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Resumo

Seja G um grupo finito. Uma involução de G é um elemento de G de ordem 2. G é
chamado de piramidal se todas as involuções de G forem conjugadas em G, e G é chamado
de m-piramidal se for piramidal e tiver precisamente m involuções, onde m é um inteiro
positivo. Os grupos piramidais podem ser interpretados como grupos espećıficos de auto-
morfismos de certas estruturas combinatórias chamadas de sistemas triplos de Kirkman
piramidais, que foram objeto de estudo em artigos recentes (veja [1, 2]). Mais especifica-
mente, um grupo m-piramidal age como grupo de automorfismos de um sistema triplo de
Kirkman piramidal, regularmente em todos os pontos excetom pontos fixos. Obviamente,
a ordem de um grupom-piramidal G está fortemente relacionada ao número de vertices de
um sistema triplo de Kirkman piramidal. Bonvicini, Buratti, Garonzi, Rinaldi e Traetta
[2] forneceram algumas propriedades de grupos 3-piramidais e o conjunto de ordens para
tais grupos. Nosso objetivo é provar que, se m é uma potência de um primo ı́mpar pk

onde p ̸= 7, então todo grupo m-piramidal é solúvel se e somente se m = 9 ou k é ı́mpar.
Também determinamos as ordens dos grupos m-piramidais quando m ̸= 7 é um número
primo. Além disso, obtemos uma classificação dos grupos 3-piramidais. Posteriormente,
são discutidos os números de subgrupos ćıclicos e subgrupos ćıclicos maximais de G. Uma
famı́lia de grupos é chamada (maximal) cyclic bounded ((M)CB) se, para cada número
natural n, existem apenas um número finito de grupos na famı́lia com no máximo n sub-
grupos ćıclicos (maximais). Neste tópico, provamos que a famı́lia de grupos de ordem de
potência de primo é MCB. Provamos também que a famı́lia de grupos finitos sem fatores
diretos coprimos ćıclicos é CB. Como consequência, um número natural n ⩾ 10 é primo
se, e somente se, houver apenas um número finito de grupos finitos com precisamente n
subgrupos ćıclicos. O conteúdo dessa tese consiste dos artigos [8, 9, 10]. O primeiro deles
foi publicado no Journal of Algebra, os outros dois foram submetidos para publicação.

Palavras-chave: Grupos primitivo, Grupos finito, Grupos solúveis, Sistemas Triplos
de Kirkman, Subgrupos ćıclicos, Subgrupos ćıclicos maximais.

T́ıtulo em português: Sobre os grupos piramidais de grau potência de primo e o
número de subgrupos ćıclicos.



Abstract

Let G be a finite group. An involution of G is an element of G of order 2. G is called
pyramidal if all involutions of G are conjugate in G, and G is called m-pyramidal if it is
pyramidal and it has precisely m involutions, where m is a positive integer. Pyramidal
groups can be interpreted as specific groups of automorphisms of certain combinatorial
structures called pyramidal Kirkman triple systems, which were object of study in recent
papers (see [1, 2]). More specifically, an m-pyramidal group acts as automorphism group
of an m-pyramidal Kirkman triple system, regularly on all but m fixed points. Obviously,
the order of an m-pyramidal group G is strongly related to the vertex size X of an m-
pyramidal Kirkman triple system. Bonvicini, Buratti, Garonzi, Rinaldi and Traetta [2]
provided some properties of 3-pyramidal groups and the set of orders for such groups. Our
goal is to prove that, if m is an odd prime power pk where p ̸= 7, then every m-pyramidal
group is solvable if and only if eitherm = 9 or k is odd. We also determine the orders of the
m-pyramidal groups when m ̸= 7 is a prime number. Moreover, we obtain a classification
of 3-pyramidal groups. Subsequently, the numbers of cyclic and maximal cyclic subgroups
of G are discussed. A family of groups is called (maximal) cyclic bounded ((M)CB) if,
for every natural number n, there are only finitely many groups in the family with at
most n (maximal) cyclic subgroups. In this topic we prove that the family of groups of
prime power order is MCB. We also prove that the family of finite groups without cyclic
coprime direct factors is CB. As a consequence, a natural number n ⩾ 10 is prime if and
only if there are only finitely many finite groups with precisely n cyclic subgroups. The
content of this thesis consists of the papers [8, 9, 10]. The first of them was published in
the Journal of Algebra, the other two were submitted for publication.

Keywords: Primitive group, Finite group, Solvable group, Kirkman Triple System,
Cyclic subgroup, Maximal cyclic subgroup.





Notation

Symbol Meaning

|G| order of a group G

o(g) order of an element g

ag the conjugate of a by g: g−1ag

[x, y] the commutator of x and y: x−1y−1xy

[H,K] the commutator subgroup of H and K

|G : K| the index of K in G

G′ derived subgroup of G

H ×K the direct product of H and K

H : K or H ⋊K the semidirect product (or split extension) of H by K

H.K or HK an unspecified extension of H by K

H ·K any case of H.K which is not a split extension

H ≀K the wreath product of H and K

H ◦K the central product of H and K

[n] an arbitrary group of order n

n or Cn a cyclic group of order n

Gn the direct product of n groups of structure G

pn the elementary abelian group of order pn

pm+n the extension of an elementary abelian group of order pm by an ele-

mentary abelian group of order pn

p1+2n an extraspecial group of this order with centre of order p and central

quotient elementary abelian of order p2n

A \B or A−B elements of A not in B

Q2n quaternion group of order 2n

D2n dihedral group with 2n elements

SD2n semidihedral group of order 2n
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Symbol Meaning

Φ(G) Frattini subgroup of G

MG the normal core of M in G

(a, b) the greatest common divisor of a and b

⌊n⌋ largest integer ⩽ n

Fq field with q elements

In an n× n identity matrix

SmallGroup(n, i) the i-th group of order n in the Small Group Library of GAP
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Introduction

In Query 6 of the Lady’s and Gentleman’s Diary of 1850, T. P. Kirkman posed the
following problem, known as Kirkman’s School-Girl Problem: 15 young ladies in a school
walk out 3 abreast for 7 days in succession: it is required to arrange them daily, so that
no two shall walk twice abreast.

The Kirkman’s School-Girl Problem can be generalized to v girls. On each of (v−1)/2
days, each girl is to be included in exactly one group of 3 and each pair of girls are to
walk in the same group of girls exactly once. In 1971, D. K. Ray-Chaudhuri and R. M.
Wilson proved that such a schedule exists if and only if v ≡ 3 mod 6 (see [4]). A solution
to this problem is an example of a Kirkman triple system, which is a Steiner triple system
having a parallelism, that is, a partition of the blocks of the triple system into parallel
classes which are themselves partitions of the points into disjoint blocks.

Now we introduce the definitions of Steiner triple system and Kirkman triple system.
Sometimes, in order to save space, we write blocks in the form abc rather than {a, b, c}.

A Steiner triple system of order v, briefly STS(v), is a pair (V,B) where V is a set of
v points and B is a set of 3-subsets (blocks) of V with the property that any two distinct
points are contained in exactly one block, in other words, for any pair of points x ̸= y,
there exists a block containing both x and y.

For example:

STS(7)

1
2

3

4

5
6

7

In the above Steiner triple system STS(7), we have V = {1, 2, . . . , 7} and

B = {124, 137, 457, 267, 165, 463, 235}.
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A Kirkman triple system of order v, briefly KTS(v), is an STS(v) together with a
resolution R of its block set B, that is a partition of B into classes (parallel classes) each
of which is, in its turn, a partition of the point-set V .

For example:

KTS(9)

1 2 3

4 5 6

7 8 9

In the above Kirkman triple system KTS(9), we have V = {1, 2, . . . , 9},

B = {123, 456, 789, 147, 258, 369, 168, 249, 357, 159, 267, 348},

and

R = {{123, 456, 789}, {147, 258, 369}, {168, 249, 357}, {159, 267, 348}}.

Moreover, we have the following 4 parallel classes:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 6, 8}, {2, 4, 9}, {3, 5, 7},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}.

Note that a STS(v) has 1
3

(
v
2

)
= 1

6v(v − 1) blocks and a KTS(v) has 1
2(v − 1) parallel

classes. It has been known since the mid-nineteenth century that a STS(v) exists if and
only if v ≡ 1 or 3 mod 6 [3]. The analogous result for KTSs has been instead obtained
more than a century later [4]: a KTS(v) exists if and only if v ≡ 3 mod 6. These
structures fall into the broader category of combinatorial designs.

An automorphism of a Steiner triple system is a permutation of its points leaving
the block-set invariant. Analogously, an automorphism of a Kirkman triple system is
an automorphism of the underlying Steiner triple system leaving the resolution invariant.
Thus an automorphism of a KTS is automatically an automorphism of the underlying STS
though the converse is not true in general. Of course, the automorphisms of a STS (resp.
KTS) D form a group with composition, which we denote by Aut(D). Steiner triple
systems that possess an automorphism with a specified property or an automorphism
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group with a specified action have attracted significant attention for a long time. For
more information on this subject, see [1].

Recall that a group action of G on a set X is called regular if it is transitive and its
point stabilizers are trivial. In this case, |G| = |X|.

A Steiner (resp. Kirkman) triple system D is called m-pyramidal if there exists a
subgroup G of Aut(D) fixing m points and acting regularly on the other points. If this
happens, we say that the STS (resp. KTS) is m-pyramidal realized “under”G. Note that
if this happens, then of course D has |G| +m points.

Let us give an example. We construct a 3-pyramidal Kirkman triple system under
G = S3. V = {vertices}.

G = S3 = ⟨x, y : x3 = y2 = 1, yx = x2y⟩ = {1, x, x2, y, xy, x2y}.
V = G ∪ {∞1,∞2,∞3} = {∞1,∞2,∞3, 1, x, x2, y, xy, x2y}.

KTS(9)

∞3
x2

x2y

∞2
x xy

∞1 1 y

For the above Kirkman triple system KTS(9), we have 5 G-orbits of blocks and 4 parallel
classes.

{∞1,∞2,∞3}, {1, x, x2}, {y, xy, x2y},

{∞1, 1, y}, {∞2, x, xy}, {∞3, x
2, x2y},

{∞1, x, x
2y}, {∞2, x

2, y}, {∞3, 1, xy},
{∞1, x

2, xy}, {∞2, 1, x2y}, {∞3, x, y}.

Let D be a Steiner triple system, M. Buratti, G. Rinaldi and T. Traetta proved that
if D is 3-pyramidal realized under G then G has precisely 3 involutions. Moreover, they
proved the following result in [1]:

Theorem (M. Buratti, G. Rinaldi, T. Traetta, 2017). A 3-pyramidal Steiner triple system
STS(v) exists if and only if v ≡ 7, 9, 15 mod 24 or v ≡ 3, 19 mod 48.



4 Introduction

In [2], the following theorem was proved for the 3-pyramidal Kirkman triple system
KTS(v), providing a necessary condition for its existence.

Theorem (S. Bonvicini, M. Buratti, M. Garonzi, G. Rinaldi, T. Traetta, 2021). A neces-
sary condition for the existence of a 3-pyramidal Kirkman triple system KTS(v) is that
v = 24n+ 9 or v = 24n+ 15 or v = 48n+ 3 for some n which, in the last case, must be of
the form 4em with m odd. This condition is also sufficient in each of the following cases:

(1) v = 24n+ 9 and 4n+ 1 is a sum of two squares.

(2) v = 24n + 15 and either 2n + 1 ≡ 0 mod 3 or the square-free part of 2n + 1 does
not have any prime p ≡ 11 mod 12.

(3) v = 48n+ 3.

Moreover, they provided some difference methods to construct 3-pyramidal Kirkman
triple systems and observed that each group having a 3-pyramidal action on a Kirkman
triple system must have exactly three involutions, and these involutions are pairwise
conjugate (see [2, Theorem 3.8]). We can prove the following result about an m-pyramidal
Kirkman triple system using the same method as in [2].

Call ∞i the fixed points, for i = 1, . . . ,m. Clearly, we may identify the vertices of the
KTS with

V = G ∪ {∞1, . . . ,∞m}.

G acts on V by right multiplication on the elements of G and by fixing the points ∞i.

The following will be proved in section 2.1.

Proposition. Assume an m-pyramidal KTS can be realized under a nontrivial group G.
Then G has precisely m involutions and the involutions of G are pairwise conjugate.

This motivates the following definition. In this thesis, all groups are assumed to be
finite.

Definition (Pyramidal groups). A group G is called m-pyramidal if G has precisely m
involutions, which are all conjugate to each other. G is called pyramidal if it is m-
pyramidal for some m.

If G is a finite group with m involutions, and m ⩾ 1, then m is odd. In fact, by
Lagrange’s theorem |G| is even. Note that the set {x ∈ G : x ̸= x−1}, on one hand, has
even size, and on the other hand, is of size |G| − 1 − m. Therefore |G| and |G| − 1 − m
are even, and so m is odd.

For example, if m is any odd integer larger than 1, then the dihedral group D2m with
2m elements is a solvable m-pyramidal group. The alternating group A5 of degree 5 is
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a nonsolvable 15-pyramidal group. Moreover, if G is m-pyramidal and H is any group
of odd order, then G × H is also m-pyramidal. Observe that an m-pyramidal group G
is necessarily nonabelian of order divisible by 2m. Indeed, the number m divides |G| by
the Orbit-Stabilizer theorem, which states that the length of the G-orbit of an element x
equals the index of StabG(x) in G (see Definition 1.1.1). On the other hand, G contains
involutions, so |G| is also divisible by 2.

There is literature about finite solvable pyramidal group see for example [5, Section 8
of Chapter IX]. The Sylow 2-subgroups of such groups were classified by D. L. Shaw [6],
they are cyclic, generalized quaternion (in case there is only one involution), homocyclic
(direct products of isomorphic cyclic groups) or Suzuki 2-groups, i.e. 2-groups P that
admit a solvable subgroup of Aut(P ) whose action on the involutions of P is transitive.
The pyramidal nonsolvable simple groups were classified in the proof of [7, Lemma 1]. It
is natural to ask whether it is possible to determine all the values of the odd integer m
such that every m-pyramidal group is solvable. In Chapter 2 we discuss the solvablity of
m-pyramidal groups where m ̸= 7 is prime and we get the following Theorem A. It was
proved in [9].

Theorem A (X. Gao, M. Garonzi). Let m ̸= 7 be a prime number and let G be an
m-pyramidal group. Then G is solvable.

After establishing the solvability of m-pyramidal groups where m ̸= 7 is prime, we
turned our attention to the case of prime power, conjecturing whether all pk-pyramidal
groups are solvable. Subsequently, we found counterexamples, such as if q > 3 is any odd
prime power, then F2

q ⋊ SL(2, q) is a nonsolvable q2-pyramidal group (see Chapter 3). In
Chapter 3 we discuss the values of prime powers m for which the m-pyramidal groups are
all solvable and the following Theorem B was proved in [9].

Theorem B (X. Gao, M. Garonzi). Let m be a prime power pk with p ̸= 7 an odd prime.
Then the following are equivalent.

(1) Every m-pyramidal group is solvable.

(2) k is odd or m = 9.

If G is a 1-pyramidal group, then a Sylow 2-subgroup P of G is either a cyclic or a
generalized quaternion group since P has a unique subgroup of order 2 (see [11, Theorem
6.11]). If G is nonsolvable, then P is noncyclic because otherwise G would have a normal
2-complement N in G (see [11, Corollary 5.14]), and hence G/N ∼= P , implying that G
would be solvable because N and G/N are solvable by the Feit-Thompson theorem, a
contradiction. What properties do we have about the m-pyramidal groups? In [2], the
authors obtained some properties about 3-pyramidal groups, such as: if G is a 3-pyramidal
group of order |G| = 2n · d with d odd, then n must be even when n > 1. In Chapter 4,
we give the following theorem C, which provides a classification of 3-pyramidal groups. It
was proved in [8].
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Theorem C (X. Gao, M. Garonzi). Let G be a finite group and O(G) the largest normal
subgroup of G of odd order. Let K be the subgroup generated by the involutions of G.
Then G is 3-pyramidal if and only if one of the following holds.

(1) G is isomorphic to S3 ×H where H is a group of odd order.

(2) O(G) ⩽ CG(K) and G/O(G) is isomorphic to N ⋊A where N is the Suzuki 2-group
of order 64 and A is a subgroup of Aut(N) of order 3 or 15.

(3) O(G) ⩽ CG(K) and G/O(G) is isomorphic to (C2n ×C2n)⋊A where A is the cyclic
group of order 3 generated by the automorphism (a, b) 7→ (b, (ab)−1).

In item (1) K ∼= S3 while in items (2), (3) K ∼= C2 × C2.

The following general question is interesting: if m is an odd positive integer, what are
the values of v such that there exists an m-pyramidal Kirkman triple system KTS on v
vertices? Of course, if an m-pyramidal Kirkman triple system is realized under a group
G, then G is m-pyramidal. Moreover, the number of vertices is |G| + m. However it
is important to observe that the converse is not true. For example, if n is any positive
integer, then G = S3 × C4n+3 is a 3-pyramidal group not associated to any 3-pyramidal
STS (see [1, Theorem 3.4(iii)]: such a STS should have |G| + 3 = 24n + 21 vertices),
and so in particular it is not associated to any 3-pyramidal KTS. Despite this, it is
still interesting to study the orders of the m-pyramidal groups and also the values of the
integers m such that there exist m-pyramidal groups with some prescribed property. In
[2], the following theorem was proved:

Theorem (S. Bonvicini, M. Buratti, M. Garonzi, G. Rinaldi, T. Traetta, 2021). There
exists a 3-pyramidal group of order n if and only if n ≡ 6 mod 12 or n = 4αm with α > 0
and m ≡ 3 mod 6.

Let m be an odd positive integer and let Xm be the set of orders of m-pyramidal
groups. In the following Theorem D we generalize the above result and we concentrate
on the case in which m ̸= 7 is a prime number. The orders of the m-pyramidal groups,
where m ̸= 7 is a prime number, were determined in [9].

Theorem D (X. Gao, M. Garonzi). Let m ̸= 7 be an odd prime number. If m has the
form 2n − 1 for some integer n, set Ym = {2a · m · d : n|a, d odd}, otherwise Ym = ∅.
Write m − 1 = 2t · r with r odd and let Zm = {2a · m · d : 1 ⩽ a ⩽ t, d odd}. Then
Xm = Ym ∪ Zm.

Groups and quantities are closely connected. Some important properties of a group can
be determined by its order, such as the groups of order 15 being cyclic, the groups of order
p2 being abelian, and the groups of order 135 being nilpotent. The second topic of this
thesis concerns the influence of quantity relations on properties of groups. Specifically, we
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focus on the impact of the number of cyclic (resp. maximal cyclic) subgroups of a group
on its structure. In fact, the influence of the number of cyclic (resp. maximal cyclic)
subgroups is an active topic of research (e.g. [12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23]).
In Chapter 5 we discuss the influence of the number of cyclic (resp. maximal cyclic)
subgroups of finite groups on their structure.

If X is an arbitrary subset of a group G, define

c(X) :=
∑
x∈X

1
φ(o(x)) (1)

where o(x) denotes the order of x and φ is Euler’s totient function. Since a cyclic group
of order n has φ(n) generators, the number of cyclic subgroups of G is precisely equal to
c(G). More generally, if whenever x ∈ X and k is an integer coprime to o(x) we have
xk ∈ X, then c(X) equals the size of the set {⟨x⟩ : x ∈ X}, where ⟨x⟩ is the cyclic
subgroup generated by x.

It is easy to see that c(G) = |G| if and only if G is an elementary abelian 2-group. M.
Tǎrnǎuceanu was inspired by this result, and in [13] he classified the finite groups with
c(G) = |G| − 1. In the same article, he proposed the following open question:

Open question. Classify the groups G with c(G) = n for a given n.

M. Garonzi and I. Lima [12] proved that for any r > 0 if G has exactly |G| − r cyclic
subgroups, then |G| ⩽ 8r, therefore the number of such G is finite. Moreover, we can use
the computer program GAP [20] to find all G with exactly |G| − r cyclic subgroups for
small values of r.

E. Haghi and A. R. Ashrafi [24, 19] gave a classification of finite groups with n cyclic
subgroups, where 2 ⩽ n ⩽ 10, K. Sharma and A.S. Reddy [25] classified the finite groups
with 11 cyclic subgroups (see Lemma 5.1.7). In particular, E. Haghi and A. R. Ashrafi
[24] proved the following result:

Theorem (E. Haghi and A. R. Ashrafi, 2018). Let G be a finite group with c(G) < 32.
Then G is solvable.

Another relevant quantity is the number of maximal cyclic subgroups, denoted by
λ(G) (introduced by J. R. Rogerio in [21]). A subgroup H of G is called a maximal
cyclic subgroup of G if it is maximal, with respect to inclusion, in the family of the cyclic
subgroups of G. In other words H is cyclic and it is not properly contained in any cyclic
subgroup of G. Using the fact that every cyclic subgroup is contained in a maximal cyclic
subgroup, it is easy to see that a finite group G is cyclic if and only if λ(G) = 1.

A covering of G is a family H = {H1, . . . , Hk} of proper subgroups of G whose union
is G. Note that G admits a covering if and only if G is noncyclic. The covering H of G
is called irredundant if H \ {Hi} is not a covering for all i ∈ {1, . . . , k}. In other words,
H is irredundant if and only if no proper subfamily of H is a covering.
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It is easy to see that, if G is noncyclic, then the maximal cyclic subgroups of G form
an irredundant covering.

The study of coverings of a group by its subgroups dates back to 1926, when G. Scorza
[26] proved that a group G admits an irredundant covering by 3 subgroups if and only if it
has a normal subgroup N such that G/N ∼= C2×C2. Since then, several authors have been
working on problems involving group coverings in various settings. In [27], J. H. E. Cohn
defined σ(G) to be the minimal size of an irredundant covering of the noncyclic group G.
A number of results were proved for solvable groups leading to the conjecture that if G
is a noncyclic solvable group then σ(G) = pa + 1, where pa is the order of a particular
chief factor of G. It was also conjected that there is no group G for which σ(G) = 7.
Both of these conjectures were later proved by M. Tomkinson in [28]. More recently, A.
Abdollahi et al. [29] gave a complete classification of the groups with σ(G) = 6, while J.
Zhang [30] proved the non-existence of finite groups with σ(G) = 11, 13 and showed that
σ(PSL(2, 7)) = 15. Other papers that contributed to this theory of minimal coverings
over the last decades are [31, 32, 33, 34] and [35].

In [36], R. Brodie considered a slightly different problem. He classified the groups
G that have exactly one irredundant covering by proper subgroups (see also [37, 21] for
more details). J. R. Rogério [21] first defined another extremal variant of the covering
problem. For a group G, define the function λ(G) as the maximal size of an irredundant
covering of G. This function has received attention in recent years, see [21, 22, 23]. By
[21, Proposition 4], if G is noncyclic, then the maximal size of an irredundant covering
of G equals the number of maximal cyclic subgroups of G. In this thesis, if G is a cyclic
group, we set λ(G) = 1, so that λ(G) always coincides with the number of maximal cyclic
subgroups of G.

In [21, 22], J. R. Rogério, R. Bastos, and I. Lima classified the finite groups G with
λ(G) = 3, 4, 5, 6. Furthermore, they [22] provided a solvability criterion for a group G in
terms of the λ(G) as follows:

Theorem (R. Bastos, I. Lima, J. R. Rogério, 2020). Let G be a group with λ(G) ⩽ 30.
Then G is solvable.

We say that an element x ∈ G is primitive if ⟨x⟩ is a maximal cyclic subgroup of G.
Equivalently, the element x ∈ G is primitive if whenever x is a power of an element y ∈ G,
the element y is a power of x.

Let P be the set of primitive elements of G. It is easy to show that G has precisely
c(P ) maximal cyclic subgroups, in other words λ(G) = c(P ). For example, if G is a
p-group (for some prime number p) then λ(G) = c(G) − c(Gp), where Gp = {gp : g ∈ G}
is the set of non-primitive elements.

Assume A and B are groups of coprime orders. Then c(A × B) = c(A) · c(B) and
λ(A×B) = λ(A) · λ(B). This can also be proved by using (1). Specifically, in the case of
λ, an element (a, b) ∈ A×B is primitive in A×B if and only if a is primitive in A and b
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is primitive in B (see Lemma 5.1.10).

We give some examples. If G is a cyclic p-group of order pn (where p is a prime
number), then c(G) = n+ 1 and λ(G) = 1. As an easy but less trivial example, consider
G = D2n, the dihedral group of order 2n. The maximal cyclic subgroups of G are the
non-normal subgroups of order 2 and the unique cyclic subgroup of order n, so that
λ(G) = n + 1. On the other hand c(G) = n + d(n) where d(n) is the number of positive
divisors of n. If m ⩾ 4 is an integer, there exists a noncyclic (abelian) finite group G with
c(G) = m. Indeed we can write m− 2 = np for some prime p and some integer n ⩾ 1 and
c(Cp × Cpn) = np+ 2 = m by Lemma 5.1.12.

A natural question is the following: what does λ(G) bound? Using a result of L. Pyber
[61] about noncommuting elements, we prove that the index of the center |G : Z(G)| can
be bounded above in terms of λ(G) (see Proposition 5.1.5). In particular, the Fitting
length and the derived length of a solvable group can be bounded above in terms of λ(G).
The same is true for the nilpotency class of a nilpotent group. Concerning the derived
length, we prove the following in Section 5.2. It was proved in [10].

Theorem E (X. Gao, M. Garonzi). If G is any finite solvable group then the derived length
of G is at most 2 + 5

2 log3(λ(G)).

We say that a family of groups is (maximal) cyclic bounded ((M)CB) if, for every
natural number n, there are only finitely many groups G in the family (up to isomorphism)
with at most n (maximal) cyclic subgroups. In other words, a family F of groups is CB
(resp. MCB) if, for every natural number n, there are only finitely many groups G in F
(up to isomorphism) such that c(G) ⩽ n (resp. λ(G) ⩽ n).

We give some examples:

• The family of dihedral groups is MCB since λ(D2n) = n+ 1.

• The family of all finite groups is not CB since c(Cp) = 2 for all prime p.

• The family of cyclic 2-groups is CB but not MCB since λ(C2n) = 1 and c(C2n) =
n+ 1.

In particular, not every CB family is MCB. On the other hand, since λ(G) ⩽ c(G), every
MCB family is CB.

In Section 5.3 we prove the following. It was proved in [10].

Theorem F (X. Gao, M. Garonzi). The following statements hold.

(1) The family of noncyclic groups of prime power order is MCB. More precisely, if G
is a noncyclic finite p-group and t = λ(G) then |G| ⩽ ct · tt2

for some constant c.
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(2) The family of groups G such that every nontrivial Sylow subgroup of the center
Z(G) is noncyclic is MCB. In particular, the family of groups with trivial center is
MCB.

Let B be the set of positive integers n such that there are only finitely many finite
noncyclic groups with precisely n cyclic subgroups. From the work of Ashrafi and Haghi
[19, 24] (see also [18] and [17]) we immediately deduce that 3, 4, 5, 6, 7, 9 ∈ B and 8, 10 ̸∈
B. These papers have as objective to classify the groups with a given number of cyclic
subgroups. It is interesting to observe that, in all known results, there are only finitely
many noncyclic groups whose number of cyclic subgroups is a given prime number, in
other words it seems that B contains all the prime numbers. We confirm this in the
following theorem, which was proved in Section 5.4. It was proved in [10].

Theorem G (X. Gao, M. Garonzi). B = {1, 4, 6, 9} ∪ P where P is the set of prime
numbers.



Chapter 1

Preliminaries

In the first chapter, we will introduce some fundamental concepts and results of group
theory that are applied in this thesis.

1.1 General theory and results

Definition 1.1.1. Let Ω be a non-empty set, whose elements are called points. SΩ denotes
the symmetric group on Ω. The action of a group G on Ω, denoted by φ, refers to a homo-
morphism from G to SΩ. Specifically, for every element x ∈ G, there is a corresponding
transformation φ(x) : α 7→ αx on Ω, satisfying the condition

(αx)y = αxy for x, y ∈ G,α ∈ Ω;

or
φ(xy) = φ(x)φ(y) for x, y ∈ G.

The stabilizer of α ∈ Ω, also called point stabilizer, is

Gα = StabG(α) = {g ∈ G : αg = α}.

The kernel of this action equals the intersection of all point stabilizers, namely,

Ker (φ) = {g ∈ G : φ(g) = 1SΩ}
= {g ∈ G : αg = α, ∀α ∈ Ω} =

⋂
α∈Ω

Gα.

The action φ of G on Ω is said to be faithful if Ker (φ) = {1}. It is called trivial if
Ker (φ) = G, and it is called transitive if for any two elements α, β of Ω, there exists
g ∈ G such that αg = β. For α ∈ Ω,

αG = {αg : g ∈ G}
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is the orbit that contains α, it is called G-orbit of α. It is easy to get that

|αG| = |G : Gα| for α ∈ Ω.

In particular, the length |αG| of the orbit αG is a divisor of |G|.

Example 1.1.2. Let H be a subgroup of a group G and let Ω be the set of all right cosets
of H in G. For each x ∈ G, we define an action φ of G on Ω as follows:

φ(x) : Hg 7→ Hgx, ∀Hg ∈ Ω.

It is easy to see that G acts transitively on Ω because for any Hg1, Hg2 in Ω, there exists
g−1

1 g2 ∈ G such that Hg1(g−1
1 g2) = Hg2. The stabilizer of Hg is Hg, and the kernel of

this action is
HG =

⋂
g∈G

Hg.

HG is called the normal core of H in G. In other words, it is the largest normal subgroup
of G contained in H. We say that H is a core-free subgroup of G if HG = {1}.

Definition 1.1.3. Let G ⩽ SΩ and let k be a positive integer not greater than |Ω|. We say
that G is k-transitive on Ω if, for any two ordered k-tuples of elements in Ω, denoted as

(i1, i2, . . . , ik) and (j1, j2, . . . , jk),

there exists an element g ∈ G such that igs = js, where s = 1, 2, . . . , k.

Note that if G ⩽ SΩ is k-transitive for some k ⩾ 2, then it is also (k − 1)-transitive.
For example, the symmetric group Sn is n-transitive, and the alternating group An is an
(n− 2)-transitive group.

Lemma 1.1.4. Assume G acts transitively on Ω and 1 < k ⩽ |Ω|. Then G is k-transitive
on Ω if and only if the stabilizer Gα of α in G is (k − 1)-transitive on Ω \ {α}, where
α ∈ Ω.

Proof. We first suppose that G is k-transitive on Ω. For any two ordered (k − 1)-tuples

(i2, i3, . . . , ik) and (j2, j3, . . . , jk)

of elements in Ω \ {α}. The element g ∈ Gα that transforms

(α, i2, i3, . . . , ik) to (α, j2, j3, . . . , jk)

naturally satisfies transforming (i2, i3, . . . , ik) to (j2, j3, . . . , jk). Thus Gα is (k − 1)-
transitive on Ω \ {α}.

Conversely, let
(i1, i2, . . . , ik) and (j1, j2, . . . , jk)
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be two ordered k-tuples of elements in Ω. Since G acts transitively on Ω, there exists
h ∈ G such that ih1 = j1, and

ih2 = j′
2, . . . , i

h
k = j′

k.

Since Gj1 is (k − 1) transitive on Ω \ {j1}, there is l ∈ Gj1 such that

(j′
2)l = j2, . . . , (j′

k)l = jk.

Write g = hl, then
ig1 = j1, i

g
2 = j2, . . . , i

g
k = jk.

Therefore, G is k-transitive on Ω.

Recall the direct product

G×H = {(g, h) : g ∈ G, h ∈ H}

with identity element 1G×H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g2, h1h2),

(g, h)−1 = (g−1, h−1).

Recall also the semidirect product G⋊H or G : ϕH, where ϕ : H → Aut(G) describes
an action of H on G. We define

G⋊H = {(g, h) : g ∈ G, h ∈ H}

with identity element 1G⋊H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g
ϕ(h−1

1 )
2 , h1h2),

(g, h)−1 = ((g−1)ϕ(h), h−1).

The above Lemma 1.1.4 shows that if G acts transitively on Ω, then G is 2-transitive
on Ω if and only if Gα is transitive on Ω \ {α}. Now we use this property to prove the
following result:

Lemma 1.1.5. Let V = Fn
p and let H be a subgroup of GL(V ). The semidirect product

G = V ⋊H acts naturally (and transitively) on the right cosets of H in G. This action
is 2-transitive if and only if H acts transitively on V \ {0}.

Proof. Let
Ω := {Hv : v ∈ V }

be the set on which G acts. Recall that the stabilizer StabG(H) of H is H. In the light
of Lemma 1.1.4, saying that this action is 2-transitive is equivalent to saying that there
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exists α ∈ Ω such that the action of StabG(α) on Ω \ {α} is transitive. Equivalently, H
acts transitively on Ω \ {H}. In other words, for all v, w ∈ V with v ̸= 0 ̸= w, there
exists h ∈ H such that Hvh = Hw. Equivalently, for every two nonzero vectors v, w ∈ V
there exists h ∈ H such that vhw−1 ∈ H. This condition is equivalent to h−1vhw−1 ∈ H
and, since V � G and V ∩ H = {1}, h−1vhw−1 = {1}, this is equivalent to saying that
vh = w.

For 2-transitive groups, we have the following results, which can be found in [41].

Theorem 1.1.6 (Theorem 4.3 of [41]). Let N be a minimal normal subgroup of a finite
2-transitive group G acting on Ω. Then N is either elementary abelian or simple.

Theorem 1.1.7 (Theorem 4.11 of [41]). The finite 2-transitive groups are explicitly known.
In particular, if k ⩾ 6 then the only finite k-transitive groups are symmetric group Sk

and alternating group Ak+2, the only finite 5-transitive groups are symmetric group S5,
alternating group A7, M12 and M24, and the only finite 4-transitive groups are symmetric
group S4 and alternating groups A6 and the Mathieu groups M11, M12, M23 and M24.

In fact, a finite 2-transitive group has a unique minimal normal subgroup. Moreover,
the classification of finite 2-transitive groups can be found in [41, Tables 7.3 and 7.4].
Now, we provide Tables 7.3 and 7.4 from [41], which correspond to Tables 1.1 and 1.2 in
this thesis.

Degree H = G0 Condition No. of actions

qd SL(d, q) ⩽ H ⩽ ΓL(d, q) up to q if q even, d = 2
2 if (d, q) = (3, 2)

q2d Sp(d, q) � H d ⩾ 2 up to q if q even
q6 G2(q) � H q even up to q

q (21+2 ⋊ 3) = SL(2, 3) � H q = 52, 72, 112, 232 1
q 21+4 � H q = 34 1
q SL(2, 5) � H q = 112, 192, 292, 592 1
24 A6 2
24 A7 1
26 PSU(3, 3) 2
36 SL(2, 13) 1

Table 1.1: Affine 2-transitive groups.

Remark: Table 1.1 lists the finite 2-transitive groups with elementary abelian socle.
The order of the socle of such groups is equal to their degree n (n = pm and p is prime).
The stabiliser G0 = H of the origin is a subgroup of GL(m, p) and it acts transitively on
soc(G) \ {0}. The meanings of remaining symbols in Table 1.1 and detailed information
on the 2-transitive groups can be found in [41, Page 194].
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n Condition N max|G/N | No. of actions

n n ⩾ 5 An 2 2 if n = 6
1 otherwise

(qd − 1)/(q − 1) d ⩾ 2 PSL(d, q) (d, q − 1)e 2 if d > 2
(d, q) ̸= (2, 2), (2, 3) 1 otherwise

22d−1 + 2d−1 d ⩾ 3 Sp(2d, 2) 1 1
22d−1 − 2d−1 d ⩾ 3 Sp(2d, 2) 1 1
q3 + 1 q ⩾ 3 PSU(3, q) (3, q + 1)e 1
q2 + 1 q = 22d+1 > 2 Sz(q) 2d + 1 1
q3 + 1 q = 32d+1 > 3 R1(q) 2d + 1 1
11 PSL(2, 11) 1 2
11 M11 1 1
12 M11 1 1
12 M12 1 2
15 A7 1 2
22 M22 2 1
23 M23 1 1
24 M24 1 1
28 PSL(2, 8) 3 1
176 Hs 1 2
276 Co3 1 1

Table 1.2: Almost-simple 2-transitive groups.

Remark: Table 1.2 lists the finite 2-transitive groups G with simple socle N , n being
the degree. The final column gives the number of non-isomorphic actions. (For example,
for PSL(d, q), d > 2, these actions are on the points and hyperplanes of the projective
space.)

The primitive permutation groups play an important role in the proof of Theorem
A. We would like to introduce the definition, classification, and important properties of
primitive groups.

Definition 1.1.8 (Primitive group). We say that a finite group G is primitive of degree
n if it admits a maximal subgroup M of index n whose normal core MG is trivial, i.e.,
MG = {1}. In other words, M is a core-free maximal subgroup.

LetM be a maximal subgroup of G, it is easy to see thatM/MG is a core-free maximal
subgroup of the quotient group G/MG because

(M/MG)G/MG
=

⋂
gMG∈G/MG

(M/MG)gMG = (
⋂

g∈G

M g)/MG = MG/MG.

Thus G/MG is a primitive group of degree |G : M |.

It is known that the concept of a primitive group has another equivalent definition.
We refer the reader to [38] for more details. Let Ω be a non-empty set and G ⩽ SΩ. A
block B of G is a subset of Ω such that either Bg = B or Bg ∩ B = ∅, for any g ∈ G.
Observe that ∅, Ω and any subset with a single element {ω}, for ω ∈ Ω are blocks, which
are called trivial blocks.

Definition 1.1.9. A faithful transitive permutation representation of a group G is said to
be primitive if it does not have non-trivial blocks. A primitive group is a group which
possesses a primitive permutation representation.
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If H is a subgroup of G, a subgroup K of G is called a supplement of H in G if
G = HK. In particular, we say that K is a complement of H in G if G = HK and
H ∩K = {1}.

The Schur-Zassenhaus theorem is a famous theorem related to complements. It states
the following:

Theorem 1.1.10 (Schur-Zassenhaus). Let G be a group and H a normal subgroup of G
such that (|H|, |G/H|) = 1. Then

(1) H has a complement in G.

(2) If H or G/H is solvable, then all such complements are conjugate in G.

Note that (|H|, |G/H|) = 1, so either |H| or |G/H| is odd. In the light of Feit-
Thompson theorem, groups of odd order are necessarily solvable, thus the solvability
condition in item (2) is always satisfied. H is a Hall π-subgroup of G, where π is the
set of prime divisors of |H|. Moreover, all π-elements of G are contained in H because
otherwise there would exist a π-element x of G such that x ∈ G\H, and then xH would be
a π-element ofG/H since o(xH) divides o(x), contradicting the fact that (|H|, |G/H|) = 1.
Therefore H is the unique subgroup of G of a given order |H|, so H is a characteristic
subgroup of G.

A normal subgroup N ̸= {1} of G is a minimal normal subgroup of G if {1} and N are
the only normal subgroups of G that are contained in N . It is evident that every nontrivial
finite group possesses minimal normal subgroups. Moreover, any nontrivial finite group
is either simple or contains a proper minimal normal subgroup. It is well-known that a
minimal normal subgroup N of a finite group is a direct product of mutually isomorphic
simple groups (see [39, Theorem 5 of Chapter 4]). Thus, if N is solvable, then N is
isomorphic to Cn

p , where p is a prime and n is an integer, and if N is nonsolvable, then
N is isomorphic to Sn, where S is a nonabelian simple group and n is an integer.

Let M and N be two distinct minimal normal subgroups of G, then M ∩ N is also
normal in G. By the minimality of M and N , we can get M ∩N = {1}. For any m ∈ M ,
n ∈ N , we have m−1n−1mn ∈ M ∩N = {1} since M and N are normal subgroups of G.
Therefore mn = nm, and hence [M,N ] = {1}.

Recall that the socle of a finite group G, denoted by soc(G), is the subgroup of G gen-
erated by the minimal normal subgroups of G. The following remarkable result, obtained
by Baer, provides a classification for all primitive groups based on the structure of the
socle of G (see [38]).

Theorem 1.1.11 (Baer). (1) A group G is primitive if and only if there exists a subgroup
M of G such that G = MN for all minimal normal subgroups N of G.
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(2) Let G be a primitive group. Assume that U is a core-free maximal subgroup of
G and that N is a non-trivial normal subgroup of G. Write C = CG(N). Then
C ∩ U = {1}. Moreover, either C = {1} or C is a minimal normal subgroup of G.

(3) If G is a primitive group and U is a core-free maximal subgroup of G, then exactly
one of the following statements holds:

(a) soc(G) = S is a self-centralising abelian minimal normal subgroup of G which
is complemented by U : G = US and U ∩ S = {1}. In this case G is called
affine or primitive of type I.

(b) soc(G) = S is a nonabelian minimal normal subgroup of G which is supple-
mented by U : G = US. In this case CG(S) = {1} and G is called primitive of
type II.

(c) soc(G) = A×B, where A and B are the two unique minimal normal subgroups
of G and both are complemented by U : G = AU = BU and A ∩ U = B ∩ U =
A ∩ B = {1}. Moreover, A = CG(B), B = CG(A), and A, B and AB ∩ U are
nonabelian isomorphic groups. In this case G is called primitive of type III.

Definition 1.1.12. A group G is called almost-simple if it admits a nonabelian simple
normal subgroup S such that CG(S) = {1}.

To say that G is an almost-simple group is equivalent to saying that there exists a
nonabelian simple group S such that S ⩽ G ⩽ Aut(S). Indeed, assume that G is an
almost-simple group as described in Definition 1.1.12. Then the natural homomorphism
G → Aut(S) has kernel equal to CG(S) = {1}, hence G ≲ Aut(S), this implies that
S ⩽ G ≲ Aut(S). Observe that Z(S) = {1}, so we can identify S with the inner
automorphism group Inn(S) and write S ⩽ Aut(S). In particular, it is obvious that
soc(G) = S because otherwise there would exist a minimal normal subgroup L of G
distinct from S, and then L ⩽ CG(S) = {1}, a contradiction. Conversely, let G be a
finite group admitting a nonabelian simple subgroup S such that S ⩽ G ⩽ Aut(S). Since
Aut(S) acts faithfully on S, CG(S) ⩽ CAut(S)(S) = {1}, and thus CG(S) = {1}, this
proves that G admits a nonabelian simple normal subgroup S such that CG(S) = {1}.
Therefore, G is an almost-simple group.

Let G be an almost-simple group with soc(G) = S, and let M be a maximal subgroup
of G such that S ̸⩽M . We claim that M is a core-free maximal subgroup of G. Suppose
for a contradiction that K := MG is not trivial. Since S and K are normal subgroups of
G, so is K ∩S. As S is the (unique) minimal normal subgroup of G, either K ∩S = S or
K ∩ S = {1}. The former case does not hold, as otherwise S ⩽ K, contradicting S ⩽̸M .
Hence K ∩ S = {1}. Thus s−1k−1sk ∈ S ∩K = {1} for any s ∈ S, k ∈ K. It follows that
K ⩽ CG(S) = {1}, which is a contradiction. This establishes the claim. Therefore, G is
a primitive group of type II.

Now suppose that H is a permutation group acting on Ω = {1, . . . , n}. Define

Gn = G×G× . . .×G = {(g1, . . . , gn) : gi ∈ G},
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the direct product of n copies of G, and let H act on Gn by permuting the n subscripts.
That is ϕ : H → Aut(Gn) is defined by

(g1, . . . , gn)ϕ(h) 7→ (g1h−1 , . . . , gnh−1), ∀h ∈ H.

Then the wreath product G ≀ H is defined to be Gn : ϕH. An element of G ≀ H can be
written as

(g1, . . . , gn)h with gi ∈ G, h ∈ H

and the multiplication in G ≀H is defined by

(g1, . . . , gn)h(g′
1, . . . , g

′
n)h′ = (g1g

′
1h, . . . , gng

′
nh)hh′.

Let G be a group, let A and B be subgroups of G, and K = A ∩ B. G is called
the central product of A and B with respect to K, denoted by G = A ◦ B, if G = AB
and [A,B] = {1}. Obviously, A and B are normal subgroups of G and K ⩽ Z(G). In
particular, if A ∩B = {1} then A ◦B = A×B.

Let H ⩽ G and S ⊆ G. Then S is a transversal of H in G (or set of right coset
representatives for H in G) if S contains exactly one element of every right coset Hx,
x ∈ G; and S is a left transversal of H in G if S contains exactly one element of every
left coset of H in G.

The following two lemmas can be found in [40]. Lemma 1.1.13 is due to Frobenius.
Lemma 1.1.14 is particularly important for the proof of Theorem A.

Lemma 1.1.13 (Embedding Argument). Let H be a subgroup of the finite group G, let
x1, . . . , xn be a right transversal for H in G, and let ξ be any homomorphism with domain
H, say ξ : H → X. Then the map

f : G → ξ(H) ≀ Sn,

x 7→ (ξ(x1xx
−1
1π ), . . . , ξ(xnxx

−1
nπ))π,

where π ∈ Sn is the unique permutation that satisfies xix ∈ Hxiπ for all i = 1, . . . n, is a
well-defined homomorphism with kernel equal to the normal core of Ker (ξ) in G, in other
words Ker (f) = (Ker (ξ))G.

Lemma 1.1.14. Let G be a finite primitive group of type II with socle Sm for some positive
integer m and nonabelian simple group S. Then there exists an almost-simple group X
with socle S and a transitive group K ⩽ Sm such that G is isomorphic to a subgroup of
X ≀K containing Sm and the restriction of the natural projection G → K is surjective.

Proof. Write
Sm = T1 × T2 × . . .× Tm

for the direct product of m copies T1, . . ., Tm of S. Denote by R the first factor, that is,

R := T1 × {1} × . . .× {1}.
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Let N := NG(R) and C := CG(R). Note that R and C are normal subgroups of N , so
RC/C �N/C. Since R is a nonabelian simple group, R ∩ C = Z(R) = {1}, so that

RC/C ∼= R/R ∩ C = R.

Suppose nC ∈ CN/C(RC/C) where n ∈ N . Then nCrC = rCnC for any r ∈ R, implying
that nrC = rnC, that is n−1r−1nr ∈ C. Observe that n−1r−1nr ∈ R since R � N .
Therefore,

n−1r−1nr ∈ C ∩R = {1},
and so nr = rn for any r ∈ R, this implies that n ∈ C. Thus CN/C(RC/C) = C,
this means that N/C admits a nonabelian simple normal subgroup RC/C such that
CN/C(RC/C) is trivial. Hence X := N/C is an almost-simple group with socle RC/C ∼=
S.

We now apply the embedding argument to the natural homomorphism α : N →
Aut(R). Note that

Ker (α) = {n ∈ N : rn = r,∀r ∈ R} = CN(R) = N ∩ C = C,

so α(N) ∼= N/Ker (α) = N/C = X. Since Sm is a minimal normal subgroup of G, G
acts transitively on the set of direct factors of Sm, this implies that Cg = CG(Rg) for any
g ∈ G, thus the conjugates of C in G are precisely the centralizers of the direct factors of
Sm, therefore an element belongs to the normal core (Ker (α))G if and only if it centralizes
all of the direct factors, in other words

(Ker (α))G =
⋂

g∈G

Cg = CG(Sm) = {1}.

Let ρ : G → Sym(m) denote the conjugation action of G on

Ω = {R = R1, R2, . . . , Rm},

where Ri is the i-th direct factor of Sm and i ∈ I = {1, 2, . . . ,m}. Since G acts transitively
on Ω, it follows that

m = |RG| = |G : StabG(R)| = |G : N |
and G also acts transitively on I. By Lemma 1.1.13, G is isomorphic to a subgroup of
X ≀K where K = Im(ρ) is a transitive subgroup of Sym(m). Moreover, the kernel of the
action ρ of G on Ω is

Y := Ker (ρ) =
m⋂

i=1
NG(Ri) =

⋂
g∈G

N g.

Therefore, G/Y is isomorphic to a subgroup Gρ of Sym(m). In particular, K = Gρ

and Rixρ = Rx
i for x ∈ G and i ∈ I. Let M be a core-free maximal subgroup of G, then

G = MY . This means that if τ is a permutation of I in K, there exists an element x ∈ M
such that the conjugation by x permutes the Ri in the same way τ does: Riτ = Rx

i , for
all i ∈ I. In other words, xρ = τ . This is to say that the projection of M onto K is
surjective.
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Now we introduce the well-known O’Nan-Scott theorem, which gives us a classification
of the maximal subgroups of the alternating and symmetric groups (see [42, Theorem 2.4]).

Theorem 1.1.15 (O’Nan-Scott Theorem). If H is any proper subgroup of Sn other than
An, then H is a subgroup of one or more of the following subgroups:

(1) an intransitive group Sk × Sm, where n = k +m.

(2) an imprimitive group Sk ≀ Sm, where n = km.

(3) a primitive wreath product, Sk ≀ Sm, where n = km.

(4) an affine group AGL(d, p) ∼= pd : GL(d, p), where n = pd.

(5) a group of shape Tm.(Out(T ) × Sm), where T is a nonabelian simple group, acting
on the cosets of a subgroup Aut(T ) × Sm, where n = |T |m−1.

(6) an almost-simple group acting on the cosets of a core-free maximal subgroup of index
n.

The next result states a fact about the length of conjugacy class of finite simple group.
It is Burnside’s Theorem (see [43, Theorem 31.3]).

Theorem 1.1.16 (Burnside Theorem). Let p be a prime number and let r be an integer
with r ⩾ 1. Suppose that G is a finite group with a conjugacy class of size pr. Then G is
not simple.

Definition 1.1.17. For any group G, we define the subgroups Zi(G) for i = 0, 1, 2, . . . as
follows (we abbreviate Zi(G) = Zi). Define Z0 = {1}, and for i > 0, Zi is the subgroup
of G corresponding to Z(G/Zi−1) by the Correspondence Theorem:

Zi/Zi−1 = Z(G/Zi−1).

The sequence of subgroups

{1} = Z0 ⩽ Z1 ⩽ . . . ⩽ Zn ⩽ . . .

is called the upper central series of G; its i-th term Zi is called the i-th center of G. A
group G is said to be nilpotent if Zm(G) = G for some integer m; in this case, the smallest
integer c such that Zc(G) = G is called the nilpotent class of G.

Definition 1.1.18. An abelian series of a group G is a normal series

{1} �G0 �G1 � . . .�Gn = G,

in which each factor Gi+1/Gi is abelian. If G has an abelian series, the length of the
shortest abelian series in G is called the derived length of G.
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Note that a group G is solvable if and only if it has an abelian series. In particular,
a solvable group with derived length at most 2 is said to be metabelian. It is well-known
that every nilpotent group is solvable, but a solvable group is not necessarily nilpotent.

If G is a finite group with a subgroup H such that H ∩ Hx = {1} for all x in G \ H,
then

N = G−
⋃

g∈G

(Hg − {1})

is a normal subgroup of G such that G = HN and H ∩ N = {1} (this is Frobenius’
theorem, see 8.5.5 of [45]). A group G which has a proper nontrivial subgroup H with
the above property is called a Frobenius group. H is called a Frobenius complement and
N the Frobenius kernel.

Let G = N ⋊ H be a Frobenius group with Frobenius kernel N . We know that the
Frobenius kernel N is a nilpotent group, actually it is equal to the Fitting subgroup of G.
This is a deep result that depends on Thompson’s theorem about groups with fixed point
free automorphisms of prime order, see 10.5.6 of [45]. Thus N is solvable. Moreover, the
Frobenius complement H has the property that Sylow p-subgroups of H are cyclic when
p is odd, and cyclic or generalized quaternion if p = 2.

We also need the following fact, which is Theorem 5.53 in [44].

Theorem 1.1.19 (I. N. Herstein). Let G be a finite group admitting an abelian maximal
subgroup H. Then G is solvable.

Proof. Obviously, H ⩽ NG(H) ⩽ G. If H < NG(H), then NG(H) = G by the maximality
of H, it follows that H is a maximal normal subgroup of G. Thus G/H is isomorphic to
a nonabelian simple group S or an abelian simple group Cp, where p is prime. Assume
G/H ∼= S. Since all nonabelian simple groups have nontrivial proper subgroups, there
exists a subgroup M containing H such that

{1} ≠ M/H < G/H ∼= S

by the Correspondence Theorem, thus H < M < G, contradicting the maximality of H.
Thus, G/H ∼= Cp. Hence, H and G/H are both solvable, and so is G. Without loss of
generality NG(H) = H. If H ∩Hx = {1} for all x ∈ G \H, then G is a Frobenius group
with H as its Frobenius complement. Let

N = G−
⋃

g∈G

(Hg − {1}),

then N is the normal kernel of G, and so G/N ∼= H. Since N is nilpotent and H is abelian,
G is solvable. Now we assume that there exists x ∈ G \H such that B = H ∩Hx ̸= {1}.
Then B is normal in both H and Hx because H and Hx are abelian subgroups, so that
H and Hx are subgroups of NG(B), thus H < NG(B). Since H is a maximal subgroup of
G, NG(B) = G, and then B �G. G/B contains the abelian maximal subgroup H/B, by
induction on |G|, G/B is solvable, and B being solvable, so also is G.
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Remark: If the hypothesis “H abelian” is replaced by “H nilpotent”, then the above
Theorem 1.1.19 is not true in general. A deep result of J. G. Thompson allows one to
establish solvability if the group admits a nilpotent maximal subgroup of odd order, the
proof of this result can be found in [45, 10.4.2].

Let a > 1 be a natural number, and let n be an integer greater than 1. A primitive
prime divisor of an − 1 is a prime number p such that p | an − 1 but p ∤ ai − 1 for all
0 < i < n.

Primitive prime divisors play an important role in group theory and number theory.
Next, we will use Zsigmondy’s Theorem to prove Lemma 1.1.21, which is very helpful for
this thesis.

Theorem 1.1.20 (Zsigmondy’s Theorem [47]). Let a and n be integers greater than 1.
Then there exists a prime divisor q of an − 1 such that q does not divide aj − 1 for any
0 < j < n, except exactly in the following cases:

(1) n = 2, a = 2s − 1, where s ⩾ 2.

(2) n = 6, a = 2.

A Mersenne prime is a prime number of the form 2n − 1 for some integer n. If n is a
composite number then so is 2n − 1. Therefore, an equivalent definition of the Mersenne
primes is that they are the prime numbers of the form Mp = 2p − 1 for some prime p.

The following lemma shows, in particular, that prime powers of the form 2n − 1 are
actually prime numbers.

Lemma 1.1.21. If p is a prime number such that pk = an − 1 for some integers k ⩾ 1 and
a, n > 1, then one of the following holds.

(1) (p, k, a, n) = (2, 3, 3, 2),

(2) a = 2, k = 1 and n is a prime number.

Proof. Assume n ̸∈ {2, 6}. Then Zsigmondy’s theorem 1.1.20 implies that an − 1 has a
primitive prime divisor, which of course must be equal to p. It follows that p does not
divide aj − 1 for any j with 1 ⩽ j < n. However, pk = an − 1 is of course divisible by
a − 1, so since p does not divide a − 1 we deduce that a = 2. Since if n = 6 then a = 2,
this argument shows that either a = 2 or n = 2. If n = 2 then pk = (a− 1)(a+ 1) implies
that (p, k, a, n) = (2, 3, 3, 2). Now assume that a = 2.

We have pk = 2n − 1 hence p is odd. We will prove that k = 1 and that n is a prime
number. If n = 2 the claim is obvious, now assume n ⩾ 3. Since p is odd, it is congruent
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to 1, 3, 5 or 7 modulo 8, so p2 ≡ 1 mod 8. On the other hand, pk = 2n − 1 ≡ −1 mod 8
since n ⩾ 3. This implies that k is odd, hence we have a factorization

2n = pk + 1 = (p+ 1)(pk−1 − pk−2 + . . .− p+ 1)

The second factor is a sum of k odd integers, so it is odd. Since it divides 2n, it must be
equal to 1, so that 2n = p + 1 implying k = 1. We now prove that n is a prime number.
Consider a factorization n = rs with r, s positive integers and s > 1. We will prove that
r = 1. Note that

p = 2n − 1 = 2rs − 1 = (2r − 1)(1 + 2r + . . .+ 2r(s−1))

implying that one of the two factors must equal 1. Since s > 1, the second factor is larger
than 1, so 2r − 1 = 1, i.e. r = 1.

Definition 1.1.22. A Fitting chain (or Fitting series or nilpotent series) for a group is a
subnormal series

{1} = N0 �N1 � . . .�Nn = G

such that each factor Ni+1/Ni is nilpotent. The Fitting length or nilpotent length of a
group is defined to be the smallest possible length of a Fitting chain, if one exists.

Note that the Fitting length (or nilpotent length) measures how far a solvable group
is from being nilpotent.

As usual, we denote by Φ(G) the Frattini subgroup of G, which is the intersection of
all the maximal subgroups of G. In particular, if G = {1} then Φ(G) = {1}. Moreover,
the Frattini subgroup Φ(G) of a finite group G is nilpotent (see 5.2.5 of [52]), that is

Φ(G) = P1 × P2 × . . .× Pn,

where Pi is a Sylow pi-subgroup of Φ(G) and {p1, p2, . . . , pn} is the set of all prime divisors
of |Φ(G)|. Thus Pi is a characteristic subgroup of Φ(G) for i = 1, 2 . . . , n. Moreover Pi is
normal in G because Pi �c Φ(G) �G.

The following result can be found in [46].

Theorem 1.1.23 (Gaschütz’s Theorem). Let G be a finite group and S1(G) the product of
all the abelian minimal normal subgroups of G. Then Φ(G) = 1 if and only if G splits
over S1(G).

Now we introduce the following two frequently used results.

Theorem 1.1.24 (Theorem 6.11 of [11]). Let P be a p-group containing at most one sub-
group of order p. Then either P is cyclic, or else p = 2 and P is generalized quaternion.
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Let G be a finite group of even order and P a Sylow 2-subgroup of G. If P has a
unique involution then P is a cyclic group or a generalized quaternion group by Theorem
1.1.24.

Theorem 1.1.25 (Corollary 5.14 of [11]). Let P be a Sylow p-subgroup of G, where G is a
finite group and p is the smallest prime divisor of |G|, and assume that P is cyclic. Then
G has a normal p-complement.

Theorem 1.1.25 shows that if G is a nonsolvable group then a Sylow 2-subgroup P
of G is not a cyclic group. Indeed, assume that P is cyclic, then G has a normal 2-
complement N by Theorem 1.1.25, it follows that G ∼= N ⋊P and |N | is odd. In the light
of Feit-Thompson theorem N is solvable, thus G is solvable, a contradiction.

Lemma 1.1.26. Let G ∼= Cn
p be an elementary abelian p-group where p is prime. Then

Aut(G) ∼= GL(n, p).

Proof. Note that Cn
p can be viewed as an n-dimensional vector space V over the fi-

nite field Fp, and V is a group under addition. Since any Fp-linear map is additive,
GL(n, p) ⩽ Aut(V ). We now prove the other inclusion, in other words we prove that
every automorphism of the additive group V is Fp-linear. Let φ ∈ Aut(V ). If a ∈ Fp then
we can write a = 1 + 1 + . . .+ 1, so

φ(av) = φ((1 + 1 + . . .+ 1)v) = φ(v + . . .+ v) = aφ(v)

for any v ∈ V . Therefore, φ is a linear transformation on V , and then Aut(V ) ⩽ GL(n, p).

1.2 Some properties of primitive and almost-simple groups

Now we include some definitions and results about almost-simple groups that will be
used in the proof of Theorem A. Definition 1.2.1 and Lemma 1.2.2, presented below, can
be found in [8].

Definition 1.2.1. Let G be an almost-simple group with socle S. The maximal subgroup
H of S is G-ordinary if its G-class equals its S-class, in other words for any g ∈ G there
exists s ∈ S such that Hg = Hs. We say that H is ordinary if it is Aut(S)-ordinary.

Note that, if S ⩽ G ⩽ Y ⩽ Aut(S) and H is a Y -ordinary maximal subgroup of S,
then H is also G-ordinary, so that ordinary maximal subgroup of S is G-ordinary for any
almost-simple group G with socle S.

The Aut(S)-class of H is a disjoint union of S-classes: there exist φ1, . . . , φc ∈ Aut(S)
such that the subgroups Hφi ⩽ S are pairwise not conjugate in S and for any φ ∈ Aut(S)
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there exist s ∈ S, i ∈ {1, . . . , c} such that Hφ = Hφis. Let Ci = {Hφis : s ∈ S} be
the S-class of Hφi , for i = 1, . . . , c. Then Aut(S) acts transitively on the set {Ci : i =
1, . . . , c} by sending (Ci, φ) to the S-class of Hφiφ. This corresponds to a homomorphism
π : Aut(S) → Sym(c). Note that H is Aut(S)-ordinary if and only if c = 1.

Lemma 1.2.2. Let G be an almost-simple group with socle S, H a maximal subgroup of
S, and π the map as defined in the previous paragraph.

(1) If G ⩽ Ker (π) then H is G-ordinary.

(2) If G is normal in Aut(S) and H is G-ordinary, then G ⩽ Ker (π).

(3) If c = 2 and G does not have C2 as a quotient, then H is G-ordinary.

(4) If H is G-ordinary, then NG(H) is a maximal subgroup of G and the intersection
NG(H) ∩ S is equal to H. Moreover, |NG(H)| = |G||H|/|S|.

Proof. Item 1. Assume G ⩽ Ker (π) and let g ∈ G. Then Hg belongs to the S-class of
H, so there is some s ∈ S with Hg = Hs. This shows that H is G-ordinary.

Item 2. Assume that G is normal in Aut(S), that H is G-ordinary and let g ∈ G.
Then there is some s ∈ S with Hg = Hs. If i ∈ {1, . . . , c} then, since φigφi

−1 ∈ G,
because G� Aut(S), there is some s ∈ S with Hφigφi

−1 = Hs, therefore

Hφig = Hsφi = Hφiφi
−1sφi

belongs to the S-class of Hφi since S � Aut(S).

Item 3. Let N := Ker (π). Then

G/G ∩N ∼= GN/N ⩽ Aut(S)/N ∼= Im(π) ⩽ Sym(c).

In particular, if c = 2 then the index |G : G ∩ N | is 1 or 2. So if c = 2 and G does not
have C2 as a quotient then |G : G ∩ N | = 1, i.e. G ⩽ N = Ker (π). This implies that H
is G-ordinary by item (1).

Item 4. Since H is G-ordinary, for every g ∈ G, there is s ∈ S such that Hg = Hs,
hence Hgs−1 = H, and hence gs−1 ∈ NG(H). Therefore NG(H)S = G. Since H is not
normal in G, G has a maximal subgroup M with NG(H) ⩽ M < G, so that MS = G.
Since M ∩S�M and NM(M ∩S) ⩽ NG(M ∩S), the maximality of M in G implies that
NG(M ∩ S) is equal to one of M,G. Since

{1} ≠ H ⩽M ∩ S < S

and S is a simple group, M ∩ S cannot be normal in G, so NG(M ∩ S) = M . Since
H ⩽M ∩ S < S, the maximality of H in S implies that M ∩ S = H. Therefore,

NG(M ∩ S) = NG(H) = M
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and
NG(H) ∩ S = M ∩ S = H.

Finally, since MS = G, we have |G| = |M ||S|/|H|, this implies that |M | = |NG(H)| =
|G||H|/|S|.

In fact, the ordinary maximal subgroups of the low-dimensional finite classical simple
groups can be found in the tables provided in [48, Chapter 8]. For example: Table 1.3
and Table 1.4 correspond to Table 8.1 and Table 8.16 of [48], respectively. In those two
tables, the definition of c is given above and the ordinary maximal subgroups of PSL(2, q)
and Sz(q) are those groups corresponding to c = 1 in Tables 1.3 and 1.4. We will use
these two tables to prove Lemma 1.2.7 and Theorem A.

Ci Subgp Notes c Stab

C1 Eq : (q − 1) 1 ⟨δ, ϕ⟩
C2 Q2(q−1) q ̸= 5, 7, 9, 11; q odd 1 ⟨δ, ϕ⟩

N1 if q = 7, 11 1 ⟨δ⟩
N2 if q = 9 1 ⟨δ, ϕ⟩

C2 D2(q−1) q even 1 ⟨ϕ⟩
C3 Q2(q+1) q ̸= 7, 9; q odd 1 ⟨δ, ϕ⟩

N1 if q = 7 1 ⟨δ⟩
N2 if q = 9 1 ⟨δ, ϕ⟩

C3 D2(q+1) q even 1 ⟨ϕ⟩
C5 SL(2, q0).2 q = q2

0 , q odd 2 ⟨ϕ⟩
C5 SL(2, q0) q = qr

0 , q odd, r odd prime 1 ⟨δ, ϕ⟩
C5 PSL(2, q0) q = qr

0 , q even, q0 ̸= 2, r prime 1 ⟨ϕ⟩
C6 21+2

− .S3 ∼= 2·S−
4 q = p ≡ ±1 mod 8 2 1

21+2
− : 3 ∼= 2·A4 q = p ≡ ±3, 5, ±13 mod 40 1 ⟨δ⟩

N1 if q = p ≡ ±11, ±19 mod 40 1 ⟨δ⟩
d := |Z(SL(2, q))| = (q − 1, 2), |δ| = d, |ϕ| = e, q = pe ⩾ 4.

Table 1.3: The maximal subgroups of SL(2, q) (= Sp(2, q) ∼= SU(2, q)) of geometric type

Ci Suzuki Subgp Notes c Stab

C1 H(q) E1+1
q : Cq−1 1 ⟨ϕ⟩

C2/C1 B0 D2(q−1) 1 ⟨ϕ⟩
C3/C8 B1 or B2 (q −

√
2q + 1) : 4 1 ⟨ϕ⟩

C3/C8 B2 or B1 (q +
√

2q + 1) : 4 1 ⟨ϕ⟩
C5 G(q0) Sz(q0) q = qr

0 , r prime, q0 ̸= 2 1 ⟨ϕ⟩
|Z(Sz(q))| = 1, |ϕ| = e. Note that Sz(2) ∼= F20 ∼= 5 : 4 is soluble.

Table 1.4: The maximal subgroups of Sz(q) < Sp(4, q), q = 2e, e > 1 odd.

Remark: The meaning of the notation in Tables 1.3 and 1.4 can be found in [48].

Recall that a nonabelian simple group is called a minimal simple group if its proper
subgroups are solvable. J. G. Thompson [49] proved the following theorem.

Theorem 1.2.3 (J. G. Thompson). Every minimal simple group is isomorphic to one of
the following groups:
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(1) PSL(2, 2r), r any prime.

(2) PSL(2, 3r), r any odd prime.

(3) PSL(2, p), p any prime exceeding 3 such that p2 + 1 ≡ 0 mod 5.

(4) Sz(2r), r any odd prime.

(5) PSL(3, 3).

D. Levy [50] provided the definition of a minimal almost-simple group that is analogous
to minimal simple groups.

Definition 1.2.4. A subgroup H of an almost-simple group G is called faithful if soc(G) is
not contained in H, it is called unfaithful if soc(G) is contained in H. The almost-simple
group G is called minimal almost-simple if every faithful subgroup of G is solvable. In
other words, G is minimal almost-simple if and only if every subgroup of G not containing
soc(G) is solvable.

For example, minimal simple groups are minimal almost-simple groups. A nonabelian
simple group T is called “new” if it is not minimal simple but it is the socle of a minimal
almost-simple group. D. Levy [50] provided the following classification of minimal almost-
simple groups, which is very helpful in the proof of Theorem A (see [50, Theorem 1.20]).

Theorem 1.2.5 (D. Levy). Let L be an almost-simple group. Then L is minimal almost-
simple if and only if its socle T is isomorphic to one of the groups on the following list
subject to the indicated conditions.

(1) PSL(2, 2r), r any prime. T is minimal simple, Out(T ) = ⟨ϕ | o(ϕ) = r⟩.

(2) PSL(2, 3r), r any odd prime. T is minimal simple, Out(T ) = ⟨δ, ϕ | o(δ) = 2, o(ϕ) =
r, [δ, ϕ] = 1⟩.

(3) PSL(2, p), p > 3 a prime satisfying p2 + 1 ≡ 0 mod 5. T is minimal simple,
Out(T ) = ⟨δ | o(δ) = 2⟩.

(4) PSL(2, p), p ⩾ 11 a prime satisfying p ≡ ±1 mod 10 and L = Aut(T ). T is new,
Out(T ) = ⟨δ | o(δ) = 2⟩.

(5) PSL(2, p2m), p ⩾ 3 a prime, m a positive integer and L/ Inn(T ) ̸⩽ ⟨ϕ⟩. T is new,
Out(T ) = ⟨δ, ϕ | o(δ) = 2, o(ϕ) = 2m, [δ, ϕ] = 1⟩.

(6) Sz(2r), r any odd prime. T is minimal simple, Out(T ) = ⟨ϕ | o(ϕ) = r⟩.

(7) PSL(3, 3). T is minimal simple, Out(T ) = ⟨γ | o(γ) = 2⟩.

For the following definition we refer the reader to [48, Definition 1.3.8].
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Definition 1.2.6. Let G be an almost-simple group with soc(G) = S. A maximal subgroup
M of G is called a novel maximal subgroup (or, simply, a novelty) if S ∩ M is not a
maximal subgroup of S.

Recall that if L is any almost-simple group, then L is a primitive group of type II.
Next, we prove the following result using Table 1.3, Table 1.4 and Theorem 1.2.5.

Lemma 1.2.7. Let L be a minimal almost-simple group with socle S. Assume that L/S is
a cyclic m-group where m is an odd prime number. Let R be a maximal subgroup of L
such that RS = L. Then R ∩ S is a maximal subgroup of S.

Proof. If L = S then there is nothing to prove, so we can assume that S < L, and, in
this case |L/S| = ms for some integer s ⩾ 1. Note that L/S ⩽ Out(S). Considering the
list of minimal almost-simple groups in Theorem 1.2.5, we see that for cases (3), (4), (5)
and (7) we have that Out(S) is a nontrivial 2-group and hence they are eliminated as
candidates for L. In case (1), S ∼= PSL(2, 2r) where r is a prime, and | Out(S)| = r. So
we have to consider r = m ⩾ 3 and s = 1. To prove the statement of the lemma we have
to check that the maximal subgroups of L which do not contain S are not novelties (R
is a novelty precisely when R ∩ S is not maximal in S). This can be done by consulting
Table 1.3, where novelties are marked by the letter N followed by a serial number. One
can check that PSL(2, 2r) do not have novelties. In case (2), S ∼= PSL(2, 3r) where r is
an odd prime, and Out(S) has a unique cyclic subgroup of order r. Setting r = m and
s = 1, we can verify that the maximal subgroups in the relevant entries of Table 1.3 are
not novelties. Finally, in case (6) of Theorem 1.2.5, S ∼= Sz(2r) with r an odd prime and
| Out(S)| = r, and again, consulting Table 1.4 we find that there are no novelties.



Chapter 2

The solvability of pyramidal groups of prime
degree

Recall that a group G is called m-pyramidal if G has precisely m-involutions, which
are all conjugate to each other. G is called pyramidal if it is m-pyramidal for some m. In
particular, m must be an odd integer. In this Chapter, we study pyramidal groups and
prove Theorem A, which we state again for convenience. This theorem was proved in [9].

Theorem A (X. Gao, M. Garonzi). Let m ̸= 7 be a prime number and let G be an
m-pyramidal group. Then G is solvable.

2.1 About pyramidal KTS and pyramidal groups

The following proposition was stated in the introduction and it motivates our interest
in pyramidal groups. We will now prove it.

Proposition 2.1.1. Assume an m-pyramidal KTS can be realized under a nontrivial group
G. Then G has precisely m involutions and the involutions of G are pairwise conjugate.

Proof. First, we prove that G has precisely m involutions. Note that for each i ∈
{1, . . . ,m} there exists a block Bi passing through 1 and ∞i, call it Bi = {1, xi,∞i}.
We claim that xi ∈ G. If it were not the case, then xi would be a fixed point ∞j with
j ̸= i, that is Bi = {1,∞j,∞i}. Thus Big = {g,∞j,∞i} is a block for any g ∈ G.
Since there is a unique block passing through ∞j and ∞i, g = {1}, and then G = {1},
a contradiction. Now, Bix

−1
i = {x−1

i , 1,∞i} is a block by assumption, hence it is equal
to Bi by uniqueness of the block passing through 1 and ∞i. This implies that xi = x−1

i

hence xi has order 2. This gives usm elements of order 2, namely x1, . . . , xm. Now assume
x ∈ G is any element of order 2 and let B = {1, x, y} be the block through 1 and x. Then
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Bx = {x, 1, yx} and again, by uniqueness of the block through 1 and x, we have that
yx = y. Since x ̸= 1, we deduce that y is a fixed point ∞i, therefore x = xi. This proves
that the involutions of G are precisely x1, . . . , xm.

Now we prove that x1, . . . , xm are pairwise conjugate in G. Let Q be the parallel class
containing the block B = {1, x1,∞1}. Note that Bx1 = B, therefore B ∈ Q ∩ Qx1,
hence Qx1 = Q. Now, let Bi = {∞i, gi, hi} be the block of Q through ∞i, for a fixed
i ∈ {1, . . . ,m}. Since Bix1 ∈ Qx1 = Q and the unique block of Q through ∞i is Bi, we
must have Bix1 = Bi, that is

{∞i, gix1, hix1} = {∞i, gi, hi}.

If gix1 = gi and hix1 = hi, then there exist two integers j, k ∈ {1, . . . ,m} with j ̸= i ̸= k
such that gi = ∞j and hi = ∞k, thus Bi = {∞i,∞j,∞k}. Note that the block Bi is fixed
by all g ∈ G, so it belongs to all the parallel classes Qg, g ∈ G, therefore Qg ∩ Q ̸= ∅ for
any g ∈ G, thus Qg = Q for any g ∈ G. Let i ∈ {2, . . . ,m} and let Y = {xi, ai, bi} be the
block in Q containing xi. Obviously, Y xi = {1, aixi, bixi} ∈ Qxi = Q. This implies that

{1, x1,∞1} = {1, aixi, bixi}

because Q is a partition of the point set. But if aixi = ∞1 then ai = ∞1 is a contradiction,
and if bixi = ∞1 then bi = ∞1 is a contradiction (Q is a partition of the point set). Thus
gix1 = hi and hix1 = gi. Note that

Big
−1
i = {∞i, 1, hig

−1
i } = {∞i, 1, gix1g

−1
i },

and this block must equal {1, xi,∞i} by uniqueness of the block through 1 and ∞i. This
proves that gix1g

−1
i = xi.

2.2 Preliminaries

In this section, we will prove some basic and important properties of pyramidal groups.
The authors of [2] proved Lemma 2.2.1 about 3-pyramidal groups.

Lemma 2.2.1 (Lemma 4.4 and Theorem 4.6 of [2]). Let G be a 3-pyramidal group and
write |G| = 2n · d with d odd. Let K be the subgroup of G generated by the 3 involutions.
If n ⩾ 2 then n is even, K is isomorphic to the Klein group C2 ×C2 and G/CG(K) ∼= A3.

Definition 2.2.2. We say that a finite group G of order 2ad with d odd is of n-type if n
divides a.

Lemma 2.2.1 implies that if G is a 3-pyramidal group of order 2n · d where n ⩾ 2 and
d odd then G is of 2-type. We will make use of the well-known Frattini’s argument to
prove Lemma 2.2.4. For Frattini’s argument we refer the reader to [45, 5.2.14].
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Lemma 2.2.3 (Frattini’s argument). If N is a normal subgroup of G and P is a Sylow
p-subgroup of N , then G = NG(P )N .

Lemma 2.2.4. Let m ⩾ 1 be an odd integer and let G be an m-pyramidal group. Write
|G| = 2a · d with d odd and let H be a subgroup of G. Denote by K the (characteristic)
subgroup of G generated by all the involutions of G and define C := CG(K). Then

(1) If H has even order and HC = G, then H is m-pyramidal.

(2) If p is any prime divisor of |G|, Q is a Sylow p-subgroup of C and H = NG(Q),
then H is m-pyramidal.

(3) If m is a prime, and if H has even order and it contains a Sylow m-subgroup of G,
then H is m-pyramidal.

(4) Assume H � G and that |H| is odd. Let ε be an involution in G and let ℓ be the
number of elements h ∈ H with the property that hε = h−1. Then G/H is m/ℓ-
pyramidal. In particular, if G is 1-pyramidal then so is G/H and, if the involutions
of G commute pairwise, then G/H is m-pyramidal.

(5) If m is a prime number and H is a normal 2-subgroup of G then |H| ≡ 1 mod m.

(6) If m = 3 and a = 1 then K ∼= S3 and G ∼= C ×K.

Proof. Item 1. Assume G is m-pyramidal and let H ⩽ G with HC = G and |H| even.
If h ∈ H is an involution and g ∈ G then, writing g = xc where x ∈ H, c ∈ C, we have
hg = hxc = hx ∈ H. This implies that all the involutions of G belong to H and that they
are conjugate in H. We deduce that H is m-pyramidal.

Item 2. With the help of Lemma 2.2.3, we have that HC = G. Since Q ⩽ C, this
implies that K centralizes Q, and hence K ⩽ H, so |H| is even. By item (1), H is
m-pyramidal.

Item 3. Since |H| is even, H contains at least one involution. Note that |G : CG(x)| =
m and C ⩽ CG(x) for any involution x of G. It follows that |G/C| is a multiple of m,
since

|G : C| = |G : CG(x)| · |CG(x) : C| = m · |CG(x) : C|.

Hence there is no Sylow m-subgroup of G contained in C. Let S be a Sylow m-subgroup
of G contained in H. Since m is a prime number and |S| = mz for some integer z,
|xS| = |S : CS(x)| = m or 1 for any involution x of G. If there exists an involution x of
G such that |xS| = 1 then S = CS(x) ⩽ CG(x), thus |G : CG(x)| would not be divisible
by m, a contradiction. This implies that |xS| = m for any involution x of G. Therefore,
S acts transitively on the involutions. Recall that S ⩽ H and H contains at least one
involution ε, so εs ∈ H for any s ∈ S, therefore all involutions of G are contained in H
and H is m-pyramidal.
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Item 4. If xH is an involution of G/H, then x2 ∈ H, this implies that there exists
h ∈ H such that x2 = h. Since |H| is odd, o(h) = t is also odd. It is obvious that o(xH)
divides o(x), so o(x) is even. Moreover,

t = o(h) = o(x2) = o(x)
(2, o(x)) = o(x)

2 .

Hence o(x) = 2t and xt is an involution in G. Since Hx is an involution in G/H, we
have Hx = (Hx)t = Hxt. Hence every involution of G/H has the form Hε where ε is an
involution of G. LetHx andHy be two distinct involutions of G/H, with o(x) = o(y) = 2,
and there is an element 1 ̸= g ∈ G such that xg = y because all involutions of G are
conjugate, thus (Hx)Hg = Hxg = Hy. Therefore, Hx and Hy are conjugate in G/H.
This implies that all involutions of G/H are conjugate. The involutions of G belonging
to the coset Hε have the form hε with h ∈ H and (hε)2 = 1, equivalently hε = h−1.
Therefore Hε contains |Iε| involutions, where

Iε := {h ∈ H : hε = h−1}.

Since all the involutions are conjugate, the size of Iε does not depend on ε, let us call it
ℓ. Since each coset of H corresponding to an involution of G/H contains ℓ involutions,
G/H contains m/ℓ involutions. If m = 1 then of course m/ℓ = 1, in other words, if G is
1-pyramidal, then G/H is 1-pyramidal. Assume that the involutions commute pairwise.
If there exists an involution hε ∈ Hε with h ̸= 1, then ε commutes with hε, so h = (hε)ε
is an involution, contradicting the fact that |H| is odd. This implies that ℓ = 1, so G/H
is m-pyramidal.

Item 5. Since |G : CG(x)| = m for every involution x, we have that m divides |G/C|
so there is an element g ∈ G of order a power of m which acts nontrivially on the set of
involutions. Since m is a prime number, g does not fix any involution (either all the orbits
have size 1 or there is only one orbit of size m). Since H is normal in G, the group ⟨g⟩
acts on H by conjugation. If 1 ̸= h ∈ H with o(h) = 2a for some integer a, and h is fixed
by g, then g also fixes the 2a−1-th power of h, which is an involution, so no nontrivial
element of H is fixed by g. Therefore any orbit of ⟨g⟩ acting on H \ {1} has size a power
of m larger than 1. Note that

H = C1 ∪ C2 ∪ . . . ∪ Cs, where C1 = {1}

and
|H| = 1 + |C2| + . . .+ |Cs|,

where
Ci = h

⟨g⟩
i = {hc

i : c ∈ ⟨g⟩}, and hi ∈ H.

As we proved above |Ci| is a power of m larger than 1 for i = 2, 3, . . . , s. Thus m divides
|H| − 1.

Item 6. Assume a = 1 and i, j, k are the three involutions of G. Then ij ̸= ji, because
if it were not the case, ⟨i, j⟩ would be isomorphic to C2 ×C2, implying that |G| would be
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divisible by 4, a contradiction. So ij ̸= i and of course ij ̸= j since i ̸= j, therefore ij = k.
The same argument shows that ji = k, therefore

(ij)3 = (iji)(jij) = k2 = {1}.

Thus, ij has order 3. Note that K can be generated by two involutions i and j, so K ∼= S3.
Obviously, the order of C is odd because otherwise these three involutions of G would
commute pairwise, a contradiction. Observe that

NG(K)/C = G/C ≲ Aut(K) = S3.

Since |G| is even, |C| is odd, and 3 divides |G/C|, G/C ∼= S3. Moreover, C∩K = Z(K) =
{1}, we have

|CK| = |C| · |K|
|C ∩K|

= |G|,

hence CK = G and, since C,K are normal in G, it follows that G ∼= C ×K.

Proposition 2.2.5. Let N be a finite abelian group of odd order and let A be a subgroup of
Aut(N) containing the inversion map ι : N → N , n 7→ n−1 and with the property that ι is
the unique element of order 2 in A. Then the semidirect product N ⋊A is |N |-pyramidal.

Proof. Write G = NA. If an element na ∈ NA = G has order 2 where n ∈ N and a ∈ A,
then

1 = (na)2 = nana = (n · na−1) · a2.

Thus
n · na−1 = a−2 ∈ A ∩N = {1}.

Hence a2 = 1 and na = n−1. Since |N | is odd, na = n−1 ̸= n, therefore a ̸= 1. This
implies that a has order 2, so a = ι. This proves that the involutions of G are precisely
the elements of the form nι with n ∈ N arbitrary, so G has |N | involutions. Moreover

ιn = n−1ιn = n−2nιn = n−2nn−1ι = n−2ι.

Since |N | is odd, we deduce that all the involutions of G are conjugate to ι, hence G is
|N |-pyramidal.

Lemma 2.2.6. Let G be a finite group whose Sylow 2-subgroups have only one element of
order 2. Then G is pyramidal.

Proof. Let x, y be two involutions of G. There exist two Sylow 2-subgroups P,Q of G
with x ∈ P and y ∈ Q. Let g ∈ G be such that g−1Pg = Q. Then Q contains y and
g−1xg. Since Q contains only one involution, it follows that g−1xg = y.
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Recall that a finite 2-group has a unique element of order 2 if and only if it is cyclic
or generalized quaternion (see [11, Theorem 6.11]). As usual, we denote by O(G) the
maximal normal subgroup of odd order in G. In the following result, Z∗(G) denotes the
inverse image in G of the center of G/O(G). For the proof of the following theorem, see
Theorem 1, Lemma 2 of [51].

Theorem 2.2.7 (Glauberman’s Z* theorem). Let G be a finite group. If T is a Sylow
2-subgroup of G containing an involution ε not conjugate in G to any other element of T ,
then ε ∈ Z∗(G).

Proposition 2.2.8. Let G be a finite group containing precisely m involutions, call them
x1, . . . , xm. If the following hold:

(1) xixj ̸= xjxi for all i ̸= j,

(2) G = ⟨x1, . . . , xm⟩,

then G is m-pyramidal and G′ = O(G) where O(G) is the unique largest odd order normal
subgroup of G, and G ∼= G′ ⋊ C2. In particular, G is solvable. Moreover, if m is a prime
number, then G is a dihedral group of order 2m.

Observe that, in the above proposition, the order of G′ is not equal to m in general,
an example of this is SmallGroup(54,8)= C2

3 : S3 with m = 9.

Proof. First, note that the involutions of G are all conjugate. Indeed, let P be a Sylow
2-subgroup of G, since the center Z(P ) of P is not trivial, there exists an element z of
order 2 belonging to Z(P ), hence z commutes with all the involutions in P , so it is the
only involution of P . By Lemma 2.2.6, G is m-pyramidal.

Let O = O(G) be the largest normal subgroup of G of odd order and let Z∗(G) be the
inverse image in G of the center of G/O. Note that P has only one involution, call it ε, so
ε is not conjugate in G to any other element of P . In the light of Theorem 2.2.7 we have
ε ∈ Z∗(G), i.e., εO ∈ Z(G/O). Therefore O⟨ε⟩ is normal in G, and hence the involutions
of G are all contained in O⟨ε⟩. Since G is generated by the involutions, G = O⟨ε⟩. Since
O ∩ ⟨ε⟩ = 1, we have G = O ⋊ ⟨ε⟩ and hence G′ is contained in O. If a ∈ G is written as
a product of involutions,

a = y1y2 . . . yt−1yt

with ys ∈ {x1, . . . , xm} for all s, then a ∈ G′ if and only if t is even. Indeed, since the
involutions are conjugate, for any two involutions x and y of G there exists g ∈ G such
that y = xg, so that xy = x−1g−1xg, thus any product of two involutions is a commutator,
and this implies that if t is even then a ∈ G′. Conversely, if a ∈ G′ then t must be even,
since if t is odd then yt = yt−1 . . . y1a belongs to G′ since t − 1 is even, this implies that
|G′| is even, contradicting the fact that G′ ⩽ O. Therefore, if ε ∈ G is an involution, then
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for every g ∈ G \ G′ we have gε ∈ G′. This implies that |G : G′| = 2 hence G′ = O. By
the Feit-Thompson theorem, G′ is solvable, so G is solvable.

Now assume that m is a prime number. We will prove, by induction on |G|, that
G ∼= D2m. We know that G = G′ ⋊ ⟨ε⟩, o(ε) = 2. Let M := CG(ε). Since G is
m-pyramidal, |G : M | = m, prime, so M is a maximal subgroup of G.

Suppose first that the normal core MG of M in G is trivial. Then G is a primitive
group of prime degree m. Since G is solvable, G is a primitive group of type I by Theorem
1.1.11, this implies that G = V ⋊M where V ∼= Cm is a minimal normal subgroup of G.
On the other hand, since CG(V ) = V we have

G/V ≲ Aut(Cm) ∼= Cm−1.

It follows that V contains G′ and the minimality of V implies that G′ = V . Therefore
G ∼= Cm ⋊ C2 ∼= D2m.

We now show that MG must in fact be trivial. Suppose for a contradiction that
MG ̸= {1} and let L be a minimal normal subgroup of G contained in MG.

G

O = G′

2
;;

M

m

dd

MG

OO

L ∼= Ca
p

OO

Since G is solvable, L ∼= Ca
p for some prime p and integer a. If p = 2, then L ∼= C2

since G ∼= G′ ⋊ C2 and |G′| is odd. Since L is normal in G, its single nontrivial element
is a central involution of G. This contradicts the fact that the number of involutions m
is prime, so m > 1, and the fact that all involutions are conjugate to each other. Thus
|L| is odd. Clearly, L ̸= G′ since otherwise G′ = L ⩽ M < G and, being |G : G′| = 2,
G′ = M and hence m = 2, a contradiction. By Lemma 2.2.4(4), G/L is 1-pyramidal or
m-pyramidal. If G/L is 1-pyramidal, then xiL = xjL for any two involutions xi and xj of
G, this implies that xixj ∈ L . Since every element of G′ is a product of an even number
of involutions, G′ ⩽ L, and since |G : G′| = 2 we deduce that G′ = L, contradicting the
fact that L ̸= G′. Therefore G/L is m-pyramidal. We now prove that any two distinct
involutions of G/L do not commute. Let x be an involution of G with x ̸= ε. If xεL = εxL
then [x, ε] ∈ L ⩽M = CG(ε), so

xεx = [x, ε]ε = ε[x, ε] = εxεxε

hence ε commutes with xεx, implying that xεx = ε (because two distinct involutions of
G cannot commute), so that xε = εx, a contradiction. This implies that the quotient
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group G/L satisfies all the conditions of the statement, so by induction we may assume
that G/L ∼= D2m. If g ∈ G then

L = Lg ⩽M g = CG(εg).

Since the involutions are all conjugate and generate G, we must have L ⩽ Z(G). Since
any subgroup of L is normal in G, L is an abelian simple group by the minimality of L,
that is, L has prime order p. Since |G : L| = 2m, we deduce that |G| = 2mp and G′ is
abelian because G′/L ∼= Cm and L ⩽ Z(G′). Therefore, G′ is isomorphic to one of:

Cm × Cm, Cm2 or Cm × Cp where m ̸= p,

and then G is isomorphic to one of the following three groups:

(Cm × Cp) ⋊ C2, (Cm × Cm) ⋊ C2 or Cm2 ⋊ C2 ∼= D2m2 .

Since G is generated by m involutions and D2m2 contains m2 involutions, G ∼= (Cm ×
Cp) ⋊ C2 or (Cm × Cm) ⋊ C2. Note that since L ⩽ Z(G) ̸= {1}, we have G ∼= Cp × D2m

or Cm ×D2m, contradicting the fact that G is generated by involutions.

Now, we aim to study pyramidal groups in which the involutions commute pairwise.
Before proving the following Lemma 2.2.9, we introduce the concepts of transvection and
Frobenius automorphism.

Let F be a field and let V be a finite dimensional F -vector space with dimF (V ) = n.
A linear transformation τ of V is called a transvection if there exists a hyperplane U of
V such that uτ = u for all u ∈ U , and uτ − u ∈ U for all u ∈ V . Equivalently, under a
suitable base change, given two distinct i, j ∈ {1, 2, . . . , n} and b ∈ F , a transvection is a
matrix of the form

Tij(b) = 1 + beij,

where eij is the matrix whose sole nonzero entry is a 1 in the (i, j)-position. Obviously,
Tij(b) belongs to SL(V ).

Let A be a unitary commutative ring whose characteristic is a prime number p. The
Frobenius endomorphism φ is defined by

φ : A → A, φ(a) := ap, ∀a ∈ A.

It respects the multiplication of A:

φ(ab) = (ab)p = apbb = φ(a)φ(b),

and φ(1) = 1p = 1 as well. Moreover, it also respects the addition of A:

φ(a+ b) = (a+ b)p =
p∑

i=0

(
p

i

)
aibp−i.
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Observe that, if 0 < i < p, then the integer
(

p
i

)
= p!

i!(p−i)! is divisible by p, since p is a

prime hence it is coprime to i!(p− i)!. Therefore all the summands, considered in A, are
equal to zero, except those which correspond to i = 0 and i = p, that is, bp and ap. This
proves that (a + b)p = ap + bp in A. Therefore, φ is a ring homomorphism. Moreover, if
A is a domain then φ is injective because Ker (φ) = {0} (ap = 0 implies a = 0) and if A
is finite then φ is also surjective by the pigeonhole principle. So if A is a finite field, its
Frobenius endomorphism is an isomorphism, called the Frobenius automorphism.

Lemma 2.2.9. Assume that m ̸= 7 is a prime power, G is an m-pyramidal group and the
subgroup K of G generated by the involutions is an elementary abelian 2-group of size 2n,
so that 2n − 1 = m. Then m is a prime number and G/CG(K) is isomorphic to one of
Cm, Cm⋊Cn, where in the second case the action is given by the Frobenius automorphism
of a field F of size 2n acting naturally on F \ {0}.

Proof. Lemma 1.1.21 implies thatm and n are actually prime numbers and n ̸= 3. Clearly,
K is a minimal normal subgroup of G since K ∼= Cn

2 �G and all involutions of G are con-
jugate. Moreover we have a faithful action by conjugation of NG(K)/CG(K) = G/CG(K)
on K, and hence G/CG(K) is isomorphic to a subgroup H of Aut(K) ∼= GL(n, 2) (see
Lemma 1.1.26) and H is irreducible because the nontrivial elements of K are pairwise
conjugate in G.

We have K ∼= Fn
2 , n ̸= 3 prime, m = 2n − 1 ̸= 7 prime. Since G is an m-pyramidal

group, all elements of K \ {0} form the single conjugacy class of involutions in G and H
acts transitively on K \ {0}. Set

X := K ⋊H,

where ⋊ is defined with respect to the action of H ∼= G/CG(K). Since H acts transitively
on K \ {0}, we have that X is a 2-transitive group, by Lemma 1.1.5. Let kh ∈ CX(K)
where k ∈ K, h ∈ H, then vkh = vh = v for any involution v of K. Since H acts
transitively on K \ {0}, h = 1, it follows that CX(K) = K. Obviously, K is a minimal
normal subgroup of X. We claim that K is the unique minimal normal subgroup of X.
Indeed, suppose that L ̸= K is a minimal normal subgroup of X, then [L,K] = {1}, and
hence L < CX(K) = K, contradicting the minimality of K. This proves that K is the
unique minimal normal subgroup of X, i.e., soc(X) = K. Therefore, X is a 2-transitive
affine group of degree 2n. Consider Table 1.1, which is the classification of 2-transitive
affine groups. Since n is prime, we are only concerned with the first line of the table, in
which the degree qd can be interpreted in two different ways: q = 2n, d = 1 or q = 2,
d = n. The second case gives H = GL(n, 2). The first case gives

Cm
∼= GL(1, 2n) ⩽ H ⩽ ΓL(1, 2n).

Since n is prime, there are only three possibilities for H: namely GL(n, 2), Cm and
Cm ⋊ Cn where, in the third case, the action of Cn on Cm is precisely the natural action
of the Frobenius automorphism of order n, that is ϕ : x 7→ x2, on the set F ∗ = F \ {0}
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where F is the finite field of size 2n. In other words

Cm ⋊ Cn = F ∗ ⋊ ⟨ϕ⟩.

Also, note that GL(n, 2) and Cm ⋊ Cn are the same group if n = 2.

We are left to prove that G/C ̸∼= GL(n, 2) for n > 3, where C = CG(K). We assume
that G is a group of minimal order with the following three properties: G is m-pyramidal,
the involutions of G commute pairwise and G/C ∼= GL(n, 2). Assume that there exists a
maximal subgroup M of G such that C ⩽̸M , then M < MC ⩽ G, thus MC = G by the
maximality of M . Since

GL(n, 2) ∼= G/C = MC/C ∼= M/(M ∩ C)

we have that |M | is even. Lemma 2.2.4(1) implies thatM is m-pyramidal, that is K ⩽M
and all involutions of M are conjugate. Note that

M/CM(K) = M/(C ∩M) ∼= G/C ∼= GL(n, 2)

and |M | < |G|, moreover the involutions of M commute pairwise because they are invo-
lutions in G. This contradicts the minimality of |G|. Therefore C is contained in every
maximal subgroup of G, in other words C ⩽ Φ(G). Since n > 3,

G/C ∼= GL(n, 2) ∼= PSL(n, 2)

is a simple group, so C is a maximal normal subgroup of G and hence C = Φ(G). We
claim that K is the unique minimal normal subgroup of G. Indeed, suppose that L ̸= K
is a minimal normal subgroup of G, then L does not contain K, so it does not contain
involutions, implying that |L| is odd. Note that L ⩽ C because otherwise CL = G by
maximality of C as a normal subgroup of G, and then

GL(n, 2) ∼= G/C ∼= L/(L ∩ C),

this contradicts the fact that |L| is odd. In this case K ∼= K is a minimal normal subgroup
of G where, for R ⩽ G, we define R := RL/L. The fact that L ∩K = {1} easily implies
that CG(K) = C. Moreover,

GL(n, 2) ∼= G/C ∼= G/C.

By Lemma 2.2.4(4), G is an m-pyramidal group in which the involutions commute pair-
wise. Since L ̸= {1}, this contradicts the minimality of |G|. This proves that K is
the unique minimal normal subgroup of G, in particular O(G) = {1}. This implies that
Φ(G) = C is a 2-group. Indeed, if it were not, then it would have a Sylow subgroup of odd
order, which would be normal in G because Φ(G) is nilpotent, contradicting O(G) = {1}.

We are in the following situation: G/C ∼= GL(n, 2), n > 3, K = ⟨x1, . . . , xm⟩ ∼= Fn
2

is the unique minimal normal subgroup of G and C = CG(K) = Φ(G) is a 2-group. Let
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γ : G/C → GL(n, 2) be the canonical map, which by assumption is an isomorphism. We
follow Dempwolff [53, page 2]. Let {v1, . . . , vn} be an F2-basis of K and let τ ∈ G \C act
in the following way: vτ

i = vi−1 + vi for all i ⩽ n− 3 even and vτ
i = vi for all other values

of i. Observe that τ 2 ∈ C and, with respect to the given basis, we have

γ(τC) =



1 1
0 1

. . .

1 1
0 1

1 0 0
0 1 0
0 0 1


.

We can decompose K as a direct sum

K = U1 ⊕ U2 ⊕ . . .⊕ U(n−1)/2

where Ui = ⟨v2i−1, v2i⟩ for i = 1, . . . , (n − 3)/2 and U(n−1)/2 = ⟨vn−2, vn−1, vn⟩. Choose
elements ρ1C, ρ2C, . . . , ρ(n−3)/2C of order 3 in G/C such that, for 1 ⩽ i ⩽ (n− 3)/2,

CK(ρi) = ⟨v1, . . . , v2i−3, v2i−2, v2i+1, v2i+2, . . . , vn⟩

and γ(ρiC) permutes transitively the nontrivial elements in ⟨v2i−1, v2i⟩, and choose ρ(n−1)/2C
as an element of order 7 in G/C with

CK(ρ(n−1)/2) = ⟨v1, . . . , vn−3⟩

and which acts irreducibly on ⟨vn−2, vn−1, vn⟩. Note that, for i = 1, 2, . . . , (n − 3)/2 we
have

γ(ρiC) =



I2i−2

A

In−2i


and

γ(ρ(n−1)/2C) =


In−3

B



where A =
(

0 1
1 1

)
and B =

 0 0 1
1 0 0
0 1 1

. The element A is an element of GL(2, 2) of

order 3 acting transitively on the nonzero vectors of F2
2 and B is an element of GL(3, 2)
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of order 7 acting transitively on the nonzero vectors of F3
2. It is easy to check that

ρ1C, ρ2C, . . . , ρ(n−1)/2C pairwise commute with each other. We construct the element

xC = ρ1ρ2 . . . ρ(n−1)/2C.

Note that (ρiC)τC = ρ2
iC for i = 1, 2, 3, . . . , (n − 3)/2 and (ρ(n−1)/2C)τC = ρ(n−1)/2C,

hence (xC)τC = x8C, and then xτ ∈ x8C, thus there exists c ∈ C such that xτ = x8c, this
implies that xτ ∈ ⟨C, x⟩. Therefore, the element τ normalizes ⟨x,C⟩ (since C is normal
in G). Obviously, o(xC) = 21 and o(x) = 2u · 21 for some u. Up to replacing x with x2u

,
we may assume that o(x) = 21. Moreover, CK(x) = {1} and

γ(xC) =



0 1
1 1

. . .

0 1
1 1

0 0 1
1 0 0
0 1 1


.

Now let H := ⟨C, x, τ⟩ ⩽ G, S = ⟨x⟩, J := NH(S). Since τ normalizes ⟨C, x⟩, we
have ⟨C, x⟩ is normal in H and H/⟨C, x⟩ is a 2-group. Moreover, the order of the quotient
group ⟨C, x⟩/C is 21, it follows that ⟨C, x⟩ is solvable since both C and ⟨C, x⟩/C are
solvable. Therefore, H = ⟨C, x⟩⟨τ⟩ is solvable. Since C is a 2-group, S is a Hall subgroup
of the solvable group H, therefore if h ∈ H then Sh is a Hall subgroup of ⟨C, x⟩. This is
because ⟨C, x⟩ is normal in H, and S is contained in ⟨C, x⟩. Since ⟨C, x⟩ is solvable, there
exists y ∈ ⟨C, x⟩ such that Sh = Sy, so Shy−1 = S. Thus hy−1 ∈ NH(S) = J , so that

H = J⟨C, x⟩ = CJ.

Note that τ ∈ H = CJ , let τ = cθ ∈ CJ where c ∈ C and θ ∈ J . Since τ ∈ G \ C,
we have 1 ̸= θ = c−1τ ∈ τC. Therefore θC = τC, and we may change the definition of
τ in the beginning of the argument by setting it to be equal to θ. There is no harm in
doing this, because all that was used until now has to do only with the action of τ on
K, so we have the freedom to change the representative in τC. Thus we can assume that
τ ∈ J . Since the involutions of G belong to K and τ does not centralize K, τ is not an
involution. Since C is a 2-group, τ has order a power of 2, say o(τ) = 2k with k ⩾ 2, and
hence t := τ 2k−1

has order 2 so it belongs to K. Therefore t ∈ K ∩ J . Since t normalizes
S, we can write xt = xr for some natural number r. Since t ∈ K,

xr−1 = xr · x−1 = xt · x−1 = t−1xtx−1 = t−1(xtx−1) ∈ K

and since x has odd order this implies that xr−1 = 1, hence xt = xr = x, so t ∈ CK(x) =
{1}, which implies that t = 1, a contradiction.
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Lemma 2.2.10. Let G be an m-pyramidal group of order 2a · d where m = 2n − 1 ̸= 7 is
prime and d is odd. If K ∼= Cn

2 , then n divides a.

Proof. If m = 3, then n = 2 and K ∼= C2 × C2, this implies that a ⩾ 2, thus the
claim follows from Lemma 2.2.1. Now assume that m > 3, so that n > 2. Note that
m = 2n − 1 ̸= 7 is a prime number, so n ̸= 3 is also a prime number by Lemma 1.1.21.
Let C := CG(K). Since K ∼= Cn

2 , we have

G/C ∼= Cm or Cm ⋊ Cn

by Lemma 2.2.9. Since n and m are odd prime numbers, G/C is a group of odd order.
Let Q be a Sylow 2-subgroup of C, then Q is a Sylow 2-subgroup of G, so |Q| = 2a. By
Lemma 2.2.4(2), NG(Q) is an m-pyramidal group. Since Q is normal in NG(Q), Lemma
2.2.4(5) implies that

2a = |Q| ≡ 1 mod m.

Since the prime number n is the order of 2 in the multiplicative group (Z/mZ)∗, we deduce
that n divides a.

2.3 The proof of Theorem A

In this section we will prove that if m ̸= 7 is prime then all m-pyramidal groups are
solvable. As usual, K denotes the subgroup of G generated by its involutions. In the
following proof, we will use several times Feit-Thompson theorem, that says that any
finite group of odd order is solvable. Equivalently, any nonabelian simple group has even
order.

Assume, by contradiction, that G is a nonsolvable m-pyramidal group of minimal
order. Let O = O(G) be the largest normal subgroup of G of odd order. Since m is
prime, G/O is 1-pyramidal or m-pyramidal by Lemma 2.2.4(4). Set C := CG(K).

Assume that G/O is 1-pyramidal. Since |O| is odd, a Sylow 2-subgroup of G is
isomorphic to a Sylow 2-subgroup of G/O, it follows that a Sylow 2-subgroup of G is a
generalized quaternion group or a cyclic group with the help of Theorem 1.1.24, and for
any two involutions xi, xj of G we have xixj ̸= xjxi because otherwise ⟨xi, xj⟩ ∼= C2 ×C2
and it would be contained in a Sylow 2-subgroup of G, contradicting the fact that a Sylow
2-subgroup of G has a unique involution. This implies that CG(x) contains the unique
involution x for any involution x of G. Thus |C| is odd since

C =
⋂

x∈T

CG(x) =
⋂

g∈G

CG(xg) =
⋂

g∈G

(CG(x))g,

where T is the set of involutions of G. Therefore C is solvable. By Proposition 2.2.8 we
have K ∼= D2m, hence

G/C ≲ Aut(D2m) ∼= Cm ⋊ Aut(Cm) ∼= Cm ⋊ Cm−1.
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Since both C and G/C are solvable, we deduce that G is solvable, a contradiction.

We may assume, therefore, that G/O is m-pyramidal. Since O is solvable, the mini-
mality of |G| implies that O = {1}. Let N be a minimal normal subgroup of G, then

N ∼= Sn or N ∼= Cn
2

where n ⩾ 1 and S is a nonabelian simple group. In particular, all involutions of G are
contained in N since they are all conjugate to each other in G.

Suppose first that N ∼= Sn where S is a nonabelian simple group. Let i(X) denote the
number of involutions of the group X. Then

m = i(N) = (i(S) + 1)n − 1 = i(S) · ((i(S) + 1)n−1 + . . .+ 1).
Therefore m is divisible by i(S), so i(S) = m or i(S) = 1. If i(S) = 1, then S has a unique
involution x, this implies that for any s ∈ S, we have xs = s−1xs = x (since o(xs) = 2),
thus x ∈ Z(S), contradicting the fact that Z(S) = {1}. Therefore, i(S) = m, and so
n = 1. Let x1, x2, . . . , xm be the m involutions. Since they are conjugate in G and S�G,
we have

|xS
i | = |S|

|CG(xi) ∩ S|
= |Sg|

|CG(xg
i ) ∩ Sg|

= |S|
|CG(xg

i ) ∩ S|
= |(xg

i )S| = d,

where g ∈ G. This means that |xS
i | = |xS

j | = d for every i, j. Since S has m involutions,
this implies that d is a divisor of m. Since m is prime, d = 1 or m. If d = 1 then

{x1, x2, . . . , xm} ⊆ Z(S),
contradicting Z(S) = {1}. Therefore d = m, and hence S has a conjugacy class of prime
size m, contradicting Burnside’s Theorem 1.1.16.

Suppose that N ∼= Cn
2 . Since N contains involutions, it follows that K = N . Since

2n − 1 = m ̸= 7 is a prime number, n ̸= 3 is prime by Lemma 1.1.21. By Lemma 2.2.9,
G/C is isomorphic to one of Cm ⋊ Cn, Cm.

Assume G/C ∼= Cm ⋊ Cn, so that there is a normal subgroup A of G containing C
such that A/C ∼= Cm and G/A ∼= Cn. Note that A has even order since K ⩽ C < A
and it contains a Sylow m-subgroup of G. Thus, Lemma 2.2.4(3) implies that A is m-
pyramidal. The minimality of |G| implies that A is solvable and hence G is solvable
because G/A ∼= Cn, giving a contradiction.

So from now on we can assume that K = N ∼= Cn
2 and G/C ∼= C2n−1 = Cm. In

particular, C is a maximal subgroup of G, because its index in G is the prime m. Note
that both K and C are normal in G. We will use several times the following fact: if H
is a proper subgroup of G such that HC = G then H is solvable. When |H| is odd, this
follows from the Feit-Thompson theorem, and when |H| is even, this follows from Lemma
2.2.4(1) and the minimality of |G|. Since O(G) = {1}, the minimal normal subgroups of
G have even order, so they contain all the involutions of G. This implies that the unique
minimal normal subgroup of G is K.
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2.3.1 Step 1

We will prove that there exists a normal subgroup N of G with Φ(G) < N ⩽ C such
that G/N is a cyclic m-group, N/Φ(G) is a nonabelian chief factor of G, isomorphic to
St for some nonabelian simple group S, and Φ(G) is a 2-group containing K.

{1} 2a Φ(G)
St

N
mb

C m G

Proof. Let N be a normal subgroup of G such that G/N is cyclic and N is of minimal
order with this property. If G/N is not an m-group, then there exists L/N � G/N such
that |G : L| is a prime distinct from m, so that LC = G since |G : C| = m, so L is
solvable. Since G/L is solvable, this contradicts the fact that G is nonsolvable. So G/N
is a cyclic m-group. Moreover N is contained in C because otherwise NC = G and then
N would be solvable, so G would be solvable as well. Consider a normal subgroup R of G
contained in N with the property that N/R is a minimal normal subgroup of G/R. We
claim that R = Φ(G). First, if Φ(G) = {1} then, by Theorem 1.1.23 G has a subgroup
H such that G = S1(G)⋊H where S1(G) denotes the product of all the abelian minimal
normal subgroups of G. Since K is the unique minimal normal subgroup of G and it is
abelian, S1(G) = K. Note that all involutions of G are contained in K, so |H| is odd,
it follows that G/K ∼= H is solvable, so G is solvable, contradicting the nonsolvability of
G. Moreover Φ(G) is a 2-group because otherwise there would exist a nontrivial Sylow
subgroup P of Φ(G) of odd order, and since P�cΦ(G)�G, being Φ(G) nilpotent, P would
be a nontrivial normal subgroup of G of odd order, contradicting O(G) = {1}. Therefore
Φ(G) is a nontrivial 2-group. In particular Φ(G) contains involutions, so K ⩽ Φ(G).
Observe that

Φ(G)/Φ(G) ∩N ∼= Φ(G)N/N ⩽ Φ(G/N).

Since G/N is an m-group, the order of Φ(G/N) is odd, while Φ(G)/Φ(G) ∩ N is a 2-
group. This forces Φ(G)/Φ(G) ∩ N = {1}, thus Φ(G) ⩽ N . By minimality of |N |, G/R
is not a cyclic m-group, so if x ∈ G is an m-element that generates G/C, then R⟨x⟩ is
a proper subgroup of G, moreover R⟨x⟩C = G, so R is solvable. Since R ⩽ N ⩽ C, to
prove that R ⩽ Φ(G) it is enough to prove that if M is a maximal subgroup of G distinct
from C, then R ⩽ M . We have MC = G, so M is solvable hence MR ̸= G being G
nonsolvable and M,R solvable. Therefore R ⩽ M , implying that R ⩽ Φ(G). Since G/N
is an m-group and G is nonsolvable, we deduce that Φ(G) ̸= N , in other words Φ(G) is
properly contained in N . Since R ⩽ Φ(G) < N and N/R is a minimal normal subgroup of
G/R, we deduce that R = Φ(G). Since Φ(G) is nilpotent, the nonsolvability of G implies
that N/Φ(G) is a nonabelian chief factor of G, isomorphic to a direct power St for some
nonabelian simple group S.
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2.3.2 Step 2

Let M be a maximal subgroup of G with M ̸= C. Then the normal core MG of M in
G equals Φ(G) and consequently G/Φ(G) is a primitive group.

Proof. By Lemma 2.2.4(1), the maximal subgroups of G distinct from C are solvable by
minimality of |G|, since they supplement C. If M1 is a maximal subgroup of G such that
M1 ̸= C then MG ⩽ M1, since otherwise we would have M1MG = G, contradicting the
fact that G is nonsolvable, since M1 and MG are solvable. So every maximal subgroup of
G different from C contains MG, implying that Φ(G) = MG ∩ C. To conclude the proof,
we need to prove that MG ⩽ C. If it were not the case, then CMG = G. Note that

G/MG = CMG/MG
∼= C/MG ∩ C = C/Φ(G)

has a subgroup N/Φ(G) ∼= St. In particular, every nonabelian simple group S has order
divisible by 4 because otherwise S would have a nontrivial subgroup H of odd order such
that |S : H| = 2, and then H would be a nontrivial normal subgroup of S, a contradiction.
Since 4 divides |S|, a Sylow 2-subgroup of S contains a subgroup of order 4. This implies
that the group S also contains a subgroup of order 4. Thus there exist two subgroups
A,B ⩽ G containing MG such that A ⩽ B and |B : A| = |A : MG| = 2. Since A and B
contain MG, AC = BC = G, hence both A and B are m-pyramidal groups by Lemma
2.2.4(1). Write |A| = 2a · d where d is odd, then |B| = 2a+1 · d. Since

K ⩽ Φ(G) ⩽MG ⩽ A ⩽ B

and K ∼= Cn
2 , Lemma 2.2.10 implies that n divides both a and a + 1, thus n = 1,

contradicting the fact that n ⩾ 2.

2.3.3 Step 3

Let W := G/Φ(G). Then W is a primitive group whose socle is N/Φ(G) ∼= St,
which is the unique minimal normal subgroup of W . Let T1 be the first direct factor of
N/Φ(G) ∼= St and let

G1 := NW (T1)/CW (T1).

Then G1 is an almost-simple group with socle T1CW (T1)/CW (T1) ∼= S and we will identify
G1 with a subgroup of Aut(S) containing S. Moreover, W is of n-type and, if U is a
maximal subgroup of G1 such that US = G1, then U is a solvable group of n-type.

Proof. Write |Φ(G)| = 2a and |G| = 2b · d, we have |W | = 2b−a · d. In the light of Lemma
2.2.4(5), m = 2n − 1 divides 2a − 1, we deduce that n divides a. Moreover n divides b
by Lemma 2.2.10, therefore n divides b − a, in other words W is of n-type. We refer to
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[38, Chapter 1] for the general properties of primitive groups. Recall that W is a finite
primitive group. SinceW is not solvable,W is primitive of type II or III. LetM be a core-
free maximal subgroup of W . We claim that W is a primitive group of type II. Indeed,
assume that W is primitive of type III and A is a minimal normal subgroup of W distinct
from B where B := N/Φ(G), then W = B ⋊M and AB ∩M ∼= B is a nonabelian group
by Theorem 1.1.11, so M ∼= W/B ∼= G/N is a cyclic group, implying that AB ∩ M ∼= B
is cyclic, contradicting the fact that B is a nonabelian group. This shows that W is a
primitive group of type II and so has a unique minimal normal subgroup which must be
N/Φ(G) by Step 1. Let ρ : W → Sym(t) denote the conjugation action of W on the set of
direct factors of N/Φ(G) ∼= St. Obviously, N/Φ(G) ⩽ Ker (ρ) since N/Φ(G) is the unique
minimal normal subgroup of W and Ker (ρ) is not trivial. Set P := W/Ker (ρ), then, by
Lemma 1.1.14, we have an embedding of W in the standard wreath product G1 ≀P . Since
G/N is a cyclic m-group, the group P is a cyclic m-subgroup of Sym(t) because it is a
quotient group of G/N . As P acts transitively by conjugation on the t direct factors of
the socle N/Φ(G), we have t is a power of m. See also Lemma 1.1.14.

Let U be a maximal subgroup of G1 such that US = G1 and let

V := (U ∩ S)t ⩽ St = soc(W ).

We claim that NW (V ) soc(W ) = W . Let g ∈ W . IdentifyingW with a subgroup of G1 ≀P ,
we can write g = (x1, . . . , xt)γ where xi ∈ G1 for all i and γ ∈ P . Since US = G1, there
exist si ∈ S, ui ∈ U such that xi = siui for all i = 1, . . . , t, and setting

n := (s1, . . . , st) ∈ soc(W )

we have
h := (u1, . . . , ut)γ = (s−1

1 x1, . . . , s
−1
t xt)γ = n−1g ∈ W,

therefore
V h = ((U ∩ S)u1 × . . .× (U ∩ S)ut)γ = V γ = V

since U ∩ S is normal in U . We deduce that h = n−1g ∈ NW (V ) and since n ∈ soc(W )
the claim follows.

We claim thatG1/S is a cyclicm-group (perhaps trivial). Indeed, we have the following
subgroup series:

soc(W ) = N/Φ(G) ⩽ T1CW (T1) ⩽ NW (T1) ⩽ W,

thus

G1

S
∼=

NW (T1)
T1CW (T1)

∼=
NW (T1)/ soc(W )
T1CW (T1)/ soc(W ) ≲

W/ soc(W )
T1CW (T1)/ soc(W ) .

It follows that G1/S is isomorphic to a section of W/ soc(W ) ∼= G/N , which is a cyclic
m-group. So the claim follows.
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We claim that NW (V ) ̸= W . If it were not the case, then V would be normal in W
and, since N/Φ(G) is a minimal normal subgroup of W and U ∩ S ̸= S, since US = G1,
the simplicity of S implies U ∩ S = {1} and G1/S ∼= U is cyclic, therefore U is a cyclic
maximal subgroup of the almost-simple group G1, contradicting Herstein’s theorem, which
says that a nonsolvable finite group cannot have abelian maximal subgroups (see Lemma
1.1.19). This is also a consequence of [48, Theorem 1.3.6]. So the claim follows.

Since Φ(G) is a nontrivial 2-group, the above three paragraphs imply that the preimage
of NW (V ) in G is a proper subgroup of G of even order and it is not contained in C because
otherwise

W = NW (V ) soc(W ) = NW (V )(N/Φ(G)) ⩽ NW (V )(C/Φ(G)) = C/Φ(G) < W,

a contradiction. Therefore, the preimage of NW (V ) is m-pyramidal by Lemma 2.2.4(1),
and hence it is solvable by the minimality of |G|. So U ∩ S is solvable. Since

U/U ∩ S ∼= US/S = G1/S

is a cyclic m-group, we deduce that U is solvable.

Summarizing, we have NW (V ) soc(W ) = W , NW (V ) ̸= W , G1/S is a cyclic m-group,
if G1 = S then G1 is a minimal simple group, and if G1 ̸= S then G1 has only one
nonsolvable maximal subgroup, which is the unique maximal subgroup containing S. By
Lemma 1.2.7, U ∩ S is a maximal subgroup of S. Obviously, U ∩ S ⩽ NS(U ∩ S) < S by
the simplicity of S. Therefore, NS(U ∩ S) = U ∩ S, hence

NW (V ) ∩ soc(W ) = Nsoc(W )(V ) = Nst((U ∩ S)t) = (NS(U ∩ S))t = V.

Since NW (V ) soc(W ) = W and

U/U ∩ S ∼= G1/S ∼= Cms

is a cyclic m-group for some integer s, writing |U | = 2d · r with r odd and W/ soc(W ) ∼=
Cmb1 where b1 = b+ 1, we have

|NW (V )| = |W : soc(W )| · |NW (V ) ∩ soc(W )| = mb1 · |U ∩ S|t = mb1−st · 2dt · rt.

Since the preimage of NW (V ) in G is m-pyramidal by Lemma 2.2.4(1), and Φ(G) is of
n-type by Lemma 2.2.4(5), NW (V ) is of n-type by Lemma 2.2.10, in other words dt is
divisible by n. Since t is a power of m and m is coprime to n, we conclude that d is
divisible by n. This means exactly that U is of n-type.

2.3.4 Step 4

G1 = S.
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Proof. Recall that, if X is an almost-simple group with socle S, which is nonabelian and
simple, we say that a maximal subgroup H of S is X-ordinary if its X-class equals its
S-class, in other words for every x ∈ X there exists s ∈ S such that Hx = Hs. If H is an
X-ordinary maximal subgroup of S, then NX(H) is maximal in X with NX(H)S = X,
and

|NX(H)| = |X||H|/|S|

by Lemma 1.2.2. Of course, if

S ⩽ X ⩽ Y ⩽ Aut(S)

and H is a Y -ordinary maximal subgroup of S, then H is also X-ordinary. Concerning
our situation, we have S ⩽ G1 ⩽ Aut(S), G1/S is a cyclic m-group and every maximal
subgroup of G1 not containing S is solvable. Assume by contradiction that G1 ̸= S. Since
G1/S is not a 2-group, Out(S) is not a 2-group, so with the help of Theorem 1.2.5 we
have S is isomorphic to one of the following groups:

PSL(2, 2m), PSL(2, 3m) or Sz(2m).

By Table 1.3, if S ∼= PSL(2, 2m) or PSL(2, 3m) then S has aG1-ordinary maximal subgroup
H of type E2m : (2m − 1) in the first case and PSL(2, 3) in the second case when m > 3.
Thus

|NG1(H)| = 2m ·m · (2m − 1) or 22 · 3 ·m

because |G1 : S| = m, contradicting the fact that NG1(H) is of n-type since m and n are
distinct prime numbers, with n odd unless (n,m) = (2, 3). If m = 3 and S ∼= PSL(2, 33)
then G1 has a maximal subgroup of type C13 ⋊C6, which is not of 2-type (see the second
line of Table 1.3). If S ∼= Sz(2m), by Table 1.4 S has a G1-ordinary maximal subgroup
H of type D2(2m−1). It is easy to deduce that

|NG1(H)| = 2 ·m · (2m − 1)

and NG1(H) is not of n-type, a contradiction.

2.3.5 Step 5

SinceW is a subgroup of S ≀P containing St = soc(W ), withW projecting surjectively
onto the transitive cyclic group P ⩽ Sym(t), we deduce that W is isomorphic to the
standard wreath product S ≀P , where P acts on St by permuting the coordinates. Consider

∆ = {(s, s, . . . , s) : s ∈ S} ⩽ St, H := NW (∆).

It is clear that P ⩽ H, hence soc(W )H = W . Suppose t = 1. Then P = {1} and W = S
is a nonabelian simple group, this contradicts the fact that W has a normal subgroup
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C/Φ(G) of index m. Thus t ⩾ 2. Therefore ∆ is not normal in W , since soc(W ) is
a minimal normal subgroup of W , therefore H ̸= W . Since ∆ ∼= S is nonsolvable and
∆ ⩽ H, we obtain that H is nonsolvable, thus the preimage of H in G is a nonsolvable
proper subgroup of G, of even order and supplementing C, so it ism-pyramidal by Lemma
2.2.4(1). This contradicts the minimality of |G|.

This concludes the proof of the fact that, if m ̸= 7 is a prime number, then any
m-pyramidal group is solvable.



Chapter 3

The solvability of pyramidal groups of prime
power degree

In this chapter, we discuss the solvability of pyramidal groups of prime power degree
and prove Theorem B, which we state again for convenience. This theorem was proved in
[9].

Theorem B (X. Gao, M. Garonzi). Let m be a prime power pk with p ̸= 7 an odd prime.
Then the following are equivalent.

(1) Every m-pyramidal group is solvable.

(2) k is odd or m = 9.

As follows, we construct a family of nonsolvable pk-pyramidal groups for an even integer
k and a prime number p. However, when k is odd, we cannot use the same method to
construct a nonsolvable pk-pyramidal group.

Let q be an odd prime power and let V = F2
q. It is clear that SL(2, q) has a unique

element ι of order 2 and ι acts on V by inversion. Thus the group

G = V ⋊ SL(2, q)

is a q2-pyramidal group by Proposition 2.2.5. This shows that, if p is an odd prime number
and k is an even positive integer, with pk ̸= 9, then there exists a nonsolvable pk-pyramidal
group. More generally, if there exist N and A as in Proposition 2.2.5, with A nonsolvable,
then we can construct a nonsolvable |N |-pyramidal group.

On the other hand, if there exists a nonsolvable subgroup H of GL(k, q) with k odd
and −1 is the unique involution of H then the above argument shows that there exists
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a nonsolvable qk-pyramidal group. However, this H does not exist, because assuming it
exists, defining

U := H ∩ SL(k, q),

the order |U | is odd because H contains −1 as the unique involution and, since k is odd,
(−1)k = −1, thus −1 ̸∈ SL(k, q). Therefore U is solvable and H/U is abelian because

H/U = H/H ∩ SL(k, q) ∼= SL(k, q)H/SL(k, q) ⩽ GL(k, q)/SL(k, q) ∼= F∗
q,

so H is solvable.

3.1 Preliminaries

To prove Theorem B, we need the following results. In the following two results, we
denote by O(G) the largest normal subgroup of G of odd order.

Lemma 3.1.1 (Theorem 2 of [54]). Let G be a finite group whose 2-Sylow subgroup is a
generalized quaternion group. Then G/O(G) has a center of order 2.

Lemma 3.1.2 (Theorem 1 of [55]). Let G be a finite group with dihedral Sylow 2-subgroups.
Then G/O(G) is isomorphic to one of the following.

(1) A subgroup of PΓL(2, q) containing PSL(2, q), q odd.

(2) The alternating group A7.

(3) A Sylow 2-subgroup of G.

The following theorem was proved in [56].

Theorem 3.1.3. Let G be a nonabelian simple group with H < G and |G : H| = pa, p
prime. One of the following holds.

(1) G = An and H ∼= An−1 with n = pa.

(2) G = PSL(n, q) and H is the stabilizer of a line or hyperplane. Then |G : H| =
(qn − 1)/(q − 1) = pa. (Note n must be prime.)

(3) G = PSL(2, 11) and H ∼= A5 with 11 = pa.

(4) G = M23 and H ∼= M22 with 23 = pa or G = M11 and H ∼= M10 with 11 = pa.

(5) G = PSU(4, 2) ∼= PSp(4, 3) and H is the parabolic subgroup of index 27.
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3.2 The proof of Theorem B

If k is even and m ̸= 9 then, choosing q = pk/2, the group F2
q ⋊SL(2, q) is m-pyramidal

and nonsolvable. This proves that (1) implies (2). The proof of the other implication is
the content of the following two propositions. We will use the notation i(G) to denote the
number of involutions of G.

Proposition 3.2.1. Any 9-pyramidal group is solvable.

Proof. We prove the result by contradiction. Assume G is a nonsolvable 9-pyramidal
group of minimal order. Let O(G) be the maximal normal subgroup of G with odd order.
Then G/O(G) is a 1, 3 or 9-pyramidal group. Obviously, the quotient group G/O(G) is
not a 3-pyramidal group because otherwise G/O(G) would be solvable by Theorem A and
then G would be solvable as well, a contradiction.

Suppose G/O(G) is a 9-pyramidal group. The minimality of |G| implies that O(G) =
{1}. Let N be a minimal normal subgroup of G, then

N ∼= Cn
2 or N ∼= Sn

where n ⩾ 1 and S is a nonabelian simple group. Since all involutions of G are conjugate,

2n − 1 = 9 or i(N) = (i(S) + 1)n − 1 = 9,

this implies that n = 1 and N ∼= S. Recall that O(G) = {1} and all involutions are
conjugate in G, so S is the unique minimal normal subgroup of G. We claim that CG(S) =
{1}. If it were not the case, then there would be a minimal normal subgroup of G distinct
from S that is contained in CG(S) since

S ∩ CG(S) = Z(S) = {1},

a contradiction. This proves that CG(S) = {1}. Thus G is an almost-simple group with
socle S. Let x1, x2, . . . , x9 ∈ S be the 9 involutions of G. Since they are conjugate in G,
the conjugacy classes xS

i , i = 1, . . . , 9 all have the same size d. This implies that d ∈ {3, 9}
because Z(S) = {1}, contradicting Theorem 1.1.16 again.

Finally, we assume that G/O(G) is 1-pyramidal. Then a Sylow 2-subgroup of G/O(G)
has a unique involution, thus it is a generalized quaternion group or a cyclic group by
Theorem 1.1.24. Since O(G) is solvable and G is nonsolvable, the quotient group G/O(G)
is nonsolvable and a Sylow 2-subgroup of G/O(G) is a generalized quaternion group by
Theorem 1.1.25. Since the group O(G) is of odd order, this implies that a Sylow 2-
subgroup of G is also a generalized quaternion group. Hence a Sylow 2-subgroup of G has
a unique involution. This implies that, if x, y are two arbitrary distinct involutions of G,
we have xy ̸= yx. It follows that |CG(K)| is odd, and a Sylow 2-subgroup of

J := G/CG(K)
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is also a generalized quaternion group. On the other hand, G acts transitively on the 9
involutions of G by conjugation action, namely, we have the following homomorphism:

α : G → S9 : {x1, x2, . . . , x9} → {x1, x2, . . . , x9}.

Obviously,

Ker (α) =
9⋂

i=1
CG(xi) = CG(K)

and G/Ker (α) ≲ S9. Therefore, J is isomorphic to a transitive subgroup of S9. Since
the Sylow 2-subgroups of S9 and A9 are (D8 × D8) ⋊ C2 and C2 ≀ C2

2 , respectively, as
determined using GAP [20], and these are not generalized quaternion groups, it follows
that J does not contain A9. By Theorem 1.1.15 the maximal imprimitive subgroups of S9
are isomorphic to the wreath product S3 ≀S3, which is solvable, therefore J is primitive of
degree 9. The nonsolvable primitive groups of degree 9 do not have generalized quaternion
Sylow 2-subgroups, as can be seen using the AllPrimitiveGroups function in [20]. We have
reached a contradiction.

Proposition 3.2.2. Let G be a pk-pyramidal group, where p ̸= 7 and k is odd. Then G is
solvable.

Proof. We prove the result by contradiction. Assume G is a nonsolvable pyramidal group
with a number of involutions that is a prime power with odd exponent, and assume G
has minimal order with these properties. Write m = pk with k odd. Let O := O(G)
be the largest normal subgroup of G with odd order then, by Lemma 2.2.4(4) G/O is a
pa-pyramidal group, where 0 ⩽ a ⩽ k. Let N/O be a minimal normal subgroup of G/O,
then

N/O ∼= Sn or N/O ∼= Cn
2 ,

where n ⩾ 1 and S is a nonabelian simple group. First, if N/O ∼= Sn then

i(G/O) = (i(S) + 1)n − 1 = pa.

Since i(S) > 1 and p is odd, Lemma 1.1.21 implies that n = 1 and N/O ∼= S. Since all
involutions of G/O are conjugate and G/O does not have normal subgroup of odd order,
the quotient group G/O has a unique minimal normal subgroup N/O, this implies that
CG/O(N/O) is trivial. Hence G/O is an almost-simple group with socle S and i(S) = pa.
Since the involutions are all conjugate in G, they all belong to S and their conjugacy
classes in S all have the same size. This implies that the conjugacy class size of an
involution in S is a prime power, contradicting Theorem 1.1.16.

In the rest of the proof we will assume that N/O ∼= Cn
2 . In particular 2n −1 = pa hence

a ∈ {0, 1} by Lemma 1.1.21, that is, G/O is p-pyramidal or 1-pyramidal. If G/O is p-
pyramidal then, by Theorem A, G/O is solvable, and hence G is solvable, a contradiction.
In the rest of the proof we will assume that G/O is 1-pyramidal, so that the Sylow
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2-subgroups of G/O are generalized quaternion groups. This implies that the Sylow 2-
subgroups of G are also generalized quaternion, hence if x, y are two arbitrary involutions
of G then xy ̸= yx. By Lemma 3.1.1, the center Z/O of G/O has order 2. Then the Sylow
2-subgroups of G/Z are dihedral, hence G/Z satisfies one of the items of Lemma 3.1.2. If

G

Z
∼=
G/O

Z/O

is a 2-group, then G/O would be solvable because Z/O is an abelian group. Therefore, by
the Feit-Thompson theorem, G would be solvable, a contradiction. Thus either G/Z ∼= A7
or G/Z has a simple normal subgroup S/Z such that

PSL(2, q) ∼= S/Z �G/Z ⩽ PΓL(2, q),

where q = rf , r an odd prime. In the second case G/Z is an extension of S/Z by a
subgroup of Out(PSL(2, q)) ∼= C2 ×Cf . Observe that the centralizer H := CG(ε) has ε as
unique involution because any two involutions of G do not commute, and hence the order
of C = CG(K) is odd and C is contained in O. Obviously, |G : H| = m = pk. Now we
have the following graph:

G

S

d

@@

H = CG(ε)
m

ee

Z

@@

O

2
??

where d = 1 or d is a divisor of 2f . Note that

|G : HS| · |HS : H| = |G : H| = pk,

so |HS : H| divides pk. Moreover,

|S : HZ ∩ S| = |HZS : HZ| = |HS : HZ| = |HS : H|
|HZ : H|

hence HZ ∩ S has prime power index in S, say pb with b ⩽ k.

We claim that H is nonsolvable. If HZ ∩ S = S, i.e., S ⩽ HZ, then

S/Z ⩽ HZ/Z ∼= H/H ∩ Z
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and H/H ∩ Z is nonsolvable since it contains a nonsolvable subgroup S/Z, so H is non-
solvable. If HZ ∩ S ̸= S, then the nonabelian simple group S/Z has a proper subgroup
(HZ ∩ S)/Z such that

|S/Z|
|(HZ ∩ S)/Z|

= |S|
|HZ ∩ S|

is a prime power. In the light of Theorem 3.1.3, either HZ ∩ S has index rf + 1 = pb in
S, contradicting the fact that both r and p are odd primes, or S/Z ∼= A7 with pb = 7, or
S/Z ∼= PSL(2, 11) with pb = 11. The following quotient group is isomorphic to A6 or A5,
respectively.

HZ ∩ S

Z
= Z(S ∩H)

Z
∼=

S ∩H

S ∩H ∩ Z
= S ∩H

Z ∩H
.

It follows that H is nonsolvable.

LetR be a minimal normal subgroup ofG contained inO. Note thatR is an elementary
abelian group because R is solvable. Let

Iε := {n ∈ R : nε = n−1} ⩽ R.

Lemma 2.2.4(4) implies that G/R is m/ℓ-pyramidal where ℓ = |Iε|. Recall that m is a
power of p, so ℓ must also be a power of p. Write ℓ = |Iε| = pt. By the minimality of |G|
we have that k − t is even, thus t is odd. Iε is normalized by H because, if h ∈ H and
n ∈ Iε, then hε = εh hence

(nh)ε = nhε = nεh = (n−1)h = (nh)−1.

We can see R as a finite dimensional Fp-vector space acted upon by the linear transfor-
mation ε. Since ε2 = 1 and p is odd, ε is diagonalizable over Fp and its unique eigenvalues
are 1 and −1. Observe that Iε is precisely the eigenspace of −1 in R and H ∩ R is the
eigenspace of 1, so

dim(Iε) + dim(H ∩R) = dim(R),
thus

ℓ = pt = |Iε| = |R : H ∩R| = |HR : H|.

Since |G : H| is odd, |G : HR| is also odd. This implies that any Sylow 2-subgroup of HR
is a Sylow 2-subgroup of G, hence a Sylow 2-subgroup of HR is a generalized quaternion
group, thus HR is a pyramidal group by Lemma 2.2.6. Note that

|HR : CHR(ε)| = |HR : CG(ε) ∩HR| = |HR : H|,

so HR is a pt-pyramidal group. Since H is nonsolvable, using the minimality of |G| again,
we have HR = G and t = k. Observe that R is an abelian minimal normal subgroup
of G, thus H ∩ R is normal in H and in R. Since HR = G, we deduce that H ∩ R is
normal in G hence H ∩ R = {1} by the minimality of R. It follows that G = R ⋊ H,
R ∼= Fk

p and ε acts on R as the inversion map x 7→ −x. Let H := H/CH(R). Since ε
is the only involution of H and it does not centralize R, the centralizer CH(R) has odd
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order, therefore H is 1-pyramidal by Lemma 2.2.4(4). We can identify H with a subgroup
of GL(k, p) because

NG(R)/CG(R) ∼= H/CH(R) ≲ Aut(R) ∼= GL(k, p).

Let U := H ∩ SL(k, p). Suppose |U | is odd. Then U is solvable. Observe that H/U ∼=
HSL(k, p)/SL(k, p) is abelian because it is isomorphic to a subgroup of GL(k, p)/SL(k, p) ∼=
Cp−1, so H is solvable, this implies that H is also solvable, a contradiction. Therefore
|U | is even, hence U contains an involution. Since ε = εCH(R) is the only involution of
H, we have ε ∈ U , so that det(ε) = 1. Since ε is the inversion map, we deduce that
(−1)k = det(ε) = 1 contradicting the fact that k is odd.



Chapter 4

Some properties of pyramidal groups

We proved that if m ̸= 7 is a prime number then all m-pyramidal groups are solvable.
The natural question arises: what is the structure of an m-pyramidal group? and what
is the order of an m-pyramidal group? In section 4.2 we discuss the structure of 3-
pyramidal groups and give their classification. In section 4.3 we discuss the set of orders
of m-pyramidal groups.

4.1 Preliminaries

We introduce some properties related to p-length, homocyclic groups, and Suzuki-2
groups.

Definition 4.1.1. We say that G is a p-solvable group if it admits a series of normal
subgroups

{1} = V0 < V2 < . . . < Vn = G

such that each factor Vi+1/Vi is either a p-group or a p′-group, the p-length of G is the
length l of the upper p-series

{1} = P0 ⩽ N0 < P1 < N1 < P2 < . . . < Pl ⩽ Nl = G

where Nk/Pk is the largest normal p′-subgroup of G/Pk and Pk+1/Nk the largest normal
p-subgroup of G/Nk, for k = 0, . . . , l − 1.

Definition 4.1.2. A group G is called homocyclic if it is a direct product of isomorphic
cyclic groups.

Definition 4.1.3. A Suzuki 2-group is a group G which has the following properties.

(1) G is a nonabelian 2-group.
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(2) G has more than one involution.

(3) There exists a soluble subgroup of automorphism group of G which permutes the set
of involutions in G transitively.

Lemma 4.1.4 (Theorem 7.9 of [5]). Let G be a Suzuki 2-group. Then

G′ = Φ(G) = Z(G) = {x ∈ G : x2 = 1}.

Obviously, the center subgroup Z(G) of a Suzuki 2-group G is an elementary abelian
2-group because the exponent of Z(G) is 2. Note that if G is a finite p-group, then
Φ(G) = G′Gp, where Gp = ⟨gp : g ∈ G⟩ (see [45, 5.3.2]). It follows that G/Φ(G) is
isomorphic to an elementary abelian p-group. Therefore, the Suzuki 2-group G is of
exponent 4 and class 2. In particular, it was proved in [57] that if G is a Suzuki 2-group
and Z(G) = q then |G| = q2 or q3. The additional details about the Suzuki 2-groups can
be found in [5] and [57].

Since m-pyramidal groups are solvable where m ̸= 7 is a prime number. Thompson’s
result [5, Theorem 8.6 of Chapter IX] is now very useful for us. It states the following.

Theorem 4.1.5 (Thompson). Suppose that G is a solvable group of even order and that a
Sylow 2-subgroup of G contains more than one involution. Suppose that all the involutions
in G are conjugate. Then the 2-length of G is 1 and the Sylow 2-subgroups of G are either
homocyclic or Suzuki 2-groups.

Lemma 4.1.6. Let G = N ⋊ A where |N | and |A| are coprime. Then CG(N) = Z(N) ×
CA(N).

Proof. Since CG(N) and N are normal subgroups of G, so is CG(N) ∩ N = Z(N). In
particular, CG(N) ∩ A = CA(N) is normal in A. Let g = na ∈ G, where n ∈ N and
a ∈ A, we have

CA(N)g = CA(N)na = CA(N),

thus CA(N) is normal in G. Note that (|Z(N)|, |CA(N)|) = 1, so

Z(N) ∩ CA(N) = {1}.

It follows that the extension of Z(N) by CA(N) is Z(N) × CA(N), which is a subgroup
of CG(N). Conversely, let g = na ∈ CG(N) where n ∈ N and a ∈ A, then

ng = nna = na = n,

thus na = an. Moreover, ag = ana = ga, so that ga−1 = a−1g. Since (|N |, |A|) = 1, there
exist u, v ∈ Z such that u|N | + v|A| = 1, thus

g = (na)u|N |+v|A| = nv|A| · au|N |.
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Observe that
nv|A| = (ga−1)v|A| = gv|A| ∈ CG(N) ∩N = Z(N)

and
au|N | = (n−1g)u|N | = gu|N | ∈ CG(N) ∩ A = CA(N).

Thus
g = nv|A| · au|N | ∈ Z(N) × CA(N).

This implies that
CG(N) ⩽ Z(N) × CA(N).

Therefore, CG(N) = Z(N) × CA(N).

Singer cycle plays an important role in Section 4.3.

Definition 4.1.7. Assume F = Fn
p is a finite field of size q. Let V be the underlying vector

space of GL(n, p) and let x be a generator for the multiplicative group of the finite field
F. Then identifying V with F, given v ∈ V , the map

φ : V → V, φ(v) := vx

is called Singer cycle.

Note that φ ∈ Aut(V ) ∼= GL(n, p). In fact, for any two vectors u and v of V , we have

φ(u+ v) = (u+ v)x = ux+ vx = φ(u) + φ(v)

since V is a vector space over F. Obviously,

Ker (φ) = {v ∈ V : vx = 0} = 0

and for any v ∈ V there exist vx−1 ∈ V such that φ(vx−1) = v, thus φ is a bijective
homomorphism from V to itself.

Moreover, it is easy to see that o(φ) = q − 1 and ⟨φ⟩ acts regularly on non-zero
vectors of the vector space V . To see this, given two nonzero vectors v and w, we see that
v(v−1w) = w and vx = v if and only if x = 1, thus ⟨φ⟩ acts transitively on V \ {0} and
the kernel of this action is trivial.

In fact, if q is a power of a prime, then GL(n, q) contains Singer cycles for all n and
q, and we call the subgroup generated by a Singer cycle a Singer subgroup. In particular,
all Singer subgroups of GL(n, q) are conjugate (see [58, Page 187]).
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4.2 The proof of Theorem C

In this section, we provide the proof of Theorem C, which we restate here once more
for the benefit of the reader. It was proved in [8]

Theorem C (X. Gao, M. Garonzi). Let G be a finite group and O(G) the largest normal
subgroup of G of odd order. Let K be the subgroup generated by the involutions of G.
Then G is 3-pyramidal if and only if one of the following holds.

(1) G is isomorphic to S3 ×H where H is a group of odd order.

(2) O(G) ⩽ CG(K) and G/O(G) is isomorphic to N ⋊A where N is the Suzuki 2-group
of order 64 and A is a subgroup of Aut(N) of order 3 or 15.

(3) O(G) ⩽ CG(K) and G/O(G) is isomorphic to (C2n ×C2n)⋊A where A is the cyclic
group of order 3 generated by the automorphism (a, b) 7→ (b, (ab)−1).

In item (1) K ∼= S3 while in items (2), (3) K ∼= C2 × C2.

Proof. Let G be a 3-pyramidal group and write |G| = 2n ·d, where d is odd. Let K be the
subgroup of G generated by the three involutions i, j, k and let C := CG(K). Suppose first
that n = 1. Then K ∼= S3 and G ∼= CG(K)×K by Lemma 2.2.4(6). Since G has exactly 3
involutions, and all of them are contained in K, |CG(K)| is odd. Now assume that n ⩾ 2.
Lemma 2.2.1 implies that n is even, K ∼= C2 ×C2 and G/C ∼= A3. Since K and O(G) are
normal subgroups of G of coprime orders, K ∩O(G) = {1} hence O(G) ⩽ C. By Lemma
2.2.4(4) we may assume that O(G) = {1}. By Theorem A, G is solvable and Theorem
4.1.5 applies, so the 2-length of G is 1, namely, G has an upper 2-series

{1} = P0 ⩽ N0 < P1 ⩽ N1 = G,

where N0 and N1/P1 are the largest normal 2′-subgroups of G and G/P1, respectively,
and P1/N0 is the largest normal 2-subgroup of G/N0. Note that |G/P1| and |N0| are odd.
Since O(G) = {1}, N0 = {1}, this means that P1 is a Sylow 2-subgroup of G and it is
normal in G. In particular P1 is the unique Sylow 2-subgroup of G. Write N := P1. Hence,
N has a complement A in G by the Schur-Zassenhaus theorem 1.1.10, i.e., G = N ⋊ A.
Observe that |A| is odd and

NG(N)/CG(N) = G/CG(N) ≲ Aut(N).

We claim that CG(N) = Z(N) is a 2-group. Indeed, Lemma 4.1.6 implies that

CG(N) = Z(N) × CA(N).
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Since |CA(N)| and |Z(N)| are coprime, we have that CA(N) is a characteristic subgroup
of CG(N), and hence CA(N) is normal in G. Note that, since |A| is odd and so, as
O(G) = {1}, CA(N) = {1}. Thus

CG(N) = Z(N) × CA(N) = Z(N).

Therefore G/Z(N) ≲ Aut(N) and A is isomorphic to a subgroup of Aut(N). In the light
of Theorem 4.1.5, N is either homocyclic or a Suzuki 2-group.

Assume that N is a homocyclic group, i.e. a direct product of pairwise isomorphic
cyclic groups. Since N has three involutions, N ∼= C2m × C2m for some positive integer
m. It is easy to see that Aut(N) is isomorphic to the group of 2 × 2 matrices with
coefficients in Z/2mZ and invertible determinant, therefore | Aut(N)| = 3 · 24m−3. Since
A is isomorphic to a subgroup of Aut(N) with odd order, A ∼= C3 and it is a Sylow 3-
subgroup of Aut(N). Note that all Sylow 3-subgroups of Aut(N) are conjugate by Sylow’s
theorem, A is conjugate in Aut(N) to ⟨γ⟩ where γ : N → N is defined by

(a, b) 7→ (b, (ab)−1).

Therefore G ∼= N ⋊ ⟨γ⟩.

We next assume that N is a Suzuki 2-group. Since N has three involutions, we have

Φ(N) = N ′ = Z(N) ∼= C2
2

by Lemma 4.1.4. A simple inspection using GAP [20] shows that no group of order 16 has
these properties, therefore [57] implies that |N | = 64 and N is the unique Suzuki 2-group
of order 64, SmallGroup(64, 245)= C2

2 .C
4
2 , | Aut(N)| = 3 · 5 · 210 and G is isomorphic to

N ⋊A where A is a subgroup of Aut(N) of order 3 or 15. Since the subgroups of Aut(N)
of order 3 or 15 are Hall subgroups and Aut(N) is solvable (by GAP [20]), they form a
unique conjugacy class of subgroups, so G is determined completely up to isomorphism.

Conversely, it is not difficult to see that G is 3-pyramidal if G ∼= S3 × H where H
is a group of odd order. Assume now that 4 divides |G|, let O := O(G) and assume
that O centralizes all involutions of G and that G/O is one of the groups in cases (2)
and (3). Since 4 divides |G/O| and G/O is 3-pyramidal, it has exactly 3 involutions iO,
jO and kO. Let zO ∈ G/O with o(zO) ⩾ 3 then o(z) ⩾ 3 since o(zO) divides o(z).
Thus the union iO ∪ jO ∪ kO contains all involutions of G. Since |O| is odd, by the
Schur-Zassenhaus theorem 1.1.10, we have O⟨i⟩ ∼= O ⋊ C2 and it contains an element of
order 2, which can be denoted by i. Note that iO contains a unique involution because
otherwise there would exist {1} ̸= y ∈ O such that o(iy) = 2. Since O is a group of odd
order that centralizes all involutions of G, iyiy = y2 = 1, implying that y would be an
involution of O, a contradiction. Similarly, we can get that each of jO, kO contains a
unique involution, therefore G has precisely three involutions, which we may assume to
be i, j, k. Since iO, jO and kO are conjugate in G/O, there exists g ∈ G such that

igO = (iO)gO = jO,
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and it follows that ig ∈ jO. Since o(ig) = 2 and j is the unique involution in jO, we
obtain that ig = j. The same argument shows that j and k are conjugate in G, so G is
3-pyramidal.

By the Feit-Thompson theorem, all finite groups of odd order are solvable. Therefore,
the above Theorem C implies that all 3-pyramidal groups are solvable. The quotients
G/O(G) in item (2) are SmallGroup(192,1025)= (C2

2 .C
4
2) : C3, SmallGroup(960, 5748)=

((C2
2 .C

4
2) : C5) : C3.

We can construct infinite families of 3-pyramidal groups as follows: let Y be a group
of odd order with a normal subgroup X of index 3 and let N := C2n ×C2n . The group Y
acts on N as an automorphism of order 3 as in item (3) of the statement of Theorem C,
by composition

Y → Y/X ∼= C3 → Aut(N).

The semidirect product G := N ⋊ Y is 3-pyramidal and O(G) = X. Also, note that
there exist 3-pyramidal groups whose Sylow 2-subgroups are not normal. An example is
SmallGroup(1296,2705)= ((C3 × ((C3 × C3) : C4)) : C4) : C3.

4.3 The proof of Theorem D

Let m be an odd integer and let Xm be the set of orders of m-pyramidal groups. In
this section we will prove Theorem D, which we now state again for convenience. This
theorem was proved in [9].

Theorem D (X. Gao, M. Garonzi). Let m ̸= 7 be an odd prime number. If m has the
form 2n − 1 for some integer n, set Ym = {2a · m · d : n|a, d odd}, otherwise Ym = ∅.
Write m − 1 = 2t · r with r odd and let Zm = {2a · m · d : 1 ⩽ a ⩽ t, d odd}. Then
Xm = Ym ∪ Zm.

Proof. If P is any nontrivial 2-subgroup of Aut(Cm) ∼= Cm−1 then, by Proposition 2.2.5,
Cm ⋊P is m-pyramidal of order m · 2a with 1 ⩽ a ⩽ t, and if d is any odd positive integer
then Cd×(Cm⋊P ) ism-pyramidal of order 2a ·m·d, therefore Zm ⊆ Xm. Ifm has the form
2n − 1 then the multiplicative group of the finite field F = F2n is cyclic generated by an
element x of order m. The multiplication by x induces an automorphism ψ of the additive
group F , also of order m, and ⟨ψ⟩ acts transitively on F \ {0}. This automorphism ψ
is usually called Singer cycle (see Definition 4.1.7). Consider a homocyclic group Hl,n =
(Z/2lZ)n. Its Frattini subgroup Φ is isomorphic to Hl−1,n. We denote by GL(n,Z/2lZ)
the group of n × n matrices with coefficients in Z/2lZ and invertible determinant. The
natural map

α : GL(n,Z/2lZ) → GL(n,Z/2Z)
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given by componentwise reduction modulo 2, is surjective and its kernel has size 2n2(l−1),
so there exists τ ∈ Aut(Hl,n) inducing the Singer cycle automorphism ψ on

Hl,n/Φ ∼= H1,n = (Z/2Z)n.

Note that the order of ψ is m, that is, the order of α(τ) is m. Thus

1 = (α(τ))m = α(τm),

it follows that τm is an element of the kernel of α. Since Ker (α) is a 2-group, the order of τ
is m multiplied by a power of 2. Raising τ to a suitable power of 2 gives an automorphism
of Hl,n of order m, call it γ. Observe that the only fixed point of γ in its action on Hl,n/Φ
is the trivial element. Let K ∼= Cn

2 be the subgroup of Hl,n generated by the involutions,

and let ε ∈ K be an involution. Then there exists a ∈ Hl,n such that ε = a2l−1
. If γ fixes

ε, then
(γ(a) · a−1)2l−1 = γ(a2l−1) · (a2l−1)−1 = γ(ε) · ε−1 = 1,

therefore γ(a)a−1 ∈ Φ, in other words γ(a)Φ = aΦ. This is a contradiction, since we know
that γ acts fixed point freely on Hl,n/Φ and aΦ ̸= Φ since a2l−1 = ε ̸= 1. Therefore the
action of γ on K is nontrivial, and since m is a prime number, this implies that ⟨γ⟩ acts
transitively on K \ {1}. So Hl,n ⋊ ⟨γ⟩ is m-pyramidal of order 2nl · m. If d is any odd
positive integer, the direct product

Cd × (Hl,n ⋊ ⟨γ⟩)

is m-pyramidal of order 2nl ·m · d. This proves that Ym ⊆ Xm.

We are left to prove that Xm ⊆ Ym ∪ Zm. Let G be an m-pyramidal group where
m ̸= 7. Since m is the index of the centralizer of an involution, we can write

|G| = 2a ·m · d

with d odd. We will prove that |G| ∈ Ym ∪ Zm by induction on |G| (for fixed m). Let N
be a minimal normal subgroup of G. If |N | is even, then, by the solvability of G, N is
an elementary abelian 2-group N ∼= Cn

2 and m = 2n − 1. Lemma 2.2.10 implies that n
divides a. Thus |G| ∈ Ym. Now assume |N | is odd. We know that G/N is 1-pyramidal
or m-pyramidal (because m is prime). If G/N is m-pyramidal then, by induction, we
have |G/N | ∈ Xm ∪ Ym , thus |G| ∈ Xm ∪ Ym since |N | is odd. So now assume that
G/N is 1-pyramidal. Since |N | is odd, the Sylow 2-subgroups of G/N are isomorphic to
the Sylow 2-subgroups of G, which are either cyclic or generalized quaternion. Therefore
xy ̸= yx for every two involutions x, y of G. If ε is an involution of G, then εN is the
unique involution of G/N hence the subgroup N⟨ε⟩ of G is normal in G and it contains
all involutions of G, hence the subgroup of G generated by the involutions is

K = N⟨ε⟩ ∼= D2m

by Proposition 2.2.8, therefore N ∼= Cm. This also implies that |CG(N)| is odd. Since
G/CG(N) is isomorphic to a subgroup of Aut(N) ∼= Cm−1, it follows that a ⩽ t. Thus
|G| ∈ Zm.



Chapter 5

The number of (maximal) cyclic subgroups.

Recall that given a finite group G, a subgroup H of G is called a maximal cyclic
subgroup of G if H is cyclic and it is not properly contained in any cyclic subgroup
of G. The number of cyclic subgroups and the number of maximal cyclic subgroups
are interesting topics that have been studied by many researchers in recent years. In this
chapter, we discuss the influence of the number of cyclic (resp. maximal cyclic) subgroups
of finite groups on their structure. Let c(G) denote the number of cyclic subgroups of G
and λ(G) the number of maximal cyclic subgroups of G.

5.1 Preliminaries

In this section, we introduce some results used to discuss the number of maximal cyclic
subgroups and of cyclic subgroups.

Definition 5.1.1. The norm N(G) of a group G is the set of elements x ∈ G such that
xT = Tx for every subgroup T of G. Therefore, the norm is the intersection of the
normalizers of all its subgroups, and it is a characteristic subgroup of G.

The following result was proved in [59]:

Lemma 5.1.2. The norm of a group is in the second center of the group; the centralizer
of the norm contains the commutator subgroup of the group.

The following result can be found in [60].

Lemma 5.1.3. Every solvable subgroup of Sn has its derived length ℓ(G) bounded by
⌊b log n⌋ where b = 5/(2 log 3) = 2.27559 . . .. Moreover this bound is best possible whenever
n is a power of 9.
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Let G be a finite group containing at most n pairwise non-commuting elements, L.
Pyber [61] gave an upper bound on |G : Z(G)| in terms of n. He proved the following:

Lemma 5.1.4. If the group G contains at most n pairwise non-commuting elements, then
|G : Z(G)| ⩽ αn for some constant α.

Let n be the maximal size of a set of pairwise non-commuting elements of a group
G. We claim that n ⩽ λ(G). To see this, let S = {x1, . . . , xn} be a set of pairwise
non-commuting elements of maximal size. Then, G has an element yi such that xi ∈ ⟨yi⟩,
and ⟨yi⟩ is a maximal cyclic subgroup of G for any i. We claim that the ⟨yi⟩’s are
pairwise distinct. Indeed, assume that C = ⟨yi⟩ = ⟨yj⟩ for some i ̸= j. Then the two
distinct elements xi, xj belong to the same cyclic subgroup C, hence they commute, a
contradiction.

Lemma 5.1.4 implies that

|G : Z(G)| ⩽ αn ⩽ αλ(G).

In other words, we have the following.

Proposition 5.1.5. There exists a constant α such that |G : Z(G)| ⩽ αλ(G) for every finite
group G.

Lemma 5.1.6 (Theorem 4.10 of Chapter 5 in [62]). The following statements hold.

(1) If P is a p-group with no noncyclic abelian normal subgroups, then either P is cyclic
or p = 2 and P is isomorphic to D2m, m ⩾ 4, Q2m, m ⩾ 3, or SD2m, m ⩾ 4.

(2) If P is a p-group with no noncyclic abelian subgroups, then either P is cyclic or
p = 2 and P is isomorphic to Q2m, m ⩾ 3.

Now we collect some results on the classification of the finite groups with n cyclic
subgroups, where 2 ⩽ n ⩽ 11.

Lemma 5.1.7. Let G be a finite group. Then we have the following statements:

(1) c(G) = 2 if and only if G ∼= Cp (see [24, Theorem 2.2]);

(2) c(G) = 3 if and only if G ∼= Cp2 (see [24, Theorem 2.2]);

(3) c(G) = 4 if and only if G ∼= Cp3, Cpq or C2 × C2 (see [24, Theorem 2.2]);

(4) c(G) = 5 if and only if G ∼= Cp4, C3 × C3, Q8 or S3 (see [24, Theorem 2.2]);

(5) c(G) = 6 if and only if G ∼= Cp5, Cp2q or C2 × C4 (see [24, Theorem 2.3]);
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(6) c(G) = 7 if and only if G ∼= Cp6, C5 × C5, D8, D10 or SmallGroup(12, 1) = C3 : C4
(see [24, Theorem 2.4]);

(7) c(G) = 8 if and only if G is isomorphic to one of the following: Cp7, Cpqr, Cp3q,
C3

2 , C2 × C8, C3 × C9, C2 × C2p, A4, Q16, SmallGroup(16, 6) = C8 : C2 or
SmallGroup(27, 4) = C9 : C3 (see [24, Theorem 2.5]);

(8) c(G) = 9 if and only if G is isomorphic to Cp8, Cp2q2, C7 ×C7, SmallGroup(20,1)=
C5 : C4, D14, SmallGroup(21, 1) = C7 : C3 or SmallGroup(24, 1) = C3 : C8 (see [19,
Theorem 2.4]);

(9) c(G) = 10 if and only if G is isomorphic to Cp9 , Cp4q, Cp × S3, C3 × C3p, Cp × Q8,
C2 ×C16, C4 ×C4, SD16, D12, SmallGroup(16, 4) = C4 : C4 or SmallGroup(32, 17) =
C16 : C2 (see [19, Theorem 2.4]);

(10) c(G) = 11 if and only if G ∼= Cp10 , C27 × C3, C3 × S3, SmallGroup(28, 1) = C7 : C4,
SmallGroup(40, 1) = C5 : C8, SmallGroup(48, 1) = C3 : C16, SmallGroup(63, 1) =
C7 : C9 or SmallGroup(81, 6) = C27 : C3 (see [25, Theorem 1.1]),

where p, q and r are distinct primes.

Moreover, A. R. Ashrafi and E. Haghi [19] provided a characterization for the simple
group PSL(2, 7) by using the number of cyclic subgroups. It is stated as follows:

Lemma 5.1.8 (Theorem 2.5 of [19]). A finite simple group G satisfies c(G) = 79 if and
only if G ∼= PSL(2, 7).

J. R. Rogério [21] proved that the number of maximal cyclic subgroups of G equals
the maximal size of an irredundant covering of G. Now we use this result to prove the
following proposition.

Proposition 5.1.9. If H ⩽ G and N �G then λ(H) ⩽ λ(G) and λ(G/N) ⩽ λ(G).

Proof. Let ⟨hi⟩, i = 1, . . . , n, be the maximal cyclic subgroups of H, where n = λ(H),
and let ⟨xi⟩, i = 1, . . . , n, be maximal cyclic subgroups of G such that ⟨hi⟩ ⩽ ⟨xi⟩ for all
i. To prove that λ(H) ⩽ λ(G) it is enough to prove that, if ⟨xi⟩ = ⟨xj⟩, then ⟨hi⟩ = ⟨hj⟩.
We can write hi = xa and hj = xb for some positive integers a, b, where x = xi. Letting
d be the greatest common divisor of a, b, we can then dr = a and ds = b with r, s ∈ N.
Moreover ua+ vb = d for some integers u, v and hence

y = xd = (xa)u(xb)v ∈ H.

Since yr = hi and y
s = hj, we deduce that both ⟨hi⟩ and ⟨hj⟩ are contained in ⟨y⟩. Since

they are maximal cyclic subgroups of H and y ∈ H, we deduce that they are both equal
to ⟨y⟩. Therefore ⟨hi⟩ = ⟨y⟩ = ⟨hj⟩.
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Let N�G. We need to prove that λ(G/N) ⩽ λ(G). If G/N is cyclic then λ(G/N) = 1
and there is nothing to prove, so now assume that G/N is noncyclic, so that G is noncyclic
as well. If

{H1/N, . . . , Hk/N}
is an irredundant covering of G/N of size k = λ(G/N), then {H1, . . . , Hk} is an irredun-
dant covering of G of size k. Therefore λ(G/N) ⩽ λ(G).

Recall that an element g ∈ G is called primitive if ⟨g⟩ is a maximal cyclic subgroup
of G. Equivalently, an element x ∈ G is primitive if whenever x is a power of an element
y ∈ G, the element y is a power of x. We have the following result.

Lemma 5.1.10. Let A,B be groups of coprime orders and let G = A × B. An element
(a, b) ∈ G is primitive in G if and only if a is primitive in A and b is primitive in B. As
a consequence, λ(G) = λ(A) · λ(B).

Proof. Assume (a, b) ∈ G is primitive. We prove that a is primitive. Suppose a = xk

for some x ∈ A, k ∈ Z. We need to prove that x is a power of a. Let d be the greatest
common divisor of k and |B|. Since k/d is coprime to |B|, we can write b = yk/d for a
suitable y ∈ ⟨b⟩, hence (a, b) = (xd, y)k/d. Since (a, b) is primitive, there exists r ∈ Z such
that

(xd, y) = (a, b)r = (ar, br),
hence xd = ar. Since d is coprime to |A|, this implies that x is a power of a. This proves
that a is primitive and, similarly, b is primitive too. Conversely, assume a is primitive in
A and b is primitive in B. Assume

(a, b) = (x, y)k = (xk, yk),

then a = xk and b = yk. Since a, b are primitive, there exist l,m ∈ Z such that x = al and
y = bm. By the Chinese Remainder theorem, there exists r ∈ Z such that r ≡ l mod |A|
and r ≡ m mod |B|, therefore

(a, b)r = (ar, br) = (al, bm) = (x, y).

This proves that (a, b) is primitive.

Lemma 5.1.11. Let p be a prime number, let A,B be nontrivial finite p-groups with A
cyclic and let G := A×B. Then A× {1} is a maximal cyclic subgroup of G.

Proof. If this is not true, then writing A = ⟨a⟩, there exists an element (ai, b) ∈ G such
that ⟨(a, 1)⟩ is properly contained in ⟨(ai, b)⟩. This means that b ̸= 1 and there exists an
integer m such that aim = a, bm = 1. The fact that aim = a implies that o(a), which
is a power of p different from 1 (as A is a nontrivial p-group), divides im − 1, implying
that p does not divide m. Since bm = 1 and B is a p-group, we deduce that b = 1, a
contradiction.
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Lemma 5.1.12. Let p be a prime number, let P be a finite nontrivial p-group and let c be
the number of cyclic subgroups of P , let λ be the number of maximal cyclic subgroups of
P . If G = P × Cp, then

c(G) = p(c− 1) + 2,
λ(G) = (p− 1)(c− 1) + λ+ 1.

In particular, c(Cpa × Cp) = ap+ 2 and λ(Cpa × Cp) = ap− a+ 2.

Proof. For every b ∈ N, let cb be the number of elements of order pb in P . If b ⩾ 2, then
G has p · cb elements of order pb. Moreover, G has p · c1 + p − 1 elements of order p and
of course one element of order 1. Write |P | = pa. It follows that

c(G) = 1 + p · c1 + p− 1
φ(p) +

a∑
b=2

p · cb

φ(pb) = p ·
a∑

b=1

cb

φ(pb) + 2 = p(c− 1) + 2.

Now, the c − λ non-maximal cyclic subgroups of P are not maximal cyclic subgroups of
G, therefore

λ(G) = p(c− 1) + 2 − (c− λ) = (p− 1)c− p+ 2 + λ.

This is because, if K = ⟨x⟩ is any cyclic subgroup of G, then xp ∈ P × {1}, therefore all
the subgroups of G properly contained in K are subgroups of P × {1}. Therefore all the
cyclic subgroups of G not contained in P × {1} are maximal cyclic.

Lemma 5.1.13. Let p be a prime number, let P be a finite nontrivial p-group and let c be
the number of cyclic subgroups of P , let cb be the number of elements of order pb in P .
Then

c(P × Cpa) = (a+ 1) + pa(c− 1) +
a−1∑
i=1

(a− i)ci −
a−1∑
j=1

(pa−j + pa−j−1 + . . .+ p2 + p)cj.

Proof. The number of elements of order pi (where i ⩽ a) is cip
i+(1+c1+c2+. . .+ci−1)φ(pi),

and there are cbp
a elements of order pb for b > a. Thus

c(P × Cpa) = 1 + c1p+ φ(p)
φ(p) + c2p

2 + (1 + c1)φ(p2)
φ(p2) + c3p

3 + (1 + c1 + c2)φ(p3)
φ(p3)

+ . . .+ cap
a + (1 + c1 + . . .+ ca−1)φ(pa)

φ(pa) +
∑
b>a

cbp
a

φ(pb)

= 1 + 1 + c1p

φ(p) + (1 + c1) + c2p
2

φ(p2) + (1 + c1 + c2) + c3p
3

φ(p3) + . . .

+ (1 + c1 + c2 + . . .+ ca−1) + cap
a

φ(pa) +
∑
b>a

cbp
a

φ(pb)

= a+ 1 + pa(c− 1) +
a−1∑
i=1

(a− i)ci −
a−1∑
j=1

(pa−j + pa−j−1 + . . .+ p2 + p)cj
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5.2 The proof of Theorem E

In this section, we will prove Theorem E, which we state again for convenience. It was
proved in [10].

Theorem E (X. Gao, M. Garonzi). If G is any finite solvable group then the derived length
of G is at most 2 + 5

2 log3(λ(G)).

Proof. Let C be the family of all maximal cyclic subgroups of G, so that |C | = λ = λ(G).
Of course G acts on C by conjugation. The kernel N of this action is the intersection of
the normalizers of all maximal cyclic subgroups of G. It is clear that G/N is isomorphic
to a subgroup of Sym(λ).

We claim that N is actually equal to the set of elements of G that normalize every
subgroup of G. To see this, let g ∈ G be an element that normalizes every maximal cyclic
subgroup of G. If H is any subgroup of G and h ∈ H, then there exists a maximal cyclic
subgroup ⟨x⟩ of G containing ⟨h⟩, and by assumption xg = xk for some integer k. Since
h ∈ ⟨x⟩, there is some integer t such that h = xt, so that

hg = (xt)g = (xg)t = (xk)t = (xt)k = hk ∈ ⟨h⟩ ⩽ H,

this proves that g normalizes H. This proves the claim.

The above claim implies that N is equal to the norm of G. By Lemma 5.1.2, we deduce
that N is contained in the second term of the upper central series, N ⩽ Z2(G). Since
Z(G) = Z1(G) ⩽ Z2(G), Z1(G) is contained in the center subgroup of Z2(G). Observe
that Z2(G)/Z1(G) is abelian, so Z2(G) is nilpotent, and then N is nilpotent of class at
most 2. In particular, N ′ ⩽ [Z2(G), G] ⩽ Z1(G) and, since Z1(G) is abelian, we have
N ′′ = {1}.

Since G/N is isomorphic to a subgroup of Sym(λ), we deduce that, if G is solvable,
then the Fitting length of G is at most 1+λ!. Since N ′′ = {1}, the derived length of G is at
most 2 + λ!. We can do much better than this: Lemma 5.1.3 says that the derived length
of a solvable permutation group of degree n is at most 5

2 log3(λ). This proves Theorem
E.

5.3 The proof of Theorem F

Recall that a family F of groups is said to be MCB if, for every natural number n,
there are only finitely many groups G in F (up to isomorphism) such that λ(G) ⩽ n. In
this section, we prove Theorem F, which we restate here once more for the benefit of the
reader. It was proved in [10].

Theorem F (X. Gao, M. Garonzi). The following statements hold.
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(1) The family of noncyclic groups of prime power order is MCB. More precisely, if G
is a noncyclic finite p-group and t = λ(G) then |G| ⩽ ct · tt2

for some constant c.

(2) The family of groups G such that every nontrivial Sylow subgroup of the center
Z(G) is noncyclic is MCB. In particular, the family of groups with trivial center is
MCB.

Proof. Item (1). Let G be a noncyclic finite p-group, where p is a fixed prime number. If
G is abelian then we can write

G =
k∏

i=1
Cpai =

k∏
i=1

⟨gi⟩

with k ⩾ 2. Since the ⟨gi⟩ are maximal cyclic subgroups of G by Lemma 5.1.11, we have
k ⩽ λ(G), so we are left to bound the ai’s. Note that for any i ∈ {1, . . . , k}, G has a
subgroup

Ai := Cpai × Cp.

Since λ(H) ⩽ λ(G) for H ⩽ G by Proposition 5.1.9, we have λ(Ai) ⩽ λ(G) hence, by
Lemma 5.1.12,

λ(G) ⩾ λ(Ai) = aip− ai + 2 ⩾ ai

and similarly λ(G) ⩾ p, therefore |G| ⩽ tt
2
where t = λ(G).

Now assume G is nonabelian. By Proposition 5.1.5, the index |G : Z(G)| is bounded
by a function of λ(G). If H is a noncyclic abelian subgroup of G then K = ⟨H,Z(G)⟩ is
a noncyclic abelian subgroup of G hence, by the abelian case, |K| is bounded in terms of
λ(K) ⩽ λ(G), so since Z(G) is contained in K, the order of Z(G) is bounded in terms
of λ(G). We are left to analyze the case in which all abelian subgroups of G are cyclic.
The class of p-groups all of whose abelian subgroups are cyclic is known: such a group is
either cyclic or a generalized quaternion group by Lemma 5.1.6. Since G is noncyclic, it
must be a generalized quaternion group Q2n , therefore |Z(G)| = 2 and we are done.

We now prove item (2). Let G be a finite group such that every nontrivial Sylow
subgroup of Z(G) is noncyclic. Write

Z(G) = P1 × P2 × . . .× Pk

where Pi is a nontrivial Sylow subgroup of Z(G) for i = 1, 2, . . . , k. Let

z := min{λ(P1), λ(P2), . . . , λ(Pk)}.

Since Pi is noncyclic for all i, we have z ⩾ 2. By Proposition 5.1.9 and Lemma 5.1.10,

zk ⩽ λ(P1) · . . . · λ(Pk) = λ(Z(G)) ⩽ λ(G),

it follows that k ⩽ logz(λ(G)). By the item (1) of Theorem F, the family of noncyclic
groups of prime power order is MCB, so by Proposition 5.1.9 we can bound the order of
Pi in terms of λ(G), thus |Z(G)| is bounded by a function of λ(G). Therefore |G| = |G :
Z(G)| · |Z(G)| is also bounded by a function of λ(G) by Proposition 5.1.5.
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5.4 The proof of Theorem G

Recall that a family F of groups is said to be CB if, for every natural number n, there
are only finitely many groups G in F (up to isomorphism) such that c(G) ⩽ n. Since
λ(G) ⩽ c(G), item (1) of Theorem F implies that the family of noncyclic groups of prime
power order is CB. More precisely, we have the following.

Proposition 5.4.1. If G is a noncyclic finite p-group and t = c(G) then |G| ⩽ tt.

Proof. Let G be a noncyclic group of order pn where p is a prime, we need to bound p
and n in terms of t = c(G). If p = 2 then p < t since G is a noncyclic group (see Theorem
5.1.7). If p ⩾ 3, then by Lemma 5.1.6, G has a subgroup isomorphic to Cp × Cp, which
has p + 2 cyclic subgroups, therefore p ⩽ t. If pm is the exponent of G and g ∈ G has
order pm, then ⟨g⟩ has m + 1 cyclic subgroups, therefore m ⩽ t − 1 and exp(G) ⩽ tt−1.
Since each cyclic subgroup of G has at most φ(pm) = pm−1(p − 1) generators, G has at
least pn−1

pm−1(p−1) cyclic subgroups, therefore

t ⩾
pn − 1

pm−1(p− 1) = pn−1 + pn−2 + . . .+ p+ 1
pm−1 ⩾

pn−1

pm−1 = pn−m.

Thus pn−m ⩽ t hence |G| = pn = pm · pn−m ⩽ tt−1 · t = tt.

Before proving Theorem G, we need the following theorem.

Theorem 5.4.2. Let G be a finite group with c(G) = t. Then G ∼= A × B where A is
cyclic, |A|, |B| are coprime, the Sylow subgroups of the center of B have order at most tt

and |B| ⩽ αt · tt2
where α is the constant in Lemma 5.1.4.

Proof. We prove, by induction on |G|, that G ∼= A × B where A is cyclic, |A|, |B| are
coprime, the Sylow subgroups of the center of B have order at most tt and |B| ⩽ αt · tt2

.
Proposition 5.4.1 implies that every noncyclic p-subgroup of G has order at most tt. By
Cauchy’s theorem, for every prime p dividing |G|, there exists a cyclic subgroup of G of
order p, therefore |G| has at most t prime divisors. So if Z(G) has no Sylow subgroup of
order larger than tt then |Z(G)| ⩽ tt

2
. Proposition 5.1.5 now implies that |G| ⩽ αt · tt2

and hence we can choose A = {1}. Now assume that Z(G) has a Sylow subgroup P with
the property that |P | > tt. In particular, P is cyclic and of course P �G.

Let Q be a Sylow p-subgroup of G containing P and write |Q| = pk. If Q is noncyclic,
then |P | ⩽ |Q| ⩽ tt, a contradiction. So Q is cyclic, hence Q has k + 1 cyclic subgroups.
It follows that k + 1 ⩽ c(G) = t. If Q is not normal in G, then 1 < np(G) ≡ 1 mod p by
Sylow’s theorem, hence p < np(G) ⩽ t, therefore

|P | ⩽ |Q| = pk ⩽ tt−1 < tt,
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a contradiction. We deduce that Q is cyclic and normal in G, so that G = Q ⋊ K for
a suitable K, by the Schur-Zassenhaus theorem. If this is not a direct product, then K
is not normal in G, so Q is not contained in NG(K). Therefore Q cannot normalize all
cyclic subgroups of K, in other words there is some u ∈ K such that Q is not contained
in NG(⟨u⟩). It follows that p divides the index |G : NG(⟨u⟩)|, which equals the number of
conjugates of ⟨u⟩ in G, hence p ⩽ c(G) = t. We deduce that

|P | ⩽ |Q| = pk ⩽ tt−1 < tt,

a contradiction. This implies that G is a direct product Q × K where Q is a cyclic p-
group and p does not divide |K|. By induction, the result holds for K (since K is a proper
subgroup of G), in other words, K ∼= K1 ×B where K1 is cyclic, (|K1|, |B|) = 1, the Sylow
subgroups of the center of B have order at most tt and |B| ⩽ αt · tt2

. Note that

G = Q×K = Q×K1 ×B,

where |Q|, |K1| and |B| are pairwise coprime, so G can be written as G = A × B where
A = Q × K1 is cyclic, |A| and |B| are coprime, the Sylow subgroups of the center of B
have order at most tt and |B| ⩽ αt · tt2

. Therefore, the result holds for G and we are
done.

Observe that if c(G) is replaced by λ(G), then the Theorem 5.4.2 is not true. As an
example of this, consider G = Gk = C3 ⋊ C2k with the action given by inversion. Then
G is not isomorphic to a direct product of two nontrivial groups and λ(G) = 4. Indeed,
writing G = ⟨a, b : a3 = b2k = 1, ab = a−1⟩, since ab2 = a, we have N := ⟨a, b2⟩ =
⟨a⟩ × ⟨b2⟩ ∼= C3·2k−1 . The subgroup N is maximal cyclic and ⟨x⟩ is maximal cyclic for
every x ∈ G−N , since o(x) = 2k. Therefore

λ(G) = 1 + c(G−N) = 1 + |G−N |/φ(2k) = 4,
c(G) = c(N) + c(G−N) = c(C3) · c(C2k−1) + |G−N |/φ(2k) = 2k + 3.

It follows that |G| cannot be bounded in terms of λ(G). This also shows that the family
of groups {Gk : k ⩾ 1} is CB but not MCB.

Call B the set of positive integers n such that there are only finitely many noncyclic
groups G with c(G) = n, up to isomorphism. We now prove Theorem G, which we restate
here for convenience. This theorem was proved in [10].

Theorem G (X. Gao, M. Garonzi). B = {1, 4, 6, 9} ∪ P where P is the set of prime
numbers.

Proof. From the work of Ashrafi and Haghi [19, 24] (see also [18] and [17]) we immediately
deduce that 3, 4, 5, 6, 7, 9 ∈ B and 8, 10 ̸∈ B. We need to show that an integer n ⩾ 10
is prime if and only if there are only finitely many noncyclic finite groups with precisely
n cyclic subgroups. By Theorem 5.4.2, there exists a function f such that, if G is any
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noncyclic finite group with c(G) = n, we have G ∼= A×B with |A|, |B| coprime, A cyclic
and |B| ⩽ f(n). In particular c(G) = c(A) · c(B) so, if n is prime, the fact that A is
cyclic and G is noncyclic implies that A = {1}, so G = B and |G| ⩽ f(n). Conversely,
assume n is not a prime number and write n = ab with a, b > 1. Since n ⩾ 10 we may
assume without loss of generality that b ⩾ 4. Then we can write b − 2 = kq for some
prime number q and some integer k ⩾ 1, so that c(Cqk × Cq) = qk + 2 = b by Lemma
5.1.12 and, if r is any prime number distinct from q, the noncyclic group Cra−1 ×Cqk ×Cq

has ab = n cyclic subgroups. Since there are infinitely many such primes r, we obtain the
result.



Appendix A

The classification of simple pyramidal groups

In [7], H. Yamaki gave a classification of the pyramidal nonabelian simple groups. Let
S be a finite simple group and CS(t) the centralizer of the involution t in S, and let tS

denote the conjugacy class of t in S. Tables A.1, A.2, A.3, and A.4, which correspond
to Tables 1-4 of [7], provide information on all pyramidal simple groups, the order of
centralizers of involutions in S, and compute the number of involutions in all pyramidal
simple groups.

S |CS(t)| |S| |tS |
PSL(2, q), q ≡ 1 mod 4 q − 1 q(q2 − 1)/2 q(q + 1)/2
PSL(2, q), q ≡ −1 mod 4 q + 1 q(q2 − 1)/2 q(q − 1)/2
PSL(3, q) (q − 1)2q(q + 1)(3, q − 1)−1 q3(q2 − 1)(q3 − 1)(3, q − 1)−1 q2(q2 + q + 1)

PSL(4, q), q ≡ 5 mod 8 (q − 1)3q2(q + 1)2/2 q6
3∏

i=1
(qi+1 − 1)/4 q4(q2 + q + 1)(q2 + 1)/2

G2(q) q2(q2 − 1)2 q6(q6 − 1)(q2 − 1) q4(q2 + q + 1)(q2 − q + 1)
2G2(q), q = 32k+1, k ⩾ 2 q(q2 − 1) q3(q3 + 1)(q − 1) q2(q2 − q + 1)
PSU(3, q) q(q + 1)(q2 − 1)(3, q + 1)−1 (q3 + 1)q3(q2 − 1)(3, q + 1)−1 q2(q2 − q + 1)

PSU(4, q), q ≡ 3 mod 8 (q − 1)2q2(q + 1)3/2 q6
3∏

i=1
(qi+1 − (−1)i+1)/4 q4(q2 − q + 1)(q2 + 1)/2

3D4(q3) q4(q2 − 1)(q6 − 1) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) q8(q8 + q4 + 1)

Table A.1: Groups of Lie type over a field of odd characteristic.
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S |CS(t)| |S| |tS |
PSL(2, q) q (q + 1)q(q − 1) (q + 1)(q − 1)
PSL(3, q) q3(q − 1)(3, q − 1)−1 (q3 − 1)(q2 − 1)q3(3, q − 1)−1 (q3 − 1)(q + 1)
PSU(3, q) q3(q + 1)(3, q + 1)−1 (q3 + 1)q3(q2 − 1)(3, q + 1)−1 (q3 + 1)(q − 1)
Sz(q), q = 22k+1, k ⩾ 1 q2 (q2 + 1)q2(q − 1) (q2 + 1)(q − 1)

Table A.2: Groups of Lie type over a field of even characteristic.

S |CS(t)| |S| |tS |
M11 24 · 3 24 · 32 · 5 · 11 3 · 5 · 11
J1 23 · 3 · 5 23 · 3 · 5 · 7 · 11 · 19 7 · 11 · 19
M22 27 · 3 27 · 32 · 5 · 7 · 11 3 · 5 · 7 · 11
M23 27 · 3 · 7 27 · 32 · 5 · 7 · 11 · 23 3 · 5 · 11 · 23
J3 27 · 3 · 5 27 · 35 · 5 · 17 · 19 34 · 17 · 19
McL 27 · 32 · 5 · 7 27 · 36 · 53 · 7 · 11 34 · 52 · 11
ON 29 · 32 · 5 · 7 29 · 34 · 5 · 73 · 11 · 19 · 31 32 · 72 · 11 · 19 · 31
Ly 28 · 34 · 52 · 7 · 11 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 33 · 54 · 31 · 37 · 67
T h 215 · 34 · 5 · 7 215 · 310 · 53 · 72 · 13 · 19 · 31 36 · 52 · 7 · 13 · 19 · 31

Table A.3: Sporadic simple groups.

S |CS(t)| |S| |tS |
A5 = PSL(2, 4) 22 60 = 22 · 3 · 5 3 · 5 = 15
A6 = PSL(2, 32) 23 360 = 23 · 32 · 5 32 · 5 = 45
A7 23 · 3 2520 = 23 · 32 · 5 · 7 3 · 5 · 7 = 105

Table A.4: Alternating Groups.
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[21] J. R. Rogério. A note on maximal coverings of groups. Communications in Algebra,
42(10):4498–4508, 2014.
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