson RA, Cavanaugh JE (2020) Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J Appl Stat 47:2312–2327. https://doi.org/10.1080/02664763.2019.1630372
- Peterson SH, Ackerman JT, Herzog MP, et al (2020) Avian eggshell thickness in relation to egg morphometrics, embryonic development, and mercury contamination. Ecol Evol 10:8715–8740. https://doi.org/10.1002/ece3.6570
- Pierce D (2019) ncdf4: interface to unidata netCDF (Version 4) format data files. In: R package version 1.22. https://CRAN.R-project.org/package=ncdf4
- Pinheiro J, Bates D (2023) nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme
- Portugal SJ, Maurer G, Thomas GH, et al (2014) Nesting behaviour influences speciesspecific gas exchange across avian eggshells. J Exp Biol 217:3326–3332. https://doi.org/10.1242/jeb.103291
- Preston FW (1968) The shapes of birds' eggs: mathematical aspects. Auk 85:454–463. https://doi.org/10.2307/4083294
- Preston FW (1953) The shapes of birds' eggs. Auk 70:160–182. https://doi.org/10.2307/4081145

- Preston FW (1969) Shapes of birds' eggs: extant North American families. Auk 86:246–264. https://doi.org/10.2307/4083498
- R Core Team (2024) R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. https://www.R-project.org/
- Rahn H, Ar A (1974) The avian egg: incubation time and water loss. Condor 76:147–152. https://doi.org/10.2307/1366724
- Rahn H, Paganelli C V (1988) Length, breadth, and elongation of avian eggs from the tables of Schönwetter. J Ornithol 129:366–369. https://doi.org/10.1007/BF01643378
- Rahn H, Paganelli C V (1990) Gas fluxes in avian eggs: driving forces and the pathway for exchange. Comp Biochem Physiol 95:15. https://doi.org/10.1016/0300-9629(90)90002-A
- Rahn H, Paganelli C V., Ar A (1987) Pores and gas exchange of avian eggs: a review. J Exp Zool Suppl 1:165–172
- Rasband WS (1997) ImageJ. In: U.S. Maryland, National Institutes of Health. http://imagej.nih.gov/ij/
- Redfern CPF (2010) Brood-patch development and female body mass in passerines. Ringing and Migration 25:33–41. https://doi.org/10.1080/03078698.2010.9674412
- Renner SS, Zohner CM (2018) Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu Rev Ecol Evol Syst 49:165–182. https://doi.org/10.1146/annurev-ecolsys-110617
- Revell LJ (2024) phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505. https://doi.org/10.7717/peerj.16505
- Reynolds SJ (2001) The effects of low dietary calcium during egg-laying on eggshell formation and skeletal calcium reserves in the Zebra Finch *Taeniopygia guttata*. Ibis 143:205–215. https://doi.org/10.1111/j.1474-919X.2001.tb04476.x
- Reynolds SJ, Perrins CM (2010) Dietary calcium availability and reproduction in birds. In: Thompson CF (ed) Current Ornithology Volume 17. Springer New York, New York, NY, pp 31–74
- Riani M, Atkinson AC, Corbellini A (2023) Automatic robust Box–Cox and extended Yeo–Johnson transformations in regression. Stat Methods Appt 32:75–102. https://doi.org/10.1007/s10260-022-00640-7
- Ricklefs RE (2012) Species richness and morphological diversity of passerine birds. Proc Natl Acad Sci 109:14482–14487. https://doi.org/10.1073/pnas.1212079109
- Ricklefs RE (1977) Composition of eggs of several bird species. Auk 94:350–356
- Ricklefs RE, Austin SH, Robinson WD (2017) The adaptive significance of variation in avian incubation periods. Auk 134:542–550. https://doi.org/10.1642/AUK-16-171.1

- Roff DA (1992) The evolution of life history theories: theory and analysis. Chapman and Hall, New York
- Rubin AE (2023) Geometry of life. In: Surface/volume: How geometry explains why grain elevators explode, hummingbirds hover, and asteroids are colder than ice. Springer Nature, Switzerland
- Sakia RM (1992) The box-cox transformation technique: a review. J Roy Stat Soc D-Sta 41:169–178. https://doi.org/10.2307/2348250
- Šálek ME, Zárybnická M (2015) Different temperature and cooling patterns at the blunt and sharp egg poles reflect the arrangement of eggs in an avian clutch. PLoS One 10:e0117728. https://doi.org/10.1371/journal.pone.0117728
- Schmitz Ornés A, Ducay RL, Fulmer AG, Hauber ME (2023) Coloniality and development impact intraclutch consistency of avian eggs: a comparative analysis of the individual repeatability of eggshell size and shape metrics. Sci Nat 110:12. https://doi.org/10.1007/s00114-023-01840-1
- Shatkovska O V., Ghazali M, Mytiai IS, Druz N (2018) Size and shape correlation of birds' pelvis and egg: impact of developmental mode, habitat, and phylogeny. J Morphol 279:1590–1602. https://doi.org/10.1002/jmor.20888
- Sidis Y, Zilberman R, Ar A (1994) Thermal aspects of nest placement in the Orange-Tufted Sunbird (*Nectarinia osea*). Auk 111:1001–1005. https://doi.org/10.2307/4088835
- Silva TL, Marini MÂ Interactions among climate, nest type and surface-to-volume ratio drive egg shape variation in Neotropical passerines. Unpublished data
- Smart IHM (1991) Egg shape in birds. In: Deeming DC, Ferguson MWJ (eds) Egg incubation: its effects on embryonic development in birds and reptiles. Cambridge University Press, Cambridge
- Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506. https://doi.org/10.1086/282929
- Soler M (2018) Avian brood parasitism: behaviour, ecology, evolution and coevolution. Springer, Switzerland
- Sotherland PR, Rahn H (1987) On the composition of bird eggs. Condor 89:48-65
- Sousa NO de M, Heming NM, Marini MÂ (2024) Clutch size but not egg size associates with migration distance in South American land birds. J Ornithol. https://doi.org/10.1007/s10336-024-02186-9
- Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268. https://doi.org/10.2307/2389364
- Stoddard MC, Yong EH, Akkaynak D, et al (2017) Avian egg shape: form, function, and evolution. Science (1979) 356:1249–1254. https://doi.org/10.1126/science.aan8090

- Stotz DF (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago
- Tobias JA, Sheard C, Pigot AL, et al (2022) AVONET: morphological, ecological and geographical data for all birds. Ecol Lett 25:581–597. https://doi.org/10.1111/ele.13898
- Todd PH, Smart IHM (1984) The shape of birds' eggs. J Theor Biol 106:239–243. https://doi.org/https://doi.org/10.1016/0022-5193(84)90021-3
- Troscianko J (2014) A simple tool for calculating egg shape, volume and surface area from digital images. Ibis 156:874–878. https://doi.org/10.1111/ibi.12177
- Tryjanowski P, Kuczyński L, Antczak M, et al (2001) Within-clutch repeatability of egg dimensions in the jackdaw *Corvus monedula*: a study based on a museum collection. Biologia (Bratisl) 56:211–215
- Ummenhofer CC, Meehl GA (2017) Extreme weather and climate events with ecological relevance: a review. Proc R Soc B 372:20160135. https://doi.org/10.1098/rstb.2016.0135
- Van Der Meer J (2006) Metabolic theories in ecology. Trends Ecol Evol 21:136–140. https://doi.org/10.1016/j.tree.2005.11.004
- Walsberg GE, Schmidt CG (1992) Effects of variable humidity on embryonic development and hatching success of Mourning Doves. Auk 109:309–314. https://doi.org/10.2307/4088199
- Whittow GC (1980) Physiological and ecological correlates of prolonged incubation in sea birds. Am Zool 20:427–436. https://doi.org/10.1093/icb/20.2.427
- Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev 69:35–59. https://doi.org/https://doi.org/10.1111/j.1469-185X.1994.tb01485.x
- Winkler DW, Billerman SM, Lovette IJ (2020a) New World Sparrows (Passerellidae), version 1.0. In: Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS (eds) Birds of the World . Cornell Lab of Ornithology, Ithaca
- Winkler DW, Billerman SM, Lovette IJ (2020b) Tanagers and Allies (Thraupidae), version 1.0. In: Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS (eds) Birds of the World. Cornell Lab of Ornithology, Ithaca
- Winkler DW, Billerman SM, Lovette IJ (2020c) Cotingas (Cotingidae), version 1.0. In: Billerman SM, Keeney BK, Rodewald P G, Schulenberg T S (eds) Birds of the World . Cornell Lab of Ornithology, Ithaca
- Winkler DW, Luo MK, Rakhimberdiev E (2013) Temperature effects on food supply and chick mortality in tree swallows (*Tachycineta bicolor*). Oecologia 173:129– 138. https://doi.org/10.1007/s00442-013-2605-z

- Wisocki PA, Kennelly P, Rojas Rivera I, et al (2020) The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nat Ecol Evol 4:148–155. https://doi.org/10.1038/s41559-019-1003-2
- Zimmermann K, Hipfner MJ (2007) Egg size, eggshell porosity, and incubation period in the marine bird family Alcidae. Auk 124:307–315
- Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210x.2009.00001.x

MATERIAL SUPLEMENTAR

Table S1. Abbreviations and locations of 3	36 museums where	e passerine's reproductive	e data were collected
for Chapters 1 and 2.			

Museum	Abbreviation	Location
American Museum of Natural History	AMNH	New York, USA
California Academy of Sciences	CAS	San Francisco, USA
Coleção Ornitológica Marcelo Bagno, Universidade de Brasília	COMB	Brasília, Brazil
Cris-River Regional Museum	CRRP	Oradea, Romania
Delaware Museum of Natural History	DMNH	Wilmington, USA
Fundación Miguel Lillo	FML	Tucumán, Argentina
Fundação Zoobotânica do Rio Grande do Sul	FZB	Porto Alegre, Brazil
Instituto de Investigaciones de Recursos Biológicos "Alexander von Humboldt"	IAvH	Vila de Leyva, Colombia
Coleção Zoológica da Reserva Ecológica do Instituto Brasileiro de Geografia e Estatística	IBGE	Brasília, Brazil
Museo Argentino de Ciencias Naturales	MACN	Buenos Aires, Argentina
Museum of Comparative Zoology, Harvard University	MCZ	Cambridge, USA
Muséum d'Histoire Naturelle de Genève	MHNG	Geneva, Switzerland
Museo de La Plata	MLP	La Plata, Argentina
Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther University HalleWittenberg	MLUH	Halle (Saale), Germany
Museu Nacional	MN	Rio de Janeiro, Brazil
Museo Ñuble Naturaleza	MNN	Chillán, Chile
Museo Nacional de Costa Rica	MNCR	San José, Costa Rica
Muséum National d'Histoire Naturelle	MNHN	Paris, France
Museu Paraense Emilio Goeldi	MPEG	Belém, Brazil
Musée Zoologique de l'Université Louis Pasteur et de la ville de Strasbourg	MZS	Strasbourg, France
Museo Zoológico, Universidad de Concepción	MZUC	Concepción, Chile
Museu de Zoologia, Universidade de São Paulo	MZUSP	São Paulo, Brazil
Naturalis, Nationaal Natuurhistorisch Museum	NBCN	Leiden, The Netherlands
The Natural History Museum	NHM	Tring, UK
Landesmuseum Hannover	NLMH	Hannover, Germany
Naturhistorisches Museum Bern	NMBE	Bern, Switzerland
National Museums Scotland	NMS	Edinburgh, UK
Naturhistorisches Museum Wien	NMW	Vienna, Austria
Museu de Ciências e Tecnologia da PUCRS	PUCRS	Porto Alegre, Brazil
San Bernardino County Museum	SBCM	Redlands, USA
Staatliches Naturhistorisches Museum	SNMB	Braunschweig, Germany
Museo de Zoologia, Universidad de Costa Rica	UCR	San José, Costa Rica
Museu de Zoologia, Universidade Federal Rural do Rio de Janeiro	UFRRJ	Seropédica, Brazil
National Museum of Natural History	USNM	Washington, D.C., USA
Western Foundation of Vertebrate Zoology	WFVZ	Camarillo, USA
Museum für Naturkunde	ZMB	Berlin, Germany

Table S2. Museum catalogs used to review the taxonomic names of passerine's egg sets deposited in egg collections.

Catalogs of the British Museum of Natural History (BMNH) – (Sharpe 1877, 1881, 1883, 1885, 1888, 1890; Sclater 1886) **Catalogs of the Field Museum of Natural History (FMNH)** – (Cory and Hellmayr 1924, 1925, 1927; Hellmayr 1929, 1934, 1935, 1936, 1937, 1938)

Catalogs of the Museum of Comparative Zoology (MCZ) – (Peters 1951; Mayr and Greenway Jr. 1960, 1962; Mayr and Paynter Jr. 1964; Paynter Jr. 1968, 1970; Traylor Jr. 1979)

Catalogs references

Cory, C. B. & Hellmayr, C. E. 1924. Catalogue of the birds of the Americas. Part III. Pteroptochidae – Conopophagidae – Formicariidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part III, Publication 223, Field Museum of Natural History, Chicago.

Cory, C. B. & Hellmayr, C. E. 1925. Catalogue of the birds of the Americas. Part IV. Furnariidae - Dendrocolaptidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part IV, Publication 234, Field Museum of Natural History, Chicago.

Cory, C. B. & Hellmayr, C. E. 1927. Catalogue of the birds of the Americas. Part V. Tyrannidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part V, Publication 242, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1929. Catalogue of the birds of the Americas. Part VI. Oxyruncidae – Pipridae – Cotingidae – Rupicolidae - Phytotomidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part IV, Publication 266, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1934. Catalogue of the birds of the Americas. Part VII. Corvidae – Paridae – Sittidae – Certhiidae – Chamaeidae – Cinclidae – Troglodytidae – Prunellidae – Mimidae – Turdidae – Zeledoniidae - Sylviidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part VII, Publication 330, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1935. Catalogue of the birds of the Americas. Part VIII. Alaudidae - Hirundinidae - Motacillidae - Bombycillidae - Ptilogonatidae - Dulidae - Vireonidae - Vireolaniidae - Cyclarhidae - Laniidae - Sturnidae - Coerebidae - Compsothlypidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part VIII, Publication 347, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1936. Catalogue of the birds of the Americas. Part IX. Tersinidae - Thraupidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part IX, Publication 365, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1937. Catalogue of the birds of the Americas. Part X. Icteridae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part X, Publication 381, Field Museum of Natural History, Chicago.

Hellmayr, C. E. 1938. Catalogue of the birds of the Americas. Part XI. Ploceidae – Catamblyrhynchidae - Fringillidae. Zoological Series, Field Museum of Natural History, Vol. XIII, Part XI, Publication 430, Field Museum of Natural History, Chicago.

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. 2012. The global diversity of birds in space and time. Nature, 491(7424), 444-448.

Mayr, E. & Greenway Jr., J. C. 1960. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume IX. Museum of Comparative Zoology, Cambridge.

Mayr, E. & Greenway Jr., J. C. 1962. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume XV. Museum of Comparative Zoology, Cambridge.

Mayr, E. & Paynter Jr., R. A. (eds.) 1964. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume X. Prunellidae – Turdinae - Orthonychinae - Timaliinae – Panurinae - Picathartinae - Polioptilinae. Museum of Comparative Zoology, Cambridge.

Painter Jr., R. A. (ed.) 1968. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume XIV. Parulidae - Drepanididae - Vireonidae - Icteridae – Fringillinae - Carduelinae - Estrildidae - Viduinae. Museum of Comparative Zoology, Cambridge.

Painter Jr., R. A. (ed.) 1970. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume XIII. Emberizinae - Catamblyrhynchinae – Cardinalinae – Thraupinae - Tersininae. Museum of Comparative Zoology, Cambridge.

Peters, J. L. 1951. Check-List of the Birds of the World – Volume VII. Harvard University Press, Cambridge.

Sclater, P. L. 1886. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Fringilliformes: Part II. Containing the families Coerebidae, Tanagridae, and Icteridae. Vol. XI. British Museum, London.

Sharpe, R. B. 1877. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Coliomorphae, containing the families Corvidae, Paradiseidae, Oriolidae, Dicruridae and Prionopidae. Vol. III. British Museum, London.

Sharpe, R. B. 1881. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Cichlomorphae: Part III. Containing the first portion of the family Timeliidae. Vol. VI. British Museum, London.

Sharpe, R. B. 1883. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Cichlomorphae: Part IV. Containing the concluding portion of the family Timeliidae. Vol. VII. British Museum, London.

Sharpe, R. B. 1885. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Fringilliformes: Part I. Containing the families Dicaeidae, Hirundinidae, Ampelidae, Mniotiltidae, and Motacillidae. Vol. X. British Museum, London.

Sharpe, R. B. 1888. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Fringilliformes: Part III. Containing the family Fringillidae. Vol. XII. British Museum, London.

Sharpe, R. B. 1890. Catalogue of the Passeriformes, or perching birds, in the collection of the British Museum. Sturniformes, containing the families Artamidae, Sturnidae, Ploceidae, Alaudidae. Also the families Atrichiidae and Menuridae. Vol. XIII. British Museum, London.

Traylor Jr., M. A. (ed.) 1979. Check-List of the Birds of the World – A continuation of the work of James L. Peters. Volume VIII. Museum of Comparative Zoology, Cambridge.

Table S3. Species (Jetz et al. 2012), N (number of clutches used to calculate egg shape mean and standard deviation), M Clu (mean clutch size), Mo Clu (mode clutch size), M Vol (mean volume in cm³), nest type, habitat, diet (Carn = carnivore, Omni = omnivore, Herb = Herbivore), migration (Migr = migratory, Part = partially migratory, Seden = sedentary), M Elon (mean elongation), SD Elo (standard deviation elongation), M Asym (mean asymmetry), and SD Asym (standard deviation asymmetry) of Neotropical passerines evaluated in Chapter 1.

Family	Species	N	M Clu	Mo Clu	M Vol	Nest	Habitat	Diet	Migra tion	M Elon	SD Elon	M Asym	SD Asym
Aegithalidae	Psaltriparus minimus	13	5.19	4	0.74	close d	Closed	Carn	Seden	1.34	0.051	0.00024	0.00014
Alaudidae	Eremophila	3	4.00	4	2.59	close d	Open	Omni	Migr	1.36	0.062	0.00031	0.00012
Cardinalidae	Cardinalis	6	3.44	3	4.48	open	Open	Omni	Seden	1.34	0.098	0.00023	0.00012
Cardinalidae	Cardinalis	3	3.73	4	3.44	open	Open	Omni	Seden	1.36	0.092	0.00016	0.00011
Cardinalidae	Chlorothraupi	5	2.11	2	4.31	open	Closed	Carn	Seden	1.46	0.054	0.00011	0.00007
Cardinalidae	Cyanocompsa brissonii	15	2.49	2	3.07	open	Closed	Herb	Seden	1.41	0.051	0.00025	0.00012
Cardinalidae	Cyanocompsa cyanoides	7	1.73	2	3.56	open	Closed	Herb	Seden	1.39	0.050	0.00023	0.00009
Cardinalidae	Cyanocompsa parellina	6	1.91	2	2.86	open	Closed	Herb	Seden	1.32	0.055	0.00021	0.00009
Cardinalidae	Cyanoloxia glaucocaerule	3	2.20	3	2.49	open	Closed	Omni	Part	1.38	0.031	0.00025	0.00010
Cardinalidae	a Granatellus sallaei	3	1.80	2	2.15	open	Closed	Carn	Seden	1.34	0.014	0.00045	0.00016
Cardinalidae	Habia fuscicanda	3	2.43	2	4.36	open	Closed	Carn	Seden	1.35	0.061	0.00024	0.00007
Cardinalidae	Habia rubica	7	3.29	5	4.08	open	Closed	Carn	Seden	1.37	0.070	0.00018	0.00008
Cardinalidae	Passerina caerulea	5	2.67	3	3.66	open	Closed	Carn	Migr	1.29	0.068	0.00017	0.00008
Cardinalidae	Passerina	3	3.00	3	2.38	open	Closed	Herb	Seden	1.35	0.032	0.00029	0.00017
Cardinalidae	Piranga bidentata	3	2.71	3	3.54	open	Closed	Carn	Part	1.32	0.037	0.00026	0.00009
Cardinalidae	Piranga flava	16	2.76	3	3.68	open	Closed	Carn	Part	1.37	0.087	0.00027	0.00018
Cardinalidae	Piranga rubra	3	2.33	3	3.65	open	Closed	Carn	Migr	1.40	0.058	0.00037	0.00019
Cinclidae	Cinclus mexicanus	4	2.14	3	4.58	close d	Water- associat	Carn	Seden	1.44	0.071	0.00023	0.00011
Conopophagid	Conopophaga	8	2.07	2	3.38	open	Closed	Carn	Seden	1.30	0.051	0.00021	0.00011
Corvidae	Aphelocoma	4	3.85	5	5.96	open	Open	Omni	Seden	1.37	0.068	0.00025	0.00017
Corvidae	Cyanocorax	6	2.17	2	10.2	open	Closed	Omni	Seden	1.42	0.061	0.00043	0.00017
Corvidae	Cyanocorax	13	3.15	3	3 8.78	open	Closed	Carn	Seden	1.35	0.070	0.00025	0.00017
Corvidae	Cyanocorax cristatellus	5	4.64	6	9.08	open	Closed	Omni	Seden	1.45	0.074	0.00034	0.00012
Corvidae	Cyanocorax	11	4.33	5	7.95	open	Closed	Omni	Seden	1.41	0.050	0.00052	0.00021
Corvidae	Cyanocorax	3	2.43	2	9.06	open	Closed	Omni	Seden	1.40	0.036	0.00032	0.00005
Corvidae	Cyanopogon Cyanocorax dickavi	4	3.45	3	9.84	open	Closed	Omni	Seden	1.43	0.048	0.00031	0.00020
Corvidae	Cyanocorax melanocyaneu	5	2.78	3	7.25	open	Closed	Carn	Seden	1.38	0.062	0.00029	0.00013
Corvidae	s Cyanocorax morio	3	4.67	6	10.2	open	Closed	Omni	Seden	1.50	0.088	0.00047	0.00015
Corvidae	Cyanocorax mystacalic	4	2.00	1	8.10	open	Closed	Omni	Seden	1.42	0.053	0.00041	0.00024
Corvidae	Cyanocorax	15	4.32	4	6.08	open	Closed	Omni	Seden	1.34	0.065	0.00023	0.00012
Corvidae	yncus Cyanocorax yucatanicus	7	2.08	2	7.53	open	Closed	Omni	Seden	1.38	0.057	0.00038	0.00015

Cotingidae	Carpornis cucullata	7	1.70	2	9.74	open	Closed	Herb	Seden	1.39	0.059	0.00008	0.00008
Cotingidae	Phibalura flavirostris	7	2.50	3	4.32	open	Closed	Herb	Migr	1.37	0.064	0.00032	0.00016
Cotingidae	Phytotoma rara	14	3.21	3	4.38	open	Open	Herb	Seden	1.38	0.086	0.00025	0.00013
Cotingidae	Phytotoma rutila	51	3.16	3	3.43	open	Open	Herb	Seden	1.35	0.071	0.00026	0.00014
Cotingidae	Pipreola riefferii	4	1.86	2	5.41	open	Closed	Herb	Seden	1.31	0.065	0.00021	0.00013
Cotingidae	Rupicola	7	1.67	2	26.6 4	open	Closed	Herb	Seden	1.44	0.099	0.00045	0.00021
Cotingidae	Rupicola	5	1.71	2	22.7	open	Closed	Herb	Seden	1.37	0.060	0.00038	0.00025
Donacobiidae	Donacobius atricapilla	4	2.33	2	3.56	open	Water- associat	Carn	Seden	1.38	0.067	0.00022	0.00008
Formicariidae	Chamaeza campanisona	5	1.75	2	7.35	close	Closed	Carn	Seden	1.24	0.072	0.00008	0.00009
Fringillidae	Carduelis barbata	3	3.60	5	1.47	open	Closed	Herb	Seden	1.29	0.086	0.00031	0.00010
Fringillidae	Carduelis	4	2.82	3	1.48	open	Open	Herb	Seden	1.35	0.038	0.00029	0.00017
Fringillidae	Carduelis	5	3.40	4	1.17	open	Open	Herb	Seden	1.32	0.062	0.00036	0.00018
Fringillidae	Carduelis	3	3.00	3	1.66	open	Open	Herb	Seden	1.34	0.073	0.00037	0.00018
Fringillidae	spinescens Carpodacus	56	3.89	4	2.01	open	Open	Herb	Part	1.36	0.064	0.00036	0.00018
Fringillidae	mexicanus Chlorophonia	8	3.00	3	1.58	close	Closed	Herb	Seden	1.37	0.071	0.00021	0.00009
Fringillidae	cyanea Euphonia	3	3.89	5	1.49	d close	Closed	Herb	Seden	1.34	0.053	0.00034	0.00008
Fringillidae	affinis Euphonia	3	3.50	4	1.37	d close	Closed	Herb	Seden	1.34	0.070	0.00039	0.00027
Fringillidae	Euphonia	4	2.00	1	1.55	d close	Closed	Herb	Part	1.26	0.056	0.00014	0.00009
Fringillidae	elegantissima Euphonia	3	4.00	4	1.55	d close	Closed	Herb	Seden	1.32	0.052	0.00028	0.00013
Fringillidae	hirundinacea Euphonia	6	3.74	4	1.43	d close	Closed	Herb	Seden	1.35	0.036	0.00034	0.00015
Fringillidae	laniirostris Euphonia	3	2.43	2	1.36	d close	Closed	Herb	Seden	1.36	0.044	0.00018	0.00007
Fringillidae	luteicapilla Euphonia	3	3.25	4	1.69	d close	Closed	Herb	Seden	1.35	0.051	0.00031	0.00007
Fringillidae	pectoralis Euphonia	3	3.29	4	1.24	d close	Closed	Herb	Seden	1.31	0.020	0.00020	0.00009
Fringillidae	trinitatis Euphonia	6	4.00	4	1.38	d close	Closed	Herb	Seden	1.40	0.072	0.00029	0.00013
Furnariidae	violacea Anumbius	15	4.21	4	3.78	d close	Open	Carn	Seden	1.33	0.044	0.00019	0.00010
Furnariidae	annumbi Aphrastura	5	3.00	3	1.95	d close	Closed	Carn	Seden	1.32	0.082	0.00036	0.00018
Furnariidae	spinicauda Asthenes baeri	4	3.57	4	2.64	d close	Open	Carn	Seden	1.33	0.033	0.00010	0.00005
Furnariidae	Asthenes	3	3.40	3	3.21	d close	Open	Carn	Seden	1.29	0.047	0.00019	0.00009
Furnariidae	hudsoni Asthenes	10	3.19	3	3.25	d close	Open	Carn	Seden	1.31	0.056	0.00015	0.00010
Furnariidae	humicola Asthenes	31	3.08	4	2.39	d close	Open	Carn	Seden	1.33	0.052	0.00018	0.00012
Furnariidae	modesta Asthenes	12	2.87	3	2.46	d close	Open	Carn	Part	1.31	0.059	0.00016	0.00010
Furnariidae	pyrrholeuca Automolus	3	2.00	2	7.19	d close	Closed	Carn	Seden	1.43	0.069	0.00008	0.00005
Furnariidae	rubiginosus Certhiaxis	18	2.84	3	2.22	d close	Water-	Carn	Seden	1.29	0.059	0.00017	0.00010
1 unitalitate	cinnamomeus	10	2101	U		d	associat	Cull	Sector		01000	0.00017	0.00010
Furnariidae	Cinclodes antarcticus	11	2.76	4	6.95	close d	Water- associat	Carn	Part	1.37	0.064	0.00024	0.00012
Furnariidae	Cinclodes	2	2.60	3	6.69	close	Open	Carn	Seden	1.28	0.025	0.00014	0.00008
Furnariidae	Cinclodes	15	2.61	3	5.28	close	Open	Carn	Migr	1.30	0.054	0.00025	0.00014
Furnariidae	Cinclodes	11	2.00	2	5.88	close	Open	Carn	Seden	1.33	0.060	0.00029	0.00013
Furnariidae	nigrojumosus Cinclodes patagonicus	9	2.80	3	5.45	u close d	Water- associat ed	Carn	Migr	1.34	0.072	0.00028	0.00015
Furnariidae	Coryphistera alaudina	5	4.00	4	3.49	close d	Open	Carn	Seden	1.29	0.046	0.00020	0.00014
--------------	---	----	------	---	-----------	-----------------	--------------------	------	-------	------	-------	---------	---------
Furnariidae	Cranioleuca pyrrhophia	8	3.00	3	2.18	close d	Closed	Carn	Seden	1.33	0.048	0.00023	0.00014
Furnariidae	Drymornis bridgesii	5	2.67	3	10.4 1	close d	Closed	Carn	Seden	1.31	0.048	0.00027	0.00016
Furnariidae	Furnarius cristatus	4	2.60	3	4.28	close d	Open	Carn	Seden	1.33	0.067	0.00014	0.00006
Furnariidae	Furnarius leucopus	3	3.00	2	5.30	close d	Open	Carn	Seden	1.28	0.034	0.00017	0.00009
Furnariidae	Furnarius rufus	26	3.64	4	6.21	close	Open	Carn	Seden	1.31	0.076	0.00024	0.00015
Furnariidae	Geositta	16	2.71	3	4.11	close	Open	Carn	Seden	1.30	0.033	0.00022	0.00012
Furnariidae	Geositta	5	2.55	3	5.44	close	Open	Carn	Seden	1.33	0.053	0.00016	0.00012
Furnariidae	Lepidocolapte s	6	3.22	4	4.78	close d	Closed	Carn	Seden	1.36	0.046	0.00017	0.00010
Furnariidae	angustirostris Leptasthenura	17	3.23	3	1.68	close	Open	Carn	Seden	1.30	0.047	0.00034	0.00017
Furnariidae	Limnornis curvirostris	5	2.27	2	4.04	d close d	Water- associat	Carn	Seden	1.34	0.050	0.00019	0.00015
Furnariidae	Ochetorhynch	7	3.11	3	4.36	close	ed Open	Carn	Seden	1.36	0.059	0.00015	0.00007
Furnariidae	us melanura Ochetorhynch	4	2.82	3	3.23	d close	Open	Carn	Seden	1.32	0.045	0.00026	0.00008
Furnariidae	us phoenicurus Phacellodomu	8	3.22	3	3.92	d close	Open	Carn	Seden	1.43	0.076	0.00023	0.00010
Furnariidae	s ruber Phacellodomu	6	3.42	3	3.17	d close	Open	Carn	Seden	1.37	0.064	0.00025	0.00012
Furnariidae	s rufifrons Phacellodomu	6	3.55	4	2.53	d close	Closed	Carn	Seden	1.34	0.044	0.00014	0.00010
Furnariidae	s sibilatrix Phleocryptes	30	2.67	3	2.55	d close	Water-	Carn	Seden	1 33	0.071	0.00022	0.00012
T unhandae	melanops	50	2.07	5	2.01	d	associat ed	Cull	beden	1.55	0.071	0.00022	0.00012
Furnariidae	Premnoplex brunnescens	3	2.00	2	3.10	close d	Closed	Carn	Seden	1.29	0.038	0.00017	0.00012
Furnariidae	Pseudoseisura gutturalis	3	3.80	4	6.29	close d	Open	Carn	Seden	1.31	0.070	0.00010	0.00008
Furnariidae	Pseudoseisura lophotes	7	2.78	2	6.36	close d	Closed	Carn	Seden	1.41	0.070	0.00027	0.00019
Furnariidae	Pygarrhichas albogularis	3	2.71	3	3.56	close	Closed	Carn	Seden	1.30	0.008	0.00035	0.00022
Furnariidae	Schoeniophyla x	8	3.60	4	2.52	close d	Open	Carn	Seden	1.32	0.043	0.00020	0.00010
	n phryganophilu s					u							
Furnariidae	Sclerurus albigularis	3	2.00	2	5.35	close d	Closed	Carn	Seden	1.25	0.029	0.00017	0.00009
Furnariidae	Spartonoica maluroides	3	3.00	3	1.79	open	Water- associat	Carn	Seden	1.23	0.040	0.00018	0.00008
Furnariidae	Sylviorthorhyn chus	4	3.00	2	2.60	close d	Closed	Carn	Seden	1.32	0.035	0.00046	0.00029
Furnariidae	desmursii Synallaxis	22	3.11	3	2.15	close	Open	Carn	Seden	1.26	0.053	0.00022	0.00010
Furnariidae	albescens Synallaxis	5	3.62	3	2.56	d close	Closed	Carn	Seden	1.29	0.040	0.00018	0.00007
Furnariidae	azarae Synallaxis	8	2.00	2	2.78	d close	Open	Carn	Seden	1.27	0.044	0.00025	0.00016
Furnariidae	brachyura Synallaxis	6	3.32	3	2.73	d close	Closed	Carn	Seden	1.29	0.036	0.00015	0.00009
Furnariidae	frontatis Synallaxis	5	3.93	6	2.32	d close	Open	Carn	Seden	1.32	0.043	0.00017	0.00010
Furnariidae	spixi Tarphonomus	5	2.69	3	3.99	close	Open	Carn	Seden	1.30	0.049	0.00036	0.00015
Furnariidae	Upucerthia	12	2.93	3	6.07	u close	Open	Carn	Seden	1.38	0.046	0.00024	0.00016
Furnariidae	aumetaria Xiphocolaptes	3	2.43	2	11.6	u close	Closed	Carn	Seden	1.30	0.096	0.00018	0.00007
Furnariidae	major Xiphorhynchu	3	2.71	3	6.08	u close	Closed	Carn	Seden	1.33	0.029	0.00004	0.00004
Furnariidae	s flavigaster Xiphorhynchu	4	2.00	2	6.00	a close	Closed	Carn	Seden	1.33	0.036	0.00017	0.00019
Grallariidae	s susurrans Grallaria guatimalensis	4	2.00	2	11.0 9	a open	Closed	Carn	Seden	1.23	0.037	0.00015	0.00016

Hirundinidae	Alopochelidon fucata	5	3.69	3	1.56	close d	Open	Carn	Migr	1.41	0.061	0.00026	0.00010
Hirundinidae	Notiochelidon murina	11	2.32	2	1.70	close d	Open	Carn	Part	1.39	0.104	0.00032	0.00018
Hirundinidae	Progne	11	3.72	5	2.96	close	Open	Carn	Seden	1.46	0.092	0.00048	0.00020
Hirundinidae	Progne	3	5.09	6	2.79	close d	Open	Carn	Migr	1.42	0.054	0.00029	0.00018
Hirundinidae	Progne tapera	6	3.86	3	3.17	close	Open	Carn	Seden	1.45	0.052	0.00033	0.00013
Hirundinidae	Pygochelidon	19	3.62	4	1.52	close	Open	Carn	Part	1.42	0.108	0.00029	0.00013
Hirundinidae	Stelgidopteryx	11	4.23	5	1.77	close	Open	Carn	Seden	1.40	0.054	0.00034	0.00019
Hirundinidae	Stelgidopteryx	6	5.04	6	1.73	close	Open	Carn	Migr	1.38	0.051	0.00032	0.00015
Hirundinidae	serripennis Tachycineta albiventer	3	3.00	4	1.81	d close d	Water- associat	Carn	Seden	1.41	0.041	0.00035	0.00016
Hirundinidae	Tachycineta	4	4.78	5	2.00	close	Closed	Carn	Migr	1.42	0.084	0.00045	0.00024
Icteridae	Agelaioides	7	3.58	4	3.91	close	Closed	Omni	Seden	1.42	0.100	0.00023	0.00012
Icteridae	badius Agelaius phoeniceus	11	3.12	3	3.58	d open	Water- associat	Herb	Migr	1.39	0.074	0.00024	0.00013
Icteridae	Agelasticus cyanopus	4	2.67	3	3.21	open	ed Water- associat	Omni	Seden	1.38	0.079	0.00020	0.00007
Icteridae	Agelasticus thilius	32	3.24	3	3.34	open	ed Water- associat	Carn	Seden	1.37	0.057	0.00025	0.00014
Icteridae	Amblyramphu s holosericeus	10	2.69	3	4.51	open	Water- associat	Carn	Seden	1.38	0.045	0.00027	0.00015
Icteridae	Cacicus cela	10	2.00	2	5.34	close	Closed	Omni	Seden	1.54	0.105	0.00050	0.00017
Icteridae	Cacicus chrysonterus	5	4.05	4	3.78	close	Closed	Omni	Seden	1.49	0.102	0.00030	0.00016
Icteridae	Cacicus	8	2.00	2	5.88	close	Closed	Carn	Seden	1.50	0.073	0.00043	0.00022
Icteridae	Cacicus	5	2.40	2	5.54	close	Closed	Carn	Seden	1.58	0.153	0.00042	0.00017
Icteridae	Chrysomus icterocephalus	8	2.70	3	3.29	open	Water- associat	Herb	Part	1.40	0.109	0.00033	0.00011
Icteridae	Chrysomus ruficapillus	14	3.15	3	3.44	open	ed Water- associat ed	Herb	Migr	1.36	0.068	0.00028	0.00015
Icteridae	Curaeus	14	3.73	4	6.97	open	Closed	Omni	Part	1.41	0.067	0.00026	0.00010
Icteridae	Dives dives	6	3.76	4	5.96	open	Closed	Omni	Seden	1.40	0.062	0.00032	0.00013
Icteridae	Gnorimopsar chopi	31	4.03	4	4.96	close d	Open	Omni	Seden	1.40	0.081	0.00031	0.00015
Icteridae	Icterus cavanensis	3	2.33	2	3.13	open	Closed	Carn	Seden	1.42	0.106	0.00039	0.00024
Icteridae	Icterus cucullatus	7	3.00	3	2.94	open	Closed	Omni	Part	1.41	0.043	0.00052	0.00017
Icteridae	Icterus gularis	27	4.43	4	4.82	close	Closed	Omni	Seden	1.52	0.078	0.00053	0.00021
Icteridae	Icterus vierogularis	10	3.25	4	3.68	close	Closed	Omni	Seden	1.53	0.066	0.00059	0.00025
Icteridae	Icterus	22	4.12	4	3.75	close	Closed	Carn	Seden	1.52	0.083	0.00049	0.00016
Icteridae	Psarocolius	3	2.00	2	10.5	close	Closed	Omni	Seden	1.50	0.073	0.00022	0.00012
Icteridae	Psarocolius	4	2.33	2	3 10.6	close	Closed	Omni	Seden	1.48	0.050	0.00039	0.00014
Icteridae	aecumanus Psarocolius	12	2.24	2	3 12.6	d close	Closed	Omni	Seden	1.41	0.097	0.00027	0.00017
Icteridae	montezuma Psarocolius	3	3.75	4	10.1	d close	Closed	Omni	Part	1.52	0.061	0.00021	0.00007
Icteridae	wagleri Pseudoleistes guirahuro	5	4.68	6	5.03	d open	Water- associat	Omni	Part	1.39	0.037	0.00036	0.00016
Icteridae	Pseudoleistes virescens	13	4.04	5	5.12	open	ed Water- associat	Omni	Part	1.37	0.065	0.00025	0.00014
Icteridae	Quiscalus lugubris	8	2.70	3	4.68	open	Open	Omni	Seden	1.40	0.064	0.00022	0.00013

Icteridae	Quiscalus	6	3.33	3	8.48	open	Open	Omni	Seden	1.49	0.047	0.00033	0.00019
Icteridae	Mexicanus Quiscalus nicaraguensis	3	3.00	3	4.45	open	Water- associat	Omni	Seden	1.36	0.037	0.00030	0.00019
Icteridae	Sturnella bellicosa	7	3.45	4	4.75	open	Open	Omni	Part	1.34	0.040	0.00022	0.00012
Icteridae	Sturnella defilippii	6	3.90	4	5.18	open	Open	Omni	Part	1.40	0.088	0.00025	0.00020
Icteridae	Sturnella	39	3.36	4	6.10	open	Open	Omni	Part	1.41	0.073	0.00021	0.00014
Icteridae	Sturnella militaris	5	3.00	3	3.46	open	Open	Carn	Part	1.33	0.034	0.00020	0.00006
Icteridae	Sturnella	5	3.47	3	4.00	open	Open	Carn	Part	1.35	0.074	0.00025	0.00012
Icteriidae	Icteria virens	3	3.73	4	3.56	open	Closed	Carn	Seden	1.34	0.050	0.00015	0.00007
Laniidae	Lanius ludovicianus	17	4.58	4	4.36	open	Open	Carn	Migr	1.33	0.051	0.00039	0.00014
Mimidae	Melanotis caerulescens	17	2.46	2	5.88	open	Closed	Omni	Seden	1.45	0.065	0.00031	0.00012
Mimidae	Mimus gilvus	6	2.75	3	5.03	open	Open	Carn	Seden	1.40	0.065	0.00029	0.00016
Mimidae	Mimus parvulus	3	3.63	4	4.57	open	Open	Omni	Seden	1.41	0.046	0.00025	0.00011
Mimidae	Mimus polyglottos	8	3.44	3	4.39	open	Open	Omni	Migr	1.36	0.045	0.00030	0.00013
Mimidae	Mimus	26	3.64	3	6.12	open	Open	Omni	Part	1.40	0.069	0.00021	0.00011
Mimidae	Mimus thenca	5	2.67	3	6.13	open	Open	Omni	Part	1.42	0.082	0.00026	0.00012
Mimidae	Toxostoma	10	2.50	2	5.45	open	Open	Carn	Seden	1.42	0.070	0.00026	0.00012
Oxyruncidae	Myiobius atricaudus	5	1.88	2	1.54	close d	Closed	Carn	Seden	1.35	0.047	0.00015	0.00012
Oxyruncidae	Myiobius sulphureipygi	13	2.00	2	1.77	close d	Closed	Carn	Seden	1.37	0.065	0.00018	0.00014
Oxyruncidae	us Onychorhynch us coronatus	6	2.58	3	2.34	close	Closed	Carn	Part	1.38	0.074	0.00028	0.00013
Parulidae	Basileuterus	9	2.74	2	1.77	close	Closed	Carn	Seden	1.29	0.048	0.00024	0.00007
Parulidae	culicivorus Basileuterus	5	2.86	3	1.76	d close	Open	Carn	Seden	1.32	0.064	0.00025	0.00012
Parulidae	Basileuterus	4	1.86	2	1.93	close	Closed	Carn	Seden	1.34	0.030	0.00022	0.00010
Parulidae	Dendroica petechia	10	2.69	3	1.68	open	Open	Carn	Migr	1.34	0.057	0.00028	0.00015
Parulidae	Euthlypis lachrymosa	2	4.00	4	2.53	open	Closed	Carn	Seden	1.32	0.009	0.00024	0.00005
Parulidae	Geothlypis beldingi	3	3.38	3	2.14	open	Water- associat	Carn	Seden	1.27	0.072	0.00019	0.00010
Parulidae	Geothlypis	7	2.84	3	1.98	open	Open	Carn	Seden	1.31	0.092	0.00021	0.00010
Parulidae	velata Myioborus	22	2.33	2	1.47	close	Closed	Carn	Seden	1.33	0.062	0.00023	0.00016
Parulidae	miniatus Phaeothlypis	5	2.00	2	2.44	d close	Closed	Carn	Seden	1.42	0.036	0.00024	0.00009
Passerellidae	fulvicauda Arremon	31	1.97	2	4.25	d open	Closed	Carn	Seden	1.40	0.067	0.00023	0.00012
Passerellidae	Arremon	4	1.86	2	4.15	close	Closed	Omni	Seden	1.39	0.054	0.00034	0.00021
Passerellidae	Arremon	3	3.00	3	3.80	d close	Closed	Omni	Seden	1.51	0.089	0.00018	0.00008
Passerellidae	Arremon	5	2.27	2	4.23	open	Closed	Omni	Seden	1.36	0.057	0.00024	0.00010
Passerellidae	Arremon	4	2.00	2	4.12	open	Closed	Omni	Seden	1.44	0.038	0.00032	0.00011
Passerellidae	Atlapetes	5	3.00	2	3.66	open	Closed	Omni	Seden	1.38	0.039	0.00023	0.00004
Passerellidae	Atlapetes	8	2.81	3	3.33	open	Closed	Omni	Seden	1.33	0.043	0.00014	0.00007
Passerellidae	Atlapetes	2	2.60	3	3.19	open	Closed	Omni	Seden	1.41	0.042	0.00029	0.00011
Passerellidae	Atlapetes	5	2.27	2	2.79	open	Closed	Omni	Seden	1.41	0.068	0.00028	0.00016
Passerellidae	Chlorospingus pileatus	2	1.67	2	2.69	open	Closed	Omni	Seden	1.33	0.059	0.00008	0.00007
Passerellidae	Zonotrichia capensis	150	2.88	3	2.40	open	Open	Omni	Seden	1.34	0.064	0.00022	0.00012

Pipridae	Antilophia	6	2.00	2	3.17	open	Closed	Herb	Seden	1.46	0.056	0.00029	0.00013
Pipridae	galeata Chiroxiphia caudata	7	1.83	2	3.52	open	Closed	Omni	Seden	1.48	0.111	0.00010	0.00005
Pipridae	Chiroxiphia lanceolata	6	1.89	2	2.70	open	Closed	Herb	Seden	1.42	0.045	0.00019	0.00008
Pipridae	Chiroxiphia linearis	8	2.00	2	2.77	open	Closed	Herb	Seden	1.39	0.045	0.00019	0.00012
Pipridae	Chiroxiphia pareola	3	2.00	2	3.16	open	Closed	Herb	Seden	1.38	0.031	0.00012	0.00007
Pipridae	Manacus	6	2.00	2	2.39	open	Closed	Herb	Seden	1.36	0.044	0.00012	0.00007
Pipridae	Manacus agadoj	5	2.00	2	2.71	open	Closed	Herb	Seden	1.36	0.029	0.00012	0.00006
Pipridae	Manacus	8	2.13	2	2.60	open	Closed	Herb	Seden	1.39	0.039	0.00016	0.00007
Pipridae	Manacus witellinus	3	2.00	2	2.53	open	Closed	Herb	Seden	1.40	0.036	0.00022	0.00008
Pipridae	Pipra aureola	4	1.86	2	2.51	open	Closed	Herb	Seden	1.43	0.043	0.00024	0.00010
Pipridae	Pipra erythrocephal	5	1.57	2	2.25	open	Closed	Herb	Seden	1.38	0.086	0.00019	0.00006
Polioptilidae	a Polioptila dumicola	7	3.19	3	1.01	open	Closed	Carn	Seden	1.28	0.052	0.00017	0.00012
Polioptilidae	Ramphocaenu s melanurus	4	2.00	2	1.84	open	Closed	Carn	Seden	1.38	0.047	0.00017	0.00011
Ptiliogonatidae	Phainopepla nitens	4	2.38	2	2.97	open	Open	Herb	Seden	1.42	0.041	0.00037	0.00012
Ptiliogonatidae	Ptilogonys	4	1.86	2	3.21	open	Closed	Omni	Seden	1.52	0.088	0.00053	0.00014
Remizidae	Auriparus	10	2.88	3	1.01	close	Open	Carn	Seden	1.34	0.061	0.00024	0.00009
Rhinocryptidae	Pteroptochos	7	2.38	2	12.8	close	Open	Carn	Seden	1.31	0.062	0.00023	0.00014
Rhinocryptidae	megapoaius Rhinocrypta	7	2.00	2	2 6.69	d close	Open	Carn	Seden	1.31	0.071	0.00013	0.00006
Rhinocryptidae	lanceolata Scelorchilus	4	2.82	3	6.89	d close	Open	Carn	Seden	1.25	0.030	0.00012	0.00005
Rhinocryptidae	albicollis Scytalopus	5	2.60	3	3.42	d close	Closed	Carn	Seden	1.26	0.018	0.00026	0.00016
Rhinocryptidae	fuscus Scytalopus	4	2.33	2	3.24	d close	Closed	Carn	Seden	1.30	0.050	0.00028	0.00020
Thamnophilida	magellanicus Dysithamnus	3	2.00	2	2.26	d open	Closed	Carn	Seden	1.33	0.055	0.00018	0.00011
e Thamnophilida	mentalis Formicivora	3	2.00	2	1.71	open	Open	Carn	Seden	1.35	0.072	0.00015	0.00007
e Thamnophilida	grisea Myrmeciza	4	2.00	2	3.47	open	Closed	Carn	Seden	1.36	0.034	0.00028	0.00016
e Thamnophilida	exsul Taraba major	14	2.30	2	6.75	open	Closed	Carn	Seden	1.33	0.055	0.00011	0.00009
e Thamnophilida	Thamnophilus	3	2.00	2	3.95	open	Closed	Carn	Seden	1.38	0.077	0.00018	0.00008
e Thamnophilida	bridgesi Thamnophilus	8	2.83	2	2.67	open	Closed	Carn	Seden	1.36	0.053	0.00018	0.00013
e Thamnophilida	caerulescens Thamnophilus	14	2.08	2	3.45	open	Closed	Carn	Seden	1.36	0.061	0.00027	0.00013
e Thamnophilida	doliatus Thamnophilus	4	3.00	2	4.05	open	Open	Carn	Seden	1.37	0.061	0.00017	0.00013
e Thraupidae	ruficapillus Acanthidops	5	3.75	5	1.90	open	Closed	Carn	Part	1.34	0.057	0.00016	0.00008
Thraupidae	bairdii Coereba	5	2.20	2	1.34	open	Open	Herb	Seden	1.38	0.039	0.00029	0.00013
Thraupidae	flaveola Coryphosping	4	2.25	2	1.98	open	Open	Omni	Seden	1.40	0.060	0.00025	0.00011
Thraupidae	us pileatus Dacnis	5	2.11	2	1.73	open	Closed	Herb	Seden	1.30	0.083	0.00021	0.00015
Thraupidae	cayana Diglossa	4	1.86	2	1.47	open	Closed	Herb	Seden	1.34	0.069	0.00027	0.00023
Thraupidae	albilatera Diglossa	4	1.67	2	2.27	open	Closed	Herb	Seden	1.39	0.086	0.00013	0.00005
Thraupidae	cyanea Diglossa	2	2.00	2	1.85	open	Open	Herb	Seden	1.29	0.053	0.00023	0.00009
Thraupidae	humeralis Diglossa	2	2.00	2	2.26	open	Closed	Herb	Seden	1.39	0.049	0.00030	0.00004
Thraupidae	tafresnayii Diglossa	2	2.00	2	1.31	open	Closed	Herb	Seden	1.28	0.066	0.00018	0.00015
Thraupidae	plumbea Emberizoides	3	2.43	2	3.68	open	Open	Herb	Seden	1.39	0.050	0.00017	0.00011
Thraupidae	herbicola Embernagra platensis	3	3.73	4	4.97	open	Open	Herb	Seden	1.32	0.034	0.00015	0.00007

Thraupidae	Eucometis penicillata	4	2.33	2	3.40	open	Closed	Carn	Seden	1.37	0.055	0.00023	0.00012
Thraupidae	Geospiza fortis	6	3.91	4	2.34	close d	Open	Herb	Seden	1.33	0.049	0.00028	0.00010
Thraupidae	Geospiza fuliginosa	5	3.43	3	1.87	close d	Open	Herb	Seden	1.36	0.104	0.00030	0.00017
Thraupidae	Oryzoborus angolensis	9	2.00	2	1.87	open	Open	Herb	Seden	1.33	0.061	0.00021	0.00011
Thraupidae	Oryzoborus funereus	4	2.00	2	2.35	open	Open	Herb	Part	1.35	0.081	0.00027	0.00014
Thraupidae	Paroaria	3	2.71	3	2.48	open	Open	Omni	Seden	1.35	0.035	0.00040	0.00018
Thraupidae	Paroaria	4	2.50	2	3.61	open	Open	Omni	Seden	1.41	0.072	0.00062	0.00018
Thraupidae	Phrygilus	23	2.84	3	2.75	open	Open	Herb	Seden	1.40	0.067	0.00030	0.00013
Thraupidae	Phrygilus	5	2.67	3	3.30	open	Open	Herb	Seden	1.46	0.096	0.00038	0.00025
Thraupidae	Phrygilus frutionti	46	2.53	2	3.80	open	Open	Herb	Part	1.43	0.092	0.00035	0.00017
Thraupidae	Phrygilus gayi	20	3.99	4	2.81	open	Open	Herb	Seden	1.35	0.056	0.00030	0.00016
Thraupidae	Phrygilus	4	2.78	4	2.56	open	Closed	Herb	Seden	1.33	0.053	0.00032	0.00011
Thraupidae	Phrygilus	4	2.25	2	2.01	open	Open	Herb	Seden	1.31	0.076	0.00009	0.00007
Thraupidae	Phrygilus unicolor	4	3.18	3	2.99	open	Open	Herb	Seden	1.40	0.081	0.00028	0.00014
Thraupidae	Poospiza	3	2.43	2	1.72	open	Open	Omni	Seden	1.34	0.048	0.00025	0.00009
Thraupidae	Poospiza	4	2.25	2	2.17	open	Open	Omni	Seden	1.34	0.049	0.00026	0.00012
Thraupidae	nigrorufa Ramphocelus	24	2.11	2	3.05	open	Closed	Omni	Seden	1.36	0.085	0.00028	0.00013
Thraupidae	carbo Ramphocelus	5	2.67	2	3.17	open	Open	Omni	Seden	1.45	0.069	0.00017	0.00005
Thraupidae	Ramphocelus	4	2.00	2	3.61	open	Closed	Herb	Seden	1.44	0.115	0.00033	0.00012
Thraupidae	Ramphocelus	8	2.00	2	3.39	open	Closed	Omni	Seden	1.40	0.107	0.00030	0.00015
Thraupidae	Saltator	6	2.00	2	6.92	open	Open	Omni	Seden	1.44	0.061	0.00030	0.00012
Thraupidae	atriceps Saltator	6	2.23	2	5.68	open	Closed	Herb	Seden	1.36	0.079	0.00012	0.00006
Thraupidae	Saltator	14	2.38	2	5.34	open	Closed	Omni	Seden	1.43	0.070	0.00023	0.00011
Thraupidae	Saltator	16	2.00	2	5.06	open	Open	Herb	Seden	1.41	0.072	0.00029	0.00015
Thraupidae	maximus Saltator	19	2.57	3	4.95	open	Closed	Carn	Seden	1.40	0.063	0.00024	0.00014
Thraupidae	Saltator	10	2.24	2	4.19	open	Open	Omni	Seden	1.40	0.083	0.00035	0.00016
Thraupidae	striatipectus Saltatricula	4	2.60	3	2.67	open	Open	Omni	Seden	1.30	0.055	0.00022	0.00017
Thraupidae	multicolor Sicalis	30	3.56	4	2.02	close	Open	Herb	Seden	1.36	0.075	0.00033	0.00015
Thraupidae	flaveola Sicalis lutea	3	4.00	5	1.33	d close	Open	Herb	Seden	1.40	0.062	0.00022	0.00015
Thraupidae	Sicalis luteola	75	4.00	4	1.74	d open	Open	Herb	Part	1.34	0.080	0.00029	0.00016
Thraupidae	Sporophila	3	2.50	3	1.30	open	Open	Herb	Migr	1.43	0.069	0.00036	0.00012
Thraupidae	sporophila	7	2.36	2	1.48	open	Open	Herb	Part	1.38	0.041	0.00026	0.00014
Thraupidae	caeruiescens Sporophila castaneiventri	3	2.00	2	1.23	open	Open	Herb	Seden	1.27	0.031	0.00021	0.00010
Thraupidae	s Sporophila	19	2.11	2	1.48	open	Open	Herb	Part	1.32	0.054	0.00025	0.00014
Thraupidae	corvina Sporophila	4	2.89	2	1.33	open	Open	Herb	Part	1.30	0.088	0.00026	0.00015
Thraupidae	nypoxantha Sporophila	4	2.80	3	1.68	open	Open	Herb	Seden	1.38	0.065	0.00025	0.00017
Thraupidae	intermedia Sporophila	5	2.27	2	1.53	open	Open	Herb	Migr	1.36	0.093	0.00034	0.00030
Thraupidae	uneota Sporophila	6	2.27	2	1.24	open	Open	Herb	Seden	1.28	0.077	0.00029	0.00015
Thraupidae	minuta Sporophila	9	2.00	2	1.36	open	Open	Herb	Seden	1.33	0.033	0.00021	0.00008
Thraupidae	nıgrıcollis Sporophila peruviana	4	2.56	3	1.64	open	Open	Herb	Seden	1.42	0.069	0.00027	0.00017

TT1 '1	C 1.1	~	2.00	2	1.22		0	TT 1	C 1	1.40	0.052	0.00021	0.00007
Inraupidae	Sporophila telasco	5	2.00	2	1.33	open	Open	Herb	Seden	1.40	0.052	0.00021	0.00007
Thraupidae	Sporophila torqueola	22	2.96	4	1.38	open	Open	Herb	Seden	1.31	0.056	0.00022	0.00013
Thraupidae	Stephanophor us diadematus	3	2.00	2	3.61	open	Closed	Herb	Part	1.36	0.057	0.00026	0.00007
Thraupidae	Tachyphonus coronatus	3	2.43	2	3.29	open	Closed	Carn	Part	1.37	0.054	0.00032	0.00011
Thraupidae	Tachyphonus	13	2.37	2	3.90	open	Open	Carn	Seden	1.33	0.079	0.00017	0.00013
Thraupidae	Tangara	3	2.00	2	2.91	open	Closed	Herb	Seden	1.43	0.063	0.00033	0.00007
Thraupidae	cayana Tersina viridis	5	2.40	2	3.09	close	Closed	Herb	Seden	1.37	0.109	0.00023	0.00008
Thraupidae	Thraupis	10	2.48	2	3.66	d open	Closed	Omni	Part	1.40	0.057	0.00037	0.00012
Thraupidae	bonariensis Thraupis	27	2.08	2	3.37	open	Closed	Omni	Seden	1.41	0.086	0.00032	0.00017
Thraupidae	episcopus Thraupis	11	2.14	2	3.72	open	Closed	Omni	Seden	1.43	0.089	0.00030	0.00014
Thraupidae	palmarum Thraupis	22	2.86	3	3.43	open	Closed	Omni	Seden	1.42	0.094	0.00037	0.00018
Thraupidae	sayaca Tiaris bicolor	5	3.63	3	1.33	close	Open	Herb	Seden	1.31	0.064	0.00024	0.00010
Thraupidae	Tiaris canorus	5	3.00	3	1.26	d close	Open	Herb	Seden	1.28	0.068	0.00026	0.00013
Thraupidae	Tiaris	5	2.91	3	1.44	d close	Open	Herb	Part	1.34	0.046	0.00024	0.00016
Throupidoo	obscurus Tiaria	16	2.51	2	1.22	d	Open	Horb	Dort	1.22	0.058	0.00022	0.00000
Throughdae	olivaceus	70	2.02	5	1.35	d	Open	Heib	ralı Sədər	1.32	0.055	0.00022	0.00009
	jacarina	70	2.52	2	1.32	open	Open	Herb	Seden	1.55	0.065	0.00020	0.00011
Tityridae	Pachyramphu s aglaiae	19	4.96	5	3.65	d	Closed	Omni	Part	1.40	0.059	0.00031	0.00014
Tityridae	Pachyramphu s castaneus	3	3.00	3	2.35	close d	Closed	Carn	Seden	1.33	0.021	0.00034	0.00015
Tityridae	Pachyramphu s	3	2.75	3	2.53	close d	Closed	Carn	Seden	1.39	0.048	0.00035	0.00011
Tityridae	polychopterus Pachyramphu	7	2.89	3	3.28	close	Closed	Carn	Migr	1.36	0.088	0.00035	0.00021
Troglodytidae	s validus Campylorhync	10	3.00	3	3.69	d close	Open	Carn	Seden	1.45	0.056	0.00022	0.00009
	hus brunneicapillu					d	-1						
	s												
Troglodytidae	Campylorhync hus jocosus	3	3.73	4	2.81	close d	Open	Carn	Seden	1.35	0.059	0.00028	0.00010
Troglodytidae	Campylorhync hus rufinucha	17	3.75	4	2.76	close d	Open	Carn	Seden	1.41	0.070	0.00023	0.00012
Troglodytidae	Campylorhync	3	3.13	4	3.19	close d	Closed	Carn	Seden	1.41	0.046	0.00025	0.00010
Troglodytidae	Catherpes	6	4.10	4	1.92	close	Open	Carn	Seden	1.34	0.042	0.00027	0.00018
Troglodytidae	Cistothorus	14	4.39	5	1.42	close	Open	Carn	Part	1.34	0.044	0.00032	0.00013
Troglodytidae	platensis Henicorhina	8	2.61	3	2.09	d close	Closed	Carn	Seden	1.37	0.054	0.00026	0.00013
Troglodytidae	leucophrys Thryothorus	3	3.40	3	1.95	d close	Closed	Carn	Seden	1.35	0.034	0.00026	0.00016
Troglodytidae	felix Thryothorus	3	2.00	2	2.35	d close	Closed	Carn	Seden	1.41	0.022	0.00017	0.00009
Troglodytidae	genibarbis Thryothorus	5	2.45	2	2.16	d close	Closed	Carn	Seden	1.42	0.073	0.00023	0.00009
Troglodytidae	modestus Thryothorus	2	2.00	2	3.11	d close	Closed	Carn	Seden	1.54	0.079	0.00020	0.00010
Troglodytidae	nigricapillus Thryothorus	10	3.61	4	2.32	d close	Closed	Carn	Seden	1.38	0.065	0.00024	0.00014
Troglodytidae	pleurostictus Thryothorus	5	3.00	3	2.73	d close	Closed	Carn	Seden	1.45	0.053	0.00036	0.00022
Troglodytidae	rufalbus Thrvothorus	3	4 38	4	1 90	d close	Closed	Carn	Seden	1 42	0.047	0.00025	0.00010
Troglodytidae	sinaloa Troglodytes	161	4 1 5	4	1.54	d	Onen	Carn	Seden	1 33	0.061	0.00033	0.00015
Turdidaa	aedon Cathornia	101	т.1 <i>3</i> 2 27	т 2	2.02	d	Closed	Com	Sodan	1.55	0.065	0.00035	0.00013
	aurantiirostris	4/	2.37	2	5.80	open	Closed	Carn	Seden	1.37	0.052	0.00025	0.00012
Turdidae	Catharus dryas	2	2.00	2	5.12	open	Closed	Carn	Seden	1.47	0.052	0.00058	0.00006
Turdidae	Catharus frantzii	10	2.00	2	3.79	open	Closed	Carn	Seden	1.38	0.088	0.00034	0.00012

Turdidae	Catharus fuscater	5	2.00	2	4.55	open	Closed	Carn	Seden	1.40	0.044	0.00031	0.00012
Turdidae	Catharus gracilirostris	10	1.89	2	3.09	open	Closed	Carn	Seden	1.32	0.062	0.00015	0.00008
Turdidae	Catharus	12	2.25	2	4.22	open	Closed	Carn	Seden	1.41	0.050	0.00025	0.00015
Turdidae	Catharus	26	2.36	2	3.49	open	Closed	Carn	Seden	1.39	0.065	0.00036	0.00014
Turdidae	Myadestes	2	2.00	2	3.97	open	Closed	Herb	Seden	1.38	0.054	0.00038	0.00018
Turdidae	Myadestes	7	2.65	3	4.11	open	Closed	Herb	Seden	1.38	0.041	0.00034	0.00013
Turdidae	Myadestes	19	2.80	3	4.10	open	Closed	Herb	Part	1.35	0.059	0.00022	0.00011
Turdidae	Myadestes	4	2.00	2	3.65	open	Closed	Carn	Part	1.36	0.026	0.00030	0.00012
Turdidae	Turdus	33	2.49	2	5.19	open	Closed	Carn	Seden	1.38	0.078	0.00031	0.00016
Turdidae	Turdus amaurochalin	21	2.63	3	5.60	open	Closed	Carn	Migr	1.39	0.068	0.00033	0.00015
Turdidae	us Turdus	31	2.51	3	6.27	open	Closed	Carn	Seden	1.41	0.070	0.00036	0.00015
Turdidae	assimilis Turdus	9	2.55	3	8.72	open	Open	Carn	Seden	1.46	0.064	0.00031	0.00013
Turdidae	chiguanco Turdus	31	2.90	3	8.24	open	Closed	Carn	Part	1.41	0.075	0.00022	0.00012
Turdidae	falcklandii Turdus	18	2.58	3	6.04	open	Closed	Carn	Seden	1.37	0.070	0.00030	0.00018
Turdidae	fumigatus Turdus fuscator	6	2.09	2	9.89	open	Closed	Carn	Seden	1.51	0.106	0.00029	0.00020
Turdidae	Turdus grayi	67	2.84	3	5.87	open	Closed	Omni	Seden	1.41	0.080	0.00033	0.00014
Turdidae	Turdus ignobilis	4	2.57	3	5.10	open	Closed	Omni	Seden	1.38	0.052	0.00037	0.00013
Turdidae	Turdus	2	2.00	2	6.28	open	Closed	Carn	Seden	1.37	0.026	0.00036	0.00004
Turdidae	Turdus	20	2.96	3	5.81	open	Closed	Herb	Seden	1.39	0.074	0.00031	0.00012
Turdidae	Turdus	3	1.83	2	4.38	open	Closed	Herb	Seden	1.41	0.084	0.00038	0.00022
Turdidae	Turdus	4	2.67	3	6.74	open	Closed	Carn	Migr	1.54	0.054	0.00020	0.00009
Turdidae	Turdus	4	2.00	2	8.91	open	Closed	Omni	Seden	1.41	0.041	0.00034	0.00010
Turdidae	Turdus	7	2.90	3	5.37	open	Closed	Carn	Part	1.39	0.065	0.00030	0.00014
Turdidae	Turdus	25	2.85	3	5.42	open	Closed	Carn	Seden	1.40	0.062	0.00028	0.00011
Turdidae	nuaigenis Turdus	3	2.00	2	4.92	open	Closed	Omni	Seden	1.40	0.019	0.00017	0.00010
Turdidae	Turdus	55	2.92	3	6.39	open	Closed	Carn	Part	1.40	0.075	0.00031	0.00015
Turdidae	rufiventris Turdus	5	2.27	2	6.00	open	Closed	Carn	Seden	1.44	0.099	0.00034	0.00017
Tyrannidae	serranus Agriornis	7	3.00	4	7.79	open	Open	Carn	Seden	1.35	0.045	0.00023	0.00009
Tyrannidae	lividus Agriornis	3	3.17	4	6.11	open	Open	Carn	Part	1.33	0.033	0.00019	0.00009
Tyrannidae	micropterus Agriornis	4	3.55	2	7.20	open	Open	Omni	Seden	1.38	0.035	0.00039	0.00026
Tyrannidae	montanus Alectrurus tricolor	2	3.50	4	3.60	open	Open	Carn	Part	1.39	0.080	0.00026	0.00012
Tyrannidae	Anairetes flavirostris	3	1.67	2	1.03	open	Open	Carn	Part	1.36	0.031	0.00016	0.00020
Tyrannidae	Anairetes	28	2.89	3	1.20	open	Open	Carn	Seden	1.32	0.039	0.00028	0.00012
Tyrannidae	paruius Arundinicola leucocephala	9	2.73	3	1.87	close d	Water- associat	Carn	Seden	1.36	0.046	0.00023	0.00008
Tyrannidae	Attila rufus	9	2.64	3	4.95	open	ed Closed	Carn	Seden	1.42	0.084	0.00028	0.00011
Tyrannidae	Camptostoma imberbe	4	2.80	3	1.23	close d	Closed	Carn	Migr	1.32	0.086	0.00038	0.00018
Tyrannidae	Camptostoma	26	2.36	2	1.46	close	Open	Carn	Seden	1.38	0.071	0.00037	0.00019
Tyrannidae	Cnemotriccus	10	2.18	2	2.04	open	Closed	Carn	Part	1.34	0.065	0.00028	0.00019
Tyrannidae	Colonia colonus	5	1.75	2	2.05	close d	Closed	Carn	Seden	1.48	0.094	0.00032	0.00015

Tyrannidae	Colorhamphus parvirostris	3	1.75	2	1.74	open	Closed	Carn	Migr	1.32	0.031	0.00031	0.00021
Tyrannidae	Conopias parvus	2	2.20	3	4.19	close d	Closed	Carn	Seden	1.29	0.037	0.00021	0.00005
Tyrannidae	Contopus caribaeus	6	1.90	1	1.57	open	Closed	Carn	Seden	1.28	0.030	0.00036	0.00018
Tyrannidae	Contopus cinereus	15	2.26	2	1.75	open	Closed	Carn	Part	1.27	0.043	0.00027	0.00017
Tyrannidae	Contopus fumigatus	4	1.67	2	1.96	open	Closed	Carn	Seden	1.27	0.036	0.00051	0.00028
Tyrannidae	Contopus	3	2.33	2	2.01	open	Closed	Carn	Seden	1.28	0.040	0.00029	0.00009
Tyrannidae	Contopus	4	1.83	2	1.59	open	Closed	Carn	Seden	1.31	0.049	0.00056	0.00014
Tyrannidae	Contopus	5	2.92	3	2.82	open	Closed	Carn	Seden	1.36	0.072	0.00034	0.00014
Tyrannidae	Contopus	9	2.29	3	1.50	open	Closed	Carn	Migr	1.31	0.075	0.00021	0.00016
Tyrannidae	sordidulus Contopus	2	2.60	3	1.76	open	Closed	Carn	Migr	1.31	0.039	0.00032	0.00011
Tyrannidae	virens Culicivora	3	1.50	1	0.84	open	Open	Carn	Part	1.27	0.049	0.00013	0.00011
Tyrannidae	caudacuta Elaenia	20	2.19	2	2.19	open	Closed	Carn	Part	1.36	0.055	0.00039	0.00018
Tyrannidae	albiceps Elaenia	25	2.07	2	2.08	open	Open	Omni	Part	1.33	0.058	0.00029	0.00015
Tyrannidae	chiriquensis Elaenia	4	1.60	2	2.36	open	Open	Carn	Seden	1.32	0.048	0.00024	0.00008
Tyrannidae	cristata Elaenia	58	2.09	2	2.76	open	Closed	Carn	Seden	1.37	0.071	0.00027	0.00014
Tyrannidae	flavogaster Elaenia	7	1.89	2	2.71	open	Closed	Carn	Seden	1.31	0.038	0.00039	0.00021
Tyrannidae	martinica Elaenia	5	2.20	2	3.00	open	Closed	Carn	Seden	1.38	0.067	0.00050	0.00028
Tyrannidae	obscura Elaenia	14	2.23	2	1.95	open	Closed	Carn	Migr	1.36	0.051	0.00033	0.00016
Tyrannidae	parvirostris Elaenia	9	1.79	2	2.52	open	Closed	Carn	Migr	1.42	0.063	0.00046	0.00025
Tyrannidae	strepera Empidonax	4	3.57	4	1.54	open	Closed	Carn	Migr	1.28	0.031	0.00016	0.00006
Tyrannidae	difficilis Empidonax	20	2.57	3	1.79	open	Closed	Carn	Seden	1.27	0.039	0.00013	0.00007
Tyrannidae	flavescens Empidonax	3	3.22	4	1.22	open	Closed	Carn	Seden	1.27	0.040	0.00025	0.00019
Tyrannidae	fulvifrons Empidonomus	27	2.78	2	2.57	open	Closed	Carn	Migr	1.33	0.075	0.00040	0.00016
Tvrannidae	istatus Empidonomus	21	2 59	2	2 81	open	Closed	Carn	Mior	1 34	0.064	0.00028	0 00014
Tyrannidae	varius Fluvicola	18	2.37	2	1.81	close	Water-	Carn	Part	1 39	0.079	0.00026	0.00014
Tyranndae	albiventer	10	2.74	5	1.01	d	associat ed	Cull	Tut	1.57	0.079	0.00020	0.00014
Tyrannidae	Fluvicola nengeta	5	2.64	3	2.05	close d	Water- associat	Carn	Part	1.40	0.079	0.00024	0.00008
Tyrannidae	Fluvicola pica	19	2.48	3	1.70	close d	ed Water- associat	Carn	Part	1.35	0.048	0.00018	0.00008
Tyrannidae	Hemitriccus margaritaceiv	13	2.28	2	1.38	close d	Closed	Carn	Seden	1.41	0.055	0.00026	0.00015
Tyrannidae	enter Hirundinea ferruginea	6	2.62	2	2.53	open	Open	Carn	Part	1.30	0.076	0.00043	0.00023
Tyrannidae	Hymenops perspicillatus	45	2.63	3	2.96	open	Water- associat	Carn	Migr	1.33	0.049	0.00026	0.00012
Tyrannidae	Knipolegus aterrimus	9	2.21	2	2.72	open	Open	Carn	Part	1.30	0.055	0.00022	0.00013
Tyrannidae	Knipolegus cvanirostris	5	2.20	2	2.60	open	Closed	Carn	Part	1.34	0.053	0.00030	0.00017
Tyrannidae	Knipolegus lophotes	6	2.38	2	3.84	open	Open	Carn	Seden	1.34	0.060	0.00025	0.00016
Tyrannidae	Knipolegus signatus	13	1.91	2	3.03	open	Closed	Carn	Seden	1.33	0.057	0.00022	0.00012
Tyrannidae	Knipolegus	9	2.13	2	2.12	open	Open	Carn	Seden	1.29	0.045	0.00024	0.00011
Tyrannidae	Lathrotriccus euleri	11	2.56	3	1.67	open	Closed	Carn	Part	1.34	0.075	0.00033	0.00014
Tyrannidae	Legatus leucophaius	34	2.08	2	2.92	close d	Closed	Herb	Seden	1.37	0.067	0.00027	0.00013

Tyrannidae	Leptopogon amaurocephal us	6	2.57	3	1.88	close d	Closed	Carn	Seden	1.33	0.089	0.00023	0.00012
Tyrannidae	Lessonia oreas	3	3.00	3	2.19	open	Water- associat	Carn	Part	1.36	0.041	0.00023	0.00006
Tyrannidae	Lessonia rufa	39	2.82	3	1.86	open	Water- associat	Carn	Migr	1.33	0.050	0.00024	0.00012
Tyrannidae	Machetornis	27	3.00	3	3.77	close	Open	Carn	Seden	1.34	0.068	0.00027	0.00015
Tyrannidae	Mecocerculus	4	2.17	2	1.97	open	Closed	Carn	Seden	1.34	0.055	0.00020	0.00015
Tyrannidae	Megarynchus	31	2.78	3	6.14	open	Closed	Carn	Seden	1.38	0.062	0.00026	0.00012
Tyrannidae	Mionectes	13	2.91	3	2.10	close	Closed	Herb	Seden	1.36	0.051	0.00020	0.00009
Tyrannidae	Muscisaxicola	3	2.43	2	4.02	close	Open	Carn	Migr	1.34	0.050	0.00027	0.00004
Tyrannidae	Muscisaxicola	3	3.00	3	3.58	close	Open	Carn	Migr	1.38	0.054	0.00028	0.00008
Tyrannidae	Muscisaxicola	4	2.57	3	4.42	close	Open	Carn	Part	1.35	0.025	0.00031	0.00016
Tyrannidae	Muscisaxicola	5	3.00	3	3.97	close	Open	Carn	Migr	1.39	0.046	0.00025	0.00007
Tyrannidae	Muscisaxicola	14	2.95	3	2.17	open	Open	Carn	Seden	1.31	0.048	0.00027	0.00013
Tyrannidae	Myiarchus	4	2.14	3	3.17	close	Closed	Carn	Seden	1.25	0.047	0.00016	0.00010
Tyrannidae	Myiarchus	2	3.00	3	2.12	close	Closed	Carn	Seden	1.30	0.015	0.00023	0.00010
Tyrannidae	Myiarchus	10	4.14	4	3.20	close	Open	Carn	Migr	1.34	0.056	0.00028	0.00010
Tyrannidae	Myiarchus farox	19	2.92	3	3.05	close	Closed	Carn	Seden	1.35	0.075	0.00036	0.00018
Tyrannidae	Myiarchus	2	3.60	4	4.09	close	Closed	Carn	Seden	1.27	0.059	0.00036	0.00006
Tyrannidae	Myiarchus	3	3.56	4	3.01	close	Closed	Carn	Part	1.29	0.020	0.00020	0.00009
Tyrannidae	Myiarchus	2	3.40	3	3.17	close	Closed	Carn	Seden	1.29	0.082	0.00035	0.00016
Tyrannidae	Myiarchus	3	2.00	2	2.78	close	Closed	Carn	Seden	1.29	0.030	0.00027	0.00008
Tyrannidae	Myiarchus	2	2.00	3	3.19	close	Open	Carn	Seden	1.36	0.040	0.00035	0.00000
Tyrannidae	Myiarchus stolidus	6	3.33	3	2.81	close	Closed	Carn	Seden	1.32	0.047	0.00028	0.00013
Tyrannidae	Myiarchus swainsoni	8	2.41	2	3.24	close	Closed	Carn	Migr	1.31	0.060	0.00027	0.00011
Tyrannidae	Myiarchus tuberculifer	20	3.45	3	2.70	close	Closed	Carn	Seden	1.29	0.063	0.00031	0.00018
Tyrannidae	Myiarchus	36	3.89	3	3.55	close	Closed	Carn	Part	1.35	0.061	0.00032	0.00017
Tyrannidae	Myiodynastes bairdii	6	2.69	2	5.95	close d	Closed	Carn	Seden	1.45	0.068	0.00041	0.00010
Tyrannidae	Myiodynastes chrysocephalu s	6	2.90	3	4.50	close d	Closed	Carn	Seden	1.36	0.063	0.00026	0.00009
Tyrannidae	s Myiodynastes luteiventris	12	2.88	3	4.75	close d	Closed	Omni	Migr	1.35	0.057	0.00019	0.00009
Tyrannidae	Myiodynastes maculatus	38	2.74	3	4.79	close d	Closed	Carn	Migr	1.38	0.058	0.00032	0.00015
Tyrannidae	Myiopagis	5	2.00	2	1.66	open	Closed	Carn	Seden	1.28	0.035	0.00020	0.00013
Tyrannidae	Myiopagis viridicata	8	2.00	2	1.90	open	Closed	Carn	Migr	1.30	0.048	0.00018	0.00009
Tyrannidae	Myiophobus fasciatus	79	2.15	2	1.61	open	Open	Carn	Migr	1.35	0.059	0.00041	0.00017
Tyrannidae	Myiophobus flavicans	4	1.67	2	1.65	open	Closed	Carn	Seden	1.41	0.074	0.00025	0.00007
Tyrannidae	Myiornis auricularis	2	1.67	2	0.99	close d	Closed	Carn	Seden	1.37	0.024	0.00017	0.00007
Tyrannidae	Myiornis ecaudatus	2	2.00	2	1.11	close d	Closed	Carn	Seden	1.36	0.123	0.00021	0.00012
Tyrannidae	Myiozetetes cavanensis	27	2.36	2	2.88	close d	Open	Carn	Seden	1.40	0.075	0.00029	0.00013
Tyrannidae	Myiozetetes granadensis	16	3.22	3	3.33	close d	Closed	Carn	Seden	1.41	0.062	0.00036	0.00017
Tyrannidae	Myiozetetes similis	119	3.26	3	3.28	close d	Open	Carn	Part	1.41	0.071	0.00032	0.00016

Tyrannidae	Neoxolmis	6	1.88	2	6.85	open	Open	Carn	Migr	1.48	0.073	0.00039	0.00027
Tyrannidae	ochthoeca fumicolor	7	2.08	2	2.15	open	Open	Carn	Seden	1.31	0.072	0.00019	0.00014
Tyrannidae	Phaeomyias murina	12	2.25	2	1.53	open	Open	Carn	Seden	1.31	0.046	0.00027	0.00011
Tyrannidae	Phaeomyias tumbezana	5	1.50	1	1.74	open	Open	Carn	Seden	1.28	0.031	0.00023	0.00012
Tyrannidae	Phylloscartes ventralis	6	3.00	3	1.80	close d	Closed	Carn	Seden	1.42	0.129	0.00021	0.00010
Tyrannidae	Pitangus sulphuratus	257	3.77	4	6.14	close d	Closed	Omni	Seden	1.38	0.068	0.00033	0.00015
Tyrannidae	Platyrinchus cancrominus	2	1.67	2	1.34	open	Closed	Carn	Seden	1.31	0.058	0.00011	0.00008
Tyrannidae	Platyrinchus coronatus	8	1.77	2	1.47	open	Closed	Carn	Seden	1.28	0.053	0.00019	0.00010
Tyrannidae	Platyrinchus mystaceus	6	1.78	2	1.50	open	Closed	Carn	Seden	1.27	0.078	0.00022	0.00011
Tyrannidae	Poecilotriccus plumbeiceps	4	2.60	3	1.31	close d	Closed	Carn	Seden	1.37	0.040	0.00025	0.00006
Tyrannidae	Polystictus pectoralis	5	2.20	2	1.10	open	Open	Carn	Part	1.34	0.086	0.00034	0.00016
Tyrannidae	Pseudocolopte ryx	20	2.77	3	1.38	open	Water- associat	Carn	Part	1.32	0.043	0.00022	0.00009
Tyrannidae	Judviveniris Pseudocolopte ryx sclateri	2	2.00	2	1.18	open	ed Water- associat ed	Carn	Part	1.32	0.065	0.00018	0.00006
Tyrannidae	Pyrocephalus rubinus	85	2.77	3	1.60	open	Closed	Carn	Migr	1.32	0.052	0.00035	0.00015
Tyrannidae	Rhynchocyclu s brevirostris	8	2.35	2	3.48	close d	Closed	Carn	Seden	1.50	0.139	0.00024	0.00012
Tyrannidae	Rhynchocyclu s olivaceus	5	2.00	1	2.12	close	Closed	Carn	Seden	1.34	0.144	0.00018	0.00008
Tyrannidae	Satrapa icterophrys	36	2.74	3	2.64	open	Open	Carn	Migr	1.35	0.054	0.00034	0.00018
Tyrannidae	Sayornis	43	3.17	3	2.15	open	Open	Carn	Seden	1.32	0.048	0.00028	0.00011
Tyrannidae	Sayornis saya	2	3.00	3	2.38	open	Closed	Carn	Migr	1.28	0.045	0.00022	0.00015
Tyrannidae	Serpophaga cinerea	7	1.80	2	1.33	open	Water- associat ed	Carn	Seden	1.30	0.059	0.00018	0.00009
Tyrannidae	Serpophaga nigricans	15	2.35	2	1.34	open	Open	Carn	Part	1.33	0.058	0.00025	0.00013
Tyrannidae	Serpophaga subcristata	30	2.26	2	1.03	open	Closed	Carn	Migr	1.30	0.047	0.00029	0.00014
Tyrannidae	Stigmatura budytoides	6	2.00	2	1.39	open	Open	Carn	Seden	1.29	0.040	0.00047	0.00017
Tyrannidae	Sublegatus	8	1.77	2	1.78	open	Closed	Carn	Seden	1.36	0.096	0.00026	0.00013
Tyrannidae	Sublegatus	8	1.85	2	1.69	open	Open	Carn	Migr	1.31	0.055	0.00034	0.00013
Tyrannidae	Suiriri suiriri	6	2.38	3	1.96	open	Closed	Carn	Seden	1.33	0.077	0.00047	0.00019
Tyrannidae	Tachuris rubrigastra	37	2.70	3	1.34	open	Water- associat ed	Carn	Seden	1.32	0.059	0.00019	0.00010
Tyrannidae	Todirostrum cinereum	32	2.42	2	1.11	close d	Open	Carn	Seden	1.41	0.057	0.00026	0.00010
Tyrannidae	Todirostrum maculatum	6	2.00	2	1.22	close d	Closed	Carn	Seden	1.45	0.080	0.00028	0.00011
Tyrannidae	Tolmomyias flaviventris	29	2.48	3	1.84	close d	Closed	Carn	Seden	1.47	0.063	0.00031	0.00013
Tyrannidae	Tolmomyias	20	2.65	3	2.35	close d	Closed	Carn	Seden	1.50	0.070	0.00036	0.00016
Tyrannidae	Tyrannus	6	1.67	2	3.82	open	Open	Carn	Migr	1.40	0.044	0.00027	0.00011
Tyrannidae	Tyrannus caudifasciatus	12	2.44	2	4.38	open	Closed	Carn	Seden	1.36	0.073	0.00037	0.00018
Tyrannidae	Tyrannus couchii	43	3.67	4	4.12	open	Closed	Carn	Seden	1.37	0.057	0.00037	0.00017
Tyrannidae	Tyrannus crassirostris	7	3.86	5	4.42	open	Closed	Carn	Seden	1.35	0.075	0.00035	0.00019
Tyrannidae	Tyrannus	4	2.00	3	4.72	open	Closed	Carn	Seden	1.43	0.053	0.00033	0.00011
Tyrannidae	Tyrannus dominiaansia	55	2.57	2	4.24	open	Closed	Omni	Part	1.40	0.069	0.00039	0.00018
Tyrannidae	aominicensis Tyrannus forficatus	4	4.14	4	3.32	open	Open	Carn	Migr	1.31	0.067	0.00040	0.00016

Tyrannidae	Tyrannus melancholicus	215	2.91	3	3.87	open	Open	Carn	Seden	1.37	0.071	0.00037	0.00015
Tyrannidae	Tyrannus niveigularis	12	2.48	2	3.75	open	Open	Carn	Part	1.35	0.059	0.00038	0.00020
Tyrannidae	Tyrannus savana	168	3.20	3	2.94	open	Open	Carn	Migr	1.36	0.072	0.00044	0.00020
Tyrannidae	Tyrannus tyrannus	4	3.54	4	3.97	open	Closed	Carn	Migr	1.39	0.039	0.00028	0.00019
Tyrannidae	Tyrannus verticalis	5	3.38	4	3.60	open	Open	Carn	Migr	1.35	0.082	0.00040	0.00016
Tyrannidae	Tyrannus vociferans	12	3.54	4	3.60	open	Closed	Carn	Migr	1.33	0.057	0.00021	0.00009
Tyrannidae	Xenotriccus mexicanus	5	3.00	3	1.77	open	Open	Carn	Seden	1.36	0.039	0.00028	0.00012
Tyrannidae	Xolmis cinereus	20	2.86	4	5.08	open	Open	Carn	Part	1.37	0.062	0.00026	0.00013
Tyrannidae	Xolmis coronatus	13	2.37	2	4.71	open	Open	Carn	Migr	1.34	0.064	0.00022	0.00010
Tyrannidae	Xolmis dominicanus	2	2.00	2	4.84	open	Open	Carn	Seden	1.31	0.019	0.00021	0.00006
Tyrannidae	Xolmis irupero	19	2.98	3	3.40	close d	Open	Carn	Part	1.34	0.047	0.00032	0.00021
Tyrannidae	Xolmis pyrope	18	3.17	3	4.23	open	Closed	Carn	Part	1.35	0.055	0.00020	0.00010
Tyrannidae	Xolmis velatus	7	2.53	3	5.36	close d	Open	Carn	Part	1.39	0.081	0.00032	0.00011
Vireonidae	Cyclarhis gujanensis	7	2.21	2	2.98	open	Closed	Carn	Seden	1.37	0.059	0.00036	0.00017
Vireonidae	Hylophilus pectoralis	3	2.00	2	1.66	open	Closed	Carn	Seden	1.35	0.051	0.00031	0.00017
Vireonidae	Vireo altiloquus	3	2.75	3	2.53	open	Closed	Carn	Seden	1.45	0.060	0.00052	0.00018
Vireonidae	Vireo flavoviridis	8	3.18	4	2.26	open	Closed	Carn	Migr	1.41	0.093	0.00032	0.00014
Vireonidae	Vireo olivaceus	11	2.75	3	2.14	open	Closed	Carn	Migr	1.35	0.056	0.00038	0.00019

Family	Species	Body mass	Nest type	N	Elongation	Asymmetry
Aegithalidae	Psaltriparus minimus	5.3	closed	12	1.35	0.00026
Alaudidae	Eremophila alpestris	33.33	closed	3	1.36	0.00031
Cardinalidae	Cardinalis cardinalis	42.64	open	6	1.33	0.00022
Cardinalidae	Cardinalis sinuatus	35.19	open	3	1.37	0.00015
Cardinalidae	Chlorothraupis carmioli	37.6	open	5	1.46	0.00010
Cardinalidae	Cyanocompsa brissonii	27.5	open	14	1.41	0.00024
Cardinalidae	Cyanocompsa cyanoides	32.5	open	3	1.38	0.00023
Cardinalidae	Habia fuscicauda	36.84	open	3	1.34	0.00024
Cardinalidae	Passerina rositae	20	open	3	1.35	0.00029
Cardinalidae	Piranga flava	37.7	open	15	1.37	0.00026
Conopophagidae	Conopophaga lineata	25.21	open	8	1.29	0.00020
Corvidae	Aphelocoma californica	85.74	open	4	1.36	0.00028
Corvidae	Cyanocorax chrysops	166	open	13	1.35	0.00027
Corvidae	Cyanocorax cristatellus	178	open	5	1.42	0.00034
Corvidae	Cyanocorax cyanomelas	207	open	11	1.41	0.00053
Corvidae	Cyanocorax cyanopogon	146	open	3	1.41	0.00032
Corvidae	Cyanocorax morio	204	open	3	1.47	0.00047
Corvidae	Cyanocorax yncas	78.5	open	14	1.34	0.00022
Cotingidae	Phytotoma rara	47	open	14	1.39	0.00026
Cotingidae	Phytotoma rutila	40.5	open	36	1.35	0.00025
Donacobiidae	Donacobius atricapilla	36.8	open	3	1.36	0.00020
Fringillidae	Carduelis magellanica	13.6	open	4	1.35	0.00031
Fringillidae	Carpodacus mexicanus	21.4	open	35	1.35	0.00033
Fringillidae	Euphonia laniirostris	15	closed	6	1.36	0.00030
Fringillidae	Euphonia luteicapilla	13	closed	3	1.35	0.00018
Fringillidae	Euphonia violacea	15	closed	6	1.41	0.00030
Furnariidae	Anumbius annumbi	41.5	closed	15	1.34	0.00018
Furnariidae	Aphrastura spinicauda	11.5	closed	5	1.31	0.00037
Furnariidae	Asthenes baeri	17.8	closed	4	1.33	0.00010
Furnariidae	Asthenes hudsoni	19	closed	3	1.29	0.00018
Furnariidae	Asthenes humicola	20.83	closed	10	1.31	0.00014
Furnariidae	Asthenes modesta	16.8	closed	17	1.33	0.00017
Furnariidae	Asthenes pyrrholeuca	13.2	closed	11	1.31	0.00017
Furnariidae	Automolus rubiginosus	39.8	closed	3	1.43	0.00008
Furnariidae	Certhiaxis cinnamomeus	15.2	closed	18	1.29	0.00017
Furnariidae	Cinclodes albiventris	30	closed	1	1.33	0.00023
Furnariidae	Cinclodes atacamensis	53	closed	2	1.28	0.00013
Furnariidae	Cinclodes comechingonus	28.28	closed	1	1.32	0.00021
Furnariidae	Cinclodes fuscus	30	closed	9	1.32	0.00028
Furnariidae	Cinclodes nigrofumosus	64.96	closed	1	1.35	0.00037
Furnariidae	Cinclodes patagonicus	30.7	closed	8	1.33	0.00025
Furnariidae	Coryphistera alaudina	30	closed	5	1.29	0.00018
Furnariidae	Cranioleuca pyrrhophia	14.9	closed	8	1.32	0.00024
Furnariidae	Drymornis bridgesii	92.62	closed	5	1.31	0.00028
Furnariidae	Furnarius cristatus	25.5	closed	4	1.33	0.00014
Furnariidae	Furnarius leucopus	54.8	closed	3	1.28	0.00019
Furnariidae	Furnarius rufus	46.42	closed	26	1.31	0.00023

Table S4. Species (Jetz et al. 2012), body mass (g), nest type, number of clutches (N), mean elongation and mean asymmetry of Neotropical passerines evaluated in Chapter 2.

Furnariidae	Geositta cunicularia	28.5	closed	16	1.30	0.00021
Furnariidae	Geositta rufipennis	32.37	closed	5	1.33	0.00018
Furnariidae	Lepidocolaptes angustirostris	29.59	closed	6	1.36	0.00018
Furnariidae	Leptasthenura aegithaloides	10.72	closed	17	1.30	0.00034
Furnariidae	Limnornis curvirostris	28.6	closed	5	1.34	0.00019
Furnariidae	Ochetorhynchus melanura	40	closed	5	1.36	0.00015
Furnariidae	Ochetorhynchus phoenicurus	30.16	closed	2	1.30	0.00028
Furnariidae	Phacellodomus ruber	41	closed	8	1.42	0.00022
Furnariidae	Phacellodomus rufifrons	24.6	closed	6	1.37	0.00024
Furnariidae	Phacellodomus sibilatrix	15.5	closed	6	1.33	0.00014
Furnariidae	Phleocryptes melanops	14.6	closed	30	1.33	0.00022
Furnariidae	Premnoplex brunnescens	16.3	closed	3	1.29	0.00017
Furnariidae	Pseudoseisura gutturalis	70.4	closed	3	1.32	0.00011
Furnariidae	Pseudoseisura lophotes	72.2	closed	7	1.41	0.00027
Furnariidae	Pygarrhichas albogularis	24	closed	3	1.30	0.00035
Furnariidae	Schoeniophylax phryganophilus	18.6	closed	8	1.31	0.00020
Furnariidae	Sclerurus albigularis	34.8	closed	3	1.25	0.00017
Furnariidae	Spartonoica maluroides	11	open	3	1.23	0.00018
Furnariidae	Sylviorthorhynchus desmursii	10.9	closed	4	1.31	0.00041
Furnariidae	Synallaxis albescens	11.2	closed	22	1.26	0.00021
Furnariidae	Synallaxis azarae	16.9	closed	5	1.29	0.00018
Furnariidae	Synallaxis brachyura	18.3	closed	8	1.27	0.00026
Furnariidae	Synallaxis frontalis	14	closed	6	1.29	0.00015
Furnariidae	Synallaxis spixi	12.6	closed	5	1.32	0.00015
Furnariidae	Tarphonomus certhioides	22.09	closed	5	1.30	0.00034
Furnariidae	Upucerthia albigula	39.9	closed	1	1.34	0.00017
Furnariidae	Upucerthia dumetaria	48.68	closed	9	1.38	0.00022
Furnariidae	Xiphocolaptes major	156	closed	3	1.31	0.00018
Furnariidae	Xiphorhvnchus flavigaster	46.19	closed	3	1.34	0.00004
Furnariidae	Xiphorhynchus susurrans	46.72	closed	4	1.33	0.00017
Grallariidae	Grallaria guatimalensis	94.2	open	4	1.24	0.00013
Hirundinidae	Alopochelidon fucata	13.96	closed	5	1.41	0.00027
Hirundinidae	Notiochelidon murina	11.7	closed	5	1.40	0.00026
Hirundinidae	Progne chalybea	50	closed	11	1.47	0.00049
Hirundinidae	Progne elegans	50.6	closed	3	1.43	0.00030
Hirundinidae	Progne tapera	32	closed	6	1.45	0.00034
Hirundinidae	Pvgochelidon cvanoleuca	9.7	closed	19	1.42	0.00031
Hirundinidae	Stelgidopteryx ruficollis	16.1	closed	11	1.40	0.00035
Hirundinidae	Stelgidoptervx serripennis	15.69	closed	6	1.38	0.00034
Hirundinidae	Tachycineta albiventer	17.7	closed	3	1.40	0.00032
Hirundinidae	Tachycineta thalassina	14.14	closed	4	1.42	0.00044
Icteridae	Agelaioides badius	45.25	closed	5	1.41	0.00022
Icteridae	Agelaius phoeniceus	50.78	open	11	1.40	0.00025
Icteridae	Agelasticus cyanopus	37.21	open	4	1 36	0.00020
Icteridae	Agelasticus thilius	31.5	open	30	1.37	0.00026
Icteridae	Amblycercus holosericeus	70.42	open	1	1.53	0.00022
Icteridae	Amblyramphus holosericeus	56.76	open	9	1.38	0.00028
Icteridae	Cacicus cela	85.45	closed	10	1.54	0.00050
Icteridae	Cacicus chrysopterus	36.16	closed	5	1.49	0.00030
Icteridae	Cacicus haemorrhous	83.71	closed	8	1.50	0.00043
Icteridae	Cacicus solitarius	79.76	closed	5	1.57	0.00041
				-	/	5.550 11

Icteridae	Chrysomus icterocephalus	30.68	open	6	1.39	0.00034
Icteridae	Chrysomus ruficapillus	32	open	13	1.36	0.00029
Icteridae	Curaeus curaeus	83.7	open	14	1.42	0.00025
Icteridae	Dives dives	91.32	open	6	1.39	0.00030
Icteridae	Gnorimopsar chopi	65.9	closed	27	1.41	0.00031
Icteridae	Icterus cayanensis	33.3	open	3	1.42	0.00039
Icteridae	Icterus cucullatus	24.3	open	7	1.40	0.00053
Icteridae	Icterus gularis	55.16	closed	26	1.52	0.00054
Icteridae	Icterus nigrogularis	40.2	closed	10	1.52	0.00057
Icteridae	Icterus pustulatus	36.78	closed	22	1.53	0.00049
Icteridae	Psarocolius angustifrons	271.5	closed	2	1.48	0.00022
Icteridae	Psarocolius decumanus	206.3	closed	3	1.48	0.00036
Icteridae	Psarocolius montezuma	309.87	closed	10	1.42	0.00029
Icteridae	Psarocolius wagleri	155.5	closed	3	1.51	0.00021
Icteridae	Pseudoleistes guirahuro	86.42	open	5	1.39	0.00037
Icteridae	Pseudoleistes virescens	79.93	open	11	1.35	0.00023
Icteridae	Quiscalus lugubris	63.03	open	8	1.40	0.00022
Icteridae	Quiscalus mexicanus	160.47	open	5	1.50	0.00031
Icteridae	Quiscalus nicaraguensis	63.36	open	3	1.36	0.00030
Icteridae	Sturnella bellicosa	58	open	7	1.34	0.00024
Icteridae	Sturnella defilippii	48.01	open	6	1.42	0.00023
Icteridae	Sturnella lovca	113	open	38	1.41	0.00021
Icteridae	Sturnella militaris	48.01	open	5	1.33	0.00019
Icteridae	Sturnella superciliaris	45.32	open	5	1.36	0.00025
Icteriidae	Icteria virens	24.89	open	3	1.34	0.00015
Laniidae	Lanius ludovicianus	51.59	open	17	1.34	0.00040
Mimidae	Melanotis caerulescens	61.57	open	14	1.43	0.00030
Mimidae	Mimus gilvus	51.99	open	6	1 40	0.00029
Mimidae	Mimus parvulus	53.64	open	3	1.42	0.00024
Mimidae	Mimus polyglottos	48.5	open	8	1.36	0.00030
Mimidae	Mimus saturninus	63.7	open	22	1.40	0.00020
Mimidae	Mimus thenca	65.99	open	5	1.42	0.00026
Mimidae	Toxostoma cinereum	58.95	open	1	1 39	0.00020
Oxymuncidae	Nviohius atricaudus	10	closed	2	1.37	0.00017
Oxyruncidae	Myiobius sulphureinygius	11 64	closed	-	1.37	0.00019
Oxyruncidae	Onvchorhynchus coronatus	14	closed	6	1 39	0.00027
Parulidae	Basileuterus culicivorus	10.5	closed	9	1.39	0.00024
Parulidae	Basileuterus rufifrons	10.5	closed	5	1.22	0.00021
Parulidae	Basileuterus tristriatus	12.03	closed	1	1.32	0.00020
Parulidae	Dendroica petechia	10.22	open	10	1.32	0.00024
Parulidae	Euthbrais lachromosa	25.6	open	2	1.34	0.00020
Parulidae	Geothlynis heldingi	15.7	open	2	1.32	0.00024
Parulidae	Geothlypis velata	13.7	open	5 7	1.27	0.00020
Parulidae	Phaeothlynis fulvicauda	14.9	closed	, 5	1.32	0.00022
Parulidae	Muioborus miniatus	0	closed	18	1.45	0.00024
Passarallidae	Arremon brunneinuche	/3.07	open	10	1.34	0.00022
Passerellidae	Arremon castanoicons	36.9	closed	2	1.37	0.00023
Passerellidae	Arremon flavirostris	26.13	closed	- 3	1.51	0.00043
Passerellidae	Arremon torquatus	41.96	open	4	1.51	0.00018
Passerellidae	Arramon viranticans	/1	open	3	1.33	0.00022
Passerellidae	Atlanetas alhinucha		open	1	1.75	0.00029
1 asselemuae	mapeles albinucha	55.04	open	+	1.37	0.00023

Passerellidae	Atlapetes citrinellus	28	open	6	1.35	0.00013
Passerellidae	Atlapetes fulviceps	28.2	open	2	1.42	0.00030
Passerellidae	Atlapetes pileatus	24	open	3	1.39	0.00025
Passerellidae	Chlorospingus pileatus	21	open	1	1.30	0.00012
Passerellidae	Zonotrichia capensis	20.31	open	114	1.34	0.00022
Pipridae	Antilophia galeata	21.48	open	6	1.45	0.00028
Pipridae	Chiroxiphia linearis	17.44	open	8	1.39	0.00019
Pipridae	Chiroxiphia pareola	16.84	open	3	1.37	0.00014
Pipridae	Manacus aurantiacus	15.5	open	6	1.37	0.00012
Pipridae	Manacus candei	19.82	open	5	1.36	0.00012
Pipridae	Manacus manacus	16.7	open	8	1.39	0.00015
Pipridae	Pipra aureola	16.14	open	3	1.42	0.00023
Polioptilidae	Polioptila dumicola	7	open	7	1.28	0.00019
Polioptilidae	Ramphocaenus melanurus	9.7	open	4	1.38	0.00017
Ptiliogonatidae	Phainopepla nitens	22.1	open	4	1.42	0.00039
Remizidae	Auriparus flaviceps	6.8	closed	10	1.35	0.00024
Rhinocryptidae	Pteroptochos megapodius	114	closed	7	1.31	0.00022
Rhinocryptidae	Rhinocrvnta lanceolata	61.9	closed	7	1.31	0.00013
Rhinocryptidae	Scelorchilus albicollis	47.28	closed	4	1.25	0.00013
Rhinocryptidae	Sevialopus fuscus	13.7	closed	5	1.26	0.00025
Rhinocryptidae	Scytalopus juscus	13.67	closed	4	1.20	0.00025
Thampophilidae	Dusithamnus montalis	14.87	open	3	1.31	0.00027
Thamnophilidae	Eormicivora arisaa	10.36	open	3	1.33	0.00018
Thannophilidae	Normaaiza avaul	26.5	open	3	1.37	0.00015
Thannophilidae	Myrmeerza exsui	20.3	open	4	1.30	0.00020
		39.2	open	14	1.32	0.00012
	Thamnophilus bridgesi	27	open	3	1.38	0.00018
Thamnophilidae	Thamnophilus caerulescens	21.1	open	8	1.36	0.00017
Thamnophilidae	Thamnophilus doliatus	27.03	open	14	1.36	0.00028
Thamnophilidae	Thamnophilus ruficapillus	20.4	open	4	1.37	0.00018
Thraupidae	Acanthidops bairdii	16	open	1	1.28	0.00015
Thraupidae	Catamenia inornata	13.4	open	1	1.42	0.00041
Thraupidae	Coryphospingus pileatus	15.3	open	2	1.38	0.00021
Thraupidae	Diglossa gloriosa	11	open	1	1.35	0.00046
Thraupidae	Diglossa lafresnayii	16	open	1	1.43	0.00031
Thraupidae	Diglossa plumbea	10	open	1	1.23	0.00008
Thraupidae	Emberizoides herbicola	27.55	open	3	1.40	0.00016
Thraupidae	Embernagra platensis	27.55	open	3	1.32	0.00015
Thraupidae	Eucometis penicillata	27	open	4	1.38	0.00023
Thraupidae	Geospiza fortis	24	closed	6	1.33	0.00029
Thraupidae	Geospiza fuliginosa	14.5	closed	5	1.35	0.00029
Thraupidae	Oryzoborus angolensis	13	open	9	1.32	0.00021
Thraupidae	Oryzoborus funereus	13	open	2	1.36	0.00030
Thraupidae	Paroaria capitata	22.3	open	3	1.36	0.00040
Thraupidae	Paroaria coronata	37.79	open	4	1.39	0.00066
Thraupidae	Phrygilus alaudinus	23.93	open	18	1.39	0.00030
Thraupidae	Phrygilus atriceps	24.3	open	5	1.46	0.00042
Thraupidae	Phrygilus fruticeti	38.8	open	23	1.43	0.00034
Thraupidae	Phrygilus gayi	25.59	open	13	1.36	0.00028
Thraupidae	Phrygilus patagonicus	22.6	open	3	1.32	0.00031
Thraupidae	Phrygilus plebejus	14.68	open	3	1.31	0.00006
Thraupidae	Phrygilus unicolor	21.9	open	4	1.39	0.00025

Thraupidae	Poospiza melanoleuca	13.1	open	3	1.34	0.00024
Thraupidae	Poospiza nigrorufa	17.4	open	4	1.34	0.00026
Thraupidae	Ramphocelus carbo	25.92	open	24	1.36	0.00027
Thraupidae	Ramphocelus dimidiatus	28	open	5	1.44	0.00017
Thraupidae	Ramphocelus flammigerus	33	open	4	1.44	0.00033
Thraupidae	Ramphocelus passerinii	32	open	8	1.41	0.00031
Thraupidae	Saltator atriceps	83.79	open	6	1.43	0.00028
Thraupidae	Saltator aurantiirostris	41.89	open	6	1.36	0.00012
Thraupidae	Saltator coerulescens	54.9	open	14	1.43	0.00024
Thraupidae	Saltator maximus	47.62	open	16	1.41	0.00029
Thraupidae	Saltator similis	43.3	open	17	1.40	0.00026
Thraupidae	Saltator striatipectus	39	open	10	1.40	0.00035
Thraupidae	Saltatricula multicolor	22.2	open	4	1.30	0.00023
Thraupidae	Sicalis flaveola	16.89	closed	29	1.36	0.00034
Thraupidae	Sicalis lutea	16.3	closed	3	1.40	0.00022
Thraupidae	Sicalis luteola	15.9	open	56	1.34	0.00031
Thraupidae	Sporophila bouvronides	9.1	open	3	1.42	0.00032
Thraupidae	Sporophila caerulescens	9.73	open	7	1.38	0.00024
Thraupidae	Sporophila castaneiventris	7.8	open	3	1.27	0.00021
Thraupidae	Sporophila corvina	10.62	open	14	1.32	0.00023
Thraupidae	Sporophila hypoxantha	10.5	open	3	1.31	0.00031
Thraupidae	Sporophila intermedia	12.1	open	4	1.38	0.00023
Thraupidae	Sporophila lineola	9.8	open	5	1.37	0.00037
Thraupidae	Sporophila minuta	7.8	open	6	1.28	0.00027
Thraupidae	Sporophila nigricollis	9.6	open	9	1.33	0.00021
Thraupidae	Sporophila peruviana	12.6	open	4	1.41	0.00028
Thraupidae	Sporophila telasco	9.6	open	5	1.39	0.00019
Thraupidae	Sporophila torqueola	8.7	open	11	1.31	0.00020
Thraupidae	Stephanophorus diadematus	35.4	open	3	1.36	0.00026
Thraupidae	Tachyphonus coronatus	29.3	open	3	1.37	0.00031
Thraupidae	Tachyphonus rufus	34.4	open	12	1.33	0.00017
Thraupidae	Tangara cayana	18	open	3	1.43	0.00033
Thraupidae	Tersina viridis	29	closed	5	1.39	0.00024
Thraupidae	Thraupis bonariensis	36	open	9	1.40	0.00037
Thraupidae	Thraupis episcopus	35	open	27	1.41	0.00032
Thraupidae	Thraupis palmarum	39	open	11	1.43	0.00029
Thraupidae	Thraupis savaca	32.49	open	18	1.43	0.00039
Thraupidae	Tiaris hicolor	9.8	closed	5	1.31	0.00024
Thraupidae	Tiaris canorus	81	closed	5	1.28	0.00025
Thraupidae	Tiaris obscurus	11.2	closed	5	1.34	0.00026
Thraupidae	Tiaris olivaceus	85	closed	16	1 33	0.00021
Thraupidae	Volatinia jacarina	9.94	open	45	1 33	0.00021
Tityridae	Pachyramphus aglaiae	29.69	closed	19	1.40	0.00030
Tityridae	Pachyramphus castaneus	19.5	closed	3	1 33	0.00034
Tityridae	Pachyramphus polychonterus	20.8	closed	3	1.40	0.00035
Tityridae	Pachyramphus validus	43	closed	7	1.36	0.00037
Troglodytidae	Campylarhynchus hrunneicanillus	38.9	closed	, 10	1 44	0.00027
Troglodytidae	Campylorhynchus jocosus	27.6	closed	3	1 35	0.00022
Troglodytidae	Campylorhynchus rufinucha	31	closed	17	1.41	0.00028
Troglodytidae	Campylorhynchus turdinus	32.6	closed	3	1.40	0.00021
Troglodytidae	Cistothorus platensis	9.04	closed	12	1 34	0.00023
1105louy liduo	Cisionorus punctusis	2.04	010300	14	1.57	0.00031

Troglodytidae	Henicorhina leucophrys	16.19	closed	6	1.36	0.00029
Troglodytidae	Thryothorus felix	12.75	closed	3	1.35	0.00025
Troglodytidae	Thryothorus genibarbis	19.2	closed	3	1.41	0.00017
Troglodytidae	Thryothorus modestus	17.57	closed	5	1.42	0.00024
Troglodytidae	Thryothorus nigricapillus	23.9	closed	1	1.47	0.00022
Troglodytidae	Thryothorus pleurostictus	17.7	closed	10	1.39	0.00023
Troglodytidae	Thryothorus rufalbus	24.87	closed	5	1.44	0.00035
Troglodytidae	Thryothorus sinaloa	15.1	closed	3	1.42	0.00025
Troglodytidae	Troglodytes aedon	10.85	closed	129	1.32	0.00032
Turdidae	Catharus aurantiirostris	29.8	open	25	1.36	0.00023
Turdidae	Catharus dryas	37.7	open	1	1.44	0.00054
Turdidae	Catharus frantzii	28.9	open	10	1.37	0.00033
Turdidae	Catharus fuscater	33.7	open	5	1.40	0.00031
Turdidae	Catharus gracilirostris	21	open	4	1.29	0.00014
Turdidae	Catharus mexicanus	33	open	8	1.43	0.00028
Turdidae	Catharus occidentalis	26.2	open	12	1.40	0.00037
Turdidae	Myadestes genibarbis	29.2	open	1	1.34	0.00023
Turdidae	Myadestes melanops	32.1	open	7	1.38	0.00036
Turdidae	Myadestes occidentalis	36.4	open	13	1.36	0.00024
Turdidae	Myadestes ralloides	29.1	open	1	1.38	0.00022
Turdidae	Myadestes unicolor	37.9	open	1	1.52	0.00051
Turdidae	Turdus albicollis	54	open	33	1.38	0.00032
Turdidae	Turdus amaurochalinus	57.9	open	18	1.39	0.00031
Turdidae	Turdus assimilis	70.2	open	21	1.42	0.00037
Turdidae	Turdus chiguanco	93.29	open	9	1.45	0.00032
Turdidae	Turdus falcklandii	93.89	open	30	1.41	0.00021
Turdidae	Turdus fumigatus	75.7	open	17	1.38	0.00032
Turdidae	Turdus fuscater	143	open	6	1.52	0.00026
Turdidae	Turdus grayi	79.5	open	63	1.41	0.00034
Turdidae	Turdus infuscatus	72.4	open	1	1.39	0.00037
Turdidae	Turdus leucomelas	69.1	open	15	1.38	0.00030
Turdidae	Turdus leucops	62.4	open	2	1.42	0.00040
Turdidae	Turdus migratorius	78.5	open	3	1.53	0.00020
Turdidae	Turdus nigrescens	96	open	4	1.42	0.00034
Turdidae	Turdus nigriceps	52.7	open	7	1.39	0.00030
Turdidae	Turdus nudigenis	63.89	open	19	1.40	0.00030
Turdidae	Turdus olivater	86.63	open	3	1.39	0.00020
Turdidae	Turdus rufiventris	69.44	open	55	1.40	0.00031
Turdidae	Turdus serranus	84.9	open	1	1.43	0.00022
Tyrannidae	Agriornis lividus	99.1	open	4	1.37	0.00024
Tyrannidae	Agriornis micropterus	67.79	open	1	1.31	0.00017
Tyrannidae	Agriornis montanus	63.3	open	2	1.39	0.00060
Tyrannidae	Alectrurus tricolor	16	open	1	1.45	0.00036
Tyrannidae	Anairetes parulus	6.2	open	19	1.32	0.00027
Tyrannidae	Arundinicola leucocephala	13.8	closed	9	1.35	0.00022
Tyrannidae	Attila rufus	42.6	open	2	1.44	0.00027
Tyrannidae	Camptostoma imberbe	7.4	closed	3	1.31	0.00037
Tyrannidae	Camptostoma obsoletum	8.1	closed	13	1.37	0.00040
Tyrannidae	Cnemotriccus fuscatus	13.6	open	4	1.34	0.00026
Tyrannidae	Colonia colonus	18.3	closed	2	1.48	0.00024
Tyrannidae	Colorhamphus parvirostris	10.6	open	1	1.33	0.00013

Tyrannidae	Conopias parvus	21	closed	1	1.26	0.00019
Tyrannidae	Contopus caribaeus	10.5	open	1	1.26	0.00020
Tyrannidae	Contopus cinereus	11.6	open	8	1.28	0.00025
Tyrannidae	Contopus hispaniolensis	11.7	open	2	1.26	0.00028
Tyrannidae	Contopus latirostris	11.2	open	2	1.30	0.00063
Tyrannidae	Contopus pertinax	27.2	open	1	1.37	0.00023
Tyrannidae	Elaenia albiceps	15.5	open	18	1.37	0.00040
Tyrannidae	Elaenia chiriquensis	15.4	open	17	1.33	0.00032
Tyrannidae	Elaenia cristata	18.2	open	1	1.37	0.00031
Tyrannidae	Elaenia flavogaster	24.8	open	47	1.36	0.00026
Tyrannidae	Elaenia obscura	23.9	open	5	1.38	0.00050
Tyrannidae	Elaenia parvirostris	13.8	open	2	1.32	0.00036
Tyrannidae	Elaenia strepera	19.3	open	2	1.38	0.00041
Tyrannidae	Empidonax albigularis	9.58	open	1	1.29	0.00006
Tyrannidae	Empidonax difficilis	10.7	open	4	1.28	0.00017
Tyrannidae	Empidonax flavescens	12.5	open	13	1.28	0.00014
Tyrannidae	Empidonax fulvifrons	7.9	open	2	1.26	0.00022
Tyrannidae	Empidonax occidentalis	11.6	open	1	1.31	0.00019
Tyrannidae	Empidonomus aurantioatrocristatus	33	open	18	1.36	0.00042
Tyrannidae	Empidonomus varius	27.1	open	8	1.35	0.00032
Tyrannidae	Euscarthmus meloryphus	6.8	open	1	1.37	0.00085
Tyrannidae	Fluvicola albiventer	11.6	closed	15	1.38	0.00025
Tyrannidae	Fluvicola nengeta	21	closed	3	1.41	0.00026
Tyrannidae	Fluvicola pica	12.3	closed	15	1.36	0.00017
Tyrannidae	Hemitriccus margaritaceiventer	8.4	closed	7	1.41	0.00025
Tyrannidae	Hirundinea ferruginea	30.6	open	5	1.31	0.00041
Tyrannidae	Hymenops perspicillatus	22.9	open	29	1.34	0.00025
Tyrannidae	Knipolegus aterrimus	20.2	open	7	1.30	0.00024
Tyrannidae	Knipolegus cyanirostris	15.4	open	3	1.35	0.00034
Tyrannidae	Knipolegus lophotes	31.8	open	4	1.32	0.00021
Tyrannidae	Knipolegus signatus	17.8	open	6	1.32	0.00029
Tyrannidae	Knipolegus striaticeps	11	open	6	1.29	0.00027
Tyrannidae	Lathrotriccus euleri	11.33	open	6	1.32	0.00036
Tyrannidae	Legatus leucophaius	22.2	closed	15	1.37	0.00028
Tyrannidae	Leptopogon amaurocephalus	11.7	closed	3	1.28	0.00019
Tyrannidae	Lessonia oreas	13.8	open	2	1.37	0.00022
Tyrannidae	Lessonia rufa	13.4	open	34	1.33	0.00023
Tyrannidae	Machetornis rixosa	29.6	closed	21	1.33	0.00024
Tyrannidae	Mecocerculus leucophrys	10.98	open	1	1.32	0.00013
Tyrannidae	Megarynchus pitangua	69.91	open	13	1.37	0.00028
Tyrannidae	Mionectes oleagineus	11.17	closed	13	1.36	0.00021
Tyrannidae	Muscisaxicola albifrons	34	closed	1	1.43	0.00038
Tyrannidae	Muscisaxicola albilora	22.6	closed	3	1.34	0.00028
Tyrannidae	Muscisaxicola capistratus	26.6	closed	2	1.35	0.00030
Tyrannidae	Muscisaxicola cinereus	18.59	closed	1	1.36	0.00042
Tyrannidae	Muscisaxicola flavinucha	36.23	closed	4	1.35	0.00025
Tyrannidae	, Muscisaxicola juninensis	22.2	closed	1	1.43	0.00027
Tyrannidae	Muscisaxicola maclovianus	23.79	closed	4	1.40	0.00025
Tyrannidae	Muscisaxicola maculirostris	14.2	open	10	1.31	0.00027
Tyrannidae	Myiarchus barbirostris	13.4	closed	1	1.30	0.00018
Tyrannidae	Myiarchus cinerascens	28.2	closed	10	1.34	0.00028

Tyrannidae	Myiarchus ferox	27.5	closed	14	1.35	0.00038
Tyrannidae	Myiarchus nuttingi	23	closed	3	1.29	0.00020
Tyrannidae	Myiarchus oberi	34.71	closed	1	1.27	0.00024
Tyrannidae	Myiarchus panamensis	31.7	closed	2	1.30	0.00038
Tyrannidae	Myiarchus phaeocephalus	26.3	closed	1	1.38	0.00036
Tyrannidae	Myiarchus sagrae	19.28	closed	1	1.27	0.00033
Tyrannidae	Myiarchus semirufus	22.5	closed	1	1.38	0.00035
Tyrannidae	Myiarchus stolidus	20.8	closed	3	1.30	0.00030
Tyrannidae	Myiarchus swainsoni	25.1	closed	2	1.25	0.00023
Tyrannidae	Myiarchus tuberculifer	17.7	closed	11	1.29	0.00032
Tyrannidae	Myiarchus tyrannulus	35.45	closed	19	1.35	0.00031
Tyrannidae	Myiodynastes bairdii	45	closed	1	1.43	0.00048
Tyrannidae	Myiodynastes chrysocephalus	38.3	closed	3	1.35	0.00024
Tyrannidae	Myiodynastes luteiventris	46.9	closed	4	1.35	0.00015
Tyrannidae	Myiodynastes maculatus	43.2	closed	24	1.37	0.00031
Tyrannidae	Myiopagis gaimardii	12.02	open	2	1.25	0.00029
Tyrannidae	Myiopagis viridicata	11.51	open	2	1.35	0.00014
Tvrannidae	Mviophobus cryptoxanthus	9.8	open	1	1.32	0.00035
Tyrannidae	Myiophobus fasciatus	9.9	open	45	1.36	0.00040
Tyrannidae	Myiophobus inornatus	11.2	open	1	1.26	0.00018
Tyrannidae	Myiozetetes cavanensis	25.9	closed	15	1.41	0.00030
Tyrannidae	Myiozetetes oranadensis	29.3	closed	10	1.42	0.00044
Tyrannidae	Myiozetetes similis	29.5	closed	63	1.41	0.00031
Tyrannidae	Neovolmis rufiventris	20	open	3	1.52	0.00045
Tyrannidae	Ochthogea fumicolor	16.6	open	1	1.30	0.00020
Tyrannidae	Oncostoma olivacaum	6.6	closed	1	1.35	0.00020
Tyrannidae	Phaeomyias murina	10	open	5	1.35	0.00049
Tyrannidae	Phaeomyias tumbezana	11.5	open	2	1.31	0.00020
Tyrannidae	Phaleomytas tumbezana	20.4	open	2	1.20	0.00024
Tyrannidae	Phyllosogetes venterlis	29.4	alosad	1	1.32	0.00023
Tyrannidae	Phylioscarles ventralis	0.5		5	1.39	0.00019
Tyrannidae	Pliangus suipnuraius	02.85	closed	140	1.36	0.00033
Tyrannidae	Platyrinchus cancrominus	9.2	open	1	1.34	0.00007
Tyrannidae	Platyrinchus coronatus	9.14	open	3	1.24	0.00017
Tyrannidae	Poecilotriccus plumbeiceps	5./	closed	4	1.37	0.00025
Tyrannidae	Pseudocolopteryx flaviventris	7.5	open	8	1.32	0.00021
Tyrannidae	Pseudocolopteryx sclateri	8	open	1	1.32	0.00017
Tyrannidae	Pyrocephalus rubinus	14.4	open	51	1.32	0.00034
Tyrannidae	Rhynchocyclus brevirostris	24.3	closed	8	1.48	0.00022
Tyrannidae	Rhynchocyclus olivaceus	21.3	closed	1	1.37	0.00012
Tyrannidae	Satrapa icterophrys	21.5	open	22	1.35	0.00034
Tyrannidae	Sayornis nigricans	18.63	open	32	1.32	0.00029
Tyrannidae	Sayornis saya	20.9	open	1	1.25	0.00013
Tyrannidae	Serpophaga cinerea	8.3	open	2	1.33	0.00021
Tyrannidae	Serpophaga nigricans	8.5	open	5	1.31	0.00034
Tyrannidae	Serpophaga subcristata	6.6	open	14	1.29	0.00028
Tyrannidae	Stigmatura budytoides	11.08	open	6	1.29	0.00047
Tyrannidae	Sublegatus arenarum	12.3	open	5	1.37	0.00025
Tyrannidae	Sublegatus modestus	14	open	3	1.32	0.00034
Tyrannidae	Tachuris rubrigastra	7.8	open	25	1.32	0.00020
Tyrannidae	Todirostrum cinereum	6.29	closed	29	1.41	0.00026
Tyrannidae	Todirostrum maculatum	7.3	closed	6	1.45	0.00027

Tyrannidae	Tolmomyias flaviventris	12.2	closed	5	1.44	0.00030
Tyrannidae	Tolmomyias sulphurescens	14.3	closed	16	1.49	0.00035
Tyrannidae	Tyrannus albogularis	37.1	open	2	1.40	0.00025
Tyrannidae	Tyrannus caudifasciatus	42.36	open	1	1.29	0.00038
Tyrannidae	Tyrannus couchii	39	open	21	1.37	0.00036
Tyrannidae	Tyrannus crassirostris	55.89	open	1	1.37	0.00053
Tyrannidae	Tyrannus cubensis	93.6	open	1	1.49	0.00025
Tyrannidae	Tyrannus dominicensis	46.5	open	16	1.39	0.00038
Tyrannidae	Tyrannus melancholicus	37.4	open	110	1.36	0.00039
Tyrannidae	Tyrannus niveigularis	34.4	open	3	1.30	0.00039
Tyrannidae	Tyrannus savana	31.9	open	70	1.36	0.00043
Tyrannidae	Tyrannus verticalis	39.6	open	1	1.28	0.00029
Tyrannidae	Tyrannus vociferans	45.6	open	5	1.34	0.00017
Tyrannidae	Xenotriccus mexicanus	13.8	open	3	1.35	0.00026
Tyrannidae	Xolmis cinereus	57.1	open	10	1.36	0.00025
Tyrannidae	Xolmis coronatus	46.8	open	7	1.34	0.00023
Tyrannidae	Xolmis irupero	28.7	closed	14	1.34	0.00030
Tyrannidae	Xolmis pyrope	35.3	open	14	1.36	0.00019
Tyrannidae	Xolmis velatus	28.7	closed	5	1.40	0.00030
Vireonidae	Cyclarhis gujanensis	28.8	open	7	1.37	0.00038
Vireonidae	Hylophilus pectoralis	11.6	open	3	1.35	0.00031
Vireonidae	Vireo altiloquus	18.97	open	3	1.45	0.00049
Vireonidae	Vireo flavoviridis	18	open	8	1.40	0.00031
Vireonidae	Vireo olivaceus	16.06	open	11	1.35	0.00038

Table S5. Abbreviations and locations of the 33 museums where passerine's reproductive data were collected for Chapter 3

Museum	Abbreviation	Location
American Museum of Natural History	AMNH	New York, USA
California Academy of Sciences	CAS	San Francisco, USA
Coleção Ornitológica Marcelo Bagno, Universidade de Brasília	COMB	Brasília, Brazil
Cris-River Regional Museum	CRRP	Oradea, Romania
Delaware Museum of Natural History	DMNH	Wilmington, USA
Fundación Miguel Lillo	FML	Tucumán, Argentina
Fundação Zoobotânica do Rio Grande do Sul	FZB	Porto Alegre, Brazil
Instituto de Investigaciones de Recursos Biológicos "Alexander von Humboldt"	IAvH	Vila de Leyva, Colombia
Museo Argentino de Ciencias Naturales	MACN	Buenos Aires, Argentina
Museum of Comparative Zoology, Harvard University	MCZ	Cambridge, USA
Muséum d'Histoire Naturelle de Genève	MHNG	Geneva, Switzerland
Museo de La Plata	MLP	La Plata, Argentina
Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther University HalleWittenberg	MLUH	Halle (Saale), Germany
Museu Nacional	MN	Rio de Janeiro, Brazil
Museo Nacional de Costa Rica	MNCR	San José, Costa Rica
Museo Ñuble Naturaleza	MNN	Chillán, Chile
Museu Paraense Emilio Goeldi	MPEG	Belém, Brazil
Musée Zoologique de l'Université Louis Pasteur et de la ville de Strasbourg	MZS	Strasbourg, France
Museo Zoológico, Universidad de Concepción	MZUC	Concepción, Chile
Museu de Zoologia, Universidade de São Paulo	MZUSP	São Paulo, Brazil
Naturalis, Nationaal Natuurhistorisch Museum	NBCN	Leiden, The Netherlands
The Natural History Museum	NHM	Tring, UK
Landesmuseum Hannover	NLMH	Hannover, Germany
Naturhistorisches Museum Bern	NMBE	Bern, Switzerland
National Museums Scotland	NMS	Edinburgh, UK
Naturhistorisches Museum Wien	NMW	Vienna, Austria
Museu de Ciências e Tecnologia da PUCRS	PUCRS	Porto Alegre, Brazil
San Bernardino County Museum	SBCM	Redlands, USA
Museo de Zoologia, Universidad de Costa Rica	UCR	San José, Costa Rica
Museu de Zoologia, Universidade Federal Rural do Rio de Janeiro	UFRRJ	Seropédica, Brazil
National Museum of Natural History	USNM	Washington, D.C., USA
Western Foundation of Vertebrate Zoology	WFVZ	Camarillo, USA
Museum für Naturkunde	ZMB	Berlin, Germany

Table S6. Species (Jetz et al. 2012), nest type, diet (Car: carnivore, Herb: herbivore, Omn: omnivore), intraclutch variation (CV = coefficient of variation %) of egg elongation and asymmetry, and number of clutches (N) of Neotropical passerines evaluated in Chapter 3.

Family	Species	Nest type	Diet	CV Elongation	CV Asymmetry	N
Aegithalidae	Psaltriparus minimus	closed	Car	1.4012	34.7206	12
Alaudidae	Eremophila alpestris	closed	Omn	2.5201	26.2306	3
Cardinalidae	Habia fuscicauda	open	Car	2.37624	17.2632	3
Cardinalidae	Cyanocompsa cyanoides	open	Her	4.02107	16.7501	3
Cardinalidae	Passerina rositae	open	Her	2.39318	34.9947	3
Cardinalidae	Chlorothraupis carmioli	open	Car	1.54916	50.3455	4
Cardinalidae	Cyanocompsa brissonii	open	Her	2.04653	33.852	14
Cardinalidae	Piranga flava	open	Car	3.2521	29.0596	13
Cardinalidae	Cardinalis sinuatus	open	Omn	1.98502	46.3212	3
Cardinalidae	Cardinalis cardinalis	open	Omn	2.4339	36.1429	6
Conopophagidae	Conopophaga lineata	open	Car	2.43071	48.3486	7
Corvidae	Cyanocorax chrysops	open	Car	2.82807	35.2962	13
Corvidae	Cyanocorax cyanomelas	open	Omn	2.47281	31.4198	11
Corvidae	Cyanocorax morio	open	Omn	4.09257	34.1422	3
Corvidae	Cyanocorax cyanopogon	open	Omn	3.00785	12.3535	3
Corvidae	Cyanocorax yncas	open	Omn	2.64222	41.1355	14
Corvidae	Cyanocorax cristatellus	open	Omn	3.06344	27.1534	4
Corvidae	Aphelocoma californica	open	Omn	1.70289	44.4959	4
Cotingidae	Phytotoma rara	open	Her	2.88375	41.6293	14
Cotingidae	Phytotoma rutila	open	Her	2.77547	40.2731	33
Donacobiidae	Donacobius atricapilla	open	Car	1.32521	35.1308	3
Fringillidae	Euphonia violacea	closed	Her	2.26216	30.8582	6
Fringillidae	Euphonia luteicapilla	closed	Her	1.77665	35.9263	3
Fringillidae	Carpodacus mexicanus	open	Her	2.71485	36.6256	35
Fringillidae	Euphonia laniirostris	closed	Her	1.71981	31.1223	5
Fringillidae	Carduelis magellanica	open	Her	2.01639	46.5233	4
Furnariidae	Synallaxis albescens	closed	Car	2.55208	30.1141	22
Furnariidae	Xiphorhynchus susurrans	closed	Car	2.47478	59.7722	4
Furnariidae	Cinclodes fuscus	closed	Car	1.42526	23.5603	7
Furnariidae	Premnoplex brunnescens	closed	Car	1.30437	52.011	3
Furnariidae	Synallaxis brachyura	closed	Car	1.56651	54.7056	7
Furnariidae	Cinclodes patagonicus	closed	Car	2.02653	22.2657	7
Furnariidae	Geositta cunicularia	closed	Car	1.29449	20.9678	16
Furnariidae	Pygarrhichas albogularis	closed	Car	0.55086	24.694	3
Furnariidae	Phacellodomus ruber	closed	Car	1.87178	25.7654	8
Furnariidae	Certhiaxis cinnamomeus	closed	Car	2.06036	36.4596	17
Furnariidae	Phacellodomus rufifrons	closed	Car	3.40075	25.7775	6
Furnariidae	Synallaxis azarae	closed	Car	3.02151	23.4735	5
Furnariidae	Pseudoseisura lophotes	closed	Car	2.31252	26.837	7
Furnariidae	Anumbius annumbi	closed	Car	2.12747	36.4266	14
Furnariidae	Sclerurus albigularis	closed	Car	2.15114	47.7873	3
Furnariidae	Automolus rubiginosus	closed	Car	2.06042	68.3384	3
Furnariidae	Synallaxis spixi	closed	Car	0.97793	61.6537	5

Furnariidae	Phleocryptes melanops	closed	Car	2.52047	40.2507	29
Furnariidae	Furnarius rufus	closed	Car	2.28549	43.8765	26
Furnariidae	Furnarius leucopus	closed	Car	3.14089	39.9506	3
Furnariidae	Upucerthia dumetaria	closed	Car	1.94057	26.2047	7
Furnariidae	Lepidocolaptes angustirostris	closed	Car	1.83322	34.9256	6
Furnariidae	Furnarius cristatus	closed	Car	3.28177	22.7636	4
Furnariidae	Xiphocolaptes major	closed	Car	2.92831	28.4977	3
Furnariidae	Aphrastura spinicauda	closed	Car	2.40454	23.9799	5
Furnariidae	Asthenes modesta	closed	Car	1.86664	40.5835	17
Furnariidae	Limnornis curvirostris	closed	Car	2.38331	47.8517	5
Furnariidae	Cranioleuca pyrrhophia	closed	Car	1.09511	35.5296	8
Furnariidae	Asthenes pyrrholeuca	closed	Car	1.86526	39.1165	10
Furnariidae	Schoeniophylax phryganophilus	closed	Car	2.03453	43.0428	8
Furnariidae	Phacellodomus sibilatrix	closed	Car	2.83706	56.4474	6
Furnariidae	Leptasthenura aegithaloides	closed	Car	1.95926	27.2724	17
Furnariidae	Asthenes baeri	closed	Car	2.34329	38.9397	4
Furnariidae	Drymornis bridgesii	closed	Car	3.48413	49.9597	5
Furnariidae	Tarphonomus certhioides	closed	Car	2.9703	22.8316	5
Furnariidae	Asthenes hudsoni	closed	Car	0.89102	25.8281	3
Furnariidae	Coryphistera alaudina	closed	Car	2.53505	41.2348	5
Furnariidae	Geositta rufipennis	closed	Car	2.89922	56.8257	4
Furnariidae	Synallaxis frontalis	closed	Car	1.33754	51.6957	6
Furnariidae	Sylviorthorhynchus desmursii	closed	Car	2.97029	25.8034	4
Furnariidae	Cinclodes comechingonus	closed	Car	0.04442	39.4011	1
Furnariidae	Asthenes humicola	closed	Car	2.71467	48.058	10
Furnariidae	Xiphorhynchus flavigaster	closed	Car	1.44023	96.2374	3
Furnariidae	Ochetorhynchus phoenicurus	closed	Car	1.43861	22.0373	2
Furnariidae	Cinclodes nigrofumosus	closed	Car	0.99031	3.33084	1
Furnariidae	Pseudoseisura gutturalis	closed	Car	2.68267	49.1477	3
Furnariidae	Spartonoica maluroides	open	Car	1.06193	32.702	3
Furnariidae	Ochetorhynchus melanura	closed	Car	1.2646	29.7881	5
Furnariidae	Cinclodes atacamensis	closed	Car	2.02418	73.0078	2
Furnariidae	Upucerthia albigula	closed	Car	0.19855	3.54267	1
Grallariidae	Grallaria guatimalensis	open	Car	2.36672	55.1187	3
Hirundinidae	Progne chalybea	closed	Car	1.62642	23.4605	10
Hirundinidae	Notiochelidon murina	closed	Car	5.6044	36.3132	2
Hirundinidae	Stelgidopteryx serripennis	closed	Car	2.1111	27.2871	6
Hirundinidae	Stelgidopteryx ruficollis	closed	Car	2.05658	29.3193	11
Hirundinidae	Tachycineta thalassina	closed	Car	1.62278	40.7814	4
Hirundinidae	Tachycineta albiventer	closed	Car	1.43131	19.987	3
Hirundinidae	Progne tapera	closed	Car	2.69953	27.2654	6
Hirundinidae	Pygochelidon cyanoleuca	closed	Car	3.11449	39.6099	15
Hirundinidae	Alopochelidon fucata	closed	Car	1.70717	19.3403	5
Hirundinidae	Progne elegans	closed	Car	4.08073	74.2325	3
Icteridae	Cacicus solitarius	closed	Car	4.61522	22.5656	4
Icteridae	Agelaius phoeniceus	open	Her	2.21222	37.382	11
Icteridae	Icterus pustulatus	closed	Car	1.99907	24.4706	21

Icteridae	Sturnella bellicosa	open	Omn	1.89718	48.226	6
Icteridae	Sturnella loyca	open	Omn	2.80401	38.0854	38
Icteridae	Curaeus curaeus	open	Omn	1.99014	27.7245	14
Icteridae	Chrysomus icterocephalus	open	Her	2.59961	36.6766	6
Icteridae	Cacicus chrysopterus	closed	Omn	2.6321	56.366	5
Icteridae	Cacicus cela	closed	Omn	3.21154	21.0942	10
Icteridae	Icterus cayanensis	open	Car	1.82337	46.7543	3
Icteridae	Icterus nigrogularis	closed	Omn	2.33973	22.4743	9
Icteridae	Psarocolius decumanus	closed	Omn	2.7665	16.5126	3
Icteridae	Amblycercus holosericeus	open	Car	3.07163	30.3069	1
Icteridae	Gnorimopsar chopi	closed	Omn	3.48989	40.8978	27
Icteridae	Cacicus haemorrhous	closed	Car	2.9053	26.324	8
Icteridae	Quiscalus lugubris	open	Omn	2.94168	35.8945	8
Icteridae	Psarocolius wagleri	closed	Omn	3.46649	27.5997	2
Icteridae	Psarocolius montezuma	closed	Omn	2.73903	39.9808	9
Icteridae	Sturnella militaris	open	Car	2.17066	27.0158	5
Icteridae	Icterus gularis	closed	Omn	2.50936	23.6277	25
Icteridae	Dives dives	open	Omn	2.49889	27.8624	6
Icteridae	Quiscalus mexicanus	open	Omn	2.52487	35.293	5
Icteridae	Chrysomus ruficapillus	open	Her	2.96271	36.3541	13
Icteridae	Amblyramphus holosericeus	open	Car	2.34532	44.5576	9
Icteridae	Psarocolius angustifrons	closed	Omn	6.34474	48.9795	2
Icteridae	Sturnella superciliaris	open	Car	2.77259	41.9277	5
Icteridae	Pseudoleistes virescens	open	Omn	1.66462	35.7246	11
Icteridae	Sturnella defilippii	open	Omn	2.93753	45.4677	5
Icteridae	Agelaioides badius	closed	Omn	3.09012	47.088	5
Icteridae	Pseudoleistes guirahuro	open	Omn	2.09273	42.1678	5
Icteridae	Agelasticus thilius	open	Car	2.14211	41.9953	29
Icteridae	Agelasticus cyanopus	open	Omn	4.66326	45.9444	3
Icteridae	Quiscalus nicaraguensis	open	Omn	1.70819	46.6181	3
Icteridae	Icterus cucullatus	open	Omn	2.00706	18.6528	7
Icteriidae	Icteria virens	open	Car	2.3117	25.9373	3
Laniidae	Lanius ludovicianus	open	Car	2.17728	25.8089	17
Mimidae	Melanotis caerulescens	open	Omn	1.9332	23.2592	13
Mimidae	Mimus thenca	open	Omn	1.89625	47.5247	5
Mimidae	Mimus saturninus	open	Omn	2.42708	35.4909	22
Mimidae	Mimus gilvus	open	Car	1.86209	37.7515	6
Mimidae	Mimus polyglottos	open	Omn	1.95919	31.6819	7
Mimidae	Mimus parvulus	open	Omn	1.71756	43.6898	3
Mimidae	Toxostoma cinereum	open	Car	0.50101	8.79996	1
Oxyruncidae	Myiobius sulphureipygius	closed	Car	2.19182	18.3575	9
Oxyruncidae	Onychorhynchus coronatus	closed	Car	1.46351	32.4754	5
Oxyruncidae	Myiobius atricaudus	closed	Car	2.67702	45.8702	2
Parulidae	Phaeothlypis fulvicauda	closed	Car	1.32515	19.6771	4
Parulidae	Basileuterus culicivorus	closed	Car	1.71633	22.4617	9
Parulidae	Basileuterus rufifrons	closed	Car	1.7601	29.5119	5
Parulidae	Geothlypis velata	open	Car	1.80832	39.635	6

Parulidae	Dendroica petechia	open	Car	2.29447	40.4405	10
Parulidae	Euthlypis lachrymosa	open	Car	0.27574	21.3839	2
Parulidae	Basileuterus tristriatus	closed	Car	0.72626	2.00903	1
Parulidae	Geothlypis beldingi	open	Car	1.28908	36.7329	3
Parulidae	Myioborus miniatus	closed	Car	2.40185	39.5939	16
Passerellidae	Atlapetes albinucha	open	Omn	1.00396	17.1184	4
Passerellidae	Zonotrichia capensis	open	Omn	2.0797	35.4502	103
Passerellidae	Arremon flavirostris	closed	Omn	3.10292	45.0148	3
Passerellidae	Arremon torquatus	open	Omn	2.29865	37.4064	4
Passerellidae	Arremon castaneiceps	closed	Omn	4.31178	9.95701	2
Passerellidae	Arremon brunneinucha	open	Car	1.53524	28.1543	14
Passerellidae	Atlapetes pileatus	open	Omn	1.13119	16.602	3
Passerellidae	Arremon virenticeps	open	Omn	1.6252	40.4788	3
Passerellidae	Atlapetes fulviceps	open	Omn	3.09914	40.624	2
Passerellidae	Atlapetes citrinellus	open	Omn	1.5683	37.3311	6
Passerellidae	Chlorospingus pileatus	open	Omn	2.41285	11.7744	1
Pipridae	Manacus manacus	open	Her	1.36838	32.5038	7
Pipridae	Manacus aurantiacus	open	Her	3.01072	64.6398	4
Pipridae	Manacus candei	open	Her	1.85406	27.1137	5
Pipridae	Pipra aureola	open	Her	2.11509	20.1761	3
Pipridae	Chiroxiphia linearis	open	Her	1.01167	39.0962	8
Pipridae	Antilophia galeata	open	Her	2.05518	24.6333	3
Pipridae	Chiroxiphia pareola	open	Her	0.74184	42.3873	1
Polioptilidae	Ramphocaenus melanurus	open	Car	2.83518	30.1525	4
Polioptilidae	Polioptila dumicola	open	Car	2.38706	54.3504	7
Ptiliogonatidae	Phainopepla nitens	open	Her	2.62932	27.2097	3
Remizidae	Auriparus flaviceps	closed	Car	1.93293	36.0088	8
Rhinocryptidae	Rhinocrypta lanceolata	closed	Car	2.59962	59.8898	6
Rhinocryptidae	Pteroptochos megapodius	closed	Car	1.7302	50.8582	7
Rhinocryptidae	Scytalopus fuscus	closed	Car	0.8438	39.7031	3
Rhinocryptidae	Scytalopus magellanicus	closed	Car	3.07711	29.3268	2
Rhinocryptidae	Scelorchilus albicollis	closed	Car	1.81518	38.2108	4
Thamnophilidae	Thamnophilus doliatus	open	Car	1.51111	25.3045	11
Thamnophilidae	Taraba major	open	Car	1.89101	48.7447	13
Thamnophilidae	Myrmeciza exsul	open	Car	0.62217	38.9612	3
Thamnophilidae	Dysithamnus mentalis	open	Car	0.94703	50.773	3
Thamnophilidae	Formicivora grisea	open	Car	1.29198	15.7502	2
Thamnophilidae	Thamnophilus ruficapillus	open	Car	1.43197	77.1682	4
Thamnophilidae	Thamnophilus caerulescens	open	Car	2.36871	48.4104	6
Thamnophilidae	Thamnophilus bridgesi	open	Car	1.73104	17.1631	3
Thraupidae	Saltator striatipectus	open	Omn	3.01756	27.2752	10
Thraupidae	Eucometis penicillata	open	Car	2.59094	12.1685	4
Thraupidae	Ramphocelus passerinii	open	Omn	3.62394	24.3185	6
Thraupidae	Thraupis episcopus	open	Omn	3.07683	35.3437	24
Thraupidae	Saltator maximus	open	Her	2.21843	32.6365	15
Thraupidae	Volatinia jacarina	open	Her	2.3231	32.6553	41
Thraupidae	Ramphocelus carbo	open	Omn	2.7327	26.9253	21

Thraupidae	Tachyphonus rufus	open	Car	2.09654	37.922	12
Thraupidae	Sporophila corvina	open	Her	1.7984	35.1874	12
Thraupidae	Tiaris olivaceus	closed	Her	1.24563	23.1973	13
Thraupidae	Tiaris canorus	closed	Her	2.36735	41.0701	5
Thraupidae	Sporophila nigricollis	open	Her	1.55765	20.2089	9
Thraupidae	Tangara cayana	open	Her	1.48117	9.929	3
Thraupidae	Sporophila lineola	open	Her	2.75263	27.1542	5
Thraupidae	Phrygilus atriceps	open	Her	2.55149	31.1171	5
Thraupidae	Thraupis palmarum	open	Omn	1.50393	37.0585	9
Thraupidae	Ramphocelus dimidiatus	open	Omn	0.98351	23.5872	3
Thraupidae	Thraupis sayaca	open	Omn	2.78801	37.4383	17
Thraupidae	Sporophila torqueola	open	Her	2.57811	43.5664	11
Thraupidae	Phrygilus fruticeti	open	Her	2.42256	38.2169	21
Thraupidae	Sporophila bouvronides	open	Her	1.4174	17.9208	2
Thraupidae	Sporophila intermedia	open	Her	2.10706	52.6118	4
Thraupidae	Sicalis flaveola	closed	Her	2.85199	27.4684	29
Thraupidae	Saltator coerulescens	open	Omn	1.77197	26.5051	12
Thraupidae	Sporophila caerulescens	open	Her	1.66336	17.8486	6
Thraupidae	Phrygilus alaudinus	open	Her	2.06606	25.4259	18
Thraupidae	Sporophila minuta	open	Her	2.32412	53.7864	4
Thraupidae	Tiaris obscurus	closed	Her	2.51116	31.2838	4
Thraupidae	Saltator atriceps	open	Omn	1.83363	27.7955	5
Thraupidae	Ramphocelus flammigerus	open	Her	3.59948	14.9847	4
Thraupidae	Sicalis luteola	open	Her	2.21843	36.5135	54
Thraupidae	Phrygilus unicolor	open	Her	1.53488	24.7186	4
Thraupidae	Tiaris bicolor	closed	Her	2.01195	39.1626	5
Thraupidae	Oryzoborus funereus	open	Her	1.90472	40.2285	2
Thraupidae	Emberizoides herbicola	open	Her	0.89248	35.5729	3
Thraupidae	Sporophila telasco	open	Her	2.35405	31.3329	4
Thraupidae	Oryzoborus angolensis	open	Her	2.13218	35.949	8
Thraupidae	Saltator similis	open	Car	1.96602	29.6633	17
Thraupidae	Sicalis lutea	closed	Her	1.93072	44.44	3
Thraupidae	Saltator aurantiirostris	open	Her	2.22761	44.2742	6
Thraupidae	Thraupis bonariensis	open	Omn	2.84499	22.9769	9
Thraupidae	Paroaria coronata	open	Omn	3.39994	25.6659	3
Thraupidae	Paroaria capitata	open	Omn	0.77775	26.9849	3
Thraupidae	Tersina viridis	closed	Her	2.17149	28.2946	4
Thraupidae	Stephanophorus diadematus	open	Her	2.53179	24.7361	3
Thraupidae	Phrygilus patagonicus	open	Her	5.1113	45.3742	3
Thraupidae	Sporophila hypoxantha	open	Her	3.57412	28.0667	2
Thraupidae	Tachyphonus coronatus	open	Car	1.8469	21.6701	3
Thraupidae	Sporophila castaneiventris	open	Her	1.8935	26.7475	3
Thraupidae	Catamenia inornata	open	Her	2.82531	39.3834	1
Thraupidae	Phrygilus gayi	open	Her	1.8545	29.2882	11
Thraupidae	Poospiza nigrorufa	open	Omn	3.06336	19.8621	4
Thraupidae	Phrygilus plebejus	open	Her	4.35317	64.1493	3
Thraupidae	Poospiza melanoleuca	open	Omn	2.61748	44.0472	3

Thraupidae	Geospiza fortis	closed	Her	1.95556	27.3455	6
Thraupidae	Geospiza fuliginosa	closed	Her	1.62475	29.5215	5
Thraupidae	Embernagra platensis	open	Her	1.94516	37.0668	3
Thraupidae	Coryphospingus pileatus	open	Omn	5.31503	9.22975	2
Thraupidae	Sporophila peruviana	open	Her	2.6304	25.0073	4
Thraupidae	Diglossa gloriosa	open	Her	0.51184	6.6686	1
Thraupidae	Saltatricula multicolor	open	Omn	2.53608	39.8228	4
Thraupidae	Acanthidops bairdii	open	Car	1.14334	55.8126	1
Thraupidae	Diglossa plumbea	open	Her	2.64971	2.02984	1
Tityridae	Pachyramphus castaneus	closed	Car	1.27629	40.2503	3
Tityridae	Pachyramphus validus	closed	Car	2.59723	46.2622	7
Tityridae	Pachyramphus aglaiae	closed	Omn	2.34334	25.8684	19
Tityridae	Pachyramphus polychopterus	closed	Car	1.23183	22.1906	3
Troglodytidae	Thryothorus genibarbis	closed	Car	1.229	71.5488	2
Troglodytidae	Troglodytes aedon	closed	Car	1.83943	30.6126	123
Troglodytidae	Thryothorus modestus	closed	Car	1.61362	45.6727	5
Troglodytidae	Cistothorus platensis	closed	Car	2.14088	28.1807	12
Troglodytidae	Henicorhina leucophrys	closed	Car	1.22573	52.0072	6
Troglodytidae	Campylorhynchus rufinucha	closed	Car	2.04805	37.5282	16
Troglodytidae	Thryothorus rufalbus	closed	Car	2.54352	34.9931	4
Troglodytidae	Thryothorus pleurostictus	closed	Car	1.98324	33.1058	10
Troglodytidae	Campylorhynchus turdinus	closed	Car	1.30778	28.4259	3
Troglodytidae	Campylorhynchus jocosus	closed	Car	2.01511	33.6356	3
Troglodytidae	Thryothorus felix	closed	Car	2.62309	28.5434	3
Troglodytidae	Campylorhynchus brunneicapillus	closed	Car	1.90298	35.5496	10
Troglodytidae	Thryothorus nigricapillus	closed	Car	2.38091	40.3937	1
Troglodytidae	Thryothorus sinaloa	closed	Car	1.99152	39.7633	3
Turdidae	Catharus aurantiirostris	open	Car	1.7892	27.2358	25
Turdidae	Turdus fumigatus	open	Car	1.70407	34.1202	16
Turdidae	Turdus grayi	open	Omn	2.13243	27.1506	54
Turdidae	Turdus assimilis	open	Car	2.1053	20.3649	21
Turdidae	Myadestes melanops	open	Her	1.32586	16.4644	7
Turdidae	Turdus nudigenis	open	Car	2.15365	22.4256	19
Turdidae	Catharus fuscater	open	Car	2.04553	20.7002	5
Turdidae	Catharus frantzii	open	Car	1.38877	16.6996	9
Turdidae	Turdus fuscater	open	Car	2.55412	40.8747	5
Turdidae	Turdus falcklandii	open	Car	2.2809	29.8489	29
Turdidae	Turdus rufiventris	open	Car	2.41668	25.4792	54
Turdidae	Catharus occidentalis	open	Car	2.40503	15.9297	12
Turdidae	Myadestes occidentalis	open	Her	1.69715	22.7519	13
Turdidae	Turdus albicollis	open	Car	2.193	29.8367	31
Turdidae	Turdus chiguanco	open	Car	2.1283	22.299	9
Turdidae	Catharus mexicanus	open	Car	1.26248	43.031	6
Turdidae	Turdus amaurochalinus	open	Car	2.17088	25.3711	18
Turdidae	Turdus nigriceps	open	Car	2.5432	29.5395	7
Turdidae	Catharus gracilirostris	open	Car	1.32248	12.8491	4
Turdidae	Turdus leucomelas	open	Her	2.46079	31.0139	15

Turdidae	Turdus olivater	open	Omn	1.51006	13.906	2
Turdidae	Turdus leucops	open	Her	2.40644	52.3454	2
Turdidae	Myadestes genibarbis	open	Her	0.56406	27.2898	1
Turdidae	Catharus dryas	open	Car	4.37106	7.05068	1
Turdidae	Turdus nigrescens	open	Omn	1.37205	23.1321	2
Turdidae	Myadestes ralloides	open	Car	2.23344	11.0389	1
Turdidae	Turdus serranus	open	Car	2.23877	58.4425	1
Turdidae	Turdus infuscatus	open	Car	0.93437	15.3531	1
Turdidae	Turdus migratorius	open	Car	2.50768	42.4127	2
Turdidae	Myadestes unicolor	open	Her	2.33587	16.6	1
Tyrannidae	Mionectes oleagineus	closed	Her	2.30995	26.8215	12
Tyrannidae	Myiozetetes cayanensis	closed	Car	1.71979	25.5556	12
Tyrannidae	Myiophobus fasciatus	open	Car	1.6033	21.267	41
Tyrannidae	Tolmomyias sulphurescens	closed	Car	2.07606	23.2764	15
Tyrannidae	Tyrannus melancholicus	open	Car	2.32019	25.4571	105
Tyrannidae	Megarynchus pitangua	open	Car	1.83788	20.1169	13
Tyrannidae	Myiozetetes similis	closed	Car	2.16718	26.2263	56
Tyrannidae	Elaenia flavogaster	open	Car	2.77846	30.5608	46
Tyrannidae	Empidonax flavescens	open	Car	1.85282	37.1922	11
Tyrannidae	Myiophobus cryptoxanthus	open	Car	1.25546	2.11492	1
Tyrannidae	Pitangus sulphuratus	closed	Omn	2.87588	34.4801	140
Tyrannidae	Todirostrum cinereum	closed	Car	1.34673	23.0712	25
Tyrannidae	Elaenia chiriquensis	open	Omn	1.81723	28.5586	12
Tyrannidae	Tyrannus savana	open	Car	2.41218	31.9988	68
Tyrannidae	Camptostoma obsoletum	closed	Car	2.2435	25.6206	9
Tyrannidae	Myiodynastes luteiventris	closed	Omn	2.40266	17.0468	4
Tyrannidae	Myiozetetes granadensis	closed	Car	2.85825	34.428	9
Tyrannidae	Anairetes parulus	open	Car	1.36778	31.1957	19
Tyrannidae	Fluvicola albiventer	closed	Car	1.83176	31.834	15
Tyrannidae	Phylloscartes ventralis	closed	Car	1.66542	28.467	5
Tyrannidae	Fluvicola pica	closed	Car	1.52235	26.693	14
Tyrannidae	Myiarchus tuberculifer	closed	Car	2.54027	33.4504	11
Tyrannidae	Fluvicola nengeta	closed	Car	2.10019	15.2122	3
Tyrannidae	Contopus cinereus	open	Car	2.52773	41.9239	7
Tyrannidae	Legatus leucophaius	closed	Her	1.61462	39.3796	13
Tyrannidae	Contopus latirostris	open	Car	2.23956	16.5188	2
Tyrannidae	Myiarchus oberi	closed	Car	1.04466	39.7998	1
Tyrannidae	Rhynchocyclus brevirostris	closed	Car	1.918	21.6686	7
Tyrannidae	Todirostrum maculatum	closed	Car	1.47997	21.3935	5
Tyrannidae	Muscisaxicola capistratus	closed	Car	1.29896	23.2082	2
Tyrannidae	Myiarchus tyrannulus	closed	Car	1.88921	28.9829	18
Tyrannidae	Phaeomyias murina	open	Car	1.62472	15.1975	3
Tyrannidae	Arundinicola leucocephala	closed	Car	1.42316	19.5153	8
Tyrannidae	Myiopagis gaimardii	open	Car	1.19003	48.2019	1
Tyrannidae	Tyrannus dominicensis	open	Omn	3.03451	27.5236	15
Tyrannidae	Platyrinchus coronatus	open	Car	0.45511	9.63029	3
Tyrannidae	Tolmomyias flaviventris	closed	Car	1.21939	21.3731	5

Tyrannidae	Myiopagis viridicata	open	Car	0.24221	14.9881	1
Tyrannidae	Tyrannus couchii	open	Car	1.87102	23.3507	21
Tyrannidae	Serpophaga cinerea	open	Car	1.71497	9.72186	2
Tyrannidae	Myiarchus barbirostris	closed	Car	1.21233	30.056	1
Tyrannidae	Myiodynastes maculatus	closed	Car	1.98283	26.1682	23
Tyrannidae	Colonia colonus	closed	Car	4.52616	67.707	2
Tyrannidae	Myiarchus ferox	closed	Car	1.84777	27.1765	14
Tyrannidae	Satrapa icterophrys	open	Car	1.85631	29.2033	20
Tyrannidae	Myiarchus sagrae	closed	Car	4.39217	37.9587	1
Tyrannidae	Contopus caribaeus	open	Car	2.09556	9.28847	1
Tyrannidae	Hemitriccus margaritaceiventer	closed	Car	2.50983	39.2535	5
Tyrannidae	Contopus hispaniolensis	open	Car	1.01649	24.2419	2
Tyrannidae	Pyrocephalus rubinus	open	Car	1.97002	25.8193	49
Tyrannidae	Knipolegus lophotes	open	Car	1.454	36.0793	4
Tyrannidae	Xolmis velatus	closed	Car	4.42167	23.1619	5
Tyrannidae	Myiarchus nuttingi	closed	Car	0.95339	37.5131	3
Tyrannidae	Tyrannus albogularis	open	Car	1.6025	65.3381	2
Tyrannidae	Xolmis cinereus	open	Car	2.92949	28.2256	9
Tyrannidae	Sublegatus arenarum	open	Car	1.15974	20.5853	5
Tyrannidae	Tyrannus niveigularis	open	Car	0.75164	26.2512	2
Tyrannidae	Empidonomus aurantioatrocristatus	open	Car	2.65526	27.0805	17
Tyrannidae	Serpophaga subcristata	open	Car	1.82807	20.9104	11
Tyrannidae	Machetornis rixosa	closed	Car	2.0663	34.8732	19
Tyrannidae	Empidonomus varius	open	Car	2.16768	31.7927	6
Tyrannidae	Alectrurus tricolor	open	Car	4.06315	19.9087	1
Tyrannidae	Lessonia rufa	open	Car	2.02038	30.8948	33
Tyrannidae	Cnemotriccus fuscatus	open	Car	3.34115	51.2443	3
Tyrannidae	Elaenia albiceps	open	Car	2.23639	25.5001	18
Tyrannidae	Myiarchus panamensis	closed	Car	1.49197	12.1578	2
Tyrannidae	Sayornis nigricans	open	Car	2.21701	27.8325	29
Tyrannidae	Elaenia obscura	open	Car	2.79272	18.0206	5
Tyrannidae	Myiarchus stolidus	closed	Car	2.91979	30.6374	2
Tyrannidae	Myiarchus cinerascens	closed	Car	1.90744	16.6648	10
Tyrannidae	Poecilotriccus plumbeiceps	closed	Car	0.97613	26.3494	4
Tyrannidae	Attila rufus	open	Car	1.4256	23.5985	2
Tyrannidae	Hirundinea ferruginea	open	Car	1.24106	34.5104	5
Tyrannidae	Euscarthmus meloryphus	open	Car	5.10385	23.4014	1
Tyrannidae	Xolmis coronatus	open	Car	2.86125	43.4078	5
Tyrannidae	Knipolegus cyanirostris	open	Car	0.33647	33.5122	3
Tyrannidae	Xenotriccus mexicanus	open	Car	1.11974	25.1322	3
Tyrannidae	Myiarchus phaeocephalus	closed	Car	2.54991	51.0419	1
Tyrannidae	Hymenops perspicillatus	open	Car	1.9815	34.4127	29
Tyrannidae	Phelpsia inornatus	open	Car	1.57705	37.5455	1
Tyrannidae	Tachuris rubrigastra	open	Car	1.63471	32.1165	23
Tyrannidae	Xolmis irupero	closed	Car	1.66916	29.018	10
Tyrannidae	Muscisaxicola maclovianus	closed	Car	0.93325	27.6678	4
Tyrannidae	Sublegatus modestus	open	Car	1.56563	19.0566	3

Tyrannidae	Myiarchus swainsoni	closed	Car	1.15453	17.8196	2
Tyrannidae	Lathrotriccus euleri	open	Car	0.97794	25.5917	6
Tyrannidae	Tyrannus cubensis	open	Car	0.48935	5.07089	1
Tyrannidae	Serpophaga nigricans	open	Car	1.86165	24.6118	5
Tyrannidae	Agriornis lividus	open	Car	1.78579	26.5828	4
Tyrannidae	Xolmis pyrope	open	Car	1.90734	41.2129	14
Tyrannidae	Contopus pertinax	open	Car	5.07222	52.9343	1
Tyrannidae	Myiophobus inornatus	open	Car	0.95976	11.5063	1
Tyrannidae	Camptostoma imberbe	closed	Car	2.41382	35.4868	3
Tyrannidae	Elaenia strepera	open	Car	0.79912	4.41023	1
Tyrannidae	Elaenia cristata	open	Car	0.69666	2.99915	1
Tyrannidae	Muscisaxicola maculirostris	open	Car	1.63892	18.1321	10
Tyrannidae	Stigmatura budytoides	open	Car	1.45579	10.8552	6
Tyrannidae	Knipolegus signatus	open	Car	1.3572	33.3392	6
Tyrannidae	Knipolegus striaticeps	open	Car	2.03424	15.3239	4
Tyrannidae	Leptopogon amaurocephalus	closed	Car	0.95319	59.5024	3
Tyrannidae	Conopias parvus	closed	Car	0.53212	28.6617	1
Tyrannidae	Agriornis montanus	open	Omn	1.03332	15.6961	2
Tyrannidae	Lessonia oreas	open	Car	1.37361	21.9532	2
Tyrannidae	Elaenia parvirostris	open	Car	2.5519	27.3382	2
Tyrannidae	Muscisaxicola albilora	closed	Car	1.89239	9.25902	3
Tyrannidae	Tyrannus caudifasciatus	open	Car	2.27026	28.6454	1
Tyrannidae	Pseudocolopteryx sclateri	open	Car	0.50924	36.7369	1
Tyrannidae	Empidonax occidentalis	open	Car	0.34787	20.5504	1
Tyrannidae	Pseudocolopteryx flaviventris	open	Car	0.63942	20.4967	6
Tyrannidae	Myiodynastes chrysocephalus	closed	Car	1.56446	49.7627	1
Tyrannidae	Empidonax difficilis	open	Car	1.31692	31.3522	4
Tyrannidae	Ochthoeca fumicolor	open	Car	0.25532	51.8999	1
Tyrannidae	Platyrinchus cancrominus	open	Car	2.50409	31.4949	1
Tyrannidae	Tyrannus crassirostris	open	Car	2.42821	29.6315	1
Tyrannidae	Neoxolmis rufiventris	open	Car	1.93186	27.2644	2
Tyrannidae	Empidonax fulvifrons	open	Car	2.14222	33.6895	2
Tyrannidae	Tyrannus vociferans	open	Car	2.25504	35.6734	5
Tyrannidae	Knipolegus aterrimus	open	Car	1.17619	48.703	3
Tyrannidae	Myiodynastes bairdii	closed	Car	1.85118	11.7858	1
Tyrannidae	Tyrannus verticalis	open	Car	1.20553	21.8563	1
Tyrannidae	Agriornis micropterus	open	Car	1.91273	49.7399	1
Tyrannidae	Sayornis saya	open	Car	1.93898	58.9198	1
Tyrannidae	Muscisaxicola flavinucha	closed	Car	1.59973	14.6463	2
Tyrannidae	Phaeomyias tumbezana	open	Car	1.66713	6.64768	1
Tyrannidae	Muscisaxicola juninensis	closed	Car	4.87721	60.3987	1
Tyrannidae	Muscisaxicola albifrons	closed	Car	1.41153	39.7722	1
Tyrannidae	Muscisaxicola cinereus	closed	Car	2.93793	22.9864	1
Vireonidae	Cyclarhis gujanensis	open	Car	1.25614	22.5646	6
Vireonidae	Hylophilus pectoralis	open	Car	3.46549	20.9983	3
Vireonidae	Vireo flavoviridis	open	Car	1.77432	38.2123	8
Vireonidae	Vireo olivaceus	open	Car	1.79872	29.3026	10

Vireonidae	Vireo altiloquus	open	Car	3.31661	18.0944	3