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Resumo Expandido

IA Explicável: Um Estudo de Caso sobre um Modelo de Classificação de Textos de Denún-
cias de Cidadãos

A sociedade atual é muito influenciada por sistemas de Inteligência Artificial (IA) em
diversos contextos e, embora ela tenha proporcionado diversas contribuições, é importante
construir uma abordagem transparente e responsável para os modelos de IA, de modo que
as pessoas possam se beneficiar de suas vantagens porém sem deixar de prevenir eventuais
danos que o uso dessa nova tecnologia possa causar à sociedade.

No âmbito da Controladoria-Geral da União, o benefício da IA pode ser observado
pelo uso da ferramenta FARO que, além de outras funcionalidades, incorpora um modelo
de classificação de textos em denúncias aptas e não-aptas, de modo a auxiliar os auditores
na tarefa de tratamento das denúncias feitas pelos cidadãos.

Esse modelo recebe como entrada a denúncia de cidadãos sobre situações de corrupção,
comportamentos inadequados de servidores públicos, assédio moral etc. A análise dos
textos é feita e o modelo gera uma nota que varia entre 0 e 1 sobre a aptidão da denúncia
analisada. Para que uma denúncia seja considerada apta, é preciso que ela colecione
certos elementos como por exemplo estar relacionada a uma entidade que tenha vínculo
com recursos públicos de origem federal, descrever uma irregularidade que reflita dano ao
patrimônio público e que contenha uma justificativa mínima para viabilizar investigação
da situação relatada.

No decorrer do processo de avaliação da denúncia em apta ou não-apta, outras infor-
mações relevantes são levantadas e podem ser utilizadas tanto pelo modelo de classificação
textual, que faz parte do escopo deste estudo, quando por outras etapas da própria ferra-
menta FARO.

Atualmente, os auditores tem acesso ao resultado gerado pelo modelo mas sem mecan-
ismos de explicabilidade que poderiam aumentar a transparência do processo, aumentar
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o entendimento do resultado gerado e melhorar o processo decisório da classificação de
denúncias.

Apesar de não existir uma metodologia ou estrutura ideal para interpretar ou explicar
modelos de aprendizado de máquina, é possível encontrar estudos sobre os diferentes méto-
dos de explicabilidade, inclusive sobre as suas limitações na tarefa de explicar totalmente
o modelo.

Estudos recentes apontam que integrar ferramentas de explicabilidade ao uso de mod-
elos de inteligência artificial traz benefícios ao processo de tomada de decisão e monitora-
mento do comportamento do modelo, tendo em vista a prevenção de vieses. Entretanto,
ainda são poucos os estudos de casos concretos na área de Explainable Ai (XAI), espe-
cialmente no que se refere a Natural Processing Language (NLP). O presente estudo tem
como objetivo apresentar um sistema de explicabilidade do modelo textual, integrado à
própria ferramenta FARO [1] e específica para as necessidades dos auditores, de forma a
subsidiar a monitoração do modelo e de seus resultados pelos auditores.

O sistema de explicabilidade é baseado na ferramenta LIME (Local Interpretable
Model-Agnostic Explanations) devido às suas características, entre outras, de ser agnós-
tica ao modelo utilizado, à sua implementação intuitiva e compatibilidade com os demais
sistemas que já encontram-se em ambiente de produção.

Além disso, o LIME apresenta visualizações interessantes que auxiliam os auditores,
inclusive aqueles que tenham ummenor contato com a área de tecnologia, no entendimento
dos resultados gerados pelo modelo de classificação. Desse modo, este trabalho contribui
para a monitoração e melhoria do modelo de classificação textual e pode servir como um
modelo para trabalhos futuros que investiguem outras etapas utilizadas na ferramenta
FARO, como por exemplo o tratamento de dados estruturados.

Palavras-chave: Machine Learning, XAI, LIME, Explainability, Machine Learning, Ar-
tificial Intelligence
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Abstract

Present-day society is highly influenced by Artificial Intelligence (AI) systems in various
contexts. Although AI has provided numerous contributions, it is important to build a
transparent and responsible approach to AI models, so that people can benefit from their
advantages while also preventing potential harm that the use of this new technology might
cause to society.

Within the scope of the Office of the Comptroller General, the benefit of AI can
be observed through the use of the FARO tool [1], which, among other functionalities,
incorporates a text classification model for classifying complaints. This helps auditors in
handling complaints submitted by citizens. However, currently, auditors have access to
the results generated by the model but lack explainability mechanisms that could enhance
the transparency of the process, increase the understanding of the generated results, and
improve the decision-making process for classifying complaints.

The present study aims to introduce an explainability system for the text model,
integrated into the FARO tool itself and tailored to the needs of the auditors, in order to
support the monitoring of the model and its results by the auditors.

Keywords: Machine Learning, XAI, LIME, Explainability, Machine Learning, Artificial
Intelligence
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence (AI) systems find diverse applications across multiple contexts, such
as healthcare, industry, marketing and numerous other fields. In the medical domain,
AI systems can aid in achieving early diagnoses for diseases, i.e. breast cancer screening
[7], detecting diabetic retinopathy and diabetic macular edema [8], diagnosing stroke [9],
and classify genes [10]. The industry also benefits significantly from AI, leveraging it for
tasks like enhancing energy efficiency, improving quality control, and forecasting demand
[11]. Additionally, AI enables organizations to track real-time data, analyze and respond
swiftly to customer requirements, detect fraud, determine credit score, prevent churn and
gain essential consumer insights into consumer behavior [12].

It is a fact that today’s society is profoundly influenced by the role of AI. Some
researches state that there is evidence that such learning algorithms have reached or even
surpassed the performance of humans in isolated tasks [13] emphasizing the significance
of AI as a vital tool in advancing societal development.

However, the influence of machine learning and computer vision algorithms is not al-
ways beneficial. They can significantly impact people’s lives, sometimes negatively, as
for example the exacerbation of social or economic inequalities [14] [15], affecting not
only individuals and organizations, but society as a whole [14]. For instance, there have
been cases where AI systems demonstrated biased behavior such as an AI-based recruit-
ing engine used by Amazon.com Inc., which reportedly downgraded resumes from female
candidates in favor of male candidates [16], facial recognition systems misidentifying peo-
ple of color, women, and young people at high rates [17], a Twitter Inc. faced issues with
an AI-operated system that was verbally abusive when communicating with users and
Google LLC’s AI-powered image search which returned racist results in certain instances
[18].
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To address these issues, governments, corporations and international organisations
alike are committing to an accountable, responsible, transparent approach to AI, where
human values and ethical principles are leading [19]. In order to achieve a more trans-
parent AI researchers are growing interest in interpreting machine learning models and
gaining insights into their working mechanisms [20].

Several machine learning models are classified as "black-box" due to their opaque
decision-making process, making it difficult for humans, including the developers of these
models, to fully understand how they arrive at predictions [21]. Addressing this limitation,
Explainable Artificial Intelligence (XAI) seeks to develop human-interpretable models,
particularly in sensitive sectors like the military, banking, and healthcare applications
[22].

In this work, the terms "interpretability" and "explainability" will be used interchange-
ably. By achieving interpretability or explainability, XAI can foster greater trust in the
models among users and stakeholders. Additionally, it empowers developers to identify,
monitor, and proactively address potential issues, thereby enhancing system safety and
reliability.

Many authors worked on the development of frameworks in order to capitalise on the
opportunities for more rigour, structure and normalisation in this field [23], but the task
of finding an ideal methodology or framework to interpret or explain machine learning
models, evaluate, measure and compare different explanations for these models, remains
unanswered. The existing literature has yet to reach a consensus on a definitive frame-
work for evaluating the explicability of AI models. Important questions such as “What
constitutes an acceptable explanation?” and “how to establish user trust in AI-powered
systems?” are still unresolved [22].

Although XAI techniques may help humans to better understand AI systems and
increase it’s transparency, certain authors have expressed concerns regarding the expla-
nations themselves. They argue that these explanations might carry considerable uncer-
tainty, potentially undermining users’ trust in the predictions and raising doubts about
the model’s overall robustness [21].

Comparing interpretable methods presents challenges due to the vast array of different
metrics available for evaluating explanations, and the complexities of applying them con-
sistently across multiple explanation methods. Moreover, the integration of XAI methods
in industry can lead to increased project costs and time consumption. Additionally, there
remains a shortage of studies that thoroughly evaluate the explanations provided for day-
to-day applications, highlighting the need for further research in this area. Even though
organisations agree on the need to consider ethical, legal and societal principles, how these
are interpreted and applied in practice, varies significantly across the different recommen-
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dation documents and there is still much work needed to ensure that AI is developed and
used in responsible ways that contribute to trust and well-being [19].

This is not a justification for disregarding or neglecting explainability practices, as
they serve as valuable tools for enhancing the transparency of the model, its monitoring,
and preventing misuse. In the context of public administration, there remains a deficiency
in implementing more robust methods for monitoring models in production, despite the
growing attention this issue has gained from experts, managers, and developers in recent
times [24].

Despite there being several libraries and explainability modules available, such as
SHAP [25], LIME [6], and others, the models used by the F.A.R.O. tool, developed by
the Office of the Comptroller General (CGU) for the treatment of complaints, do not make
use of any of these libraries integrated into its process, which hinders auditors’ access to
relevant explainability information.

The use of explainability tools integrated into the business process can assist those
responsible in monitoring the model’s operation, ensuring the use of responsible AI aligned
with the specific needs of each situation, such as the treatment of sensitive data.

Conducting further studies in this area, particularly those focusing on real-world prob-
lems, can offer valuable insights into the responsible use of AI systems. Such research can
help us understand how to leverage AI’s capabilities while avoiding adverse impacts on
society. Recent studies [26] [27] have indicated that integrating explainability tools into
the use of artificial intelligence models brings about advantages in the decision-making
process and in monitoring model behavior, with the aim of bias prevention. However,
there is still a lack of concrete case studies in the field of explainable AI, particularly
concerning Natural Language Processing (NLP).

1.2 Objectives

The present study aims to present an explainability system for the textual model used
by F.A.R.O. [1], that can be integrated into the tool itself, and tailored to the needs of
auditors, in order to support the monitoring of the model and its results by auditors,
as well as to provide greater transparency for the process of handling complaints. The
objective is to showcase how a XAI algorithm can be integrated into a current classification
process while providing an viable alternative to how domain users can benefit from the
visualization of a model´s explanation in the task of screening complaints.
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1.3 Contributions

While the interest in XAI has been increasing over the past years, there is a scarcity
of studies addressing tangible and applicable scenarios for integrating explanations into
real-world contexts. Moreover, there is a limited focus on evaluations conducted by users,
particularly in cases involving explanations for text models and assessments by users who
possess domain expertise.

In light of this gap in research, our study contributes to the field of XAI by looking
into the practical implications and advantages of interpretable AI within a real-world
context, specifically in the context of classifying text complaints. This integration has
shown promise in enhancing the decision-making process and monitoring model behavior,
ultimately with the goal of preventing biases. This research seeks to shed light on these
aspects, presenting a viable application of explainability techniques integrated to a textual
model used in the process of screening complaints.

The aim is to support auditors in the complaint screening process by enhancing trans-
parency in the textual model’s scoring, facilitating comprehension of the model, and serv-
ing as a tool for monitoring and refining its performance. Additionally, the explainability
system presented in this work can inspire other real-world applications of explainability
systems in the context of the public administration, specifically in the form of integrating
the explanations into the business processs, shedding light on the importance of explan-
ability techniques to produce responsible artificial intelligence.

1.4 Structure of the dissertation

To delineate the scope of this dissertation, the following organizational structure is em-
ployed: Chapter one provides an introduction, elucidating the motivation, objectives, and
contributions of this study. Chapters two contextualizes the reader with theoretical con-
cepts pertaining to Explainable Artificial Intelligence (XAI) and its various approaches to
explanations, offering concise descriptions of two prevalent algorithms in the field, namely
LIME and SHAP.

Chapter three offers a comprehensive insight into the F.A.R.O. process, meticulously
outlining its steps and giving the reader with a good understanding of the context in
which the explanation module will be integrated. Specifically, it details the textual model,
elucidating its characteristics in detail.

Chapter four outlines the methodology adopted for this study, delineating the con-
sidered processes and detailing their respective phases, looking into the formulation and
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execution of the study’s experiments. Finally, the results of this study are presented in
chapter five and the conclusions in chapter six.

This structured approach ensures a comprehensive exploration of the subject matter,
guiding the reader through the motivation, theoretical foundations, algorithmic insights,
methodological considerations, and experimental facets of the dissertation.
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Chapter 2

Explainable AI

Artificial intelligence extends beyond being a mere automation technique. Instead, it
can be better comprehended as a socio-technical ecosystem, acknowledging the intricate
interplay between people and technology. This perspective recognizes how complex in-
frastructures affect and are affected by society and by human behaviour [28].

Questioning the utility of interpretable and explainable machine learning is a natu-
ral inclination, especially considering the prevalent and inaccurate belief that a trade-off
exists between accuracy and interpretability [29]. This often raises doubts in software
architects about why they should sacrifice performance in favor of transparency. It is es-
sential to acknowledge that there are numerous instances where interpretability is entirely
unnecessary, particularly when dealing with well-known problems that lack significant con-
sequences [30]. Also, the presumed accuracy-interpretability trade-off may not necessarily
be present in numerous datasets [29].

In addition, the advancing capabilities of AI models often increase the model’s com-
plexity contributing to it’s opacity. Opacity refers to human scrutiny and understanding
of an AI system’s decision-making process [31] preventing humans to build appropriate
trust in machine learning solutions. They often either blindly follow the system’s deci-
sions and recommendations or do not use them [32]. Also, opacity can lead to humans
negligently rely on AI results and substitute their own judgment with potentially false
decisions [15] but there is a concern that the lack of explainability may prevent the use
of AI systems.

Explainable AI (XAI) addresses the opacity of AI systems by automatically generating
explanations for their functioning and outcomes while maintaining the AI’s high perfor-
mance levels [20]. Interpretable and explainable machine learning techniques emerge from
a need to design intelligible machine learning systems that can be comprehended by a hu-
man mind [33]. Although we can encounter pitfalls in some explanations provided by
famous algorithms which are commonly used by developers and researches, their use is an
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important tool for developers, domain experts and users to start uncovering the problem
of bias, improve the decision-making process and prevent unwanted outcomes.

Figure 2.1: Interpretable Machine Learning (ML) [2].

Government, authorities and organizations are proposing different regulations e.g. the
EU AI regulation that requires human oversight—to interpret and contest AI systems’
outcomes—in “high-risk” applications such as recruiting or credit score evaluation [34]
and Brazilian General Data Protection Law (LGPD) which determines that the personal
data belongs to the person to whom it concerns and not to who is storing the data in the
databases [35].

There is an ongoing debate within the machine learning community regarding defini-
tion of interpretability and the task of interpretation [30] [36]. According to Doshi et.al
(2017), interpretability can be defined as the ability to explain or to present in under-
standable terms to a human. Some authors draw a clear line between interpretable and
explainable ML stating that interpretable ML focuses on designing models that are inher-
ently interpretable whereas explainable ML provides post-hoc explanations for existing
black-box model [29]. A prevalent term in the literature is “explainability”, a concept
that is closely tied with interpretability. The notion of interpretability often depends on
the domain of application [29] and the target explainee [37], e.g. the recipient of inter-
pretations and explanations. Many authors do not differentiate between the two [37] and
this work will use them interchangebly.

Since there is no general definition of either interpretability or explainability, re-
searchers have elicited various desiderata, diverse and often contradicting, to provide
motivation for different techniques [38] that can be summarized as the following goals to
be achieved with interpretability:

• Trust: Lipton [36] decomposes trust into knowing “how often a model is right”
and “for which examples it is right". It is easier for humans to trust a system that
explains its decisions rather than a black box that just outputs the decision itself
[37].

• Causality: supervised learning models are only optimized directly to make associa-
tions but researchers often use them in the hope of inferring properties or generating
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hypotheses about the natural world [36] although there is no guarantee to these as-
sociations to reflect causal relationships [36].

• Reliability/Robustness/Transferability: systems should be resistant to noisy
inputs and (reasonable) domain shifts [38]. This line of research is closely con-
nected to the challenges of domain adaptation and transfer learning [39] e.g. addi-
tive models for pneumonia risk prediction having domain adaptation facilitated by
interpretability [40].

• Fairness: Traditionally, the fairness of a machine learning system has been eval-
uated by checking the models’ predictions and errors across certain demographic
segments such as groups of a specific ethnicity or gender, focusing on the social and
ethical impact of machine learning algorithms in terms of impartiality and discrim-
ination [41].

• Privacy: Especially for systems that rely on personal data, it is crucial to ensure
the protection of sensitive information present in the data [37].

Explainability techniques have emerged as a crucial tool for pursuing these objec-
tives as they aim to do evaluate and improve the system to detect its flaws and prevent
unwanted behaviour, justify its decisions by improving transparency and accountability
and learn from the system by identifying unknown correlations that could indicate causal
relationships in the underlaying data [3].

Figure 2.2: Generalized objectives of explainable artificial intelligence [3].

2.1 Evaluation of Interpretability

The issue of interpretability taxonomy remains unresolved, as experts have not yet reached
a unanimous agreement. Various methods and approaches exist to make a model inter-
pretable, and understanding these methods, their distinctions and assessments is crucial.
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It allows us to categorize and group different techniques, ultimately enabling us to select
the most appropriate one or a combination of methods suitable for each specific problem
and context. One other aspect to be considered is the target explainee [37].

Explainees can be divided into three groups: developers and AI researchers, domain
experts, and lay users. The first category includes data scientists, computer engineers,
and researchers who build or maintain AI systems. The second category comprises indi-
viduals with expertise in the application domain based on formal education or professional
experience. Finally, lay users are non-experts who are affected by AI decisions or interact
with AI systems.

Apart from analyzing whether a real-world problem necessitates the use of explain-
ability or stands to benefit from it, selecting an explanation method requires careful
consideration of its usefulness for the intended users. Additionally, having a critical eval-
uation of the cost-benefit trade-offs associated with the implementation method is crucial.
The focus should be on maximizing the benefits for each type of explainee, ensuring that
the chosen approach aligns well with their needs and preferences.

Explanations are often qualitative [5], which leads to much discussion. It is not clear
how to quantitatively evaluate and compare interpretability methods but validation is
still paramount. Doshi-Velez and Kim [30] classified the evaluation of interpretability
into three categories: functionally-grounded, human-grounded, and application-grounded.
This categorization reflects the need of providing explanations that are both useful to
humans (human-grounded) and accurately reflect the model’s behavior (functionally-
grounded). These categories each provide an important but different aspect for validating
interpretability and should therefore be used in combination.

Application-grounded

Application-grounded evaluation calls for conducting human experiments within a real
application [30]. The interpretability method is evaluated in the environment it will be
deployed. e.g. if there is a concrete application in mind, such as working with doctors on
diagnosing patients with a particular disease, the best way to show that the model works
is to evaluate it with respect to the task: doctors performing diagnoses [30]. This ratio-
nale is in line with the evaluation methods commonly employed in the human-computer
interaction and visualization communities, ensuring that the system effectively delivers
on its intended task [30].

Examples of experiments include conducting a domain expert experiment with the
exact application task, or alternatively, conducting a domain expert experiment with
a simpler or partial task to reduce the experiment’s duration and expand the pool of
potentially willing participants [30].
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Incorporating a baseline where explanations are provided by humans is crucial. How-
ever, due to the application-specific and time-consuming nature of this approach, application-
grounded evaluation is rarely performed in NLP interpretability research. Instead, re-
searchers often resort to more synthetic and general evaluation setups, which functionally-
grounded and human-grounded evaluation methods encompass [5].

2.1.1 Human-grounded

Human-grounded metrics is about conducting simpler human-subject experiments that
maintain the essence of the target application and can be completed with lay humans,
which is appealing when experiments with the target community is challenging and allows
for both a bigger subject pool and less expenses [30]. It is most appropriate when the
researcher wishes to test more general notions of the quality of an explanation, without a
specific end-goal such as identifying errors in a safety-oriented task or identifying relevant
patterns in a science-oriented task [30].

Binary forced choice, forward simulation/prediction and counterfactual simulation are
examples of human-grounded evaluation. In binary forced choice, humans are presented
with pairs of explanations, and must choose the one of higher quality. Secondly, forward
simulation/prediction presents humans with an explanation and an input where one must
correctly simulate the model’s output regardless of the true output. Finally, humans are
presented with an explanation, an input, and an output in counter-factual simulation.
They are asked what must be changed to change the method’s prediction to a desired
output.

Although human-grounded evaluation is much more efficient than application-grounded
evaluation, it still requires time due to the human involvement. A common approach is to
substitute the human with a simulated user, which can be problematic due to the fact that
creating explanations that are truly informative to humans is a complex task and often
necessitates interdisciplinary knowledge from fields like human-computer interaction and
social science. Substituting a human with a simulated user can lead to overly optimistic
results, which may not accurately reflect real human responses and understanding [30].

In general, common evaluation strategies are:

• Humans have to choose the best model based on an explanation [6].

• Humans have to predict the model’s behavior on new data [42].

• Humans have to identify an outlier example called an intruder [43].
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2.1.2 Functionally-grounded

Functionally-grounded is more commonly known as faithfulness [4] [44] [6] or fidelity. Al-
though it might seem surprising that an explanation, which is directly produced from the
model, would not reflect it, some interpretable methods, even intrinsically interpretable
ones such as Attention and Neural Modular Networks, have been shown to not reflect the
model [45].

Measuring if an interpretability method is functionally-grounded, for some tasks e.g.
adversarial examples, is trivial. In this case, it is enough to show that the prediction
changed and the adversarial example is a paraphrase. However, in other cases, most
notably input features, providing a functionally grounded metric can be very challenging
[45].

Common strategies to measure functionally-grounded are [45]:

• Comparing with an intrinsically interpretable model, such as logistic regression [6].

• Comparing with other post-hoc methods [45].

• Benchmarking against random explanations [46] [47].

Various authors have put forward different categorizations of interpretability methods.
In the following chapters, we will present some of these categories.

2.2 Post-Hoc vs. Intrinsic

Du, Liu and Hu (2019) classifies existing models into two categories:

• Traditional Machine Learning: relies on feature engineering, a process that
transforms raw data into features that better represent represent the predictive
task.

• Deep Learning: discovers the mapping from representation to output and also
learns representations from raw data

Post-hoc global explanation aims to offer a comprehensive understanding of the knowl-
edge acquired by pre-trained models. It illuminates the parameters or learned represen-
tations in an intuitive manner for human comprehension [4]. They do not elucidate how
black-box models work but instead help to provide useful information after the black-box
model has already been deployed [48].

In traditional machine learning, model-agnostic feature importance is widely applica-
ble to models by treating it as a black-box and not inspecting internal model parameters.
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Figure 2.3: Traditional machine learning pipeline and a deep learning pipeline [4].

Permutation Feature Importance, for instance, is based on the idea that the that the
importance of a specific feature to the overall performance of a model can be determined
by calculating how the model prediction accuracy deviates after permuting the values of
that feature [4].

On the contrary of model-agnostic explanations, post-hoc model specific explanations
are designed specifically for each different model. Usually, they derive explanations by
examining internal model structures and parameters [4]. While it is true that many post-
hoc methods are model-agnostic, it is essential to note that this property is not always a
requirement, and in certain cases, it only applies to a specific category of models [5].

Intrinsic transparency pertains to a model’s capacity to be completely understood and
comprehended by humans. As a result, models with high complexity such as deep neural
networks or random forests cannot be categorizes as transparent. According to Du, liu
and Hu (2019), models can provide an accurate explanation of how models intrinsically
work, however, accuracy might have to be sacrified as complexity decreases to ensure
explainability. On the other hand, post-hoc interpretability sacrifice performance but
they work on model approximations and end up with limitations as of how close they can
mimic or explain the predictions of the original model. Post-Hoc interpretability provides
a significant advantage as it does no require to modify the model itself.

When it comes to explaining any black-box model, two methods stand out as the
most comprehensive and dominant across the literature: LIME [6] and SHAP [49]. These
methods are widely used for visualizing feature interactions and feature importance. Both
LIME and SHAP are not only model-agnostic, but they have been demonstrated to be
applicable to any type of data. White-box highly performing models are very hard to
create, especially in computer vision and natural language processing, where the gap in
performance against deep learning models is unbridgeable [41].

In the interpretability literature, it is customary to categorize communication strate-
gies into three types: local explanations, global explanations, and class explanations.
Local explanations focus on explaining a single observation, while global explanations
aim to explain the entire model. Additionally, class explanations are a distinct category
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of methods that explain an entire output-class.
Madsen et. al (2022) proposed the following categories w.r.t. post-hoc interpretability

methods [5], which will be explored in more detail later on.

• Local explanations: explain a single observation

– Input Features

– Adversarial Examples

– Influential Examples

– Counterfactuals

– Natural Language

• Class explanations: summarize the model, but only with regard to one selected
class

– Concepts

• Global explanations: summarize the entire model with regards to a specific aspect

– Vocabulary

– Ensemble

– Linguistic information

– Rules

2.3 Local explanations

2.3.1 Input Features

It’s a local explanation that aims to determine how important an input feature is for a
given predicion. Input feature explanations can only explain one scalar e.g., one class
at one timestep. In a sequence-to-sequence application, the explanation is replicated for
each timestep [50] [51] though this approach may not adequately address the combinatorial
complexities.

This approach aims to answers which tokens are most important for the prediction.
It exhibits high adaptability to various problems, as the input features are always known
and often hold meaningful interpretations for humans [5]. Gradient [50] and LIME [6]
are examples of this strategy. In Natural Language Processing (NLP), the input features
will often represent words, sub-words, or characters. An input feature explanation of the
input x is represented as
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E(x, c) : Id → Rd

where c is the desired class, I is the input domain and d is the dimensionality. When the
output is a score of importance, the explanation is called an importance measure [5].

2.3.2 Adversarial Examples

An adversarial example is an input that causes a model to produce an incorrect prediction
due to inherent limitations in the model. Typically, an adversarial example is generated
from an existing example for which the model gives a correct prediction. The goal is to
understand what conditions could disrupt the model’s prediction. The adversarial method
A maps the input x to the adversarial example x̃ .

A(x) → x̃

Several surveys about adversarial examples have been conducted, such as the ones by
Wang et al. [30] and Glass [52]. These methods help us identify the support boundaries of
a given example, which, in turn, provides insights into the underlying logic of the model,
leading to interpretability. Interestingly, these adversarial explanations can be similar to
input features. However, there is a significant distinction: adversarial explanations are
contrastive, meaning they explain by comparing with another example, whereas input
features only explain in the context of the original example [5].

To ensure that an adversarial example method is functionally-grounded, one only
needs to assert that the predicted label changes while the gold label remains the same.
Additionally, it is desirable for the original and adversarial examples to be similar in many
applications this can be framed as paraphrasing. These explanations might not generalize
easily to sequence-to-sequence problems [5].

The HotFlip [53] algorithm uses gradients to estimate the effect of changing a specific
token to another one. To constrain the possible changes, so that the adversarial sentence
is a paraphrase, hotflip uses word-embeddings, such that the adversarial word and the
original word are constrained to have a cosine similarity of at least 0.8 [53].

In figure 2.4, the highlight indicates the gradient w.r.t. the input, which is used
to select which token to change. The x indicates the original sentence, x̃ indicates the
adversarial sentence, y is the desired class and p(y|x; θ) is the probability of the input x
to belonging to class y [5].

One common limitation of adversarial example methods is their lack of control over
the search direction. For instance, although changing "unpredictable" to "unforeseeable"
could lead to the largest error due to robustness issues, it might be more interesting to
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Figure 2.4: Hotflip visualization [5].

find out that modifying a word that changes the gender or the racial aspect of the input
also results in a label flip [5].

2.3.3 Influential Examples

Influential examples explanations involve identifying examples from the training dataset
that significantly influenced the model’s predictions. These explanations are commonly
utilized to uncover mislabeled observations. Among the various categories, influential
example explanations stand out due to their non-trivial but suitable functionally-grounded
metric, known as the label-correction experiment. This metric is relatively consistent
across articles.

However, this experiment has not been extensively applied to NLP tasks, and in
general, there has been limited functionally-grounded validation in NLP research. As a
result, there is a need for more rigorous and extensive evaluation of functionally-grounded
explanations in NLP to enhance interpretability and ensure model reliability.

2.3.4 Counterfactuals

Counterfactual explanations share many similarities with adversarial explanations, and
sometimes these terms are confused in some works. The critical difference is that adver-
sarial examples should have the same goal as the original example, while counterfactual
examples should have a different gold label (often opposite) as the original example [54].
Counterfactuals essentially answer the question “how would the input need to change for
the prediction to be different?” [5].

Figure 2.5: Counterfactual visualization [5].

Figure 2.5 shows x̃ as a counterfactual from an original sentence x.
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2.3.5 Natural Language

Explanation methods presented may be difficult to understand for people without special-
ized knowledge. Therefore, it might be interesting to directly generate an explanation in
the form of natural language, which can be understood by simply reading the explanation
for a given example.

Most research in the area of natural language explanation uses the explanations to
improve the predictive performance of the model itself. The idea is that by enforcing
the model to reason about its behavior, the model can generalize better [55] [42]. These
approaches are, however, in the category of intrinsic methods.

Rationalization methods, however, are post-hoc methods in the sense that they at-
tempt to explain after a prediction has been made [42]. Figure 2.6 shows a visualization
of rationalizing Commonsense Auto-generated Explanations (CAGE) [5].

Figure 2.6: Rational explanation visualization [5].

This sub-field of natural natural language explanations has received criticism in NLP
for not evaluating functionally-grounded [56]. This issue is even more problematic because
the annotated explanations are provided by humans who have no insights into the model’s
behavior [57].

The explanation model therefore just learns about humans’ thought processes rather
than the model’s logical process. This issue is somewhat unique to the NLP literature
and is better treated in other fields [58].

2.4 Class explanations

2.4.1 Concepts

The term "concept" finds more frequent use in computer vision [59] [60] [61] than in NLP.
Concept explanations attempts to explain how a model operates by using an abstraction
of the input, called a concept. A classical example in computer visionis to explain how
the concept of stripes affects the classification of a zebra. A computer vision model could
classify a zebra based on a horse-like shape and a Savana background. While this may
result in a high accuracy score, it is logically incorrect.
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In NLP, the focus often revolves around bias detection. For instance, Vig et al. [62]
utilize the concept of "occupation-words" like "nurse" and analyze its connection to the
classification of pronouns like "he" and "she."

Regardless of the field, in both NLP and CV, only a single class or small subset of
classes are analyzed. For this reason, concept explanation belong in its own category of
class explanations.Vig et al. [62] applied Natural Indirect Effect to a small GPT-2 model,
where the mediator is an attention head. By doing this, Vig et al. [62] can identify which
attention heads are most responsible for the gender bias, when considering the occupation
concept. By doing this, they can identify which attention heads are most responsible for
the gender bias.

2.5 Global explanations

2.5.1 Vocabulary

Vocabulary explanation is a method that explains the whole model in relation to each
word in the vocabulary, making it a global explanation. This approach is applicable
to both sequence-to-class and sequence-to-sequence models. In the context of sentiment
classification, words could be categorized as positive or negative, and identifying words
that don’t fit into either of these groups may reveal biases in the dataset.

In the field of NLP models, most research on vocabulary explanations is focused on
these pre-trained word embeddings [63]. These pre-trained embeddings play a crucial
role in the model’s language understanding capabilities and contribute significantly to the
explanation process.

2.5.2 Ensemble

Ensemble explanations aim to create a comprehensive global explanation by gathering
multiple local explanations, each representing different aspects or modes of the model.
The key challenge for ensemble explanations lies in strategically selecting representative
examples and their corresponding local explanations. However, despite their potential
significance, only a limited number of ensemble methods have been proposed in practice,
with the majority being applicable exclusively to tabular data [64] [65].

The effectiveness of ensemble explanations heavily relies on the functionally-grounded
nature of the local explanations.
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2.5.3 Linguistic information

A widely adopted approach for validating the reasonability of a natural language model
involves aligning it with the wealth of linguistic theory developed over centuries. Methods
within this category employ two main strategies: behavioral probes (or behavioral anal-
ysis) and structural probes. They involve strategically modifying the model’s input to
observe its reaction and understand how it processes language and aim to establish align-
ment between a latent representation of the model and some linguistic representation,
helping to reveal the model’s underlying linguistic understanding.

The applicability of these strategies to specific types of models varies based on the
method used. Generally, behavioral probes are applied to sequence-to-class models, while
structural probes can be utilized for both sequence-to-class and sequence-to-sequence
models.

One especially noteworthy subcategory of Structural Probes is BERTology which
specifically focuses on explaining the BERT-like models [66] [67]. The research being
done in behavioral probes, also called behavioral analysis, is not just for interpretability
but also to measure the robustness and generalization ability of the model.

One of the pioneering articles that explores interpretability through behavioral probes
is authored by Linzen et al. [68]. In their research, they investigate a language model’s
capacity to accurately reason about subject-verb agreement.

Clouatre et al. [69] and Sinha et al. [70] conducted studies where they examined the
impact of destroying syntax by shuffling words on a Natural Language Inference (NLI)
task. Their findings revealed that this manipulation did not significantly affect the model’s
performance indicating that the model does not achieve natural language understanding
[5].

McCoy et al. [71] look at NLI, a task where a premise and a hypothesis are provided
and the model should inform if these sentences are in agreement (called entailment),
contradiction or neutral. For example:

• premise: The judge was paid by the actor

• hypothesis: The actor paid the judge

They propose three heuristics based on the linguistic properties: lexical overlap, sub-
sequence, and constituent [71].

2.5.4 Rules

Rule explanations aim to provide a simple set of rules to explain complex models. How-
ever, due to the inherent complexity of these models, reducing them to concise rules is
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often impossible. Therefore, methods attempting rule explanations typically focus on
explaining specific simplified aspects of the model rather than offering a complete repre-
sentation.

Semantically Equivalent Adversaries Rules (SEAR) is an extension of the Semantically
Equivalent Adversaries (SEA) method [72], where they developed a sampling algorithm
for finding adversarial examples. Hence, the rule-generation objective is simplified, as only
rules that describe what breaks the model needs to be generated. Because the category
of rule explanations can be very diverse, groundedness evaluation would likely depend on
the specific explanation method. However, generally, functionally groundedness can be
measured by asserting if the rule holds true by evaluating it on the dataset and compare
with the model response. Additionally, human-groundedness can be evaluated by asking
humans to predict the model’s output or choose the better model [5].

2.6 LIME

This research endeavors to explore the benefits of integrating XAI within the domain
of public administration. It involves a qualitative assessment of XAI in the classification
process of a complaint text classification model. The study aims to illuminate the practical
implications and advantages of interpretable AI in a real-world setting, with a specific
emphasis on post-hoc techniques.

For security and private reasons, evaluation will encompass a collection of synthetic
text complaints adapted from actual cases, undergoing analysis through a widely used
explainable algorithm known as LIME. Despite the availability of more recent explainable
algorithms, LIME was selected due to its post-hoc characteristic, making it seamlessly
integrable into the existing production process. Another notable advantage of LIME is
its ability to generate human-friendly visualizations, which significantly aids the domain
expert in evaluating the explanations.

In the context of the NLP model, LIME is employed to unveil the most influential
words in each text complaint or local instance. This is achieved by approximating the
complex model through the creation of a linear surrogate model, which enables an explo-
ration of the words with the greatest influence on the local instance.

The algorithm samples words within the text, systematically masking them to inves-
tigate their contribution to the complaint’s classification. The user has the flexibility to
determine both the number of samples considered by the algorithm and the quantity of
the most influential words presented in the visualization.

Local Interpretable Model-Agnostic Explanations (LIME) has the overall goal to iden-
tify an interpretable model over the interpretable representation that is locally faithful to
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the classifier [6]. The model to be explained is denoted by f : Rd → R and the explanation
produced by LIME is obtained by the following:

On the second part of the equation, L(f, g, πx)+Ω(g) is the measure of how unfaithful
the model g ∈ G is, where G is a class of potentially interpretable models such as linear
models or decision trees, in approximating f in the locality defined by πx. In order to
ensure both interpretability and local fidelity, we must minimize this measure while having
the measure of complexity Ω(g) be low enough to be interpretable by human. [6].

Figure 2.7: LIME [6].

In order to learn the local behavior of f as the interpretable inputs vary, we approxi-
mate L(f, g, πx) + Ω(g) by drawing samples, weighted by πx. While the overall complex-
ity of the original model may be too complex to explain globally, LIME provides locally
faithful explanations [6]. Figure 2.7 represents an intuition of LIME where the black-box
model’s complex decision function f is represented by the blue/orange background and
the bold red cross is the instance being explained. LIME samples instances, gets predic-
tions using f , and weighs them by the proximity to the instance being explained. The
pink line is the learned explanation that is locally, but not globally, faithful.

First, the LIME algorithm perturbs the input to generate additional points with the
model. This process creates neighborhood data by randomly masking features or words
from the instance and then making predictions with the classifier. By default, LIME uses
’UNKWORDZ’ as the mask for hidden features.
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Feature selection in LIME can be conducted in various ways. In this study, the default
parameter ’auto’ was used. With ’auto’, LIME employs forward_selection if the number
of features is 6 or fewer, and ’highest_weights’ otherwise. Forward_selection iteratively
adds features to the model, while ’highest_weights’ selects features based on the highest
product of absolute weight and the original data point when using all features.

A Sklearn regressor is employed to explain the local point.
LIME uses cosine distance to compute the distances between the original and per-

turbed instances.

2.7 SHAP

A limitation of LIME is that the weights in a linear model may not be intrinsically
interpretable. In situations where multicollinearity exists, for example when input features
are linearly correlated with each other, the model weights can be scaled arbitrarily, leading
to a misleading sense of importance [5].

To address this issue, one approach is to compute Shapley values [25] which are derived
from game theory. The central idea involves fitting a linear model for every permutation
of features [5].

While the Shapley value computation method may work in theory, it can be clearly
intractable. However, Lundberg and Lee [49] have introduced a framework that offers a
more tractable approach to produce Shapley values called Kernel SHAP. It combines the
ideas of reducing the number of features by a mapping function hx(z) , using squared-loss
instead of cross-entropy via working on logits and it weighting each observation by how
many features there are enabled.

SHAP and Shapley values in general are heavily used in the industry [73]. In NLP
literature SHAP has been used by Wu et al.[74]. This popularity is likely due to their
mathematical foundation and the shap library.
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Chapter 3

Complaint Text Classification Model

Corruption has become one of the primary challenges for public administration and democ-
racy in Brazil, a topic frequently discussed within Brazilian society. Regularly, as we watch
the news, we are confronted with numerous cases of corruption at the federal, state, and
municipal levels, involving both public and private figures. It is a social phenomenon that
has severely eroded the public assets of the Brazilian state and significantly impaired the
effectiveness and efficiency of public policies in the country.

The Brazilian legal system grants every citizen the opportunity to report irregularities
occurring within the Public Administration. The Brazilian Office of the Comptroller
General (CGU) is the internal control body of the Brazilian government responsible for
defending public assets and for increasing transparency, through audit, internal affairs
and corruption prevention and fighting [75].

At the federal level, CGU is responsible for receiving and handling complaints regard-
ing public agents, organs, and entities of the Federal Executive Power [76]. A citizen can
submit a complaint, suggestion, or request via the Fala.BR platform, where they have the
option to attach various file types, including images, spreadsheets, and more. During the
analysis of a complaint, a domain expert carefully reviews both the textual content and
any attached files. They conduct searches in the organization’s databases, if necessary.
The final determination classifies the complaint as either ‘Suitable’ or ‘Not Suitable’ for
further processing within the standard investigative procedures.

On average, only 30 percent of the incoming reports meet the criteria set by domain
experts. This leads to a substantial allocation of effort by the team to address reports
lacking the essential information for any investigation. The large volume of reports poses
a formidable challenge, necessitating the involvement of a sizable team dedicated to the
meticulous screening of these submissions [1].

In order for the complaints to be properly investigated, they must provide coherent
information about the alleged incidents. As a result, the first step in handling the com-
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plaints is known as the suitability analysis, which aims to assess, based on all the received
material, whether a complaint should be deemed eligible for further consideration or not.

During the assessment, the staff must read the text of the complaint and access and
analyze each attached file. These attachments may come in various formats such as
spreadsheets, images, presentations, text files, etc. [77].

After analyzing the complaint texts, the staff needs to verify the information reported
in these documents against databases and corporate systems. Based on these analyses,
they conclude whether the complaints are suitable for further investigation or not.

Figure 3.1: Steps in the Treatment of Complaint Texts.

3.1 Conversion

Figure 3.1 shows the steps previous to the auditor assessment of evaluation of the com-
plaint. The first phase of the process is the Conversion phase. The main function of
this phase is to access the attached files and convert them into an appropriate format for
machine reading.

Therefore, during this phase, all the textual content of these files is transformed into
plain text format, enabling their utilization in the subsequent stages of processing [77].

3.2 Extraction

The second phase involves Information Extraction from the texts. This methodology
identifies and extracts a set of elements considered relevant for the task of handling com-
plaints such as names of individuals, CPFs (Brazilian national identification numbers),
CNPJs (Brazilian corporate identification numbers), contract numbers, agreement num-
bers, monetary values, etc. [77].

3.3 Expansion

The Expansion phase uses the entities identified in the previous phase and attempts to
find new information about them in other databases. This search aims to validate the
existence of the identified entities and discover new elements that are linked to the entities
identified earlier.
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3.4 Entity Qualification

The next phase of the process is dedicated to Entity Qualification, with the objective of
verifying and categorizing the entities identified in the preceding stages. For instance, for
a given CPF, the system checks if it belongs to a public servant or if the individual is a
beneficiary of any social program, among other relevant criteria. Each type of entity goes
through this qualification process, where specific sets of qualifiers are carefully examined
and applied.

3.5 Data Preparation

Lastly, the final phase is Data Preparation. During this stage, all the information obtained
in the previous phases is aggregated to create a structured dataset that can be used for
model training [77].

The previously outlined phases are part of a automated process called Ferramenta de
Análise de Risco em Ouvidoria (FARO) developed and presented by CGU as a part of the
Anticorruption Plan. FARO is an innovative solution that leverages machine learning and
natural processing languages (NLP) techniques, significantly aiding auditors in efficiently
screening complaints.

Two distinct models have been devised based on prior complaints. The first model
utilizes structured data acquired during the Expansion and Entity Qualification phases
while the second model focuses on the actual text of the complaint.

This study will explore the second model in detail, aiming to investigate the seamless
integration of LIME explainability into the complaint screening process.
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Chapter 4

Formulation and Experiment

Research in the field of XAI has predominantly concentrated on the technical aspects of
explanations, giving little attention to users’ needs [78]. While explanations offer insights
into model approximations, numerous articles and studies have highlighted limitations
in these tools. Recent studies are making efforts to highlight the benefits derived from
the synergy of explainable tools with human interactions. Nevertheless, there are few
researches that analyze the application of explainable AI tools in real-world scenarios,
especially when it comes to NLP models, with examples of real-world scenarios.

The effectiveness of explanations is intricately linked to users’ perceptions. For this
study, we will apply LIME algorithm for text considering the six most influential words.
Furthermore, explanations and visualizations will be generated multiple times to scrutinize
the consistency of the chosen influential words and their respective weights.

Given the need to adhere to regulations and uphold citizens’ privacy regarding their
actual complaints, this study will utilize newly generated complaints inspired by selected
real-world cases. The selection process involves searching the data for situations where
the integration of the explainability tool holds particular relevance in decision-making.
This approach aims to illustrate the tool’s role in the decision-making process and assess
its impact on the task of screening complaints.

After generating the new texts of complaints and the corresponding explanations
through LIME, the visualizations, along with the actual text, will be presented in the
explanation module, including the classification score suggested by FARO’s model. The
auditor’s task is to evaluate whether the complaint is deemed suitable or non-suitable.
This evaluation mirrors real-world scenarios where the individual screening the complaint
assigns a score ranging from 10 to 100, in increments of 10. This score, termed Grau
de Aptidão or aptitude degree, reflects the auditor’s judgment regarding the complaint’s
suitability for progressing through the regular investigation process. In cases where the
complaint is considered non-suitable, its aptitude degree will be closer to 10. Conversely,
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if the complaint meets the prerequisites for suitability, its grade will approach 100.
The investigation will focus on proposing an explanation module that can be integrated

to the actual software used presently in the process of screening complaints, where the
auditor can delve into the details of the model’s decision-making via LIME’s visualization.
By doing so, this research seeks to provide valuable insights and recommendations for
improving the explainability and interpretability of machine learning models in the domain
of Brazilian complaints.

4.1 Text-based Model

For the text-based model, the current approach for representing text as vectors employs
the Term Frequency–Inverse Document Frequency (TF-IDF) technique. This method
establishes the specificity of a term by directly correlating it with its frequency in the
given document while inversely linking it to the term’s commonality across a collection
of documents. The selection of TF-IDF for the model was driven by its simplicity and
minimal computational requirements at the time of development.

The Portuguese stopwords, such as ‘de,’ ‘a,’ ‘o,’ ‘que,’ and others were eliminated in
the preparation of the data. Additionally, uniform lowercase formatting was applied to
ensure consistent treatment of all words.

The initial dataset used to train the model consisted of 1489 labeled complaint records
categorized as suitable or non-suitable. An 80/20 split was employed, with 80% of the
complaints utilized for training the model and the remaining 20% reserved for valida-
tion. The proportion of records in the original dataset was maintained for both classes
throughout the training and validation.

The chosen metric for assessing the model’s performance was the Area Under the
Receiver Operating Characteristic Curve (ROC AUC), where the XGBClassifier achieved
a score of 0.83 [1].

4.2 Requirements of a Suitable Complaint

The Office of the General Ombudsman (OGU) does not impose a specific format for
citizens to submit their complaints. However, certain essential attributes are expected to
be present in a suitable complaint.

• Relate to a federal entity or involve concerns regarding public resources of federal
origin.

• Describe an irregularity that signifies harm or poses a threat to public assets.
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• Contain minimal justification to enable its investigation.

Additional details such as the citizen’s full name, email, address, and any pertinent
information enabling OGU to establish contact should be included. Also, any information
the citizen wishes to keep confidential must be specified. The citizen can outline the
steps taken to address the issue, and highlight any unresolved aspects. The complaint
should clearly describe the situation, providing a comprehensive account of the facts and
identifying individuals involved, when possible.

4.3 Complaints evaluation

This study proposes for the integration of an explainable tool into the process of screening
complaints. Presently, auditors have access to diverse data pertaining to the complaint
and the model, including the model’s score, which ranges from zero to one. A higher score
signifies the model’s suggestion that the complaint should be classified as suitable.

In addition to the model’s score, auditors can access derived data obtained during
the extraction, expansion, and qualification phases. The abundance of information is
currently not organized in an intuitive manner. The LIME explanation visualization has
the potential to enhance user-friendliness in the interface by presenting this information
in a more structured and accessible manner.

For the purposes of this study, complaints will be generated based on real-case scenar-
ios. The actual complaints will not be disclosed in this work to uphold the confidentiality
of sensitive data, including the citizen’s identification reporting the irregularity, entities
involved in the report, etc.

Following the selection and generation of the complaints, explainable visualizations
of the text will be created using the LIME tool. These visualizations will consist of
the most influential words identified by the surrogate model that LIME establishes to
approximate the local classification. In addition to showcasing the most influential words,
their respective weights will also be presented. These words can carry either positive or
negative meanings, influencing the classification for both classes.
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Chapter 5

Results

5.1 Explanation Module

As one of the objectives of this study, a software module called the ‘explanation module’
is presented. This module provides visualizations of local explanations for each complaint
text selected by the user. It aims to serve as a tool for auditors to generate insights that
can improve the text classification model of complaints, enhance understanding of some
scores suggested by the model, and assist in the decision-making process for screening
complaints.

By integrating this module into the existing complaint screening process, auditors will
gain a valuable tool for monitoring the text classification model and exploring specific
complaint scores generated by the model. One significant advantage is that the model’s
explainability will become accessible to a broader range of users, as there will be no need
for extensive knowledge of software development to understand the explanations generated
by the LIME algorithm.

The explanation module was developed using the Python programming language due
to its simplicity and support for various machine learning libraries. Additionally, the
existing F.A.R.O. process was also developed in Python. For the front-end development,
the Streamlit framework was utilized, and the LIME algorithm was employed to provide
local explanations.

The explanation module is organized as follows:

• Start screen (Home) : The first part of the explanation module displays a list of the
complaint texts which can be selected by the user. Each complaint will have the
score suggested by the text model of F.A.R.O. next to its text.

0https://github.com/stellameireles/modulo_explicabilidade
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Figure 5.1: Start screen.

Figure 5.2: LIME.
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Figure 5.3: Visualization.

• Second screen (LIME) : After selecting a complaint, the user is taken to the detailed
explanation generated by the LIME algorithm. In this section, the most influential
words for both classes (suitable complaint and non-suitable complaint) are displayed,
along with their weights. The complete text of the complaint is also shown, with
influential words highlighted according to the weights.

• Third screen (Visualization): The third screen displays a word cloud with the words
of the complaint text. This is a more intuitive and familiar visualization that gives an
idea of the most frequent words in the document, alongside with the most influential
words, as the LIME algorithm works by perturbing in the model’s input.

The described sections were chosen for their relevance and utility to the user. Addi-
tional screens and functionalities may be incorporated in future updates to enhance the
module further.

5.2 Software Architecture

To propose an explainability module tailored to the needs of auditors, this study analyzed
the current software architecture used by the F.A.R.O. process. The existing process
regularly handles batches of complaints, processing them to generate suggested scores
that are stored in a database.

Figure 5.4 illustrates the current organization of the complaint screening process. Each
day, citizens submit complaints, which are then stored in a dedicated complaints database.
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Figure 5.4: Current Pipeline.

The texts of the complaints and any attachments undergo preprocessing, including steps
such as conversion, extraction, expansion, entity qualification, and data preparation as
previously outlined. Following these preprocessing steps, the complaint classification
model assigns a score, and the Complaints Database is updated with the scores and
other relevant information generated throughout the pipeline.

Integrating explainability into the day-to-day software can be challenging, as some
algorithms require a considerable amount of time to generate explanations. One solution is
to process the explanations separately and store them. Once processed, these explanations
can be displayed to the user without delay. Considering this, the following organization
of the software is proposed to integrate the explanation module into the existing pipeline.

Figure 5.5: Proposed Pipeline.

In the new proposed pipeline, there is an extra step called explanation pipeline that
uses the complaint’s batches and the FARO model to generate LIME explanations and
visualizations. These explanations are stored in a database to be used afterwards in the
explanation module.
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In this study, 8,393 complaints were analyzed, and their corresponding LIME expla-
nations were generated. The LIME parameters used were 2,500 for the samples and 6
for the features, indicating that 2,500 perturbation samples were generated and the six
most influential words were identified for each explanation. On average, generating ex-
planations for a batch of 200 complaints took 212 minutes, resulting in over a minute per
explanation.

Given the substantial time required to produce each explanation, the decision to pro-
cess them in batches was made. This approach mitigates the potential disruption to
users who would otherwise face long waits to view individual explanations. Additionally,
users often need to examine multiple explanations to investigate potential biases and gain
insights into the model, further justifying the batch processing method.

5.3 Explanations

Quantifying or measuring the quality of explainability, particularly in natural language
processing cases, remains a challenging task. Although various frameworks have been
proposed [79] to address this issue, there is no consensus in academia on a standard
approach, nor is there a widely accepted framework deemed relevant for this study.

Some studies conduct qualitative evaluations of the most influential words generated
by LIME explanations, analyzing relevant examples and exploring the semantics of the
words. This may involve the assistance of an expert with deep knowledge of the business
process, as seen in the analysis of the predicting patient admissions at the emergency
department using triage notes [80]. Similarly, in this work, unique and relevant examples
of influential words are highlighted and analyzed to provide deeper insights.

In this study, the six most influential words were identified for each of the 8,393
complaints. These words were categorized into positive words, which are associated with
the class of suitable complaints, and negative words, which are related to the class of
non-suitable complaints.

Some of the most influential words are non-surprisingly related to the complaint con-
cept, such as politics, managment, mayor, public, enterprise. These words can easily be
placed when someone is repoprting an irregularity. This positive words were compared
with a private list of words selected by domain expert auditors that, accordding to their
vision, indicate that the document containing this words is indeed a suitable complaint.
These words are used in another part of the process of screening complaints, out of scope
of this study.

It is possible to notice some semantical similarity between the positive words in the
LIME explanations and the words selected by the expert. The positive words that are
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not present in the private list were presented to be added in the list, aiming to improve
the list.

Surprisingly, some words that are not semantically related to the complaint context
were listed as the most influential words in the LIME explanations. Examples include
words such as "yet," "avenue," "telephone," and a common personal name. This find-
ing does not necessarily indicate that the model is malfunctioning, as the relevance of
each word in a document can be minimal. However, it can suggest that an additional
preprocessing step, such as deleting or altering proper names, could be beneficial.

Another potential issue in the explanations is the presence of grammatically incor-
rect words within the texts. These words may not be properly considered, affecting the
accuracy and interpretability of the explanations.
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Chapter 6

Conclusions

Interpretable and explainable machine learning is a dynamic and evolving research field.
With the recent significant progress in creating high-performance predictive models and
the widespread integration of machine learning across various domains, the impact of
algorithmic decision-making is profound. It is crucial for these algorithms to be com-
prehensible and trustworthy to human end-users [33], specially in some critical areas like
medicine, healthcare, credit score and others.

This subject holds significant societal relevance as it contributes to improving public
services and building trust among citizens regarding the use of AI models.

Interpretable and explainable machine learning could significantly benefit from the
adoption of improved empirical research practices, as is often the case with developing
research areas, as many works still rely on purely qualitative or even anecdotal evidence
[33].

Meaningful adaptations of the discussed methods to real-world machine learning sys-
tems and data analysis problems are mostly yet to be explored, representing a significant
focus for the future. In order to facilitate widespread and effective utilization of inter-
pretable and explainable ML techniques, it is crucial to involve stakeholders in meaningful
discussions.

This research offers valuable insights to the field by analyzing interpretability methods
in a real-world scenario within a specific business context. The findings and conclusions of
this work are expected to contribute to future research efforts, fostering the construction
of a more robust knowledge base in the field of explainable AI. By shedding light on the
effectiveness and applicability of these methods in practical settings, this study serves as a
stepping stone towards better understanding and implementing explainable AI solutions
in various domains.
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