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ABSTRACT This paper proposes a scheme for secure telecommunication based on the projective
synchronization of hyperchaotic systems. The design of the synchronizer considers the presence of
disturbances to increase the robustness of the method. The main advantage of the proposed approach lies in
that only two control inputs are required to synchronize the master and slave systems. Hence, the control
structure is simple, which, in turn, simplifies the applications. Based on Lyapunov theory, the proposed
approach ensures the finite-time convergence of the synchronization error to a small neighborhood of the
origin, even in the presence of disturbances in all states. Simulations to both show the advantages and
applications of the proposed approach were also accomplished to validate the theory.

INDEX TERMS Cryptography, hyperchaotic systems, projective synchronization, Lyapunov theory.

I. INTRODUCTION
In the past few years, significant progress has been made
in the study of chaotic systems. Chaotic systems are deter-
ministic nonlinear systems that show sensitive dependence
on initial conditions and have an aperiodic behavior [1].
A necessary condition for a system to be chaotic lies in that
at least one Lyapunov exponent be positive [2]. The chaotic
motion on a strange attractor was first discovered in the 60s
by Lorenz [3]. In the following years, some relevant chaotic
models, such as those by Rössler [4], Chen and Ueta [5],
Sprott [6], and Lüand Chen [7], were introduced. More
recently, many works have been proposed in the literature.
See, for example, [8]–[11].

On the other hand, a system can exhibit hyperchaoswhen at
least two of their associated Lyapunov exponents are positive,
and its dimension is higher than three [12]. Hyperchaos was
initially introduced in 1979 by Rössler [13]. Since then, other
important models have been proposed. Refer to [2], [14]–[26]
and the references therein to quote a few.

Chaotic and hyperchaotic systems have been used in
most diverse contexts, including nonlinear identification
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[27]–[29], observation and control [30], [31], economy
[32], [33], welding [34], [35], and secure communica-
tion [11], [21], [36], [37], [39]–[42]. In particular, chaos-
based cryptography is a very active research topic in the
literature, which is motivated by the pseudo-random behavior
observed in chaotic systems. Typical applications encompass,
for example, the generation of pseudo-random numbers
for encryption and decryption of messages [43]–[47].
The main technologies used for implementation are analog
electronics [21], [24], [48], field-programmable gate array
(FPGA) [43], [49], microcontrollers [50], [51], and digital
signal processing (DSP) [52]. It should be noted that
chaos has a less complex and unpredictable behavior than
hyperchaos, as claimed in [53]. Hence, the use of hyperchaos
can sometimes be more suitable than chaos for secure
communication [54], [55].

Synchronization lies in adjusting the dynamic behavior of
two dynamic systems, known as master (drive) and slave
(response), so that their trajectories converge in time. The
synchronization of chaotic systems was first introduced in
1990 [56]. Several classes of synchronization have been
proposed since then: antisynchronization (AS) [57], lag syn-
chronization (LS) [58], projective synchronization (PS) [16],
[59]–[63], modified projective synchronization (MPS) [61],
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and function projective synchronization FPS [64]. In general,
the synchronization type depends on a scaling factor. For
instance, PS is characterized by a constant proportional
synchronization between the master and slave systems.
Hence, identical and AS are particular cases of this kind of
synchronization with scaling factors 1 or −1. Matrix and
functional scaling factors define MPS and FPS, respectively.
However, most of the synchronization works above are
only valid under either fully-actuated control or matching
condition [65].

Also, interesting contributions have been proposed in [11],
[17], [19], [20], [23], [26], [60], [66]–[68]. However,
in these works, the usage of disturbances in the stability and
convergence analysis was not considered.

In summary, the synchronization of either chaos or
hyperchaos is characterized by two main hypotheses: the
control dimension and system order are equal [9], [17],
[19], [20], [39], [61], [63], [66], [69], [70] and unknowns
are not considered in the stability analysis [11], [17], [19],
[20], [23], [26], [60], [66]–[68]. The former is related to the
complexity of the synchronization scheme and the latter to the
robustness of the method. Synchronization of underactuated
hyperchaotic systems is rarely found in the literature.
Also, to the best of our knowledge, the robust projective
synchronization of underactuated hyperchaotic systems is not
present in the literature. It should be noted that underactuation
is a condition defined by a higher number of independent
variables than control signals [71]. Thus, underactuated sys-
tems have fewer actuators than degrees of freedom [72]–[75],
i.e., the control dimension is lesser than the state dimension.
The main significance of the underactuated projective
synchronization is the reduction of actuators in diverse
applications.

Motivated by the previous facts, this work presents a
robust scheme for projective synchronization of a hyper-
chaotic system to overcome the aforementioned drawbacks.
Hence the proposed approach is based on both Lyapunov
theory (to ensure boundedness and finite-time convergence)
and underactuated control law (to simplify the applica-
tion). More specifically, this paper presents the following
contributions.

1) An underactuated projective synchronization scheme
for a perturbed Zhou et al. hyperchaotic system [20]
is proposed. The proposed synchronization has a simple
structure, in contrast to [9], [17], [19], [20], [22], [23], [39],
[53], [61], [63], [69], [70], [76].

2) Neither matching condition nor fully-actuated control
is assumed, i.e., the analysis considers that disturbances
are present in all states, even in those without actuation,
and all states are not used in the proposed synchronization
mechanism. In contrast to [11], [17], [19], [20], [23], [26],
[60], [66]–[68].

3) The proposed scheme is applied to secure commu-
nication, and it was implemented using electrical circuits.
In contrast to [17], [19], [20], [23], [26], [61], [63], [69], [70],
[76], [77].

It should be noted that a simple structure leads to easier
implementations. The consideration of disturbances in the
stability analysis aim at robustness against disturbances
which are inevitable in actual applications. To the best of our
knowledge, this is the first time that a robust underactuated
projective synchronization method for hyperchaotic systems
is proposed in the literature.

The work is organized as follows. In Section II, the
problem and main assumptions are introduced. The synchro-
nization error is presented in Section III. In Section IV,
a control law, which ensures that the synchronization
errors are bounded and finite-time convergent, is proposed.
Section V is concerned with application of the proposed
method in secure telecommunication. In Section VI, the
development of an electronic circuit for the implemen-
tation of the proposed method is accomplished, and a
comparison study with another work in the literature is
performed. Finally, the conclusions of the paper are drawn
in Section VII.

II. PROBLEM STATEMENT
Consider the following master hyperchaotic system [20]:

ẋm = a(ym − xm)− wm
ẏm = bxm − xmzm − ym
żm = xmym − czm
ẇm = dxmzm − kwm

(1)

Based on (1), a perturbed slave hyperchaotic system can be
defined as 

ẋs = a(ys − xs)− ws + h1 + u1
ẏs = bxs − xszs − ys + h2
żs = xsys − czs + h3
ẇs = dxszs − kws + h4 + u4

(2)

where xm, ym, zm, and wm are the state variables of the master
system (1); xs, ys, zs, and ws are the state variables of the
slave system (2); h1, h2, h3, and h4 are the disturbances;
u1 and u4 are the control signals. The system parameters
satisfy a ∈ [10, 25], b ∈ [10, 50], c ∈ [1, 3], d ∈ [1, 2],
and k ∈ [−1, 2] [20].

The aim of this work lies in the synchronization of (1)
and (2) by using an underactuated control scheme, for
any initial condition, even in the presence of unmatched
disturbances.
Fact 1: With the boundedness of the system (1), the

following inequalities are true:

|xm(t)| ≤ x̄

|ym(t)| ≤ ȳ

|zm(t)| ≤ z̄

|wm(t)| ≤ w̄ (3)

∀t ≥ 0, where x̄, ȳ, z̄, and w̄ are unknown positive constants.
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Assumption 1: It is assumed that the disturbances in (2) are
bounded. More specifically,

|h1(t)| ≤ h̄1
|h2(t)| ≤ h̄2
|h3(t)| ≤ h̄3
|h4(t)| ≤ h̄4 (4)

∀t ≥ 0, where h̄1, h̄2, h̄3, and h̄4 are unknown positive
constants.
Remark 1: It is noteworthy that systems (1) and (2) are,

in general, different, due to the presence of disturbances.
Besides, our approach assumes that all these disturbances are
not in the control span. Hence, the control signal can not be
used straightforwardly to tackle with them. However, we will
exploit the master boundedness and the particular structure
of (1)-(2), in the next sections, to devise a simple and robust
control law.
Remark 2: Note that Equation (1) does not have a

disturbance term. That is no loss of generality because any
disturbance in (1) would join with those in (2) in the stability
analysis.

III. PROJECTIVE SYNCHRONIZATION ERROR
In this section, the main error associated with the synchro-
nization problem is defined.

The projective synchronization error is defined as

e1 = xs − δxm
e2 = ys − δym
e3 = zs − δzm
e4 = ws − δwm (5)

where δ is a nonzero constant defined by the user.
Based on (1)-(2), the time-derivative of (5) results

ė1 = −ae1 + ae2 − e4 + h1 + u1
ė2 = −e2 + be1 − e1e3 − δzme1 − δxme3

− (δ2 − δ)xmzm + h2
ė3 = −ce3 + e1e2 + δyme1 + δxme2

+ (δ2 − δ)xmym + h3
ė4 = −ke4 + de1e3 + dδzme1 + dδxme3

+ (δ2 − δ)dxmzm + h4 + u2 (6)

IV. LYAPUNOV STABILITY ANALYSIS
After the formulation of the synchronization error equations,
the next step is selecting a control law. In what follows,
we consider a standard Lyapunov function candidate V ,
which hinges upon the synchronization error, and choose a
control law to make V̇ lower than zero outside a compact
region at the origin �. The key drivers for the design are
then the peculiar structure of (2), boundedness of (1), and
an enlargement process for constraining V̇ to be negative
definite outside �.

Theorem 1: Consider the master and slave systems (1)-(2),
Assumption 1, and the control laws

u1 = −ψ1e1 − ψ2e1e24
u4 = −ψ3e4 (7)

If

ψ1 > δ1

ψ2 >
d2

2
ψ3 > δ2 (8)

Then, the synchronization error is ultimately bounded.
It converges in finite-time to the compact set

� =
{
e ∈ <4 | ‖e‖ ≤ θ < ξ

}
(9)

where the convergence time holds

tmax =


0 if e (t) ∈ �

1
ρ
ln

 V (0)
ξ2

2 −
β
ρ

 otherwise
(10)

and δ1 = 0.5[σ1h̄21 + σ5(a2 + b2 + δ2z̄2) + σ6δ
2ȳ2 +

σ7(dδx̄ + 1)] − a, δ2 = 0.5
(
σ4h̄24 +

dδx̄+1
σ7
+

d2δ2x̄2
σ8
+

σ11

)
− k , θ =

√
2β
ρ
, ξ > 0, β = βu + βn + βδ ,

ρ
2 = min {ρ1, ρ2, ρ3, ρ4}, βu = 0.5

(
1
σ1
+

1
σ4

)
, βn =

0.5
(
h̄22
σ2
+

h̄23
σ3

)
, βδ = 0.5

(
δ2 − δ

)2 ( x̄2 z̄2
σ9
+

x̄2ȳ2

σ10
+

x̄2 z̄2
σ11

)
,

ρ1 = ψ1 − δ1, ρ2 = 1 − 0.5
(
σ2 +

1
σ5
+ σ9

)
, ρ3 =

c − 0.5
(
σ3 +

1
σ6
+ σ8 + σ10 + 1

)
, ρ4 = ψ3 − δ2, ‖e‖2 =

e21 + e22 + e23 + e24, and σi, i = 1, . . . , 11 are positive
constants.

Proof: Consider the following Lyapunov function
candidate

V =
‖e‖2

2
(11)

The time-derivative of (11) results

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 (12)

By replacing (6) in (12), we have

V̇ = e1(−ae1 + ae2 − e4 + h1 + u1)

+ e2[−e2 + be1 − e1e3 − δzme1 − δxme3
− (δ2 − δ)xmzm + h2]

+ e3[−ce3 + e1e2 + δyme1 + δxme2
+ (δ2 − δ)xmym + h3]

+ e4[−ke4 + de1e3 + dδzme1 + dδxme3
+ (δ2 − δ)dxmzm + h4 + u2] (13)
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FIGURE 1. Circuit diagram. M2_M, M3_M, M2_S, M3_S are the encryption/ decryption
blocks (Figure 5). U1 and U4 are generated by the CONTROL block (Figure 2). X_M and
X_S are the X state blocks (Figure 6). Y_M and Y_S are the Y state blocks (Figure 7).
Z_M and Z_S are the Z state blocks (Figure 8). W_M and W_S are the W state blocks
(Figure 9). +XZ_M and +XZ_S are the inversion blocks (Figure 3). −XZ_M, −XZ_S,
−XY_M, and −XY_S are the multiplication blocks (Figure 4). V1 to V12 are voltage to
signal converters and the S1 and S2 are signal to voltage converters of the Simulink.
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Also, by employing (7) in (13), we obtain

V̇ = −(ψ1 + a)e21 − e
2
2 − ce

2
3 − (ψ3 + k)e24

−ψ2e21e
2
4 + h1e1 + h2e2 + h3e3 + h4e4 + e1e2(a

+ b− δzm)+ δyme1e3 + e1e4(dδzm − 1)

+ dδxme3e4 − (δ2 − δ)xmzme2
+ (δ2 − δ)xmyme3 + (δ2 − δ)xmzme4
+ de1e3e4 (14)

On the other hand, from Fact 1, Assumption 1, and Young’s
inequality, it follows that

e1h1 ≤
σ1e21h̄

2
1

2
+

1
2σ1
; e2h2 ≤

σ2e22
2
+

h̄22
2σ2

e3h3 ≤
σ3e23
2
+

h̄23
2σ3
; e4h4 ≤

σ4e24h̄
2
4

2
+

1
2σ4

e1e2(a+ b− δzm)

≤
σ5(a2 + b2 + δ2z̄2)e21

2
+

e22
2σ5

δyme1e3 ≤
σ6δ

2ȳ2e21
2

+
e23
2σ6

e1e4(dδxm − 1) ≤
σ7e21(dδx̄ + 1)

2
+
e24(dδx̄ + 1)

2σ7

dδxme3e4 ≤
σ8e23
2
+
d2δ2x̄2e24

2σ8

− (δ2 − δ)xmzme2 ≤
σ9e22
2

+
(δ2 − δ)2x̄2z̄2

2σ9

(δ2 − δ)xmyme3 ≤
σ10e23
2
+

(δ2 − δ)2x̄2ȳ2

2σ10

(δ2 − δ)xmzme4 ≤
σ11e24
2
+

(δ2 − δ)2x̄2z̄2

2σ11

de1e3e4 ≤
e23
2
+
d2e21e

2
4

2
(15)

Based on (15), (14) implies

V̇ ≤ −e21(ψ1 − δ1)− e22ρ2 − e
2
3ρ3 − e

2
4(ψ3 − δ2)+ βu

+βn + βδ −

(
ψ2 −

d2

2

)
e21e

2
4 (16)

By using (8), (16) can be written as

V̇ ≤ −ρV + β (17)

Then, one can see that V̇ < 0 in (17) when e ∈ �T .
Since � is a compact set, the errors starting inside � will
remain there forever. In case that the errors start outside �,
it can be seen that V̇ < 0, then V and, consequently, ‖e‖ will
decrease monotonically until the errors enter� at some finite
time tmax .

To determine tmax , it should be noted that (17) implies
([78], Lemma 3.2.4)

V (t) ≤
[
V (0)−

β

ρ

]
exp(−ρt)+

β

ρ
(18)

FIGURE 2. CONTROL block circuit. R1 = R4 = R5 = R8 = 100k� and
R2 = R3 = R6 = R7 = 1k� with tolerance of 0.1%. The blocks OA1 and
OA2 are operational amplifiers OPA228. The blocks M1 and M2 are
analog multipliers AD633JNZ.

which further yields

tmax =
1
ρ
ln

 V (0)
ξ2

2 −
β
ρ

 (19)

Therefore, (19) shows that the synchronization error
converges to the compact set � at least in a finite-time tmax
and, hence ( [79]), that the this error is ultimately bounded.�
Remark 3: The main idea of the proposed method lies in

the usage of the system structure and Lyapunov theory to
design an adequate control law. Based on a trial-and-error
procedure, we considered all possibilities of underactuated
control in the analysis and the simplest one was chosen.
Young’s inequality was used in the stability analysis in the
process to make V̇ < 0 outside of a small compact set, whose
size can be decreased by increasing the control gains, even in
the presence of bounded unmatched disturbances.
Remark 4: Integrator backstepping [80], [81] and sliding

mode [26], [82] are also used in the control of underactuated
systems. However, most works based on backstepping suffer
from ‘‘the explosion of complexity,’’ and, in general, the
presence of matched disturbances is assumed. See, for
example, [80], [81]. On the other hand, sliding mode
control suffers from chattering, and the disturbances are also
supposed to be matched [81]. Besides, most of synchronizers
based on hyperchaotic systems found in the literature employ
complete actuation [8], [53], [83], [84]. Then, the main
peculiarity of our work, in contrast to the literature, thus lies
in that neither matching condition nor fully-actuated control
is assumed.
Remark 5: Note that the performance of the proposed

method, as far as the residual synchronization error is
considered, is affected by the control gainsψ1 andψ3, scaling
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FIGURE 3. Inverter block circuit. R1 = R2 = 10k� with tolerance of 0.1%.
The block OA1 is an operational amplifier OPA228.

FIGURE 4. Multiplier block circuit. R1 = R2 = 10k� with tolerance of
0.1%. The block M1 is an analog multiplier AD633JNZ.

FIGURE 5. Encryption/decryption block circuit. R1 = R2 = R3 = 100k�

with tolerance of 0.1%. The block OA1 is an operational amplifier OPA228.

FIGURE 6. State X block circuit. C1 = 10nF, R1 = R2 = 10k�, and
R3 = R4 = 100k�. Resistors and capacitors have a tolerance of 0.1%, OA1
is an operational amplifier OPA228 and I1 is an inversion block (Figure 3).

factor δ, disturbances, and upper bounds for the states of the
master system, as can be seen from (8) and the definitions
below (10). In general, the performance for the actuated states
can be arbitrarily enhanced by increasing ψ1 and ψ3. For
non-actuated states, although there is a complex relationship
between β and ρ in (9), the performance can also be indirectly
controlled through ψ1 and ψ3 since higher control gains can

FIGURE 7. State Y block circuit. C1 = 10nF, R1 = 100k�, R2 = 2.1k�, and
R3 = 1k�. Resistors and capacitors have a tolerance of 0.1%, OA1 is an
operational amplifier OPA228 and I1 is an inversion block (Figure 3).

FIGURE 8. State Z block circuit. C1 = 10nF, R1 = 100k�, and R2 = 1k�.
Resistors and capacitors have a tolerance of 0.1% and OA1 is an
operational amplifier OPA228.

FIGURE 9. State W block circuit. C1 = 10nF, R1 = 50k�, R2 = 1k�, and
R3 = 100k�. Resistors and capacitors have a tolerance of 0.1% and OA1
is an operational amplifier OPA228.

allow for higher ρ in (9), as can be seen from the stability
analysis.
Remark 6 (Selection of the Control Gains): By replacing

the parameters in (8) and considering the case of identical
synchronization (δ = 1), (8) can be rewritten as

ψ1 > 0.5[σ1h̄21 + σ5(400+ 1024+ z̄2)+ σ6ȳ2

+ σ7(x̄ + 1)]− 20

ψ2 > 0.5

ψ3 > 0.5
(
σ4h̄24 +

x̄ + 1
σ7
+
x̄2

σ8
+ σ11

)
+ 1 (20)

In addition, one can select conservative values for the
bounds and other parameters as x̄ = 27, ȳ = 38, z̄ = 63,
w̄ = 240, h̄1 = 2.7, h̄2 = 3.8, h̄3 = 6.3, h̄4 = 24, σ1 = 1,
σ4 =

1
2 , σ5 = 1, σ6 = 1, σ7 = 1, σ8 = 1, and σ11 = 1

2 .
Then ψ1 > 3429.29 and ψ3 > 523.75. It should be noted
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FIGURE 10. Performance of the synchronization. The states and errors are in volts.

that high gains do not prevent application since these gains
can be decreased by amplitude scaling of the hyperchaotic
systems leading to lower bounds for the states, as can be seen
in Section VI.

V. CHAOS-BASED SECURE COMMUNICATION
In addition to the projective synchronization case, we also
consider the application of the proposed method to secure

telecommunication. To have a well-posed problem, the
following assumption must be imposed.
Assumption 2: It is assumed that themessages are bounded.

More specifically,

|mi(t)| ≤ m̄i, i = 1, . . . , 4 (21)

∀t ≥ 0, where m1, m2, m3, and m4 are the original messages
and m̄1, m̄2, m̄3, and m̄4 are positive constants.
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FIGURE 11. Performance of the secure communication. All signals are in volts.

Further, motivated by [38], it can be defined
m̂1 = δ[xm + m1]− xs
m̂2 = δ[ym + m2]− ys
m̂3 = δ[zm + m3]− zs
m̂4 = δ[wm + m4]− ws (22)

where m̂1, m̂2, m̂3, and m̂4 are the decoded messages.
On the other hand, by using (22) and defining

m̃i = m̂i − δmi, i = 1, . . . , 4, where m̃1, m̃2, m̃3, and m̃4
are the message errors, it can be concluded that

m̃i = −ei, i = 1, . . . , 4 (23)

Remark 7: It is worth noticing that the quality of the
message reconstruction is the same as the synchronization,
as shown in (23). Furthermore, the boundedness of the
message error is assured when the synchronization error is
bounded.

VI. SIMULATIONS
Simulations were performed using Matlab/Simulink 2020b
on a Windows 10 platform, with AMD Ryzen 7 1700 proces-
sor. All the scripts to reproduce the results of this paper are

available with the corresponding author under request. In all
simulations, it was considered that δ = 1.

A. IMPLEMENTATION EXAMPLE
For implementation purposes, we consider a = 10, b = 47,
c = 1, d = 1, and k = 2. It was also necessary to scale
both the frequency and amplitude of the hyperchaotic systems
(1)- (2) to decrease the transient and hold the operating
voltage of the devices. The system amplitude was then
decreased up to 20 times, and the system rate was increased
by a factor of 1000. Hence, the scaled systems were rewritten
in a condensed form as

Ẋ = 103[10(Y − X )−X + I∗u1]+ h1
Ẏ = 103[47X − 20XZ − Y ]+ h2
Ż = 103[20XY − Z ]+ h3
Ẇ = 103[20XZ − 2W + I∗u4]+ h4

(24)

where I∗ = {0, 1}, u1 and u4 are defined as in (7) being
ψ1 = ψ3 = 100 and ψ2 = 10000. Figure 1 shows the
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FIGURE 12. Comparison between the proposed method and that in [20].

circuit diagram designed by using Simscape/Simulink being
their blocks detailed in Figures 2 - 9.

For the sake of conciseness, (24) was considered as being
the transmitter when I∗ = 0 (X , Y , Z , and W must be
substituted by Xm, Ym, Zm, and Wm) and the receiver when
I∗ = 1 (in which case X , Y , Z , andW must be substituted by
Xs, Ys, Zs, and Ws).
The encrypted signals are defined as s2 = m2 + Ym,

s3 = m3 + Zm and the decrypted signals as m̂2 = s2 − Ys,
m̂3 = s3 − Zs. This definition was adopted to use the

same circuital structure for simple encryption and decryption.
The considered messages were m2 as being a sequence of
bits and m3 = a0 + 0.5 ·

∑8
i=1[ai · cos(i · w · t) + bi ·

sin(i · w · t)], where w = 941.7, a0 = −0.1009055,
a1 = 0.09614, b1 = −0.08111, a2 = −0.002126, b2 =
−0.002561, a3 = 0.01418, b3 = 0.03685, a4 = 0.0004152,
b4 = −0.002264, a5 = −0.01999, b5 = −0.0121,
a6 = 7.883 · 10−5, b6 = −0.0008134, a7 =

0.002927, b7 = −0.0009047, a8 = −3.586 · 10−5,
and b8 = −0.0008205.
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In all simulations, analog multipliers AD633JNZ and oper-
ational amplifiers OPA228 are used. Nominal voltage limits,
slew rate, bandwidth, input impedance, output impedance,
offset voltage, and polarization current from their datasheets
were also considered. Further, all capacitors and resistors
used here were non-ideal with a tolerance of 0.1% to better
reproduce a more realistic scenario.

Figure 10 depicts a typical performance of the synchro-
nization using electronic circuits. The synchronization errors
are small even when underactuated control and unmatched
perturbations resulting from the non-ideal behavior of the
devices are considered. Based on the simulations, we can
conclude that the proposed method is easily implementable
by analog electronics, and has good performance, as far as
the synchronization error is considered.

Figure 11 shows the performance of the encryption of two
message signals using the proposed synchronization method.
As expected from theoretical analysis, the recovered signals
converge over time close to the original ones, even in the
presence of internal or external perturbations, which are due
to the usage of non-ideal devices in a realistic scenario in our
simulations.

B. COMPARISON WITH [20]
To better show the performance of the proposed scheme,
we have compared our synchronization performance with
that in [20] in the presence of disturbances. In [20], a novel
synchronizer for hyperchaotic Lorenz systemwas introduced.
Although finite-time convergence was accomplished, neither
external disturbances in the stability analysis nor a simple
underactuated control were considered.

The parameters used in our simulation were a = 20,
b = 32, c = 3, d = 1, k = −1, ψ1 = ψ3 = 100,
and ψ2 = 10000. The initial conditions for the master and
slave systems in both cases were xm(0) = 1, ym(0) = 1,
zm(0) = 1, wm(0) = 1, xs(0) = 20, ys(0) = 15, zs(0) = 15,
and ws(0) = −200.
Also, an unmatched disturbance was introduced to check

the robustness of the proposed approach when it is compared
with that in [20]. The used disturbance was defined as

h1 = 0.3 · exp(5 · 10−5·x2s )

h2 = 0.2 · exp(10−5·y2s )

h3 = 3sin(3t)+ cos(20t)

h4 = 5sin(10t)+ 10cos(t) (25)

Three systems were simulated: the master (1), slave (2),
using an underactuated control, and the slave system in [20],
in which a full-actuated control is employed. From simula-
tions shown in Figure 12, it can be seen that the performance
of the proposed scheme is similar to that in [20]. However,
the proposed approach is simpler than that in [20] since the
proposed control is only used in the xs and ws channels.

VII. CONCLUSION
An underactuated scheme for projective synchronization
of hyperchaotic systems based on Lyapunov theory has

been proposed in this work. The main advantages of the
proposed synchronization method are its simplicity, low
cost of implementation, and its ability to tackle unmatched
disturbances. It has been further employed in chaos-based
secure communication to depict the performance of a typical
application. With the use of electronic circuits, the ease
of implementation has been shown as well. It should be
noted that the decoded signal is close to the original,
as expected, even in the presence of unmatched disturbances
and underactuated control.

Potential drawbacks of the work must mention the need to
use two control signals instead of just one. This is due to the
topology of the considered hyperchaotic systems.

Future works will include the underactuated synchroniza-
tion of hyperchaotic systems of high dimension by using
online approximators such as neural networks and fuzzy
systems.
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