—

-

Universidade de Brasilia

Instituto de Ciencias Exatas
Departamento de Matematica

Rigidity of compact gradient Ricci almost
solitons with boundary

by

Geraldo Herbert Beltrao de Souza

Brasilia

2024



N

Universidade de Brasilia

Instituto de Ciencias Exatas
Departamento de Matematica

Rigidity of compact gradient Ricci almost
solitons with boundary

by
Geraldo Herbert Beltrao de Souzal

Advisor: Prof. Dra. Keti Tenenblat

Thesis presented to the Graduate Program of
the Department of Mathematics of the Uni-
versidade de Brasilia as part of the requisites

to obtain the degree of Ph.D. in Mathemat-

1CS.

Brasilia

2024

!The author had financial support from CAPES during the elaboration of this work.



Resumo

Seja (M™, g,V f,A) um quase soliton de Ricci gradiente, compacto com fronteira. Neste
trabalho obtemos teoremas de rigidez para (M", g, V f, A) de modo que, sob determinadas
hipdteses, podemos mostrar se ele é isométrico a um hemisfério de uma esfera Euclidiana,
a uma bola Euclidiana fechada ou a um dominio hiperbdlico. Além disso, aplicamos tais
teoremas em uma caracterizagao de quase solitons de Ricci gradientes e compactos sobre
o produto warped M = B x;, F, em que B é uma variedade Riemanniana com fronteira.

Palavras-chave: Variedades com fronteira; Campos vetoriais conformes; Quase soliton
de Ricci gradiente; Produto warped.

Titulo: Rigidez de quase-solitons de Ricci gradiente compactos com fronteira.



Abstract

Let (M™ g,V f,\) be a compact gradient Ricci almost soliton with boundary. In this
thesis, we obtain rigidity theorems for (M", g, V f, A) so that we can show if it is isometric
to a closed hemisphere of an Euclidean sphere, or a closed Euclidean ball, or a domain in
H". Furthermore, we apply such theorems to characterize gradient Ricci almost solitons
on warped product M = B xj, F, where B is a compact Riemannian manifold with
boundary.

Keywords: Manifolds with boundary; Conformal vector fields; Gradient Ricci almost
solitons; Warped product.
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Introduction

We shall consider (M, g,V f,\) a gradient Ricci almost soliton with boundary, i.e., (M, g)
is a Riemannian manifold with boundary, which satisfies the following fundamental equa-

tion
Ric = Ag + Hess(f),

where A and f are smooth functions on M, and Vf and Hess(f) denote the gradient of
f and the Hessian of f, respectively. If the gradient vector field V f vanishes, then the
gradient Ricci almost soliton is just an Einstein manifold with boundary.

This work is meant to be a first step into the characterization of compact gradient
Ricci almost solitons with boundary. We have taken the same perspective by [7], [19],
and [10]. Rigidity results for the without boundary case have been studied in [15], [2],
and [1]. Our motivation to study the “boundary case” is from [5], and [6], where the
authors investigate characterizations of Einstein metrics on warped products.

This work is divided in four chapters.

Chapter 1 we developed the basic theory of manifolds with boundary, we define
and prove some properties of Killing vector fields on smooth manifolds with and with-
out boundary, we recall the generalized Bochner formula for manifolds with or without
boundary, and at the last section we study some aspects of the topology of manifolds
with boundary, namely, the equivalence the topology induced from the distance function
and the topology induced from the smooth structure, and we give the statement of the
Hopf-Rinow theorem for manifolds with boundary, which was obtained by D. Burago, Y.
Burago, S. Ivanov, S. Pigola, and G. Veronelli..

Chapter 2 we start by recalling the definition of Ricci solitons (with or without bound-
ary) and we prove some properties by following the same steps in [7]. In the second section
we define warped product, where the base is a Riemannian manifold with boundary and
the fiber is a Riemannian manifold without boundary, and we show some identities for the
Christoffel symbol and the Hessian of an arbitrary smooth function defined on the warped
product. We calculated the Ricci tensor on the warped product. We finish this chapter
by proving that a warped product B x;, F', where the fiber F' has dimension bigger than



3, which is Einstein with a boundary condition

oh
/83 hwd(ﬁB) >0,
is a Riemannian product.

Chapter 3 is dedicated to obtain rigidity theorems for gradient Ricci almost solitons
with boundary. Precisely, the three most important theorems that we proved in this
chapter are the following.

Theorem 3.2.9. Let (M", g,V f,\), n> 2, be a compact connected gradient Ricci

almost soliton with connected boundary. Suppose f satisfies

f(p) >co pe€int(M),
flp)=co pedM,

where cg > 0 is a constant, V [ does not vanish on OM . Suppose the scalar curvature S of
M s positive, and ¥V f is a conformal vector field. Assume Hess(f) = &g, where £ <0 on
OM . Then the mean curvature of OM is non negative, and there exists a positive constant
p € R such that the Ricci curvature of M satisfies

Ric,(v,v) > (n — 1)p2,

for allp € OM, and v € T,0M, |v| = 1. Moreover, the first eigenvalue A\1(A) of the
Laplacian on M satisfies the inequality \i(A) > np®. The equality holds if and only if M
is isometric to a closed hemisphere of the Euclidean sphere S™(p*) of radius —.
The section 8 is dedicated to prove the following theorem. ’
Theorem 3.8.2. Let (M™,g,Vf,\), n > 2, be a compact gradient Ricci almost
soliton with boundary. Suppose f is constant on OM, and the Ricci curvature of M is

non negative. If

9p(VF(p);n(p)) < H(p), and A(p) < Rican (v, v) + Kar(n(p), v),

for all p € OM, where n(p) is the inward unit normal vector to the boundary at p, H(p)
is the mean curvature of OM at p, and v € T,0M, |v| = 1, is a principal direction of
the shape operator Sy). Here, Ricoyr and Ky denote the Ricci curvature of OM and the

sectional curvature of M, respectively. Then, the following assertions are satisfies:

(i) The first eigenvalue \{(Agnr) of the Laplacian on OM satisfies A\i(Agpr) > (n—1)p?,
for some positive constant p € R. Moreover, the equality holding if and only if M

18 isometric to an n-dimensional closed Euclidean ball of radius —.



(ii) The mean curvature satisfies
/ —d OM) > nvol(M).
om H

The equality holds if and only if M is isometric the a closed Euclidean ball.

The section 9 is dedicated to prove the following theorem.
Theorem 3.9.3. Let (M", g,V f,\), n >3, be a compact gradient Ricci almost soliton

with simply connected boundary. Suppose f satisfies

f(p) >cy peint(M),
f(p):CO peaM7

where cq is a constant, V f does not vanish on OM . If there exists an isometric immersion

of OM into the H"t™ ng > 0, and
1—n—Xp) < Hess(f)(v,v) < =V ()T, (v, )],

for allp € OM, v € T,0M, |v|, = 1. Here, II" denotes the vector-valued second
fundamental form of OM in H" ™ then M is isometric to a domain in H".

In the Chapter 4 we characterize gradient Ricci almost solitons on warped product
with boundary by applying the rigidity theorems that we obtained in the Chapter 3. In
the first section we obtain the following theorem.

Corollary 4.1.6. Let (B™, gg) and (F*, gr) be Riemannian manifolds, where B is a
oriented connected Riemannian manifold with boundary and F' is a Riemannian manifold
without boundary. Let (M = B Xy, F,q) be an warped product, where h is a positive

function which satisfies
h(p) > cy p € int(B),
h(p) = Qo S aB;

where cq is a constant. Suppose (M, g,V f, \) is a gradient Ricci almost soliton such that

f is non constant on F'. Then, the following assertions are satisfies:

(i) If B is compact, then Vgh # 0 and Hpp > 0, where Hyp is the mean curvature of
O0B. In particular, the second fundamental form of OB is positive.

(ii) If Vph # 0 on OB, then |V gh| is constant.
(iii) If Vgh # 0 on OB, then OB is totally geodesic.

(iv) Let A : B — R be the funcion which satisfies f = A + h®. Suppose A is constant
on 0B, and m > 3. Then, gg(Vph,VgA\) is constant in B if and only if B is Ricci
flat and VA is a Killing vector field.



The second section is dedicated to demonstrate the following result.
Theorem 4.2.2. Let (B™, gg) and (F*, gr) be Riemannian manifolds, where B is a

oriented connected compact Riemannian manifold with connected boundary, m > 2, and F

is a Riemannian manifold with no boundary. Let (M = B x5, F, g) be an warped product,

where h is a positive function which satisfies

h(p) > ¢y p € int(B),
h(p) =co p€IB,

where cq is a constant. Suppose (M, g,V f, \) is a gradient Ricci almost soliton such that

f 1s constant on F'. Moreover, suppose that Vgh is a conformal vector field. Then, the

following assertions are satisfies:

(i)

(iii)

If f satisfies

f(p) >co pe int(B),

f(p)=c peIb,
where ¢y is a constant, Vf # 0 on OM, the scalar curvature of B is positive, and
Hess(f) = £g, where & < 0 on OB, then there exists a positive constant p € R
such that the first eigenvalue \i(Ap) of the Laplacian on B satisfies the inequality
M (Ap) > mp®. Moreover, the equality holds if and only if B is isometric to an
Euclidean sphere S™(p?) of radius %

Let Hpp, Ricpp, and Kp be the mean curvature of OB, the Ricci curvature of 0B
and the sectional curvature of B, respectively. Suppose f constant on OM, and the
Ricci curvature of B is non negative. Assume Hgp, Ricgp, and Kg are such that

the following system

kgs(Veh(p),n(p)) + h(p)IVf(p)| < h(p)Hor(p),
)‘(p) < RiCaB(U,U)+KB(77(p),U), (1)

is satisfied, for all p € OB, where n(p) = %. Then the first eigenvalue A\ (App)
of the Laplacian on OB satisfies \i(Dpg) > (m — 1)p?, for some positive constant
p € R. Moreover, the equality holds if and only if B is isometric to an m-dimensional

closed Fuclidean ball of radius —.

Let f, Hyp, Ricsp, and Kg be as in item (ii). If Hsp, Ricop, and Kp are such that
18 satisfied, then the mean curvature Hyp satisfies

- md(@B) > muol(B).

Moreover, the equality holds if and only if B is isometric to a closed Euclidean ball.
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(iv) Suppose that OB is simply connected, m > 3, and f satisfies

f(p) >co p€int(B),
flp)=c peib,

where ¢y is a constant, and V f does not vanish on OB. If there exists an isometric

immersion of OB into the H™ ™0 mqy > 0, and the Hessian of f is such that

(1= n = Ap)AG)IV ()
Fan(V oA 1) + AV = PN <

< =V (v, 0)]2,

is satisfied, then B is isometric to a m-dimensional hyperbolic domain. Here, 11"

denotes the vector-valued second fundamental form of OB in H™t™o,



Chapter 1
Preliminaries

Since in this thesis we study Ricci almost solitons with boundary, then the two first
sections are dedicated to recall some basic definitions and properties of smooth manifolds
with boundary and Riemannian metrics. For a treatment much more systematic about
manifolds with boundary see [9]. The third section we give some basic definitions and
properties about Killing vector fields on a smooth manifold with or without boundary.
The fourth section we give the generalized Bochner formula. At the fifth section we study
the relationship of the topology induced from the smooth structure on a manifold with
boundary and the topology induced from the distance function. We finish the last section

by giving the statement of the Hopf-Rinow theorem for manifolds with boundary.

1.1 Smooth Manifolds with boundary

Let M be a topological space. We say M is an n-dimensional topological manifold
with boundary if M is a Hausdorftf space such that admit a countable basis for its

topology and every point in M has a neighborhood homeomorphic to an open subset of

RY = {z = (21, ...,x,) € R" : 2, > 0}, (1.1)

where R} is provided by the inherited topology from the R". If n > 0 we set

int(R}) = {z = (21, ...,x,) € R" : z,, > 0}, (1.2)
OR"} = {z = (21, ...,x,) € R" : 2, = 0}. (1.3)

If n = 0, then int(R}) = {0} and ORY = @.
Let M be an n-dimensional topological manifold with boundary. An chart for M is a

pair (U, ¢) such that U is an open subset of M and ¢ : U — R’} is an homeomorphism on



the open subset p(U) C R’. It follows from the definition that if M is an n-dimensional
topological manifold with boundary, then there exists a collection {(Us,, ¢a)}a such that
(Un, o) is a chart for M, for all «, and

M:U%.

A point p € M is called an interior point of M, if ¢(p) € int(R"}) for some chart
(U, ¢) for M. On the other hand, it is called a boundary point of M, if ¢(p) € ORY,
for some chart (U, ¢) for M.

A given point cannot be simultaneously an interior point with respect to one chart
and a boundary point with respect to another. For convenience, we state the theorem

here.

Theorem 1.1.1 (Topological Invariance of the Boundary.). If M is a topological
manifold with boundary, then each point of M 1is either a boundary point or an interior

point, but not both.

If M is a topological manifold with boundary, then the subset of M whose points
are boundary points we denoted by OM, and the subset of M whose points are interior
points we denoted by int(M). From the Theorem 1.1.1 we have M = 9M U int(M),
OM Nint(M) = @.

Proposition 1.1.2. Let M be a topological n-manifold with boundary. Then OM is a
closed subset of M and a topological (n — 1)-manifold without boundary.

One of the reasons for introducing smooth structures was to enable us to define smooth

functions on manifolds and smooth maps between manifolds with boundary.

Definition 1.1.3. Let U be an open subset of R%. A map f : U — R* is called smooth
if for each point p € U there exist an open subset V.C R™ and a smooth map F : V — RF
such that p € V and F|ynv = fluav.

Example 1.1.4. Let B*> C R? be the set {(z,y) € R* : 2? + y* < 1}. Let U = B> NR2,
and define f - U — R by f(x,y) = m Since the function F : B> — R
given by F(z,y) = m is smooth and F|\U = f, then f is smooth in the sense
that we just defined.

Example 1.1.5. Let U be like in Example 1.1.4, define h : U — R by h(z,y) = \/y.
Observe that h is continuous in U and smooth in U N int(R%), but it has no smooth

extension to any neighborhood of the origin in R?, because

g_Z(may) — 00, as (x,y) — (070)

Therefore, h is not smooth in U.



Let M be an n-dimensional topological manifold with boundary. If there exists a
collection {(Uy, ¢a)}a of charts for M such that

(l) M = Ua UO“
(ii) @gop ! : ©u(UsNUg) — @p(U, N Up) is smooth, Vo, 8, U, N Us # &,

M is called a smooth manifold with boundary. If M is a smooth manifold with
boundary every (U,, ¢, ) is called smooth chart.

Some trivial examples of smooth manifolds with boundary are R}, with the standard
structure, and ST = {z = (21,...,Tn41) € "M ¢ x40 > 0}, with the inherit structure
from the S™.

Suppose M is a smooth n-manifold with boundary, k is a nonnegative integer, and
f: M — RF is any function. We say that f is a smooth function if for every p € M,
there exists a smooth chart (U, ) for M whose domain contain p and such that the
composite function fo o=t : p(U) — R* is smooth in the sense that we just defined in
Definition 1.1.3.

Let M, N be smooth manifolds with boundary, and let F': M — N be any map. We
say that F'is a smooth map if for every point p € M, there exist smooth charts (U, ¢)
containing p and (V1) containing F(p) such that F(U) C V and the composite map

YoFop™t:pU) — (V)

is smooth in the sense that we defined in Definition 1.1.3.
If M and N are smooth manifolds with or without boundary, a diffeomorphism
from M to N is a smooth bijective map F' : M — N that has a smooth inverse. We

say that M and N are diffeomorphic if there exists a diffeomorphism between them.

Theorem 1.1.6 (Diffeomorphism Invariance of the Boundary.). Suppose M and
N are smooth manifolds with boundary and F' : M — N 1is a diffeomorphism. Then
F(OM) = 0N, and F restricts to a diffeomorphism from int(M) to int(N).

For the proof, see Theorem 2.18 in [9].
Let C*°(R™) be the set of all smooth functions from R"™ to R. For every p,v € R"
define a map v, : C°(R") — R by

wlf) = df(v) = &

7 f(p+ tv). (1.4)

t=0

The set of all maps defined by (1.4) is called tangent space to R™ at p, and it is
denoted by T,R™. Let {e;}?_; be the standard basis of R", then, for each ¢ and p € R",

we have the following map



0
. flp+te) = ai. (p),

for all f € C*(R"). Since v =Y ., v;e; for all v € R", then by using the chain rule

it follows

) = 5

up(f) = sza—x(p)
i=1 v
If v, is such that v,(f) = 0, for all f € C*(R"™), then if m; : R* — R is the map

given by m;(x1, ..., z,,) = x; which implies (e;),(m;) = d;;. Therefore

0= Up(’/Ti) = Ui,Vi.

Then, {(e;),}: is a basis for T,R".

So, from now on, we will follow the notation

0
(ei>p = axz

p

With the sum and scalar product standard 7,R" is a linear space. Since

(o, el

is a basis for T,R", then dim(7,R") = n.
Let M be a smooth manifold with or without boundary, C*°(M) the set of all smooth
functions from M to R, and let p be a point of M. A linear map v, : C®°(M) — R is

0

g eeey axn

p

called a tangent vector on M at p if it satisfies

vp(fLfz) = fi(p)vp(f2) + fa(p)vp(fr), V1, f2 € C(M). (1.5)

The set of all tangent vectors on M at p is denoted by T,M, and it is called the
tangent space to M at p.

Proposition 1.1.7. Let M be a smooth manifold with or without boundary. Then for
each p € M, T,M is a linear space.

Now it makes sense to define the differential of a smooth map between smooth mani-

folds with or without boundary.

Definition 1.1.8. Let M and N be smooth manifolds with or without boundary. Let
F: M — N be a smooth map, for each p € M the map dF, : T,M — Try,) N given by

dF,(v)(f) = v(f o F),Vf € C=(N), (1.6)

9



is called the differential of F' at p. Indeed, a straight computation show us that dF,(v) €
Tp)N, for allv e T,M, pe M.

Theorem 1.1.9 (Dimension of Tangent Spaces on a Manifold with Boundary).
Let M be an n-dimensional smooth manifold with boundary. For each p € M, the tangent

space T, M is an n-dimensional linear space.

Proof. See [9]. |

Let My, ..., M} be smooth manifolds without boundary, with dimension nq,..., ng,
respectively. If the topology on M; x ... x M, is the product topology, then M; X ... x M

is an ny + ... + ng-dimensional topological manifold. The collection

{(U1 X .. Xx Ugy 01 X ... X g) : (Ui, i) is a smooth chart on M;, for alli =1,...,k}

define a smooth structure on M; X ... X Mj. Therefore, M; x ... x M} is a smooth
manifold with dimension n; + ... + ng.

For smooth manifolds with boundary we have the following proposition.

Proposition 1.1.10. Let My,..., M, be smooth manifolds without boundary and let N be
a smooth manifold with boundary. Then N x M; x ... X My is a smooth manifold with

boundary, and
O(N x My X ... x My) = 0N x My X ... x M. (1.7)
Proof. See [9]. |

In many cases, it is useful to consider the set of all tangent vectors at all points of
a manifold. Let M be an n-dimensional smooth manifold with or without boundary, we
denoted by T'M the set

{(p,v) :pe M and v € T,M}. (1.8)

The set T'M is called the tangent bundle of M. For each p € M, we will often
identify 7, M with its image under the map v — (p,v). The tangent bundle is provided
by the disjoint union topology (see [9]). In order to show that T'M is a smooth manifold
let p be any point in M, let (x;) be some coordinate system around p locally defined in
an open set U C M, let m : TM — M the projection map, i.e., 7(p,v) = p, and define
amap ¢ : 7 Y(U) — R?" be by

10



- 9,
v (pazvi oz

i=1

> - ($1(p), ) ‘rTL(p)? U1y -y v”>'

p
A straight computation (see [9]) shows us the collection of maps defined as above
define a smooth structure on T'M. In particular, we have that 7'M has dimension 2n.
Now, remember that, if £ and F' are topological spaces, a map f: E — F is said to
be proper if for every compact set K C F', the preimage f~'(K) C F is compact.
Suppose M is a smooth manifold with or without boundary. An embedded subman-
ifold of M is a subset S C M that is a manifold (without boundary) endowed with the
induced topology from M, and endowed with a smooth structure with respect to which
the inclusion map S — M is a smooth embedded, i.e., the inclusion map is a smooth
homeomorphism on its own range, and in the range we consider the induced topology
from the M. Furthermore, an embedded S C M is said to be properly embedded if

the inclusion S < M is a proper map.

Theorem 1.1.11. If M is a smooth n-manifold with boundary, then OM endowed with
the induced topology from the M has a smooth structure such that it is a properly embedded

submanifold of M. And its dimension is n — 1.

Proof. See [9]. |

Next, we define vector fields on an abstract smooth manifold.
Let M be a smooth manifold with or without boundary. A vector field on M is a
continuous map X : M — T'M which satisfies

moX =idy, (1.9)

where 7 : TM — M is the given by 7(p,v) = p. It follows from (1.9) that &, =
X(p) € T,M, for each p € M.
Let (U, (x;)) be a chart for M such that p € U with coordinates functions (z;). Then

(1.10)

" 0
Xp = Zaz(p) O

i=1 P
If p is implicit, we just write
n
X=> aX; inU,
i=1

83_. The functions &, : M — R are called component functions of

X. Then X : M — TM is a smooth vector field if, only if, for each chart (U, ),

where X, =

11



with coordinates (z;) the component functions &; are smooth, for every i. We denote by
Z (M) the set of all smooth vector fields on M.

Suppose M a smooth manifold with or without boundary. A vector field locally
defined on M is a continuous map X : U — T'M, where U C M is an open subset,
which satisfies .

Let M™ be a smooth manifold with or without boundary. A local frame for M
is a set {&1,...,&,} of vector fields locally defined on an open subset U C M such that
{&(p),....En(p)} is a basis for T,M, for every p € M.

One of the most important properties of vector fields on a smooth manifold M with
or without boundary is that they define operators on C*°(M). Indeed, if f € C*°(M) and
X € (M), then the function X f : M — R defined by

(Xf)(p) = X f

is smooth. Conversely, if X is a vector field such that Xf € C>®(M), for every, f €
C*>®(M), then X : M — T'M is smooth.
Define the operator [X, )] : C®°(M) — C*(M), where X,Y € Z° (M), by

(X V|f =XVf - YXFf. (1.11)

This operator is called the Lie bracket of X and ).

Let M be a smooth manifold with or without boundary. Let X and ) be smooth
vector fields on M. If (z;) is a smooth local coordinate for M, then there exists smooth
functions a;’s and b;’s locally defined on an open subset of M such that X and ) are

locally given by

. ij 8aj 0
[, V] = zj: (alaxi - bzaxi) oz’ (1.12)
which implies
g 0
—,— | =0. 1.1

Proposition 1.1.12 (Properties of the Lie Bracket.). Let M be a smooth mani-

fold with or without boundary. The Lie bracket satisfies the following identities for all
XV, Z2e X (M):

12



(i) Bilinearity: For every o, € R,
[aX + Y, Z] = o|X, Z] + B[V, Z],
(X, aY + BZ] = alX, V] + B[X, Z].

(ii) Antisymmetry: [X,Y] = =V, X].

(#ii) Jacobi’s identity:
2, [, 2] + [V, [2, X]] + [2,[X, )] = 0.
(iv) For f,h € C>(M),

[f X, hY] = ghlX, Y] + fX(h)Y = hY(f)h.

For while, let M be a topological space. A vector bundle over M of rank m is a
topological space E, called the total space of the bundle, together with a surjective

continuous map mw : £ — M, called the projection, satisfying the following properties:

(i) For each p € M the preimage 7 !(p) is endowed with the structure of a linear space
of dimension m. We denote the preimage of p under the projection by E,, and this

space is called the fiber of p.

(ii) For each p € M, there exists a neighborhood U of p in M and a homeomorphism
¢ : 71 (U) — U x R™, satisfying the following conditions:

— Proj;; o ® = 7 (where Proj;; : U x R¥ — U is the projection);

— for each ¢ € U, the restriction of ® to E, is an isomorphism from £, to {q}xR™.

If M and F are smooth manifolds with or without boundary, 7 is a smooth map and

® is a diffeomosphism, for each p € M, then E is called a smooth vector bundle.

Example 1.1.13 (The Mébius Band.). Define an equivalence relation on R? by declar-
ing that (x1,y1) ~ (x9,y2) if and only if

(z2,92) = (21 + 7, (=1)"11),

for some n € Z. Let E = R/ ~ denote the quotient space, and let £ : R> — E be the
quotient map. For any r > 0, the image under & of the rectangle [0, 1] X [—r, | is a smooth

compact manifold with boundary called Mébius band.

Moreover, we have the following proposition.

13



Proposition 1.1.14. Let M™ be a smooth manifold with or without boundary. Then T M

18 a smooth vector bundle over M of rank n.

Proof. See [9]. |

Definition 1.1.15. Let (E, M™, ) be a vector bundle. A section of E is a section of
the map 7, that is, a continuous map o : M — E satisfying ™o o = idy;. This means
that o(p) is an element of the fiber E, for each p € M. More generally, a local section
of F is a continuous map o : U — FE defined on some open subset U C M and satisfying
moo = idy. When a section is defined on all of M is called a global section. If M is
a smooth manifold with or without boundary and E is a smooth vector bundle, a smooth

(local or global) section of E is one that is a smooth map from its domain to E.

Now let M™ be a smooth manifold with or without boundary. For each p € M, we
define the cotangent space at p, denoted by Tp*M , to be the dual space to T,M, that

is,

T'M = (T,M)*.

Elements of T p*M are called tangent covectors at p, or just covectors at p.

Given smooth local coordinates (x;) on an open subset U C M, for each p € U the

0
coordinate basis
axi p

Any covector w(p) € T M can thus be written uniquely as

} gives rise to a dual basis for TF M, which we denote by (du;,).

)

T*M = H Tp*M: {(p,v*):p€ M and v* GTP*M},
peEM

w(p) = Zai(p)dxi|p, where a;(p) = w(p) ( 0

ox;
i=1 v

The disjoint union

is called the cotangent bundle of M. It has a natural projection map 7w : T*M —
M sending w(p) € T,) M top e M.

Since (dw;,) is a dual basis for Tp*M , for each p € M, then this fact defines n maps
dxq,...,dx, : U — T*M, called coordinate covector fields. The next proposition tell

us that the cotangent bundle is a vector bundle.

Proposition 1.1.16 (The Cotangent Bundle as a Vector Bundle.). Let M" be a
smooth manifold with or without boundary. With its standard projection map and the
natural vector space structure on each fiber, the cotangent bundle T*M has a unique
topology and smooth structure making it into a smooth n-rank vector bundle over M for

which all coordinate covector fields are smooth local sections.
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Definition 1.1.17. Let M and N be smooth manifolds with or without boundary. Let
F: M — N be a smooth map, let p € M be arbitrary. For every covector field w on N,
we define a covector field F*w on M by

(F*w)y(v) = wr)(dFy(v)), (1.14)

for allv e T,M.

So, by using local coordinates and the Definition 1.5.1, we can show the following

proposition.

Proposition 1.1.18. Let M and N be smooth manifolds with or without boundary. Let
F: M — N be a smooth map and let w be a covector field on N. If w is smooth, then

F*w is smooth.

Proof. See [9]. |

Let M be a smooth manifold with or without boundary. We define the bundle of

covariant k-tensors on M by

TR M = T 7T M).
peEM
Proposition 1.1.19. Let M™ be a smooth manifold with or without boundary. Then

TFT*M has a natural structure as smooth vector bundle over M, and its rank is n*.

A section of a bundle of covariant k-tensors on M is called a covariant k-tensor
field on M. A smooth covariant k-tensor field is a section that is smooth in the
usual sense of smooth section of vector bundles.

The space of smooth covariant k-tensor fields on M,

D(TrT* M),

is an infinite-dimensional vector space over R, and modules over C*°(M). In any
smooth local coordinates (x;), covariant k-tensor fields F' € I'(T*T™M) can be written

(using Einstein’s convention) as

The functions F;

nates. We denote the space of all smooth covariant k-tensor fields by

i, are called the component functios of F' in the chosen coordi-

THM) =T(T*T* M).
Denote by 2" (M) the set of all smooth vector fields on M.
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Proposition 1.1.20 (Smoothness Criteria for Tensor Fields.). Let M be a smooth
manifold with or without boundary, and let F' : M — T*T*M be a rough section, The

following statements are equivalent.
(i) F is smooth.
1) In every smooth coordinate chart, the component functions of F' are smooth.
Y p

(#ii) Each point of M is contained in some coordinate chart in which F has smooth

component functions.

() If Xy,..., X, € Z (M), then the function F(X,...,X) : M — R, defined by
F(Xb ) Xk)<p) - Fp(X1|p7 ) Xk’p)a

18 smooth.

(v) Whenever X\, ..., Xy are smooth vector fields defined on some open subset U C M,
the function F (X4, ..., X)) is smooth on U.

Theorem 1.1.21 (Tensor Characterization.). Let M be a smooth manifold with or

without boundary. A map

15 induced by a smooth covariant k-tensor field as above if and only if it is multilinear

over C*(M).

For more details about this section we indicated [9] and [8].

1.2 Riemannian metrics, Connections and Curvature

Let M be a smooth manifold with or without boundary. A Riemannian metric on
M is a smooth symmetric covariant 2-tensor field on M that is positive definite at each
point. A Riemannian manifold is a pair (M, g), where M is a smooth manifold and
g is a Riemannian metric on M. When the Riemannian metric on M is understood we
simply call M by Riemannian manifold.

In some (z;) local coordinates of a Riemannian manifold M with or without boundary,

a Riemannian metric can be written

16



Proposition 1.2.1 (Existence of Riemannian Metrics.). Every smooth manifold with

or without boundary admits a Riemannian metric.

Definition 1.2.2. Let (M", g) be a Riemannian manifold with or without boundary. We
say that a local frame {&;,...,E,} for M on an open subset U C M is an orthonormal
frame if the vectors {(E1)p, ..., (En)p} form an orthonormal basis for T,M at each point
peU.

Proposition 1.2.3 (Existence of Local Orthonormal Frame.). Let (M, g) be a Rie-
mannian manifold with or without boundary. For each p € M, there is a smooth or-

thonormal frame on a neighborhood of p.

A linear connection on a smooth manifold M with or without boundary is a map
V:Z(M)x Z(M)— Z (M) which satisfies the following properties:

(1) VixgnyZ = fVxZ+hVyZ, for every X, YV, Z € Z' (M) and f,g € C°(M).
(ii) Vy(aY + BZ) =aVxY + VyZ, for every X, YV, Z € 2 (M) and o, € R.
(i) Va(fY) = fVaY+ X(f)Y, for every X,V € Z (M) and f € C>®(M).

In particular, we can show (see Petersen) that (V+Y)(p), p € M, only depend of the
value of X at p and the values that )} assumes in any curve that has X'(p) as a tangent
vector.

Let M be a smooth manifold with or without boundary. Let (z;) be a local coordinates
for M. Set &; = 8%1_, for each ¢. Then

Va Xy = ThX. (1.15)
k

Each term I'}; is called Christoffel symbol (of V) with respect to the frame {X;};.
For any X,) € 2 (M) a straight computation show us that

Vad =Y (X(be) + aibTF) X, (1.16)

ijk
where X = ). a;&; and Y = Zj b; X;.

Definition 1.2.4. Let (M, g) be a Riemannian manifold with or without boundary. We

say that a linear connection V on M is compatible with the metric g when

forall X, Y, 2 € Z(M).
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Definition 1.2.5. Let M be a smooth manifold with or without boundary. A linear

connection V on M is called symmetric when
VaY — VX =[X,)], (1.18)

forall X,y € Z'(M).
For the proof of the following theorem see [12] or [13].

Theorem 1.2.6 (Levi-Civita.). Let (M, g) be a Riemannian manifold with or without
boundary. There exists only one linear connection V on M which is symmetric and
compatible with the metric g. Such connection is called the Leuvi-Civita connection of M

(with respect the metric g).

From now on, every Riemannian manifold with or without boundary shall be provided
with its Levi-Civita connection.

Let (M, g) be a Riemannian manifold with or without boundary. Let (z;) be local
coordinates for M. Set &; = %, for each i. Denote by (¢*™) the inverse matrix of (g;;),
where g;; = g(&;, X;). We can show that (see [12])

o1 9 9 9 o
Iy = 5 ; {a_xigjk + a—xjgm 8_a:kg”} g (1.19)

Definition 1.2.7 (Hessian of a smooth function.). Let (M, g) be a Riemannian man-
ifold with or without boundary. For each f € C®(M) we define the Hessian of the
function f as the tensor Hess(f) € (M) given by

Hess(f)(X,Y) =g(VaV[,DY). (1.20)

Moreover, a straight computation show us that Hess(f) is symmetric, for all f € C>(M).

Next, we define the covariant derivative of a tensor with respect to a vector field,

and the covariant differential of a tensor.

Definition 1.2.8. Let M be a smooth manifold with or without boundary. For each
T € T%(M) the covariant derivative of T with respect to X € 2 (M) is given by

(VaT), s Vi) = X(T QN V) —
k
—ZT(%,--.,yi—hvxyz‘,yiﬂ---,yk). (1.21)
i—1

Definition 1.2.9. Let M be a smooth manifold with or without boundary. The covariant
differential of a tensor T € T*(M) is a tensor in T**Y(M), denoted by VT, is given
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VTV, ooy Vi, X) = (VaT)( Vi, ooy Vi) (1.22)

Proposition 1.2.10. Let (M, g) be a Riemannian manifold with or without boundary.
For any X,¥,Z € 2 (M), we have from the Definition 1.2.8

(Vag)V, 2) = X(g(V, 2)) = 9(Val, Z2) = g(¥, Vx Z). (1.23)

Since V is the Levi-Civita connection for M, then from the identity (1.17)) we concluded
that (Vxg)(Y,Z) =0.

In what follows we give some very useful definitions.

Definition 1.2.11. Given a vector field X € Z° (M), we define the map Ly : C°(M) —
C>(M) by

(Lxf)(p) = X, f- (1.24)

This map is called the Lie derivative (on functions) with respect to X .

Definition 1.2.12. Given a vector field X € Z (M), we define a map Ly : X (M) —
(M) by

Lx(Y)=[X,)]. (1.25)

This map is called the Lie derivative (with respect to X ).

Definition 1.2.13. Given X € Z (M), we define the Lie derivative of a tensor with
respect to X by the map Ly : T*(M) — T*(M) given by

(Lx(T) V1, W) = XTI, 0h)) —
Y T, Vi, La(P5), Vi, V). (1.26)

Proposition 1.2.14. Let (M, g) be a Riemannian manifold with or without boundary. If
feC®(M), then

(Lvsg)(X,Y) = 2Hess(f)(X, D), (1.27)

forall X,y € Z'(M).

Proof. Just apply the definitions. [ ]

In what follows we define the curvature tensor.
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Definition 1.2.15. Let (M, g) be a Riemannian manifold with or without boundary. The

curvature tensor is the tensor
R:Z(M)x Z(M)x Z(M)x Z(M)— C>®(M)
given by
R(X, Y, ZW)=g(R(X,V)Z,W), (1.28)
where
R(X, V)2 =VxVyZ -VyVxZ - VixyZ, (1.29)

forall X, Y, ZW e Z(M).

Furthermore, we can show that the value of R(X',Y)Z at p only depends of the values
of X, ), and Z at p (see [12]).

The curvature tensor satisfies the properties in the following proposition.

Proposition 1.2.16. Let (M, g) be a Riemannian manifold with or without boundary.

The tensor curvature
R: 2 (M)x Z(M)x Z(M)x 2 (M) — C*(M)

satisfies the following properties, for any X, Y, Z,W € Z(M):
(i) R(X,Y,Z,W)=—-R(Y,X,Z,W) =R, XW,Z).
(ii) R(X, Y, Z,W)=R(Z,W,X,)).

(iii) Bianchi’s first identity

R(X,V)Z+R(Z,X)Y+ R(Y,Z)X =0. (1.30)

(iv) Bianchi’s second identity

(V2R) (X, V)W + (VaR) (Y, 2)W + (VyR)(Z, X)W = 0. (1.31)

Proof. See [13]. |

Proposition 1.2.17. Let (M™.g) be a Riemannian manifold with or without boundary,
where n > 2. Let P be a 2-dimensional linear subspace of T,M, for some p € M. Let
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{u,v} be a basis for P. Then, the expression

gp(R(u,v)u,v)

Ky(u,v) = 1.32
) = g, (v, 0) — gy 0] (1:32)

does not depend of the basis {u,v}.
Proof. Just apply elementary operations. |

Definition 1.2.18. Let M be a Riemannian manifold with or without boundary. For any
p € M and a 2-dimensional linear subspace P of T,M the real numnber K,(u,v) = K,(P),

where {u,v} is a basis for P, is called the sectional curvature of P at p.

Definition 1.2.19. Let (M", g) be a Riemannian manifold with or without boundary. For
each p € M, let {ey,...,e,} be an orthonormal basis for T,M. So, the Ricci tensor on
M at p is given by

Ric,(u,v) ng (€, v)u, €;), (1.33)

where u,v € T,M. For each p € M, and an unit vector v € T,M, the Ricct curvature
of M at p is given by

Ricy(v) = Ricy(v,v) ng (e, v)v, €),

where {ey, ...,e,_1,v} is an orthonormal basis for T, M.

Definition 1.2.20. Let (M, g) be a Riemannian manifold with or without boundary. We
say that M is an Einstein manifold (with or without boundary) if for all X,y € Z (M)

we have
Ric(X,Y) = Mg(X,)), (1.34)

where A € C°(M).
The following proposition gives an interesting property of Einstein manifolds.

Proposition 1.2.21. Let (M™,g) be an FEinstein manifold with or without boundary. Let
A € C®(M) be a function which satisfies (1.34). If M is connected and n > 3, then X is

constant. Furthermore, if n = 3, then M has constant sectional curvature.

Proof. Use Bianchi’s second identity. [ ]

The last curvature that we define in this section is the scalar curvature.
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Definition 1.2.22. Let (M", g) be a Riemannian manifold with or without boundary. For
eachp € M, let {ey,...,e,} be an orthonormal basis for T,M. So, the scalar curvature

of M at p is given by

Sp(u,v) = Z gp(R(e;, €5)ej, €;). (1.35)

7,1=1

For more details about this section we indicated [12], [13], and [8].

1.3 Killing Vector Fields

Let M be a smooth manifold with or without. Let X be a smooth vector field on M.
If p € int(M), then there exists an open subset U C M which contains p, § > 0 and a
smooth map ¢ : (=4,d) x U — M such that

t— (p(t7Q)7t S (_575)7q eU

is the unique curve which satisfies

% _ x

Y (¢(t,q)), and (0, q) = q. (1.36)

An smooth vector field X on M is called inward at each boundary point p € M
if there exists an open subset U C M which contains p, 4 > 0 and a smooth map
¢ :10,0) x U — M such that

t— ot q),t€(0,0),geU

is the unique curve which satisfies ([1.36)). The map ¢ is called the local flow generated
by X. and we say that X' is outward if there exists such curve whose domain is (-4, 0].

The proof of these statements are in [9).

Definition 1.3.1. Let M be a smooth manifold with or without boundary and X € 2 (M)
(in the case OM # @, X is an inward smooth vector field in each point of the boundary).
Let p be any point in int(M) (resp. OM ), U a neighborhood of p in M, and a local flow
0 :(—€,¢)xU — M (resp. p:[0,€) x U — M) generated by X. The vector field X is
called Killing vector field if o, = p(t, ) : U — M is an isometry, for eacht € (—¢,€)
(resp.t € [0,€) ).

In what follows we show a relation between Killing vector fields and the Lie derivative.

Lemma 1.3.2. Let M be a smooth manifold with or without boundary. Let X and )
be smooth vector fields on M, where X is inward in each point of the OM, p € M and
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vy : U —> M a local flow generated by X, p € U. Then

2, V)(p) = lim <Y — do¥(1(p).

In particular

X, 9(p) = oY (o(p)

t=0

Proof. See [12]. |

Proposition 1.3.3. Let (M™, g) be a Riemannian manifold with or without boundary. A
smooth vector field X on M 1is a Killing vector field if only if Lrg = 0.

Proof. From the definition
(Laxg)(Y,2) = X(9(V. 2)) — g([X, V], 2) — gV, [X, Z]).
On the other hand,
Iorp) (A, dp Z2) — gp(V, Z2)  Gou(p)(dr, dsotZ) Yo tp) (Y, dpr Z) N

; =
_'_gSOt (y dQOtZ) g<Pt (y Z)

L 92010.2) ~ 5,0, 2)
t

Then

- Fapded,doZ2) = g,(V, 2) dpy =Y
lim = limge,p | ——

t—0 t t—0 t

. deif — Z
i (7 24

+ lim g@t(p)(yv Z) - gp(ya Z)
t—0 t ’

) d@tZ) +

Since all the limits above exist, then

d
dtgsot (dSOty d(,DtZ) = _gp([vaLZ) _gp(ya [X’Z]) dtgsot (y Z)
t=0 t=0
Since p H .
dtg‘pt (y 2 t=0 - (E :07Z> % (y7 &’ t:O)
= gp(v%f(o,p)yvz) +gp(y7v )
g(VaY, Z2)+g9(Y,Vx2)
= X9V, 2)).
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Therefore J
('CX9> (y7 Z) = %gsﬂt(:ﬂ) (ngty, dQOtZ)

t=0
On the other hand
d d
790 ®) (dpd, dp Z) = 59w (dpi—tyd0y, Y, dpi—_iydpr, Z)
t=to d t=to
= %gwt(p)(d@sdgotoya dspsdsotoz)
s=0
= (Lxg)(dp,Y, dpr, 2Z).
This shows that Lxg = 0 if only if t — gy, (dp:Y, dp: Z) is constant. [

1.4 Generalized Bochner formula

In this section, we recall the generalized Bochner formula for Riemannian manifold with
or without boundary. The proof is in [14].

First, we recall some basic definitions and properties.

Definition 1.4.1. Let (M",g) be a Riemannian manifold with or without boundary. For
any f € C*(M), the gradient of the function f is the map Vf : M — TM which

satisfies
df(X) = g(Vf, X). (1.37)

Moreover, if {&1,...,En} is an orthonormal frame for M locally defined, then we can show
that

Vf= Z&(f)&-- (1.38)

Definition 1.4.2. Let (M™,g) be a Riemannian manifold with or without boundary. The
divergence of a vector field X € 2 (M) is defined by

div(X) = Zg(vgix, &), (1.39)

where {&, ...,Ex} is an orthonormal frame locally defined in some open subset of M.

Definition 1.4.3. Let (M", g) be a Riemannian manifold with or without boundary. For
any [ € C°(M), we define the Laplacian of f by

Af = —din(V ). (1.40)
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It follows from (1.40) that Af = —tr Hess(f).

Definition 1.4.4. Let (M™, g) be a Riemannian manifold with or without boundary. The
divergence of a tensor T € T%(M) at p € M, where k is an integer bigger than zero,

15 given by

(dlU(T))(Xh ceey Xk;—l) = i(V&T)(EM Xl, ceey Xk_l), (141)

=1

where {&1, ..., Ex} is an orthonormal frame locally defined in a neighborhood of p. It follows
from (1.41)) that div(T) € T*Y(M). In particular, the divergence of a smooth function

15 Zero.

Proposition 1.4.5. Let (M™,g) be a Riemannian manifold with or without boundary. If
XeZ(M)and A\ € C*(M), then

div(Ag)(X) = X (M),

where {1, ...,E} is an orthonormal frame for M locally defined in an open subset of M.

Proposition 1.4.6. Let (M™, g) be a Riemannian manifold with or without boundary.
Then

1
div Ric = EdS, (1.42)

where S is the scalar curvature of M.

Proof. Use Definition 1.4.4. and (1.31)). |

The reader can find the following lemma in |14].

Lemma 1.4.7 (Generalized Bochner formula.). Let (M™,g) be a Riemannian man-
ifold with or without boundary. For any X € 2 (M) we have

divo(Lg)(X) = —%A(|X|2) L VAP + Rie(X, X) + X(din X)), (1.43)
In particular, if X =V f, for some f € C(M), then
div( L) (V) = 2Ric(Y, V) + 2V (din(V ). (1.44)
for every Y € 2°(M). Therefore,
div(Hess(f))(V) = Ric(Y,V f) = V(AS), (1.45)

for every Y € Z'(M).
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Proof. See [14]. |

1.5 (eodesic completeness of manifolds with bound-
ary

Now our goal is define a metric on a Riemannian manifold with boundary M which induces
the same topology on M as the topology on M induced from the smooth structure. The
way to do this is similar as we do for Riemannian manifolds without boundary, i.e., we
define the distance function by the infimum of the length of a set of curves. However, to
prove the topology induced from such function is the same as the topology induced from
the smooth structure of the manifold is not similar as we do for Riemannian manifolds
without boundary. The proof of this topological equivalence is the main result of this

section.

Definition 1.5.1. Let E be a non empty set. Two metrics dy and dy on E are called

equivalent if there exist positive constants a and 3 such that
6d1(u7 U) S dQ(ua U) S Q{dl(u, U)v

for all u,v € E.

Let (M™,g), n > 2, be a connected Riemannian manifold with boundary. Let C([0, 1], M)
be the set of all piecewise smooth curves 7 : [0,1] — M, i.e., there exists a finite
subdivision a =ty < t; < ... <t} = b such that |y, , . for every i = 1,2,..., k. For any
p,q € M define

Cpg(M) = {y € C([0,1], M) : 4(0) = p, and (1) = q}.

For all p,q € M, and v € 6,,(M), the length of ~ is

1
L) = [ b (116
0
Let dy; : M x M — R be the function given by

du(p,q) = et L(7). (1.47)

From the definition of infimum we obtain

dyu(p,q) < du(p,D) + du(D, q), (1.48)
dyu(p,q) = du(q,p), (1.49)



for all p,p,q € M. The next theorem show that dy/(p,q) = 0 if and only if p = ¢, i.e., dy,
is a metric on M. Furthermore, the topology on M induced from dj; is the same as the
topology on M induced from the smooth structure of M.

For brevity, denote by 7(g) the topology on M induced from the smooth structure.

Theorem 1.5.2. Let (M™,g) be a Riemannian manifold with boundary. Then the func-
tion dy; defined in (1.47) is a metric on M, and the topology induced from dy; is the same
as the topology 7(g).

Proof. Let p € M be arbitrary. Let U, be a precompact coordinate neighborhood in M
of p. Thus we have two cases.

CASE 1: p € int(M). Since U, is a coordinate neighborhood, then U, C int(M). For
any ¢ € M, g # p, there exists a geodesic ball B.(p) C U, centered at p of radius € > 0
such that ¢ & Bc(p). Therefore, every v € 6,,(M) has length bigger than e > 0, which
implies that

d(p,q) = € > 0.

Thus das|ine(ar)xint(ary 18 @ metric on int(M) x int(M). Set

Buy(p,r) ={q € M :dy(p,q) <r}.

So, we have that for all p € int(M), there exists € > 0 such that B.(p) = Bu(p,e).
Therefore, das|int(a)xint(ar) induces the same topology as the given 7(g).

CASE 2: p € OM. For q € U, arbitrary, we have two situations. First, if ¢ € int(M),
then from CASE 1 we have that dy(p,q) > 0. Second, ¢ € M, q # p.

Since (Up, 7(g)|v,) is a metrizable topological space, then there exists a metric d, on
U, which induces the topology 7(g)|y,. We shall prove there exist positive constants
oy, B € R such that

6pdp(p7 Q) S dM(p7 Q) S apdp(pa Q)u (150)

for all ¢ € U,,.
Let v € C([0,1],U,) be a piecewise smooth curve such that v(1) = p, and v([0,1)) C
U, Nint(M). Set
R = sup |[y'(t)]-

0<t<1

For any 0 <t < 1, define v, : [0, 1] — U, by
n(s) =t + (1 —1)s),
which implies v,(0) = v(¢), 7(1) = p, and
Y(s) =1 =ty (t+ (1 —1)s),Vs € [0,1].
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Thus 1
L) = (1= [ e+ (1 =Ds)lds < (1=0R

We obtain dy(y(t),p) < (1 —t)R, for all t € (0,1). Then
lim dps(y(t),p) = 0. (1.51)
t—1

Let g be an interior point of U, i.e., ¢ € U, Nint(M). Let v be a curve in C([0, 1],U,)
such that v(0) = ¢, v(1) = p, and ([0,1)) C int(M). Let (tx) C [0,1) be an arbitrary

sequence such that limg_,. ¢z = 1. We have

dyr(Y(tr), @) < dar(v (), v (tm)) + dar(Y(tm), @),

which implies
dar(7(te), @) = dar(Y(tm), @) < dr (), ¥ (Em)).

Analogously, we obtain

dpr(Y(tm), @) — dar(Y(tr), @) < dar(y(te), ¥ (tm))-

Therefore

|dar (Y(tk), @) = dar (7 (Em), @] < dar (Y(E), Y (), (1.52)

for all k,m € N. We have that

dar (Y(tk), Y (tm)) < dar(Y(E), p) + doa (p, (),

for all k,m € N. From (|1.51)) it follows that

lim  dpr(y(te), 7(tm)) = 0.

k,m—o0

Thus the sequence d/(7v(t), q) is a Cauchy sequence of real numbers, then there exists

the following limit

We have
dy(p, q) < due(p,y(t)) + dar(y(t), q),

and
dy(Y(t),q) < du(y(t),p) + du(p, q),
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for all ¢ € [0,1]. From (1.51)) we obtain

dar(p, q) = lim das (4(1), q)-

From the CASE 1 the topology induced from dp; on U, N int(M) is the same as the
topology 7(g)|v,nint(ar).- Then, dys and d,, are equivalent on U, Nint(M), i.e., there exist

positive constants a,, 8, € R such that
Bpdy(P, ) < dri(P,q) < oy (P, ),
for all p,g € U, Nint(M). Since v(t),q € U, Nint(M), for all ¢ € [0, 1), then
Bpdp(7(1),q) < dur(Y(1), 9) < apdy((1), 9);

for all ¢ € [0,1). So, by taking ¢ — 1 we obtain

dep<p7 Q) S dM(pa Q) S apdp(p7 Q)>

for all ¢ € U, Nint(M).
Now, let ¢ be a boundary point of U, i.e., ¢ € U, NOM, q # p. Let 7,7 be curves in
C([0,1],U,) such that v(0) = ¢, v(1) = p, v((0,1)) C int(M), and 7(s) = v(1 — s). Since

dr(p,q) < dae(p,¥(t)) + dar(y(t), q),

for all t € [0,1]. Then by taking t — 1 we obtain

du(p,q) < liminfdy (v(t), ).

On the other hand,
dy(7(t),q) < du(7(t), ) + due(p, @),

for all ¢ € [0,1]. Which implies

lim sup das (v(t), q) < dar(p, q).

t—1

Therefore

lim d ((t). ) = dus(p, )-

For all s,t € (0,1), we have J(s),v(t) € U, Nint(M). Then

Bpdp(7(s),7(t)) < dar(7(s), (1)) < apdy(7(s),7(1)), Vs, t € (0,1).
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By taking s — 1 we obtain

Bpdp(q,v(t)) < du(g, (1)) < apdy(q,y(t)),Vt € (0,1).

By taking t — 1 we obtain

Bodyn(p, q) < drn(p,q) < apdy(p,q),

for all ¢ € U, N OM. Therefore,

Bodyn(p, q) < dn(p,q) < apdy(p,q),

for all ¢ € U,. Then the function dj; is a metric on U, such that the topology induced
from d); is the same the 7(g)|y,. Since p is arbitrary, then dy; define a metric on M, and

its induced topology is the same as the one we use by 7(g). |

From now on we say that a Riemannian manifold with boundary M" n > 2, is
metrically complete if (M, dy) is complete as a metric space, where dy is defined by
(11.47)).

In what follows we prove the equivalence of metrically complete Riemannian manifold
with boundary that we just defined and the geodesically complete Riemannian manifold
with boundary defined by Pigola in [16].

Let M be a smooth manifold with or without boundary. Denote by C°([0,1], M) the

set of all continuous paths from [0, 1] to M.

Definition 1.5.3. Let (M,dy) a Riemannian manifold with or without boundary, where
dar is defined in (1.47). A path v € C°([0,1], M) is called rectifiable if

R(v,dar) = sup Y dus((tio1),7(1:)) < oo, (1.53)

=1

where P is the set of all partitions P = {0 =1ty < t; < ... <t = 1} of the interval [0, 1].
The number R(v) is called the metric-length of .

Definition 1.5.4. Let Ry11(M,da) be the set of all rectifiable paths in C°([0,1], M),

where the Riemannian manifold (with or without boundary) M is provided with the metric
dys defined in (1.47)). For any p,q € M set

Ry (M) = {7 € R )(M,dpr) : 7(0) = p, and v(1) = ¢}. (1.54)
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So define on (M, dyr) the length-distance by

“D>q

for all p,qg € M.
The next proposition show that d; = dg.

Proposition 1.5.5. Let (M,dy) be a connected Riemannian manifold with or without
boundary, where dy; is defiend in (1.47). If dg is the length-distance on M, then dy = dpg.

Proof. For any path v € %, ,(M), from the triangle inequality we have

D) < 3 o160 A(0).
i=1
for all partition P = {0 =ty <t; < ... <t =1} € P. Then
dr(pq) < R(v, dwr),
for all v € %, ,(M). We obtain
du(p, q) < dr(p, q),

for all p,q € M.
For all v € %, ,(M) we have

Z du(Y(tiz1), v(t:)) < L(7),

for all partition P{0 =ty < t; < ... < tx = 1} of the interval [0, 1], where L(7) is defined

in ((1.46). Then

for all v € 6,,(M). Since 6, ,(M) C %, ,(M), then
dr(p,q) < du(p, @)
Therefore, dy; = dg. |

Next we have the definition of a geodesically complete Riemannian manifold with

boundary. Such definition is given by Pigola in [16].

Definition 1.5.6. Let (M, g) be a Riemannian manifold with boundary. We say that
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M is geodesically complete if every geodesic v : [0,a) — M can be extended to a
continuous path 7 : [0,a] — M.

The following definition is for Riemannian manifold with or without boundary, but

in [16] the reader can find a more general version.

Definition 1.5.7. Let (M,g) be a Riemannian manifold with or without boundary. A
piecewise smooth curve v € C([0,1), M) is called a divergent path if for all compact
subset K C M there exists 0 < tyx < 1 such that y(t) & K for any tx <t < 1.

Next, we give a “Hopf-Rinow” version for Riemannian manifolds with boundary.

Theorem 1.5.8. Let (M,dy) be a Riemannian manifold with boundary, where dys is
defined by (1.47)). Then the following assertions are equivalent.

(i) (M,dy) is metrically complete.
(i) Every bounded and closed subset of M is compact.
(iii) (M,dyy) is geodesically complete.

(iv) Every Lipschitz path v : [0,a) — M can be extended to a continuous path 7 :
0,a] — M.

(v) Every divergent path v : [0,1) — M has infinite length, i.e., R(vy,dy) = 00.

Proof. In [16], the Theorem 3.7.6 is proved for locally compact length spaces, i.e., a space
metric (X, d) which is locally compact and d = dg, where dp is defined as in ([1.53]). So,
(M, dyy) is a locally compact and we have that dy; = dgr from Proposition 3.7.3. For the

prove of (i) < (ii) < (ii7) see [3], and for (iii) < (iv) < (v) see [16]. |
The following results follow immediately from the Theorem 3.7.6.

Corollary 1.5.9. Let (M, g) be a compact Riemannian manifold with or without bound-
ary. Then M is geodesically complete.

Corollary 1.5.10. Let (M, g) be a Riemannian manifold with boundary. If M is metri-
cally complete, then OM is geodesically complete.
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Chapter 2

Gradient Ricci Solitons with

Boundary

In this chapter we shall take the perspective in [7]. We extend some results first obtained
in 7] to manifolds with boundary. For every (M, g, V f, A) such that the potential function
f satisfies an inequality and X is a non positive constant, we obtain that f is constant. At
the last section we define warped product, where the basis is a Riemannian manifold with
boundary, and then we prove some identities to the Christoffel symbol, the Hessian of a
smooth function defined on warped product, and some applications to the Ricci curvature.
We finish by proving that a warped product Einstein which the warping function satisfies

an inequality has to be a Riemannian product.

2.1 Ricci Solitons with Boundary

A Ricci soliton with or without boundary (M, g, X', \) is a Riemannian manifold
(M, g) with or without boundary with a vector field X € 2 (M), and a constant A

satisfying the following equation
) 1
Ric = \g + QEXg. (2.1)

If the vector field X’ vanishes, then the Ricci soliton is just an Einstein manifold (with
or without boundary). If the vector field X is the gradient of some smooth function
f + M — R, then the soliton is called gradient Ricci soliton. In this case, it is
denoted by (M, g,V f,A). By replacing the expression in Proposition 1.2.14 in we

obtain
Ric = Ag + Hess(f). (2.2)

The following theorem is an extension of the Theorem 1 in [7].
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Theorem 2.1.1. Let (M*,g,Vf,\) be a connected compact gradient Ricci soliton with
boundary. Suppose that X is a non-positive constant, the maximum point of f is an interior

point, and f satisfies

of
» i 1(OM) > 0, (2.3)

where N is the outward unit normal vector field along OM. Then f is constant.

Proof. By taking the trace in (2.2) we obtain
S =kXx—Af. (2.4)

From ([2.4)) we obtain

s = —d(Af).

By taking the divergence in (2.2]) we obtain the following identity
div(Ric) = div(Hess)(f).

From ([1.45) and (1.42) we have, respectively,

div(Hess(f))(X) = Ric(Vf,X) —d(Af)(X),,
X(S) = 2div(Ric)(X),

for all X € 27(X). Then

—X(Af) =2Ric(Vf, X) —2X(Af),
which implies

20X (f) + 2Hess(f)(Vf,X) — X(Af) = 0. (2.5)

From the definition of Hessian, we have

Hess(f)(V . %) = S X(Vf). (2.6
So, by replacing in to we obtain

20X(f) + X (V") = X(Af) =0,
for all X € 27 (M), which implies

XQ2Af+ VP = Af) =0,
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for all X € 27 (M). Therefore, there exists a constant p such that
pw="2Xf+|Vf]* - Af. (2.7)

By integrating ([2.7]) we obtain

n= o | |V i A 2.9

af
N~

By applying the Divergence theorem on third integral in (2.8]) we obtain

_Vol /f /’Vf’2 1 )/aMg/J\c/'

Let pmar € M be the maximum point of f. Then, Vf(pne) = 0, and since Af =
—tr Hess(f), then Af(pmaz) > 0. So, by using (2.7)), (2.8]), the hypothesis that A < 0 and
(2.3]), respectively, we obtain the following inequalities

We have
g(Vf,N) and Af = —div(Vf).

0 < Af(pmas)

= 2)‘f(pmaa:) — K

B 2 1 1 of
N Vol / f(Pmaa) = vol(M) /Mf - vol(M) /M VI~ vol(M) /aM ON

2 1 , 1 of
- vol(M) /M(ﬂpmw) - - vol(M) /M VA= vol(M) Jopr ON

< 0.

Then |V f| =0 on M. Therefore, f is constant. |

2.2 Einstein Warped Products

Let (B", gg) and (F™, gr) be Riemannian manifolds, where B is a smooth manifold with
boundary, and F'is a smooth manifold without boundary. Let h : B — R be a positive
smooth function. The product M = B x F provided with the metric

g=1"gp+ho"gr,
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where 7 and o denote the projections of B x F' onto B and F', respectively, and the %
denotes the pullback, is called the warped product of B and F, where B is called
base of the warped product, F' is called the fiber of the warped product, and the
function h is called warping function. We denote the product B x F' with the metric g

by M = B x;, F'. For simplicity we shall write the metric g on M = B x; F' by
9=95+h°ge.

Let (z;) and (z,) be coordinate systems on B and F, respectively. We set

9
ox,,’

Xi and Xa =

B ox;’
for all ¢, and . Then g;; = ¢(X;, X;) = 95(Xi, X;) = (98)ij, Jia = 9(Xi, Xs) = 0, and
Jop = 9(Xa, X5) = h?gr(Xa, X5) = h*(gr)as. Here we are identifying X; = (X;,0) and
Xo = (0,X,). The vector fields in T'B are called horizontal vector fields and the
vector fields in T'F are called vertical vector fields.

Let M = B x;, F be an warped product on Riemannian manifolds, where B is a
smooth manifold with boundary, and F' is a smooth manifold without boundary. We
denote the Levi-Civita connection and Christoffel symbol on B and F by V&, ', V¥,

and I''", respectively.

Lemma 2.2.1. Let (M, g) be a Riemannian manifold with or without boundary. Let (x;)

be any local coordinate on M. Then
( 4]

where X, = %, ' is the Christoffel symbol of M, and g¥ is the ij-th entrance of the

inverse matriz of [gi;].

Proof. Since
> 97 gmi = O,

then
Z[Xk<gij)gmi + ¢7 X (gmi)] = 0,

which implies

Z Xe(9") gmi = — Z 9" X (gmi)-
By the properties of the V we have X (gmi) = ¢(Va, X, Xi) + 9(Va, X, X)), then
Xi(gmi) = Y Thngii + > Thilim-
1 I
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Therefore

ZXk gmz = = Zrkmg gii — Zrkzgwglm
= _ZF m0l; — Zrkzg Gim

= _F']]{: Zrkzg Gim-
[ |

We shall prove below some identities for Levi-Civita connection and the Christoffel

symbol.

Lemma 2.2.2. Let (B", gg) and (F™, gr) be Rimannian manifolds, where B is a manifold
with boundary and F is without boundary. Let (M = B x, F,g) be the warped product.
Let (x;) and (x4) be local coordinates for B and F, respectively. If V and I' are the
Levi-Civita connection and Christoffel symbol of M, then

s s 1 Oh
s = (D7), 15, = 0,17, = e, Oap I = 0,0, = (I'7))s, (2.10)
s = Zh— gr) aﬁgBa (2.11)
B 1 Oh
VX,X] — VXZX],VXQXZ - leXa — E%Xa, (212)
V. Xs = —h(gr)asVeh + > ThsXa, (2.13)
A

for all i,7,s,a, B8, \. The term (gg)" denote the is-th entrance of the inverse matrix of

[(gB)i;]. Here, Vph is the gradient of h, which is given by
. Oh
h - 7'J—)(Z‘. 214
Vi ;(93) oz, (2.14)

Proof. For any 7, j and s, we have

. 1 0 0 0 ks
I = 5;{8xig]k+8_xjgm 8_xkgz]}g

1 0 0 0 s
—i—§ g {8_xigja + a—%gai — a_xagij} g

Since ¢g** = 0, for all , then I'j; = (I'P)7.

For every ¢, s and 3, we have
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s _ 1 E a a ks
1 0 a 0 y
52{8 gﬁa+8x59ai_ axagm}g '

@ — (0 and Egki = 0, then I';; = 0.

_l_

Since ggr = gip = ¢
For every 7, A and 3, we have

1 0 0 0
P)\ - T kX

1 0 0 0 o
+§ za: {8_%9&1 + a_xﬁgai — O—%Qw} g

Since ¢* = go; = gis = 0, then

1 0 oh
A aX __
Lis=3 §a {—axigﬁa}g = Ea ha (97)gag™.
It follows that L oh
A —

For every i, j, and (3, we have
0 0
e = ; b gt
ij Zk:{a ng+a ki — al’kgj}g

1 0 (7 0
0 B L .
2;{ o0 T 9 axagw}g :

0 and %gi]‘ = 0, then Ffj =0.

N | —

+

Since gkﬁ = Gja = Gai =
For every «, 3, and 4, we have

1 0 0 0
5 _ = . ké
Los = 5 Ek { B, 9ok + 925 Gre = 3 gaﬁ} g

1 0 0 0
- E . . _ Y6
+2 {&va 9py + Ozrg Gre &%gaﬂ} g

Since g" = 0, then I 3 = (T'F)2 5

For every k, a, and (3, we have

8 0
Fgg = - Z { gﬁz gza - %gaﬁ} g
8 0
= Z — _ _ = vk
& Z {axa% 7 axvgaﬁ} T

ik
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Since g7 =0 e ggi = gia = 0, then

1 0 .
k E : ik
Fa/j B 5 - {_al’lgaﬂ}g .

It follows that

1 oh ,
kK _ ik
Tog =3 > { 2ha—(gF)a,3} g".

7

Therefore, one sees that

Floiﬁ— Zh— 97)apg™,

and then

Vx,Xi = Z T Xp + Z rex
Since I'; = 0, then Vx, X; = 3, I'%; X}.. Consequently,
Vx,Xi = Vi, X

Then, one obtains that

Vi, Xi=> ThXp+) T0Xp
k B

1 0h
Since F’;i =0 and ng == 0

= h
haxiéaﬁ, then

1 8h 1 0h

A similar computation give us Vx, X; = Vx, X,.

Since

Vx. Xﬁ_ZF s Xe+ ) T1,X,
v

oh ,
and Fgﬁ =— Zl: ha—%(gF)agg’k, then

Vx.Xs = —h(grasVeh+ > T1,X

v

Lemma 2.2.3. Let (B", gg) and (F'™, gr) be Rimannian manifolds, where B is a manifold
with boundary and F is without boundary. Let (M = B X, F,g) be the warped product.
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Let f : M — R be a smooth function. Let (x;) be a local coordinate system for B and
X; = % for each i. Consider

L Of
Vaf = WX, 2.15
Bf izjg oz, (2.15)
where g denote the ij-th entrance of the inverse matriz of [gi;]. Then

Hess(f)(X.Y) = g5(VXVpf.Y) (2.16)

Proof. First of all, we can write the gradient of f in the following way
af
i Ozﬁ
Vi=2 ”a Xi+ Z i

So, one has

0 0
oust - o () r
(2]

j O
1 0 1 0
+Z{Xk< QQFBBf)X + 3 2 Fﬁavak :|
a,B

_1on
« h@xl

o(Vx V. X) =g (Z {Xk (y’j%) X, +g g—fvxkxz] ,Xl> .

0,

Since Vx, X, X, and g(X,, Xx) =0, then

Therefore, g(Vx,V f, X;) = g5(VE Vi f, X)) n

We shall use the identities that we just proved in Lemma 2.2.1 and Lemma 2.2.2 to

show the following proposition.

Proposition 2.2.4. Let (B",gg) and (F™, gr) be Rimannian manifolds, where B is a
manifold with boundary and F is without boundary. Let (M = B x, F,g) be the warped
product. Let f: M — R be a smooth function. The following identities for the Hessian
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of f are satisfies

0 0?
Hess(f)(X;, X;) ng a:i axiaj;j’ (2.17)
10h of  0%f
Hess(f)(Xi, Xo) = 9 0 Brom (2.18)
82
Hess(f)(Xa. X5) = hgr)asgs (V. Vish) - Zraﬁ Ty afmﬁ’ (2.19)
o «

for any horizontal coordinate vector fields X;, X; and any vertical coordinate vector fields

Xo, Xg. Here, I' denotes the Christoffel symbol of M.

Proof. From the definition we have that

V=95 B o, h2Fa

By applying any horizontal vector field,

0 1 450
vXka:vXk( @—fX-i- aﬁf )

729 9z,
i af 1 af 8f
= Vg, (géﬁ_xjxi) + Vx, <h29F Oz X)
af af ij azf
_3@ ap OF

h3 Oxy, IE B, Oxg

By replacing the third identity in (2.12]) in (2.21) we obtain

i Of of 82f
Vx, Vi = gBa Vi, Xi + Xi(9; )8_ itg 6’ O,
2 8h B 8f og Of
18 00,7 Oc; o Dy
which implies
af af 82f
1 afs an

Xa
n2Ir O0x,0xp

From (2.12) we have ¢(Vx, X, X,) = 0. Since ¢g(X;, X,) = 0 for every i = 1, ...,

41

(2.20)

1 ﬁf)f

(2.21)

1 .5 0f Oh
—X,
3gF al’ﬁ al’k

1 .5 0f Oh

G O Oy

(2.22)

n and



a=1,...,m, by using (2.9) and the first identity in , we get
i Of of | 4 *f
X, X, X X Y
g(vkafa 0) gBa gB(v 3 )+ k( )(gB)wam‘ +gB<g )108 0x
of - df of 0*f
= T4 o — T LY . o
k9B (gB)l a.fL'j ko axj k9B (gB)l O x + J 8$k8:v]

= —IY of O'f )

"“'0(91:] 01,0,

Since Hess(f)(X;, X;) = g(Vx,Vf, Xj), then

of 0% f

H X;, X;) = -TF ,

ess(f)( ) ]) z]amk axlaxj
which implies (2.17))
From ([2.22) we have

1 oh of 1 0 f
H - — apf Yo - ap Xa
VNS =0 =550 G ae, X T 29 Gy,

where H is a horizontal term. Therefore, for each v =1, ...,m, we deduce

92 f

1, on of
’ Ero 6< )m@xkaxﬁ

th (gF)cwa x5 9r \gr
i onof o

h P oz Oxp w@xkaxﬁ
1 0h Of o0 f

hOxy 0z, OxyOxy

g(vkafa X’Y) =

On the other hand, we have that g(X,, X5) = h%gr(X,, X5). Therefore

1 oh Of
h Ox; O,

o*f
0x;0r,’

Hess(f)(X;, Xo) = —

for every ¢ and «, which implies [2.18|

Next, we are going to derivative the gradient of f in a vertical direction,

0 1 .40
VX’va = VX“/ (géaf h2 Fﬁan)

0 1 ., 0f
J

i Of i 1 e of
_ X,
B g, VXTI 955, a 29 By
of og O°f
9 x, X,
o hZQF 0,0 5

X+ —=

5 Vx, X

Xl—l—

~

1
X (¢
tos N
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By replacing the third identity in (2.12]) in (2.23)) we obtain

2
. Of Oh Pl oy Lowdl g (224

VXVl = geig AR e Ll rr e
A LK,
By replacing the third identity in in we obtain
Vx, Vf = % éaafj ngv + ”aazg Xi — %gﬁﬁ(QF)vaaa—gj;vBh
+hirngB§f Xyt 3 L X, aﬁ)gjﬁXﬁ%gﬁﬁaggxﬁX
From this, it follows that
szia %ﬁﬁf ey aﬁ>§fX - gy o
Then ) of oh o of
9(Vx, VI, Xo) = hgglgr Fwg - o + 17,9 (gF)Aw@
0 o f

+X ( )(gF)awaf +9F (gF)awm.

Therefore
ij df oh B of
9(Vx, VI, Xo) = hgglgr )wa o, + 17,95 (QF)Awa—xﬁ (2.25)
af 0*f

+X’Y(g; >(gF)aw8$ﬂ + 81‘ 837 .
o w

By replacing the third identity in (2.9)) in (2.25) we obtain

af Oh af of
X,) = hg g5 T8
g(VXVVﬁ w) gB (gF)Ww 8;1:j ag}+ A/aﬁjf(gF))\w 81’5 yw 8%5
A
Dlad (99 gy 5 | 02,07,

Then, one obtains that

of oh of = _of
g(VX,YVf, Xw) = hgé(.g )"/wa ax Fg“’(‘?wﬁ + 81‘ agj ’
7 TEw
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for any v,w =1, ..., m. Therefore,

of oh ., of  &f

HeSS(f)(XaaX,B) - th(gF)O‘ﬁ(’) &E B B O ox 856,3’
i Y a

for all a, 8 =1, ..., m, which implies [2.19] [

Theorem 2.2.5 (Corollary 43 in [11].). Let (B™, gg) and (F™, gr) be Riemannian mani-
folds, where B 1is a Riemannian manifold with boundary and F is a Riemannian manifold
without boundary. Let (M = B xy, F,g) be a warped product. Then The Ricci curvature
of M satisfies the following identities:

Ric(X,Y) = RicB(X,Y)—%H@ssB(h)(X,Y), (2.26)
Rie(X,V) = 0, (2.27)
Ric(V,W) = Ricg(V,W) —[-hAgh + (m —1)|Vh|*|gr(V,W), (2.28)

for any horizontal vector fields X,Y , and any vertical vector fields V,W. Here Ricg and

Ricp are the Ricci curvature of B and F', respectively,

Proof. From (2.10) we have that I'f; = 0, then Vx, X; = >, ', X;. It follows that

Vx, Vx, X; = ZVXS(F%XZ)

0
— E:(ax(ﬂﬂxy+rgvxy&>

l
= VEVIX; (2.29)

Since
Ric(X,Y) Zg (E;, X)Y, E;) —i—Zg (Eq, XY, E,),

where {E;} and {E,} are orthonormal frame to the B and F', respectively, and X and Y

are horizontal vectors, one sees that
R(E;, X)Y =VgVxY = VxVgY — Vg, x1Y.
By using the first identity into with we deduce
R(E;, X)Y = Rp(F;, X)Y,
where Rp denote the curvature tensor of B. Therefore,

Ric(X,Y) = Ricp(X,Y) + Y _ g(R(Ea, X)Y, E,).
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By using the third identity in (2.12)), a direct computation we obtain

ViV X, %% (2.30)
Vx. Vx,X; = ZFZ;S}L (2.31)
for all 7, 7, and . We have
JR(Ea, Xi) X5, Ea) = 9(VE.VX,X; = Vx,VE.X; — Vi, x1Xj, Ea)
= ¢(Ve.Vx.X; —Vx,Vg X, E,), (2.32)

where [E,, X;] = 0, because E, does not depend of B, and X; does not depend of F. Write
E,=> 5 apXg, where each ag does not depend of B. So, from a simple computation we

obtain
1 0h
Ve Vx,X; = ngjhal (2.33)
1 0h
inanXj EW o (234)
el

for all 4, j, and «. By replacing (2.33) and (| into , one sees that

Loh 1 oth
9(R(Ea, X:)X ZF” hox,  hox0x;

Therefore,
Ric(X;, X;) = Rics(X;, X;) — %HeSSB(h)(Xi,Xj).

By using the linearity in each entrance of Ric we obtain (12.26]).
To prove ([2.27)) we proceed as follows. By using the third identity in (2.12) we obtain

1 0%h
. X, =——X 2.
VXZVX] a h 8:1:'181'] a ( 35)

for all i, j, and . Now, let {E;} be a locally horizontal orthonormal frame, then it follows

from ([2.35]) that

g(R(EZ, Xl)Xﬁ, EZ> = g(VEZVXlX,g — leinXg — V[Ei,Xl]XB7 Ez) = 0 (236)

From a direct computation we get

1 0h

Xg=H
Vx.,Vx, 8 1+h8

Vi X (2.37)

45



where H; is a horizontal vector field. Since
Vi Xg=> ThoXi+> T1X,
l v

for all @ and 3, then

1 0h
Vx,Vx,Xg=Hy+ m—%viaXﬁ, (2.38)

for all i, , and (3, where H is a horizontal vector field. Let {E,} be locally vertical
orthonormal frame, from (2.37]) and (2.38) we obtain

9(R(Eq, Xi) X5, Ea) =0, (2.39)
for all 7 and . We have

Ric(X;, Xo) = Y g(R(E;, Xi:)Xa, Ej) + Y g(R(Es, X;) Xa, Eg),
J B

then from (22.36]) and (2.39)) we obtain Ric(X;, X,) = 0. Therefore,
Ric(X,V) = 0,

for all horizontal vector field X and vertical vector field V', which implies ([2.27)).
From (2.11) we obtain the following identity

Vx. X = =hlgr)asVeh+ Y _T1:X,, (2.40)

.
for all & and 8. The equation (2.40)) gives the following expression

oh
Vi VxoXp = =(9r)asy ~Vih = 1(gr)asVx,Vsh + V1, (2.41)

for all 7, a, and 3, where V] is a vertical vector field.

From the third identity in (2.12)) we get

oh
VXainXﬁ = —(gp)a/Q%VBh + V5, (2.42)
for all 4, a, and S, where V5 is a vertical vector field. From (2.41)) and ([2.42)) we obtain

g(R(X;, Xo)Xp, Xi) = —h(9r)apg(Vx,VBh, X;), (2.43)
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for all 7, a;, and . The identity gives the following expression
g(R(X;, Xo) X3, X;) = —%gagg(VXiVBh, X5). (2.44)
From ([2.40) we obtain
Vx,Vx,Xp = Hs — h(gr)asVx, Veh + Vi Vi X,
for all v, o, and (. Since
Vx,Vph = %gB<VBf7 Ve f)X,,

for all v, then

Vx,Vx,Xg = Hs — (9r)apgs(Veh, Veh) X, + V5 Vi Xj.
Which implies

Vx.Vx,Xg = Hi— (9r),898(Vsh,Vish) Xo + V5 Vi X3,

where H, is a horizontal vector field. Therefore,

m—1
E g(R(Ean)XﬁvE'y) == B2 ’vBh‘2gaﬁ+ E :RF(E%XO“XB;EV); (245)
~

v

for all @ and 3, where Ry is the curvature tensor of F'.

Therefore, from the definition of Ricci tensor, (2.43)), and (2.45) we obtain ([2.28)). W

Corollary 2.2.6. Let (B™, gg) and (F™, gr) be Riemannian manifolds, where B is a
Riemannian manifold with boundary and F' is a Riemannian manifold without boundary.
The warped product (M = B x,, F, g) is Einstein with Ric = A\g if and only if

Ricg = Mg+ %H@ssB(h), (2.46)
Ricr = pugr, (2.47)
p = —hAgh+ (m—1)|Vgh|* + A2 (2.48)

In what follows we have the following theorem whose proof uses the equations in
Corollary 2.2.6.

Theorem 2.2.7. Let (B", gg) and (F™, gr) be compact Riemannian manifolds, where B

is a connected manifold with boundary, F is without boundary and m > 3. Let (M =
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B xy, F, g) be an warped product such that M has non-positive scalar curvature and

oh
| haarieB) 0. (2.49)

So if M 1s Einstein and the maximum point of h is an inner point, then h is constant.

Where N is the outward unit normal vector field along OB.

Proof. Since M is Einstein, then from ([2.46) and (2.48) we have that

Ricg = /\gB—f—%HeSSB(h),
RiCF = [—hABh —+ (m — 1)‘V3h|2 + )\hQ]gF,

where Ric = \g. Since m > 3, then u = —hAgh + (m — 1)|Vgh|* + Ah? is constant on
F. So, by proceeding in the same way that we did in Theorem 2.1.1, we can show that u
is constant on B. Therefore, p is constant on M.

By using the properties of the divergence operator we obtain
p = Ah? +div(hVgh) + (m — 2)|Vh|*
It follows that

By applying the Divergence theorem on (2.50)) we obtain

_ A 2 oh m— 2 5
H= vol(B) /Bh + vol(B) thaN+Vol(B)/]3|vBh’ : (2.51)

Let S be the scalar curvature of M. Since Ric = Ag, then S = A(n + mh?). Since
S <0, then A <0.
Let ppqae be the maximum point of h, then h(pmez) > 0, VBh(Pme:) = 0, and since
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Aph = —tr Hessg(h), then Agh(pmaz) > 0. It follows that

0 S h(pma:c ) ABh (pmaa:)

= )‘h(pmam)2 - ﬂ

o . A , 1 oh  2-m / ,
= Yol(B) /Bh(pm‘“) vol(B) /Bh wol(B) Jon"oN T vorim J, VN

o ) a1 o 2—m/ ,
N vol(B)/B(h(pmax) ) vol(B) 3Bh8N+Vol(B) B|VBh’

<

e

Then Vgh =0, in B. Therefore, h is constant.
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Chapter 3
Ricci Almost Solitons with Boundary

The definition of Ricci almost solitons was first introduced by Pigola, Rigoli, Rimoldi,
and Setti in [15]. Many results have been obtained for gradient Ricci almost solitons
without boundary. In this chapter we prove properties of gradient Ricci almost solitons
with boundary and some characterizations. The first section we obtain a lower bound to a
symmetric tensor. The second section we prove some properties for Ricci almost solitons
and we finish this section with a characterization of gradient Ricci almost solitons with
boundary where the gradient of the potential function is a conformal vector field. In the
third section we obtain a characterization for totally geodesic boundaries by using an
inequality. In the fourth section we characterize compact gradient Ricci almost solitons
where the mean curvature of the boundary is positive. At the last section we show a

rigidity theorem for the case where the boundary is immersed into the hyperbolic space.

3.1 A Lower Bound for the Ricci Curvature

A Ricci almost soliton (M, g, X, \) is a Riemannian manifold (M, ¢g) with (or without)
boundary, a smooth vector field X, and a smooth function A : M — R satisfying the

following equation
_ 1
Ric = A\g + 5/5;((9). (3.1)

If the vector field X vanishes, then the Ricci almost soliton is an Einstein manifold. If the
vector field X is the gradient of some smooth function f : M — R, then the Ricci almost
soliton is called gradient Ricci almost soliton, and it is denoted by (M, g,V f,\). By
substituting Proposition 1.2.14 into (3.1)) we obtain

Ric = Ag + Hess(f). (3.2)

We shall see below always there exists a positive lower bound for any positive sym-
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metric 2-tensor on a compact Riemannian manifold with or without boundary.

Theorem 3.1.1. Let (M™,g), n > 2, be a compact Riemannian manifold with (or with-
out) boundary. Let T € T2*(M) be a symmetric 2-tensor on M. Set T (p) = T, for all
p € M. Then T, is positive for all p € M if and only if there exists a positive constant
ap € R such that

To(v,v) = aglol?, (3.3)

forallpe M, and v € T,M.

Proof. Since T is a symmetric 2-tensor on M, then 7, : T,M xT,M — R is a symmetric
bilinear form for all p € M. Thus, for all p € M there exists a self-adjoint operator
Sy TyM — T, M such that

7;)(1/’7 U) - gp(Sp<u>7 U),

for all u,v € T,M. From the Spectral Theorem of Linear Algebra we have that, for all
p € M, there exist a basis {(e1)p, ..., (én)p} for T,M and constants A, (p), ..., \,(p) € R
such that S,((e;),) = Ai(p)(e:)p, for each ¢ = 1,...,n. For an arbitrary v € T,M write

v = Z ai(p)(ei)p,

where a;(p) € R is the i-th component of v in the basis {(e1),, ..., (e,),}, for each i =
1,...,n. It follows that

Tp(v,0) = Z )\i(p)ai(p)Qa

forall p € M, and v € T, M.
Let S}7'(p) be the subset of T,M defined by

S?_l(p) ={vel,M:|v] =1}

Since 7T, is continuous and S}~ (p) is compact, for all p € M, then there exists v, € ST~ (p)
such that

To(vp,vp) = min  Ty(v,0).
vGS?_l(p)
Since the tensor 7 is continuous and M is compact, then there exists py € M such that

Too (Upm Upo) = I{%g} 7;(”177 Up)-
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Since T, is positive and vy € ST (po), then Tp, (vpy, vy, ) > 0. Define
g = Tp, (Upmvpo)'

Therefore, for all p € M, and v € T,M, v # 0, we have

v
Ty(v,v) =T, (m, m) [v]? > aglv]?.

The converse is a straight computation. |

3.2 The conformal case

In this section we are interested in gradient Ricci almost solitons with boundary (M, g, V f, \)
where the gradient V f of the potential function f is a conformal vector field, and f sat-

isfies the following boundary conditions

f(p) > co, forall p e int(M),
f(p) =co, forall pedM, (3.4)

where ¢y € R is constant. In what follows we give a simple example of gradient Ricci

almost soliton with boundary where the base is one dimensional.
Example 3.2.1. Let (M = [0, +00) x,H?(¢), g = dt* + h(t)*guz()) be the warped product,
where ¢ < 0 and h(t) = cosh(y/—ct + by), by > 0. Let f, X\ be smooth functions on M
given by
1
f(t) = =sinh(v/—ct+ by),
c
A(t) = sinh(y/—ct+ bg) + 2c.
By using Proposition 2.2.4 and Theorem 2.2.5 we can show that (M, g,V f, \) is a gradient

Ricci almost soliton with boundary.

Definition 3.2.2. Let (M, g) be a Riemannian manifold with boundary. A smooth vector
field X € Z' (M) is called normally parallel to the boundary if X is parallel along any
geodesic v : [0,€) — M such that v(0) € OM, v((0,¢€)) C int(M), and v'(0) L T’0)0M.

When the gradient of a smooth function which satisfies (3.4]) is normally parallel to

the boundary it has not to vanish on the boundary.

Lemma 3.2.3. Let (M",g) be Riemannian manifold with boundary. If f is a smooth
Junction which safisties (3.4]) and V f is normally parallel to the boundary, then V f(p) €
(T,0M)* and Vf(p) #0 for allp € OM.
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Proof. For each p € OM and v € T,0M, there exist a real number § > 0 and a smooth
curve 3 : (—0,0) — OM such that 3(0) = p and f'(0) = v. Let ¢: (=6,0) — R be a
smooth function fiven by ¢(t) = f(8(t)). Thus, c(t) = o, Vt € (—0,9). It follows that

0=C(t)=dfswy(B(t) = g(Vf(B(1),B(1)),

Vt € (—0,0). In particular, for ¢t = 0 we have

9(V[(p),v) =0,

for each p € OM and v € T,0M. Therefore, V f(p) € (T,0M)*, for all p € OM.

Let p € OM and € > 0 be such that 7 : [0,€) — M is an unit geodesic emanating of
p, 7((0,€)) C int(M) and +/(0) is orthogonal to M at p. Set a function s : [0,€) — R
by

s(t) = f(r(1)), (3:5)
which implies that s(0) = 0 and s(t) # 0 for all ¢ € (0,¢). So, it follows that
§'(t) = dhyo (Y () = g(VF(4(2)), 7' (1)), (3.6)

and

) = o(HI60170)
= (VY ). D)

= Hess(f)(7/(t),7'(1))- (3.7)
Since V f is parallel along v, we have
Hess(f)(7/'(2),7'(1)) = 9(Vy ) VF(7(1), 7 (1)) = %g(vf(v(t)), Y(t)) =0,

then s”(t) = 0, for all t € [0,¢). From (3.5) and (3.6), we obtain

s"(t) = 0,
s(0) = co, (3.8)
s'(0) = g(Vf(p),7(0)).

From the Existence and Uniqueness Theorem for Ordinary Differential Equations of sec-
ond order we have that (3.8)) admits only one solution. If we would have g(V f(p),~'(0)) =
0, then as we have V f(p) € (T,0M)*, we obtain Vf(p) = 0. Since Vf is parallel along
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v, then Vf = 0 along . Therefore, the unique solution for (3.8) would be s = ¢y along
all v. But we know from (3.5 that s(¢) # 0 for all £ € (0, ¢), which is a contradiction!
Therefore, V f(p) # 0 for any p € OM. [

We can apply the Lemma 3.2.2 to conclude that every smooth function whose gradient

is a Killing vector field shall have gradient non-zero on the boundary.

Theorem 3.2.4. Let (M™,g) be Riemannian manifold with boundary. If f is a smooth
function which safisties (3.4) and Vf is a Killing vector field, then V f(p) € (T,0M)*
and V f(p) # 0 for allp € OM.

Proof. From Lemma 3.2.2 all what we have to do is to show that V f is normally parallel
to the boundary. So, for any p € 9M, let v;[0,e) — M be a unit geodesic such
that v(0) = p, v((0,¢)) C int(M), and +'(0) L T,0M. Let {ey,...,en—1,7(0)} be an
orthonormal basis for 7),M, then by using the parallel translation along v we obtain an
orthonormal basis {e1(t), ..., e,-1(t),7'(t)} for Ty M, for all t € [0,¢), where €;(0) = e;

for every ¢ = 1,...,n — 1. So, one obtains that

n—1

Voo V) =Y 9(Ven VL), eit)eit) + (Vo V(7). 7 (1) (1),

=1

for all t € [0, €). Therefore, since V f is a Killing vector field, then

2V (1) = Vo VI (2(8)) = 0.

From Lemma 3.2.2 we conclude that V f(p) € (T,0M)* and V f(p) # 0, for all p € OM.
|

In Lemma 3.2.2 we showed that if f is a smooth function on a Riemannian manifold
with boundary (M",g), n > 2, such that f satisfies and V[ is normally parallel to
the boundary, then Vf(p) € (T,0M)* and V f(p) # 0, for all p € M. In what follows
we show a characterization of a smooth function which satisfies and do not vanish

on the boundary.

Theorem 3.2.5. Let (M",g) be a Riemannian manifold with boundary. Suppose f sat-
isfies (3.4). If for all p € OM there exists a function (, : [0,1] — R such that (,(0) =0,
and for any geodesic v : [0,€) — M, v(0) = p, v((0,¢€)) C int(M), and ~'(0) L T,0M,

the following inequalities are satisfied

fO@) = f(p) = G(2), (3.9)
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for allt € [0,¢), and

t
lim sup 10} > 0. (3.10)
t—0 t
Then, V f(p) # 0, for all p € OM. Conversely, if V f(p) # 0, for all p € OM, then for all
p € OM there exists a function (, : [0,1] — R such that (,(0) =0, and for any geodesic
v :[0,€) — M, 4(0) = p, ¥((0,¢)) C int(M), and v'(0) L T,0M, (3.9) and (3.10) are
satisfied.

Proof. The first implication is a straight computation. Conversely, suppose that V f(p) #
0 for all p € OM. Let v : [0,€) — M be an unit geodesic such that v(0) = p, v((0,€)) C
int(M), and 4'(0) L T,0M. Define s : [0,e) — R by s(t) = f(y(t)). It follows that

s'(0) = g,(Vf(p),~'(0)).

Since Vf(p) € (T,0M)* and Vf(p) # 0, then s'(0) # 0. From the Taylor’s formula we
have

s(t) = 5(0) + 5 (0)t + %s”(@(t))t2,

where 0 < 0(t) < t, and %ir% s"(0(t))t = 0. By choosing € > 0 small we obtain that v is the
—

unique geodesic which goes through p at t = 0 with speed 7/(0). Define ¢, : [0,e) — R

by

G(t) = §'(0)t + %s”(e(t))t?

Since f satisfies (3.4), then f(y(t)) — f(p) > 0 for all ¢ € (0,¢), which implies §'(0) > 0.
We have

for all ¢ € (0,¢€). Therefore,

Theorem 3.2.5 says that a smooth function f : M — R defined on a Riemannian
manifold with boundary which satisfies (3.4]), and does not go “too fast” to the boundary
should have grandient non vanishing on dM. We shall see in the next example that the

height function has gradient non vanishing on the boundary.

Example 3.2.6. Let f be the function on R’} given by f(z1,...,2,) = x,. Then the
gradient of f is Vf = e,, where e, = (0,...,1). For each p € OR", set v,(t) = p + te,,
t > 0. We have that y, is the unique geodesic such that v,(0) = p, v,((0, +00)) C int(R7),
and 7'(0) L T,0R". Then, set (,(t) = t. Therefore, f(p + te,) — f(p) = ((t), and
- G(t)

lim = 1.

t—0 t
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The next example shows us a situation where the characterization of Theorem 3.2.5

is not satisfied.

Example 3.2.7. Let f : R} — R be the function given by

B _ e_é, if x, >0,

So f is smooth, and V f(p) =0, for all p € OR}.

Let (M, g) be an oriented Riemannian manifold with boundary. From Theorem 1.1.11
the boundary dM is a submanifold of B with codimension 1. For any p € 9M, let n(p)
be a normal vector to OM at p. The second fundamental form of OM at p with
respect to 7(p) € (T,0M)" is the map 11, : T,0M — R given by

I (v) = =go(Vy N (p), ), (3.11)

where V7 is the Levi-Civita connection of M, and N is a locally extension of n(p)
which is normal along OM. The shape operator of M at p € OM with respect to
n(p) € (T,0M)* is the map S, ) : T,0M — T,0M given by

S (V) = =V, N(p), (3.12)

for all v € T,0M. It follows that S, is a self-adjoint operator. From (3.11)) and (3.12)

we obtain

1Ty (p) (v) = gp(Sn(p)<U)u v),
for all p € OM, and v € T,0M.

Lemma 3.2.8. Let (M, g) be a Riemannian manifold with boundary. If f : M — R
is a smooth function which satisfies (3.4) and V f does not vanish on OM, then for all
p € OM there exists a smooth function 1 locally defined in a neighborhood in M of p such
that

Iy (v) = Y(p) I Iy s (v), (3.13)

for all n(p) € (T,0M)*, and v € T,0M. Moreover, we obtain Sy = V(p)Svs(p)-

Proof. For each n(p) € (T,0M)*, there exists a constant 1)(p) € R such that

n(p) = ¢(p)Vf(p).
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So, for any vector field N : U — T'M locally defined in M which is a extension of 7(p)
and N (OU) C (TOM)*, where OU = UNAM, there exists a smooth function ¢ : U — R
such that

N(q) = ¥(q)Vf(q), and N(p) = n(p),

for all ¢ € U, and p € OU. For every vector field X', we have
VaN =Va(V[) =XW)Vf+yVaVf.
For all n(p) € (T,0M)*, we obtain

1Ty (v) = =g (VN (p),v) = =0 (p)gp(VoV f(p),v) = (p) I Ty s (v).

Moreover, since g,(V,N(p),v) = ¥(p)g,(V,Vf,v), for all v € T,0M, then S, =
U(p) Sy, for all p € OM. =

For a more complete approach on second fundamental form, shape operator, or sub-

manifolds in general we indicate the excellent reference [4].

Proposition 3.2.9. Let (M",g), n > 2, be a Riemannian manifold with compact bound-
ary. If f: M — R is a smooth function which satisfies (3.4) and V f does not vanish on

OM, then OM 1is minimal if and only if the mean curvature of OM does not change sign.

Proof. Define )
Vi
"= )

For all p € M. Since Vf(p) € (T,0M)*, for all p € OM, then n(p) is an unit normal
vector to the boundary OM at p. By definition, the mean curvature H of OM is given by

H(p) =tr Sup)

for all p € OM. Let {ey,...,en—1,€, = n(p)} be an orthonormal basis for 7,M. Then

Hp) == Y 0(Vern(p). 1) = ~divane (n(p))

It follows that

L V/(p)
Hp) = ~divou (!Vf(p)!) ’

for all p € OM. From the Divergence Theorem, one sees that

 divany (M) d(OM).

H(p)d(oM) = ‘/ S0

oM e}
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Since 0(OM) = @, then

H(p)d(dM) = 0.

Thus, H does not change sign on dM if and only if H = 0. So, H does not change sign
on OM if and only if OM is minimal. |

We shall see in the next lemma if (M, g) and f are as in Proposition 3.2.7 and the
gradient of f is conformal, then we can relate the mean curvature the boundary of M and
the gradient of f with the Hessian of f.

Lemma 3.2.10. Let (M",g), n > 2, be a Riemannian manifold with boundary. Suppose
f satisfies (3.4) and V f is a conformal vector field which does not vanish on OM. Then
the mean curvature H of OM satisfies the following identity

H(p)|Vf(p)| = —(n—1),(p), (3.14)

for all p € OM , where £ : M — R is the smooth function such that Hess(f) = &g.

Proof. For each p € OM, let {e1(p),...,en—1(p),n(p)} be an orthonormal basis for T, M,
Vf(p)
IV f(p)]

where n(p) = . Let Sy be the shape operator at p with respect to n(p), then

n—1

tr Sy =— Y 9(Ve,n(p), ei(p)).

i=1
Since |n(p)| = 1, then 29(V,pn(p),n(p)) = 0. Thus, it follows that

n—1

tr STI(P) = — Z g(vei(p)n(p)a el(p)) - g(vﬁ(l?)n(p)7 TI(P))

i=1

On the other hand, we have

Tei0):€4) = et (Ve V). es0)
foralli=1,...,n—1, and
1 1
0= Ty 1) =1 ) IVF DI+ 50T V). 1)
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Of which

n—1

1 1
S = (g 2 ) ) — e Hes (D), 1)
1
K <|Vf(p)\) Vil
Thus
1 1
tr ST?(P) == |Vf(p)|tr HeSS(f) + WHGSS(JC)W(P), 77(17))-
Then
1 1
tr Syp) = Wﬁf(p) + WHGSS(f)(ﬂ(p)a n(p)),

for all p € OM. Since V f is a conformal vector field, then there exists a smooth function
¢ : M — R such that Hess(f) = £g. Therefore, we obtain

—Af(p) =n&(p) and Hess(f)(n(p),n(p)) = &),

for all p € OM. We just obtain

tr Sy = — (n—1)¢(p),

1
IV f(p)l

for all p € OM. Since H(p) = tr Sy ), then

Hp)|IVf(p)|=—(n—1)¢§p),

for all p € OM. |

Proposition 3.2.11. Let (M",g), n > 2, be a Riemannian manifold with boundary.
Suppose [ satisfies (3.4) and Vf is a conformal vector field which does not vanish on
OM. Then, the boundary OM is minimal if and only if it is totally geodesic.

Proof. Since H = 0, then from Lemma 3.2.8 £ =0 on M, where £ is a smooth function
which satisfies Hess(f) = £g. We obtain

Hess(f) =0,

on dM. Since, [Iyy = Hess(f) on OM, then IIy; = 0. Therefore, from Lemma 3.2.6 we
conclude that OM is totally geodesic.

The converse follows from the definition of totally geodesic. |

Let (M, g) a Riemannian manifold with boundary. The boundary 0M is called um-
bilical if for all p € M the following identity is satisfies

29



S (V) = gp(H(p),n(p))v, (3.15)

for all v € T,0M, where n(p) is the unit normal vector to the boundary at p. Here H(p)

denotes the mean curvature vector.

Proposition 3.2.12. Let (M",g) be a Riemannian manifold with boundary, n > 2.
Suppose [ satisfies (3.4) and Vf is a conformal vector field which does not vanish on
OM . Then OM is umbilical.

Proof. For every u,v € T,0M we have

gp(SVf(p)(“)>U) = —Hess(f)(u,v) = —&(p)gp(u,v).

Thus Sy ) = —&(p)Idr,om. Let n(p) € (T,0M)* be given by

Vf(p)
p =
") = 9 5(p)
1
From Lemma 3.2.4 we have S, = WSvf(p). On the other hand, from Lemma 3.2.6
p
we deduce
IVf(p)]
—&(p) = ﬁH(P),
1 1

for all p € OM. Thus, S, = mH(p)IdTpaM- Since H(p) = H(p)n(p), then

n—1

Suw) = 9p(H(p), n(p)) Idr,om-

The next theorem is going to be use to prove the main result of this section.

Theorem 3.2.13 (Theorem 4 in [18].). Let (M",g) be a compact Riemannian manifold
with boundary. Assume that there is a positive constant p* > 0 such that Ric > (n—1)p%g
and the mean curvature of OM is non negative. Then the first eigenvalue A (A) of the
Laplacian on M satisfies the inequality A (A) > np*. Moreover, \{(A) = np? if and only

if M is isometric to a closed hemisphere of the Euclidean sphere S™(p?) of radius —.
p

The next result characterize compact gradient Ricci almost solitons when the gradient
of the potential function is conformal, the scalar curvature is positive, and the Ricci

curvature satisfies an inequality.

Theorem 3.2.14. Let (M", g,V f,\), n > 2 be a compact gradient Ricci almost soliton
with connected boundary, where f satisfies[3.4] Suppose the scalar curvature S of M is
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positive, and V f does not vanish on OM. Assume Hess(f) = &g, where £ < 0 on OM.
Then the mean curvature of OM is non negative, and there ezists a positive constant p € R
such that the Ricci curvature of M satisfies

Ricy(v,v) > (n —1)p?, (3.16)

for all p € OM, and v € T,0M, |v| = 1. Moreover, the first eigenvalue \i(A) of the
Laplacian on M satisfies the inequality \{(A) > np®. The equality holds if and only if M

is isometric to a closed hemisphere of the Euclidean sphere S™(p?) of radius —.
p

Proof. From Lemma 3.2.10

H(p)|Vf(p)| = —(n—1)&(p),

for all p € OM. Since £ <0 on OM, then H > 0.

Since

Ric, = (A(p) +&(p)) gy,

for all p € M, and the scalar curvature of M is positive, then from Theorem 3.1.1 we

obtain
min(A(p) +£(p)) > 0, and Ricy(v,v) = min(A(p) + £(p))|of*,

peEM

for all p € M, and v € T, M. Define

2 = Wi O0) + (5)

So, Ric,(v,v) > (n —1)p?, for all p € M, and v € T,M, |v| = 1. The conclusion follows
from Theorem 3.2.13. |

We finish this section by giving an example of compact gradient Ricci almost soliton

on the hemisphere.

Example 3.2.15. Set
S? ={p=(2,y,2) €S*: 2 > 0}.

So (Si,ggi) is a Riemannian manifold with boundary, where 9s2 15 the metric induced
from S*. Now, define the function f:S3 — R by

f(p) = sin dsz(p, 9S%),

where the function dsz is given by

dse (p, 881) . ds2(p, q)-

= inf
qEBS+
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If we choose spherical coordinates (0, ) = (sin ¢ cos @, sin p sin @, cos ), then

™

dSQ(pv aSi) = 5 - ¥,

where p = (sin p cos @, sin psin @, cos @). It follows that the function f in these coordinates
s given by

f(p) = cose.

o vno. S B o 0 B 0 0
= —smy. mceggg—ggz+ %,% ;g@go_gS%r %7% ’

nd ﬁ
O
o0 0 . 9 o
and Gyp = 9s2 %, % , then ggo = sin” ¢, go, = 0, and g,, = 1. This implies

o of
We obt - =
e obtain 20 0a

) 0
Vf(p) = —sin o

Then 5 5
V%Vf(p) = —cospos and V%Vf(p) = —cow%.

Define % = siigp%' So the set {%, %} is an orthonormal basis for T,S%. Conse-
quently, -
0o 0
Hess,(f) (%, %> = —Cos,
9 0
Hessy(f) (%7 %> =0,
and

Hess,(f) (%, %) = —Cos .

This implies that V f is a conformal vector field, where Hess,(f) = —f(p)gsgr (p). More-
over, V f does not vanish on 0S%.

Let X : S — R be the function given by A(p) = 1+ f(p). Therefore, since the
Ricci curvature of ST is 1, then we obtain that (7, 9s2 V[, ) is a gradiente Ricci almost

soliton with boundary, which is under the hypothesis of the Theorem 3.2.14.

3.3 Totally GGeodesic Boundaries

Let (M, g.V f, \) be a gradient Ricci almost soliton with boundary. Now we are interested

to know how the function A\ affects the geometric structure of the boundary.

Definition 3.3.1. Let (M", g), n > 2, be a Riemannian manifold with boundary. Suppose
that f is a smooth function which satisfies (3.4) and Vf does not vanish on OM. For
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each p € OM define
n(p) = RALTIN
V£ (p)l

Let k1(p), ..., kn—1(p) be the eigenvalues of the shape operator Sy, at p with respect n(p).

We call k1(p), ..., kn—1(p) the principal curvatures of OM at p. Moreover, we call a
tangent vetor v € T,0M of principal direction of S,y at p if Syp)(v) = ki(p)v, for

somei=1,...,n— 1.
We have the following proposition.

Proposition 3.3.2. Let (M™,9,Vf,\), n > 2, be a gradient Ricci almost soliton with
boundary. Suppose f satisfies (3.4)) and V f does not vanish on OM . Let Sppr and Ricyy be

the scalar curvature of OM and the Ricci tensor of M, respectively. Then OM is minimal

and
(n = DA(p) < Som(p) + Ricr(n(p), n(p)), (3.17)
for all p € OM, where n(p) = %7 if and only if OM s totally geodesic.

Proof. Let {e1(p), ..., en—1(p)} be an orthonormal basis for 7,00 such that each e;(p) is a
principal direction of S,y which satisfies Sy (ei(p)) = wi(p)ei(p), for all i =1,...,n — 1.

From definition of Ricci curvature and the Gauss equation we have, respectively,

Ricar(ei(p),es(p)) = Y Kule;(p), ei(p)) + Kne(n(p), ei(p)),
i#i
Konm(e;(p), ei(p)) — Kum(ej(p),ei(p)) = r;(p)rilp), Vi # i,

where K, and Ky, are the sectional curvature of M and 0M, respectively. From this,
it follows that

Ricy(ei(p), ei(p)) = Z[KaM(Gj(p), ei(p)) — £ (p)ki(p)] + K (n(p), ei(p))
i

= Ricom(ei(p), ei(p)) — (Z /fj(p)> ki(p) + Ku(n(p), ei(p)),
i
for all p € OM. Since the mean curvature is given by H(p) = k1(p) + ... + kn_1(p), then

Ricar(ei(p), ei(p)) = Ricanr(ei(p), ei(p)) — H(p)ri(p) + #:(p)* + Kar(n(p), i(p)),

for all p € OM. On the other hand, since (M, g,V f, A) is a gradient Ricci almost soliton
and Sy = |V f(p)|Syp), for every p € OM, then

Ricar(ei(p), ei(p)) = Ap) — [V £(p)|ki(p),
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which implies

Ap) — [V f(p)|ri(p) = Riconr(ei(p), ei(p)) — H(p)ri(p) + #i(p)* + Kne(n(p), e:(p)).

Thus

ki(p)* + IV f(p)| — H(p)]ki(p) + Ricorr (ei(p), €i(p)) + Kur(1(p). ei(p)) — Ap) =0,

forallpe OM,and i =1,...,n — 1. Set

a(p) = |Vf(p)| - H(p),

and
bi(p) = Ricanr(ei(p), ei(p)) + Kar(n(p), ei(p)) — A(p).

Then for each i the principal curvature k;(p) satisfies

ki(p)? + a(p)ri(p) + bi(p) = 0.

From definition we have that

n—1 n—1

Y bilp) = Y [Ricom(ei(p), eip)) + Knr(n(p), es(p)) — A(p)]

i=1 =1

= Saum(p) + Ricar(n(p), n(p)) — (n — DA(p))-

For each p € OM, define b(p) = 31— b;(p). We obtain

n—1

> ki(p)* + a(p)H(p) + b(p) = 0.
i=1
If OM is minimal, then
n—1
ki(p)? +b(p) = 0,
i=1

which implies b(p) < 0, for all p € 9M. Then

Sonr (p) + Ricar (n(p), n(p)) < (n —1)A(p),

for all p € OM. So if (n — 1)A(p) < Saam(p) + Ricar(n(p), n(p)), then

(n = DA(p) = Saa(p) + Ricar(n(p), n(p)), ¥p € OM.
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It follows that

/@-(p)2 =0.
i=1

Which implies that x;(p) = 0, for all p € M, and for all i = 1,...,n — 1. Therefore, OM
is totally geodesic.

The converse follows from the definition of totally geodesic submanifold. |

A consequence from the proof of the Proposition 3.4.2 is that if (M" g,V f, ) is a
gradient Ricci almost soliton with boundary, n > 2, such that f satisfies (3.4]) and V[ is

non zero on whole dM, then the mean curvature H of OM satisfies the following equation

i ki(p)® + a(p) H(p) + b(p) =0, (3.18)

for all p € OM, where r;(p) is a principal curvature of OM at p, for all i, and a(p) and
b(p) are given by

alp) = |Vf(p)| — H(p), and b(p) = Son(p) + Ricar(n(p), n(p)) — (n — 1)A(p).

Thus we obtain that if M is minimal but it is not totally geodesic, then

San (p) + Rica(n(p),n(p)) < (n —1)A(p),

for all p € OM.

3.4 Positive Mean Curvature

In the previous sections we study ridigity theorems when the boundary is minimal, but
in this section we obtain a rigidity theorem for gradient Ricci almost solitons when the

mean curvature of the boundary is positive.

Proposition 3.4.1. Let (M", g,V f, \), n > 2, be a gradient Ricci almost soliton manifold
with boundary. If f is constant on OM, then every principal curvature k;(p) of OM at p,

i=1,...,n—1, satisfies

ki(p)* + [9(V f(p),n(p)) — H(p)]ki(p) + Ricari(ei(p), ei(p)) +
+Kn(ei(p),n(p)) — Ap) =0, (3.19)

where Ricgyy and Ky is the Ricci curvature tensor of OM and the sectional curvature of
M, respectively, n(p) is an inward unit vector normal to the boundary at p, and e;(p) is

the principal direction associated to k;(p).
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Proof. We have that V f(p) = ¢,(V f(p),n(p))n(p), for all p € M. Then

Hess(f)(u,v) = go(Vf(p),1(P)9p(Vun(p), v),

for all p € OM, and u,v € T,0M. In particular, we obtain that

Sviw) (V) = gp(V f(p), 1(p)) Sy (v).-

So, if k;(p) is a principal curvature of OM at p, and e;(p) is an unit principal direction

associated with x;(p), then

Hess(f)(ei(p), ei(p)) = —ki(p)g,(V f(p),n(p)),

forall p € OM, and i = 1,...,n—1. Therefore, by proceeding as in the proof of Proposition
3.4.2 we obtain (3.19). |

In what follows we give the statement of two theorems that we are going to use to

prove the last theorem of this section.

Theorem 3.4.2 (Theorem 1 in |20].). Let M™, n > 1, be a compact Riemannian manifold
with boundary and non negative Ricci curvature. For each p € OM, let n(p) be the inward
unit vector normal to the boundary at p. Assume that the principal curvatures of OM are
bounded from below by a positive constant p. Then, the first eigenvalue A\ (QAanr) of the
Laplacian Ngyr on OM satisfies A (Danr) > np? with equality holding if and only if M is

isometric to a closed Euclidean ball of radius —.

Theorem 3.4.3 (Theorem 1 in |19].). Let M™, n > 1, be a compact Riemannian manifold
with boundary and non negative Ricci curvature. Let H be the mean curvature of OM. If

H 1is positive everywhere, then
/ —d OM) > nvol(M).
om H

The equality holds if and only if M is isometric to a Fuclidean ball.
Next we have the main result of this section.

Theorem 3.4.4. Let (M™, g,V f,\), n > 2, be a compact gradient Ricci almost soliton
with boundary. Suppose f is constant on OM, and the Ricci curvature of M is non

negative. If

9p(Vf(p),n(p)) < H(p), and Mp) < Ricon(v,v) + Kn(n(p), v), (3.20)
for all p € OM, where n(p) is the inward unit vector normal to the boundary at p, H(p)
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is the mean curvature of OM at p, and v € T,0M, |v| = 1, is a principal direction of
the shape operator Sy). Here, Ricoyr and Ky denote the Ricci curvature of OM and the

sectional curvature of M, respectively. Then, the following assertions are satisfies:

(1) The first eigenvalue \1(Aanr) of the Laplacian on OM satisfies \1(Agpr) > (n—1)p?,
for some positive constant p € R. Moreover, the equality holds if and only if M 1is

1sometric to an n-dimensional closed Fuclidean ball of radius —.
P

(i) The mean curvature satisfies

1
» md(@M) > nvol(M).

The equality holds if and only if M is isometric the a closed Euclidean ball.

Proof. (i) For all p € OM, let {e1(p),...,en—1(p)} be a basis for T,0M, where each e;(p)
is a principal direction of the shape operator S, associated to the principal curvature

ki(p). From the hypothesis we have
Ap) < Rican(€i(p), ei(p)) + K (n(p), ei(p)),
for all p € OM, and i = 1,...,n — 1. For each p and i, define
bi(p) = Ricon (€:(p), ei(p)) + Kar(n(p), ei(p)) — Alp),

then b;(p) > 0. Set a(p) = g,(Vf(p),n(p)) — H(p), where p € OM, and H(p) is the mean
curvature of M at p. We have that

a(p)* — 4b;(p) < a(p)®.
From Proposition 3.5.1, every principal curvature x;(p) satisfies , then
95(V (). n(p)) = H(p)]* = 4[Ricon (es(p), ei(p)) + Knr(n(p), ei(p)) — AMp)] = 0.
It follows that a(p)? — 4b;(p) > 0, thus since a(p) < 0, we obtain
a(p) + v a(p)? — 4b;(p) < 0,

for all p € OM, and i = 1,...,n — 1. Since the principal curvature r;(p) satisfies

Rz(p) _ _a(zp) . a(p)QQ_ 4bz(p)
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or

_a(p) N a(p)? — 4bi(p)

2 2
Thus k;(p) is positive for all p € OM, and i = 1,...,n — 1. Then, H > 0 and the second
fundamental form 11, of OM is positive defined. The converse is true, if a(p) < 0 and
all principal curvatures are positives, then b;(p) > 0, for all p € OM, and i = 1,...,n — 1.
Since M is compact, then there exists a positive constant kg such that ;(p) > ky, for all
p€OM,and i =1,...,n — 1. The conclusion follows from Theorem 3.5.2.

(ii) From the proof of item (i) the mean curvature H(p) > 0, for all p € M. Therefore,

the conclusion follows from Theorem 3.5.3. ]

Example 3.4.5. Let B} be the Riemannian manifold with boundary defined by
B2 ={pecR®:|p <1},

provided with the metric (-,-) induced from R3. It follows that OB} = S*. Let f : B} — R

be the function given by
_1—pP

f(p) 1

It follows that |

p
Vip)=—5 and Hess(f) = —5{, ),
for all p € B. Choose X\ = %, then (B}, (-,-), f,\) is a gradient Ricci almost soliton with
boundary. Moreover, we have that (B3, (-,-), f,\) is under the hypothesis of the Theorem

3.5.4.

3.5 Ricci Almost Soliton as a Hyperbolic Domain

So far we have been studying gradient Ricci almost solitons with boundary which are
isometric to a closed hemisphere of a Euclidean sphere or a closed Euclidean ball. In
this section we obtain inequalities which implies that a gradient Ricci almost soliton with
boundary is isometric to a domain in some hyperbolic space.

First, we start recalling some basic definitions.
Definition 3.5.1. We denote by L™ the set R™™! provided the scalar product
(u, v)L = —Toyo + Z TiYi, (3.21)
i=1

where (o, 1, ..., Tn), (Yo, Y1, -, Yn) € R The space L™ is called the Lorentzian

space. For some r > 0, we define the hyperbolic space of dimension n, and cur-
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1
vature c = ——, as the subset of L defined by

r2’
n n+1 1

H"(¢c) ={v el : (v,v)p = —, and xy > 0}. (3.22)
c

We denote H"(—1) by H" and we just call it hyperbolic space of dimension n.

Definition 3.5.2. The Lorentzian norm on L"! is the function |- |, : L"*' — C

given by
vl = (v, v)L (3.23)

For a treatment much more systematic about the hyperbolic space see [17].

Example 3.5.3. Set P = {(x,y,2) € L3 : x = \/2}. Let D? be the domain of H? defined
by the subset of H? which is “under” P. Let f be the function on D? given by

f(p) = coshdyz2(p, 0D?),
where dg2(p, 0D?) = infcope d2(p, q). If we choose the coordinates
¥(0, ) = (cosh @, sinh ¢ cos§, sinh @ sin ),

then
dH2 (pa aD2) =@,

where p = (cosh ¢, sinh ¢ cos 6, sinh psiné). It follows that the function f in this coordi-

nates is given by

f(p) = cosh .
Thus g—g =0 and % = sinh ¢. Since
0 . : :
% = (0, — sinh ¢ sin @, sinh ¢ cos 0),
0 . :
9 = (sinh , cosh ¢ cos @, cosh ¢ sin 0),
¥
then

o o\ .., O 9\ _ o 9\
(), == (5 ), =0 = (g 77), =

Vf= sinhtp%.

We have
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We have

) 0 ) g O 0 0
V%Vf = smhgov%% = sinh ¢ <I‘9@% + Ffw%) = cosh Y5
and since Viai =0, then
dp P

0
V%Vf = coshgp%.

Thus Hess(f) = cosh (-, ). If we choose A(p) = —1 — f(p), then (D? (-, )L,V f,A) is a

gradient Ricci almost soliton with boundary.
The next theorem is going to be applied in the prove of the main result of this section.

Theorem 3.5.4 (Theorem 1.6 in [10].). Let (M™,g), n > 1, be a Riemannian manifold
with boundary. Suppose

e Ric>—(n—1)g;

e there is an isometric immersion v : OM — H™, where H™ is the hyperbolic space

of dimension m > n;

e for each p € M, IT,(v,v) > |IL}(v,v)|v, for allv € T,OM. Here 11 is the second
fundamental form of OM in M and IT™ is the vector-valued second fundamental

form of the immersion 1.
If OM is simply connected, then M 1is isometric to a domain in H".

The following theorem allows us to describe a gradient Ricci almost soliton with bound-

ary as a hyperbolic domain.

Theorem 3.5.5. Let (M™, g,V f,\), n > 3, be a compact gradient Ricci almost soliton
with simply connected boundary. Suppose f satisfies (3.4)) and V[ does not vanish on

OM . If there exists an isometric immersion of OM into the H"™ ny >0, and
1—n—Xp) < Hess(f)(v,0) < [V f(D)||IL, (v, 0)|r, (3.24)

for allp € OM, v € T,0M, |v|. = 1. Here, II"™ denotes the vector-valued second

fundamental form of OM in H" ™0 then M is isometric to a domain in H".

Proof. Since g,(Sv ) (u),v) = —Hess(f)(u,v), for any u,v € T,0M, then

9(Sv5) (v),0) > [V DL (v, ),

for all v € T,0M, |v|y = 1, which implies that Iy ) (v,v) > |V f(p)|L|I L (v, v) L, for all
p € OM, and v € T,0M, |v|, = 1. Where IIyy(,) is the second fundamental form of M
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at p with respect V f(p) in M. On the other hand, we have that
A(p) + Hess(f)(v,v) > —(n — 1),

for all p € OM, and v € T,0M, |v|, = 1. Since (M, g,V f, ) is a gradient Ricci almost
soliton, then Ric > —(n — 1)g. The conclusion follows from Theorem 3.5.4. |

Example 3.5.6. Set D? = {(z,y, z,w) € H? : x < v/2}. Ifwe choose f(p) = — cosh dg(p, 0D?)
and XN(p) = =1+ f(p), then (D3, (-, )1, V[, ) is a gradient Ricci almost soliton.
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Chapter 4

Gradient Ricci Almost Solitons on

Warped Products with Boundary

Our goal in this chapter is to describe gradient Ricci almost solitons on warped products
(M = B xy F,g,Vf,\), where B is a Riemannian manifold with boundary, and F' has
no boundary. In order to do so, we shall use the rigidity theorems that we obtained
in Chapter 3. Moreover, we apply some identities obtained by Borges and Tenenblat
in 2], namely, Theorem 2.1 and Theorem 2.3. We divide this chapter in two sections. In
the first section we obtain basic properties for gradient Ricci almost solitons on warped
product with boundary, and then we give the statement of Theorem 2.1 in [2], thus we
obtain properties of the topology and geometry of the basis of M = B x; F, and its
boundary. By using these properties we conclude that the gradient vector field of the
warping function A is a Killing vector field. In the second section, we use Theorem 2.3
in 1], Theorem 3.4.2, Theorem 3.8.2, and Theorem 3.9.3 to characterize the basis of
the gradient Ricci almost solitons on warped product, where the it is compact. At the
last section we give two examples of non trivial gradient Ricci almost solitons on warped

product.

4.1 Some properties of gradient Ricci almost solitons

The first Proposition of this section is a simple and very useful result which show us how
decompose a smooth function on a warped product as the sum of a function constant on

the fiber and a function constant on the basis.

Proposition 4.1.1 (Proposition 4.1 in |2].). Let (B, gg) and (F, gr) be Riemannian man-
ifolds, where B is a smooth manifold with boundary and F is a smooth manifold without
boundary. Let (M = B xy, F, g) be an warped product. If (M, g,V f,\) is a gradient Ricci
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almost soliton, then
f=A+ho, (4.1)

where A : B — R and ® : FF —> R are smooth functions.

Proof. From (2.18]) and ([2.27)) we obtain
1
—EX(WU() + X(U(f) =0,

for all horizontal vector field X and vertical vector field U. Since

_ _ 1 1
X(U(h) = X(0U() = —5 XU () + 3 X(U(F)),
then X (U(fh™1)) = 0, for all horizontal vector field X and vertical vector field U. which
implies there exist smooth functions A : B — Rand ® : F — Rsuch that fh~! = A+®.
Therefore,

f=A+ho,

where A = hA. [ |

From (2.17)), (2.19) and (4.1) we obtain the following lemma.

Lemma 4.1.2. Let (B™, gg) and (F*, gr) be Riemannian manifolds, where B is a smooth
manifold with boundary and F is a smooth manifold without boundary. Let (M = B Xy,
F,g) be an warped product. If (M, g,V f,\) is a gradient Ricci almost soliton, then

k
Ricg = Mg+ 5HessB(h) + Hessp(A) + ®Hessg(h), (4.2)
R’ZCF = [)\hQ — hABh + (k — 1)|VBh\2 + th(VBA, VBh)]gp + h\VBh\QCI)gF +
+hHessp(P), (4.3)

where A : B — R and ® : F — R are smooth functions which satifies (4.1)).
The following corollary is a more general version of Theorem 2.2.7.

Corollary 4.1.3. Let (B™,gg) and (F*, gr), k > 3 be Riemannian manifolds such that
B is a manifold with boundary, F with no boundary. Let (M = B Xy, F,g,Vf,\) be a
gradient Ricci soliton. Assume the maximum point of h is an interior point. If f is not
constant on F', then the warped product M = B X, F 1s a Riemannian product, i.e., h s

constant.

Proof. Let py be any point in B. Consider an unit horizontal vector field X locally defined
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in a neighborhood of py, namely, D C B. By using (4.2]) we have
k
Ricg(X, X) =+ EHGSSB(h)(X,X) + ®Hessp(h)(X, X),
then for any point (p,q) € D x F, we have

B(q)Hesss (h) (X, X)(p) = Rics(X, X)(p) — A — %HeSSB(h) (X, X)(p).  (4.4)

Since ® is not constant, then there exists a vertical vector field U defined in an open
subset G C F' such that U(®) # 0 in G. By applying U in (4.4]) we get to

U(®)Hessp(h)(X,X) =0,
in D x G. Thus,
Hessp(h)(X, X)(po) =0,

for any pg € B and any unit horizontal vector field X defined in a neighborhood of py. It
follows that

A Bh = O, in B y
From the Maximum Principle we conclude that A is constant. [ |

For more applications of the Laplacian on the Riemannian manifolds with boundary

we indicate [21].

Proposition 4.1.4. Let (B™,gg) and (F*,gr) be Riemannian manifolds, where B is a
smooth manifold with boundary and F with no boundary. Let (M = B xj F,g) be an
warped product. If (M, g,V f, \) is a gradient Ricci almost soliton and the warped product

M = B Xy F' is a Riemannian product, then \ is constant.

Proof. Let cq be the positive constant such that h = ¢y. From (4.2) and (4.3) we have
that

Ricg = Agp + Hessg(A),
Ricp = caAgr + coHessp(®).

Let (po,qo) € B x F be any point. Take X any unit horizontal vector field defined on an

open set Dy C B and U an unit vertical vector field defined on an open set Gy C F' such
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that (po, qo) € Do X Gy. For each (p,q) € Dy x Gy it follows that

Ap,q) = Ricg(X,X)(p) — Hessp(A)(X, X)(p),
Apq) = C—%Rich,U)(q)—C—tHessF<<1>><U,U><q>.

By setting A(po, o) = Ao, it follows that A = A\g on Dy x Gy. So we have proved that for
each (po,qo) € B x F there exists a neighborhood Dy x Gy € B x F of (po, qo) such that
A(p,q) = Mpo, qo)- Let xg € R be such that A™!(xg) # @. Set

(B x F)(zo) = {(p,q) € Bx F: Xp,q) = 7o}

We have that (B x F)(xq) is closed because (B x F)(xg) = A\ (zp). And (B x F)(x) is
open because for each point (p,q) € (B x F)(x) there exists a neighborhood D, x Gp C
B x F of (p,q) such that A = 29 in D, x Gp. As B x F is connected, then A =z,. N

The following theorem provide us with important identities that we shall use in the

next section.

Theorem 4.1.5 (Theorem 2.1 in [2].). Let (B™, gg) and (F*,gr) be Riemannian man-
ifolds, where B is with boundary and F with no boundary. Let (M = B X, F,g) be a
non trivial warped product, i.e., h is not constant. Then (M, g,V f,\) is a gradient Ricci
almost soliton, with f non constant on F if and only if f = A+ h®, where A : B — R
and ® : FF — R are smooth functions such that

Hessg(h) = aphgg, (4.5)
1

RiCB = — EQB(VBh, VBA> — % + (m — 1)@0 gB + H@SSB<A), (46)
Hessp(®) = (—c® — a)gr, (4.7)
Ricp, = c(k—1)gp, (4.8)

for some constants ag, a,c € R. Moreover, the function \ is given by

1
A= +95(Vih Vih) - % + (m+k — Dag — agh®, (4.9)
and the constants ag and c are related to h by the equation

IVh|* — apgh® = c. (4.10)
Proof. See [2]. |

By using the Theorem 4.1.5 and the results that we obtained in Chapter 3, we have
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the following corollary.

Corollary 4.1.6. Let (B™, gg) and (F*, gr) be Riemannian manifolds, where B is ori-
ented, connected with boundary and F with no boundary. Let (M = B x,, F,g) be an
warped product, where h is a positive function which satisfies . Suppose (M, g,V [, \)
1s a gradient Ricci almost soliton such that f is non constant on F. Then, the following

assertions are satisfied:
1) If B is compact, then Vgh # 0 and Hyg > 0. In particular, 11y, 1S positive.
(1) 5

(ii) Assume Vgh # 0 on 0B. If Ily,, < 0, then |Vgh| is constant and B is non

compact. In particular, OB is totally geodesic.

(#ii) Let A be the funcion which satisfies (4.1)). Suppose A is constant on 0B, and m > 3.
Then, gg(Vph,VpA) is constant in B if and only if B is Ricci flat and VA is a
Killing vector field.

Proof. (i) Suppose that B is compact. So, take the trace in (4.5)). We obtain
Aph = —agmh.

Since B is compact, then 0 < A\;(Ag) = —agm, where \;(Ap) is the first eigenvalue of
Ap. Let n(p) be an unit normal vector to the boundary 0B at p. So

Vh(p) = g,(Veh(p),n(p))n(p),

which implies that

Hessp(h)(u,v) = g,(Vsh(p),n(p))gp(Vun(p), v),

for all u,v € T,0B. From (4.5) we obtain

aoh(p)gp(u, v) = g,(Vsh(p), n(p))9p(Vun(p),v), Yu,v € T,0B,

for all p € OB. Since agh(p) < 0 for every p € B, then

9 (Vsh(p),n(p))g,(Von(p),v) <0,

for all v € T,,0B, |v| = 1. Therefore, Vgh # 0 on 0B.

On the other hand, from Lemma 3.2.6 we have

Hyp(p)|Vsh(p)| = —(m — 1)aoh(p),

for all p € OB, where Hyp is the mean curvature of 0B. Since |Vph| # 0 on 0B, then
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Hpp > 0. Moreover, since IIVBBh(p)(u,U) = —Hess(h)(u,v), for all u,v € T,0B, then

Ilggh(p)O}vU) - —aoh(p>,

for all p € 0B, and v € T,0B, |v| = 1.

(ii) Since h satisfies (3.4)), and from Vh is a conformal vector field with Vgh # 0
on 0B, then from Proposition 3.2.12 dB is umbilical. The second fundamental form with
respect to Vph is given by IT5 , = —Hessp(h). From item (i) we have that B is non

compact. Since

/ AphdB — — / div(V sh)dB = — / 05(Vsh, )d(DB) > 0,
B B

0B

where 7 is a outward normal vector to the boundary, and Hessg(h) = aghgg, then aph < 0,
which implies /Iy, > 0. On the other hand, I/y,, < 0 from the hypothesis. Therefore,
Iy, = 0 on 0B, which implies that 0B is totally geodesic and Hessg(h) = 0 on B.
Since

1
Hessp(h)(X,Vgh) = §X(|V3h|2),

for every horizontal vector field X, then |V gh| is constant.
(iii) For any p € OB, we have VzA(p) € (T,0B)*. Thus

VA(p) = gs(VeA(p), Veh(p))VEh(p),

on 0B.
If g5(VpA,Vgh) is constant, then

VeA(p) = g5(VeA(p), VBh(p))Veh(p),
for all p € B. Thus
Vx,VeA(p) = [X,98(VA(p), Veh(p))|Veh(p)+

+98(VA(p), Veh(p))Veh(p)Vx,Veh(p).

Then
Vx,VeA(p) = g5(VpA(p), Vsh(p))VEh(p)Vx,Vh(p),

which implies
Hessp(A)(u,v) = g5(VpA(p), Veh(p))Hessg(h)(u,v),u,v € T,B.

Since Hessp(h) = 0 in B, then Hessp(A) = 0in B. So VA is a Killing vector field. From
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(4.6) one shows that

. 1
Ricp = — WQB(VBA(P)» Vgh(p)) — hip) 9B-

Thus, there exists a constant ag € R such that

98(VBA(p), Vph(p)) — a = aph(p)

Since gg(VpA, Vgh) and a are constant, and h is not constant, then g = 0. Therefore,
B is Ricci flat.

Conversely, if B is Ricci flat and VA is a Killing vector field, then from (4.6) we
obtain that gg(VgA, Vgh) is constant in B. [ |

4.2 Compact Ricci Almost Solitons on Warped Prod-

uct

In this section we study gradient Ricci almost solitons (M = B x; F, g, V f, ), where the
function f is not constant on the fiber F.
The following theorem follows from Theorem 2.3 in [2], which was proved in local

coordinates.

Theorem 4.2.1. Let (B™, gg) and (F* gr) be Riemannian manifolds, where B is a
smooth manifold with boundary and F is a smooth manifold without boundary. Let (M =
B xp, F,g) be a non trivial warped product, i.e., h is not constant. Then (M, g,V f,\) is

a gradient Ricci almost soliton, with f constant on F if and only if

Ricg = MAgp+ %HessB(h) + Hessp(f), (4.11)
)\h2 = th(va, VBh) — (k— 1)‘V3h|2+hABh+C(k— 1), (412)
Ricp = c(k—1)gr, (4.13)

for some constant ¢ € R.
Proof. See [2]. |
Next, we have the main theorem of this chapter. It provide us characterizations for

a gradient Ricci almost soliton (M = B xj F, g,V f, \), where the basis B is a compact

Riemannian manifold with boundary.

Theorem 4.2.2. Let (B™,gg) and (F*, gr), m > 2 be Riemannian manifolds, where B

15 oriented, connected, compact, and with connected boundary, and F' with no boundary.
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Let (M = B xy, F,g) be an warped product, where h is a positive function which satisfies

B9

Suppose (M, g,V f, ) is a gradient Ricci almost soliton such that f is constant on

F. Moreover, suppose that ¥V gh is a conformal vector field. Then, the following assertions

are satisfies:

(i)

(i)

(iii)

(iv)

If f satisfies , Vf # 0 on OM, the scalar curvature of B is positive, and
Hess(f) = &g, where £ < 0 on OB, then there exists a positive constant p € R
such that the first eigenvalue \i(Apg) of the Laplacian on B satisfies the inequality
A (Ap) > mp®. Moreover, the equality holds if and only if B is isometric to a closed

1
hemisphere of the Euclidean sphere S™(p?) of radius —.
p

Let Hyg, Ricygg, and Kpg be the mean curvature, the Ricci curvature and the sectional
curvature of B, respectively. Suppose f constant on OM, and the Ricci curvature of

B is non negative. Assume Hyp, Ricsgg, and Kg are such that the following system

kgp(Vph(p), n(p)) + hP)IV ()| < h(p)Hos(p),
Ap) < Ricgp(v,v) + Kp(n(p),v), (4.14)

is satisfied, for all p € OB, where n(p) = ‘g}cg;‘. Then the first eigenvalue A\ (App)

of the Laplacian on OB satisfies \1(App) > (m — 1)p?, for some positive constant

p € R. Moreover, the equality holds if and only if B is isometric to an m-dimensional

closed Fuclidean ball of radius —.

Let f, Hyp, Ricsp, and Kp be as in item (ii). If Hpp, Ricop, and Kp are such that
(4.14) is satisfied, then the mean curvature Hyp satisfies

1

. md(@B) > muol(B).

Moreover, the equality holds if and only if B is isometric to a closed Fuclidean ball.

Suppose that OB is simply connected, m > 3, Vf # 0 on OM, and f satisfies (3.4)).
If there exists an isometric immersion of OB into the H™™ mqy > 0, and the
Hessian of f is such that

(1= n— MDAV F(p)
Ean(V k(o) (o) + WV Fp)] = o) =
VDI, )]s (115)

is satisfied, then B is isometric to a m-dimensional hyperbolic domain. Here, IT"

denotes the vector-valued second fundamental form of OB in H™t™o,

Proof. To prove item (i) we shall act as in the prove of Theorem 3.2.14. Since f is constant
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on F', Vf #0, and Hess(f) = £ g, then from Lemma 3.2.10 we obtain that

Hap(p)|Vf(p)] = —(n—1)§(p),

for all p € OB. It follows that Hyp > 0. Since (M, g,V f,\) is a gradient Ricci almost
soliton, then from (4.11]) there exists a positive constant p such that

Ricg > (m — 1)p%

The conclusion follows from Theorem 3.2.13.
To prove item (ii), we proceed as in the proof of Proposition 3.3.2, consequently we

obtain _ kgs(Vsh(p),n() + h(p)|V£(p)]

h(p)
for all p € OB, where e;(p) is the i-th principal direction associated to the i-th principal

Ricg(ei(p), ei(p)) = A(p)

ki(p),

curtavure x;(p) at p.

By acting as in Proposition 3.4.1 we obtain

ka(p)? + k g5(Vsh(p),n(p)) + h(p)|V f(p)| — h(p)H (p)
Z h(p)

ki(p) + Ricap(ei(p), ei(p)) +
+Kg(ei(p),n(p)) — Alp) =0,

for all p € 0B. The conclusion follows by following the same steps in the proof of the
Theorem 3.4.4.
Since the statement of item (iii) is basically the same as item (ii) of Theorem 3.4.4,

then the conclusion follows.

From (4.11) and(4.15)) we have that

g (v,0) = VPTG (0],
Ricg(v,v) > —(m—1),

for all p € 0B, v € T,0B, |v| = 1, where Iy, denotes the second fundamental form at
p with respect V f(p). The conclusion of item (iv) follows from Theorem 3.5.4. [ |

4.3 Some examples

In this section we compute two non trivial examples of gradient Ricci almost solitons with

boundary on warped product.

Example 4.3.1. Let ¢y, ¢y be positive constants. For i = 1,2, let S*(c;) be the FEuclidean
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sphere of mdzus . Set
Si(ei) = {(x,y,2) € S$*(e;) : 2 > 0},
for each i =1,2. For anyr € (O, \/Lc7>7 define the set
D? = {(x,y,2) € Si(cl) cz>rh
We shall consider the warped product

(M D2 Xh S (02) g = gS2 (c1) + h( ) gs? 62))

where

hip) = /2 sinly e . 962 )

Let TD? and TS?(cy) be the tangent bundle of D? and S?(cy), respectively. For all X,Y €
TD? and V,W € TS*(cy), we have

Ricy(X,Y) = Ricpz,) — 2Hess(h)(X,Y),
RiCM(X, V) = 0,
RiCM(V, W) R’ZCS2(02) — [—hAh + ‘Vh’2]gSQ(C2)'

If we choose the coordinates (0, @) = %(smcpcos@ sin @ sin @, cos ), then
0 1
0 = _01(_ sin @ sin 6, sin p cos 6, 0),
a 1 ( 0 . 9 . )
— = ——(cospcosf, cosp sinf, —siny).
30 = (coso 0 ¥

) . 1
Since (9s2 (1)) = o 5I0° @, (952 (e1))ap = 0, and (gsz (o)) oy = o then

1 /m
2 —_— ——— [E—
dSi(cl)(p7 aS—f—(Cl)) - \/C_l (2 SO> .

Thus, h(1(0,¢)) = \/?—f cos p. From now on, we shall consider h on the coordinates 1.

From the definition, we have

gOh 0 Oh 0

oh 0 ,0h 0
Vh = (gsi(cl)) 9000 " (gS+(c1)) wa BT + (982 ()

w2 +
) 90 Op (982 (en))™* 0p Do’
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which implies Vh = —\/cico sin gpai. It follows that
¥

. 0
V%Vh = —\/cico smgov%%.

Since V%% =T}, 2+ FggD%, where T, = cotgp, and Ty =0, then

0
V%Vh = —\/c1cy cos gO%.

Since V%% = 0, then V%Vh = —,/c1¢o COS gp%. Therefore, Hess(h) = —Clhggi(cl),
which implies Ah = 2¢1h. Then

—hAh+ |Vh|* = —2¢; cos® ¢ + casin’ ¢ = —3c cos” ¢ + ¢a.

We obtain
RZ.CM(X, Y) = 361981(01) (X, Y),

Ricyr(V,W) = 3ccos” pgsa(e) (V, W).

Now, we shall consider functions f, A\ : M — R given by

Fp.0) = - sinly/eids o, 053 ()] snly oo 0, 952 c2)
Ap,q) = Sin[\/c_ldgi(cl)(p, 881(01))] sinfy/Cads2(c,) (4, aSi(Cg))] + 3c;.

We have
Hess(f)(X,Y) = —(1V§Y)f+(XY)f,
Hess(f)(X,V) = —=X(R)V(f)+ (XV)F,

Hess(F)(V,W) = hgs )V f. V) gsa(y (V. W) — (V3 W) f+ (VIV) £,

where VP and V() denote the Levi-Civita conections on D? and S*(cy), respectively.

Moreover, set
501 0
Vpf = Z (gsi(cl))Jﬁ_jE'

1,J€{0,p}

On S?(cy), we shall consider the coordinates

0(£,¢) =

\/LC_Z(Sing cos (,sin € sin ¢, cos§).
Thus
(—sin¢ sin ¢, sin& cos ¢, 0),

(cos€ cos(,cos€sin(, —sin ).

Q@
3l=51-
[} [}
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o 0 0 0
Define (gs2(e))cc = gs2(ca) <3_C’3_C)’ (9s2(c2))ce = 9s2(ca) <8_C a_§>’ and (gs2(c))ee =

o 0 1 1
gs2( 9 o€ ) Then (gs2(cs))cc = C—QSinz £, (9s2(e0))ce = 0, and (gs2(cy))ee = o On

the coordinates ©(&, ) we have
=69

1

Therefore, f(p,q) = — cos cosé and A(p,q) = cosp cos€ + 3c1. Since f(p,q) = A(p) +
&1

h(p)®(q), then Hess(f)(X,V) =0, for all X € TD? and V € TS?*(c3). Moreover,

dSQ(CQ) <Q7 8S2+<C2>> =

ﬂ\

Vpf = —singpcosf%.

Since VS (c2) 65

cotgfag, and VS (02 =0, then
2 C:
—(VV W) f + (VIV)f = —caf (9, 0)(ge2(e) (V, W),
or all V.W € TS?(¢cy). Moreover
f ) 2

—(VR)f + (XY)f = =1 f(p, 9)952 () (X, V),

for each X,Y € TD?. We have

/ 0 0
thi(cl)(vaa Vh)gs2(c,) = Z—j COS § Js2 (cy) (— sin ¢ 0055%, —\/c1¢o sin go%) 952 (cy)

C

2 . 9
= — sin” ¢ cos ¢ cos & gs2(cy)-
&1

Now, by using the identities that we have just obtained, we get to
Ag(X,Y) + Hess(f)(X,Y) = (cosg cos&+ 3c1)ggz (o) (X,Y) — cosp cos€ gs2 () (X, Y),

Ag(X, V) + Hess(f)(X,V 0,
Ag(V,W) + Hess(f)(V,W) = (cosy cos& + 361)— cos” ¢ gsz(c) (V, W)

~—

+C— sin? ¢ cos ¢ cosgggz(c2 (VW) - = coscp cos & gs2(ep) (V. W),
C1 C1

for all X, Y € TD? and V,W € TS?(cy). Therefore,

AG(X,Y) + Hess(£)(X,Y) = Beygss o (X, V)
Ag(X,V)+ Hess(f)(X,V) = 0
Ag(‘/y W) + HGSS(f)(V, W) = 3c cos? 909§2(02)(V, W)
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Thus Ricyr = A g+ Hess(f).

The next example is very analogous as Example 4.3.1. We just replace spherical to

hyperbolic domains.

Example 4.3.2. Let ¢y, co be negative constants. Set
D? = {(x,y,2) € H}(c) : x < 1},
where F < r. We shall consider the warped product
(M = D} xp H(c2), 9 = (-, )r + h(p)*(,-)L),

where the warping function is given by

h(p) = 4/ — cosh[v/—cidmz2(c,)(p, 8D72,+6)],

ﬁy
[ V)

where € > 0. Let f, \ be functions on M given by

1
flp,q) = — cosh[\/—clde y(p 8Df+6)] cosh[v/ —cadmz2(c,)(q, €1)],
Ap,q) = cosh[\/—clde (en) (P, 8Df+6)] cosh[v/—cadm2 () (¢, €1)] + ey,

where e; = (1,0,0). We shall consider the following coordinates on H?(c;) and H?(cy),

respectively,

—_

W(0,p) = (cosh ¢, sinh ¢ cos @, sinh ¢ sin ),
0§, () =

Hﬁ
)
s

(cosh &, sinh & cos ¢, sinh & sin ().

7

On these coordinates, the functions h, f, X are written by h(p) = ,/—Cosh v, f(p,q) =
(&1

1
— cosh ¢ cosh &, and A(p, q) = cosh¢ cosh& + 3¢;. We have that
(&1

1
% = = (0, — sinh ¢ sin @, sinh ¢ cos ),
—C
1
aﬂ = (sinh ¢, cosh ¢ cos 6, cosh ¢ sin ).
¥ -

o 0 1 o 0 0 0 1
T — .~} = ——sinh? G — =y == T
hus <86’ a9>]L o sinh” ¢, <(’99’ 390>]L 0, and <8‘P769‘7>L o t follows

Then p p
_ .2 Y _ . ]2 g
V%Vh =— - smhch o % a0 1 o coshcpae,
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and

Therefore, Hess(h) = —ci1h(p)(, ). Set

Of
V 12 = g L
(1) f g 07 04’

i,fe{0,p}

which implies V2., f = —sinhe coshé%. Since Hess(f)(X,Y) = —(VEI?(CHY)f +
(XY)f, then Hess(f)(X,Y) = —c1f(p,q){X,Y)L, for every X, Y € TD?. We have

C2 . 0 Ca . 0
h ) Wy = ) 2coshe ( —sinhg coshé—, —ciy /<2 sinh g
(P) (Ve f, Vh)L . coS go< sinh ¢ cos fa@’ c1 - sin 90880>L

— cosh ¢ cosh ¢ sinh? .
&1

2 2 2
Since V5 D2 — cotghe 2 VD 0 — _ inh¢ coshé2 e VD2 =0, then
2 b 9h&5e: Voo §coshige e Vo ™5

(VW) f+ (VIV)f = —eaf (9,9) (s )r.

We have that
X,)Y) = 3ci(,),
RiCM(X, V) = 0,
V,W) = 3¢y cosh® (),
for all X, Y € TD? e V,W € TH?(c3). On the other hand, we have
Ag(X,Y) + Hess(f)(X,Y) = 3ci(,)u,

Ag(X, V) + Hess(f)(X,V 0,
Ng(V,W) + Hess(f)(V,W) = 3cy cosh? p(, )L

~—

Therefore, (M = D? x, H?*(c), g, Vf, ) is a gradient Ricci almost soliton with boundary.
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