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Resumo

Seja (Mn, g,∇f, λ) um quase soliton de Ricci gradiente, compacto com fronteira. Neste
trabalho obtemos teoremas de rigidez para (Mn, g,∇f, λ) de modo que, sob determinadas
hipóteses, podemos mostrar se ele é isométrico a um hemisfério de uma esfera Euclidiana,
a uma bola Euclidiana fechada ou a um domı́nio hiperbólico. Além disso, aplicamos tais
teoremas em uma caracterização de quase solitons de Ricci gradientes e compactos sobre
o produto warped M = B ×h F , em que B é uma variedade Riemanniana com fronteira.

Palavras-chave: Variedades com fronteira; Campos vetoriais conformes; Quase soliton
de Ricci gradiente; Produto warped.

T́ıtulo: Rigidez de quase-solitons de Ricci gradiente compactos com fronteira.
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Abstract

Let (Mn, g,∇f, λ) be a compact gradient Ricci almost soliton with boundary. In this
thesis, we obtain rigidity theorems for (Mn, g,∇f, λ) so that we can show if it is isometric
to a closed hemisphere of an Euclidean sphere, or a closed Euclidean ball, or a domain in
Hn. Furthermore, we apply such theorems to characterize gradient Ricci almost solitons
on warped product M = B ×h F , where B is a compact Riemannian manifold with
boundary.

Keywords: Manifolds with boundary; Conformal vector fields; Gradient Ricci almost
solitons; Warped product.
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Introduction

We shall consider (M, g,∇f, λ) a gradient Ricci almost soliton with boundary, i.e., (M, g)

is a Riemannian manifold with boundary, which satisfies the following fundamental equa-

tion

Ric = λg +Hess(f),

where λ and f are smooth functions on M , and ∇f and Hess(f) denote the gradient of

f and the Hessian of f , respectively. If the gradient vector field ∇f vanishes, then the

gradient Ricci almost soliton is just an Einstein manifold with boundary.

This work is meant to be a first step into the characterization of compact gradient

Ricci almost solitons with boundary. We have taken the same perspective by [7], [19],

and [10]. Rigidity results for the without boundary case have been studied in [15], [2],

and [1]. Our motivation to study the “boundary case” is from [5], and [6], where the

authors investigate characterizations of Einstein metrics on warped products.

This work is divided in four chapters.

Chapter 1 we developed the basic theory of manifolds with boundary, we define

and prove some properties of Killing vector fields on smooth manifolds with and with-

out boundary, we recall the generalized Bochner formula for manifolds with or without

boundary, and at the last section we study some aspects of the topology of manifolds

with boundary, namely, the equivalence the topology induced from the distance function

and the topology induced from the smooth structure, and we give the statement of the

Hopf-Rinow theorem for manifolds with boundary, which was obtained by D. Burago, Y.

Burago, S. Ivanov, S. Pigola, and G. Veronelli..

Chapter 2 we start by recalling the definition of Ricci solitons (with or without bound-

ary) and we prove some properties by following the same steps in [7]. In the second section

we define warped product, where the base is a Riemannian manifold with boundary and

the fiber is a Riemannian manifold without boundary, and we show some identities for the

Christoffel symbol and the Hessian of an arbitrary smooth function defined on the warped

product. We calculated the Ricci tensor on the warped product. We finish this chapter

by proving that a warped product B ×h F , where the fiber F has dimension bigger than
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3, which is Einstein with a boundary condition∫
∂B

h
∂h

∂N
d(∂B) ≥ 0,

is a Riemannian product.

Chapter 3 is dedicated to obtain rigidity theorems for gradient Ricci almost solitons

with boundary. Precisely, the three most important theorems that we proved in this

chapter are the following.

Theorem 3.2.9. Let (Mn, g,∇f, λ), n ≥ 2, be a compact connected gradient Ricci

almost soliton with connected boundary. Suppose f satisfies

f(p) > c0 p ∈ int(M),

f(p) = c0 p ∈ ∂M,

where c0 > 0 is a constant, ∇f does not vanish on ∂M . Suppose the scalar curvature S of

M is positive, and ∇f is a conformal vector field. Assume Hess(f) = ξ g, where ξ ≤ 0 on

∂M . Then the mean curvature of ∂M is non negative, and there exists a positive constant

ρ ∈ R such that the Ricci curvature of M satisfies

Ricp(v, v) ≥ (n− 1)ρ2,

for all p ∈ ∂M , and v ∈ Tp∂M , |v| = 1. Moreover, the first eigenvalue λ1(∆) of the

Laplacian on M satisfies the inequality λ1(∆) ≥ nρ2. The equality holds if and only if M

is isometric to a closed hemisphere of the Euclidean sphere Sn(ρ2) of radius
1

ρ
.

The section 8 is dedicated to prove the following theorem.

Theorem 3.8.2. Let (Mn, g,∇f, λ), n ≥ 2, be a compact gradient Ricci almost

soliton with boundary. Suppose f is constant on ∂M , and the Ricci curvature of M is

non negative. If

gp(∇f(p), η(p)) < H(p), and λ(p) < Ric∂M(v, v) +KM(η(p), v),

for all p ∈ ∂M , where η(p) is the inward unit normal vector to the boundary at p, H(p)

is the mean curvature of ∂M at p, and v ∈ Tp∂M , |v| = 1, is a principal direction of

the shape operator Sη(p). Here, Ric∂M and KM denote the Ricci curvature of ∂M and the

sectional curvature of M , respectively. Then, the following assertions are satisfies:

(i) The first eigenvalue λ1(∆∂M) of the Laplacian on ∂M satisfies λ1(∆∂M) ≥ (n−1)ρ2,

for some positive constant ρ ∈ R. Moreover, the equality holding if and only if M

is isometric to an n-dimensional closed Euclidean ball of radius
1

ρ
.
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(ii) The mean curvature satisfies∫
∂M

1

H(p)
d(∂M) ≥ nvol(M).

The equality holds if and only if M is isometric the a closed Euclidean ball.

The section 9 is dedicated to prove the following theorem.

Theorem 3.9.3. Let (Mn, g,∇f, λ), n ≥ 3, be a compact gradient Ricci almost soliton

with simply connected boundary. Suppose f satisfies

f(p) > c0 p ∈ int(M),

f(p) = c0 p ∈ ∂M,

where c0 is a constant, ∇f does not vanish on ∂M . If there exists an isometric immersion

of ∂M into the Hn+n0, n0 ≥ 0, and

1− n− λ(p) ≤ Hess(f)(v, v) ≤ −|∇f(p)||IIHp (v, v)|L,

for all p ∈ ∂M , v ∈ Tp∂M , |v|L = 1. Here, IIH denotes the vector-valued second

fundamental form of ∂M in Hn+n0, then M is isometric to a domain in Hn.

In the Chapter 4 we characterize gradient Ricci almost solitons on warped product

with boundary by applying the rigidity theorems that we obtained in the Chapter 3. In

the first section we obtain the following theorem.

Corollary 4.1.6. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is a

oriented connected Riemannian manifold with boundary and F is a Riemannian manifold

without boundary. Let (M = B ×h F, g) be an warped product, where h is a positive

function which satisfies

h(p) > c0 p ∈ int(B),

h(p) = c0 p ∈ ∂B,

where c0 is a constant. Suppose (M, g,∇f, λ) is a gradient Ricci almost soliton such that

f is non constant on F . Then, the following assertions are satisfies:

(i) If B is compact, then ∇Bh ̸= 0 and H∂B > 0, where H∂B is the mean curvature of

∂B. In particular, the second fundamental form of ∂B is positive.

(ii) If ∇Bh ̸= 0 on ∂B, then |∇Bh| is constant.

(iii) If ∇Bh ̸= 0 on ∂B, then ∂B is totally geodesic.

(iv) Let Λ : B −→ R be the funcion which satisfies f = Λ + hΦ. Suppose Λ is constant

on ∂B, and m ≥ 3. Then, gB(∇Bh,∇BΛ) is constant in B if and only if B is Ricci

flat and ∇BΛ is a Killing vector field.
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The second section is dedicated to demonstrate the following result.

Theorem 4.2.2. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is a

oriented connected compact Riemannian manifold with connected boundary, m ≥ 2, and F

is a Riemannian manifold with no boundary. Let (M = B ×h F, g) be an warped product,

where h is a positive function which satisfies

h(p) > c0 p ∈ int(B),

h(p) = c0 p ∈ ∂B,

where c0 is a constant. Suppose (M, g,∇f, λ) is a gradient Ricci almost soliton such that

f is constant on F . Moreover, suppose that ∇Bh is a conformal vector field. Then, the

following assertions are satisfies:

(i) If f satisfies

f(p) > c0 p ∈ int(B),

f(p) = c0 p ∈ ∂B,

where c0 is a constant, ∇f ̸= 0 on ∂M , the scalar curvature of B is positive, and

Hess(f) = ξ g, where ξ ≤ 0 on ∂B, then there exists a positive constant ρ ∈ R
such that the first eigenvalue λ1(∆B) of the Laplacian on B satisfies the inequality

λ1(∆B) ≥ mρ2. Moreover, the equality holds if and only if B is isometric to an

Euclidean sphere Sm(ρ2) of radius
1

ρ
.

(ii) Let H∂B, Ric∂B, and KB be the mean curvature of ∂B, the Ricci curvature of ∂B

and the sectional curvature of B, respectively. Suppose f constant on ∂M , and the

Ricci curvature of B is non negative. Assume H∂B, Ric∂B, and KB are such that

the following system

kgB(∇Bh(p), η(p)) + h(p)|∇f(p)| < h(p)H∂B(p),

λ(p) < Ric∂B(v, v) +KB(η(p), v), (1)

is satisfied, for all p ∈ ∂B, where η(p) = ∇f(p)
|∇f(p)| . Then the first eigenvalue λ1(∆∂B)

of the Laplacian on ∂B satisfies λ1(∆∂B) ≥ (m − 1)ρ2, for some positive constant

ρ ∈ R. Moreover, the equality holds if and only if B is isometric to anm-dimensional

closed Euclidean ball of radius
1

ρ
.

(iii) Let f , H∂B, Ric∂B, and KB be as in item (ii). If H∂B, Ric∂B, and KB are such that

(1) is satisfied, then the mean curvature H∂B satisfies∫
∂B

1

H∂B(p)
d(∂B) ≥ mvol(B).

Moreover, the equality holds if and only if B is isometric to a closed Euclidean ball.
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(iv) Suppose that ∂B is simply connected, m ≥ 3, and f satisfies

f(p) > c0 p ∈ int(B),

f(p) = c0 p ∈ ∂B,

where c0 is a constant, and ∇f does not vanish on ∂B. If there exists an isometric

immersion of ∂B into the Hm+m0, m0 ≥ 0, and the Hessian of f is such that

(1− n− λ(p))h(p)|∇f(p)|
k gB(∇Bh(p), η(p)) + h(p)|∇f(p)|

≤ Hess(f)(v, v) ≤

≤ −|∇f(p)|L|IIHp (v, v)|L,

is satisfied, then B is isometric to a m-dimensional hyperbolic domain. Here, IIH

denotes the vector-valued second fundamental form of ∂B in Hm+m0.
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Chapter 1

Preliminaries

Since in this thesis we study Ricci almost solitons with boundary, then the two first

sections are dedicated to recall some basic definitions and properties of smooth manifolds

with boundary and Riemannian metrics. For a treatment much more systematic about

manifolds with boundary see [9]. The third section we give some basic definitions and

properties about Killing vector fields on a smooth manifold with or without boundary.

The fourth section we give the generalized Bochner formula. At the fifth section we study

the relationship of the topology induced from the smooth structure on a manifold with

boundary and the topology induced from the distance function. We finish the last section

by giving the statement of the Hopf-Rinow theorem for manifolds with boundary.

1.1 Smooth Manifolds with boundary

Let M be a topological space. We say M is an n-dimensional topological manifold

with boundary if M is a Hausdorff space such that admit a countable basis for its

topology and every point in M has a neighborhood homeomorphic to an open subset of

Rn
+ = {x = (x1, ..., xn) ∈ Rn : xn ≥ 0}, (1.1)

where Rn
+ is provided by the inherited topology from the Rn. If n > 0 we set

int(Rn
+) = {x = (x1, ..., xn) ∈ Rn : xn > 0}, (1.2)

∂Rn
+ = {x = (x1, ..., xn) ∈ Rn : xn = 0}. (1.3)

If n = 0, then int(R0
+) = {0} and ∂R0

+ = ∅.

LetM be an n-dimensional topological manifold with boundary. An chart forM is a

pair (U,φ) such that U is an open subset ofM and φ : U −→ Rn
+ is an homeomorphism on
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the open subset φ(U) ⊂ Rn
+. It follows from the definition that if M is an n-dimensional

topological manifold with boundary, then there exists a collection {(Uα, φα)}α such that

(Uα, φα) is a chart for M , for all α, and

M =
⋃
α

Uα.

A point p ∈ M is called an interior point of M , if φ(p) ∈ int(Rn
+) for some chart

(U,φ) for M . On the other hand, it is called a boundary point of M , if φ(p) ∈ ∂Rn
+,

for some chart (U,φ) for M .

A given point cannot be simultaneously an interior point with respect to one chart

and a boundary point with respect to another. For convenience, we state the theorem

here.

Theorem 1.1.1 (Topological Invariance of the Boundary.). If M is a topological

manifold with boundary, then each point of M is either a boundary point or an interior

point, but not both.

If M is a topological manifold with boundary, then the subset of M whose points

are boundary points we denoted by ∂M , and the subset of M whose points are interior

points we denoted by int(M). From the Theorem 1.1.1 we have M = ∂M ∪ int(M),

∂M ∩ int(M) = ∅.

Proposition 1.1.2. Let M be a topological n-manifold with boundary. Then ∂M is a

closed subset of M and a topological (n− 1)-manifold without boundary.

One of the reasons for introducing smooth structures was to enable us to define smooth

functions on manifolds and smooth maps between manifolds with boundary.

Definition 1.1.3. Let U be an open subset of Rn
+. A map f : U −→ Rk is called smooth

if for each point p ∈ U there exist an open subset V ⊂ Rn and a smooth map F : V −→ Rk

such that p ∈ V and F |U∩V = f |U∩V .

Example 1.1.4. Let B2 ⊂ R2 be the set {(x, y) ∈ R2 : x2 + y2 < 1}. Let U = B2 ∩ R2
+,

and define f : U −→ R by f(x, y) =
√

1− x2 − y2. Since the function F : B2 −→ R
given by F (x, y) =

√
1− x2 − y2 is smooth and F |U = f , then f is smooth in the sense

that we just defined.

Example 1.1.5. Let U be like in Example 1.1.4, define h : U −→ R by h(x, y) =
√
y.

Observe that h is continuous in U and smooth in U ∩ int(R2
+), but it has no smooth

extension to any neighborhood of the origin in R2, because

∂h

∂y
(x, y) −→ ∞, as (x, y) −→ (0, 0).

Therefore, h is not smooth in U .
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Let M be an n-dimensional topological manifold with boundary. If there exists a

collection {(Uα, φα)}α of charts for M such that

(i) M =
⋃

α Uα,

(ii) φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ) is smooth, ∀α, β, Uα ∩ Uβ ̸= ∅,

M is called a smooth manifold with boundary. If M is a smooth manifold with

boundary every (Uα, φα) is called smooth chart.

Some trivial examples of smooth manifolds with boundary are Rn
+, with the standard

structure, and Sn
+ = {x = (x1, ..., xn+1) ∈ Sn+1 : xn+1 ≥ 0}, with the inherit structure

from the Sn.

Suppose M is a smooth n-manifold with boundary, k is a nonnegative integer, and

f : M −→ Rk is any function. We say that f is a smooth function if for every p ∈ M ,

there exists a smooth chart (U,φ) for M whose domain contain p and such that the

composite function f ◦ φ−1 : φ(U) −→ Rk is smooth in the sense that we just defined in

Definition 1.1.3.

Let M,N be smooth manifolds with boundary, and let F :M −→ N be any map. We

say that F is a smooth map if for every point p ∈ M , there exist smooth charts (U,φ)

containing p and (V, ψ) containing F (p) such that F (U) ⊂ V and the composite map

ψ ◦ F ◦ φ−1 : φ(U) −→ ψ(V )

is smooth in the sense that we defined in Definition 1.1.3.

If M and N are smooth manifolds with or without boundary, a diffeomorphism

from M to N is a smooth bijective map F : M −→ N that has a smooth inverse. We

say that M and N are diffeomorphic if there exists a diffeomorphism between them.

Theorem 1.1.6 (Diffeomorphism Invariance of the Boundary.). Suppose M and

N are smooth manifolds with boundary and F : M −→ N is a diffeomorphism. Then

F (∂M) = ∂N , and F restricts to a diffeomorphism from int(M) to int(N).

For the proof, see Theorem 2.18 in [9].

Let C∞(Rn) be the set of all smooth functions from Rn to R. For every p, v ∈ Rn

define a map vp : C
∞(Rn) −→ R by

vp(f) = dfp(v) =
d

dt

∣∣∣∣
t=0

f(p+ tv). (1.4)

The set of all maps defined by (1.4) is called tangent space to Rn at p, and it is

denoted by TpRn. Let {ei}ni=1 be the standard basis of Rn, then, for each i and p ∈ Rn,

we have the following map

8



(ei)p(f) =
d

dt

∣∣∣∣
t=0

f(p+ tei) =
∂f

∂xi
(p),

for all f ∈ C∞(Rn). Since v =
∑n

i=1 viei for all v ∈ Rn, then by using the chain rule

it follows

vp(f) =
n∑

i=1

vi
∂f

∂xi
(p).

If vp is such that vp(f) = 0, for all f ∈ C∞(Rn), then if πi : Rn −→ R is the map

given by πi(x1, ..., xn) = xi which implies (ej)p(πi) = δji. Therefore

0 = vp(πi) = vi,∀i.

Then, {(ei)p}i is a basis for TpRn.

So, from now on, we will follow the notation

(ei)p =
∂

∂xi

∣∣∣∣
p

.

With the sum and scalar product standard TpRn is a linear space. Since{
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
is a basis for TpRn, then dim(TpRn) = n.

Let M be a smooth manifold with or without boundary, C∞(M) the set of all smooth

functions from M to R, and let p be a point of M . A linear map vp : C∞(M) −→ R is

called a tangent vector on M at p if it satisfies

vp(f1f2) = f1(p)vp(f2) + f2(p)vp(f1),∀f1, f2 ∈ C∞(M). (1.5)

The set of all tangent vectors on M at p is denoted by TpM , and it is called the

tangent space to M at p.

Proposition 1.1.7. Let M be a smooth manifold with or without boundary. Then for

each p ∈M , TpM is a linear space.

Now it makes sense to define the differential of a smooth map between smooth mani-

folds with or without boundary.

Definition 1.1.8. Let M and N be smooth manifolds with or without boundary. Let

F :M −→ N be a smooth map, for each p ∈M the map dFp : TpM −→ TF (p)N given by

dFp(v)(f) = v(f ◦ F ), ∀f ∈ C∞(N), (1.6)

9



is called the differential of F at p. Indeed, a straight computation show us that dFp(v) ∈
TF (p)N , for all v ∈ TpM , p ∈M .

Theorem 1.1.9 (Dimension of Tangent Spaces on a Manifold with Boundary).

Let M be an n-dimensional smooth manifold with boundary. For each p ∈M , the tangent

space TpM is an n-dimensional linear space.

Proof. See [9]. ■

Let M1, ...,Mk be smooth manifolds without boundary, with dimension n1,..., nk,

respectively. If the topology on M1× ...×Mk is the product topology, then M1× ...×Mk

is an n1 + ...+ nk-dimensional topological manifold. The collection

{(U1 × ...× Uk, φ1 × ...× φk) : (Ui, φi) is a smooth chart on Mi, for all i = 1, ..., k}

define a smooth structure on M1 × ... ×Mk. Therefore, M1 × ... ×Mk is a smooth

manifold with dimension n1 + ...+ nk.

For smooth manifolds with boundary we have the following proposition.

Proposition 1.1.10. Let M1,..., Mk be smooth manifolds without boundary and let N be

a smooth manifold with boundary. Then N ×M1 × ... ×Mk is a smooth manifold with

boundary, and

∂(N ×M1 × ...×Mk) = ∂N ×M1 × ...×Mk. (1.7)

Proof. See [9]. ■

In many cases, it is useful to consider the set of all tangent vectors at all points of

a manifold. Let M be an n-dimensional smooth manifold with or without boundary, we

denoted by TM the set

{(p, v) : p ∈M and v ∈ TpM}. (1.8)

The set TM is called the tangent bundle of M . For each p ∈ M , we will often

identify TpM with its image under the map v 7→ (p, v). The tangent bundle is provided

by the disjoint union topology (see [9]). In order to show that TM is a smooth manifold

let p be any point in M , let (xi) be some coordinate system around p locally defined in

an open set U ⊂ M , let π : TM −→ M the projection map, i.e., π(p, v) = p, and define

a map φ : π−1(U) −→ R2n be by
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φ

(
p,

n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

)
= (x1(p), ..., xn(p), v1, ..., vn).

A straight computation (see [9]) shows us the collection of maps defined as above

define a smooth structure on TM . In particular, we have that TM has dimension 2n.

Now, remember that, if E and F are topological spaces, a map f : E −→ F is said to

be proper if for every compact set K ⊂ F , the preimage f−1(K) ⊂ E is compact.

SupposeM is a smooth manifold with or without boundary. An embedded subman-

ifold of M is a subset S ⊂ M that is a manifold (without boundary) endowed with the

induced topology from M , and endowed with a smooth structure with respect to which

the inclusion map S ↪→ M is a smooth embedded, i.e., the inclusion map is a smooth

homeomorphism on its own range, and in the range we consider the induced topology

from the M . Furthermore, an embedded S ⊂ M is said to be properly embedded if

the inclusion S ↪→M is a proper map.

Theorem 1.1.11. If M is a smooth n-manifold with boundary, then ∂M endowed with

the induced topology from theM has a smooth structure such that it is a properly embedded

submanifold of M . And its dimension is n− 1.

Proof. See [9]. ■

Next, we define vector fields on an abstract smooth manifold.

Let M be a smooth manifold with or without boundary. A vector field on M is a

continuous map X :M −→ TM which satisfies

π ◦ X = idM , (1.9)

where π : TM −→ M is the given by π(p, v) = p. It follows from (1.9) that Xp =

X (p) ∈ TpM , for each p ∈M .

Let (U, (xi)) be a chart for M such that p ∈ U with coordinates functions (xi). Then

Xp =
n∑

i=1

ai(p)
∂

∂xi

∣∣∣∣
p

. (1.10)

If p is implicit, we just write

X =
n∑

i=1

aiXi, in U,

where Xi = ∂
∂xi

. The functions Xp : M −→ R are called component functions of

X . Then X : M −→ TM is a smooth vector field if, only if, for each chart (U,φ),
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with coordinates (xi) the component functions Xi are smooth, for every i. We denote by

X (M) the set of all smooth vector fields on M .

Suppose M a smooth manifold with or without boundary. A vector field locally

defined on M is a continuous map X : U −→ TM , where U ⊂ M is an open subset,

which satisfies (1.9).

Let Mn be a smooth manifold with or without boundary. A local frame for M

is a set {E1, ..., En} of vector fields locally defined on an open subset U ⊂ M such that

{E1(p), ..., En(p)} is a basis for TpM , for every p ∈M .

One of the most important properties of vector fields on a smooth manifold M with

or without boundary is that they define operators on C∞(M). Indeed, if f ∈ C∞(M) and

X ∈ X (M), then the function X f :M −→ R defined by

(X f)(p) = Xpf

is smooth. Conversely, if X is a vector field such that X f ∈ C∞(M), for every, f ∈
C∞(M), then X :M −→ TM is smooth.

Define the operator [X ,Y ] : C∞(M) −→ C∞(M), where X ,Y ∈ X (M), by

[X ,Y ]f = XYf − YX f. (1.11)

This operator is called the Lie bracket of X and Y .

Let M be a smooth manifold with or without boundary. Let X and Y be smooth

vector fields on M . If (xi) is a smooth local coordinate for M , then there exists smooth

functions ai’s and bi’s locally defined on an open subset of M such that X and Y are

locally given by

X =
∑
i

ai
∂

∂xi
and Y =

∑
i

bi
∂

∂xi
.

By using the definition we can show that

[X ,Y ] =
∑
i,j

(
ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂

∂xj
, (1.12)

which implies [
∂

∂xi
,
∂

∂xj

]
= 0. (1.13)

Proposition 1.1.12 (Properties of the Lie Bracket.). Let M be a smooth mani-

fold with or without boundary. The Lie bracket satisfies the following identities for all

X ,Y ,Z ∈ X (M):

12



(i) Bilinearity: For every α, β ∈ R,

[αX + βY ,Z] = α[X ,Z] + β[Y ,Z],

[X , αY + βZ] = α[X ,Y ] + β[X ,Z].

(ii) Antisymmetry: [X ,Y ] = −[Y ,X ].

(iii) Jacobi’s identity:

[X , [Y ,Z]] + [Y , [Z,X ]] + [Z, [X ,Y ]] = 0.

(iv) For f, h ∈ C∞(M),

[fX , hY ] = gh[X ,Y ] + fX (h)Y − hY(f)h.

For while, let M be a topological space. A vector bundle over M of rank m is a

topological space E, called the total space of the bundle, together with a surjective

continuous map π : E −→M , called the projection, satisfying the following properties:

(i) For each p ∈M the preimage π−1(p) is endowed with the structure of a linear space

of dimension m. We denote the preimage of p under the projection by Ep, and this

space is called the fiber of p.

(ii) For each p ∈ M , there exists a neighborhood U of p in M and a homeomorphism

Φ : π−1(U) −→ U × Rm, satisfying the following conditions:

– ProjU ◦ Φ = π (where ProjU : U × Rk −→ U is the projection);

– for each q ∈ U , the restriction of Φ to Eq is an isomorphism from Eq to {q}×Rm.

If M and E are smooth manifolds with or without boundary, π is a smooth map and

Φ is a diffeomosphism, for each p ∈M , then E is called a smooth vector bundle.

Example 1.1.13 (The Möbius Band.). Define an equivalence relation on R2 by declar-

ing that (x1, y1) ∼ (x2, y2) if and only if

(x2, y2) = (x1 + n, (−1)ny1),

for some n ∈ Z. Let E = R/ ∼ denote the quotient space, and let ξ : R2 −→ E be the

quotient map. For any r > 0, the image under ξ of the rectangle [0, 1]× [−r, r] is a smooth

compact manifold with boundary called Möbius band.

Moreover, we have the following proposition.
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Proposition 1.1.14. Let Mn be a smooth manifold with or without boundary. Then TM

is a smooth vector bundle over M of rank n.

Proof. See [9]. ■

Definition 1.1.15. Let (E,Mn, π) be a vector bundle. A section of E is a section of

the map π, that is, a continuous map σ : M −→ E satisfying π ◦ σ = idM . This means

that σ(p) is an element of the fiber Ep for each p ∈M . More generally, a local section

of E is a continuous map σ : U −→ E defined on some open subset U ⊂M and satisfying

π ◦ σ = idU . When a section is defined on all of M is called a global section. If M is

a smooth manifold with or without boundary and E is a smooth vector bundle, a smooth

(local or global) section of E is one that is a smooth map from its domain to E.

Now let Mn be a smooth manifold with or without boundary. For each p ∈ M , we

define the cotangent space at p, denoted by T∗p M , to be the dual space to TpM , that

is,

T∗p M = (TpM)∗.

Elements of T∗p M are called tangent covectors at p, or just covectors at p.

Given smooth local coordinates (xi) on an open subset U ⊂ M , for each p ∈ U the

coordinate basis

{
∂

∂xi

∣∣∣∣
p

}
gives rise to a dual basis for T∗p M , which we denote by (dxi|p).

Any covector ω(p) ∈ T∗p M can thus be written uniquely as

ω(p) =
n∑

i=1

ai(p)dxi|p, where ai(p) = ω(p)

(
∂

∂xi

∣∣∣∣
p

)
.

The disjoint union

T∗M =
∐
p∈M

T∗p M = {(p, v∗) : p ∈M and v∗ ∈ T∗p M},

is called the cotangent bundle of M . It has a natural projection map π : T∗M −→
M sending ω(p) ∈ T∗p M to p ∈M .

Since (dxi|p) is a dual basis for T∗p M , for each p ∈ M , then this fact defines n maps

dx1, ..., dxn : U −→ T∗M , called coordinate covector fields. The next proposition tell

us that the cotangent bundle is a vector bundle.

Proposition 1.1.16 (The Cotangent Bundle as a Vector Bundle.). Let Mn be a

smooth manifold with or without boundary. With its standard projection map and the

natural vector space structure on each fiber, the cotangent bundle T∗M has a unique

topology and smooth structure making it into a smooth n-rank vector bundle over M for

which all coordinate covector fields are smooth local sections.
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Definition 1.1.17. Let M and N be smooth manifolds with or without boundary. Let

F :M −→ N be a smooth map, let p ∈M be arbitrary. For every covector field ω on N ,

we define a covector field F∗ω on M by

(F∗ω)p(v) = ωF (p)(dFp(v)), (1.14)

for all v ∈ TpM .

So, by using local coordinates and the Definition 1.5.1, we can show the following

proposition.

Proposition 1.1.18. Let M and N be smooth manifolds with or without boundary. Let

F : M −→ N be a smooth map and let ω be a covector field on N . If ω is smooth, then

F∗ω is smooth.

Proof. See [9]. ■

Let M be a smooth manifold with or without boundary. We define the bundle of

covariant k-tensors on M by

T kT∗M =
∐
p∈M

T k(T∗p M).

Proposition 1.1.19. Let Mn be a smooth manifold with or without boundary. Then

T kT∗M has a natural structure as smooth vector bundle over M , and its rank is nk.

A section of a bundle of covariant k-tensors on M is called a covariant k-tensor

field on M . A smooth covariant k-tensor field is a section that is smooth in the

usual sense of smooth section of vector bundles.

The space of smooth covariant k-tensor fields on M ,

Γ(T kT∗M),

is an infinite-dimensional vector space over R, and modules over C∞(M). In any

smooth local coordinates (xi), covariant k-tensor fields F ∈ Γ(T kT∗M) can be written

(using Einstein’s convention) as

F = Fi1···ikdxi1 ⊗ · · · ⊗ dxik .

The functions Fi1···ik are called the component functios of F in the chosen coordi-

nates. We denote the space of all smooth covariant k-tensor fields by

T k(M) = Γ(T kT∗M).

Denote by X (M) the set of all smooth vector fields on M .
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Proposition 1.1.20 (Smoothness Criteria for Tensor Fields.). Let M be a smooth

manifold with or without boundary, and let F : M −→ T kT∗M be a rough section, The

following statements are equivalent.

(i) F is smooth.

(ii) In every smooth coordinate chart, the component functions of F are smooth.

(iii) Each point of M is contained in some coordinate chart in which F has smooth

component functions.

(iv) If X1, ...,Xk ∈ X (M), then the function F (X1, ...,Xk) :M −→ R, defined by

F (X1, ...,Xk)(p) = Fp(X1|p, ...,Xk|p),

is smooth.

(v) Whenever X1, ...,Xk are smooth vector fields defined on some open subset U ⊂ M ,

the function F (X1, ...,Xk) is smooth on U .

Theorem 1.1.21 (Tensor Characterization.). Let M be a smooth manifold with or

without boundary. A map

F : X (M)× ...× X (M)︸ ︷︷ ︸
k

−→ C∞(M),

is induced by a smooth covariant k-tensor field as above if and only if it is multilinear

over C∞(M).

For more details about this section we indicated [9] and [8].

1.2 Riemannian metrics, Connections and Curvature

Let M be a smooth manifold with or without boundary. A Riemannian metric on

M is a smooth symmetric covariant 2-tensor field on M that is positive definite at each

point. A Riemannian manifold is a pair (M, g), where M is a smooth manifold and

g is a Riemannian metric on M . When the Riemannian metric on M is understood we

simply call M by Riemannian manifold.

In some (xi) local coordinates of a Riemannian manifoldM with or without boundary,

a Riemannian metric can be written

g = gijdxi ⊗ dxj.
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Proposition 1.2.1 (Existence of Riemannian Metrics.). Every smooth manifold with

or without boundary admits a Riemannian metric.

Definition 1.2.2. Let (Mn, g) be a Riemannian manifold with or without boundary. We

say that a local frame {E1, ..., En} for M on an open subset U ⊂ M is an orthonormal

frame if the vectors {(E1)p, ..., (En)p} form an orthonormal basis for TpM at each point

p ∈ U .

Proposition 1.2.3 (Existence of Local Orthonormal Frame.). Let (M, g) be a Rie-

mannian manifold with or without boundary. For each p ∈ M , there is a smooth or-

thonormal frame on a neighborhood of p.

A linear connection on a smooth manifold M with or without boundary is a map

∇ : X (M)× X (M) −→ X (M) which satisfies the following properties:

(i) ∇fX+hYZ = f∇XZ + h∇YZ, for every X ,Y ,Z ∈ X (M) and f, g ∈ C∞(M).

(ii) ∇X (αY + βZ) = α∇XY + β∇XZ, for every X ,Y ,Z ∈ X (M) and α, β ∈ R.

(iii) ∇X (fY) = f∇XY + X (f)Y , for every X ,Y ∈ X (M) and f ∈ C∞(M).

In particular, we can show (see Petersen) that (∇XY)(p), p ∈ M , only depend of the

value of X at p and the values that Y assumes in any curve that has X (p) as a tangent

vector.

LetM be a smooth manifold with or without boundary. Let (xi) be a local coordinates

for M . Set Xi =
∂
∂xi

, for each i. Then

∇Xi
Xj =

∑
k

Γk
ijXk. (1.15)

Each term Γk
ij is called Christoffel symbol (of ∇) with respect to the frame {Xi}i.

For any X ,Y ∈ X (M) a straight computation show us that

∇XY =
∑
i,j,k

(X (bk) + aibjΓ
k
ij)Xk, (1.16)

where X =
∑

i aiXi and Y =
∑

j bjXj.

Definition 1.2.4. Let (M, g) be a Riemannian manifold with or without boundary. We

say that a linear connection ∇ on M is compatible with the metric g when

X g(Y ,Z) = g(∇XY ,Z) + g(Y ,∇XZ), (1.17)

for all X ,Y ,Z ∈ X (M).
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Definition 1.2.5. Let M be a smooth manifold with or without boundary. A linear

connection ∇ on M is called symmetric when

∇XY −∇YX = [X ,Y ], (1.18)

for all X ,Y ∈ X (M).

For the proof of the following theorem see [12] or [13].

Theorem 1.2.6 (Levi-Civita.). Let (M, g) be a Riemannian manifold with or without

boundary. There exists only one linear connection ∇ on M which is symmetric and

compatible with the metric g. Such connection is called the Levi-Civita connection of M

(with respect the metric g).

From now on, every Riemannian manifold with or without boundary shall be provided

with its Levi-Civita connection.

Let (M, g) be a Riemannian manifold with or without boundary. Let (xi) be local

coordinates for M . Set Xi =
∂
∂xi

, for each i. Denote by (gkm) the inverse matrix of (gij),

where gij = g(Xi,Xj). We can show that (see [12])

Γm
ij =

1

2

∑
k

{
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

}
gkm. (1.19)

Definition 1.2.7 (Hessian of a smooth function.). Let (M, g) be a Riemannian man-

ifold with or without boundary. For each f ∈ C∞(M) we define the Hessian of the

function f as the tensor Hess(f) ∈ T 2(M) given by

Hess(f)(X ,Y) = g(∇X∇f,Y). (1.20)

Moreover, a straight computation show us that Hess(f) is symmetric, for all f ∈ C∞(M).

Next, we define the covariant derivative of a tensor with respect to a vector field,

and the covariant differential of a tensor.

Definition 1.2.8. Let M be a smooth manifold with or without boundary. For each

T ∈ T k(M) the covariant derivative of T with respect to X ∈ X (M) is given by

(∇XT )(Y1, ...,Yk) = X (T (Y1, ...,Yk))−

−
k∑

i=1

T (Y1, ...,Yi−1,∇XYi,Yi+1...,Yk). (1.21)

Definition 1.2.9. LetM be a smooth manifold with or without boundary. The covariant

differential of a tensor T ∈ T k(M) is a tensor in T k+1(M), denoted by ∇T , is given
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by

∇T (Y1, ...,Yk,X ) = (∇XT )(Y1, ...,Yk). (1.22)

Proposition 1.2.10. Let (M, g) be a Riemannian manifold with or without boundary.

For any X ,Y ,Z ∈ X (M), we have from the Definition 1.2.8

(∇Xg)(Y ,Z) = X (g(Y ,Z))− g(∇XY ,Z)− g(Y ,∇XZ). (1.23)

Since ∇ is the Levi-Civita connection for M , then from the identity (1.17) we concluded

that (∇Xg)(Y ,Z) = 0.

In what follows we give some very useful definitions.

Definition 1.2.11. Given a vector field X ∈ X (M), we define the map LX : C∞(M) −→
C∞(M) by

(LXf)(p) = Xpf. (1.24)

This map is called the Lie derivative (on functions) with respect to X .

Definition 1.2.12. Given a vector field X ∈ X (M), we define a map LX : X (M) −→
X (M) by

LX (Y) = [X ,Y ]. (1.25)

This map is called the Lie derivative (with respect to X ).

Definition 1.2.13. Given X ∈ X (M), we define the Lie derivative of a tensor with

respect to X by the map LX : T k(M) −→ T k(M) given by

(LX (T ))(Y1, · · · ,Yk) = X (T (Y1, · · · ,Yk))−

−
k∑

j=1

T (Y1, · · · ,Yj−1,LX (Yj),Yj+1, · · · ,Yk). (1.26)

Proposition 1.2.14. Let (M, g) be a Riemannian manifold with or without boundary. If

f ∈ C∞(M), then

(L∇fg)(X ,Y) = 2Hess(f)(X ,Y), (1.27)

for all X ,Y ∈ X (M).

Proof. Just apply the definitions. ■

In what follows we define the curvature tensor.
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Definition 1.2.15. Let (M, g) be a Riemannian manifold with or without boundary. The

curvature tensor is the tensor

R : X (M)× X (M)× X (M)× X (M) −→ C∞(M)

given by

R(X ,Y ,Z,W) = g(R(X ,Y)Z,W), (1.28)

where

R(X ,Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y]Z, (1.29)

for all X ,Y ,Z,W ∈ X (M).

Furthermore, we can show that the value of R(X ,Y)Z at p only depends of the values

of X , Y , and Z at p (see [12]).

The curvature tensor satisfies the properties in the following proposition.

Proposition 1.2.16. Let (M, g) be a Riemannian manifold with or without boundary.

The tensor curvature

R : X (M)× X (M)× X (M)× X (M) −→ C∞(M)

satisfies the following properties, for any X ,Y ,Z,W ∈ X (M):

(i) R(X ,Y ,Z,W) = −R(Y ,X ,Z,W) = R(Y ,X ,W ,Z).

(ii) R(X ,Y ,Z,W) = R(Z,W ,X ,Y).

(iii) Bianchi’s first identity

R(X ,Y)Z +R(Z,X )Y +R(Y ,Z)X = 0. (1.30)

(iv) Bianchi’s second identity

(∇ZR)(X ,Y)W + (∇XR)(Y ,Z)W + (∇YR)(Z,X )W = 0. (1.31)

Proof. See [13]. ■

Proposition 1.2.17. Let (Mn.g) be a Riemannian manifold with or without boundary,

where n ≥ 2. Let P be a 2-dimensional linear subspace of TpM , for some p ∈ M . Let
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{u, v} be a basis for P . Then, the expression

Kp(u, v) =
gp(R(u, v)u, v)

gp(u, u)gp(v, v)− gp(u, v)2
(1.32)

does not depend of the basis {u, v}.

Proof. Just apply elementary operations. ■

Definition 1.2.18. Let M be a Riemannian manifold with or without boundary. For any

p ∈M and a 2-dimensional linear subspace P of TpM the real numnber Kp(u, v) = Kp(P ),

where {u, v} is a basis for P , is called the sectional curvature of P at p.

Definition 1.2.19. Let (Mn, g) be a Riemannian manifold with or without boundary. For

each p ∈ M , let {e1, ..., en} be an orthonormal basis for TpM . So, the Ricci tensor on

M at p is given by

Ricp(u, v) =
n∑

i=1

gp(R(ei, v)u, ei), (1.33)

where u, v ∈ TpM . For each p ∈ M , and an unit vector v ∈ TpM , the Ricci curvature

of M at p is given by

Ricp(v) = Ricp(v, v) =
n−1∑
i=1

gp(R(ei, v)v, ei),

where {e1, ..., en−1, v} is an orthonormal basis for TpM .

Definition 1.2.20. Let (M, g) be a Riemannian manifold with or without boundary. We

say thatM is an Einstein manifold (with or without boundary) if for all X ,Y ∈ X (M)

we have

Ric(X ,Y) = λg(X ,Y), (1.34)

where λ ∈ C∞(M).

The following proposition gives an interesting property of Einstein manifolds.

Proposition 1.2.21. Let (Mn, g) be an Einstein manifold with or without boundary. Let

λ ∈ C∞(M) be a function which satisfies (1.34). If M is connected and n ≥ 3, then λ is

constant. Furthermore, if n = 3, then M has constant sectional curvature.

Proof. Use Bianchi’s second identity. ■

The last curvature that we define in this section is the scalar curvature.
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Definition 1.2.22. Let (Mn, g) be a Riemannian manifold with or without boundary. For

each p ∈M , let {e1, ..., en} be an orthonormal basis for TpM . So, the scalar curvature

of M at p is given by

Sp(u, v) =
n∑

j,i=1

gp(R(ei, ej)ej, ei). (1.35)

For more details about this section we indicated [12], [13], and [8].

1.3 Killing Vector Fields

Let M be a smooth manifold with or without. Let X be a smooth vector field on M .

If p ∈ int(M), then there exists an open subset U ⊂ M which contains p, δ > 0 and a

smooth map φ : (−δ, δ)× U −→M such that

t 7→ φ(t, q), t ∈ (−δ, δ), q ∈ U

is the unique curve which satisfies

∂φ

∂t
= X (φ(t, q)), and φ(0, q) = q. (1.36)

An smooth vector field X on M is called inward at each boundary point p ∈ ∂M

if there exists an open subset U ⊂ M which contains p, δ > 0 and a smooth map

φ : [0, δ)× U −→M such that

t 7→ φ(t, q), t ∈ [0, δ), q ∈ U

is the unique curve which satisfies (1.36). The map φ is called the local flow generated

by X . and we say that X is outward if there exists such curve whose domain is (−δ, 0].
The proof of these statements are in [9].

Definition 1.3.1. LetM be a smooth manifold with or without boundary and X ∈ X (M)

(in the case ∂M ̸= ∅, X is an inward smooth vector field in each point of the boundary).

Let p be any point in int(M) (resp. ∂M), U a neighborhood of p in M , and a local flow

φ : (−ϵ, ϵ)×U −→M (resp. φ : [0, ϵ)×U −→M) generated by X . The vector field X is

called Killing vector field if φt = φ(t, ·) : U −→M is an isometry, for each t ∈ (−ϵ, ϵ)
(resp.t ∈ [0, ϵ)).

In what follows we show a relation between Killing vector fields and the Lie derivative.

Lemma 1.3.2. Let M be a smooth manifold with or without boundary. Let X and Y
be smooth vector fields on M , where X is inward in each point of the ∂M , p ∈ M and
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φt : U −→M a local flow generated by X , p ∈ U . Then

[X ,Y ](p) = lim
t→0

1

t
[Y − dφtY ](φt(p)).

In particular

[X ,Y ](p) = − d

dt
dφtY (φt(p))

∣∣∣∣
t=0

.

Proof. See [12]. ■

Proposition 1.3.3. Let (Mn, g) be a Riemannian manifold with or without boundary. A

smooth vector field X on M is a Killing vector field if only if LXg = 0.

Proof. From the definition

(LXg)(Y ,Z) = X (g(Y ,Z))− g([X ,Y ],Z)− g(Y , [X ,Z]).

On the other hand,

gφt(p)(dφtY , dφtZ)− gp(Y ,Z)

t
=

gφt(p)(dφtY , dφtZ)− gφt(p)(Y , dφtZ)

t
+

+
gφt(p)(Y , dφtZ)− gφt(p)(Y ,Z)

t
+

+
gφt(p)(Y ,Z)− gp(Y ,Z)

t
.

Then

lim
t→0

gφt(p)(dφtY , dφtZ)− gp(Y ,Z)

t
= lim

t→0
gφt(p)

(
dφtY − Y

t
, dφtZ

)
+

+ lim
t→0

gφt(p)

(
Y , dφt‡ − Z

t

)
+

+ lim
t→0

gφt(p)(Y ,Z)− gp(Y ,Z)

t
.

Since all the limits above exist, then

d

dt
gφt(p)(dφtY , dφtZ)

∣∣∣∣
t=0

= −gp([X ,Y ],Z)− gp(Y , [X ,Z]) +
d

dt
gφt(p)(Y ,Z)

∣∣∣∣
t=0

.

Since
d

dt
gφt(p)(Y ,Z)

∣∣∣∣
t=0

= gp

(
D

dt
Y
∣∣∣∣
t=0

,Z
)
+ gp

(
Y , D

dt
Z
∣∣∣∣
t=0

)
= gp(∇ ∂φ

∂t
(0,p)Y ,Z) + gp(Y ,∇ ∂φ

∂t
(0,p)Z)

= g(∇XY ,Z) + g(Y ,∇XZ)

= X (g(Y ,Z)).
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Therefore

(LXg)(Y ,Z) =
d

dt
gφt(p)(dφtY , dφtZ)

∣∣∣∣
t=0

.

On the other hand

d

dt
gφt(p)(dφtY , dφtZ)

∣∣∣∣
t=t0

=
d

dt
gφt(p)(dφt−t0dφt0Y , dφt−t0dφt0Z)

∣∣∣∣
t=t0

=
d

ds
gφt(p)(dφsdφt0Y , dφsdφt0Z)

∣∣∣∣
s=0

= (LXg)(dφt0Y , dφt0Z).

This shows that LXg = 0 if only if t 7→ gφt(p)(dφtY , dφtZ) is constant. ■

1.4 Generalized Bochner formula

In this section, we recall the generalized Bochner formula for Riemannian manifold with

or without boundary. The proof is in [14].

First, we recall some basic definitions and properties.

Definition 1.4.1. Let (Mn, g) be a Riemannian manifold with or without boundary. For

any f ∈ C∞(M), the gradient of the function f is the map ∇f : M −→ TM which

satisfies

df(X ) = g(∇f,X ). (1.37)

Moreover, if {E1, ..., En} is an orthonormal frame for M locally defined, then we can show

that

∇f =
n∑

i=1

Ei(f)Ei. (1.38)

Definition 1.4.2. Let (Mn, g) be a Riemannian manifold with or without boundary. The

divergence of a vector field X ∈ X (M) is defined by

div(X ) =
n∑

i=1

g(∇EiX , Ei), (1.39)

where {E1, ..., En} is an orthonormal frame locally defined in some open subset of M .

Definition 1.4.3. Let (Mn, g) be a Riemannian manifold with or without boundary. For

any f ∈ C∞(M), we define the Laplacian of f by

∆f = −div(∇f). (1.40)
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It follows from (1.40) that ∆f = −tr Hess(f).

Definition 1.4.4. Let (Mn, g) be a Riemannian manifold with or without boundary. The

divergence of a tensor T ∈ T k(M) at p ∈M , where k is an integer bigger than zero,

is given by

(div(T ))(X1, ...,Xk−1) =
n∑

i=1

(∇EiT )(Ei,X1, ...,Xk−1), (1.41)

where {E1, ..., En} is an orthonormal frame locally defined in a neighborhood of p. It follows

from (1.41) that div(T ) ∈ T k−1(M). In particular, the divergence of a smooth function

is zero.

Proposition 1.4.5. Let (Mn, g) be a Riemannian manifold with or without boundary. If

X ∈ X (M) and λ ∈ C∞(M), then

div(λg)(X ) = X (λ),

where {E1, ..., En} is an orthonormal frame for M locally defined in an open subset of M .

Proposition 1.4.6. Let (Mn, g) be a Riemannian manifold with or without boundary.

Then

div Ric =
1

2
dS, (1.42)

where S is the scalar curvature of M .

Proof. Use Definition 1.4.4. and (1.31). ■

The reader can find the following lemma in [14].

Lemma 1.4.7 (Generalized Bochner formula.). Let (Mn, g) be a Riemannian man-

ifold with or without boundary. For any X ∈ X (M) we have

div(LXg)(X ) = −1

2
∆(|X |2)− |∇X |2 + Ric(X ,X ) + X (div(X )). (1.43)

In particular, if X = ∇f , for some f ∈ C∞(M), then

div(L∇fg)(Y) = 2Ric(Y ,∇f) + 2Y(div(∇f)). (1.44)

for every Y ∈ X (M). Therefore,

div(Hess(f))(Y) = Ric(Y ,∇f)− Y(∆f), (1.45)

for every Y ∈ X (M).
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Proof. See [14]. ■

1.5 Geodesic completeness of manifolds with bound-

ary

Now our goal is define ametric on a Riemannian manifold with boundaryM which induces

the same topology on M as the topology on M induced from the smooth structure. The

way to do this is similar as we do for Riemannian manifolds without boundary, i.e., we

define the distance function by the infimum of the length of a set of curves. However, to

prove the topology induced from such function is the same as the topology induced from

the smooth structure of the manifold is not similar as we do for Riemannian manifolds

without boundary. The proof of this topological equivalence is the main result of this

section.

Definition 1.5.1. Let E be a non empty set. Two metrics d1 and d2 on E are called

equivalent if there exist positive constants α and β such that

βd1(u, v) ≤ d2(u, v) ≤ αd1(u, v),

for all u, v ∈ E.

Let (Mn, g), n ≥ 2, be a connected Riemannian manifold with boundary. Let C([0, 1],M)

be the set of all piecewise smooth curves γ : [0, 1] −→ M , i.e., there exists a finite

subdivision a = t0 < t1 < ... < tk = b such that γ|[ti−1,ti] for every i = 1, 2, ..., k. For any

p, q ∈M define

Cp,q(M) = {γ ∈ C([0, 1],M) : γ(0) = p, and γ(1) = q}.

For all p, q ∈M , and γ ∈ Cp,q(M), the length of γ is

L(γ) =

∫ 1

0

|γ′(t)|dt. (1.46)

Let dM :M ×M −→ R be the function given by

dM(p, q) = inf
γ∈Cp,q(M)

L(γ). (1.47)

From the definition of infimum we obtain

dM(p, q) ≤ dM(p, p) + dM(p, q), (1.48)

dM(p, q) = dM(q, p), (1.49)
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for all p, p, q ∈M . The next theorem show that dM(p, q) = 0 if and only if p = q, i.e., dM

is a metric on M . Furthermore, the topology on M induced from dM is the same as the

topology on M induced from the smooth structure of M .

For brevity, denote by τ(g) the topology on M induced from the smooth structure.

Theorem 1.5.2. Let (Mn, g) be a Riemannian manifold with boundary. Then the func-

tion dM defined in (1.47) is a metric on M , and the topology induced from dM is the same

as the topology τ(g).

Proof. Let p ∈ M be arbitrary. Let Up be a precompact coordinate neighborhood in M

of p. Thus we have two cases.

CASE 1: p ∈ int(M). Since Up is a coordinate neighborhood, then Up ⊂ int(M). For

any q ∈ M , q ̸= p, there exists a geodesic ball Bϵ(p) ⊂ Up centered at p of radius ϵ > 0

such that q ̸∈ Bϵ(p). Therefore, every γ ∈ Cp,q(M) has length bigger than ϵ > 0, which

implies that

dM(p, q) ≥ ϵ > 0.

Thus dM |int(M)×int(M) is a metric on int(M)× int(M). Set

BM(p, r) = {q ∈M : dM(p, q) < r}.

So, we have that for all p ∈ int(M), there exists ϵ > 0 such that Bϵ(p) = BM(p, ϵ).

Therefore, dM |int(M)×int(M) induces the same topology as the given τ(g).

CASE 2: p ∈ ∂M . For q ∈ Up arbitrary, we have two situations. First, if q ∈ int(M),

then from CASE 1 we have that dM(p, q) > 0. Second, q ∈ ∂M , q ̸= p.

Since (Up, τ(g)|Up) is a metrizable topological space, then there exists a metric dp on

Up which induces the topology τ(g)|Up . We shall prove there exist positive constants

αp, βp ∈ R such that

βpdp(p, q) ≤ dM(p, q) ≤ αpdp(p, q), (1.50)

for all q ∈ Up.

Let γ ∈ C([0, 1], Up) be a piecewise smooth curve such that γ(1) = p, and γ([0, 1)) ⊂
Up ∩ int(M). Set

R = sup
0≤t≤1

|γ′(t)|.

For any 0 < t < 1, define γt : [0, 1] −→ Up by

γt(s) = γ(t+ (1− t)s),

which implies γt(0) = γ(t), γt(1) = p, and

γ′t(s) = (1− t)γ′(t+ (1− t)s),∀s ∈ [0, 1].
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Thus

L(γt) = (1− t)

∫ 1

0

|γ′(t+ (1− t)s)|ds ≤ (1− t)R.

We obtain dM(γ(t), p) ≤ (1− t)R, for all t ∈ (0, 1). Then

lim
t→1

dM(γ(t), p) = 0. (1.51)

Let q be an interior point of Up, i.e., q ∈ Up ∩ int(M). Let γ be a curve in C([0, 1], Up)

such that γ(0) = q, γ(1) = p, and γ([0, 1)) ⊂ int(M). Let (tk) ⊂ [0, 1) be an arbitrary

sequence such that limk→∞ tk = 1. We have

dM(γ(tk), q) ≤ dM(γ(tk), γ(tm)) + dM(γ(tm), q),

which implies

dM(γ(tk), q)− dM(γ(tm), q) ≤ dM(γ(tk), γ(tm)).

Analogously, we obtain

dM(γ(tm), q)− dM(γ(tk), q) ≤ dM(γ(tk), γ(tm)).

Therefore

|dM(γ(tk), q)− dM(γ(tm), q)| ≤ dM(γ(tk), γ(tm)), (1.52)

for all k,m ∈ N. We have that

dM(γ(tk), γ(tm)) ≤ dM(γ(tk), p) + dM(p, γ(tm)),

for all k,m ∈ N. From (1.51) it follows that

lim
k,m→∞

dM(γ(tk), γ(tm)) = 0.

Thus the sequence dM(γ(tk), q) is a Cauchy sequence of real numbers, then there exists

the following limit

lim
t→1

dM(γ(t), q).

We have

dM(p, q) ≤ dM(p, γ(t)) + dM(γ(t), q),

and

dM(γ(t), q) ≤ dM(γ(t), p) + dM(p, q),
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for all t ∈ [0, 1]. From (1.51) we obtain

dM(p, q) = lim
t→1

dM(γ(t), q).

From the CASE 1 the topology induced from dM on Up ∩ int(M) is the same as the

topology τ(g)|Up∩int(M). Then, dM and dp are equivalent on Up ∩ int(M), i.e., there exist

positive constants αp, βp ∈ R such that

βpdp(p, q) ≤ dM(p, q) ≤ αpdp(p, q),

for all p, q ∈ Up ∩ int(M). Since γ(t), q ∈ Up ∩ int(M), for all t ∈ [0, 1), then

βpdp(γ(t), q) ≤ dM(γ(t), q) ≤ αpdp(γ(t), q),

for all t ∈ [0, 1). So, by taking t −→ 1 we obtain

βpdp(p, q) ≤ dM(p, q) ≤ αpdp(p, q),

for all q ∈ Up ∩ int(M).

Now, let q be a boundary point of Up, i.e., q ∈ Up ∩ ∂M , q ̸= p. Let γ, γ be curves in

C([0, 1], Up) such that γ(0) = q, γ(1) = p, γ((0, 1)) ⊂ int(M), and γ(s) = γ(1− s). Since

dM(p, q) ≤ dM(p, γ(t)) + dM(γ(t), q),

for all t ∈ [0, 1]. Then by taking t→ 1 we obtain

dM(p, q) ≤ lim inf
t→1

dM(γ(t), q).

On the other hand,

dM(γ(t), q) ≤ dM(γ(t), p) + dM(p, q),

for all t ∈ [0, 1]. Which implies

lim sup
t→1

dM(γ(t), q) ≤ dM(p, q).

Therefore

lim
t→1

dM(γ(t), q) = dM(p, q).

For all s, t ∈ (0, 1), we have γ(s), γ(t) ∈ Up ∩ int(M). Then

βpdp(γ(s), γ(t)) ≤ dM(γ(s), γ(t)) ≤ αpdp(γ(s), γ(t)),∀s, t ∈ (0, 1).
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By taking s −→ 1 we obtain

βpdp(q, γ(t)) ≤ dM(q, γ(t)) ≤ αpdp(q, γ(t)),∀t ∈ (0, 1).

By taking t −→ 1 we obtain

βpdp(p, q) ≤ dM(p, q) ≤ αpdp(p, q),

for all q ∈ Up ∩ ∂M . Therefore,

βpdp(p, q) ≤ dM(p, q) ≤ αpdp(p, q),

for all q ∈ Up. Then the function dM is a metric on Up such that the topology induced

from dM is the same the τ(g)|Up . Since p is arbitrary, then dM define a metric on M , and

its induced topology is the same as the one we use by τ(g). ■

From now on we say that a Riemannian manifold with boundary Mn, n ≥ 2, is

metrically complete if (M,dM) is complete as a metric space, where dM is defined by

(1.47).

In what follows we prove the equivalence of metrically complete Riemannian manifold

with boundary that we just defined and the geodesically complete Riemannian manifold

with boundary defined by Pigola in [16].

Let M be a smooth manifold with or without boundary. Denote by C0([0, 1],M) the

set of all continuous paths from [0, 1] to M .

Definition 1.5.3. Let (M,dM) a Riemannian manifold with or without boundary, where

dM is defined in (1.47). A path γ ∈ C0([0, 1],M) is called rectifiable if

R(γ, dM) = sup
P

k∑
i=1

dM(γ(ti−1), γ(ti)) <∞, (1.53)

where P is the set of all partitions P = {0 = t0 < t1 < ... < tk = 1} of the interval [0, 1].

The number R(γ) is called the metric-length of γ.

Definition 1.5.4. Let R[0,1](M,dM) be the set of all rectifiable paths in C0([0, 1],M),

where the Riemannian manifold (with or without boundary) M is provided with the metric

dM defined in (1.47). For any p, q ∈M set

Rp,q(M) = {γ ∈ R[0,1](M,dM) : γ(0) = p, and γ(1) = q}. (1.54)
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So define on (M,dM) the length-distance by

dR(p, q) = inf
Rp,q(M)

R(γ, dM), (1.55)

for all p, q ∈M .

The next proposition show that dM = dR.

Proposition 1.5.5. Let (M,dM) be a connected Riemannian manifold with or without

boundary, where dM is defiend in (1.47). If dR is the length-distance onM , then dM = dR.

Proof. For any path γ ∈ Rp,q(M), from the triangle inequality we have

dM(p, q) ≤
k∑

i=1

dM(γ(ti−1), γ(ti)),

for all partition P = {0 = t0 < t1 < ... < tk = 1} ∈ P . Then

dM(p, q) ≤ R(γ, dM),

for all γ ∈ Rp,q(M). We obtain

dM(p, q) ≤ dR(p, q),

for all p, q ∈M .

For all γ ∈ Cp,q(M) we have

k∑
i=1

dM(γ(ti−1), γ(ti)) ≤ L(γ),

for all partition P{0 = t0 < t1 < ... < tk = 1} of the interval [0, 1], where L(γ) is defined

in (1.46). Then

R(γ, dM) ≤ L(γ),

for all γ ∈ Cp,q(M). Since Cp,q(M) ⊂ Rp,q(M), then

dR(p, q) ≤ dM(p, q).

Therefore, dM = dR. ■

Next we have the definition of a geodesically complete Riemannian manifold with

boundary. Such definition is given by Pigola in [16].

Definition 1.5.6. Let (M, g) be a Riemannian manifold with boundary. We say that
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M is geodesically complete if every geodesic γ : [0, a) −→ M can be extended to a

continuous path γ : [0, a] −→M .

The following definition is for Riemannian manifold with or without boundary, but

in [16] the reader can find a more general version.

Definition 1.5.7. Let (M, g) be a Riemannian manifold with or without boundary. A

piecewise smooth curve γ ∈ C([0, 1),M) is called a divergent path if for all compact

subset K ⊂M there exists 0 < tK < 1 such that γ(t) ̸∈ K for any tK ≤ t < 1.

Next, we give a “Hopf-Rinow” version for Riemannian manifolds with boundary.

Theorem 1.5.8. Let (M,dM) be a Riemannian manifold with boundary, where dM is

defined by (1.47). Then the following assertions are equivalent.

(i) (M,dM) is metrically complete.

(ii) Every bounded and closed subset of M is compact.

(iii) (M,dM) is geodesically complete.

(iv) Every Lipschitz path γ : [0, a) −→ M can be extended to a continuous path γ :

[0, a] −→M .

(v) Every divergent path γ : [0, 1) −→M has infinite length, i.e., R(γ, dM) = ∞.

Proof. In [16], the Theorem 3.7.6 is proved for locally compact length spaces, i.e., a space

metric (X, d) which is locally compact and d = dR, where dR is defined as in (1.53). So,

(M,dM) is a locally compact and we have that dM = dR from Proposition 3.7.3. For the

prove of (i) ⇔ (ii) ⇔ (iii) see [3], and for (iii) ⇔ (iv) ⇔ (v) see [16]. ■

The following results follow immediately from the Theorem 3.7.6.

Corollary 1.5.9. Let (M, g) be a compact Riemannian manifold with or without bound-

ary. Then M is geodesically complete.

Corollary 1.5.10. Let (M, g) be a Riemannian manifold with boundary. If M is metri-

cally complete, then ∂M is geodesically complete.
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Chapter 2

Gradient Ricci Solitons with

Boundary

In this chapter we shall take the perspective in [7]. We extend some results first obtained

in [7] to manifolds with boundary. For every (M, g,∇f, λ) such that the potential function

f satisfies an inequality and λ is a non positive constant, we obtain that f is constant. At

the last section we define warped product, where the basis is a Riemannian manifold with

boundary, and then we prove some identities to the Christoffel symbol, the Hessian of a

smooth function defined on warped product, and some applications to the Ricci curvature.

We finish by proving that a warped product Einstein which the warping function satisfies

an inequality has to be a Riemannian product.

2.1 Ricci Solitons with Boundary

A Ricci soliton with or without boundary (M, g,X , λ) is a Riemannian manifold

(M, g) with or without boundary with a vector field X ∈ X (M), and a constant λ

satisfying the following equation

Ric = λg +
1

2
LXg. (2.1)

If the vector field X vanishes, then the Ricci soliton is just an Einstein manifold (with

or without boundary). If the vector field X is the gradient of some smooth function

f : M −→ R, then the soliton is called gradient Ricci soliton. In this case, it is

denoted by (M, g,∇f, λ). By replacing the expression in Proposition 1.2.14 in 2.1 we

obtain

Ric = λg +Hess(f). (2.2)

The following theorem is an extension of the Theorem 1 in [7].
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Theorem 2.1.1. Let (Mk, g,∇f, λ) be a connected compact gradient Ricci soliton with

boundary. Suppose that λ is a non-positive constant, the maximum point of f is an interior

point, and f satisfies ∫
∂M

∂f

∂N
d(∂M) ≥ 0, (2.3)

where N is the outward unit normal vector field along ∂M . Then f is constant.

Proof. By taking the trace in (2.2) we obtain

S = kλ−∆f. (2.4)

From (2.4) we obtain

dS = −d(∆f).

By taking the divergence in (2.2) we obtain the following identity

div(Ric) = div(Hess)(f).

From (1.45) and (1.42) we have, respectively,

div(Hess(f))(X ) = Ric(∇f,X )− d(∆f)(X ), ,

X (S) = 2div(Ric)(X ),

for all X ∈ X (X). Then

−X (∆f) = 2Ric(∇f,X )− 2X (∆f),

which implies

2λX (f) + 2Hess(f)(∇f,X )−X (∆f) = 0. (2.5)

From the definition of Hessian, we have

Hess(f)(∇f,X ) =
1

2
X (|∇f |2). (2.6)

So, by replacing (2.6) in to (2.5) we obtain

2λX (f) + X (|∇f |2)−X (∆f) = 0,

for all X ∈ X (M), which implies

X (2λf + |∇f |2 −∆f) = 0,
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for all X ∈ X (M). Therefore, there exists a constant µ such that

µ = 2λf + |∇f |2 −∆f. (2.7)

By integrating (2.7) we obtain

µ =
2λ

vol(M)

∫
M

f +
1

vol(M)

∫
M

|∇f |2 − 1

vol(M)

∫
M

∆f. (2.8)

We have
∂f

∂N
= g(∇f,N ) and ∆f = −div(∇f).

By applying the Divergence theorem on third integral in (2.8) we obtain

µ =
2λ

vol(M)

∫
M

f +
1

vol(M)

∫
M

|∇f |2 + 1

vol(M)

∫
∂M

∂f

∂N
.

Let pmax ∈ M be the maximum point of f . Then, ∇f(pmax) = 0, and since ∆f =

−tr Hess(f), then ∆f(pmax) ≥ 0. So, by using (2.7), (2.8), the hypothesis that λ ≤ 0 and

(2.3), respectively, we obtain the following inequalities

0 ≤ ∆f(pmax)

= 2λf(pmax)− µ

=
2λ

vol(M)

∫
M

f(pmax)−
2λ

vol(M)

∫
M

f − 1

vol(M)

∫
M

|∇f |2 − 1

vol(M)

∫
∂M

∂f

∂N

=
2λ

vol(M)

∫
M

(f(pmax)− f)− 1

vol(M)

∫
M

|∇f |2 − 1

vol(M)

∫
∂M

∂f

∂N

≤ 0.

Then |∇f | = 0 on M . Therefore, f is constant. ■

2.2 Einstein Warped Products

Let (Bn, gB) and (Fm, gF ) be Riemannian manifolds, where B is a smooth manifold with

boundary, and F is a smooth manifold without boundary. Let h : B −→ R be a positive

smooth function. The product M = B × F provided with the metric

g = π∗gB + h2σ∗gF ,
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where π and σ denote the projections of B × F onto B and F , respectively, and the ∗
denotes the pullback, is called the warped product of B and F , where B is called

base of the warped product, F is called the fiber of the warped product, and the

function h is called warping function. We denote the product B×F with the metric g

by M = B ×h F . For simplicity we shall write the metric g on M = B ×h F by

g = gB + h2gF .

Let (xi) and (xα) be coordinate systems on B and F , respectively. We set

Xi =
∂

∂xi
, and Xα =

∂

∂xα
,

for all i, and α. Then gij = g(Xi, Xj) = gB(Xi, Xj) = (gB)ij, giα = g(Xi, Xα) = 0, and

gαβ = g(Xα, Xβ) = h2gF (Xα, Xβ) = h2(gF )αβ. Here we are identifying Xi = (Xi, 0) and

Xα = (0, Xα). The vector fields in TB are called horizontal vector fields and the

vector fields in TF are called vertical vector fields.

Let M = B ×h F be an warped product on Riemannian manifolds, where B is a

smooth manifold with boundary, and F is a smooth manifold without boundary. We

denote the Levi-Civita connection and Christoffel symbol on B and F by ∇B, ΓB, ∇F ,

and ΓF , respectively.

Lemma 2.2.1. Let (M, g) be a Riemannian manifold with or without boundary. Let (xi)

be any local coordinate on M . Then∑
i

Xk(g
ij)gmi = −Γj

km −
∑
i,j

Γl
kig

ijglm, (2.9)

where Xk = ∂
∂xk

, Γ is the Christoffel symbol of M , and gij is the ij-th entrance of the

inverse matrix of [gij].

Proof. Since ∑
i

gijgmi = δmj,

then ∑
i

[Xk(g
ij)gmi + gijXk(gmi)] = 0,

which implies ∑
i

Xk(g
ij)gmi = −

∑
i

gijXk(gmi).

By the properties of the ∇ we have Xk(gmi) = g(∇Xk
Xm,Xi) + g(∇Xk

Xi,Xm), then

Xk(gmi) =
∑
l

Γl
kmgli +

∑
l

Γl
kiglm.
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Therefore ∑
i

Xk(g
ij)gmi = −

∑
i,l

Γl
kmg

ijgli −
∑
i,l

Γl
kig

ijglm

= −
∑
l

Γl
kmδlj −

∑
i,l

Γl
kig

ijglm

= −Γj
km −

∑
i,l

Γl
kig

ijglm.

■

We shall prove below some identities for Levi-Civita connection and the Christoffel

symbol.

Lemma 2.2.2. Let (Bn, gB) and (Fm, gF ) be Rimannian manifolds, where B is a manifold

with boundary and F is without boundary. Let (M = B ×h F, g) be the warped product.

Let (xi) and (xα) be local coordinates for B and F , respectively. If ∇ and Γ are the

Levi-Civita connection and Christoffel symbol of M , then

Γs
ij = (ΓB)sij,Γ

s
iα = 0,Γβ

iα =
1

h

∂h

∂xi
δαβ,Γ

α
ij = 0,Γλ

αβ = (ΓF )λαβ, (2.10)

Γs
αβ = −

∑
i

h
∂h

∂xi
(gF )αβg

is
B , (2.11)

∇Xi
Xj = ∇B

Xi
Xj,∇XαXi = ∇Xi

Xα =
1

h

∂h

∂xi
Xα, (2.12)

∇XαXβ = −h(gF )αβ∇Bh+
∑
λ

Γλ
αβXλ, (2.13)

for all i, j, s, α, β, λ. The term (gB)
is denote the is-th entrance of the inverse matrix of

[(gB)ij]. Here, ∇Bh is the gradient of h, which is given by

∇Bh =
∑
i,j

(gB)
ij ∂h

∂xj
Xi. (2.14)

Proof. For any i, j and s, we have

Γs
ij =

1

2

∑
k

{
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

}
gks

+
1

2

∑
α

{
∂

∂xi
gjα +

∂

∂xj
gαi −

∂

∂xα
gij

}
gαs.

Since gαs = 0, for all α, then Γs
ij = (ΓB)sij.

For every i, s and β, we have
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Γs
iβ =

1

2

∑
k

{
∂

∂xi
gβk +

∂

∂xβ
gki −

∂

∂xk
giβ

}
gks

+
1

2

∑
α

{
∂

∂xi
gβα +

∂

∂xβ
gαi −

∂

∂xα
giβ

}
gαs.

Since gβk = giβ = gαs = 0 and ∂
∂xβ

gki = 0, then Γs
iβ = 0.

For every i, λ and β, we have

Γλ
iβ =

1

2

∑
k

{
∂

∂xi
gβk +

∂

∂xβ
gki −

∂

∂xk
giβ

}
gkλ

+
1

2

∑
α

{
∂

∂xi
gβα +

∂

∂xβ
gαi −

∂

∂xα
giβ

}
gαλ.

Since gkλ = gαi = giβ = 0, then

Γλ
iβ =

1

2

∑
α

{
∂

∂xi
gβα

}
gαλ =

∑
α

h
∂h

∂xi
(gF )βαg

αλ.

It follows that

Γλ
iβ =

1

h

∂h

∂xi
δβλ.

For every i, j, and β, we have

Γβ
ij =

1

2

∑
k

{
∂

∂xi
gjk +

∂

∂xj
gki −

∂

∂xk
gij

}
gkβ

+
1

2

∑
α

{
∂

∂xi
gjα +

∂

∂xj
gαi −

∂

∂xα
gij

}
gαβ.

Since gkβ = gjα = gαi = 0 and ∂
∂xα

gij = 0, then Γβ
ij = 0.

For every α, β, and δ, we have

Γδ
αβ =

1

2

∑
k

{
∂

∂xα
gβk +

∂

∂xβ
gkα − ∂

∂xk
gαβ

}
gkδ

+
1

2

∑
γ

{
∂

∂xα
gβγ +

∂

∂xβ
gγα − ∂

∂xγ
gαβ

}
gγδ.

Since gkδ = 0, then Γδ
αβ = (ΓF )δαβ.

For every k, α, and β, we have

Γk
αβ =

1

2

∑
i

{
∂

∂xα
gβi +

∂

∂xβ
giα − ∂

∂xi
gαβ

}
gik

= +
1

2

∑
γ

{
∂

∂xα
gβγ +

∂

∂xβ
gγα − ∂

∂xγ
gαβ

}
gγk.
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Since gγk = 0 e gβi = giα = 0, then

Γk
αβ =

1

2

∑
i

{
− ∂

∂xi
gαβ

}
gik.

It follows that

Γk
αβ =

1

2

∑
i

{
−2h

∂h

∂xi
(gF )αβ

}
gik.

Therefore, one sees that

Γk
αβ = −

∑
i

h
∂h

∂xi
(gF )αβg

ik,

and then

∇Xj
Xi =

∑
k

Γk
jiXk +

∑
α

Γα
jiXα.

Since Γα
ji = 0, then ∇Xj

Xi =
∑

k Γ
k
jiXk. Consequently,

∇Xj
Xi = ∇B

Xj
Xi.

Then, one obtains that

∇XαXi =
∑
k

Γk
αiXk +

∑
β

Γβ
αiXβ.

Since Γk
αi = 0 and Γβ

αi =
1

h

∂h

∂xi
δαβ, then

∇XαXi =
∑
β

1

h

∂h

∂xi
δαβXβ =

1

h

∂h

∂xi
Xα.

A similar computation give us ∇XαXi = ∇Xi
Xα.

Since

∇XαXβ =
∑
k

Γk
αβXk +

∑
γ

Γγ
αβXγ,

and Γk
αβ = −

∑
i

h
∂h

∂xi
(gF )αβg

ik, then

∇XαXβ = −h(gF )αβ∇Bh+
∑
γ

Γγ
αβXγ.

■

Lemma 2.2.3. Let (Bn, gB) and (Fm, gF ) be Rimannian manifolds, where B is a manifold

with boundary and F is without boundary. Let (M = B ×h F, g) be the warped product.
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Let f : M −→ R be a smooth function. Let (xi) be a local coordinate system for B and

Xi =
∂
∂xi

for each i. Consider

∇Bf =
∑
i,j

gij
∂f

∂xj
Xi, (2.15)

where gij denote the ij-th entrance of the inverse matrix of [gij]. Then

Hess(f)(X, Y ) = gB(∇B
X∇Bf, Y ) (2.16)

Proof. First of all, we can write the gradient of f in the following way

∇f =
∑
i,j

gij
∂f

∂xj
Xi +

∑
α,β

1

h2
gαβF

∂f

∂xβ
Xα.

So, one has

∇Xk
∇f =

∑
i,j

[
Xk

(
gij

∂f

∂xj

)
Xi + gij

∂f

∂xj
∇Xk

Xi

]
+

+
∑
α,β

[
Xk

(
1

h2
gαβF

∂f

∂xβ

)
Xα +

1

h2
gαβF

∂f

∂xβ
∇Xk

Xα

]
.

Since ∇Xk
Xα =

1

h

∂h

∂xi
Xα and g(Xα, Xk) = 0, then

g(∇Xk
∇f,Xl) = g

(∑
i,j

[
Xk

(
gij

∂f

∂xj

)
Xi + gij

∂f

∂xj
∇Xk

Xi

]
, Xl

)
.

Therefore, g(∇Xk
∇f,Xl) = gB(∇B

Xk
∇Bf,Xl). ■

We shall use the identities that we just proved in Lemma 2.2.1 and Lemma 2.2.2 to

show the following proposition.

Proposition 2.2.4. Let (Bn, gB) and (Fm, gF ) be Rimannian manifolds, where B is a

manifold with boundary and F is without boundary. Let (M = B ×h F, g) be the warped

product. Let f : M −→ R be a smooth function. The following identities for the Hessian
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of f are satisfies

Hess(f)(Xi, Xj) = −
n∑

k=1

Γk
ij

∂f

∂xk
+

∂2f

∂xi∂xj
, (2.17)

Hess(f)(Xi, Xα) = −1

h

∂h

∂xi

∂f

∂xα
+

∂2f

∂xi∂xα
, (2.18)

Hess(f)(Xα, Xβ) = h(gF )αβgB(∇Bf,∇Bh)−
m∑

γ=1

Γγ
αβ

∂f

∂xγ
+

∂2f

∂xα∂xβ
, (2.19)

for any horizontal coordinate vector fields Xi, Xj and any vertical coordinate vector fields

Xα, Xβ. Here, Γ denotes the Christoffel symbol of M .

Proof. From the definition we have that

∇f = gijB
∂f

∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
Xα. (2.20)

By applying any horizontal vector field,

∇Xk
∇f = ∇Xk

(
gijB

∂f

∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
Xα

)
= ∇Xk

(
gijB

∂f

∂xj
Xi

)
+∇Xk

(
1

h2
gαβF

∂f

∂xβ
Xα

)
= gijB

∂f

∂xj
∇Xk

Xi +Xk(g
ij
B)

∂f

∂xj
Xi + gijB

∂2f

∂xk∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
∇Xk

Xα

− 2

h3
∂h

∂xk
gαβF

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xk∂xβ
Xα. (2.21)

By replacing the third identity in (2.12) in (2.21) we obtain

∇Xk
∇f = gijB

∂f

∂xj
∇Xk

Xi +Xk(g
ij
B)

∂f

∂xj
Xi + gijB

∂2f

∂xk∂xj
Xi +

1

h3
gαβF

∂f

∂xβ

∂h

∂xk
Xα

− 2

h3
∂h

∂xk
gαβF

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xk∂xβ
Xα,

which implies

∇Xk
∇f = gijB

∂f

∂xj
∇Xk

Xi +Xk(g
ij
B)

∂f

∂xj
Xi + gijB

∂2f

∂xk∂xj
Xi −

1

h3
gαβF

∂f

∂xβ

∂h

∂xk
Xα

+
1

h2
gαβF

∂2f

∂xk∂xβ
Xα. (2.22)

From (2.12) we have g(∇Xk
Xα, Xo) = 0. Since g(Xi, Xα) = 0 for every i = 1, ..., n and

41



α = 1, ...,m, by using (2.9) and the first identity in (2.12), we get

g(∇Xk
∇f,Xo) = gijB

∂f

∂xj
gB(∇B

Xk
Xi, Xo) +Xk(g

ij
B)(gB)io

∂f

∂xj
+ gijB(gB)io

∂2f

∂xx∂xj

= Γl
kig

ij
B(gB)lo

∂f

∂xj
− Γj

ko

∂f

∂xj
− Γl

kig
ij
B(gB)lo

∂f

∂xj
+ δoj

∂2f

∂xk∂xj

= −Γj
ko

∂f

∂xj
+

∂2f

∂xk∂xo
.

Since Hess(f)(Xi, Xj) = g(∇Xi
∇f,Xj), then

Hess(f)(Xi, Xj) = −Γk
ij

∂f

∂xk
+

∂2f

∂xi∂xj
,

which implies (2.17)

From (2.22) we have

∇Xk
∇f = H − 1

h3
gαβF

∂h

∂xk

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xk∂xβ
Xα,

where H is a horizontal term. Therefore, for each γ = 1, ...,m, we deduce

g(∇Xk
∇f,Xγ) = −1

h
gαβF (gF )αγ

∂h

∂xk

∂f

∂xβ
+ gαβF (gF )αγ

∂2f

∂xk∂xβ

= −1

h
δγβ

∂h

∂xk

∂f

∂xβ
+ δγβ

∂2f

∂xk∂xβ

= −1

h

∂h

∂xk

∂f

∂xγ
+

∂2f

∂xk∂xγ
.

On the other hand, we have that g(Xα, Xβ) = h2gF (Xα, Xβ). Therefore

Hess(f)(Xi, Xα) = −1

h

∂h

∂xi

∂f

∂xα
+

∂2f

∂xi∂xα
,

for every i and α, which implies 2.18.

Next, we are going to derivative the gradient of f in a vertical direction,

∇Xγ∇f = ∇Xγ

(
gijB

∂f

∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
Xα

)
= ∇Xγ

(
gijB

∂f

∂xj
Xi

)
+∇Xγ

(
1

h2
gαβF

∂f

∂xβ
Xα

)
= gijB

∂f

∂xj
∇XγXi + gijB

∂2f

∂xγ∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
∇XγXα (2.23)

+
1

h2
Xγ(g

αβ
F )

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xγ∂xβ
Xα.
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By replacing the third identity in (2.12) in (2.23) we obtain

∇Xγ∇f =
1

h
gijB

∂f

∂xj

∂h

∂xi
Xγ + gijB

∂2f

∂xγ∂xj
Xi +

1

h2
gαβF

∂f

∂xβ
∇XγXα (2.24)

+
1

h2
Xγ(g

αβ
F )

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xγ∂xβ
Xα.

By replacing the third identity in (2.13) in (2.24) we obtain

∇Xγ∇f =
1

h
gijB

∂f

∂xj

∂h

∂xi
Xγ + gijB

∂2f

∂xγ∂xj
Xi −

1

h
gαβF (gF )γα

∂f

∂xβ
∇Bh

+
1

h2
Γλ
γαg

αβ
F

∂f

∂xβ
Xλ +

1

h2
Xγ(g

αβ
F )

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xγ∂xβ
Xα.

From this, it follows that

∇Xγ∇f =
1

h
gijB

∂f

∂xj

∂h

∂xi
Xγ + gijB

∂2f

∂xγ∂xj
Xi −

1

h

∂f

∂xγ
∇Bh

+
1

h2
Γλ
γαg

αβ
F

∂f

∂xβ
Xλ +

1

h2
Xγ(g

αβ
F )

∂f

∂xβ
Xα +

1

h2
gαβF

∂2f

∂xγ∂xβ
Xα.

Then

g(∇Xγ∇f,Xω) = hgijB(gF )γω
∂f

∂xj

∂h

∂xi
+ Γλ

γαg
αβ
F (gF )λω

∂f

∂xβ

+Xγ(g
αβ
F )(gF )αω

∂f

∂xβ
+ gαβF (gF )αω

∂2f

∂xγ∂xβ
.

Therefore

g(∇Xγ∇f,Xω) = hgijB(gF )γω
∂f

∂xj

∂h

∂xi
+ Γλ

γαg
αβ
F (gF )λω

∂f

∂xβ
(2.25)

+Xγ(g
αβ
F )(gF )αω

∂f

∂xβ
+

∂2f

∂xγ∂xω
.

By replacing the third identity in (2.9) in (2.25) we obtain

g(∇Xγ∇f,Xω) = hgijB(gF )γω
∂f

∂xj

∂h

∂xi
+ Γλ

γαg
αβ
F (gF )λω

∂f

∂xβ
− Γβ

γω

∂f

∂xβ
−

−Γλ
γαg

αβ
F (gF )λω

∂f

∂xβ
+

∂2f

∂xγ∂xω
.

Then, one obtains that

g(∇Xγ∇f,Xω) = hgijB(gF )γω
∂f

∂xj

∂h

∂xi
− Γβ

γω

∂f

∂xβ
+

∂2f

∂xγ∂xω
,
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for any γ, ω = 1, ...,m. Therefore,

Hess(f)(Xα, Xβ) = hgijB(gF )αβ
∂f

∂xj

∂h

∂xi
− Γγ

αβ

∂f

∂xγ
+

∂2f

∂xα∂xβ
,

for all α, β = 1, ...,m, which implies 2.19. ■

Theorem 2.2.5 (Corollary 43 in [11].). Let (Bn, gB) and (Fm, gF ) be Riemannian mani-

folds, where B is a Riemannian manifold with boundary and F is a Riemannian manifold

without boundary. Let (M = B ×h F, g) be a warped product. Then The Ricci curvature

of M satisfies the following identities:

Ric(X, Y ) = RicB(X, Y )− m

h
HessB(h)(X, Y ), (2.26)

Ric(X, V ) = 0, (2.27)

Ric(V,W ) = RicF (V,W )− [−h∆Bh+ (m− 1)|∇Bh|2]gF (V,W ), (2.28)

for any horizontal vector fields X, Y , and any vertical vector fields V,W . Here RicB and

RicF are the Ricci curvature of B and F , respectively,

Proof. From (2.10) we have that Γα
ij = 0, then ∇Xi

Xj =
∑

l Γ
l
ijXl. It follows that

∇Xs∇Xi
Xj =

∑
l

∇Xs(Γ
l
ijXl)

=
∑
l

(
∂

∂xs
(Γl

ij)Xl + Γl
ij∇XsXl

)
= ∇B

Xs
∇B

Xi
Xj. (2.29)

Since

Ric(X, Y ) =
∑
i

g(R(Ei, X)Y,Ei) +
∑
α

g(R(Eα, X)Y,Eα),

where {Ei} and {Eα} are orthonormal frame to the B and F , respectively, and X and Y

are horizontal vectors, one sees that

R(Ei, X)Y = ∇Ei
∇XY −∇X∇Ei

Y −∇[Ei,X]Y.

By using the first identity into (2.12) with (2.29) we deduce

R(Ei, X)Y = RB(Ei, X)Y,

where RB denote the curvature tensor of B. Therefore,

Ric(X, Y ) = RicB(X, Y ) +
∑
α

g(R(Eα, X)Y,Eα).

44



By using the third identity in (2.12), a direct computation we obtain

∇Xi
∇XαXj =

1

h

∂2h

∂xi∂xj
Xα, (2.30)

∇Xα∇Xi
Xj =

∑
k

Γk
ij

1

h

∂h

∂xk
Xα, (2.31)

for all i, j, and α. We have

g(R(Eα, Xi)Xj, Eα) = g(∇Eα∇Xi
Xj −∇Xi

∇EαXj −∇[Eα,Xi]Xj, Eα)

= g(∇Eα∇Xi
Xj −∇Xi

∇EαXj, Eα), (2.32)

where [Eα, Xi] = 0, because Eα does not depend of B, andXi does not depend of F . Write

Eα =
∑

β aβXβ, where each aβ does not depend of B. So, from a simple computation we

obtain

∇Eα∇Xi
Xj =

∑
l

Γl
ij

1

h

∂h

∂xl
Eα, (2.33)

∇Xi
∇EαXj =

1

h

∂2h

∂xi∂xj
Eα, (2.34)

for all i, j, and α. By replacing (2.33) and (2.34) into (2.32), one sees that

g(R(Eα, Xi)Xj, Eα) =
∑
l

Γl
ij

1

h

∂h

∂xl
− 1

h

∂2h

∂xi∂xj
.

Therefore,

Ric(Xi, Xj) = RicB(Xi, Xj)−
m

h
HessB(h)(Xi, Xj).

By using the linearity in each entrance of Ric we obtain (2.26).

To prove (2.27) we proceed as follows. By using the third identity in (2.12) we obtain

∇Xi
∇Xj

Xα =
1

h

∂2h

∂xi∂xj
Xα, (2.35)

for all i, j, and α. Now, let {Ei} be a locally horizontal orthonormal frame, then it follows

from (2.35) that

g(R(Ei, Xl)Xβ, Ei) = g(∇Ei
∇Xl

Xβ −∇Xl
∇Ei

Xβ −∇[Ei,Xl]Xβ, Ei) = 0. (2.36)

From a direct computation we get

∇Xα∇Xi
Xβ = H1 +

1

h

∂h

∂xi
∇F

Xα
Xβ, (2.37)
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where H1 is a horizontal vector field. Since

∇XαXβ =
∑
l

Γl
αβXl +

∑
γ

Γγ
αβXγ,

for all α and β, then

∇Xi
∇XαXβ = H2 +

1

h

∂h

∂xi
∇F

Xα
Xβ, (2.38)

for all i, α, and β, where H2 is a horizontal vector field. Let {Eα} be locally vertical

orthonormal frame, from (2.37) and (2.38) we obtain

g(R(Eα, Xi)Xβ, Eα) = 0, (2.39)

for all i and β. We have

Ric(Xi, Xα) =
∑
j

g(R(Ej, Xi)Xα, Ej) +
∑
β

g(R(Eβ, Xi)Xα, Eβ),

then from (2.36) and (2.39) we obtain Ric(Xi, Xα) = 0. Therefore,

Ric(X, V ) = 0,

for all horizontal vector field X and vertical vector field V , which implies (2.27).

From (2.11) we obtain the following identity

∇XαXβ = −h(gF )αβ∇Bh+
∑
γ

Γγ
αβXγ, (2.40)

for all α and β. The equation (2.40) gives the following expression

∇Xi
∇XαXβ = −(gF )αβ

∂h

∂xi
∇Bh− h(gF )αβ∇Xi

∇Bh+ V1, (2.41)

for all i, α, and β, where V1 is a vertical vector field.

From the third identity in (2.12) we get

∇Xα∇Xi
Xβ = −(gF )αβ

∂h

∂xi
∇Bh+ V2, (2.42)

for all i, α, and β, where V2 is a vertical vector field. From (2.41) and (2.42) we obtain

g(R(Xi, Xα)Xβ, Xi) = −h(gF )αβg(∇Xi
∇Bh,Xi), (2.43)
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for all i, α, and β. The identity (2.43) gives the following expression

g(R(Xi, Xα)Xβ, Xi) = −1

h
gαβg(∇Xi

∇Bh,Xi). (2.44)

From (2.40) we obtain

∇Xγ∇XαXβ = H3 − h(gF )αβ∇Xγ∇Bh+∇F
Xγ

∇F
Xα
Xβ,

for all γ, α, and β. Since

∇Xγ∇Bh =
1

h
gB(∇Bf,∇Bf)Xγ,

for all γ, then

∇Xγ∇XαXβ = H3 − (gF )αβgB(∇Bh,∇Bh)Xγ +∇F
Xγ

∇F
Xα
Xβ.

Which implies

∇Xα∇XγXβ = H4 − (gF )γβgB(∇Bh,∇Bh)Xα +∇F
Xα

∇F
Xγ
Xβ,

where H4 is a horizontal vector field. Therefore,

∑
γ

g(R(Eγ, Xα)Xβ, Eγ) = −m− 1

h2
|∇Bh|2gαβ +

∑
γ

RF (Eγ, Xα, Xβ, Eγ), (2.45)

for all α and β, where RF is the curvature tensor of F .

Therefore, from the definition of Ricci tensor, (2.43), and (2.45) we obtain (2.28). ■

Corollary 2.2.6. Let (Bn, gB) and (Fm, gF ) be Riemannian manifolds, where B is a

Riemannian manifold with boundary and F is a Riemannian manifold without boundary.

The warped product (M = B ×h F, g) is Einstein with Ric = λg if and only if

RicB = λgB +
m

h
HessB(h), (2.46)

RicF = µgF , (2.47)

µ = −h∆Bh+ (m− 1)|∇Bh|2 + λh2. (2.48)

In what follows we have the following theorem whose proof uses the equations in

Corollary 2.2.6.

Theorem 2.2.7. Let (Bn, gB) and (Fm, gF ) be compact Riemannian manifolds, where B

is a connected manifold with boundary, F is without boundary and m ≥ 3. Let (M =
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B ×h F, g) be an warped product such that M has non-positive scalar curvature and∫
∂B

h
∂h

∂N
d(∂B) ≥ 0. (2.49)

So if M is Einstein and the maximum point of h is an inner point, then h is constant.

Where N is the outward unit normal vector field along ∂B.

Proof. Since M is Einstein, then from (2.46) and (2.48) we have that

RicB = λgB +
m

h
HessB(h),

RicF = [−h∆Bh+ (m− 1)|∇Bh|2 + λh2]gF ,

where Ric = λg. Since m ≥ 3, then µ = −h∆Bh + (m − 1)|∇Bh|2 + λh2 is constant on

F . So, by proceeding in the same way that we did in Theorem 2.1.1, we can show that µ

is constant on B. Therefore, µ is constant on M .

By using the properties of the divergence operator we obtain

µ = λh2 + div(h∇Bh) + (m− 2)|∇Bh|2.

It follows that

µ =
λ

vol(B)

∫
B

h2 +
1

vol(B)

∫
B

div(h∇Bh) +
m− 2

vol(B)

∫
B

|∇Bh|2. (2.50)

By applying the Divergence theorem on (2.50) we obtain

µ =
λ

vol(B)

∫
B

h2 +
1

vol(B)

∫
∂B

h
∂h

∂N
+
m− 2

vol(B)

∫
B

|∇Bh|2. (2.51)

Let S be the scalar curvature of M . Since Ric = λg, then S = λ(n + mh2). Since

S ≤ 0, then λ ≤ 0.

Let pmax be the maximum point of h, then h(pmax) > 0, ∇Bh(pmax) = 0, and since
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∆Bh = −tr HessB(h), then ∆Bh(pmax) ≥ 0. It follows that

0 ≤ h(pmax)∆Bh(pmax)

= λh(pmax)
2 − µ

=
λ

vol(B)

∫
B

h(pmax)
2 − λ

vol(B)

∫
B

h2 − 1

vol(B)

∫
∂B

h
∂h

∂N
+

2−m

vol(B)

∫
B

|∇Bh|2

=
λ

vol(B)

∫
B

(h(pmax)
2 − h2)− 1

vol(B)

∫
∂B

h
∂h

∂N
+

2−m

vol(B)

∫
B

|∇Bh|2

≤ 0.

Then ∇Bh = 0, in B. Therefore, h is constant. ■
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Chapter 3

Ricci Almost Solitons with Boundary

The definition of Ricci almost solitons was first introduced by Pigola, Rigoli, Rimoldi,

and Setti in [15]. Many results have been obtained for gradient Ricci almost solitons

without boundary. In this chapter we prove properties of gradient Ricci almost solitons

with boundary and some characterizations. The first section we obtain a lower bound to a

symmetric tensor. The second section we prove some properties for Ricci almost solitons

and we finish this section with a characterization of gradient Ricci almost solitons with

boundary where the gradient of the potential function is a conformal vector field. In the

third section we obtain a characterization for totally geodesic boundaries by using an

inequality. In the fourth section we characterize compact gradient Ricci almost solitons

where the mean curvature of the boundary is positive. At the last section we show a

rigidity theorem for the case where the boundary is immersed into the hyperbolic space.

3.1 A Lower Bound for the Ricci Curvature

A Ricci almost soliton (M, g,X , λ) is a Riemannian manifold (M, g) with (or without)

boundary, a smooth vector field X , and a smooth function λ : M −→ R satisfying the

following equation

Ric = λg +
1

2
LX (g). (3.1)

If the vector field X vanishes, then the Ricci almost soliton is an Einstein manifold. If the

vector field X is the gradient of some smooth function f :M −→ R, then the Ricci almost

soliton is called gradient Ricci almost soliton, and it is denoted by (M, g,∇f, λ). By
substituting Proposition 1.2.14 into (3.1) we obtain

Ric = λg +Hess(f). (3.2)

We shall see below always there exists a positive lower bound for any positive sym-
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metric 2-tensor on a compact Riemannian manifold with or without boundary.

Theorem 3.1.1. Let (Mn, g), n ≥ 2, be a compact Riemannian manifold with (or with-

out) boundary. Let T ∈ T 2(M) be a symmetric 2-tensor on M . Set T (p) = Tp for all

p ∈ M . Then Tp is positive for all p ∈ M if and only if there exists a positive constant

α0 ∈ R such that

Tp(v, v) ≥ α0|v|2, (3.3)

for all p ∈M , and v ∈ TpM .

Proof. Since T is a symmetric 2-tensor onM , then Tp : TpM×TpM −→ R is a symmetric

bilinear form for all p ∈ M . Thus, for all p ∈ M there exists a self-adjoint operator

Sp : TpM −→ TpM such that

Tp(u, v) = gp(Sp(u), v),

for all u, v ∈ TpM . From the Spectral Theorem of Linear Algebra we have that, for all

p ∈ M , there exist a basis {(e1)p, ..., (en)p} for TpM and constants λ1, (p), ..., λn(p) ∈ R
such that Sp((ei)p) = λi(p)(ei)p, for each i = 1, ..., n. For an arbitrary v ∈ TpM write

v =
n∑

i=1

ai(p)(ei)p,

where ai(p) ∈ R is the i-th component of v in the basis {(e1)p, ..., (en)p}, for each i =

1, ..., n. It follows that

Tp(v, v) =
n∑

i=1

λi(p)ai(p)
2,

for all p ∈M , and v ∈ TpM .

Let Sn−1
1 (p) be the subset of TpM defined by

Sn−1
1 (p) = {v ∈ TpM : |v| = 1}.

Since Tp is continuous and Sn−1
1 (p) is compact, for all p ∈M , then there exists vp ∈ Sn−1

1 (p)

such that

Tp(vp, vp) = min
v∈Sn−1

1 (p)
Tp(v, v).

Since the tensor T is continuous and M is compact, then there exists p0 ∈M such that

Tp0(vp0 , vp0) = min
p∈M

Tp(vp, vp).

51



Since Tp0 is positive and v0 ∈ Sn−1
1 (p0), then Tp0(vp0 , vp0) > 0. Define

α0 = Tp0(vp0 , vp0).

Therefore, for all p ∈M , and v ∈ TpM , v ̸= 0, we have

Tp(v, v) = Tp

(
v

|v|
,
v

|v|

)
|v|2 ≥ α0|v|2.

The converse is a straight computation. ■

3.2 The conformal case

In this section we are interested in gradient Ricci almost solitons with boundary (M, g,∇f, λ)
where the gradient ∇f of the potential function f is a conformal vector field, and f sat-

isfies the following boundary conditions

f(p) > c0, for all p ∈ int(M),

f(p) = c0, for all p ∈ ∂M, (3.4)

where c0 ∈ R is constant. In what follows we give a simple example of gradient Ricci

almost soliton with boundary where the base is one dimensional.

Example 3.2.1. Let (M = [0,+∞)×hH2(c), g = dt2+h(t)2gH2(c)) be the warped product,

where c < 0 and h(t) = cosh(
√
−c t + b0), b0 > 0. Let f, λ be smooth functions on M

given by

f(t) =
1

c
sinh(

√
−c t+ b0),

λ(t) = sinh(
√
−c t+ b0) + 2c.

By using Proposition 2.2.4 and Theorem 2.2.5 we can show that (M, g,∇f, λ) is a gradient

Ricci almost soliton with boundary.

Definition 3.2.2. Let (M, g) be a Riemannian manifold with boundary. A smooth vector

field X ∈ X (M) is called normally parallel to the boundary if X is parallel along any

geodesic γ : [0, ϵ) −→M such that γ(0) ∈ ∂M , γ((0, ϵ)) ⊂ int(M), and γ′(0) ⊥ Tγ(0)∂M .

When the gradient of a smooth function which satisfies (3.4) is normally parallel to

the boundary it has not to vanish on the boundary.

Lemma 3.2.3. Let (Mn, g) be Riemannian manifold with boundary. If f is a smooth

function which safisties (3.4) and ∇f is normally parallel to the boundary, then ∇f(p) ∈
(Tp∂M)⊥ and ∇f(p) ̸= 0 for all p ∈ ∂M .
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Proof. For each p ∈ ∂M and v ∈ Tp∂M , there exist a real number δ > 0 and a smooth

curve β : (−δ, δ) −→ ∂M such that β(0) = p and β′(0) = v. Let c : (−δ, δ) −→ R be a

smooth function fiven by c(t) = f(β(t)). Thus, c(t) = c0,∀t ∈ (−δ, δ). It follows that

0 = c′(t) = dfβ(t)(β
′(t)) = g(∇f(β(t)), β′(t)),

∀t ∈ (−δ, δ). In particular, for t = 0 we have

g(∇f(p), v) = 0,

for each p ∈ ∂M and v ∈ Tp∂M . Therefore, ∇f(p) ∈ (Tp∂M)⊥, for all p ∈ ∂M .

Let p ∈ ∂M and ϵ > 0 be such that γ : [0, ϵ) −→ M is an unit geodesic emanating of

p, γ((0, ϵ)) ⊂ int(M) and γ′(0) is orthogonal to ∂M at p. Set a function s : [0, ϵ) −→ R
by

s(t) = f(γ(t)), (3.5)

which implies that s(0) = 0 and s(t) ̸= 0 for all t ∈ (0, ϵ). So, it follows that

s′(t) = dhγ(t)(γ
′(t)) = g(∇f(γ(t)), γ′(t)), (3.6)

and

s′′(t) = g

(
D

dt
∇f(γ(t)), γ′(t)

)
= g(∇γ′(t)∇f(γ(t)), γ′(t))

= Hess(f)(γ′(t), γ′(t)). (3.7)

Since ∇f is parallel along γ, we have

Hess(f)(γ′(t), γ′(t)) = g(∇γ′(t)∇f(γ(t)), γ′(t)) =
D

dt
g(∇f(γ(t)), γ′(t)) = 0,

then s′′(t) = 0, for all t ∈ [0, ϵ). From (3.5) and (3.6), we obtain

s′′(t) = 0,

s(0) = c0, (3.8)

s′(0) = g(∇f(p), γ′(0)).

From the Existence and Uniqueness Theorem for Ordinary Differential Equations of sec-

ond order we have that (3.8) admits only one solution. If we would have g(∇f(p), γ′(0)) =
0, then as we have ∇f(p) ∈ (Tp∂M)⊥, we obtain ∇f(p) = 0. Since ∇f is parallel along
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γ, then ∇f ≡ 0 along γ. Therefore, the unique solution for (3.8) would be s ≡ c0 along

all γ. But we know from (3.5) that s(t) ̸= 0 for all t ∈ (0, ϵ), which is a contradiction!

Therefore, ∇f(p) ̸= 0 for any p ∈ ∂M . ■

We can apply the Lemma 3.2.2 to conclude that every smooth function whose gradient

is a Killing vector field shall have gradient non-zero on the boundary.

Theorem 3.2.4. Let (Mn, g) be Riemannian manifold with boundary. If f is a smooth

function which safisties (3.4) and ∇f is a Killing vector field, then ∇f(p) ∈ (Tp∂M)⊥

and ∇f(p) ̸= 0 for all p ∈ ∂M .

Proof. From Lemma 3.2.2 all what we have to do is to show that ∇f is normally parallel

to the boundary. So, for any p ∈ ∂M , let γ; [0, ϵ) −→ M be a unit geodesic such

that γ(0) = p, γ((0, ϵ)) ⊂ int(M), and γ′(0) ⊥ Tp∂M . Let {e1, ..., en−1, γ
′(0)} be an

orthonormal basis for TpM , then by using the parallel translation along γ we obtain an

orthonormal basis {e1(t), ..., en−1(t), γ
′(t)} for Tγ(t)M , for all t ∈ [0, ϵ), where ei(0) = ei

for every i = 1, ..., n− 1. So, one obtains that

∇γ′(t)∇f(γ(t)) =
n−1∑
i=1

g(∇ei(t)∇f(γ(t)), ei(t))ei(t) + g(∇γ′(t)∇f(γ(t)), γ′(t))γ′(t),

for all t ∈ [0, ϵ). Therefore, since ∇f is a Killing vector field, then

D

dt
∇f(γ(t)) = ∇γ′(t)∇f(γ(t)) = 0.

From Lemma 3.2.2 we conclude that∇f(p) ∈ (Tp∂M)⊥ and∇f(p) ̸= 0, for all p ∈ ∂M .

■

In Lemma 3.2.2 we showed that if f is a smooth function on a Riemannian manifold

with boundary (Mn, g), n ≥ 2, such that f satisfies (3.4) and ∇f is normally parallel to

the boundary, then ∇f(p) ∈ (Tp∂M)⊥ and ∇f(p) ̸= 0, for all p ∈ ∂M . In what follows

we show a characterization of a smooth function which satisfies (3.4) and do not vanish

on the boundary.

Theorem 3.2.5. Let (Mn, g) be a Riemannian manifold with boundary. Suppose f sat-

isfies (3.4). If for all p ∈ ∂M there exists a function ζp : [0, 1] −→ R such that ζp(0) = 0,

and for any geodesic γ : [0, ϵ) −→ M , γ(0) = p, γ((0, ϵ)) ⊂ int(M), and γ′(0) ⊥ Tp∂M ,

the following inequalities are satisfied

f(γ(t))− f(p) ≥ ζp(t), (3.9)
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for all t ∈ [0, ϵ), and

lim sup
t→0

ζp(t)

t
> 0. (3.10)

Then, ∇f(p) ̸= 0, for all p ∈ ∂M . Conversely, if ∇f(p) ̸= 0, for all p ∈ ∂M , then for all

p ∈ ∂M there exists a function ζp : [0, 1] −→ R such that ζp(0) = 0, and for any geodesic

γ : [0, ϵ) −→ M , γ(0) = p, γ((0, ϵ)) ⊂ int(M), and γ′(0) ⊥ Tp∂M , (3.9) and (3.10) are

satisfied.

Proof. The first implication is a straight computation. Conversely, suppose that ∇f(p) ̸=
0 for all p ∈ ∂M . Let γ : [0, ϵ) −→M be an unit geodesic such that γ(0) = p, γ((0, ϵ)) ⊂
int(M), and γ′(0) ⊥ Tp∂M . Define s : [0, ϵ) −→ R by s(t) = f(γ(t)). It follows that

s′(0) = gp(∇f(p), γ′(0)).

Since ∇f(p) ∈ (Tp∂M)⊥ and ∇f(p) ̸= 0, then s′(0) ̸= 0. From the Taylor’s formula we

have

s(t) = s(0) + s′(0)t+
1

2
s′′(θ(t))t2,

where 0 < θ(t) < t, and lim
t→0

s′′(θ(t))t = 0. By choosing ϵ > 0 small we obtain that γ is the

unique geodesic which goes through p at t = 0 with speed γ′(0). Define ζp : [0, ϵ) −→ R
by

ζp(t) = s′(0)t+
1

2
s′′(θ(t))t2.

Since f satisfies (3.4), then f(γ(t)) − f(p) > 0 for all t ∈ (0, ϵ), which implies s′(0) > 0.

We have
ζp(t)

t
= s′(0) +

1

2
s′′(θ(t))t,

for all t ∈ (0, ϵ). Therefore,

lim
t→0

ζp(t)

t
= s′(0) > 0.

■

Theorem 3.2.5 says that a smooth function f : M −→ R defined on a Riemannian

manifold with boundary which satisfies (3.4), and does not go “too fast” to the boundary

should have grandient non vanishing on ∂M . We shall see in the next example that the

height function has gradient non vanishing on the boundary.

Example 3.2.6. Let f be the function on Rn
+ given by f(x1, ..., xn) = xn. Then the

gradient of f is ∇f = en, where en = (0, ..., 1). For each p ∈ ∂Rn
+, set γp(t) = p + ten,

t ≥ 0. We have that γp is the unique geodesic such that γp(0) = p, γp((0,+∞)) ⊂ int(Rn
+),

and γ′(0) ⊥ Tp∂Rn
+. Then, set ζp(t) = t. Therefore, f(p + ten) − f(p) = ζp(t), and

lim
t→0

ζp(t)

t
= 1.
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The next example shows us a situation where the characterization of Theorem 3.2.5

is not satisfied.

Example 3.2.7. Let f : Rn
+ −→ R be the function given by

f(p) = f(x1, ..., xn) =

{
e
− 1

x2n , if xn > 0,

0, if xn = 0.

So f is smooth, and ∇f(p) = 0, for all p ∈ ∂Rn
+.

Let (M, g) be an oriented Riemannian manifold with boundary. From Theorem 1.1.11

the boundary ∂M is a submanifold of B with codimension 1. For any p ∈ ∂M , let η(p)

be a normal vector to ∂M at p. The second fundamental form of ∂M at p with

respect to η(p) ∈ (Tp∂M)⊥ is the map IIη(p) : Tp∂M −→ R given by

IIη(p)(v) = −gp(∇T
vN (p), v), (3.11)

where ∇T is the Levi-Civita connection of ∂M , and N is a locally extension of η(p)

which is normal along ∂M . The shape operator of ∂M at p ∈ ∂M with respect to

η(p) ∈ (Tp∂M)⊥ is the map Sη(p) : Tp∂M −→ Tp∂M given by

Sη(p)(v) = −∇T
vN (p), (3.12)

for all v ∈ Tp∂M . It follows that Sη(p) is a self-adjoint operator. From (3.11) and (3.12)

we obtain

IIη(p)(v) = gp(Sη(p)(v), v),

for all p ∈ ∂M , and v ∈ Tp∂M .

Lemma 3.2.8. Let (M, g) be a Riemannian manifold with boundary. If f : M −→ R
is a smooth function which satisfies (3.4) and ∇f does not vanish on ∂M , then for all

p ∈ ∂M there exists a smooth function ψ locally defined in a neighborhood in M of p such

that

IIη(p)(v) = ψ(p)II∇f(p)(v), (3.13)

for all η(p) ∈ (Tp∂M)⊥, and v ∈ Tp∂M . Moreover, we obtain Sη(p) = ψ(p)S∇f(p).

Proof. For each η(p) ∈ (Tp∂M)⊥, there exists a constant ψ(p) ∈ R such that

η(p) = ψ(p)∇f(p).
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So, for any vector field N : U −→ TM locally defined in M which is a extension of η(p)

and N (∂U) ⊂ (T∂M)⊥, where ∂U = U ∩∂M , there exists a smooth function ψ : U −→ R
such that

N (q) = ψ(q)∇f(q), and N (p) = η(p),

for all q ∈ U , and p ∈ ∂U . For every vector field X , we have

∇XN = ∇X (ψ∇f) = X (ψ)∇f + ψ∇X∇f.

For all η(p) ∈ (Tp∂M)⊥, we obtain

IIη(p)(v) = −gp(∇vN (p), v) = −ψ(p)gp(∇v∇f(p), v) = ψ(p)II∇f(p)(v).

Moreover, since gp(∇vN (p), v) = ψ(p)gp(∇v∇f, v), for all v ∈ Tp∂M , then Sη(p) =

ψ(p)S∇f(p), for all p ∈ ∂M . ■

For a more complete approach on second fundamental form, shape operator, or sub-

manifolds in general we indicate the excellent reference [4].

Proposition 3.2.9. Let (Mn, g), n ≥ 2, be a Riemannian manifold with compact bound-

ary. If f :M −→ R is a smooth function which satisfies (3.4) and ∇f does not vanish on

∂M , then ∂M is minimal if and only if the mean curvature of ∂M does not change sign.

Proof. Define

η(p) =
∇f(p)
|∇f(p)|

,

For all p ∈ ∂M . Since ∇f(p) ∈ (Tp∂M)⊥, for all p ∈ ∂M , then η(p) is an unit normal

vector to the boundary ∂M at p. By definition, the mean curvature H of ∂M is given by

H(p) = tr Sη(p),

for all p ∈ ∂M . Let {e1, ..., en−1, en = η(p)} be an orthonormal basis for TpM . Then

H(p) = −
n−1∑
i=1

gp(∇eiη(p), ei) = −div∂M(η(p)).

It follows that

H(p) = −div∂M

(
∇f(p)
|∇f(p)|

)
,

for all p ∈ ∂M . From the Divergence Theorem, one sees that∫
∂M

H(p)d(∂M) = −
∫
∂M

div∂M

(
∇f(p)
|∇f(p)|

)
d(∂M).
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Since ∂(∂M) = ∅, then ∫
∂M

H(p)d(∂M) = 0.

Thus, H does not change sign on ∂M if and only if H ≡ 0. So, H does not change sign

on ∂M if and only if ∂M is minimal. ■

We shall see in the next lemma if (M, g) and f are as in Proposition 3.2.7 and the

gradient of f is conformal, then we can relate the mean curvature the boundary ofM and

the gradient of f with the Hessian of f .

Lemma 3.2.10. Let (Mn, g), n ≥ 2, be a Riemannian manifold with boundary. Suppose

f satisfies (3.4) and ∇f is a conformal vector field which does not vanish on ∂M . Then

the mean curvature H of ∂M satisfies the following identity

H(p)|∇f(p)| = −(n− 1)ξ(p), (3.14)

for all p ∈ ∂M , where ξ :M −→ R is the smooth function such that Hess(f) = ξg.

Proof. For each p ∈ ∂M , let {e1(p), ..., en−1(p), η(p)} be an orthonormal basis for TpM ,

where η(p) =
∇f(p)
|∇f(p)|

. Let Sη(p) be the shape operator at p with respect to η(p), then

tr Sη(p) = −
n−1∑
i=1

g(∇ei(p)η(p), ei(p)).

Since |η(p)| = 1, then 2g(∇η(p)η(p), η(p)) = 0. Thus, it follows that

tr Sη(p) = −
n−1∑
i=1

g(∇ei(p)η(p), ei(p))− g(∇η(p)η(p), η(p)).

On the other hand, we have

g(∇ei(p)η(p), ei(p)) =
1

|∇f(p)|
g(∇ei(p)∇f(p), ei(p)),

for all i = 1, ..., n− 1, and

0 = g(∇η(p)η(p), η(p)) = η

(
1

|∇f(p)|

)
|∇f(p)|+ 1

|∇f(p)|
g(∇η(p)∇f(p), η(p)).
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Of which

tr Sη(p) = − 1

|∇f(p)|

n−1∑
i=1

Hess(f)(ei(p), ei(p))−
1

|∇f(p)|
Hess(f)(η(p), η(p))

−η
(

1

|∇f(p)|

)
|∇f(p)|.

Thus

tr Sη(p) = − 1

|∇f(p)|
tr Hess(f) +

1

|∇f(p)|
Hess(f)(η(p), η(p)).

Then

tr Sη(p) =
1

|∇f(p)|
∆f(p) +

1

|∇f(p)|
Hess(f)(η(p), η(p)),

for all p ∈ ∂M . Since ∇f is a conformal vector field, then there exists a smooth function

ξ :M −→ R such that Hess(f) = ξg. Therefore, we obtain

−∆f(p) = nξ(p) and Hess(f)(η(p), η(p)) = ξ(p),

for all p ∈ ∂M . We just obtain

tr Sη(p) = − 1

|∇f(p)|
(n− 1)ξ(p),

for all p ∈ ∂M . Since H(p) = tr Sη(p), then

H(p)|∇f(p)| = −(n− 1)ξ(p),

for all p ∈ ∂M . ■

Proposition 3.2.11. Let (Mn, g), n ≥ 2, be a Riemannian manifold with boundary.

Suppose f satisfies (3.4) and ∇f is a conformal vector field which does not vanish on

∂M . Then, the boundary ∂M is minimal if and only if it is totally geodesic.

Proof. Since H ≡ 0, then from Lemma 3.2.8 ξ ≡ 0 on ∂M , where ξ is a smooth function

which satisfies Hess(f) = ξg. We obtain

Hess(f) = 0,

on ∂M . Since, II∇f = Hess(f) on ∂M , then II∇f = 0. Therefore, from Lemma 3.2.6 we

conclude that ∂M is totally geodesic.

The converse follows from the definition of totally geodesic. ■

Let (M, g) a Riemannian manifold with boundary. The boundary ∂M is called um-

bilical if for all p ∈ ∂M the following identity is satisfies
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Sη(p)(v) = gp(H(p), η(p))v, (3.15)

for all v ∈ Tp∂M , where η(p) is the unit normal vector to the boundary at p. Here H(p)

denotes the mean curvature vector.

Proposition 3.2.12. Let (Mn, g) be a Riemannian manifold with boundary, n ≥ 2.

Suppose f satisfies (3.4) and ∇f is a conformal vector field which does not vanish on

∂M . Then ∂M is umbilical.

Proof. For every u, v ∈ Tp∂M we have

gp(S∇f(p)(u), v) = −Hess(f)(u, v) = −ξ(p)gp(u, v).

Thus S∇f(p) = −ξ(p)IdTp∂M . Let η(p) ∈ (Tp∂M)⊥ be given by

η(p) =
∇f(p)
|∇f(p)|

.

From Lemma 3.2.4 we have Sη(p) =
1

|∇f(p)|
S∇f(p). On the other hand, from Lemma 3.2.6

we deduce

−ξ(p) = |∇f(p)|
n− 1

H(p),

for all p ∈ ∂M . Thus, Sη(p) =
1

n− 1
H(p)IdTp∂M . Since H(p) =

1

n− 1
H(p)η(p), then

Sη(p) = gp(H(p), η(p))IdTp∂M .

■

The next theorem is going to be use to prove the main result of this section.

Theorem 3.2.13 (Theorem 4 in [18].). Let (Mn, g) be a compact Riemannian manifold

with boundary. Assume that there is a positive constant ρ2 > 0 such that Ric ≥ (n−1)ρ2g

and the mean curvature of ∂M is non negative. Then the first eigenvalue λ1(∆) of the

Laplacian on M satisfies the inequality λ1(∆) ≥ nρ2. Moreover, λ1(∆) = nρ2 if and only

if M is isometric to a closed hemisphere of the Euclidean sphere Sn(ρ2) of radius
1

ρ
.

The next result characterize compact gradient Ricci almost solitons when the gradient

of the potential function is conformal, the scalar curvature is positive, and the Ricci

curvature satisfies an inequality.

Theorem 3.2.14. Let (Mn, g,∇f, λ), n ≥ 2 be a compact gradient Ricci almost soliton

with connected boundary, where f satisfies 3.4. Suppose the scalar curvature S of M is
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positive, and ∇f does not vanish on ∂M . Assume Hess(f) = ξ g, where ξ ≤ 0 on ∂M .

Then the mean curvature of ∂M is non negative, and there exists a positive constant ρ ∈ R
such that the Ricci curvature of M satisfies

Ricp(v, v) ≥ (n− 1)ρ2, (3.16)

for all p ∈ ∂M , and v ∈ Tp∂M , |v| = 1. Moreover, the first eigenvalue λ1(∆) of the

Laplacian on M satisfies the inequality λ1(∆) ≥ nρ2. The equality holds if and only if M

is isometric to a closed hemisphere of the Euclidean sphere Sn(ρ2) of radius
1

ρ
.

Proof. From Lemma 3.2.10

H(p)|∇f(p)| = −(n− 1)ξ(p),

for all p ∈ ∂M . Since ξ ≤ 0 on ∂M , then H ≥ 0.

Since

Ricp = (λ(p) + ξ(p))gp,

for all p ∈ M , and the scalar curvature of M is positive, then from Theorem 3.1.1 we

obtain

min
p∈M

(λ(p) + ξ(p)) > 0, and Ricp(v, v) ≥ min
p∈M

(λ(p) + ξ(p))|v|2,

for all p ∈M , and v ∈ TpM . Define

ρ2 =
minp∈M(λ(p) + ξ(p))

n− 1
.

So, Ricp(v, v) ≥ (n − 1)ρ2, for all p ∈ M , and v ∈ TpM , |v| = 1. The conclusion follows

from Theorem 3.2.13. ■

We finish this section by giving an example of compact gradient Ricci almost soliton

on the hemisphere.

Example 3.2.15. Set

S2
+ = {p = (x, y, z) ∈ S2 : z ≥ 0}.

So (S2
+, gS2+) is a Riemannian manifold with boundary, where gS2+ is the metric induced

from S2. Now, define the function f : S2
+ −→ R by

f(p) = sin dS2(p, ∂S2
+),

where the function dS2 is given by

dS2(p, ∂S2
+) = inf

q∈∂S2+
dS2(p, q).
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If we choose spherical coordinates ψ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ), then

dS2(p, ∂S2
+) =

π

2
− φ,

where p = (sinφ cos θ, sinφ sin θ, cosφ). It follows that the function f in these coordinates

is given by

f(p) = cosφ.

We obtain
∂f

∂θ
= 0 and

∂f

∂φ
= − sinφ. Since gθθ = gS2+

(
∂

∂θ
,
∂

∂θ

)
, gθφ = gS2+

(
∂

∂θ
,
∂

∂φ

)
,

and gφφ = gS2+

(
∂

∂φ
,
∂

∂φ

)
, then gθθ = sin2 φ, gθφ = 0, and gφφ = 1. This implies

∇f(p) = − sinφ
∂

∂φ
.

Then

∇ ∂
∂θ
∇f(p) = − cosφ

∂

∂θ
and ∇ ∂

∂φ
∇f(p) = − cosφ

∂

∂φ
.

Define
∂

∂θ
=

1

sinφ

∂

∂θ
. So the set

{
∂

∂θ
,
∂

∂φ

}
is an orthonormal basis for TpS2

+. Conse-

quently,

Hessp(f)

(
∂

∂θ
,
∂

∂θ

)
= − cosφ,

Hessp(f)

(
∂

∂θ
,
∂

∂φ

)
= 0,

and

Hessp(f)

(
∂

∂φ
,
∂

∂φ

)
= − cosφ.

This implies that ∇f is a conformal vector field, where Hessp(f) = −f(p)gS2+(p). More-

over, ∇f does not vanish on ∂S2
+.

Let λ : S2
+ −→ R be the function given by λ(p) = 1 + f(p). Therefore, since the

Ricci curvature of S2
+ is 1, then we obtain that (S2

+, gS2+ ,∇f, λ) is a gradiente Ricci almost

soliton with boundary, which is under the hypothesis of the Theorem 3.2.14.

3.3 Totally Geodesic Boundaries

Let (M, g.∇f, λ) be a gradient Ricci almost soliton with boundary. Now we are interested

to know how the function λ affects the geometric structure of the boundary.

Definition 3.3.1. Let (Mn, g), n ≥ 2, be a Riemannian manifold with boundary. Suppose

that f is a smooth function which satisfies (3.4) and ∇f does not vanish on ∂M . For
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each p ∈ ∂M define

η(p) =
∇f(p)
|∇f(p)|

.

Let κ1(p), ..., κn−1(p) be the eigenvalues of the shape operator Sη(p) at p with respect η(p).

We call κ1(p), ..., κn−1(p) the principal curvatures of ∂M at p. Moreover, we call a

tangent vetor v ∈ Tp∂M of principal direction of Sη(p) at p if Sη(p)(v) = κi(p)v, for

some i = 1, ..., n− 1.

We have the following proposition.

Proposition 3.3.2. Let (Mn, g,∇f, λ), n ≥ 2, be a gradient Ricci almost soliton with

boundary. Suppose f satisfies (3.4) and ∇f does not vanish on ∂M . Let S∂M and RicM be

the scalar curvature of ∂M and the Ricci tensor of M , respectively. Then ∂M is minimal

and

(n− 1)λ(p) ≤ S∂M(p) + RicM(η(p), η(p)), (3.17)

for all p ∈ ∂M , where η(p) =
∇f(p)
|∇f(p)|

, if and only if ∂M is totally geodesic.

Proof. Let {e1(p), ..., en−1(p)} be an orthonormal basis for Tp∂M such that each ei(p) is a

principal direction of Sη(p) which satisfies Sη(p)(ei(p)) = κi(p)ei(p), for all i = 1, ..., n− 1.

From definition of Ricci curvature and the Gauss equation we have, respectively,

RicM(ei(p), ei(p)) =
∑
j ̸=i

KM(ej(p), ei(p)) +KM(η(p), ei(p)),

K∂M(ej(p), ei(p))−KM(ej(p), ei(p)) = κj(p)κi(p),∀j ̸= i,

where KM and K∂M are the sectional curvature of M and ∂M , respectively. From this,

it follows that

RicM(ei(p), ei(p)) =
∑
j ̸=i

[K∂M(ej(p), ei(p))− κj(p)κi(p)] +KM(η(p), ei(p))

= Ric∂M(ei(p), ei(p))−

(∑
j ̸=i

κj(p)

)
κi(p) +KM(η(p), ei(p)),

for all p ∈ ∂M . Since the mean curvature is given by H(p) = κ1(p) + ...+ κn−1(p), then

RicM(ei(p), ei(p)) = Ric∂M(ei(p), ei(p))−H(p)κi(p) + κi(p)
2 +KM(η(p), ei(p)),

for all p ∈ ∂M . On the other hand, since (M, g,∇f, λ) is a gradient Ricci almost soliton

and S∇f(p) = |∇f(p)|Sη(p), for every p ∈ ∂M , then

RicM(ei(p), ei(p)) = λ(p)− |∇f(p)|κi(p),
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which implies

λ(p)− |∇f(p)|κi(p) = Ric∂M(ei(p), ei(p))−H(p)κi(p) + κi(p)
2 +KM(η(p), ei(p)).

Thus

κi(p)
2 + [|∇f(p)| −H(p)]κi(p) + Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p))− λ(p) = 0,

for all p ∈ ∂M , and i = 1, ..., n− 1. Set

a(p) = |∇f(p)| −H(p),

and

bi(p) = Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p))− λ(p).

Then for each i the principal curvature κi(p) satisfies

κi(p)
2 + a(p)κi(p) + bi(p) = 0.

From definition we have that

n−1∑
i=1

bi(p) =
n−1∑
i=1

[Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p))− λ(p)]

= S∂M(p) + RicM(η(p), η(p))− (n− 1)λ(p)).

For each p ∈ ∂M , define b(p) =
∑n−1

i=1 bi(p). We obtain

n−1∑
i=1

κi(p)
2 + a(p)H(p) + b(p) = 0.

If ∂M is minimal, then
n−1∑
i=1

κi(p)
2 + b(p) = 0,

which implies b(p) ≤ 0, for all p ∈ ∂M . Then

S∂M(p) + RicM(η(p), η(p)) ≤ (n− 1)λ(p),

for all p ∈ ∂M . So if (n− 1)λ(p) ≤ S∂M(p) + RicM(η(p), η(p)), then

(n− 1)λ(p) = S∂M(p) + RicM(η(p), η(p)),∀p ∈ ∂M.
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It follows that
n−1∑
i=1

κi(p)
2 = 0.

Which implies that κi(p) = 0, for all p ∈ ∂M , and for all i = 1, ..., n− 1. Therefore, ∂M

is totally geodesic.

The converse follows from the definition of totally geodesic submanifold. ■

A consequence from the proof of the Proposition 3.4.2 is that if (Mn, g,∇f, λ) is a

gradient Ricci almost soliton with boundary, n ≥ 2, such that f satisfies (3.4) and ∇f is

non zero on whole ∂M , then the mean curvature H of ∂M satisfies the following equation

n−1∑
i=1

κi(p)
2 + a(p)H(p) + b(p) = 0, (3.18)

for all p ∈ ∂M , where κi(p) is a principal curvature of ∂M at p, for all i, and a(p) and

b(p) are given by

a(p) = |∇f(p)| −H(p), and b(p) = S∂M(p) + RicM(η(p), η(p))− (n− 1)λ(p).

Thus we obtain that if ∂M is minimal but it is not totally geodesic, then

S∂M(p) + RicM(η(p), η(p)) < (n− 1)λ(p),

for all p ∈ ∂M .

3.4 Positive Mean Curvature

In the previous sections we study ridigity theorems when the boundary is minimal, but

in this section we obtain a rigidity theorem for gradient Ricci almost solitons when the

mean curvature of the boundary is positive.

Proposition 3.4.1. Let (Mn, g,∇f, λ), n ≥ 2, be a gradient Ricci almost soliton manifold

with boundary. If f is constant on ∂M , then every principal curvature κi(p) of ∂M at p,

i = 1, ..., n− 1, satisfies

κi(p)
2 + [gp(∇f(p), η(p))−H(p)]κi(p) + Ric∂M(ei(p), ei(p)) +

+KM(ei(p), η(p))− λ(p) = 0, (3.19)

where Ric∂M and KM is the Ricci curvature tensor of ∂M and the sectional curvature of

M , respectively, η(p) is an inward unit vector normal to the boundary at p, and ei(p) is

the principal direction associated to κi(p).
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Proof. We have that ∇f(p) = gp(∇f(p), η(p))η(p), for all p ∈ ∂M . Then

Hess(f)(u, v) = gp(∇f(p), η(p))gp(∇uη(p), v),

for all p ∈ ∂M , and u, v ∈ Tp∂M . In particular, we obtain that

S∇f(p)(v) = gp(∇f(p), η(p))Sη(p)(v).

So, if κi(p) is a principal curvature of ∂M at p, and ei(p) is an unit principal direction

associated with κi(p), then

Hess(f)(ei(p), ei(p)) = −κi(p)gp(∇f(p), η(p)),

for all p ∈ ∂M , and i = 1, ..., n−1. Therefore, by proceeding as in the proof of Proposition

3.4.2 we obtain (3.19). ■

In what follows we give the statement of two theorems that we are going to use to

prove the last theorem of this section.

Theorem 3.4.2 (Theorem 1 in [20].). LetMn, n ≥ 1, be a compact Riemannian manifold

with boundary and non negative Ricci curvature. For each p ∈ ∂M , let η(p) be the inward

unit vector normal to the boundary at p. Assume that the principal curvatures of ∂M are

bounded from below by a positive constant ρ. Then, the first eigenvalue λ1(∆∂M) of the

Laplacian ∆∂M on ∂M satisfies λ1(∆∂M) ≥ nρ2 with equality holding if and only if M is

isometric to a closed Euclidean ball of radius
1

ρ
.

Theorem 3.4.3 (Theorem 1 in [19].). LetMn, n ≥ 1, be a compact Riemannian manifold

with boundary and non negative Ricci curvature. Let H be the mean curvature of ∂M . If

H is positive everywhere, then∫
∂M

1

H(p)
d(∂M) ≥ nvol(M).

The equality holds if and only if M is isometric to a Euclidean ball.

Next we have the main result of this section.

Theorem 3.4.4. Let (Mn, g,∇f, λ), n ≥ 2, be a compact gradient Ricci almost soliton

with boundary. Suppose f is constant on ∂M , and the Ricci curvature of M is non

negative. If

gp(∇f(p), η(p)) < H(p), and λ(p) < Ric∂M(v, v) +KM(η(p), v), (3.20)

for all p ∈ ∂M , where η(p) is the inward unit vector normal to the boundary at p, H(p)
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is the mean curvature of ∂M at p, and v ∈ Tp∂M , |v| = 1, is a principal direction of

the shape operator Sη(p). Here, Ric∂M and KM denote the Ricci curvature of ∂M and the

sectional curvature of M , respectively. Then, the following assertions are satisfies:

(i) The first eigenvalue λ1(∆∂M) of the Laplacian on ∂M satisfies λ1(∆∂M) ≥ (n−1)ρ2,

for some positive constant ρ ∈ R. Moreover, the equality holds if and only if M is

isometric to an n-dimensional closed Euclidean ball of radius
1

ρ
.

(ii) The mean curvature satisfies∫
∂M

1

H(p)
d(∂M) ≥ nvol(M).

The equality holds if and only if M is isometric the a closed Euclidean ball.

Proof. (i) For all p ∈ ∂M , let {e1(p), ..., en−1(p)} be a basis for Tp∂M , where each ei(p)

is a principal direction of the shape operator Sη(p) associated to the principal curvature

κi(p). From the hypothesis we have

λ(p) < Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p)),

for all p ∈ ∂M , and i = 1, ..., n− 1. For each p and i, define

bi(p) = Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p))− λ(p),

then bi(p) > 0. Set a(p) = gp(∇f(p), η(p))−H(p), where p ∈ ∂M , and H(p) is the mean

curvature of ∂M at p. We have that

a(p)2 − 4bi(p) < a(p)2.

From Proposition 3.5.1, every principal curvature κi(p) satisfies (3.19), then

[gp(∇f(p), η(p))−H(p)]2 − 4[Ric∂M(ei(p), ei(p)) +KM(η(p), ei(p))− λ(p)] ≥ 0.

It follows that a(p)2 − 4bi(p) ≥ 0, thus since a(p) < 0, we obtain

a(p) +
√
a(p)2 − 4bi(p) < 0,

for all p ∈ ∂M , and i = 1, ..., n− 1. Since the principal curvature κi(p) satisfies

κi(p) = −a(p)
2

−
√
a(p)2 − 4bi(p)

2
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or

κi(p) = −a(p)
2

+

√
a(p)2 − 4bi(p)

2
.

Thus ki(p) is positive for all p ∈ ∂M , and i = 1, ..., n − 1. Then, H > 0 and the second

fundamental form IIη(p) of ∂M is positive defined. The converse is true, if a(p) < 0 and

all principal curvatures are positives, then bi(p) > 0, for all p ∈ ∂M , and i = 1, ..., n− 1.

Since M is compact, then there exists a positive constant κ0 such that κi(p) ≥ κ0, for all

p ∈ ∂M , and i = 1, ..., n− 1. The conclusion follows from Theorem 3.5.2.

(ii) From the proof of item (i) the mean curvatureH(p) > 0, for all p ∈ ∂M . Therefore,

the conclusion follows from Theorem 3.5.3. ■

Example 3.4.5. Let B3
1 be the Riemannian manifold with boundary defined by

B3
1 = {p ∈ R3 : |p| ≤ 1},

provided with the metric ⟨·, ·⟩ induced from R3. It follows that ∂B3
1 = S2. Let f : B3

1 −→ R
be the function given by

f(p) =
1− |p|2

4
.

It follows that

∇f(p) = −p
2

and Hess(f) = −1

2
⟨·, ·⟩p,

for all p ∈ B3
1. Choose λ = 1

2
, then (B3

1, ⟨·, ·⟩, f, λ) is a gradient Ricci almost soliton with

boundary. Moreover, we have that (B3
1, ⟨·, ·⟩, f, λ) is under the hypothesis of the Theorem

3.5.4.

3.5 Ricci Almost Soliton as a Hyperbolic Domain

So far we have been studying gradient Ricci almost solitons with boundary which are

isometric to a closed hemisphere of a Euclidean sphere or a closed Euclidean ball. In

this section we obtain inequalities which implies that a gradient Ricci almost soliton with

boundary is isometric to a domain in some hyperbolic space.

First, we start recalling some basic definitions.

Definition 3.5.1. We denote by Ln+1 the set Rn+1 provided the scalar product

⟨u, v⟩L = −x0y0 +
n∑

i=1

xiyi, (3.21)

where (x0, x1, ..., xn), (y0, y1, ..., yn) ∈ Rn+1. The space Ln+1 is called the Lorentzian

space. For some r > 0, we define the hyperbolic space of dimension n, and cur-
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vature c = − 1

r2
, as the subset of Ln+1 defined by

Hn(c) = {v ∈ Ln+1 : ⟨v, v⟩L =
1

c
, and x0 > 0}. (3.22)

We denote Hn(−1) by Hn and we just call it hyperbolic space of dimension n.

Definition 3.5.2. The Lorentzian norm on Ln+1 is the function | · |L : Ln+1 −→ C
given by

|v|L =
√

⟨v, v⟩L (3.23)

For a treatment much more systematic about the hyperbolic space see [17].

Example 3.5.3. Set P = {(x, y, z) ∈ L3 : x =
√
2}. Let D2 be the domain of H2 defined

by the subset of H2 which is “under” P . Let f be the function on D2 given by

f(p) = cosh dH2(p, ∂D2),

where dH2(p, ∂D2) = infq∈∂D2 dH2(p, q). If we choose the coordinates

ψ(θ, φ) = (coshφ, sinhφ cos θ, sinhφ sin θ),

then

dH2(p, ∂D2) = φ,

where p = (coshφ, sinhφ cos θ, sinhφ sin θ). It follows that the function f in this coordi-

nates is given by

f(p) = coshφ.

Thus
∂f

∂θ
= 0 and

∂f

∂φ
= sinhφ. Since

∂

∂θ
= (0,− sinhφ sin θ, sinhφ cos θ),

∂

∂φ
= (sinhφ, coshφ cos θ, coshφ sin θ),

then 〈
∂

∂θ
,
∂

∂θ

〉
L
= sinh2 φ,

〈
∂

∂θ
,
∂

∂φ

〉
L
= 0, and

〈
∂

∂φ
,
∂

∂φ
,

〉
L
= 1.

We have

∇f = sinhφ
∂

∂φ
.
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We have

∇ ∂
∂θ
∇f = sinhφ∇ ∂

∂θ

∂

∂φ
= sinhφ

(
Γθ
θφ

∂

∂θ
+ Γφ

θφ

∂

∂φ

)
= coshφ

∂

∂θ
,

and since ∇ ∂
∂φ

∂
∂φ

= 0, then

∇ ∂
∂φ
∇f = coshφ

∂

∂φ
.

Thus Hess(f) = coshφ⟨·, ·⟩L. If we choose λ(p) = −1− f(p), then (D2, ⟨·, ·⟩L,∇f, λ) is a
gradient Ricci almost soliton with boundary.

The next theorem is going to be applied in the prove of the main result of this section.

Theorem 3.5.4 (Theorem 1.6 in [10].). Let (Mn, g), n ≥ 1, be a Riemannian manifold

with boundary. Suppose

• Ric ≥ −(n− 1)g;

• there is an isometric immersion ψ : ∂M −→ Hm, where Hm is the hyperbolic space

of dimension m ≥ n;

• for each p ∈ ∂M , IIp(v, v) ≥ |IIHp (v, v)|L, for all v ∈ Tp∂M . Here II is the second

fundamental form of ∂M in M and IIH is the vector-valued second fundamental

form of the immersion ψ.

If ∂M is simply connected, then M is isometric to a domain in Hn.

The following theorem allows us to describe a gradient Ricci almost soliton with bound-

ary as a hyperbolic domain.

Theorem 3.5.5. Let (Mn, g,∇f, λ), n ≥ 3, be a compact gradient Ricci almost soliton

with simply connected boundary. Suppose f satisfies (3.4) and ∇f does not vanish on

∂M . If there exists an isometric immersion of ∂M into the Hn+n0, n0 ≥ 0, and

1− n− λ(p) ≤ Hess(f)(v, v) ≤ −|∇f(p)||IIHp (v, v)|L, (3.24)

for all p ∈ ∂M , v ∈ Tp∂M , |v|L = 1. Here, IIH denotes the vector-valued second

fundamental form of ∂M in Hn+n0, then M is isometric to a domain in Hn.

Proof. Since gp(S∇f(p)(u), v) = −Hess(f)(u, v), for any u, v ∈ Tp∂M , then

gp(S∇f(p)(v), v) ≥ |∇f(p)|L|IIHp (v, v)|L,

for all v ∈ Tp∂M , |v|L = 1, which implies that II∇f(p)(v, v) ≥ |∇f(p)|L|IIHp (v, v)|L, for all
p ∈ ∂M , and v ∈ Tp∂M , |v|L = 1. Where II∇f(p) is the second fundamental form of ∂M
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at p with respect ∇f(p) in M . On the other hand, we have that

λ(p) + Hess(f)(v, v) ≥ −(n− 1),

for all p ∈ ∂M , and v ∈ Tp∂M , |v|L = 1. Since (M, g,∇f, λ) is a gradient Ricci almost

soliton, then Ric ≥ −(n− 1)g. The conclusion follows from Theorem 3.5.4. ■

Example 3.5.6. Set D3 = {(x, y, z, w) ∈ H3 : x ≤
√
2}. If we choose f(p) = − cosh dH(p, ∂D

3)

and λ(p) = −1 + f(p), then (D3, ⟨·, ·⟩L,∇f, λ) is a gradient Ricci almost soliton.
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Chapter 4

Gradient Ricci Almost Solitons on

Warped Products with Boundary

Our goal in this chapter is to describe gradient Ricci almost solitons on warped products

(M = B ×h F, g,∇f, λ), where B is a Riemannian manifold with boundary, and F has

no boundary. In order to do so, we shall use the rigidity theorems that we obtained

in Chapter 3. Moreover, we apply some identities obtained by Borges and Tenenblat

in [2], namely, Theorem 2.1 and Theorem 2.3. We divide this chapter in two sections. In

the first section we obtain basic properties for gradient Ricci almost solitons on warped

product with boundary, and then we give the statement of Theorem 2.1 in [2], thus we

obtain properties of the topology and geometry of the basis of M = B ×h F , and its

boundary. By using these properties we conclude that the gradient vector field of the

warping function h is a Killing vector field. In the second section, we use Theorem 2.3

in [1], Theorem 3.4.2, Theorem 3.8.2, and Theorem 3.9.3 to characterize the basis of

the gradient Ricci almost solitons on warped product, where the it is compact. At the

last section we give two examples of non trivial gradient Ricci almost solitons on warped

product.

4.1 Some properties of gradient Ricci almost solitons

The first Proposition of this section is a simple and very useful result which show us how

decompose a smooth function on a warped product as the sum of a function constant on

the fiber and a function constant on the basis.

Proposition 4.1.1 (Proposition 4.1 in [2].). Let (B, gB) and (F, gF ) be Riemannian man-

ifolds, where B is a smooth manifold with boundary and F is a smooth manifold without

boundary. Let (M = B×h F, g) be an warped product. If (M, g,∇f, λ) is a gradient Ricci
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almost soliton, then

f = Λ+ hΦ, (4.1)

where Λ : B −→ R and Φ : F −→ R are smooth functions.

Proof. From (2.18) and (2.27) we obtain

−1

h
X(h)U(f) +X(U(f)) = 0,

for all horizontal vector field X and vertical vector field U . Since

X(U(fh−1)) = X(h−1U(f)) = − 1

h2
X(h)U(f) +

1

h
X(U(f)),

then X(U(fh−1)) = 0, for all horizontal vector field X and vertical vector field U . which

implies there exist smooth functions Λ : B −→ R and Φ : F −→ R such that fh−1 = Λ+Φ.

Therefore,

f = Λ+ hΦ,

where Λ = hΛ. ■

From (2.17), (2.19) and (4.1) we obtain the following lemma.

Lemma 4.1.2. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is a smooth

manifold with boundary and F is a smooth manifold without boundary. Let (M = B ×h

F, g) be an warped product. If (M, g,∇f, λ) is a gradient Ricci almost soliton, then

RicB = λgB +
k

h
HessB(h) + HessB(Λ) + ΦHessB(h), (4.2)

RicF = [λh2 − h∆Bh+ (k − 1)|∇Bh|2 + hgB(∇BΛ,∇Bh)]gF + h|∇Bh|2ΦgF +

+hHessF (Φ), (4.3)

where Λ : B −→ R and Φ : F −→ R are smooth functions which satifies (4.1).

The following corollary is a more general version of Theorem 2.2.7.

Corollary 4.1.3. Let (Bm, gB) and (F k, gF ), k ≥ 3 be Riemannian manifolds such that

B is a manifold with boundary, F with no boundary. Let (M = B ×h F, g,∇f, λ) be a

gradient Ricci soliton. Assume the maximum point of h is an interior point. If f is not

constant on F , then the warped product M = B ×h F is a Riemannian product, i.e., h is

constant.

Proof. Let p0 be any point in B. Consider an unit horizontal vector field X locally defined
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in a neighborhood of p0, namely, D ⊂ B. By using (4.2) we have

RicB(X,X) = λ+
k

h
HessB(h)(X,X) + ΦHessB(h)(X,X),

then for any point (p, q) ∈ D × F , we have

Φ(q)HessB(h)(X,X)(p) = RicB(X,X)(p)− λ− k

h(p)
HessB(h)(X,X)(p). (4.4)

Since Φ is not constant, then there exists a vertical vector field U defined in an open

subset G ⊂ F such that U(Φ) ̸= 0 in G. By applying U in (4.4) we get to

U(Φ)HessB(h)(X,X) = 0,

in D ×G. Thus,

HessB(h)(X,X)(p0) = 0,

for any p0 ∈ B and any unit horizontal vector field X defined in a neighborhood of p0. It

follows that

∆Bh = 0, in B,

From the Maximum Principle we conclude that h is constant. ■

For more applications of the Laplacian on the Riemannian manifolds with boundary

we indicate [21].

Proposition 4.1.4. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is a

smooth manifold with boundary and F with no boundary. Let (M = B ×h F, g) be an

warped product. If (M, g,∇f, λ) is a gradient Ricci almost soliton and the warped product

M = B ×h F is a Riemannian product, then λ is constant.

Proof. Let c0 be the positive constant such that h ≡ c0. From (4.2) and (4.3) we have

that

RicB = λgB +HessB(Λ),

RicF = c20λgF + c0HessF (Φ).

Let (p0, q0) ∈ B × F be any point. Take X any unit horizontal vector field defined on an

open set D0 ⊂ B and U an unit vertical vector field defined on an open set G0 ⊂ F such
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that (p0, q0) ∈ D0 ×G0. For each (p, q) ∈ D0 ×G0 it follows that

λ(p, q) = RicB(X,X)(p)− HessB(Λ)(X,X)(p),

λ(p, q) =
1

c20
RicF (U,U)(q)−

1

c0
HessF (Φ)(U,U)(q).

By setting λ(p0, q0) = λ0, it follows that λ ≡ λ0 on D0 ×G0. So we have proved that for

each (p0, q0) ∈ B × F there exists a neighborhood D0 ×G0 ∈ B × F of (p0, q0) such that

λ(p, q) = λ(p0, q0). Let x0 ∈ R be such that λ−1(x0) ̸= ∅. Set

(B × F )(x0) = {(p, q) ∈ B × F : λ(p, q) = x0}.

We have that (B × F )(x0) is closed because (B × F )(x0) = λ−1(x0). And (B × F )(x0) is

open because for each point (p, q) ∈ (B ×F )(x0) there exists a neighborhood Dp ×GP ⊂
B × F of (p, q) such that λ ≡ x0 in Dp ×GP . As B × F is connected, then λ ≡ x0. ■

The following theorem provide us with important identities that we shall use in the

next section.

Theorem 4.1.5 (Theorem 2.1 in [2].). Let (Bm, gB) and (F k, gF ) be Riemannian man-

ifolds, where B is with boundary and F with no boundary. Let (M = B ×h F, g) be a

non trivial warped product, i.e., h is not constant. Then (M, g,∇f, λ) is a gradient Ricci

almost soliton, with f non constant on F if and only if f = Λ + hΦ, where Λ : B −→ R
and Φ : F −→ R are smooth functions such that

HessB(h) = a0hgB, (4.5)

RicB = −
[
1

h
gB(∇Bh,∇BΛ)−

a

h
+ (m− 1)a0

]
gB + HessB(Λ), (4.6)

HessF (Φ) = (−cΦ− a)gF , (4.7)

RicF = c(k − 1)gF , (4.8)

for some constants a0, a, c ∈ R. Moreover, the function λ is given by

λ =
1

h
gB(∇Bh,∇BΛ)−

a

h
+ (m+ k − 1)a0 − a0hΦ, (4.9)

and the constants a0 and c are related to h by the equation

|∇Bh|2 − a0h
2 = c. (4.10)

Proof. See [2]. ■

By using the Theorem 4.1.5 and the results that we obtained in Chapter 3, we have
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the following corollary.

Corollary 4.1.6. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is ori-

ented, connected with boundary and F with no boundary. Let (M = B ×h F, g) be an

warped product, where h is a positive function which satisfies (3.4). Suppose (M, g,∇f, λ)
is a gradient Ricci almost soliton such that f is non constant on F . Then, the following

assertions are satisfied:

(i) If B is compact, then ∇Bh ̸= 0 and H∂B > 0. In particular, II∇Bh is positive.

(ii) Assume ∇Bh ̸= 0 on ∂B. If II∇Bh ≤ 0, then |∇Bh| is constant and B is non

compact. In particular, ∂B is totally geodesic.

(iii) Let Λ be the funcion which satisfies (4.1). Suppose Λ is constant on ∂B, and m ≥ 3.

Then, gB(∇Bh,∇BΛ) is constant in B if and only if B is Ricci flat and ∇BΛ is a

Killing vector field.

Proof. (i) Suppose that B is compact. So, take the trace in (4.5). We obtain

∆Bh = −a0mh.

Since B is compact, then 0 < λ1(∆B) = −a0m, where λ1(∆B) is the first eigenvalue of

∆B. Let η(p) be an unit normal vector to the boundary ∂B at p. So

∇Bh(p) = gp(∇Bh(p), η(p))η(p),

which implies that

HessB(h)(u, v) = gp(∇Bh(p), η(p))gp(∇uη(p), v),

for all u, v ∈ Tp∂B. From (4.5) we obtain

a0h(p)gp(u, v) = gp(∇Bh(p), η(p))gp(∇uη(p), v),∀u, v ∈ Tp∂B,

for all p ∈ ∂B. Since a0h(p) < 0 for every p ∈ B, then

gp(∇Bh(p), η(p))gp(∇vη(p), v) < 0,

for all v ∈ Tp∂B, |v| = 1. Therefore, ∇Bh ̸= 0 on ∂B.

On the other hand, from Lemma 3.2.6 we have

H∂B(p)|∇Bh(p)| = −(m− 1)a0h(p),

for all p ∈ ∂B, where H∂B is the mean curvature of ∂B. Since |∇Bh| ≠ 0 on ∂B, then
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H∂B > 0. Moreover, since IIB∇Bh(p)(u, v) = −Hess(h)(u, v), for all u, v ∈ Tp∂B, then

IIB∇Bh(p)(v, v) = −a0h(p),

for all p ∈ ∂B, and v ∈ Tp∂B, |v| = 1.

(ii) Since h satisfies (3.4), and from (4.5)∇Bh is a conformal vector field with∇Bh ̸= 0

on ∂B, then from Proposition 3.2.12 ∂B is umbilical. The second fundamental form with

respect to ∇Bh is given by IIB∇Bh = −HessB(h). From item (i) we have that B is non

compact. Since∫
B

∆BhdB = −
∫
B

div(∇Bh)dB = −
∫
∂B

gB(∇Bh, η)d(∂B) ≥ 0,

where η is a outward normal vector to the boundary, and HessB(h) = a0hgB, then a0h ≤ 0,

which implies II∇Bh ≥ 0. On the other hand, II∇Bh ≤ 0 from the hypothesis. Therefore,

II∇Bh ≡ 0 on ∂B, which implies that ∂B is totally geodesic and HessB(h) ≡ 0 on B.

Since

HessB(h)(X,∇Bh) =
1

2
X(|∇Bh|2),

for every horizontal vector field X, then |∇Bh| is constant.
(iii) For any p ∈ ∂B, we have ∇BΛ(p) ∈ (Tp∂B)⊥. Thus

∇BΛ(p) = gB(∇BΛ(p),∇Bh(p))∇Bh(p),

on ∂B.

If gB(∇BΛ,∇Bh) is constant, then

∇BΛ(p) = gB(∇BΛ(p),∇Bh(p))∇Bh(p),

for all p ∈ B. Thus

∇Xp∇BΛ(p) = [XpgB(∇BΛ(p),∇Bh(p))]∇Bh(p)+

+gB(∇BΛ(p),∇Bh(p))∇Bh(p)∇Xp∇Bh(p).

Then

∇Xp∇BΛ(p) = gB(∇BΛ(p),∇Bh(p))∇Bh(p)∇Xp∇Bh(p),

which implies

HessB(Λ)(u, v) = gB(∇BΛ(p),∇Bh(p))HessB(h)(u, v), u, v ∈ TpB.

Since HessB(h) ≡ 0 in B, then HessB(Λ) ≡ 0 in B. So ∇BΛ is a Killing vector field. From
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(4.6) one shows that

RicB = −
[

1

h(p)
gB(∇BΛ(p),∇Bh(p))−

a

h(p)

]
gB.

Thus, there exists a constant α0 ∈ R such that

gB(∇BΛ(p),∇Bh(p))− a = α0h(p)

Since gB(∇BΛ,∇Bh) and a are constant, and h is not constant, then α0 = 0. Therefore,

B is Ricci flat.

Conversely, if B is Ricci flat and ∇BΛ is a Killing vector field, then from (4.6) we

obtain that gB(∇BΛ,∇Bh) is constant in B. ■

4.2 Compact Ricci Almost Solitons on Warped Prod-

uct

In this section we study gradient Ricci almost solitons (M = B×h F, g,∇f, λ), where the
function f is not constant on the fiber F .

The following theorem follows from Theorem 2.3 in [2], which was proved in local

coordinates.

Theorem 4.2.1. Let (Bm, gB) and (F k, gF ) be Riemannian manifolds, where B is a

smooth manifold with boundary and F is a smooth manifold without boundary. Let (M =

B ×h F, g) be a non trivial warped product, i.e., h is not constant. Then (M, g,∇f, λ) is
a gradient Ricci almost soliton, with f constant on F if and only if

RicB = λgB +
k

h
HessB(h) + HessB(f), (4.11)

λh2 = hgB(∇Bf,∇Bh)− (k − 1)|∇Bh|2 + h∆Bh+ c(k − 1), (4.12)

RicF = c(k − 1)gF , (4.13)

for some constant c ∈ R.

Proof. See [2]. ■

Next, we have the main theorem of this chapter. It provide us characterizations for

a gradient Ricci almost soliton (M = B ×h F, g,∇f, λ), where the basis B is a compact

Riemannian manifold with boundary.

Theorem 4.2.2. Let (Bm, gB) and (F k, gF ), m ≥ 2 be Riemannian manifolds, where B

is oriented, connected, compact, and with connected boundary, and F with no boundary.
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Let (M = B ×h F, g) be an warped product, where h is a positive function which satisfies

(3.4). Suppose (M, g,∇f, λ) is a gradient Ricci almost soliton such that f is constant on

F . Moreover, suppose that ∇Bh is a conformal vector field. Then, the following assertions

are satisfies:

(i) If f satisfies (3.4), ∇f ̸= 0 on ∂M , the scalar curvature of B is positive, and

Hess(f) = ξ g, where ξ ≤ 0 on ∂B, then there exists a positive constant ρ ∈ R
such that the first eigenvalue λ1(∆B) of the Laplacian on B satisfies the inequality

λ1(∆B) ≥ mρ2. Moreover, the equality holds if and only if B is isometric to a closed

hemisphere of the Euclidean sphere Sm(ρ2) of radius
1

ρ
.

(ii) Let H∂B, Ric∂B, and KB be the mean curvature, the Ricci curvature and the sectional

curvature of B, respectively. Suppose f constant on ∂M , and the Ricci curvature of

B is non negative. Assume H∂B, Ric∂B, and KB are such that the following system

kgB(∇Bh(p), η(p)) + h(p)|∇f(p)| < h(p)H∂B(p),

λ(p) < Ric∂B(v, v) +KB(η(p), v), (4.14)

is satisfied, for all p ∈ ∂B, where η(p) = ∇f(p)
|∇f(p)| . Then the first eigenvalue λ1(∆∂B)

of the Laplacian on ∂B satisfies λ1(∆∂B) ≥ (m − 1)ρ2, for some positive constant

ρ ∈ R. Moreover, the equality holds if and only if B is isometric to anm-dimensional

closed Euclidean ball of radius
1

ρ
.

(iii) Let f , H∂B, Ric∂B, and KB be as in item (ii). If H∂B, Ric∂B, and KB are such that

(4.14) is satisfied, then the mean curvature H∂B satisfies∫
∂B

1

H∂B(p)
d(∂B) ≥ mvol(B).

Moreover, the equality holds if and only if B is isometric to a closed Euclidean ball.

(iv) Suppose that ∂B is simply connected, m ≥ 3, ∇f ̸= 0 on ∂M , and f satisfies (3.4).

If there exists an isometric immersion of ∂B into the Hm+m0, m0 ≥ 0, and the

Hessian of f is such that

(1− n− λ(p))h(p)|∇f(p)|
k gB(∇Bh(p), η(p)) + h(p)|∇f(p)|

≤ Hess(f)(v, v) ≤

≤ −|∇f(p)|L|IIHp (v, v)|L, (4.15)

is satisfied, then B is isometric to a m-dimensional hyperbolic domain. Here, IIH

denotes the vector-valued second fundamental form of ∂B in Hm+m0.

Proof. To prove item (i) we shall act as in the prove of Theorem 3.2.14. Since f is constant
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on F , ∇f ̸= 0, and Hess(f) = ξ g, then from Lemma 3.2.10 we obtain that

H∂B(p)|∇f(p)| = −(n− 1)ξ(p),

for all p ∈ ∂B. It follows that H∂B ≥ 0. Since (M, g,∇f, λ) is a gradient Ricci almost

soliton, then from (4.11) there exists a positive constant ρ such that

RicB ≥ (m− 1)ρ2.

The conclusion follows from Theorem 3.2.13.

To prove item (ii), we proceed as in the proof of Proposition 3.3.2, consequently we

obtain

RicB(ei(p), ei(p)) = λ(p)− k gB(∇Bh(p), η(p)) + h(p)|∇f(p)|
h(p)

κi(p),

for all p ∈ ∂B, where ei(p) is the i-th principal direction associated to the i-th principal

curtavure κi(p) at p.

By acting as in Proposition 3.4.1 we obtain

κi(p)
2 +

k gB(∇Bh(p), η(p)) + h(p)|∇f(p)| − h(p)H(p)

h(p)
κi(p) + Ric∂B(ei(p), ei(p)) +

+KB(ei(p), η(p))− λ(p) = 0,

for all p ∈ ∂B. The conclusion follows by following the same steps in the proof of the

Theorem 3.4.4.

Since the statement of item (iii) is basically the same as item (ii) of Theorem 3.4.4,

then the conclusion follows.

From (4.11) and(4.15) we have that

II∇f(p)(v, v) ≥ |∇f(p)||IIHp (v, v)|L,
RicB(v, v) ≥ −(m− 1),

for all p ∈ ∂B, v ∈ Tp∂B, |v| = 1, where II∇f(p) denotes the second fundamental form at

p with respect ∇f(p). The conclusion of item (iv) follows from Theorem 3.5.4. ■

4.3 Some examples

In this section we compute two non trivial examples of gradient Ricci almost solitons with

boundary on warped product.

Example 4.3.1. Let c1, c2 be positive constants. For i = 1, 2, let S2(ci) be the Euclidean
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sphere of radius 1√
ci
. Set

S2
+(ci) = {(x, y, z) ∈ S2(ci) : z ≥ 0},

for each i = 1, 2. For any r ∈
(
0, 1√

c1

)
, define the set

D2
r = {(x, y, z) ∈ S2

+(c1) : z ≥ r}.

We shall consider the warped product

(M = D2
r ×h S2(c2), g = gS2+(c1) + h(p)2gS2(c2)),

where

h(p) =

√
c2
c1

sin[
√
c1dS2+(c1)(p, ∂S

2
+(c1))].

Let TD2
r and TS2(c2) be the tangent bundle of D2

r and S2(c2), respectively. For all X, Y ∈
TD2

r and V,W ∈ TS2(c2), we have

RicM(X, Y ) = RicD2
r(c1)

− 2
h
Hess(h)(X, Y ),

RicM(X, V ) = 0,

RicM(V,W ) = RicS2(c2) − [−h∆h+ |∇h|2]gS2(c2).

If we choose the coordinates ψ(θ, φ) = 1√
c1
(sinφ cos θ, sinφ sin θ, cosφ), then

∂

∂θ
=

1
√
c1
(− sinφ sin θ, sinφ cos θ, 0),

∂

∂φ
=

1
√
c1
(cosφ cos θ, cosφ sin θ,− sinφ).

Since (gS2+(c1))θθ =
1
c1
sin2 φ, (gS2+(c1))θφ = 0, and (gS2+(c1))φφ =

1

c1
, then

dS2+(c1)(p, ∂S
2
+(c1)) =

1
√
c1

(π
2
− φ

)
.

Thus, h(ψ(θ, φ)) =
√

c2
c1

cosφ. From now on, we shall consider h on the coordinates ψ.

From the definition, we have

∇h = (gS2+(c1))
θθ ∂h

∂θ

∂

∂θ
+ (gS2+(c1))

θφ ∂h

∂φ

∂

∂θ
+ (gS2+(c1))

φθ ∂h

∂θ

∂

∂φ
+ (gS2+(c1))

φφ ∂h

∂φ

∂

∂φ
,
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which implies ∇h = −
√
c1c2 sinφ

∂

∂φ
. It follows that

∇ ∂
∂θ
∇h = −

√
c1c2 sinφ∇ ∂

∂θ

∂

∂φ
.

Since ∇ ∂
∂θ

∂
∂φ

= Γθ
θφ

∂
∂θ

+ Γφ
θφ

∂
∂φ
, where Γθ

θφ = cotgφ, and Γφ
θφ = 0, then

∇ ∂
∂θ
∇h = −

√
c1c2 cosφ

∂

∂θ
.

Since ∇ ∂
∂φ

∂
∂φ

= 0, then ∇ ∂
∂φ
∇h = −√

c1c2 cosφ ∂
∂φ
. Therefore, Hess(h) = −c1hgS2+(c1),

which implies ∆h = 2c1h. Then

−h∆h+ |∇h|2 = −2c2 cos2 φ+ c2 sin
2 φ = −3c2 cos

2 φ+ c2.

We obtain
RicM(X, Y ) = 3c1gS2+(c1)(X, Y ),

RicM(V,W ) = 3c2 cos
2 φgS2(c2)(V,W ).

Now, we shall consider functions f, λ :M −→ R given by

f(p, q) =
1

c1
sin[

√
c1dS2+(c1)(p, ∂S

2
+(c1))] sin[

√
c2dS2(c2)(q, ∂S

2
+(c2))],

λ(p, q) = sin[
√
c1dS2+(c1)(p, ∂S

2
+(c1))] sin[

√
c2dS2(c2)(q, ∂S

2
+(c2))] + 3c1.

We have

Hess(f)(X, Y ) = −(∇D
XY )f + (XY )f,

Hess(f)(X, V ) = −1

h
X(h)V (f) + (XV )f,

Hess(f)(V,W ) = hgS2+(c1)(∇Df,∇h)gS2(c2)(V,W )− (∇S2(c2)
V W )f + (VW )f,

where ∇D and ∇S2(c2) denote the Levi-Civita conections on D2
r and S2(c2), respectively.

Moreover, set

∇Df =
∑

i,j∈{θ,φ}

(gS2+(c1))
ij ∂f

∂j

∂

∂i
.

On S2(c2), we shall consider the coordinates

Θ(ξ, ζ) =
1

√
c2
(sin ξ cos ζ, sin ξ sin ζ, cos ξ).

Thus
∂

∂ζ
=

1
√
c2
(− sin ξ sin ζ, sin ξ cos ζ, 0),

∂

∂ξ
=

1
√
c2
(cos ξ cos ζ, cos ξ sin ζ,− sin ξ).
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Define (gS2(c2))ζζ = gS2(c2)

(
∂

∂ζ
,
∂

∂ζ

)
, (gS2(c2))ζξ = gS2(c2)

(
∂

∂ζ
,
∂

∂ξ

)
, and (gS2(c2))ξξ =

gS2(c2)

(
∂

∂ξ
,
∂

∂ξ

)
. Then (gS2(c2))ζζ =

1

c2
sin2 ξ, (gS2(c2))ζξ = 0, and (gS2(c2))ξξ =

1

c2
. On

the coordinates Θ(ξ, ζ) we have

dS2(c2)(q, ∂S
2
+(c2)) =

1
√
c2

(π
2
− ξ
)
.

Therefore, f(p, q) =
1

c1
cosφ cos ξ and λ(p, q) = cosφ cos ξ + 3c1. Since f(p, q) = Λ(p) +

h(p)Φ(q), then Hess(f)(X, V ) = 0, for all X ∈ TD2
r and V ∈ TS2(c2). Moreover,

∇Df = − sinφ cos ξ
∂

∂φ
.

Since ∇S2(c2)
∂
∂ζ

∂
∂ξ

= cotg ξ ∂
∂ζ
, and ∇S2(c2)

∂
∂ξ

∂
∂ξ

= 0, then

−(∇S2(c2)
V W )f + (VW )f = −c2f(p, q)(gS2(c2))(V,W ),

for all V,W ∈ TS2(c2). Moreover,

−(∇D
X)f + (XY )f = −c1f(p, q)gS2+(c1)(X, Y ),

for each X, Y ∈ TD2
r . We have

hgS2+(c1)(∇Df,∇h)gS2(c2) =

√
c2
c1

cosφ gS2+(c1)

(
− sinφ cos ξ

∂

∂φ
,−

√
c1c2 sinφ

∂

∂φ

)
gS2(c2)

=
c2
c1

sin2 φ cosφ cos ξ gS2(c2).

Now, by using the identities that we have just obtained, we get to

λ g(X, Y ) + Hess(f)(X, Y ) = (cosφ cos ξ + 3c1)gS2+(c1)(X, Y )− cosφ cos ξ gS2+(c1)(X, Y ),

λ g(X, V ) + Hess(f)(X, V ) = 0,

λ g(V,W ) + Hess(f)(V,W ) = (cosφ cos ξ + 3c1)
c2
c1

cos2 φ gS2(c2)(V,W )+

+
c2
c1

sin2 φ cosφ cos ξ gS2(c2)(V,W )− c2
c1

cosφ cos ξ gS2(c2)(V,W ),

for all X, Y ∈ TD2
r and V,W ∈ TS2(c2). Therefore,

λ g(X, Y ) + Hess(f)(X, Y ) = 3c1gS2+(c1)(X, Y )

λ g(X, V ) + Hess(f)(X, V ) = 0

λ g(V,W ) + Hess(f)(V,W ) = 3c2 cos2 φ gS2(c2)(V,W ).
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Thus RicM = λ g + Hess(f).

The next example is very analogous as Example 4.3.1. We just replace spherical to

hyperbolic domains.

Example 4.3.2. Let c1, c2 be negative constants. Set

D2
r = {(x, y, z) ∈ H2(c1) : x ≤ r},

where 1√
−c1

< r. We shall consider the warped product

(M = D2
r ×h H2(c2), g = ⟨·, ·⟩L + h(p)2⟨·, ·⟩L),

where the warping function is given by

h(p) =

√
c2
c1

cosh[
√
−c1dH2(c1)(p, ∂D

2
r+ϵ)],

where ϵ > 0. Let f, λ be functions on M given by

f(p, q) =
1

c1
cosh[

√
−c1dH2(c1)(p, ∂D

2
r+ϵ)] cosh[

√
−c2dH2(c2)(q, e1)],

λ(p, q) = cosh[
√
−c1dH2(c1)(p, ∂D

2
r+ϵ)] cosh[

√
−c2dH2(c2)(q, e1)] + 3c1,

where e1 = (1, 0, 0). We shall consider the following coordinates on H2(c1) and H2(c2),

respectively,

ψ(θ, φ) =
1√
−c1

(coshφ, sinhφ cos θ, sinhφ sin θ),

Θ(ξ, ζ) =
1√
−c2

(cosh ξ, sinh ξ cos ζ, sinh ξ sin ζ).

On these coordinates, the functions h, f, λ are written by h(p) =

√
c2
c1

coshφ, f(p, q) =

1

c1
coshφ cosh ξ, and λ(p, q) = coshφ cosh ξ + 3c1. We have that

∂

∂θ
=

1√
−c1

(0,− sinhφ sin θ, sinhφ cos θ),

∂

∂φ
=

1√
−c1

(sinhφ, coshφ cos θ, coshφ sin θ).

Thus

〈
∂

∂θ
,
∂

∂θ

〉
L
= − 1

c1
sinh2 φ,

〈
∂

∂θ
,
∂

∂φ

〉
L
= 0, and

〈
∂

∂φ
,
∂

∂φ

〉
L
= − 1

c1
. It follows

that

∇h = −c1
√
c2
c1

sinhφ
∂

∂φ
.

Then

∇ ∂
∂θ
∇h = −c1

√
c2
c1

sinhφ∇ ∂
∂θ

∂

∂φ
= −c1

√
c2
c1

coshφ
∂

∂θ
,
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and

∇ ∂
∂φ
∇h = −c1

√
c2
c1

coshφ
∂

∂φ
.

Therefore, Hess(h) = −c1h(p)⟨, ⟩L. Set

∇H2(c1)f =
∑

i,f∈{θ,φ}

gij
∂f

∂j

∂

∂i
,

which implies ∇H2(c1)f = − sinhφ cosh ξ
∂

∂φ
. Since Hess(f)(X, Y ) = −(∇H2(c1)

X Y )f +

(XY )f , then Hess(f)(X, Y ) = −c1f(p, q)⟨X, Y ⟩L, for every X, Y ∈ TD2
r . We have

h(p)⟨∇H2(c1)f,∇h⟩L =

√
c2
c1

coshφ

〈
− sinhφ cosh ξ

∂

∂φ
,−c1

√
c2
c1

sinhφ
∂

∂φ

〉
L

= −c2
c1

coshφ cosh ξ sinh2 φ.

Since ∇H2(c2)
∂
∂ζ

∂
∂ξ

= cotgh ξ ∂
∂ζ
, ∇H2(c2)

∂
∂ζ

∂
∂ζ

= − sinh ξ cosh ξ ∂
∂ξ

e ∇H2(c2)
∂
∂ξ

∂
∂ξ

= 0, then

−(∇H2(c2)
V W )f + (VW )f = −c2f(p, q)⟨, ⟩L.

We have that
RicM(X, Y ) = 3c1⟨, ⟩L,
RicM(X, V ) = 0,

RicM(V,W ) = 3c2 cosh2 φ⟨, ⟩L,

for all X, Y ∈ TD2
r e V,W ∈ TH2(c2). On the other hand, we have

λ g(X, Y ) + Hess(f)(X, Y ) = 3c1⟨, ⟩L,
λ g(X, V ) + Hess(f)(X, V ) = 0,

λ g(V,W ) + Hess(f)(V,W ) = 3c2 cosh2 φ⟨, ⟩L

Therefore, (M = D2
r ×hH2(c2), g,∇f, λ) is a gradient Ricci almost soliton with boundary.
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