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Resumo

Esta dissertação busca identificar o modelo de apredizagem de máquina (ML) não linear
mais eficaz na previsão do Índice de Preços ao Consumidor (IPCA) mensal usando um
método de seleção prévio de variáveis baseado em modelo de encolhimento para escolher
os preditores mais significantes. Além disso, o estudo visou analisar os resultados da
previsão usando um método de inteligência artificial explicável (XAI) indepedente de
modelo chamado Shapely Value, que pode fornecer informações sobre as previsões do
modelo de ML não linear.

Foi utilizado um conjunto de dados abrangendo o período de agosto de 2010 a janeiro
de 2024, com 156 preditores. A partir dessa base de dados, foi realizada a seleção dos
preditores mais significativos através de um loop que aplica a eliminação recursiva de
variáveis (Recursive Feature Elimination - RFE) utilizando o modelo ElasticNet em cada
mês do período de treinamento. Ao todo, foram realizadas 156 execuções do algoritmo
de RFE, isolando os 30 preditores mais frequentes, aplicados aos modelos não lineares de
ML.

Os resultados das previsões evidenciaram o Gradient Boosting como o modelo mais efi-
caz, apresentando os melhores indicadores de acurácia e significância no teste de hipótese.
A incorporação do Shapley Value aprimorou significativamente a interpretabilidade do
modelo vencedor, oferencendo insights sobre as contribuições individuais de variáveis e
mitigando a natureza de "caixa preta" dos modelos de ML. Os resultados evidenciaram a
importância dos proxies para a variável-alvo nas previsões com contribuições significativas
quando comparados com outros indicadores econômicos utilizados.

Palavras-chave: Previsão de Inflação, aprendizado de máquina, Seleção de Variáveis,
Inteligência Artificial Explicável, Shapley Value
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Abstract

This dissertation seeks to identify the most effective non-linear machine learning (ML)
model for forecasting the monthly Brazilian Consumer Price Index (IPCA). It employs a
prior feature selection (variable selection) method based on a shrinkage model to choose
the most significant predictors. Additionally, the study aims to analyze prediction results
using a model-agnostic explainable artificial intelligence (XAI) method called Shapley
Value, which provides insights into non-linear model predictions.

A dataset covering the period from August 2010 to January 2024 was utilized, con-
taining 156 predictors. From this database, the most significant predictors were selected
through a recursive feature elimination (RFE) process using the ElasticNet model for each
month of the training period. In total, 156 executions of the RFE algorithm were per-
formed, isolating the 30 most frequent predictors to be applied to non-linear ML models.

The prediction results indicated that Gradient Boosting was the most effective model,
demonstrating the best accuracy and significance indicators in hypothesis testing. The
incorporation of Shapley Value significantly enhanced the interpretability of the winning
model, providing insights into the contributions of individual variables and mitigating
the “black box” nature of ML models. The results highlighted the importance of proxies
for the target variable in predictions, with significant contributions compared to other
economic indicators used.

Keywords: Inflation Forecasting, Machine Learning, Variable Selection, Explainable Ar-
tificial Intelligence (XAI), Shapley Value
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Chapter 1

Introduction

1.1 Contextualization

Investing financial resources, whether for non-financial corporations or financial institu-
tions like banks, inherently carries considerable risk. The Treasury Department is pivotal
in managing financial risks associated with investments across diverse corporate avenues,
being crucial in the banking sector.

As highlighted by [Zaman et al., 2023], a financial institution’s treasury oversees mon-
etary assets, liabilities, and pertinent financial risks. This encompasses tasks ranging from
liquidity management to managing exposure to fluctuating exchange and interest rates.
Consequently, these functions encompass various market operations, including transac-
tions in foreign currencies, securities, and derivatives.

Given the diverse products and currencies commercial banks manage, imbalances in
their balance sheets are not uncommon. In these situations, the Treasury Department
becomes instrumental in ensuring equilibrium by engaging in necessary market trades.
Such operations, while essential, expose the institution to market risks. As elucidated by
[CFA, 2023], market risk stems from potential shifts in the valuation of an organization’s
assets and liabilities, influenced by factors such as interest rate alterations, foreign ex-
change movements, stock price fluctuations, and other related elements. Thus, the onus
falls upon the treasury department to monitor and anticipate market perturbations that
could precipitate sizable losses.

Macroeconomic data releases, particularly those concerning inflation, stand at the
forefront of determinants influencing market risk levels [Wang et al., 2023]. Unexpected
surprises in these releases can drastically alter asset prices, especially in emerging markets
like Brazil [Cakan et al., 2015]. This accentuates the role of macroeconomic variables in
shaping investment strategies.
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In the Brazilian context, inflation data holds immense weight when released. Fluctua-
tions in this variable directly affect the term structure of interest rates, thereby influencing
broader economic trends like aggregate spending and output [Lu & Wu, 2009]. Beyond
the banking industry, inflation significantly influences the decision-making of various eco-
nomic actors and individuals. For instance, in response to inflation spikes, they may seek
higher interest rates to offset the anticipated devaluation of currency. Additionally, antici-
pated increases in inflation can prompt consumers to reduce discretionary spending, turn-
ing towards inflation-resistant investments such as real estate or gold. These behavioral
changes can inadvertently slow economic growth, leading to ripple effects on employment
and income levels. Brazil’s volatile short-term inflationary trends further underscore the
importance of accurate inflation forecasting for financial institutions [Garcia et al., 2017].

Brazil’s embrace of inflation targeting in 1999, post the successful curtailment of hy-
perinflation via the Plano Real, underscores the significance of inflation in the nation’s
economic fabric [Garcia et al., 2017]. Effective inflation targeting mandates transparent
and credible monetary policy execution. Thus, accurate forecasting of impending infla-
tion trends becomes imperative to facilitate timely interest rate adjustments, essential for
anchoring inflation expectations.

The crux of this study lies in addressing the challenge of inflation prediction. By
leveraging machine learning techniques, this research seeks to empirically evaluate their
forecasting efficacy, focusing on the Brazilian Broad Consumer Price Index (IPCA), as
computed by the Brazilian Institute of Geography and Statistics (IBGE). Given the in-
dex’s foundational role in contracts and its utilization by the Central Bank of Brazil
(BCB) for inflation targeting, insights gleaned from this study stand to offer financial
institutions a clearer understanding of impending inflation trajectories and, consequently,
more robust mitigation strategies.

1.2 Problem

Accurate prediction of inflation is a longstanding imperative for both scholars and profes-
sionals. The significance of this endeavor traces back to foundational economic concepts
like the real interest rate introduced by Fisher in 1930 [Fisher, Irving, 1930]. Predicting
inflation is particularly challenging in emerging economies such as Brazil, where inflation
rates tend to be higher and more volatile than in advanced economies. This volatility com-
presses the investment timeframe and amplifying the importance of short-term inflation
predictions in emerging markets [Garcia et al., 2017].

Further complicating matters is the task of variable selection for inflation forecasting
models. Given Brazil’s relatively shorter span of macroeconomic time series coupled with

2



the sheer volume of such variables, researchers often grapple with the Curse of Dimension-
ality [Verleysen & François, 2005]. Moreover, the high correlation among many macroeco-
nomic indicators introduces additional complexity into the forecasting task [Aras, 2022].
Compounding these challenges is the inconsistent timing and frequency of the release of
various Brazilian macroeconomic data series, which can impede timely forecasting.

However, the advent and continual evolution of computer technology offer promising
avenues for addressing these challenges. Notably, Machine Learning (ML) algorithms,
which have witnessed marked advancements in speed and accuracy, can efficiently process
vast volumes of data (referred to as "Big Data" 1)—a feat beyond the capacity of traditional
linear econometric models. Such data-rich explorations aim not only to predict outcomes
but also to discern pivotal variables. This approach, dubbed hypothesis-generating anal-
ysis, stands in contrast to the hypothesis-testing research, where statistical techniques are
deployed to fashion models grounded in pre-existing theories.

Despite the evident promise of ML in time series forecasting, its adoption in finance
and macroeconomic contexts remains curtailed. Two principal obstacles underlie this
hesitance. First, the often opaque nature of ML models poses interpretability challenges,
leading some professionals in the economic and financial sectors to perceive a division
between ML models and theory-driven econometrics [Iskhakov et al., 2020]. Second, real-
world applications of ML frequently struggle with the intricate balance of bias and variance
[Peng & Nagata, 2020].

The intersection of inflation forecasting, machine learning, and model interpretability
constitutes a burgeoning arena of research. Financial institutions can wipe invaluable
economic insights and enhance their predictive accuracy by synergizing extensive time
series data with advanced ML and interpretability techniques. Notwithstanding these
potential gains, a conspicuous lack of research specifically addressing inflation prediction
in Brazil using these cutting-edge techniques exists. This research gap is the momentum
for the present study, which aspires to predict the IPCA.

1.3 Research Questions

Highlighted in this text are the research questions aimed at addressing the problem.
1. Which nonlinear machine learning model demonstrates the most accurate forecast

performance for the monthly Brazilian consumer price index (IPCA), utilizing variables
(features) selected through a shrinkage method?

2. How can we make the predictions of our ML models interpretable?
1Denotes datasets with numerous variables and observations, often too extensive to be seamlessly

integrated into traditional models.
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1.4 Justification

The Brazilian banking sector faces mounting pressures to sustain profitability amid new
competitors and a new set of regulatory mandates. Furthermore, the unprecedented reper-
cussions of the Covid-19 pandemic have reverberated throughout the Brazilian economy
and the global financial ecosystem.

Data from the International Monetary Fund (IMF) reveals a sharp ascent in global
inflation rates post the Covid-19, surging from 2.9% in 2020 to 8.9% in 2022. This infla-
tionary upswing is not isolated but is felt universally across all sectors. Several catalysts
underpin this trend: disruptions in the supply chain, escalating commodity prices, and
expansive monetary policies—all of which can trace their origins to the lockdowns initi-
ated during the pandemic. The geopolitical tensions between Ukraine and Russia further
compounded these challenges. The repercussions of this inflationary surge permeate busi-
nesses, inducing volatility and prompting enterprises to reevaluate their risk mitigation
strategies [imf, 2023].

For financial institutions, the ramifications are profound. Spikes in inflation can trigger
erratic price fluctuations, resulting in potential misallocation. Unexpected inflationary
peaks contribute to market turbulence, raising asset devaluation and financial market
unrest. Additionally, high inflation often leads to high-interest rates, especially where
inflation is the crucial driver for monetary policy, which can reduce demand for credit and
loans. This can decrease profits for financial institutions, as they earn money through
interest payments on loans. Inflation can also cause liquidity challenges for financial
institutions, as depositors may withdraw their funds to invest in other assets or currencies,
draining financial institutions’ liquidity [Yilmazkuday, 2022].

The challenges of elevated interest rates and liquidity constraints are particularly pro-
nounced in inflation-targeted regimes. Recent financial turmoil, such as the downfall of
Silicon Valley Bank, Signature Bank, and First Republic Bank in the US and decreased
confidence in Credit Suisse, spotlight the risks when constricted monetary and fiscal con-
ditions clash with inherent vulnerabilities. This turbulence, stemming from rapid interest
rate hikes globally, was magnified by the pervasive influence of modern technology and
the instantaneous flow of information in today’s digital age. Incidents that began as local-
ized trembles in the US banking arena rapidly rippled across the global financial sector,
inducing a mass liquidation of high-risk assets and recalibrating expectations of monetary
policies [imf, 2023].

At their core, financial institutions are naturally leveraged entities that use third-
party capital to make a profit, and inflation negatively impacts them. Hence, accurate
inflation forecasting plays a crucial role in helping risk managers make decisions and is
vital in the effectiveness of inflation-targeting policies in countries like Brazil. Therefore,
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we emphasize the topic’s importance for a research project and its alignment with the
constant search for better practices adopted in the financial industry.

1.5 Objectives

Since this is an empirical study, our primary goal is to identify the most effective nonlinear
machine learning model in predicting the monthly IPCA using a previous feature selection
(variable selection) method based on shrinkage methods to choose the most important
predictors. In addition, our study aims to analyze the prediction results using an model-
agnostic explainable artificial intelligence (XAI) method called Shapely Value, which may
provide insight into the ML model predictions, often deemed ’black box’.

1.6 Work Structure

The rest of this dissertation is organized as follows:

Chapter 2 : Theoretical Basis. A systematic literature review is conducted to better
direct research efforts and ensure that relevant works have been considered.

Chapter 3 : Machine Learning Models. This section showcases the models used and
explains how they work.

Chapter 4 : Methodology. Presents and discusses briefly the methodology proposed in
this study.

Chapter 5 : Empirical Analysis. Provides an empirical analysis. The methods described
in Chapter 3 are compared in terms of the prediction performance

Chapter 6 : Machine Learning Models Interpretability. Presents and applies the model-
agnostic technique, which interprets machine learning models results.

Chapter 7 : Conclusions. Presents conclusions based on the results from previous chap-
ters and outlines existing challenges.

5



Chapter 2

Theoretical Basis

A comprehensive literature review is an indispensable aspect of academic research, encom-
passing a thorough evaluation and synthesis of existing scholarly materials on a specific
topic. Given the abundance of scientific information available, various fields of knowledge
continue to evolve, fostering research and development endeavors to address diverse chal-
lenges. Consequently, it is imperative to ensure the pertinence of the research subject
and thoroughly examine significant works right from the outset of a research project to
avoid investing time and resources in studies that do not contribute significantly to the
advancement of scientific knowledge. Additionally, the papers need to be scrutinized for
their capacity to shed light on and effectively interpret the issues raised in the proposed
study.

2.1 Method description

To determine the optimal literature references for this study, we adhere to a set of prin-
ciples outlined by [Mariano & Santos, 2017]. These principles advocate for considering
journal impact criteria, author citations and their associations, and the frequency of rel-
evant keywords during the selection process. According to these authors, we need to
identify the most pertinent references for the research, and that is done through a three-
step approach:

1. Preliminary Research Steps: consists of defining keywords related to the topic of
research, the period of analysis, the databases used, and the areas of knowledge that
will be considered.

2. Presentation and interrelationship of data: consists of relating numerous sources of
information, at the researcher’s discretion, such as the evolution of the theme from
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year to year, the authors most cited, and journals that publish the most, among
others.

3. Detailing, integrative model, and evidence validation: in this step are identified
the main authors, approaches, and lines of research related to the theme, using
co-citation and coupling techniques.

Our intention in this project is not to implement the complete methodology proposed
by [Mariano & Santos, 2017]. Rather, we plan to utilize certain aspects of the methodol-
ogy to choose the most crucial studies about our objectives. These selected studies will
then serve as our work’s primary references and will be addressed in the literature review
topic.

2.1.1 Preliminary Research Steps

Based on its widely recognized operational excellence and its suite of tools well-suited for
conducting thorough literature analysis. we decided to use the data offered by the Web of
Science (WoS) platform as a base for our literature review. WoS provides the advantage
of data consolidation and extraction, and its extensive database includes studies dating
back to 1900, ensuring comprehensive coverage of the research topic. Data collection for
this study was conducted on May 14, 2023. Despite the limitation of the platform only
including publications in English, this aspect has not been considered a hindrance for this
research due to the broad scope of inflation forecasting, which encompasses diverse fields
such as economics, mathematics, business, social science, and computer science. Based
on our goals, we decided to select the following words to search:

• Inflation

• Forecasting

• Machine Learning

• Variable Selection (Feature Selection)

• Model interpretability

A clarification is necessary here. In our work, we use the term "Feature Selection" to
describe the process of selecting features. However, when searching on WoS, we found
more results for the term "Variable Selection" in association with "inflation" and "forecast-
ing" compared to using "Feature Selection". Therefore, we adopted "Variable Selection"
for our WoS searches. However, for the remainder of this work, we will use these terms
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Table 1: Individual search of selected terms in the Web of Science database.

Termos Publicações
"Machine Learning" 366.578

Forecasting 264.145
Inflation 76.205

"Variable Selection " 20.637
"Model interpretability" 938

Source: author

interchangeably. Table 1 displays the number of publication hits for each term in the Web
of Science database without applying any filters.

Several combinations of these terms were implemented to identify the primary ref-
erences that align with the objectives of this research. The keyword combinations were
generated according to the guidelines presented in 2. At this stage, we decided to restrict
the analysis period (from 2017 to 2023) and Research Areas (Business Economics, Com-
puter Science, Mathematics, Mathematical Methods in Social Sciences); the results are
shown in table 2.

Table 2: The keywords combinations searched in the Web of Science database.

Search Keywords combinations Publications
1 "Machine Learning" and "Forecasting" 14.380
2 Inflation and Forecasting 3.864
3 "Machine Learning" and Inflation 299
4 Inflation and "Machine Learning" and Forecasting 45

5
Inflation and "Variable Selection"

and Forecasting and "Machine Learning" 8

6
Inflation and "Machine Learning"

and Forecasting and "Model Interpretability" 2

Source: author according to the TEMAC methodology.

Table 2 shows the search resulted in many publications among the permutations per-
formed. However, in some combinations, a low number of publications was found. So,
we chose combinations four, five, and six to select our primary literature. Consolidating
these results into a more concise list was necessary. Then, studies unrelated to this work’s
objectives were eliminated. After that, we excluded papers without at least one citation
from Journals. Therefore, it was deleted documents from conferences and other sources.
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Finally, the works selected for our literature review are cited in the following subsections
according to our goals.

2.2 Literature Review

2.2.1 Machine Learning and Inflation Forecast

Machine learning models have grown beyond computer science and are becoming increas-
ingly popular in many areas. The surge in data science is due to the abundance of
available data thanks to advances in information technology, and this has resulted in the
emergence of a new research field. Since the empirical revolution in economics during the
1970s, there has been a strong emphasis on empirical work that uses data, making econo-
metrics a solid foundation for economists. It has given these professionals the necessary
skills to explore other statistical techniques, including machine learning methods. But
unfortunately, economic experts have not yet fully adopted these methodologies, unlike
other fields of knowledge [Athey & Imbens, 2019].

Much of that has been due to some economists thinking that machine learning tech-
niques are an opposing approach to econometrics based on economic theory. But ma-
chine learning can, in certain situations, outperform traditional econometrics models, as
demonstrated by [Iskhakov et al., 2020]. The authors point out that, when it comes to
predictions, machine learning focuses on how computers make such predictions, present-
ing a more practical orientation, while structural econometrics focuses on understanding
how humans make these predictions, characterized as a more academic approach.

Trying to help economists, [Athey & Imbens, 2019] synthesized machine learning meth-
ods and how these methods can benefit econometrics and economics research. Machine
learning presents distinct objectives, approaches, and environments in contrast to conven-
tional statistics and econometrics. They draw attention to specific ML methods vital for
empirical research, such as supervised, an approach that aims to estimate the conditional
mean of a variable based on a broad set of covariates, and unsupervised learning, ma-
trix completion, and newer ways that perform better than off-the-shelf ML or traditional
econometric methods in certain areas. Areas of focus include causal inference, optimal
policy estimation, and estimating counterfactual effects on consumer choices due to price
changes.

Regarding models applied in time series, [Masini et al., 2021] presented various ML
techniques. They use both linear and non-linear models and hybrid methodologies that
prove advantageous in applications. They present mathematical formalizations of various
models and emphasizes the remarkable results of the penalized regression model and the
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hybrid approach. [Nosratabadi et al., 2020] explore various machine learning techniques,
particularly those with a hybrid nature, and demonstrate their effectiveness in various
economic applications like stock price prediction, consumer behavior for marketing pur-
poses and cryptocurrency market seeks to forecast the prices of digital currencies. As the
authors pointed out, hybrid models combine two ML algorithms for prediction or inte-
grate an ML algorithm with an optimization method to maximize the prediction function.
The authors conduct a systematic review of machine learning methodologies and present
the applications found in the literature for economics.

Regarding inflation forecasts using ML techniques, [Behrens et al., 2018] examines the
optimality of macroeconomic forecasts. They used random forests, a powerful nonpara-
metric modeling instrument, to test the prediction that variables available to a forecaster
should have no predictive value for a binary 0/1-indicator that captures the sign of the
forecast error. According to them, Random forests are a powerful modeling device for
studying macroeconomic forecasts and perform better than conventional linear probability
or logit/probit-models over nonlinear problems. They account for nonlinear links between
forecast error and variables and can handle small forecast numbers relative to predictor
variables. They analyzed inflation forecasts from four German research institutes and
found that longer-term forecasts were optimal and efficient. However, shorter-term fore-
casts varied between institutes, and overall, neither short nor long-term forecasts were
optimal when the data was pooled.

The study by [Medeiros et al., 2021] is based on inflation data from the United States
economy. It uses machine learning to perform forecasts, which proved to be much more
accurate than conventional methodologies, especially when many covariates are involved.
The authors highlight the superior performance of the random forest model, which corrob-
orates the consensus of the literature that studies forecasts of macroeconomic series. This
class of models allows exploring non-linear relationships between macroeconomic variables
and inflation. [Alfiyatin et al., 2019] propose using an extreme learning machine (ELM)
to forecast inflation, with particle swarm optimization (PSO) to determine good initial
weights for the ELM. Our approach achieves better results than the original ELM.

Our study is dedicated to applying ML approaches to forecasting inflation in Brazil.
Therefore, we need to see what other authors from emerging and developed economies
are creating and how they deal with inflation forecasts and ML techniques. A common
approach among studies with a similar goal is to compare the predictive accuracy of ML
techniques to traditional econometric methods. The literature has generally shown exam-
ples where ML methods surpass traditional approaches. For example, [Riofrío et al., 2020]
conducted a study on predicting Ecuador’s CPI using state-of-the-art models. They
tested models including Neural Networks, Support Vector Regression, SARIMA, and Ex-
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ponential Smoothing. They conclude that the Support Vector Regression (SVR) model
using a polynomial kernel is the best element to predict the Ecuadorian CPI one year
ahead. [Syed & Lee, 2021] compares forecasting models for Pakistan’s CPI inflation, GDP
growth, and overnight repurchase rates. They use 161 predictors and evaluate the perfor-
mance of benchmark models and machine learning approaches. Their results showed that
ML approaches outperform the benchmark and commonly used Dynamic factor models
(DFM). [Acosta, 2018] proposed a new methodology for developing core inflation mea-
sures, which utilizes the k-means clustering machine learning algorithm and aimed to
obtain a clear signal and accurate predictions of the inflationary process through select-
ing items with low volatility and assigning them to clusters. They showed that the core
inflation produced using this methodology captures the inflation signal more effectively
and performs better than the short-term inflation forecasts obtained through the trimmed
means method and the core inflation that excludes food and energy.

Moving forward, let’s focus on predicting the consumer price index in Brazil. [Garcia et al., 2017]
use machine learning models to estimate real-time Inflation. According to them, this ap-
proach is necessary due to the high short-term volatility of this variable in emerging
countries. The authors use the predictions made by experts as a reference and com-
parison for the prediction models, which include the factor model, LASSO/adaLASSO,
random forests, and complete subset regression. Model performance varies significantly
with the desired forecast horizon. The LASSO model, for example, performed similarly
to the FOCUS report for forecasting periods of t + 1, while adaLASSO proved to be more
efficient for a horizon of t + 2. The best result was obtained when building a forecast that
combines the average of the models’ results, surpassing all alternatives.

[Araujo & Gaglianone, 2023] have successfully predicted Brazilian headline IPCA us-
ing ML methods. They claim that based on empirical results, machine learning methods
can outperform traditional econometric models in multiple cases. Additionally, the re-
sults suggest the presence of non-linearities in inflation dynamics that are significant for
predicting inflation. Leading machine learning predictions often utilize a blend of fore-
casting techniques, incorporating ensemble methods like random forest and XGBoost and
breakeven inflation rates and survey expectations.

Table 3 summarizes which models were used by each author dealing with the intersec-
tion between inflation forecasting and ML methods.

11



Table 3: Summary of ML Models applied to Inflation Forecasting

Authors ML Models Target Series Countries

[Aras, 2022] ExtraTrees, Adaboost, Gradient
Boosting and XGBoost. Inflation Turkey

[Joseph et al., 2021] Ridge, LASSO, ElNet, NN,
SVM, Random Forest, PLS, PCA Inflation UK

[Coulombe et al., 2022]
Kernel Ridge Regression,
Random Forest,
Ridge, Lasso, ElNet

Industrial Production,
Unemployment, Inflation,

Spread Treasuries,
Housing Start

USA

[Buckmann et al., 2021]
Random Forest, NN,
Linear Regression,
Ridge, SVR, AR

Inflation, Unemployment USA

[Özgür & Akkoç, 2021] VAR, ARIMA, Ridge,
Lasso, adaLasso, ElNet Inflation Turkey

[Acosta, 2018] k-means clustering Inflation Core Mexico

[Syed & Lee, 2021]
DFM, Ridge regression,
LASSO ElNet,
Bagging Methods

GDP, Inflation Pakistan

[Medeiros et al., 2021]
LASSO, adaLASSO, EINet,

adaEINet, Ridge, BVAR,
Random Forest

Inflation USA

[Garcia et al., 2017]
Factor model, LASSO,

adaLASSO, Random Forest,
full subset regression, CSR

Inflation Brazil

[Riofrío et al., 2020]
Neural Networks, Support

Vector Regression, SARIMA,
and Exponential Smoothing

Inflation Ecuador

[Alfiyatin et al., 2019] Extreme Learning
Machine (ELM) Inflation Indonesia

[Behrens et al., 2018] Random Forest inflation Germany

[Araujo & Gaglianone, 2023]

RNN, Random Forest, XGBoost,
LASSO, Ridge, ElNet,

Hybrid models, Factor Model,
Phillips Curve, VAR, ARMA

Inflation Brazil

Source: Author.

2.2.2 Machine Learning and Feature Selection

As per a study conducted by [Fonti & Belitser, 2017], feature selection, also called vari-
able selection, involves selecting a smaller set of explanatory variables to describe the
problem at hand. This helps algorithms to work faster and makes it easier to handle
high-dimensional data. The reasons why feature selection is used are:

1. Simplify the model by eliminating unnecessary variables that do not contribute any
useful information.

2. By decreasing the problem’s size, algorithms can operate more quickly, allowing for
the processing of high-dimensional data.

3. Mitigates overfitting: Removing non-essential features simplifies the model and cur-
tails the tendency to fit excessively to the noise in the training data.
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4. Improves Accuracy: Sometimes, less relevant or noisy features can cause models to
overfit to the training data.

In high-dimensional datasets, like we are working in our study, variable selection be-
comes particularly crucial. In such cases, the number of features is often significantly
greater than the number of observations. This makes it challenging to determine the
relevance of each variable and distinguish between the relevant and irrelevant ones.

According to [Stańczyk & Jain, 2015], common Techniques for Feature Selection are:

1. Filter Methods

(a) Correlation Coefficient: Correlates each feature with the target variable and
removes low correlation features.

(b) Chi-Squared Test: Used for categorical features, it checks the dependence of
one feature on the other.

(c) Information Gain: Measures the reduction in entropy brought about by parti-
tioning on a given feature.

(d) Variance Threshold: Features with variance below a certain threshold can be
removed, as they might be considered constant and therefore not informative.

2. Wrapper Methods:

(a) Recursive Feature Elimination (RFE): Fits the model multiple times and in
each iteration, removes the weakest features.

(b) Sequential Feature Selector: Sequentially adds or removes features to find the
best subset.

(c) Backward Elimination & Forward Selection: In backward elimination, you start
with all features and remove one feature in each iteration, while in forward
selection, you start with no features and add one in each iteration.

3. Embedded Methods:

(a) Shrinkage Method: the model uses L1 regularization to select features by
shrinking some coefficients to zero.

(b) Tree-based Models: Decision Trees, Random Forests, Gradient Boosted Trees,
etc., provide importance scores for features. Features with low importance can
be dropped.

(c) Regularization Methods: Models like Ridge and Elastic Net regularization can
also help select feature by adding penalty terms.
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4. Hybrid Methods: These are combinations of the above methods to leverage the
strengths of different methods. For example, a filter method can be used to reduce
dimensionality before applying RFE.

5. Dimensionality Reduction as Feature Selection:

(a) Principal Component Analysis (PCA): Creates new orthogonal features called
principal components, which are linear combinations of the original features.
However, these new features are interpreted differently than the original ones.

(b) Linear Discriminant Analysis (LDA): Seeks to maximize class separability.

(c) Regularization Methods: Models like Ridge and Elastic Net regularization can
also help select feature by adding penalty terms.

[Stańczyk & Jain, 2015] highlight that feature selection is data-dependent. Just be-
cause a feature is deemed unimportant for one data-set doesn’t mean it will be insignificant
for another. Domain knowledge can be invaluable. Sometimes, domain experts can point
out important features or irrelevant ones before any algorithmic feature selection begins.

In conclusion, feature selection is a crucial step in the machine learning process. It
simplifies models, speeds up training, and improves performance. We can create more
efficient, interpretable, and accurate models by selecting the most relevant and essential
features.

Looking specifically at the intersection between inflation forecasting and feature selec-
tion (variable selection), [Kim & Swanson, 2018] analyzed the benefits of using principal
component analysis (PCA), independent component analysis (ICA), and sparse principal
component analysis (SPCA) for forecasting macroeconomic variables such as unemploy-
ment, inflation, and GDP. They also evaluate machine learning, variable selection, and
shrinkage methods, including bagging, boosting, ridge regression, least angle regression,
the elastic net, and the non-negative garotte. According to the authors, factor-based
dimension reduction is helpful for macroeconomic forecasting with "big data."

[Özgür & Akkoç, 2021] using machine learning algorithms to predict inflation rates
in Turkey, comparing them to traditional econometric models. Shrinkage methods were
more effective in feature selection, with the lasso and elastic net algorithms outperforming
other methods. The authors found these algorithms can identify essential variables for pre-
dicting inflation, specifically energy production, construction-sector measures, exchange
rates, and money market indicators.
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2.2.3 Machine Learning Interpretability

Forecasting inflation accurately is difficult, particularly in a data-rich environment with
highly correlated predictors. While various feature selection methods attempt to address
this, they often fail to explain how computers make their predictions. The interpretability
of machine learning models is crucial in many fields, including inflation forecasting. Inter-
preting these ’black box’ models holds significant importance since it can assist economic
agents in navigating inflation stress scenarios. The Shapley Value method is employed
in this work as a model-agnostic tool for interpreting these models. Therefore, reviewing
literature that works with inflation forecasting and machine learning interpretability is
valuable.

To address the challenge of machine learning models being limited in terms of re-
sult interpretability, particularly in macroeconomic theory, [Coulombe et al., 2022] aim
to establish a link between machine learning methods and conventional macroeconomic
approaches for various macroeconomic variables, including the US CPI. Although the au-
thors didn’t work with Shapley Value they identified and tested four features driving ML
gains in data-rich and data-poor environments: non-linearity, which, despite the preva-
lence of linearized models, offers advantages by allowing forecasts with less error when
the data-generating process is also non-linear; regularization, which makes it possible to
reduce the complexity of the estimation when there are many variables involved; cross-
validation, which acts as a selection criterion similar to the Akaike and Schwarz-Bayesian
information criteria, frequently used in macroeconometrics; and the exploration of al-
ternative loss functions since the quadratic error function is the most commonly used.
Their findings show that nonlinearity is the game changer, the standard factor model
remains the best regularization, K-fold cross-validation is the best practice, and L2 is
preferred to e-insensitive in-sample loss. Still, according to the authors, ML captures
critical nonlinearities in uncertain and financially stressful situations, making it useful for
macroeconomic forecasting.

[Joseph et al., 2021] use ML techniques to predict inflation in the UK up to one year
ahead. They improved forecasting accuracy beyond macroeconomic predictors using
monthly CPI item series data. The authors also offer a model-agnostic approach for
interpreting high-dimensional models using statistical testing and Shapley values. This
way, they could identify CPI divisions that consistently drive forecasts and assess model
differences beyond accuracy.

[Buckmann et al., 2021] used nine sets of US economic data to predict and compare
the results of machine learning models with traditional time series forecasting methodolo-
gies. In addition, they applied interpretability techniques to understand better the results
obtained. Random forest models showed superior results. Using the Shapley regression
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technique, they concluded that variables such as industrial production and the S&P 500
played a relevant role in predicting the unemployment rate in the United States.

A study by [Aras, 2022] recommends using ML models with feature selection tech-
niques for better accuracy and explainable predictions. The writer employed Shapley
values to obtain succinct explanations of inflation forecasts to achieve their objective.
Their research involved conducting numerous experiments in Turkey, a country with high
levels of volatility and uncertainty. The outcomes revealed that tree-based ensemble mod-
els can offer improved accuracy and comprehensible predictions.
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Chapter 3

Models

This section introduces the machine learning models employed in this study. We aim not
to provide an exhaustive and comprehensive presentation of each model. Instead, we focus
on the key concepts and equations and provide relevant references for those interested in
a more detailed exploration.

We begin our discourse by exploring the regularized linear models, which will be
used to perform the feature selection (variable selection) in this work. Subsequently, we
introduce nonlinear ML models.

3.1 Regularized linear models

Linear regression models are often estimated using Ordinary Least Squares (OLS) model
estimators. This method involves finding the model with the smallest Euclidean distance
between the observed and adjusted values. These estimators have optimal properties,
including the Gauss-Markov theorem, which states that the least squares estimator has the
most minor variance among all unbiased linear estimators. However, in some situations,
OLS estimators may not be a good model estimation option.

For example, in scenarios where the number of predictors is greater than the number
of observations (i.e., p > n), the solution found by OLS models can be problematic as
it is not unique. OLS is highly susceptible to overfitting even when n approaches but is
still smaller than p. This means there can be infinite solutions for the objective function,
making OLS estimators suboptimal for estimating models. This scenario is frequently
encountered with macroeconomic series due to their relatively brief duration and too
many alternatives to measure the same variable.

Besides, [Tibshirani & Wainwright, 2016] highlights two other key motivations for
seeking alternatives to the least squares estimate. Firstly, prediction accuracy: while
least squares estimates are typically low in bias, they suffer from high variance. Secondly,

17



the goal of interpretability: it becomes desirable to pinpoint a more concise subset with
the most pronounced impact in situations with numerous predictors.

To overcome these problems, some authors proposed penalized regression methods,
also called Shrinkage models. In the context of equation (3.1) and the general forecasting
framework, the Shrinkage methods assume that f (xt) = x⊤

t β, allowing us to express the
general formulation of the forecasting models as:

yt+h = x⊤
t β + εt+h, t = 1, · · · , T (3.1)

The group of penalized linear models adds a penalty component to the OLS objective
function, aiming to regulate the complexity of the model.

T −h∑
t=1

(
yt+h − x⊤

t β
)2

+ λp(β) (3.2)

Here, λ ≥ 0 represents a penalty (or tuning) hyperparameter, and p(·) denotes the
penalty function. The solution is obtained by minimizing:

β̂(λ) ∈ argmin
β∈RN

[
∥y − Xβ∥2

2 + λp(β)
]

(3.3)

The penalty function should yield values on the positive real line, penalizing β for
deviating from zero. Thus, the family of penalized linear models shrinks the coefficients
towards zero compared to their OLS estimates. It is important to note that λ ≥ 0
determines the overall strength of the penalty, where λ = 0 corresponds to the typical
OLS estimator.

To estimate models using penalized regression models, we must first apply some Fea-
ture scaling technique. According to [Geron, 2019] Feature scaling is a method used to
normalize the range of independent variables or features of data. Data processing is also
known as data normalization and is generally performed during the data preprocessing
step. We must do this so that the estimation is not affected by the unit of measurement
or their order of magnitude. One covariate, for example, can be in meters, another in
kilometers and a third can be dimensionless with a very different order of magnitude from
the others. In a nutshell, scaling the covariates is a recommended practice when dealing
with models in this category.

The study employs the ElasticNet technique to select variables. However, before
delving deeper into this method, it is crucial to first understand LASSO regression. This
is the most common option used to perform feature selection through shrinkage. LASSO
regression has a specific condition that must be met before it can be used. Due to this
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limitation, we opted for ElasticNet as it has a more suitable approach for dealing with
datasets containing many correlated variables.

3.1.1 LASSO Model

As we said previously, when the number of predictors p surpasses the series’ length n

observations (p > n), the solution found by OLS models can be problematic as it is not
unique. Moreover, the lack of sparsity 1 can result in models with numerous parameters
that are difficult to interpret, and there is a problem related to low bias but high variance.
Penalized methods were created to overcome these problems, and among many alterna-
tives using this approach, there is the Least Absolute Shrinkage and Selection Operator
(LASSO) regression created to address these issues; thus, it is a useful alternative, and it
is important to understand how it works.

LASSO was introduced by [Tibshirani, 1996], and its variations are distinguished by
its ability to perform regularization and variable selection simultaneously. The penalty
term takes the following form:

λp(β) = λ
n∑

i=1
|βi| = λ∥β∥1 (3.4)

Similar to Ridge Regression2, the LASSO also drives coefficients toward zero. However,
the penalty introduced by the l1

3 norm possesses a distinct attribute: it can precisely set
specific coefficients to zero when the value of λ reaches a certain magnitude. This results
in what is commonly referred to as a sparse solution, wherein only a subset of the entries
in β̂

Lasso exhibits non-zero values when λ becomes sufficiently sizable.
In a nutshell, the regularization parameter, λ, is pivotal in LASSO regression. It

controls the trade-off between fitting the data well and keeping the model simple through
sparsity.

• λ = 0: The LASSO model becomes equivalent to an ordinary least squares model,
with no feature selection.

• As λ increases: More coefficients are set to zero, enhancing sparsity but potentially
leading to underfitting.

1Sparsity comes from the Latin sparsus. One definition is the property of being scanty or scattered,
lacking denseness. Applied to ML field, according to [Tibshirani, 2014], sparsity refers to a property where
only a small subset of features or coefficients in the model contribute significantly to the predictions. At
the same time, the majority remain zero or negligible.

2Hoerl and Kennard (1970) pioneered Ridge Regression to deal with highly correlated predictors,
highlighting an essential feature where coefficients are shrunken towards zero, yet not precisely to zero.

3l1 regularization penalizes the sum of absolute values of the weights, whereas l2 regularization penal-
izes the sum of squares of the weights. The l1 regularization solution is sparse like the lasso models. Like
the Ridge models, the l2 regularization solution is non-sparse.

19



• Optimal λ: Found using cross-validation, represents the best balance between model
complexity and fitting the data.

This research will use Elastic Net for feature selection (variable selection), which uses
LASSO as a base. Therefore, it is crucial to discuss the properties of LASSO and its
conditions.

3.1.2 Mechanism of LASSO Feature Selection

Model selection is essential in statistical modeling, especially with high-dimensional data.
Generically, model selection refers to deciding which of a set of models is best (each
encodes a different set of assumptions). To address this problem, LASSO can usefully
produce some coefficients that are exactly zero, effectively selecting a simpler model that
excludes some features altogether. This contrasts with Ridge Regression, where all coeffi-
cients are typically non-zero but smaller in magnitude. The key mechanism behind feature
selection in LASSO regression lies in the l1 penalty term, λ

∑n
i=1 |βi|. This penalty term

has two crucial effects:

1. Regularization Effect: By constraining the sum of the absolute values of the coef-
ficients, LASSO regression controls the model complexity, thereby preventing over-
fitting. This is particularly vital in scenarios with many predictors or when multi-
collinearity is present.

2. Sparsity Effect: The absolute value in the penalty term makes the cost of including
a variable in the model nonlinear in its coefficient. This nonlinearity has a unique
property: as the penalty increases, coefficients of less important variables are driven
precisely to zero, effectively removing them from the model. Unlike Ridge regression,
another regularization technique only shrinks coefficients close to zero but never
precisely to zero.

Exploring the distinctions between the penalty mechanisms of LASSO and Ridge re-
veals why LASSO possesses the feature selection ability while Ridge does not. Drawing
on the insights from [Li, 2024] and [James et al., 2023], we delve into the optimization
problems of both LASSO and Ridge to highlight their differences. The optimization for
LASSO can be represented by:

Σn
i=1

(
yi − β0 − Σp

j=1βjxij

)2
+ λΣp

j=1 |βj| = (3.5)

min
β

{
Σn

i=1

(
yi − β0 − Σp

j=1βjxij

)2
}

, Σp
j: (3.6)
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For any given λ, there’s a corresponding s that ensures the solutions optimizing equa-
tion 3.5 also satisfy equation 3.6. Ridge regression’s optimization problem similarly aligns
across two representations:

Σn
i=1

(
yi − β0 − Σp

j=1βjxij

)2
+ λΣp

j=1β
2
j = (3.7)

min
β

{
Σn

i=1

(
yi − β0 − Σp

j=1βjxij

)2
}

, Σp
j: (3.8)

[Li, 2024] elucidates that for p = 2, LASSO’s estimates achieve the lowest RSS within
all points fulfilling |β1| + |β2| ≤ s. Conversely, Ridge’s estimates are optimal within a
boundary where β2

1 + β2
2 ≤ s. As s expands, so do the diamond and circle regions,

becoming less restrictive. When s is sufficiently large, these regions encompass the least
squares estimate

(
β̂LSE

)
, allowing equations 3.6 and 3.8 to converge to the least squares

estimate. Conversely, a smaller s limits the size of the grey region in figure 3.1, thus
constraining β’s magnitude. This alternate formulation provides a clear explanation for
the feature selection attribute inherent in LASSO for feature selection.

Figure 3.1: Contours of the RSS and constrain functions for the lasso (left) and ridge
regression (right);

Source: [Li, 2024].

Some benefits of using LASSO for feature selection are turning models interpretable
and reducing overfitting. For the first case, LASSO helps identify the essential features,
making the model more understandable and less complex in coefficient amount. Related
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to the second point, LASSO can mitigate overfitting by reducing the coefficients of less
relevant features to zero, resulting in a more robust model. Besides, this technique can
handle correlation among features. When features are correlated, LASSO tends to choose
one of them based on its performance in the given dataset, which can simplify the model
without losing much predictive power. However, there are some disadvantages when using
the LASSO approach to perform a feature selection.

3.1.3 LASSO Sparsity Condition

The LASSO feature selection method is intuitively simple in both theory and practice.
It offers advantages such as enhanced interpretability and reduced overfitting by elimi-
nating irrelevant predictors. However, its efficacy can falter in highly correlated datasets.
LASSO’s selection of predictors may lack consistency across different runs or datasets, par-
ticularly when predictors exhibit strong correlations, demanding cautious interpretation,
especially in the presence of multicollinearity. This inconsistency raises questions about
its reliability as a model selection technique. Authors such as [Özgür & Akkoç, 2021] and
[Sklearn, 2024] highlight this drawback not only in LASSO but also in Ridge regression.
When explanatory variables are strongly correlated, the LASSO estimator may treat them
indifferently, whereas Ridge regression tends to shrink them collectively. Additionally, as
shown by [Wang et al., 2020] in their simulation, l1 regularization tends to introduce many
spurious variables in very sparse cases. These issues can yield unexpected outcomes with
significant practical implications.

According to [García-Portugués, 2024] and [Zhao & Yu, 2006], the LASSO method
consistently identifies the correct model under the condition that the predictors meet
a specific requirement, termed the strong irrepresentable condition. Additionally, the
regularization parameter λ = λn must approach zero at certain speeds as n → ∞.

Despite its technical nature, the strong irrepresentable condition requires that corre-
lations among predictors be managed within certain bounds. [Zhao & Yu, 2006] outlined
a few straightforward scenarios in which this condition is fulfilled:

1. When predictors are not correlated.

2. When predictor correlations are kept within a limit as delineated by the authors.
Specifically, if β−1 contains q non-zero entries, it must hold that Cor[Xi, Xj] ≤ c2q−1

for a constant 0 ≤ c < 1, for all i, j = 1, . . . , p, with i ̸= j.

3. When correlations among predictors follow a power law, as outlined by the authors.
That is, Cor[Xi, Xj] = ρ|i−j|, for |ρ| < 1 and for all i, j = 1, . . . , p.
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Despite the clarity these conditions provide on LASSO’s consistency in model se-
lection under specific circumstances, they offer little insight into its reliability in more
complex scenarios, particularly when the penalization parameter λ̂ is determined through
data-driven methods (as opposed to the deterministic sequence λn → 0, as specified by
[Zhao & Yu, 2006]).

To address these challenges, alternative shrinkage methods have emerged. For in-
stance, Elastic Net strikes a balance by inducing sparsity in coefficients while also shrink-
ing their values toward zero. This approach enables the model to reduce the weights of
correlated features without precisely setting them to zero, resulting in a less sparse model
than pure LASSO. By incorporating a penalty function with two tuning terms, Elastic
Net encourages sparse variable selection while promoting coefficient averaging. While
these adjustments mitigate some challenges, ongoing research aims to refine models for
better performance in handling highly correlated datasets.

3.1.4 Elastic Net Model

So, the Elastic Net, put forth by [Zou & Hastie, 2005], introduces a penalty component
that merges the penalties of Ridge and LASSO using a convex blend:

λp(β) = λ
[
(1 − α)∥β∥2

2 + α∥β∥1
]

(3.9)

In this method, the hyperparameter λ controls the overall strength of the penalty,
while a new hyperparameter α determines the relative importance of the l1 and l2 penal-
ties. Notably, when α = 0, the penalty reduces to the ridge regression, and when α = 1,
it becomes equivalent to the LASSO. This modified penalty term provides an improve-
ment over the LASSO in scenarios involving highly correlated predictors. It encourages a
grouping effect, where strongly correlated predictors are more likely to shrink to zero or
be excluded from the model.

LASSO and Elastic Net Regression stand out for feature selection within complex
datasets, primarily due to their capacity to induce sparsity. Elastic Net, in particular, is
favored for its proficiency in handling correlated features, a common trait in our time-
series dataset, leading us to use it for variable selection. This technique adeptly negotiates
between model precision and complexity, a balance vital in statistical modeling and ma-
chine learning contexts. However, the final model interpretation should always consider
domain knowledge and context. These methods are beneficial in high-dimensional data
scenarios where understanding variable relationships is critical.

23



3.2 Nonlinear Models

ML models approaches are recognized for their "inductive" nature, allowing them to adapt
organically to sampled data and derive decision-making functions from observed patterns
without relying on predetermined functional shapes or making specific assumptions about
the data’s distribution. Some authors support using machine learning techniques in tradi-
tional economics approaches, highlighting their enhanced empirical predictive power and
proficiency in uncovering nonlinear dynamics. In this sense, our study uses regression
tree-based methods as nonlinear models. These methods involve dividing the predictor
space into simple regions using tree structures. We then make predictions by taking
the average or mode of the training observations within these regions. These techniques
are called ’decision trees’ because the rules used to partition the predictor space are
represented by trees. With few predictors, tree-based methods are simple and easy to
understand. However, we use multiple trees to enhance prediction accuracy, which may
affect interpretability.

Figure 3.2 illustrates the binary subdivision of regions in a scenario where one wishes
to analyze a variable Y concerning two others, X1 and X2. The subdivision of regions
continues until a stopping condition is triggered. Initially, the tree covers the entire
available dataset. Then, the division of areas is based on the condition X1 = t1. If
X1 ≤ t1, the left branch is followed; otherwise, the right unit is taken. This process is
repeated sequentially, resulting in five distinct regions: R1, R2, . . . , R5.

Figure 3.2: Regression tree.

Source: author.

The equation that describes the regression for estimating Y , using a constant cm

representing the mean or median of the observations in region Rm, is expressed as follows:

24



f̂(X) =
5∑

m=1
cml {(X1, X2) ∈ Rm} (3.10)

To sum up, we aim to recursively predict an unknown nonlinear function using re-
gression trees to divide the covariate space. Starting at the root node, a subset of the
variable set, we create two child nodes for each non-terminal node. We identify the best
split using an algorithm and apply a Boolean condition to the variable value. If a node
cannot be split, we create a terminal node or leaf, and the value on the terminal node
determines the output variable.

The tree size is a tuning parameter to determine the model’s complexity. Large trees
can overfit the data, while small trees may not capture the data’s structure. Therefore,
it is crucial to select the optimal size adaptively based on the data.

3.2.1 Random Forest

The Random Forest approach, which first introduced [Breiman, 2001], is utilized for clas-
sification and regression purposes. For regression, the algorithm creates a set of regression
trees by selecting a bootstrapped sub-sample of the initial data for each tree. When grow-
ing the trees, the algorithm only considers a random subset of variables at each node to
determine the optimal split. The forecast for each tree is made at the terminal nodes,
and the final prediction is calculated by averaging the results of all the trees. In simpler
terms:

ŷt+h = 1
B

B∑
b=1

fb (xt) (3.11)

We aim to forecast the target feature yt+h using B regression trees. The output of
each tree, fb (xt), is based on a bootstrapped sub-sample of the training data and the
randomization of the variables considered to determine the best split at each node.

Bagging involves taking an average of models created from multiple bootstrap sam-
ples to enhance the performance of an estimator. This method effectively improves the
accuracy of certain estimators, particularly nonlinear ones like trees and neural networks
[Friedman & Hall, 2007]. Random forests take this further by introducing randomness to
the tree-growing process, reducing the correlation between individual trees, and increas-
ing effectiveness. Considerable evidence supports the effectiveness of bagging and random
forests in improving estimators [James et al., 2013].

Random forests are prevalent when we talk about inflation forecast, as table 3 shows,
and can perform remarkably well in representing complex relations in the data, with mini-
mal tuning required when compared to methods like deep neural networks [Athey & Imbens, 2019].
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3.2.2 Gradient Boosting

Gradient boosting is a machine learning technique for regression and classification prob-
lems proposed by [Friedman, 2001] that involves constructing additive models by fitting a
base learner to the current pseudo-residuals at each iteration. Pseudo-residuals refer to the
gradient of the loss function that the model tries to minimize, evaluated at each training
data point and current step. In simpler terms, given a dataset (x1, y1), (x2, y2), ..., (xn, yn),
where xi represents the features and yi is the corresponding target value, regression aims
to find a function f(x) that maps x to y.

1. Weak Learners: In gradient boosting, an ensemble is progressively enhanced by
incorporating predictors that address the errors of their predecessors. These predictors
are usually simple, such as decision stumps (single-split trees), and are termed "weak
learners" due to their marginal enhancement beyond mere chance.

2. Gradient Descent: Gradient boosting diverges from AdaBoost’s strategy of ad-
justing instance weights with each iteration, choosing instead to train new predictors
on the residual errors left by the preceding one. This approach resembles a numerical
optimization challenge, employing gradient descent to reduce a specified loss function.

According to [Friedman, 2001], an algorithm for Gradient Boosting Regression works
as follow:

1. Start the model with a fixed value, f0(x):

f0(x) = argmin
γ

n∑
i=1

L(yi, γ) (3.12)

Where L is the loss function. For the sake of simplicity, we’ll assume the mean squared
error (MSE) for regression:

L(yi, f(xi)) = (yi − f(xi))2 (3.13)

2. For each stage m = 1 to M , do the following:
a. Compute the pseudo-residuals:

rim = −
[

∂L(yi, f(xi))
∂f(xi)

]
f=fm−1

(3.14)

For MSE, this reduces to:
rim = yi − fm−1(xi) (3.15)

b. Fit a weak learner hm(x) to the pseudo-residuals.
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c. Compute the multiplier γm that minimizes the loss:

γm = argmin
γ

n∑
i=1

L(yi, fm−1(xi) + γhm(xi)) (3.16)

d. Update the model:
fm(x) = fm−1(x) + γmhm(x) (3.17)

3. The final model is:

f(x) = fM(x) = f0(x) +
M∑

m=1
γmhm(x) (3.18)

When predicting inflation using gradient boosting, as we intend to do in this work, the fea-
tures x might include economic indicators such as GDP growth rate, unemployment rate,
previous inflation rates, monetary policy rates, and others. The target value y would be
the inflation rate. Given the non-linear and often complex relationships between economic
indicators and inflation, gradient boosting is an apt choice as it can capture intricate pat-
terns in the data, provided the model is tuned properly. In conclusion, gradient boosting
is a powerful ensemble method that can be employed for predicting inflation rates using
regression.

3.2.3 Extreme Gradient Boosting - XGBoost

Using gradient boosting techniques, [Chen & Guestrin, 2016] introduced a scalable ma-
chine learning system known as XGBoost. This system utilizes gradient boosting for
regression trees. This model’s structure closely mirrors that of traditional gradient boost-
ing, focusing on loss minimization while incorporating a complexity-based regularization
term (Ω). The simplified version of the objective function for the t-th iteration is given
as:

L̃(t) =
n∑

i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ Ω (ft) , (3.19)

where
gi = ∂ŷ(t−1)l

(
yi, ŷ(t−1)

)
and
hi = ∂2

ŷ(t−1)l
(
yi, ŷ(t−1)

)
are the first and second-order gradients of the cost function.
Given that
Ω(f) = γT + 1

2λ|w|2,
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we expand Equation (35) by defining the instance set
lj = (i|q(xi) = j) for leaf j:

L̃(t) =
n∑

i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ γT + 1

2λ
T∑

j=1
w2

j ,

=
T∑

j=1

∑
i∈lj

gi

 wj + 1
2

∑
i∈lj

hi + λ

 w2
j

 + γT,

(3.20)

for a fixed structure q(x), the weight w∗
j for leaf j is given by:

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
, (3.21)

which implies an optimized value for the problem that can be used as a performance
measure for the quality of the tree q, defined as:

L̃(t)(q) = −1
2

T∑
j=1

(∑
i∈Ij

gi

)2

∑
i∈Ij

hi + λ
+ γT (3.22)

Due to the complexity of enumerating all possible structures q, an algorithm is applied
that starts with a leaf and adds branches to the tree. Assuming that IL is the left node
after the split and IR is the right node, where I = IL ∪ IR, the loss reduction after the
split, which is used to find potential candidates for splitting, is defined as:

Lsplit = 1
2


(∑

i∈IL
gi

)2

∑
i∈IL

hi + λ
+

(∑
i∈IR

gi

)2

∑
i∈IR

hi + λ
− (∑

i∈I gi)2∑
i∈I hi + λ

 − γ. (3.23)

The XGBoost model employs three distinct algorithms for identifying split points:

1. The first is the greedy algorithm, which seeks to find a point of global optimum
using first and second-order gradients, which can be computationally expensive.

2. The second is an approximate algorithm that uses an initial split based on per-
centiles, making comparative analyses between potential split points.

3. The third is an algorithm capable of handling sparsity issues, where some of the
covariates do not have values for all instances compared to other covariates.

As a result, XGBoost can apply greedy algorithms, allowing it to find approximations of
local or global optimal points. It supports out-of-core processing, which is very useful for
conserving machine memory, especially when dealing with very large datasets. XGBoost
can handle data sparsity issues and also parallelization problems, where a block system
reduces the computational costs associated with sorting database variables, particularly
for very large datasets.
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3.2.4 Adaptive Boosting

Adaptive Boosting, commonly abbreviated as AdaBoost, operates within the realm of ma-
chine learning algorithms, specifically targeting the enhancement of weak learners. This
methodology is distinctive for its adaptability, particularly in addressing the challenges
posed by instances that were incorrectly classified by preceding classifiers. AdaBoost ex-
hibits a notable sensitivity towards noisy data and outliers, yet it demonstrates a reduced
susceptibility to overfitting in comparison to various other learning algorithms. Despite
the fundamental weakness of individual learners, the collective performance—provided it
marginally exceeds random guessing—cumulatively fosters the development of a robust
learner through iterative convergence.

AdaBoost is notably employed in the context of training boosted classifiers. A boosted
classifier embodies a composite model represented by the equation:

F (x) =
T∑

T =1
ft(x) (2.6)

Here, ft(x) signifies a weak learner that accepts an object’s input x and outputs a
value indicative of the object’s class affiliation. Specifically, in a binary classification
scenario, the sign of ft(x)’s output delineates the predicted class of the object, whereas
the output’s absolute value reflects the confidence in this classification. The T th classifier
assigns a positive label if the sample belongs to the positive class, and a negative label
otherwise.

3.3 Cross-validation for Model Evaluation

Assessing the efficacy of a model is fundamental for comparison, allowing for the iden-
tification of the optimal model that best corresponds to the given data. This process
involves dividing the dataset into a training set, which is utilized for tuning and educat-
ing the model, and a test set, acting as an unbiased platform for evaluating the model’s
performance. [Tibshirani & Friedman, 2001] have explored several strategies for model
selection, highlighting cross-validation as a particularly prevalent method. They define
the loss metric, which measures the discrepancy between Y and f̂(X) using the training
data, in the following manner:

L(Y, f̂(X)) =

(Y − f̂(X))2 quadratic error

|Y − f̂(X)| absolute error,
(3.24)
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Cross-validation evaluates the predictive accuracy on unseen data, quantified as Err =
E[L(Y, f̂(X))], within a specific training dataset T . The K-fold cross-validation, a widely
adopted approach, involves partitioning the entire training dataset into K unique subsets
and alternating between training and testing roles for these subsets. For instance, with
K = 5, as depicted in Figure 3.3, the dataset is divided into 5 subsamples, each split
into training and testing groups. As shown in the figure, the division ratio for both the
initial dataset segmentation and at this stage commonly adheres to a 70/30 or 80/20 split.
However, researchers may opt for different proportions based on their preferences.

Figure 3.3: Split structure for K-fold cross-validation for K=5.

Source: author.

Consider the function k : {1, . . . , N} 7→ {1, . . . , K} that maps each observation i to
one of K partitions via random distribution, where f̂−k(x) represents the model fitted
on the dataset excluding the k-th subset. The evaluation of the prediction error through
cross-validation is thus defined as follows:

CV (f̂) = 1
N

N∑
i=1

L
(
yi, f̂−k(i) (xi)

)
(3.25)

In most cases, the choice of K is either 5 or 10. For the group of models f(x, α),
involving a parameter that can be optimized, denoted as α, we have f̂−k(x, α) as the α-th
model fitted to the k-th segment of omitted data. Consequently, for this collection of
models, the aim is to determine α̂ that leads to the minimum:
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CV (f̂ , α) = 1
N

N∑
i=1

L
(
yi, f̂−k(i) (xi, α)

)
(3.26)

Thus, cross-validation serves to identify the best parameter or hyperparameter set-
tings, optimizing the model’s fit to the data at hand. The standard steps for conducting
K-fold cross-validation are described as follows:

1. Split the dataset into K folds for cross-validation randomly.

2. For each fold k = 1, 2, . . . , K:

(a) Select a "promising" group of predictors that show a strong univariate correla-
tion with the outcome variable, using data from all but the kth fold.

(b) Construct a multivariate model using only these selected predictors, excluding
data from the kth fold.

(c) Use this model to predict the outcome for the data in the kth fold. Aggregate
the prediction errors from each fold to compute the overall cross-validation
prediction error.

3.3.1 Cross-validation for Time Series

In time series forecasting, the goal is to leverage historical data to forecast future events.
However, the application of random splits in K-fold Cross-Validation disregards the se-
quential nature of the data. Without any adjustment, this approach is unsuitable for time
series analysis, as highlighted by [Medeiros et al., 2021] and [Athey & Imbens, 2019], due
to its failure to acknowledge the temporal dependency within the dataset.

So the unique nature of time series data necessitates a specialized form of cross-
validation called pseudo-out-of-sample evaluation, a common practice within the liter-
ature. This approach involves dividing the data into training and testing portions while
maintaining the chronological sequence, a method exemplified by [Nosratabadi et al., 2020].
As detailed in Figure 3.4, the pseudo-out-of-sample technique ensures adherence to the
time series’ inherent order, preventing the use of future observations for past predictions
by setting aside a segment of the dataset. The methodology, particularly illustrated
through fold 3, is a standard practice in time series forecasting.

Although the common preference for pseudo-out-of-sample evaluation in time series
forecasting with ML models, [Bergmeir et al., 2018] present compelling evidence that sup-
ports the effectiveness of cross-validation applied to traditional models approaches for
time series prediction like autoregressive models. Their research suggests that K-fold
cross-validation is particularly advantageous when the prediction errors are uncorrelated,
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Figure 3.4: Pseudo out-of-sample evaluation split structure with K=4.

Source: Author

a situation often encountered with machine learning model applications. For a time series
modeled by a nonlinear regression equation:

yt = g(xt, θ) + εt (3.27)

Where g(·) is a continuous, differentiable function about the parameter vector θ for all
inputs xt = (yt−1, yt−2, ..., yt−p)′, and εt represents the error term. Suppose {ỹt}m

t=1 denotes
a sequence with the same distribution as the observed data {yt}n

t=1 (akin to future values
of the series), with x̃t = (ỹt−1, ỹt−2, ..., ỹt−p)′.

The prediction error (PE) for this nonlinear setup is defined as PE = E
{
ỹ − g(x̃t, θ̂)

}2
,

with θ̂ obtained by minimizing the error function. Cross-validation estimates the PE us-
ing a training dataset comprising {(xj, yj) ; j = p + 1, ..., n, j ̸= t} and a testing dataset
of {(xt, yt)}. This approach to estimating PE via cross-validation is described as follows:

P̂E = 1
n − p

n∑
t=p+1

{
y − g

(
xt, θ̂−t

)}2
, (3.28)

Here, θ̂−t stands as the estimation of θ̂ for the training set, excluding the data avail-
able in the test set. To ensure the effectiveness of cross-validation, P̂E should closely
approximate PE. To achieve this, three prerequisites must be met:
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1. First and foremost, the series being studied should be a stationary process;

2. θ̂−t should serve as a consistent estimator of θ.

3. The errors εt should adhere to martingale difference sequences, implying an absence
of serial correlation within these errors. This assumption is crucial for the soundness
of cross-validation.

When all three requirements are satisfied, these authors theoretically establish that
P̂E

p→ P E. The authors’ empirical application further demonstrates that applying cross-
validation for time series forecasting yielded comparatively more minor errors in contrast
to employing pseudo-out-of-sample evaluation. This approach effectively tackles the issue
of potential overfitting.

3.4 Hyperparameter Tuning

Generally, statistical learning methods contain one or more parameters, called hyperpa-
rameters, that penalize model complexity. Hyperparameters are a crucial part of many
methods since it is the primary tool to address overfitting in complexity models. For
example, the penalty term of the Elastic Net on λ is a type of hyperparameter. The λ

controls the degree of the penalty imposed on the coefficients of a linear model.
Selecting values for one or more hyperparameters in statistical learning methods is gen-

erally called hyperparameter tuning, and there are many ways to perform it. The process
of K-fold Cross-Validation is by far the most popular when performing hyperparameter
tuning. We have already explained how this method works previously. To identify the
hyperparameters that significantly enhance your model’s performance, several strategies
can be employed being the most common:

• Grid Search

• Randomized Search

• Bayesian Optimization

• Genetic Algorithms

Among these, Grid Search and Randomized Search are the most famous approaches
and are considered "brute force" methods. This implies that hyperparameters are selected
without leveraging prior information, relying instead on systematically testing various
options to find a compelling combination. For this work, we decided to use Grid Search
Hyperparameter Optimization. The process of grid search for two hyperparameters is
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illustrated in Figure 3.5. The optimal values for the hyperparameters are found at the
intersection of the two green arrows. These values correspond to the lowest error statistic,
and the green area on the graph shows its error distribution.

Figure 3.5: Error Statistics Distribution

Source: Adapted from [Bergstra & Bengio, 2012]

When optimizing through grid search, it’s crucial to remember that the process can be
time-consuming. All possible candidates are given equal weight during the hyperparam-
eter mapping. In Table 4, you will find the machine learning models utilized along with
their optimized hyperparameters. This study optimized the hyperparameters through the
K-fold cross-validation method with K set to 10, using the training set and grid search
technique.

Table 4: Hyperparameters Optimized in ML Models

Machine Learning Model Hyperparameter
Elastic Net Regularization parameter λ and α
Gradient Boosting Number of Boosting Stages

Learning rate
Maximum depth of the Individual Regression

Random Forest Number of Trees
Maximum Depth of the Trees

Adaptive Boosting Weight Applied to Each Regressor
Loss Function
Number of Estimators

XGBoost Number of Trees
Maximum Depth of the Trees
Learning Rate
Source: author
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Chapter 4

Methodology

Forecasting inflation in a data-rich environment in an emerging country like Brazil is
challenging. As discussed earlier, machine learning techniques have revolutionized high-
dimension inflation forecasting, offering numerous advantages. However, determining
which variables are crucial can be difficult. Various features related to inflation fore-
casting are highlighted in the literature, and selecting the most significant ones can be
complex. Therefore, following a process that enables us to identify the essential variables
and discard the rest is advisable. To this end, we propose a workflow that involves a
subset selection process before running our nonlinear models and analyzing the forecast
results using Shapley values.

4.1 Overall Structure

In this study, we initiate our analysis by conducting comprehensive feature engineering,
leveraging an extensive database with various features alongside their corresponding treat-
ments. This initial phase is grounded in a thorough literature review, detailed explicitly in
Chapter 2, where we explore contributions from multiple authors on inflation forecasting
through Machine Learning (ML) techniques, with a particular focus on emerging markets.
Subsequently, we undertake a target analysis to determine the most effective modeling
strategies and treatments for our dependent variable, a critical step for linear models,
such as the shrinkage method. Building upon this, we apply a feature selection (variable
selection) process utilizing the Elastic Net shrinkage model technique, renowned for its
robustness, with Recursive Feature Elimination (RFE) algorithm approach where it is
fitting the model multiple times and in each iteration, remove the weakest features. The
selected features during the feature selection step, determined by the shrinkage method,
were then applied to non-linear models discussed in Chapter 3.
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It is essential to highlight that we scale the predictors using Min-Max scaling (Nor-
malization) to prevent the magnitude of the variables from affecting the models used in
this study following [Lazzeri, 2020] and [Geron, 2019]. feature scaling is one of the most
critical transformations you must apply to your data when using ML models. With few
exceptions, Machine Learning models do not need to use any feature scaling technique.
There are two common types of feature scaling methods According to [Geron, 2019]:
Min-Max scaling (Normalization) 1 and Standardization (Z-score scaling) 2. We applied
Min-Max scaling following [Özgür & Akkoç, 2021] and [Wang et al., 2020].

During the non-linear model prediction, we forecast the IPCA headline and report
four different accuracy metrics: mean absolute error (MAE); root mean squared error
(RMSE); mean squared error and (MSE) for the out-of-sample period. We utilize the
Model Confidence Set (MCS) test, as developed by [Hansen et al., 2011], to assess the
accuracy of our machine learning methods and identify the most effective non-linear model
for our analysis. The MCS test identifies a Superior Set of Models (SSM) that includes
the best-performing model with a confidence level of 100(1 − α)%, allowing for adjustable
selection criteria via α. This method involves a series of hypothesis tests to eliminate the
lowest-performing models based on their predictive capacity, using a specific loss function.
Ultimately, this process results in a set of top models at a predetermined confidence level,
offering a more comprehensive comparison than the Diebold-Mariano test test’s pairwise
approach.

Throughout the hyperparameter optimization and train and test step, we set the code
to use routine to refit and increase training size utilizing the dataset 3. In other words, we
use the time series backtesting with refit. According to [Skforecast, 2023] in this approach,
the model is trained before making predictions each time, and all available data up to
that point is used in the training process. Image 4.1 shows how this approach works.

In a nutshell, our research approach is systematically outlined as follows:

1. Feature Engineering: create a comprehensive database of features and their corre-
sponding treatments based on information gathered from literature;

2. Target Analysis: Execution of target analysis to ascertain the most effective mod-
eling approach;

1According to [Geron, 2019], Min-max scaling or normalization is quite simple: values are shifted and
rescaled so that they end up ranging from 0 to 1. We do this by subtracting the min value and dividing
by the max minus the min.

2According to [Geron, 2019], standardization operates differently: it begins by subtracting the mean
value, ensuring that standardized values consistently possess a mean of zero, and subsequently divides by
the standard deviation, resulting in a distribution with unit variance. Unlike min-max scaling, standard-
ization doesn’t confine values to a specific range. This characteristic might challenge certain algorithms
(e.g., neural networks). Nevertheless, standardization is considerably less influenced by outliers.

3To perform it, we set the parameter refit = True in Skforecast and Sklearn grid search for example.
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Figure 4.1: Backtesting with refit and increasing training size (fixed origin).

Source: [Skforecast, 2023].

3. Feature Selection: Selection of features based on shrinkage model techniques, specif-
ically employing the Elastic Net and using the Recursive Feature Elimination (RFE)
approach;

4. Non-Linear Forecast: Application of the selected features in nonlinear models for
inflation prediction;

5. Hypothesis Test: Evaluation of predictive accuracy among the nonlinear models
using MCS test;

6. Model Interpretability: Understand the results using the Shapely Value method for
the optimal nonlinear model.

Figure 4.2 shows how the process works in our method:
In this study, we employ the R and Python programming languages, along with their

respective packages, for all model analyses and data processing tasks. Specific languages
and packages are referenced in each section, aligned with their application.
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Figure 4.2: Research Approach

Source: Author
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Chapter 5

Empirical Analysis

This chapter will demonstrate the outcomes of implementing the models discussed earlier.
We will also assess their effectiveness using forecast error statistics and compare their
performance. First, we will perform a target exploratory analysis after outlining the
database and its treatment, from which we will use to perfom a feature selection step
using LASSO method. Finally, we will present our comparative analysis for nonlinear
models.

The entirety of our ETL process and tests related to trend, seasonality, structural
breaks, and stationarity treatment procedures were implemented in R, utilizing packages
such as tidyverse, adf.test, tseries, moments, tsfeatures, funtimes, strucchange, and urca.
To run the models used in this study (Shrinkage and Nonlinear Models), we use Python
and its packages, sklearn and skforecast.

5.1 Target Exploratory Analysis

Before conducting a forecasting analysis, it is crucial to inspect our target variable. Let’s
perform some exploratory data analysis (EDA) or, more specifically, a time series analysis.
The purpose of doing that is to gain insights related to the target, which in this case is
the monthly Brazilian Consumer Price Index (IPCA), essentially a time series.

At this moment, it’s important to distinguish between time series analysis and forecast-
ing. According to [Lazzeri, 2020], while these two domains are closely intertwined, they
serve distinct purposes: time series analysis focuses on uncovering the inherent structure
and extrapolating concealed patterns within your time series data to extract valuable
insights, such as trends or seasonal variations. Scientists typically employ time series
analysis for the following reasons:

1. To gain clear insights into the underlying structures of historical time series data.
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2. To enhance the quality of interpreting time series features, providing more informed
insights into the problem domain.

3. To preprocess and conduct high-quality feature engineering, resulting in a more
comprehensive and profound historical dataset.

Still, according to [Hyndman & Athanasopoulos, 2021], conducting EDA before any
forecasting exercise is crucial to yield good results. Then, let’s dive into this in the
following sections to identify seasonality, trend, and structural breaks in our target.

5.1.1 Seasonality and Trend Analysis

As first step, we applied a method to identify seasonality and trend on the target. Time
series decomposition is a technique that allows an understanding of the different patterns
present in the series. It identifies and isolates the time series into distinct components and
is an important tool for exploratory analysis. Let yt be a time series with n observations,
the additive decomposition considers that the time series is the result of the combined
effect of three components, namely, yt = St + Tt + Rt, where St, Tt, and Rt are the
seasonality, trend and residual components respectively.

The Seasonality and Trend decomposition using Loess STL method stands out among
decomposition methodologies for its effectiveness and was therefore selected for appli-
cation in this study. This method, as proposed by Wang and further elaborated by
[Wang et al., 2006], allows for the precise calculation of trend and seasonality compo-
nents. The STL decomposition of the time series data reveals the trend, seasonal, and
residual components, with the seasonal component displayed in one of the subplots. Fig-
ure 5.1 illustrates the STL decomposition of the target time series. This visual tool is
crucial for evaluating the relative influence of each component. Using this tool is possible
to see a trend in some moments and a clear seasonal tendency on time series.

In our analysis, we utilized the Mann-Kendall test as a supplementary method to the
STL test for detecting monotonic trends, either positive or negative, within the dataset.
As delineated by [Zach, 2020], the test’s null hypothesis posits the absence of any trend,
while the alternative hypothesis suggests the presence of either a positive or negative
trend. This non-parametric approach is advantageous for identifying trends in time series
data without conforming to a specific distribution model. The result of the Mann-Kendall
Trend test, indicated by a p-value of 0.02, substantiates the existence of a statistically
significant trend in the data under study, given the p-value falls below the conventional
threshold of 0.05.

Developing an appropriate strategy for addressing the observed trends and season-
ality within our target variable is crucial. Although some studies, such as that by
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Figure 5.1: Seasonality and Trend decomposition using Loess (STL) test

Source: author.

[Ouyang et al., 2021], suggest that incorporating such strategies in machine learning mod-
els does not necessarily enhance predictive performance, our research opts to implement
target lag features as a method to navigate these issues in non-linear models. In contrast,
we adjusted our target seasonally using a moving average approach for linear models in
feature selection.

5.1.2 Structural Breaks Analysis

Detecting structural changes in time series is crucial in econometrics. This study applied
three structural break tests: the CUMSUM-OLS test, a test based on F-statistics, and
the Bai and Perron test. The CUMSUM-OLS test uses cumulative sums of standardized
residuals to evaluate the stability of coefficients in a linear regression model. Under the
null hypothesis of parameter stability, values outside a specified range suggest structural
changes over time. The F-statistics-based test (Chow test) applies tests sequentially to
examine the stability of breaks in linear models. It calculates an F-statistic for each
potential breakpoint within a range, rejecting the null hypothesis of structural stability
if any statistic exceeds a critical value. The Bai and Perron method was used to estimate
multiple structural break points. The method seeks to identify m breakpoints, which is
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equivalent to m + 1 segments. The segments are chosen to minimize the residual sum of
squares (RSS) and the Bayesian information criterion (BIC) [Kleiber & Zeileis, 2008].

Regarding the results found, the CUMSUM-OLS test yielded a p-value of 2.7% (0.0278),
below the 5.0% significance level, indicating that model parameters are not stable through-
out the evaluated period. This suggests the presence of a structural break in the series.
Figure 5.2 illustrates the results of the CUMSUM-OLS test on the left, including the
5.0% significance limits. The OLS-based CUSUM process exceeded its limit, providing
evidence of a structural change in the series in 2016, reaching its peak.

The test based on the F statistic (Chow test) also calculated the F value for potential
structural breakpoints. The right chart in Figure 5.2 displays the F statistic process and its
IPCA monthly percentage change limit. Notably, the process exceeded the limit, and both
threshold crossings and p-values (p = 0.040) below the 5.0% significance level suggested
a departure from the null hypothesis of structural stability. This further indicates the
presence of a structural break. The test pinpointed May 2016 as the structural break
point in the value of the IPCA time series differentiated index number, corresponding to
when the process reached its maximum value.

Figure 5.2: CUMSUM-OLS and F-statistic tests

Note:
The CUMSUM-OLS chart is on the left and the F-statistic tests chart are on the right.

The Bai and Perron test evaluated different potential structural breakpoints, and the
selection was made by minimizing the BIC and RSS. The values for each number of struc-
tural breakpoints are shown in 5.3. It is noted that the BIC reaches its minimum value
at m=2. Therefore, the test was applied with 2 potential structural breakpoints. The
structural breakpoints identified by the Bai and Perron method in the IPCA monthly
percentage change were in August 2016 and August 2020. The IPCA time series monthly
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percentage variation, adjustments made, and confidence intervals for the structural break-
points are shown in Figure 5.3 (right).

Figure 5.3: BIC and RSS - Bai and Perron Test

The results of the three tests suggest the existence of a structural break in the target
but differ in terms of the dates of occurrence. The three tests identified a structural
break in 2016, in May for the CUMSUM tests and F test, and in August for the Bai
and Perron tests. This suggests that, on average, the monthly percentage changes in the
IPCA from 2010 to 2016 differ from 2017 to 2023, with a structural break point in May
or August 2016. Furthermore, the Bai and Perron test also identified a structural break
in August 2020. This suggests that, on average, the monthly percentage changes in the
IPCA during the period from August 2010 to July 2020 are different compared to the
period from September 2020.

Given the results of the structural breaks tests, we created a dummy to signal to the
linear models (Elastic Net) applied in feature selection used in this work that the target’s
level changed between May 2016 and September 2020. For non-linear models, we did not
apply this dummy.

5.2 Time Series and Transformations

We used 74 macroeconomic time series as columns (features) with 162 observations to
predict the methods and models discussed in previous chapters. The data spans from
August 2010 to January 2024 as rows (objects). The choice of feature and their transfor-
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mation were based on [Araujo & Gaglianone, 2023] and [Garcia et al., 2017], the variables
are listed in Table 5.

We followed our literature and applied one of six transformations to each variable,
including (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) ln (xt); (5) ∆ ln (xt); (6) ∆2 ln (xt).
Table 5 details the variables’ names, sources where the time series can be found, treatments
to turn them stationary, and original units. It’s crucial to emphasize that we conducted
stationary tests even after adjusting the time series according to the reference, selecting
only those time series that passed the tests, as you can see in Section 5.2.1.

In this study, we assume that the dataset is balanced, meaning that we eliminated miss-
ing values. Besides, we adopted a lagged until s = 4 periods following [Araujo & Gaglianone, 2023]
to capture inertial inflation 1. There is another reason to adopt a lag structure. In the
real world, we can only use information from period t to predict what will occur in period
t + 1. So, unfortunately, we do not possess adequate information for numerous variables
regarding the intended month. It happens especially when predictors are released at the
same time that our target, for example, some items of the IPCA market basket - IPCA
tradable, IPCA nontradable, IPCA services, etc. So, we must use these predictors lagged,
including the series we are attempting to forecast. Finally, we obtain a final object-feature
matrix with a database containing 286 series without stationary tests being applied.

Table 5: Macroeconomic Variables

Description Unit ∆ Source
Inflation
IPCA (consumer price index, headline) % p.m. 1 Bacen
IPCA (consumer price index, tradables) % p.m. 1 Bacen
IPCA (consumer price index, administered prices) % p.m. 1 Bacen
IPCA (consumer price index, market prices) % p.m. 1 Bacen
IPCA (consumer price index, no nontradables) % p.m. 1 Bacen
IPCA (consumer price index, services) % p.m. 1 Bacen
IPCA (consumer price index, industrial goods) % p.m. 1 Bacen
IPCA (consumer price index, food at home) % p.m. 1 Bacen
IPCA (consumer price index, semi-durable goods) % p.m. 1 Bacen
IPCA (consumer price index, durable goods) % p.m. 1 Bacen
IPCA (consumer price index, nondurable goods) % p.m. 1 Bacen
Core IPCA - Exclusion Food and Energy (EXFE) % p.m. 1 Bacen

1According to [Araujo & Gaglianone, 2023], inflation models usually comprise a rich lag structure,
particularly in emerging countries, more prone to inflation inertia. Such a design should capture the
dynamic relationship between inflation, past inflation, and key macroeconomic variables.
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Description Unit ∆ Source
Core IPCA - Exclusion EX0 % p.m. 1 Bacen
Core IPCA - Exclusion EX1 % p.m. 1 Bacen
Core IPCA - Exclusion EX2 % p.m. 1 Bacen
Core IPCA - Exclusion EX3 % p.m. 1 Bacen
Core IPCA - Double Weight % p.m. 1 Bacen
Core IPCA - Trimmed mean smoothed % p.m. 1 Bacen
Core IPCA - Trimmed mean % p.m. 1 Bacen
IPCA diffusion index % 1 Bacen
IPCA-15 (consumer price index-extended 15) % p.m. 1 Bacen
IPC FIPE (consumer price index) % p.m. 1 Bacen
Core IPC-Br (core inflation) % p.m. 1 FGV
IPC-Br (consumer price index) % p.m. 1 FGV
IGP-M (general price index) % p.m. 1 FGV
IGP-DI (general price index) % p.m. 1 FGV
INCC (national index of building costs) % p.m. 1 FGV
IGP-10 (general price index) % p.m. 1 FGV
IPCA Monitor - headline % p.m. 1 IBRE/FGV
IPCA Monitor - food and drinks % p.m. 1 IBRE/FGV
IPCA Monitor - food at home % p.m. 1 IBRE/FGV
IPCA Monitor - food away from home % p.m. 1 IBRE/FGV
IPCA Monitor - shelter % p.m. 1 IBRE/FGV
IPCA Monitor - residence items % p.m. 1 IBRE/FGV
IPCA Monitor - clothing % p.m. 1 IBRE/FGV
IPCA Monitor - transport % p.m. 1 IBRE/FGV
IPCA Monitor - health and personal care % p.m. 1 IBRE/FGV
IPCA Monitor - personal expenses % p.m. 1 IBRE/FGV
IPCA Monitor - education % p.m. 1 IBRE/FGV
IPCA Monitor - communication % p.m. 1 IBRE/FGV
FX, Risk and Banking
FX-rate (nominal exchange rate, R$ /US$ ) Units 5 Bacen
U.S. dollar index (DXY) Index 5 Bacen
Ibovespa Index 5 Bacen
VIX CBOE Index 5 Bloomberg
MSCI emerging countries Index 5 Bloomberg
CDS (Credit Default Swap) Brazil 5 years Basis Point 5 Bloomberg
Commodities
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Description Unit ∆ Source
CRB all commodities Index 5 Bloomberg
CRB Food Index 5 Bloomberg
CRB Metal Index 5 Bloomberg
Oil Brent US$/barrel 5 Bloomberg
Oil WTI US$/barrel 5 Bloomberg
Baltic exchange dry Index 5 Bloomberg
Monetary aggregates and Interest rates
Monetary base R$ thousand 5 Bacen
Nominal policy interest rate (Selic) % p.a. 2 Bacen
U.S. Treasury 3 months nominal yield % p.a. 2 Bloomberg
U.S. Treasury 2 years nominal yield % p.a. 2 Bloomberg
U.S. Treasury 10 years nominal yield % p.a. 2 Bloomberg
Consumption and Economic Activity
IBC-BR Index 5 Bacen
GDP (12-months accumulated, current prices) R$/million 6 Bacen
Consumer confidence - Fecomercio index 2 Bacen
Capacity utilization (manufacturing industry) % 2 FGV
Electric energy consumption (commercial) GWh 5 Bacen
Electric energy consumption (residential) GWh 5 Bacen
Electric energy consumption (industrial) GWh 5 Bacen
Electric energy consumption (other) GWh 5 Bacen
Employment and income
Unemployment rate (open) % 3 IBGE
Formal employment created - South Units 2 MTb
Formal employment created - Southeast Units 2 MTb
Formal employment created - North Units 2 MTb
Formal employment created - Northeast Units 2 MTb
Formal employment created - Central-West Units 2 MTb
Climate
El Niño - Oceanic Niño Index (ONI) Index 2 Bloomberg
Forecast
IPCA Focus % p.m. 1 Bacen
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5.2.1 Stationarity tests

As highlighted by Granger (1974) [Granger & Newbold, 1974], the presence of unit roots
in time series data can lead to spurious inferences, potentially creating false correlations
between independent variables. Conversely, when time series data lacks sufficient dif-
ferencing, essential information about the relationships between variables may be lost,
resulting in increased estimator variances.

Ensuring the stationarity of time series data is crucial for accurate modeling and infer-
ence. It safeguards against spurious correlations and prevents the loss of vital information
regarding variable relationships. Therefore, transforming non-stationary time series into
stationary ones is an important step when working with such data.

For this purpose, we conducted a battery of stationary tests. Our methodology in-
volved subjecting each time series to three different tests: the Augmented Dickey-Fuller
(ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test. We employed a stringent significance level of 1% (0.01) to establish station-
arity. Only those time series that passed all three tests simultaneously were retained in
our dataset.

We documented the p-values obtained from these tests in a tabular format detailed in
Appendix A, and only time series with statistically significant p-values were considered
for further analysis. It is essential to note that the interpretation of these tests varies: a
low p-value, typically below 0.01, suggests stationarity for the ADF and PP tests, whereas
for the KPSS test, a low p-value indicates non-stationarity.

This rigorous approach to ensuring stationarity not only underscores the robustness of
our analysis but also bolsters the reliability of subsequent modeling and inference in our
research. Furthermore, we have reduced our sample from 286 time series to 156 variables.
However, this number of variables does not account for any target lag that will be used
when forecasting with the non-linear models. Instead, it includes a dummy variable to
signalize a structural break

5.3 Shrinkage Method for Feature Selection

Basic methods for choosing essential parts of data (features) look at each feature’s qualities
and how they relate. Methods like variance thresholding and pairwise feature selection
are popular, especially in finance and economics. They work by eliminating features that
don’t change much or are too similar to each other. However, a more straightforward way
is to pick features based on how much they help a model perform better. In this sense, we
performed a feature selection over the 156 stationary variables using shrinkage methods.
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As we discussed previously, these approaches promote sparsity and guard against
overfitting by accentuating the significance of a select subset of features. As such, they
prove invaluable in machine learning, particularly when confronted with high-dimensional
datasets or singling out the most relevant attributes. In practical applications, feature
selection using Shrinkage Methods involves three steps:

1. Feature Scaling: Since Shrinkage Methods are sensitive to the scale of variables, it’s
common practice to normalize or standardize the data before applying any of this
methods.

2. Hyperparameter Tuning: Techniques like k-fold cross-validation are used to find the
optimal λ and α, which determines the number of features selected.

3. Interpretation: The features with non-zero coefficients after applying the choose
methods are considered essential. However, the interpretability depends on the
context and understanding of the domain.

So, the idea of using Shrinkage Methods for feature selection purposes is straightfor-
ward: we fit the method on a scaled version of our dataset and consider only features
with a coefficient different from zero regarding the sparsity effect. We choose to work
with Elastic Net because of its sparsity ability to deal with many correlated features,
while LASSO needs a condition to work well with a highly correlated dataset.

As a first step in using shrinkage methods for feature selection, we must preprocess
our features using a feature scaling approach. According to [Geron, 2019] for ML mod-
els, proceeding with the preprocessing feature scaling is crucial. Feature scaling ensures
that all input features have similar scales, which can help these models converge faster
and perform better. As mentioned in methodology chapter we applied Min-Max scaling
(Normalization) to our shrinkage model.

We choose to split our data for feature selection, with 80% of the sample data being
used to train and the other 20% being our study’s testing set. Besides, this work’s section
was built using the Sklearn library ([Pedregosa et al., 2011]) that contains classes and
functions necessary to adapt regression models to time series forecasting.

5.3.1 Hyperparameter Tuning

A crucial step in forecasting or feature selection when using shrinkage algorithms is to
tune the hyperparameters. These hyperparameters are alpha (α) and lambda (λ) in the
case of Elastic Net, and they play significant roles and are determined based on critical
model evaluation metrics. Notably, α determines the algorithm type, while λ dictates
the extent of the penalty applied during minimization. For instance, the optimal λ value,
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which results in the lowest error rate or information criteria, is considered the best choice.
According to [Özgür & Akkoç, 2021], the optimal value of λ means the equilibrium point
on the variance-bias trade-off.

Several criteria can be employed to select the optimal tuning parameters, including
error-related metrics such as mean squared error (MSE), root mean squared error (RMSE),
R2, and information criteria such as Akaike or Schwarz. In this study, we utilized a grid
search combined with MSE to determine the optimal values of the tuning parameters
empirically. Table 6 displays the optimal λ and α values for Elastic Net algorithms and
chart 5.4 shows the evolution of MSE based on the parameter grid. The hyperparameters
were optimized through the K-fold cross-validation method with K set to 5, using the
training set and grid search technique.

Table 6: Best Hyperparameters

Model Alpha (α) Lambda (λ)
ElasticNet 0.02 0.13

Figure 5.4: Grid Search: MSE Evolution with Alpha and Lambda

5.3.2 Recursive Feature Elimination (RFE)

While shrinkage techniques such as ElasticNet are frequently used to select variables, it
is important to note that the variables they select can vary over time and across different
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data samples. In other words, the number of variables chosen and the significance assigned
to each (measured by their coefficients) can change when dealing with time series data. To
address this variability and ensure the identification of consistently important variables
across multiple interactions, we have opted for a methodology designed to pinpoint the
most stable and influential features over time.

Sklearn 2 offers a tool called Recursive Feature Elimination (RFE) for this. RFE
simplifies a model by iteratively removing the least important features until only the
most useful ones remain. This backward feature elimination process involves initially
fitting the model with all available features and then progressively eliminating the least
significant ones, refitting the model each time until the desired number of features is
reached 3. RFE operates as a wrapper-style feature selection technique. Unlike filter-
based methods, which individually score features and pick those with the highest (or
lowest) scores, RFE wraps around a distinct machine learning algorithm, utilizing it at
its core to aid in feature selection. Two essential configuration parameters merit attention
in a RFE application: the number of features to be selected and the algorithm employed
for feature selection. After selecting the best hyperparameters through optimization,
we train our model using the RFE algorithm provided by Sklearn to identify the most
frequent features over time.

In our study, we applied the RFE algorithm to a dataset of 162 observations. We
employed a loop mechanism to apply RFE incrementally, starting with data from the first
six months and adding one month at each iteration until all observations were included,
totaling 156 iterations. During each iteration, the RFE algorithm processed the dataset,
selecting the 30 most significant features through a step-wise elimination process guided by
the ElasticNet model. This iterative approach allowed us to identify the most significant
features across the entire dataset. Figure 5.5 illustrates the algorithm’s application across
the monthly datasets.

Based on their frequency across all 156 samples, the word cloud in figure 5.6 highlights
the most relevant variables. According to our approach, the features most closely related
to the target exhibit the highest significance level and frequency, as discussed in the next
section.

2To call this function when using scikit-learn you need to use: feature_selection.RFE. There is an RFE
algorithm specifically for Cross Validation sklearn.feature_selection.RFECV. We opted to work with the
first option, just training the Elasticnet model without concern for performance, given that we will use
the features in the non-linear models where performance is crucial.

3Which is set by the parameter n_features_to_select in sklearn.feature_selection.RFE.
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Figure 5.5: RFE Loop

Figure 5.6: Word Cloud for features frequency.
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5.3.3 Selected Features

After running the RFE algorithm and obtaining the most crucial feature through time,
we selected the 30 most frequent to be used in our non-linear models. Their absolute and
relative frequency are shown in appendix C, sorted by decreasing frequency. Chart 5.7
and appendix B shows their average coefficients through the samples. Twenty of them
represent time series data associated with economic activity like the Fecomercio consumer
confidence indicator 4 and energy consumption 5, Brazilian labor markets, like CAGED
Payroll and unemployment rate (PNAD), climate (NOAA Index), or financial markets
like nominal exchange rate (BRL/USD), DXY Index, and US Treasury 10 years. It’s
worth noting that all of these features exhibit different lag levels 6.

In our study variables related to economic activity, labor market, climate, or finan-
cial markets inherently carries a lag, even when the time series is contemporary to the
target. For example, we have the contemporary indicator to the target for nominal ex-
change rate (BRL/USD), US Treasury for 10 years, and the DXY Index, but ElasticNet
also selected their lagged values. Some features are not released contemporary to the
target, like time series related to the labor market and energy consumption. These lagged
features selected align with the observation that inflation models, particularly in emerg-
ing economies like Brazil, should incorporate a rich lag structure due to inflation inertia,
as highlighted by [Araujo & Gaglianone, 2023]. Furthermore, specific economic indica-
tors such as energy consumption and exchange rates have been previously identified by
[Özgür & Akkoç, 2021] in their research on forecasting inflation in Turkey using Shrink-
age Methods to perform a feature selection, demonstrating their relevance across different
contexts.

Ten selected features are closely relate to the target variable or other inflation indi-
cators in Brazil. Among them, subtypes of IPCA with different lags like IPCA - non-
monitored prices (IPCA - Livres 7) with lags of 1 and 4 periods, and IPCA-15 are signif-
icant. Additionally, there are other monthly inflation metrics in Brazil, such as IPC-Br
and IPC-Fipe 8, released before our target, without any lag. These features are contem-
porary to the target and have reasonable importance in explaining the inflation dynamics
in Brazil.

4consume_confidence_1_diff_lag3
5Energy consumption had six different metrics selected by our method. They are the

second lag of residential energy consumption (consu_energia_residencia_log_1_diff_lag2), the
first lag of commercial energy consumption (consu_energia_comercial_log_1_diff_lag1 ), the
first and third lag of overall energy consumption (consu_energia_brasil_total_log_1_diff_lag1,
consu_energia_brasil_total_log_1_diff_lag3) and third lag of other types of energy consumption
(consu_energia_outros_log_1_diff_lag3).

6We applied up to 4 lags to these features, and you can find more details in Section 5.2.
7var_livres_bacen_lag1 and var_livres_bacen_lag4.
8var_ipc_br and var_ipc_fipe, respectively.
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The most frequent predictor ’ipca_monitor_0’, appearing almost 69,2% of all time
and with the highest average coefficient, corresponds to a time series derived from the
"Monitor da Inflação" 9, a database provided by IBRE/FGV, created as a previous proxy
to the montly Headline IPCA. It aims to replicate the IPCA methodology, providing
near-real-time estimates based on daily price changes 10. Many features were created
using "Monitor da Inflação", data that significantly influenced the model based on their
coefficient levels. To distinguish them, we have incorporated the string "monitor" into
their names11. These indicators are groups of IPCA 12, and their feature importance level
reflects their weight on the Brazilian headline consume price index. For example, the
monthly spending in the groups "Transportation" and " Food and Beverage" significantly
impacted our target when considering their coefficient level.

The second most frequent variable, appearing in 59.6% of all samples, is a feature
related to the Focus Readout (’ipca_focus’)13. This variable is the median market expec-
tation of our monthly target for every month. Given that this variable is a survey of the
market for inflation ahead, it is unsurprising that it is highly relevant due to its frequent
occurrence. However, according to our approach, this feature does not have the second-
highest average coefficient; this position is held by IPC Fipe (’var_ipc_fipe’), another
consumer price index released prior to our target (IPCA), as shown in chart 5.7. When
considering the coefficient level, ’ipca_focus’ has the fourth-highest value, not far from
the second and third-highest values.

Indeed, considering the table in Appendix C, starting from the second position, it is
possible to observe the difference between the most frequent features and their coefficient
levels. From the third position onwards, the most frequent features are the nominal ex-
change rate, energy consumption, and unemployment rate in different lags, respectively14.
Their average coefficients are in different positions and have different directional signs. A

9This service generates daily estimates of the IPCA, the country’s official inflation index, which is
the responsibility of IBGE. The calculation system also makes IPC-FGV results available with the same
frequency. You can find more information at https://portalibre.fgv.br/monitor-da-inflacao

10We created a routine to turn the daily data into a monthly average for every feature that use data
from "Monitor da Inflação" in our work.

11We generated a total of 12 indicators, yet only eight demonstrated stationarity in our tests, as
detailed in Appendix A. Following the ElasticNet feature selection process, four indicators were chosen,
namely: "ipca_monitor_0," "ipca_monitor_5," "ipca_monitor_1" and "ipca_monitor_11". The average
coefficients associated with these indicators can be found in Appendix B.

12"Transportation" ("ipca_monitor_5"), "Food and Beverage group" ("ipca_monitor_1"),
"Food at Home" ("ipca_monitor_11"), "Housing" or "Shelter" ("ipca_monitor_2"), "Education"
("ipca_monitor_8").

13According to BCB, the Focus Readout is a weekly survey of expectations that summarizes the statis-
tics calculated over market expectations collected until the previous Friday. The report includes graphs
and statistics regarding market expectations for price indices, economic activity, exchange rate, and Selic
rate, among others. The expectations are provided by market analysts, not by the BCB itself.

14’BRL_USD_log_1_diff’ (37.2%), ’consu_energia_outros_log_1_diff_lag4’ (36.5%),
’PNAD_DESOC_2_diff_lag1’ (36.5%), ’PNAD_DESOC_2_diff_lag4’ (35.9%)
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notable case is the variable related to the unemployment rate, with three different lags
selected by our method. However, the first and fourth lags are the most frequent and have
average coefficients in different directions. While ’PNAD_DESOC_2_diff_lag1’ has a
positive average coefficient, ’PNAD_DESOC_2_diff_lag4’ has a negative value. Accord-
ing to the literature that relates inflation and the labor market (unemployment rate in a
Phillips curve, for example), they have an inverse relationship. In theory, we should only
see negative coefficients for this variable, but this did not happen in our approach for the
unemployment rate with one lag (’PNAD_DESOC_2_diff_lag1’); the other lags have a
negative coefficient, aligning with the literature.

Still related to the signal for the variable coefficients, the majority are positive, as
illustrated in Chart 5.7 and the appendix B shows their average values through all samples.
However, eleven variables have a negative coefficient, suggesting that increasing one and
keeping all others stable reduces the consumer inflation level. Nineteen features have a
positive coefficient, suggesting that as the feature value increases, the target variable also
increases. In other words, positive coefficients tend to impact inflation levels directly. For
instance, the feature ipca_monitor_0 has an average coefficient of approximately 0.10,
indicating a positive relationship with the target variable. If all other features remain
constant, an increase in this variable is associated with an increase in the predicted value.
Some of the features with a positive coefficient value are related to economic activity or
the labor market in different lags, for example, energy consumption 15 and Caged Payroll
16. A surge in these variables may indicate heightened aggregate demand within the
Brazilian economy, potentially leading to increased domestic inflation.

It is important to point that some lagged targets were identified as significant predic-
tors in our tests previously this study. These preliminary analysis indicates that incorpo-
rating lagged values of IPCA could enhance inflation forecasting accuracy. However, for
the current stage of our study, we have opted to exclude these lagged features temporar-
ily. They will be reintegrated in subsequent phases, particularly as we explore forecasting
through non-linear models, where a broader array of lagged targets may prove beneficial.

There is a curious result related to the Brazilian exchange rate 17 coefficient signal.
This variable without lag (’BRL_USD_log_1_diff’) and with three lags (’BRL_USD_log_1_diff_lag3’)
has a negative coefficient, but the same variable with four lags (’BRL_USD_log_1_diff_lag4’)
have a positive coefficient. This situation suggests that domestic currency deprecia-
tion/appreciation correlates with higher/lower inflation rates in Brazil with different dy-

15consu_energia_residencia_log_1_diff_lag2,consu_energia_comercial_log_1_diff_lag1,
consu_energia_outros_log_1_diff_lag4, consu_energia_brasil_total_log_1_diff_lag1 and
consu_energia_brasil_total_log_1_diff_lag3

16caged_saldo_nordeste_1_diff_lag1
17Exchange rates (BRL/USD) reflect the relation of the domestic currency against the U.S. Dollar.
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Figure 5.7: Coefficients Plot

Source: Author.

namics when the variable is dealing with lags or contemporaneous to the target. A positive
coefficient reinforces a well-known correlation in the economic literature that can be at-
tributed to their direct influence on the costs of imported goods and services. In other
words, spending more money to buy imported goods and services will be necessary if the
domestic currency depreciates and the exchange rate with four lags confirms it. On the
other hand, the other selected features suggest that increases in nominal exchange rates
may imply inflation reductions. This situation highlights the significance of exchange
rates in driving domestic inflation and prompting proactive monetary policy measures.

5.4 Non Linear Forecast

After performing feature selection via a shrinkage method, we will advance our forecasting
approach by applying non-linear models to the previously selected features. Decision tree
approach models were chosen for their notable advantages, including interpretability, the
capacity to manage unbalanced data, adeptness at handling missing values, and their
non-parametric nature.
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This work’s section was built using the Skforecast library ([Amat Rodrigo & Escobar Ortiz, 2023]),
which contains classes and functions necessary to adapt regression models from the Scikit-
Learn library ([Pedregosa et al., 2011]) to time series forecasting. Skforecast allows us to
create models with a given number of time series lags and, at the same time, work with
exogenous variables in our models.

As highlighted in Section 5.3.3, reintroducing target lags into our analysis marks a
pivotal juncture. The Skforecast package, treating target lag selection comparably to
hyperparameter tuning18, necessitates devising a lags grid to determine the most suitable
lag choice for each predictive model. This approach has been systematically integrated
into our hyperparameter tuning methodology using Skforecast. Regarding the sample split
dataset, we apply the same approach as in the feature selection step, where the training
set consisted of 80% of the time series and the other 20% of the test sample.

5.4.1 Hyperparameter Tuning

Such as in our feature selection step, the cross-validation technique for time series was
used in the model training stage. This technique is a variation of k-fold cross validation,
which allows maintaining the temporal order of data during the validation process as
we explained in the section 3.3.1. In this procedure, the series is divided into several
sequential subsets (folds), in our case is five, so that each subset is used as a test set
once, while the previous sets are used as training sets. Thus, the size of the training
set increases sequentially, and the model can be trained on increasingly more significant
amounts of historical data, allowing a more accurate assessment of its predictive capa-
bilities [Lazzeri, 2020]. The models’ hyperparameters were selected using Grid Search,
based on Time Series Split cross-validation. Table 7 shows the parameters chosen in each
model.

The Skforecast package offers an indispensable tool for hyperparameter tuning by
enabling immediate and automated backtesting with the optimal combination of lags and
hyperparameters19. Essentially, the Skforecast library integrates a grid search strategy
with backtesting, facilitating the identification of the most practical combination of lags
and hyperparameters for superior prediction accuracy.

In the context of target lags, a decision was made to implement a parameter grid of
24 target lags across all models in this study. The hyperparameter tuning process with
Skforecast involves a methodical examination of various hyperparameters and lags con-
figurations to discover the optimal setup that yields the highest predictive performance.

18Additional information can be found at Skforecast Documentation.
19Upon setting the argument return_best = True, the forecaster is retrained using all available data,

employing the best combination of lags and hyperparameters [Skforecast, 2024].
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Following the tuning process, the ideal number of lags and 30 selected variables during
shrinkage approach were integrated into each non-linear model for the training (fit) and
prediction phases (predict). Finally, the best hyperparameter set for each model was
chosen using the mean absolute error (MSE).

Table 7: Hyperparameter Optimization Results - Non Linear Models

Random Forest Adaptive Boosting Gradient Boosting XG Boosting
Lags 2 6 10 2

Max Depth 5 - 3 10
N Estimators 100 150 200 150
Learning Rate - 0.1 0.1 0.1

Loss - Exponential - -
MSE 0.0094 0.0087 0.0068 0.0079

Note 1: "N Estimators" the number of trees in the forest for Random Forest. For
Others, specifies the number of weak models to use.
Note 2: "Learning Rate" defines the contribution of each weak model to the final
prediction.
Note 3: "Lags" means the best amount of target lags features added to each model.
Note 4: "Max Depth" is the maximum depth of trees.
Source: Author.

5.4.2 Residual Analysis

Residual analysis is critical in any model prediction technique, whether machine learning
or not. It examines the difference between predicted and observed values (residuals) to
evaluate a model’s performance and assumptions. Residual analysis assesses the discrep-
ancies between expected outcomes and actual observations in a dataset. These residuals
represent the model’s errors and offer insights into its performance and potential areas
of improvement. First, let’s start with the visual inspection by plotting the residuals to
check for any apparent patterns that might suggest they are not independently and iden-
tically distributed (I.I.D.) or lack of randomness. The I.I.D. assumption of residuals is
crucial for the reliability of many statistical inference methods. This includes looking for
autocorrelation (which would violate independence) and checking for consistent spread
across the dataset to confirm they are identically distributed.

The charts 5.8 show how residuals behave for each ML model prediction. The residuals
scatter around the zero line without forming any clear patterns or trends. This lack of
pattern suggests a degree of randomness, which is suitable for the independence assump-
tion. There does not appear to be a systematic change in the variance of residuals across
the index the spread of residuals remains relatively consistent. This consistency supports
the identically distributed assumption, but for a more comprehensive assessment, it is cru-
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Figure 5.8: Scatter plot of ML models residuals.

cial to perform formal tests. These tests can provide quantitative evidence to support or
refute the visual insights. In this sense, we opted to apply the following statistical Tests:
the Durbin-Watson test to check for autocorrelation in residuals; the Breusch-Pagan and
White test for homoscedasticity; and the Shapiro-Wilk test to assess normality.

The Durbin-Watson statistic, which assesses autocorrelation in residuals, generally
ranges from 0 to 4. Values around 2 imply a lack of autocorrelation, with figures below 2
indicating positive autocorrelation, and those above 2 suggesting negative autocorrelation.
For the models assessed—Random Forest, Adaptive Boosting, Gradient Boosting, and
Extreme Gradient Boosting—the statistics were 1.79, 1.65, 1.87, and 1.90, respectively.
These results, being close to 2, suggest minimal autocorrelation across all models.

Concerning heteroscedasticity, the Breusch-Pagan and White tests yielded high p-
values (greater than 0.05), indicating no significant evidence of heteroscedasticity within
the residuals of our models. Similarly, the Shapiro-Wilk test for normality produced p-
values well above the 0.05 threshold for all models, thereby supporting the hypothesis of
residual normality.

In summary, the comprehensive testing of residuals—through visual examination and
quantitative statistical tests—validates their reliability in representing independently and
identically distributed data. The minimal autocorrelation, absence of heteroscedasticity,
and adherence to normality across all models underline the robustness of their predictions.
Therefore, the conducted residual analysis confirms that our machine learning models
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Figure 5.9: Model’s Actual vs. Predicted

meet the critical assumptions necessary for accurate predictive modeling.

5.4.3 Forecast Evaluation

Related to forecast results, first, we plot each model’s actual vs. predicted inflation rates
over time in image 5.9 and calculate the prediction errors to visualize their Box Plot in
image 5.10. For chart 5.9, the closer the predicted values (blue line) are to the actual
values (black dashed line), the better the model’s forecasting accuracy.

Following this, the Box Plot of the residuals for each model in image 5.10 offers
valuable insights into their prediction errors when forecasting Brazilian inflation rates.
The medians of the residuals are relatively close to zero for all models, suggesting no
significant systematic bias in the predictions. This is a positive indication of model
performance. The variability of the residuals, as shown by the interquartile range (IQR),
seems comparable across the models, with no single model displaying dramatically better
or worse consistency in its predictions than the others. Some outliers are present for
each model, indicating instances where the predictions were significantly inaccurate. This
is common in predictive modeling, especially with complex phenomena like inflation.
Overall, each model performs reasonably well, with no clear winner based solely on this
analysis. However, factors such as the magnitude of errors, specific application needs, and
computational efficiency might influence the choice of the best model for practical use.

59



Figure 5.10: Box Plot Model Residuals

Related to the accuracy metrics, to assess the effectiveness of various models, we
will rely on the following statistical measures20: mean absolute error (MAE), root mean
squared error (RMSE), mean squared error (MSE). These are widely accepted metrics for
evaluating how well a regression model performs when dealing with decision tree models.
The definitions for each of these metrics are as follows:

MAE = 1
n

n∑
i=1

|yi − ŷi| (5.1)

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 . (5.2)

MSE = 1
n

n∑
i=1

(yi − ŷi)2 (5.3)

where:

• yi is the actual value,

• ŷi is the forecasted value,

• n is the total number of observations.

In Table 8, a comparison is presented among the forecast statistics of machine learning
models (out-of-sample).

20We choose not to use the R squared (R2) as one of these metrics. According to
[Spiess & Neumeyer, 2010], this accuracy metric can lead to wrong interpretations when choosing the
best results among non-linear models.
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Table 8: Model Performance Comparison (out-of-sample)

Model MAE MSE RMSE
Random Forest 0.165 0.042 0.206
Adaptive Boosting 0.163 0.042 0.206
Gradient Boosting 0.161 0.041 0.202
Extreme Gradient Boosting 0.162 0.042 0.204

Note: The table values are rounded to three decimal places for clarity.

Regarding each model’s performance, Gradient Boosting stands out with the lowest
RMSE (0.202), MAE (0.161), and MSE (0.041) among the models tested. This indicates
that it has the highest predictive accuracy. Therefore, it performs best in predicting
inflation rates.

Extreme Gradient Boosting shows good performance, but its RMSE, MSE, and MAE
are slightly higher than the Gradient Boosting model, suggesting it might not be the
most precise model among those evaluated. Concerning Adaptive Boosting, it shows
similar performance metrics to the Extreme Gradient Boosting model, but it has a slightly
worse MAE and RMSE. Random Forest has the highest MAE, but its performance is
still competitive when we consider RMSE and MSE being the same values for these
metrics compared to Adaptive Boosting. Although the values are higher than the Gradient
Boosting model.

In summary, Gradient Boosting is the most effective model for predicting Brazilian
inflation, as indicated by its lower accuracy metrics. While all models perform reasonably
well, the differences among RMSE, MAE, and MSE highlight the importance of choosing
the suitable model based on the analysis’s specific requirements.

5.4.4 Model Confidence Set (MCS)

To assess model performance using the evaluation sample defined initially, metrics provide
an insight into out-of-sample test effectiveness. However, formal statistical tests remain
imperative to determine the superior performance among the models forecasts. The pre-
vailing method in literature is the Diebold-Mariano Test introduced by [Diebold & Mariano, 1995].
This test is commonly employed to gauge a model’s predictive accuracy against a bench-
mark, assumes equal accuracy between models under its null hypothesis. However, when
comparing forecasts from multiple models, a statistical technique capable of simultaneous
comparison becomes necessary.

In this study, we utilize the Model Confidence Set (MCS) method, pioneered by
[Hansen et al., 2011], to select the best forecasting models. Unlike the Diebold-Mariano
Test, which requires a benchmark for comparison, MCS allows the simultaneous compar-
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ison of multiple models without needing a predefined benchmark. This method ranks
models by their expected loss, determining superiority based on lower loss figures. The
MCS technique identifies the most reliable models at a given confidence level. In other
words, the MCS procedure yields a set of models that, with a certain confidence level,
is assured to include the best models. The selection process uses user-defined loss func-
tions, such as squared or absolute forecast errors, to compute a loss matrix and identify
models with minimal expected loss. Through sequential testing, inferior models are ex-
cluded, allowing for a refined set of models based on MCS p-values, which users can apply
significance levels to for final selection.

Given a set of models, M0, intended for comparison, we apply an ’equivalence test,’
δM, and an ’elimination rule,’ eM, to the set M = M0. If δM is rejected, it indicates
that the models in M do not share the same predictive performance, prompting the use
of eM to eliminate models with comparatively poor performance. This process continues
until δM is no longer rejected, resulting in the final set M∗, which comprises the model
confidence set.

The comparison of models is conducted through the differences in their loss functions,
denoted as (dij,t ≡ Li,t − Lj,t), for models i, j within the set M0. The null hypothesis is
defined as:

H0,M : E (dij,t) = 0, ∀i, j ∈ M ⊂ M0.

The set of best models, M∗, is identified as:

M∗ ≡ {i ∈ M0 : E (dij,t) ≤ 0, ∀j ∈ M0} .

Algorithm for Model Confidence Set

The procedures for adopting the MCS are outlined in the following algorithm:

1. Set M = M0.

2. Test for the hypotheses of equal predictive capacity (EPA) for the models in M :

(a) test for EPA–hypothesis: if EPA is not rejected define M̂∗
α ≡ M and report

the (1 − α) confidence set.

(b) test for EPA–hypothesis: if EPA is rejected:

i. Define
di ≡ 1

m

∑
j∈M

dij

62



where m is the number of models in M. This statistic defines the perfor-
mance of model i compared to the average of all other models.

ii. Determines the worst performing model in M, defined as

i∗ ≡ arg max
i∈M

dij√
̂var (dij)

,

where v̂ar (dij) is the estimation of the variance of di. This maximized
term is called the statistic tij.

iii. Remove model i∗ from M and repeat step 2.

Our analysis employs squared forecast errors as loss functions, implemented in R
with the modelconf package by [nielsaka, 2023]. The estMCS function is set to a 0.05
confidence level with 25,000 bootstrap resamples and employs the Tmax statistic, ensuring
the method’s robustness in model comparison and selection. The outcomes are delineated
in Table 9. The greater the number of models eliminated, the more significant the model
heterogeneity, but in our case, there is no model eliminated. According to our MCS test
results, the most effective model was Gradient Boosting. The hierarchical structure shown
in column "Rank" of these results is corroborated by analogous investigations employing
accuracy metrics. Notably, lower MCS p-values suggest a diminished probability of a
model being classified among the superior models.

Table 9: Set of Best Models for the series

Model Rank p-val p-val MCS

Random Forest 2 0.66 0.66
Adaptive Boosting 3 0.60 0.66
Gradient Boosting 1 1.00 1.00

XG Boosting 4 0.49 0.66

Source: author.
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Chapter 6

Model Interpretability

Previously, we learned about ML models and applied them to forecast our target. Some of
these models are inherently interpretable as their parameters or structures can be easily
understood. However, more complex models like random forests, gradient boosting, and
XGBoost can be challenging to interpret, especially in settings with many predictors.
This chapter will delve into the Shapley Value, a model-agnostic explainable artificial
intelligence (XAI) method that can be applied to any machine learning model. Model-
agnostic XAI interpretability methods provide vital insights into the models’ mechanisms
for making predictions, even when complex.

6.1 Why Does Interpretability Matter?

Machine learning models are getting more sophisticated, robust, and proficient in mak-
ing precise predictions. However, they are becoming increasingly difficult to understand,
resulting in a greater emphasis on the interpretability of ML, as it is essential to compre-
hend how these models arrive at their predictions. Understanding the rationale behind
a decision or consistently predicting the outcome of a model is known as interpretability,
according to [Miller, 2019]. The greater the interpretability of a machine learning model,
the easier it becomes for humans to understand its outcomes. Interpretability aims to
address inquiries such as: What variables influenced the prediction? To what extent does
each feature impact the prediction? Illustrate the contribution of each feature to the pre-
diction visually. This facilitates explaining the model’s outcomes to peers, which is crucial
from a scientific perspective. [Miller, 2019] proposes a logical framework comprising five
elements: theory, model, types, entities, and data to enhance interpretability.

[Molnar, 2023] discusses the significance of interpretability in ML models. He argues
that, in some cases, predicting an outcome alone does not solve the original problem
one wants to understand. The author provides a diagram illustrating different levels of
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interpretability in ML models (refer to 6.1). A model is fully transparent at the highest
level, and we can appreciate all the steps the model takes to make a prediction.

Figure 6.1: The big picture of explainable machine learning.

Source: adapted from [Molnar, 2023]

For many reasons, understanding the interpretation of an ML model is crucial. Firstly,
it can help us comprehend the connections among several variables. For instance, we may
want to know if a particular variable is necessary for predicting another variable. Secondly,
it can help us determine the factors that drive the model’s predictions. For example, we
might want to know if changes in the values of specific variables will impact the result.
Thirdly, it can assist us in making better decisions. For instance, we might want to know
what would happen if we had different observations. The more an ML model’s decision
affects an individual’s life, the more critical it is for the model to explain its behavior.
This is particularly true in economics, where ML models are frequently used to make
decisions that significantly impact people’s lives.

Despite the significance of interpretability, several challenges are associated with using
ML in economics and finance. One of the challenges is that ML models can be complex,
making it difficult to understand how they work and why they make predictions. Another
challenge is that there is no single definition of interpretability, making it challenging
to compare the interpretability of different ML models. Nonetheless, the use of ML in
economics is expected to grow. As the ML models become more sophisticated, developing
methods to make them more interpretable is becoming increasingly essential.
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6.2 Model-Agnostic Artificial Intelligence Interpre-
tation Methods

This section explores model-agnostic explainable artificial intelligence (XAI), also known
as model-agnostic interpretation methods for machine learning models. The field of XAI
focuses on developing techniques that enable humans to comprehend the predictions made
by ML models or the decisions taken by Artificial intelligence systems. This field is not
recent and has existed since artificial intelligence started. However, there has been an
increased interest in XAI since the last decade due to companies and governments’ in-
creasing adoption of complex artificial intelligence solutions. Unlike model-specific meth-
ods and inherently interpretable models, model-agnostic approaches present a unique
strategy. Model-specific methods are limited to certain types of models, and inherently
interpretable models often trade off predictive accuracy for interpretability. As outlined
by [Ribeiro et al., 2016], three essential qualities characterize artificial intelligence model-
agnostic methods:

1. Model Flexibility: The interpretation method should be applicable to any ma-
chine learning model, spanning from random forests to deep neural networks.

2. Explanation Flexibility: The system should not be restricted to a singular form
of explanation but rather accommodate various types, ranging from linear formulas
to feature importance graphs.

3. Representation Flexibility: It is imperative that the explanation system can
adapt to different feature representations than those utilized by the model under
scrutiny. For instance, individual words can elucidate a text classifier operating on
abstract word embeddings.

This versatility enables their wide-ranging applicability, from elementary decision trees
to sophisticated deep learning architectures, and supports diverse forms of explanation,
including linear formulas and feature importance graphs. Furthermore, their ability to
adjust to different feature representations is essential.

XAI interpretability constitutes a crucial layer within the data processing hierarchy,
commencing from real-world phenomena and traversing through data digitization, model
construction, and interpretation. This approach merge the methodologies of statisticians,
who emphasize data, and machine learning specialists, who contemplate the model layer,
culminating in a comprehensive framework that enhances understanding and integrates
the strengths of both disciplines.

Model-agnostic methods are categorized into local and global methods. Global meth-
ods analyze the average effects of features on predictions, while local methods elucidate
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individual predictions. This differentiation is pivotal for applying these techniques to di-
verse datasets, including intricate time series data. Commonly employed model-agnostic
interpretability methods encompass:

• Feature Importance Measures: Identifying influential features without relying
on the internal mechanics of the model. Examples include permutation feature
importance and SHAP values.

• Partial Dependence Plots (PDP): Visualizing the impact of specific features
on model predictions.

• Local Interpretable Model-agnostic Explanations (LIME): Explicating in-
dividual predictions by approximating the model with a simpler one.

• Global Surrogate Models: Utilizing simpler models such as decision trees to
interpret complex model predictions.

• Counterfactual Explanations: Understanding model behavior through hypo-
thetical scenarios.

• Individual Conditional Expectation (ICE) Plots: Providing detailed insights
into how changes in features influence individual predictions.

• Sensitivity Analysis: Assessing model robustness by observing prediction varia-
tions with slight input perturbations.

• Anchors: Identifying critical features that significantly impact specific predictions.

These versatile tools can be effectively deployed across a spectrum of models, from
basic regressions to intricate neural networks, rendering them indispensable in the realm
of machine learning interpretation.

6.2.1 Understanding Shapley Values

A pivotal technique within the domain of the model-agnostic explainable artificial intel-
ligence method is the Shapley value. According to [Molnar, 2023], these methods are
esteemed for adaptability, as they can be applied universally across diverse ML mod-
els. Consequently, they facilitate the development of derivative works, such as graphical
interfaces, liberated from model dependencies.

The Shapley Value concept is based on game theory. In a cooperative game framework,
each predictor variable is like a "player" that contributes to the target variable’s prediction
or "payout." The concept was developed by [Shapley, 2016] to show when cooperation
among players results in a higher overall payoff compared to individual actions, and how
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the surplus payoff is divided among the players who have different weights or relevance
in the coalition. In the context of machine learning and explainable AI, the explanatory
variables or features act like players that contribute differently to the model’s prediction.
The decision function plays the role of the coalition.

As articulated by [Molnar, 2023], the underlying principle of the Shapley value is
relatively intuitive: a predictor variable "enters" a room at random and collaborates in
a game to contribute to the overall prediction. The Shapley value of a given predictor
is essentially the average incremental change it brings to the projections made by the
current coalition of predictors.

Mathematically, the Shapley Value φj for a predictor j is computed as follows:

φj(val) =
∑

S⊆{1,...,p}\{j}

|S|!(p − |S| − 1)!
p! (val(S ∪ {j}) − val(S)) (6.1)

Here, S is a subset of the predictors considered in the model, x represents the vector
of predictor values under scrutiny, and p is the total number of predictors. The function
valx(S) calculates the prediction for the predictors included in S while marginalizing over
the excluded predictors:

valX(S) =
∫

f̂(x1, . . . , xp)dPX − EX(f̂(X)) (6.2)

Evaluating the Shapley Value necessitates multiple integrations for each predictor,
thereby establishing its cooperative effect on the forecast. The Shapley value adheres to
four fundamental properties: efficiency, symmetry, dummy, and additivity.

- Efficiency: The sum of all Shapley values is equal to the difference between the
forecast for x and the expected forecast:

p∑
j=1

φj = f̂(x) − EX(f̂(X)) (6.3)

- Symmetry: Identical contributions from predictors j and k yield the same Shapley
value:

val(S ∪ {j}) = val(S ∪ {k}) ⇒ φj = φk (6.4)

- Dummy: A predictor with no impact has a Shapley value of zero:

val(S ∪ {j}) = val(S) ⇒ φj = 0 (6.5)

- Additivity: For games with a total payout of val + val+, the Shapley values can be
additive:
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φj + φ+
j (6.6)

For ensembles like decision tree forests, determining individual contributions is com-
putationally challenging. As a workaround, Monte Carlo approximations offer estimated
Shapley values:

φ̂j = 1
M

M∑
m=1

(
f̂(xm

+j) − f̂(xm
−j)

)
(6.7)

In this formula, f̂(xm
+j) signifies the forecast with predictor j while randomizing other

predictors, and M symbolizes the number of Monte Carlo samples.
This "Frankenstein’s Monster" approach, as coined by Molnar [Molnar, 2023], amal-

gamates different random samples to approximate the Shapley value. While the Shapley
value offers fair value distribution among predictors and can elucidate individual or group
contributions, its major drawback lies in its computational intensity, often necessitating
approximation methods.

6.2.2 Opening the "Black Box" with Shapley Values

In Chapter 5, we discussed the predictions made by our machine learning models. After
analyzing the results, we found that the Gradient Boosting model had the best accuracy
metrics and passed the MCS hypothesis test. The model effectively predicted our target,
but we still have questions about the rationale behind its predictions. Specifically, we want
to know how much each feature contributed to the variance between the final prediction
and the average prediction. In this sense, to better understand the outcomes derived
from this model, we employed the Shapley Additive Explanation (SHAP) approach. This
technique, introduced by [Lundberg & Lee, 2017], uses cooperative game theory to explain
individual model predictions. Its model-agnostic nature sets the SHAP approach apart
from other interpretation methods. It is not specific to any particular model and integrates
different additive feature attribution methods, such as Local Interpretable Model-Agnostic
Explanations (LIME).

We used the SHAP (Shapley Additive exPlanations) package, available in Python, to
analyze the Gradient Boosting results. Although computationally intensive, this package
provides a detailed analysis of the variable effects on outcome predictions. We can better
understand their impact on the training set by dissecting and analyzing each variable’s
role. It is good practice to look at the training set results using the Shapley Value
approach, as they provide more information about the model’s performance than predicted
values.
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Figure 6.2: SHAP average absolute impact on output

We begin our analysis by exploring the global significance of features using the SHAP
(SHapley Additive exPlanations) package. Figure 6.2 illustrates this analysis. As outlined
by [Molnar, 2023], the computation of SHAP feature importance involves averaging the
absolute Shapley values for each feature. This approach allows us to ascertain the global
importance of features by calculating the mean of the absolute Shapley values across the
dataset. It is crucial to distinguish that SHAP feature importance fundamentally differs
from permutation feature importance. The latter assesses feature significance based on
the decrease in model performance, whereas SHAP focuses on the magnitude of feature
contributions. The chart in Figure 6.2 presents the average absolute Shapley values for
the key variables.

We can observe differences among the features selected via the Shapley Value ap-
proach and the ElasticNet method. The Shapley Value approach identifies the variable
‘ipca_monitor_0‘ as the most significant, contributing an average of 0.24 absolute points
to the overall model prediction. The ElasticNet method corroborates this finding, also
recognizing this variable as having the highest coefficient and appearing most frequently
in our RFE approach. However, disparities emerge when examining the second most
crucial feature onward. According to the Shapley Value method, ‘ipca_focus‘ is the sec-
ond most relevant, with an average contribution of 0.03. In contrast, ElasticNet ranks
‘var_ipc_fipe‘ as the second most significant based on its coefficient level. Moreover,
ElasticNet indicates that several other features hold substantial average coefficients, thus
contributing more significantly to model performance than indicated by the Shapley Value
method. These differences are detailed in Chart 5.7 and the table in Appendix B, which
list the ElasticNet coefficients for each selected variable. Additionally, when evaluating
the frequency criterion in ElasticNet through the RFE approach, ‘ipca_focus‘ appears as
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Figure 6.3: Average impact on model output magnitude

the second most frequent feature, as detailed in the table in Appendix C.
To summarize, ElasticNet’s feature selection indicates that the second most impor-

tant feature based on coefficient value is ‘var_ipc_fipe,‘ with ‘ipca_focus‘ being the sec-
ond most frequently selected feature. Conversely, the Shapley Value method assigns
‘ipca_focus‘ the role of the second most crucial contributor to model outcomes. It’s
worth noting that ’ipca_monitor_0’ and ’ipca_focus’ play a vital role in both meth-
ods.The reason why these features are significant is due to their high correlation with
our target. ’ipca_monitor_0’ aims to replicate the target, while ’ipca_focus’ represents
the median market expectation of the Focus-Market Readout participants released by the
BCB every week. In other words, they both try to capture the target dynamics.

Continuing our exploration of global importance, we can visualize the SHAP values
assigned to each feature across all samples, offering insights into the most crucial features’
role in prediction. Transforming local importance into a global perspective, we leverage
tools like Beeswarm plot as a compelling alternative for extracting overarching insights.
Chart 6.3 offers a detailed summary of how the key features in a dataset influence the
model’s predictions, merging the concepts of feature importance and their effects. In this
plot, each dot represents the Shapley value of a feature for a specific instance, where the
feature’s role is denoted on the y-axis and its Shapley value on the x-axis. The dots’ color
gradient from low (purple) to high (yellow) values illustrates the feature’s impact.

The overlap points are slightly spread out vertically to reveal the distribution of Shap-
ley values for each feature, arranged by their significance. This chart reinforces that
’ipca_monitor_0’ has the most crucial role, in line with the chart 6.2 and a significant
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spread related to the impact on the output with its Shapely Value ranging from -0.7 to
+0.7. The second most important is the ’ipca_focus’ have a minor effect with Shapley
values ranging from -0.2 to 0.2, and also, there is a direct relation between feature im-
portance and the Shapley value. The other variables have Shapely values next to zero,
meaning they have little impact on the output.

The Beeswarm plot provides insights into the connection between the feature value and
its effect on each prediction point. However, we need to examine the SHAP dependence
plots to understand the relationship precisely for a singular feature and its SHAP value.
A dependence plot is a visualization tool that displays the relationship between a feature’s
SHAP value and its corresponding feature value. This plot contains a set of points where
each point represents an observation in the data set. The horizontal axis of the chart
shows the actual value of the feature, while the vertical axis represents the contribution
of the feature to the SHAP value. The dependence plot is instrumental if the feature
has a non-linear relationship with the target variable. As illustrated in Figure 6.4 for
’ipca_monitor_0’ (a) and ’ipca_focus’ (b), respectively, the dependence plot shows a
direct relation between the variable values with its SHAP values. This relation is not as
evident for the second variable as the first; there is a linear dependence for ’ipca_focus’
but with some concentration between -0.5 e +0.5 for its SHAP value and between 0.4 and
0.8 for its values.

Figure 6.4: Individual dependence plot to ipca_monitor_0 and ipca_focus

a) Dependence plot of ipca_monitor_0 b) Dependence plot of ipca_focus

Another way to analyze the dependence plot is by looking at the interaction effect,
where we plot together the most crucial features and see how the values of one affect the
other’s Shapely Value. According to [Molnar, 2023], the Shapley interaction index from
game theory is defined as:
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Figure 6.5: Interaction effect

ϕi,j =
∑

S⊆\{i,j}

|S|!(M − |S| − 2)!
2(M − 1)! δij(S)

when i ̸= j and

δij(S) = f̂x(S ∪ {i, j}) − f̂x(S ∪ {i}) − f̂x(S ∪ {j}) + f̂x(S)

As outlined in Molnar’s work [Molnar, 2023], this formula elucidates the interaction
effect of features by accounting for their main effects and integrating individual effects.

Figure 6.5 demonstrates the interaction effect between our analysis’s two most signif-
icant features. The structure is the same as the previous dependent plot, but the color
scale in right side reflects the values of an interaction variable which in our case is the
’ipca_focus’. The color gradient clearly illustrates a direct relationship between the two
features. As ’ipca_monitor_0’ values increase, the corresponding ’ipca_focus’ values also
tend to rise (tend to have a red color), and similarly, lower values of the first imply lower
values of the second. Notably, both variables have negative SHAP values when their
values are close to zero. However, this relationship shifts to positive when the values of
’ipca_monitor_0’ exceed 0.6 and ’ipca_focus’ surpasses 0.5.

Finally, in Figure 6.6, we present local explainability plots for two observations, one
with a negative prediction on the left chart and another with a positive prediction on the
right chart. Each chart displays the predicted value after considering all features, denoted
by f(x). For the left chart, this value is -0.380, and for the right chart, it is 0.859. The
mean prediction, indicated by E[f(x)], remains constant at 0.47 in both cases.

Within the plots in figure 6.6, the blue bars represent how much a specific feature
reduces the predictive value, while the red bars signify the extent to which a particu-
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lar feature increases it. The total contribution is the difference between the prediction
(f(x)) and the mean prediction (E[f(x)]). As anticipated, our two most critical vari-
ables, ’ipca_monitor_0’ and ’ipca_focus,’ exerted the most significant influence on both
negative and positive values. In the negative prediction, ’ipca_monitor_0’ decreased the
prediction by 62 basis points, while ’ipca_focus’ reduced it by 15 basis points from the
average value of 0.47, as illustrated in the chart. Conversely, for the positive prediction,
’ipca_monitor_0’ contributed 26 basis points, while ’ipca_focus’ increased the prediction
by three basis points.

Figure 6.6: Local plot to negative and positive prediction

a) Local plot to a negative prediction b) Local plot to a positive prediction

Following the two most influential features, there is a notable variability among other
features reported in the two local plots. While individually these features may have only
a marginal impact on predictions, their collective contribution proves significant to both
sets of results. It is imperative to underscore the role of lagged variables in influencing
outcomes; notably, ’var_ipca_bacen’ emerges among the top ten most crucial features
with varying lag intervals in both plots. In chart 6.6.a, it appears with nine lags, whereas
in chart 6.6.b, it manifests with two lags. This underscores the imperative for feature
engineering when employing machine learning techniques to enhance performance.

Based on the insights revealed by SHAP values, it is evident that proxy variables
such as ’ipca_monitor_0’ and ’ipca_focus’ play a pivotal role in achieving optimal out-
comes when utilizing ML models. While features associated with economic activity, the
labor market, and the financial market do contribute to the model’s performance, their
impact is not as pronounced in yielding superior results. These findings hold significant
implications, particularly when leveraging predictive results to formulate strategies for a
Treasury desk within a major financial institution. In such contexts, the ability to attain
the most effective outcomes is crucial.
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Chapter 7

Conclusions

This study aimed to identify the most effective nonlinear machine learning model for
predicting the monthly IPCA. We employed a feature selection method based on the
shrinkage technique to isolate the most critical predictors. Additionally, our research uti-
lized a model-agnostic explainable artificial intelligence (XAI) method known as Shapley
Value to provide us with valuable insights into ML model predictions, often regarded as
"black boxes."

Our journey began collecting data from IPCA between August 2010 and January 2024
and creating a dataset consisting of 156 variables as predictors based on the literature
review, ensuring a rich and varied foundation for analysis. This comprehensive dataset was
the foundation for our predictions of the Brazilian consumer price index (IPCA) from May
2021 to January 2024. Previously, to predict, we conducted a target analysis to determine
our study’s most effective modeling approach. This step directed our application of ML
techniques, particularly the linear ElasticNet method. Utilizing this shrinkage method,
we refined our dataset by applying the Recursive Feature Elimination (RFE) method to
select the 30 most significant variables to use as predictors.

The core of our study was applying these refined features to four nonlinear forecasting
models, including Random Forest, AdaBoost, Extreme Gradient Boosting (XGBoost),
and Gradient Boosting. These models were specifically chosen for their proficiency in
capturing complex, nonlinear interactions often overlooked by linear models. Utilizing a
comprehensive evaluation by multiple accuracy metrics, residual analysis, and hypothesis
testing through the Model Confidence Set (MCS) method, Gradient Boosting emerged
as the most effective model, showcasing superior performance in terms of minimal MAE,
MSE and RMSE.

The interpretability of Gradient Boosting was enhanced by applying Shapley Value, an
emerging method of Explainable Artificial Intelligence (XAI). This method sheds light on
the contribution of each feature to the prediction outcomes, addressing concerns about the
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interpretability of ML models. It provides valuable insights into the dynamics of feature
interactions. Using XAI methods helps reflect on theory and its empirical applications
for forecasting. Understanding the reasoning behind specific model results enhances the
usefulness of research findings that use ML models.

During our literature review, we came across various ML algorithms that have the
potential to predict inflation. However, due to the time constraints of a master’s degree,
we could only explore a limited number of models. For future works using data from the
Brazilian economy, there is an opportunity to explore other models that may perform
better in forecasting our target. Deep learning or Hybrid models could be promising
for predictive analytics and warrant exploration within inflation forecasting or to solve
macroeconometric problems. Integrating machine learning methodologies with traditional
macroeconomic tools can be highly beneficial. Additionally, XAI methods, particularly
the Shapley Value approach, provide a valuable resource for future applications in macroe-
conometric literature and financial markets where understanding inflation prediction is
crucial for effective market risk management.

Utilizing insights from SHAP values and Feature Selection, this study highlights the
crucial role of proxy of our target like ’ipca_monitor_0’ and ’ipca_focus’ in improving
results with ML models. While variables related to economic activity, the labor market,
and financial markets influence model performance, their impact is not as significant as
that of the proxy variables. This has important implications for strategy development
within a financial institution’s Treasury desk. Recognizing the importance of these proxy
variables is key to achieving optimal outcomes, and the methods used in this work showed
it.

In summary, our research significantly contributes to economic forecasting by show-
casing the efficacy of nonlinear models in predicting inflation in an emerging country. Ac-
cording to [Blanchard, 2018], learning algorithms are considered good forecasting models.
For the author, reference in macroeconomics, a good forecasting model is the one that has
the most accurate forecast rather than the one that is more in line with macroeconomic
theory. It means that if the theory is irrelevant to forecasting, it should be discarded.
Accordingly, our findings illuminate a promising avenue for refining inflation forecasts
by incorporating sophisticated machine-learning techniques that are more reliable in an
environment where big data is becoming more and more common in the finance and eco-
nomic fields. These include advanced feature selection and the enhancement of model
interpretability through innovative XAI methods. Such advancements pave the way for
developing more nuanced and precise forecasting methodologies. Moreover, beyond con-
tributing to academic debate, our research provides practical insights for policymakers
and financial institutions, equipping them with reliable economic forecasts to navigate
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the complexities of a volatile economic environment.

77



References

[Acosta, 2018] Acosta, M. (2018). Machine learning core inflation. ECONOMICS LET-
TERS, 169, 47–50. 11, 12

[Alfiyatin et al., 2019] Alfiyatin, A., Rizki, A., Mahmudy, W., & Ananda, C. (2019).
Extreme learning machine and particle swarm optimization for inflation forecasting.
International Journal of Advanced Computer Science and Applications, 10(4), 473–478.
1 citations (Crossref) [2023-08-08]. 10, 12

[Amat Rodrigo & Escobar Ortiz, 2023] Amat Rodrigo, J. & Escobar Ortiz, J. (2023). sk-
forecast. skforecast. 56

[Aras, 2022] Aras, L. (2022). Explainable inflation forecasts by machine learning models.
3, 12, 16

[Araujo & Gaglianone, 2023] Araujo, G. & Gaglianone, W. (2023). Machine learning
methods for inflation forecasting in Brazil: New contenders versus classical models.
Latin American Journal of Central Banking, 4(2). 11, 12, 44, 52

[Athey & Imbens, 2019] Athey, S. & Imbens, G. (2019). Machine Learning Methods That
Economists Should Know About. Annual Review of Economics, 11(1), 685–725. Pub-
lisher: Annual Reviews. 9, 25, 31

[Behrens et al., 2018] Behrens, C., Pierdzioch, C., & Risse, M. (2018). Testing the op-
timality of inflation forecasts under flexible loss with random forests. ECONOMIC
MODELLING, 72, 270–277. 22 citations (Crossref) [2023-08-08]. 10, 12

[Bergmeir et al., 2018] Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the
validity of cross-validation for evaluating autoregressive time series prediction. Com-
putational Statistics & Data Analysis, 120, 70–83. 31

[Bergstra & Bengio, 2012] Bergstra, J. & Bengio, Y. (2012). Random Search for Hyper-
Parameter Optimization. Journal of Machine Learning Research, 13(10), 281–305. 34

[Blanchard, 2018] Blanchard, O. (2018). On the future of macroeconomic models. Oxford
Review of Economic Policy, 34(1-2), 43–54. 76

[Breiman, 2001] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
25

78



[Buckmann et al., 2021] Buckmann, M., Joseph, A., & Robertson, H. (2021). Opening the
Black Box: Machine Learning Interpretability and Inference Tools with an Application
to Economic Forecasting. In S. Consoli, D. Reforgiato Recupero, & M. Saisana (Eds.),
Data Science for Economics and Finance: Methodologies and Applications (pp. 43–63).
Cham: Springer International Publishing. 12, 15

[Cakan et al., 2015] Cakan, E., Doytch, N., & Upadhyaya, K. P. (2015). Does U.S.
macroeconomic news make emerging financial markets riskier? Borsa Istanbul Review,
15(1), 37–43. 1

[CFA, 2023] CFA, I. (2023). Measuring and Managing Market Risk. 1

[Chen & Guestrin, 2016] Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boost-
ing system. CoRR, abs/1603.02754. 27

[Coulombe et al., 2022] Coulombe, P., Leroux, M., Stevanovic, D., & Surprenant, S.
(2022). How is machine learning useful for macroeconomic forecasting? JOURNAL
OF APPLIED ECONOMETRICS, 37(5), 920–964. 12, 15

[Diebold & Mariano, 1995] Diebold, F. & Mariano, R. (1995). Comparing Predictive Ac-
curacy. Journal of Business & Economic Statistics, 13(3), 253–63. Publisher: American
Statistical Association. 61

[Fisher, Irving, 1930] Fisher, Irving (1930). The Theory of Interest: As Determined by
Impatience to Spend Income and Opportunity to Invest It. Accession Number: 6255
Source: oclc. 2

[Fonti & Belitser, 2017] Fonti, V. & Belitser, E. (2017). Feature selection using lasso. VU
Amsterdam research paper in business analytics, 30, 1–25. 12

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5), 1189–1232. Publisher: Institute of
Mathematical Statistics. 26

[Friedman & Hall, 2007] Friedman, J. H. & Hall, P. (2007). On bagging and nonlinear
estimation. Journal of Statistical Planning and Inference, 3(137), 669–683. 25

[Garcia et al., 2017] Garcia, M. G. P., Medeiros, M., & Vasconcelos, G. F. R. (2017).
Real-time inflation forecasting with high-dimensional models: The case of Brazil. In-
ternational Journal of Forecasting, 33(3), 679–693. Publisher: Elsevier. 2, 11, 12,
44

[García-Portugués, 2024] García-Portugués, E. (2024). 4.1 Shrinkage | Notes for Predic-
tive Modeling. BookDown. 22

[Geron, 2019] Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras,
and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, Inc., 2nd edition. 18, 36, 48

[Granger & Newbold, 1974] Granger, C. W. J. & Newbold, P. (1974). Spurious regres-
sions in econometrics. Journal of Econometrics, 2(2), 111–120. 47

79



[Hansen et al., 2011] Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The Model
Confidence Set. Econometrica, 79(2), 453–497. Publisher: [Wiley, Econometric Society].
36, 61

[Hyndman & Athanasopoulos, 2021] Hyndman, R. J. & Athanasopoulos, G. (2021). Fore-
casting: Principles and Practice (2nd ed). Otexts. 40

[imf, 2023] imf, g. (2023). Global Financial Stability Report, April 2023. 4

[Iskhakov et al., 2020] Iskhakov, F., Rust, J., & Schjerning, B. (2020). Machine learning
and structural econometrics: contrasts and synergies. The Econometrics Journal, 23(3),
S81–S124. 3, 9

[James et al., 2013] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning, volume 112. Springer. 25

[James et al., 2023] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023).
An introduction to statistical learning: With applications in python. Springer Nature.
20

[Joseph et al., 2021] Joseph, A., Kalamara, E., Kapetanios, G., & Potjagailo, G. (2021).
Forecasting UK inflation bottom up. International Journal of Forecasting. 1 citations
(Crossref) [2023-08-08]. 12, 15

[Kim & Swanson, 2018] Kim, H. & Swanson, N. (2018). Mining big data using parsimo-
nious factor, machine learning, variable selection and shrinkage methods. International
Journal of Forecasting, 34(2), 339–354. 62 citations (Crossref) [2023-08-08]. 14

[Kleiber & Zeileis, 2008] Kleiber, C. & Zeileis, A. (2008). Applied Econometrics with R.
New York, NY: Springer New York. 42

[Lazzeri, 2020] Lazzeri, F. (2020). Machine Learning for Time Series Forecasting with
Python®. Wiley, 1 edition. 36, 39, 56

[Li, 2024] Li, H. L. a. M. (2024). 10.3 Variable selection property of the lasso | Introduction
to Data Science. Data Science Workshop. 20, 21

[Lu & Wu, 2009] Lu, B. & Wu, L. (2009). Macroeconomic releases and the interest rate
term structure. Journal of Monetary Economics, 56(6), 872–884. 2

[Lundberg & Lee, 2017] Lundberg, S. & Lee, S.-I. (2017). A Unified Approach to Inter-
preting Model Predictions. arXiv:1705.07874 [cs, stat]. 69

[Mariano & Santos, 2017] Mariano, A. & Santos, M. (2017). (PDF) Revisão da Liter-
atura: Apresentação de uma Abordagem Integradora. 6, 7

[Masini et al., 2021] Masini, R. P., Medeiros, M. C., & Mendes, E. F. (2021). Machine
Learning Advances for Time Series Forecasting. arXiv:2012.12802 [cs, econ, stat]. 9

80



[Medeiros et al., 2021] Medeiros, M. C., Vasconcelos, G. F., Veiga, , & Zilberman, E.
(2021). Forecasting inflation in a data-rich environment: the benefits of machine learn-
ing methods. Journal of Business & Economic Statistics, 39(1), 98–119. Publisher:
Taylor & Francis. 10, 12, 31

[Miller, 2019] Miller, T. (2019). Explanation in artificial intelligence: Insights from the
social sciences. Artificial Intelligence, 267, 1–38. 64

[Molnar, 2023] Molnar, C. (2023). Interpretable Machine Learning. 64, 65, 67, 68, 69,
70, 72, 73

[nielsaka, 2023] nielsaka (2023). nielsaka/modelconf. original-date: 2018-08-
03T12:26:29Z. 63

[Nosratabadi et al., 2020] Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F.,
Band, S. S., Reuter, U., Gama, J., & Gandomi, A. H. (2020). Data Science in Eco-
nomics: Comprehensive Review of Advanced Machine Learning and Deep Learning
Methods. Mathematics, 8(10), 1799. Number: 10 Publisher: Multidisciplinary Digital
Publishing Institute. 10, 31

[Ouyang et al., 2021] Ouyang, Z., Ravier, P., & Jabloun, M. (2021). STL Decomposi-
tion of Time Series Can Benefit Forecasting Done by Statistical Methods but Not by
Machine Learning Ones. Engineering Proceedings, 5(1), 42. Number: 1 Publisher:
Multidisciplinary Digital Publishing Institute. 41

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12,
2825–2830. 48, 56

[Peng & Nagata, 2020] Peng, Y. & Nagata, M. H. (2020). An empirical overview of
nonlinearity and overfitting in machine learning using COVID-19 data. Chaos, Solitons
& Fractals, 139, 110055. Publisher: Elsevier. 3

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Model-Agnostic
Interpretability of Machine Learning. arXiv:1606.05386 [cs, stat]. 66

[Riofrío et al., 2020] Riofrío, J., Chang, O., Revelo-Fuelagán, E., & Peluffo-Ordóñez, D.
(2020). Forecasting the Consumer Price Index (CPI) of Ecuador: A comparative study
of predictive models. International Journal on Advanced Science, Engineering and
Information Technology, 10(3), 1078–1084. 10, 12

[Shapley, 2016] Shapley, L. S. (2016). 17. A Value for n-Person Games. In 17. A Value
for n-Person Games (pp. 307–318). Princeton University Press. 67

[Skforecast, 2023] Skforecast (2023). Introduction to forecasting - Skforecast Docs. 36,
37

[Skforecast, 2024] Skforecast (2024). Tuning forecaster - Skforecast Docs. 56

81



[Sklearn, 2024] Sklearn (2024). L1-based models for Sparse Signals. 22

[Spiess & Neumeyer, 2010] Spiess, A.-N. & Neumeyer, N. (2010). An evaluation of R2
as an inadequate measure for nonlinear models in pharmacological and biochemical
research: a Monte Carlo approach. BMC Pharmacology, 10(1), 6. 60

[Stańczyk & Jain, 2015] Stańczyk, U. & Jain, L. C., Eds. (2015). Feature Selection for
Data and Pattern Recognition, volume 584 of Studies in Computational Intelligence.
Berlin, Heidelberg: Springer Berlin Heidelberg. 13, 14

[Syed & Lee, 2021] Syed, A. & Lee, K. (2021). Macroeconomic forecasting for Pakistan in
a data-rich environment. Applied Economics, 53(9), 1077–1091. 1 citations (Crossref)
[2023-08-08]. 11, 12

[Tibshirani, 1996] Tibshirani, R. (1996). Regression Shrinkage and Selection Via the
Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–
288. 19

[Tibshirani, 2014] Tibshirani, R. J. (2014). Lasso and sparsity in statistics. Academia.
19

[Tibshirani & Friedman, 2001] Tibshirani, S. & Friedman, H. (2001). The Elements of
Statistical Learning. Academia. 29

[Tibshirani & Wainwright, 2016] Tibshirani, S. & Wainwright, J. (2016). Valerie and
Patrick Hastie. Academia. 17

[Verleysen & François, 2005] Verleysen, M. & François, D. (2005). The Curse of Dimen-
sionality in Data Mining and Time Series Prediction, volume 3512. Computational
Intelligence and Bioinspired Systems. 3

[Wang et al., 2023] Wang, C. S. H., Fan, R., & Xie, Y. (2023). Market systemic risk,
predictability and macroeconomics news. Finance Research Letters, 56, 104102. 1

[Wang et al., 2006] Wang, X., Smith-Miles, K., & Hyndman, R. (2006). Characteristic-
based clustering for time series data. Data Min. Knowl. Discov., 13, 335–364. 40

[Wang et al., 2020] Wang, Z., Zhu, Z., & Yu, C. (2020). Variable Selection in Macroeco-
nomic Forecasting with Many Predictors. arXiv:2007.10160 [econ, stat]. 22, 36

[Yilmazkuday, 2022] Yilmazkuday, H. (2022). Inflation and growth: the role of institu-
tions. Journal of Economics and Finance, 46(1), 167–187. 4

[Zach, 2020] Zach (2020). How to Perform a Mann-Kendall Trend Test in R. 40

[Zaman et al., 2023] Zaman, M., Tania, N. N., & Khan, M. S. A. (2023). Treasury Man-
agement in Financial Institutions. The Institute of Bankers, Bangladesh. 1

[Zhao & Yu, 2006] Zhao, P. & Yu, B. (2006). On Model Selection Consistency of Lasso.
Journal of Machine Learning Research. 22, 23

82



[Zou & Hastie, 2005] Zou, H. & Hastie, T. (2005). Regularization and Variable Selec-
tion via the Elastic Net. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 67(2), 301–320. Publisher: [Royal Statistical Society, Wiley]. 23

[Özgür & Akkoç, 2021] Özgür, & Akkoç, U. (2021). Inflation forecasting in an emerging
economy: selecting variables with machine learning algorithms. International Journal
of Emerging Markets, 17(8), 1889–1908. Publisher: Emerald Publishing Limited. 12,
14, 22, 36, 49, 52

83



Appendix A

Stationarity Tests

Table 10: Stationarity Tests Results (P Value)

ADF PP KPSS Stationarity Decision Series
0,01 0,01 0,09 accepted var_ipc_fipe
0,01 0,01 0,13 accepted var_ipca_15
0,01 0,01 0,20 accepted var_ipc_br
0,11 0,01 0,58 rejected var_ipc_br_core
0,10 0,01 0,13 rejected var_igp_m
0,06 0,01 0,13 rejected var_igp_di
0,06 0,01 0,14 rejected var_igp_10
0,01 0,01 0,13 accepted ipca_monitor_1
0,01 0,01 0,10 accepted ipca_monitor_11
0,07 0,01 1,48 rejected ipca_monitor_12
0,01 0,01 0,15 accepted ipca_monitor_2
0,20 0,01 0,19 rejected ipca_monitor_3
0,50 0,01 0,40 rejected ipca_monitor_4
0,01 0,01 0,06 accepted ipca_monitor_5
0,01 0,01 0,29 accepted ipca_monitor_6
0,01 0,01 2,45 rejected ipca_monitor_7
0,01 0,01 0,16 accepted ipca_monitor_8
0,01 0,01 0,13 accepted ipca_monitor_9
0,01 0,01 0,23 accepted ipca_monitor_0
0,01 0,01 0,17 accepted ipca_focus
0,17 0,01 0,40 rejected VIX
0,30 0,01 0,44 rejected VIX_log
0,01 0,01 0,05 accepted MSCI_emerging_1_diff
0,01 0,01 0,04 accepted MSCI_emerging_log_1_diff
0,01 0,01 0,09 accepted NOAA_Index_1_diff
0,23 0,01 0,38 rejected U.S..Treasury.3.months.nominal.yield_1_diff
0,05 0,01 0,21 rejected U.S..Treasury.2.years.nominal.yield_1_diff
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0,01 0,01 0,18 accepted U.S..Treasury.10.years.nominal.yield_1_diff
0,01 0,01 0,08 accepted BRL_USD_1_diff
0,01 0,01 0,12 accepted BRL_USD_log_1_diff
0,01 0,01 0,03 accepted VIX_1_diff
0,01 0,01 0,04 accepted VIX_log_1_diff
0,01 0,01 0,05 accepted DXY_1_diff
0,01 0,01 0,06 accepted DXY_log_1_diff
0,01 0,01 0,17 accepted Ibovespa_1_diff
0,01 0,01 0,16 accepted Ibovespa_log_1_diff
0,01 0,01 0,07 accepted Brasil_CDS5Y_1_diff
0,01 0,01 0,08 accepted Brasil_CDS5Y_log_1_diff
0,01 0,01 0,09 accepted crb_1_diff
0,01 0,01 0,10 accepted crb_food_1_diff
0,01 0,01 0,06 accepted crb_metals_1_diff
0,01 0,01 0,09 accepted crb_log_1_diff
0,01 0,01 0,11 accepted crb_food_log_1_diff
0,01 0,01 0,06 accepted crb_metals_log_1_diff
0,01 0,01 0,08 accepted oil_price_brent_1_diff
0,01 0,01 0,07 accepted oil_price_wti_1_diff
0,01 0,01 0,07 accepted oil_price_brent_log_1_diff
0,01 0,01 0,06 accepted oil_price_wti_log_1_diff
0,31 0,01 0,18 rejected selic_aa_1_diff
0,31 0,01 0,18 rejected selic_aa_2_diff
0,01 0,01 0,12 accepted var_ipca_bacen_lag1
0,04 0,01 0,14 accepted var_comercializaveis_bacen_lag1
0,01 0,01 0,43 rejected var_nao_comercializaveis_bacen_lag1
0,01 0,01 0,07 accepted var_administrados_bacen_lag1
0,01 0,01 0,10 accepted var_bens_nao_duraveis_bacen_lag1
0,66 0,01 0,30 rejected var_bens_semi_duraveis_bacen_lag1
0,31 0,01 0,58 rejected var_duraveis_bacen_lag1
0,01 0,01 0,96 rejected var_servicos_bacen_lag1
0,19 0,01 0,26 rejected var_medias_aparadas_sem_suavizacao_bacen_lag1
0,02 0,01 0,35 accepted var_nucleo_por_exclusao_ex0_bacen_lag1
0,01 0,01 0,21 accepted var_livres_bacen_lag1
0,04 0,01 0,27 accepted var_nucleo_por_exclusao_ex1_bacen_lag1
0,15 0,01 0,30 rejected var_nucleo_dupla_ponderacao_bacen_lag1
0,06 0,01 0,31 rejected var_difusao_bacen_lag1
0,43 0,01 0,45 rejected var_nucleo_por_exclusao_ex2_bacen_lag1
0,41 0,01 0,47 rejected var_nucleo_por_exclusao_ex3_bacen_lag1
0,13 0,01 0,20 rejected var_industriais_bacen_lag1
0,01 0,01 0,08 accepted var_alimentacao_em_domicilio_bacen_lag1
0,31 0,01 0,38 rejected var_nucleo_percentil_55_bacen_lag1
0,03 0,01 0,28 accepted var_nucleo_ex_alimentacao_energia_exfe_bacen_lag1
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0,01 0,01 0,11 accepted var_incc_lag1
0,06 0,01 2,50 rejected consu_energia_brasil_total_lag1
0,01 0,01 2,93 rejected consu_energia_residencia_lag1
0,08 0,01 2,88 rejected consu_energia_outros_lag1
0,01 0,01 0,67 rejected caged_saldo_norte_lag1
0,01 0,01 0,41 rejected caged_saldo_nordeste_lag1
0,03 0,01 0,42 rejected caged_saldo_sudeste_lag1
0,04 0,01 0,30 accepted caged_saldo_sul_lag1
0,01 0,01 0,52 rejected caged_saldo_centro_oeste_lag1
0,04 0,01 0,48 rejected caged_saldo_brasil_lag1
0,04 0,01 2,49 rejected consu_energia_brasil_total_log_lag1
0,01 0,01 2,93 rejected consu_energia_residencia_log_lag1
0,11 0,01 2,83 rejected consu_energia_outros_log_lag1
0,01 0,01 0,04 accepted MSCI_emerging_1_diff_lag1
0,01 0,01 0,04 accepted MSCI_emerging_log_1_diff_lag1
0,01 0,01 0,09 accepted NOAA_Index_1_diff_lag1
0,23 0,01 0,39 rejected U.S..Treasury.3.months.nominal.yield_1_diff_lag1
0,06 0,01 0,22 rejected U.S..Treasury.2.years.nominal.yield_1_diff_lag1
0,01 0,01 0,18 accepted U.S..Treasury.10.years.nominal.yield_1_diff_lag1
0,01 0,01 0,30 accepted PNAD_DESOC_1_diff_lag1
0,01 0,01 0,08 accepted BRL_USD_1_diff_lag1
0,01 0,01 0,11 accepted BRL_USD_log_1_diff_lag1
0,01 0,01 0,04 accepted VIX_1_diff_lag1
0,01 0,01 0,05 accepted VIX_log_1_diff_lag1
0,01 0,01 0,07 accepted DXY_1_diff_lag1
0,01 0,01 0,08 accepted DXY_log_1_diff_lag1
0,01 0,01 0,17 accepted Ibovespa_1_diff_lag1
0,01 0,01 0,16 accepted Ibovespa_log_1_diff_lag1
0,01 0,01 0,07 accepted Brasil_CDS5Y_1_diff_lag1
0,01 0,01 0,07 accepted Brasil_CDS5Y_log_1_diff_lag1
0,01 0,01 0,09 accepted crb_1_diff_lag1
0,01 0,01 0,11 accepted crb_food_1_diff_lag1
0,01 0,01 0,06 accepted crb_metals_1_diff_lag1
0,01 0,01 0,10 accepted crb_log_1_diff_lag1
0,01 0,01 0,11 accepted crb_food_log_1_diff_lag1
0,01 0,01 0,06 accepted crb_metals_log_1_diff_lag1
0,01 0,01 0,08 accepted oil_price_brent_1_diff_lag1
0,01 0,01 0,07 accepted oil_price_wti_1_diff_lag1
0,01 0,01 0,07 accepted oil_price_brent_log_1_diff_lag1
0,01 0,01 0,06 accepted oil_price_wti_log_1_diff_lag1
0,01 0,01 0,05 accepted consu_energia_brasil_total_1_diff_lag1
0,01 0,01 0,08 accepted consu_energia_industr_1_diff_lag1
0,01 0,01 0,04 accepted consu_energia_residencia_1_diff_lag1
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0,01 0,01 0,03 accepted consu_energia_comercial_1_diff_lag1
0,01 0,01 0,06 accepted consu_energia_outros_1_diff_lag1
0,01 0,01 0,04 accepted consu_energia_brasil_total_log_1_diff_lag1
0,01 0,01 0,07 accepted consu_energia_industr_log_1_diff_lag1
0,01 0,01 0,03 accepted consu_energia_residencia_log_1_diff_lag1
0,01 0,01 0,03 accepted consu_energia_comercial_log_1_diff_lag1
0,01 0,01 0,09 accepted consu_energia_outros_log_1_diff_lag1
0,01 0,01 0,07 accepted base_monetaria_1_diff_lag1
0,01 0,01 0,05 accepted base_monetaria_log_1_diff_lag1
0,37 0,01 0,19 rejected selic_aa_1_diff_lag1
0,01 0,01 0,21 accepted consume_confidence_1_diff_lag1
0,01 0,01 0,04 accepted caged_saldo_norte_1_diff_lag1
0,01 0,01 0,02 accepted caged_saldo_nordeste_1_diff_lag1
0,01 0,01 0,04 accepted caged_saldo_sudeste_1_diff_lag1
0,01 0,01 0,05 accepted caged_saldo_sul_1_diff_lag1
0,01 0,01 0,04 accepted caged_saldo_centro_oeste_1_diff_lag1
0,01 0,01 0,04 accepted caged_saldo_brasil_1_diff_lag1
0,01 0,01 0,05 accepted consu_energia_brasil_total_2_diff_lag1
0,01 0,01 0,08 accepted consu_energia_industr_2_diff_lag1
0,01 0,01 0,04 accepted consu_energia_residencia_2_diff_lag1
0,01 0,01 0,03 accepted consu_energia_comercial_2_diff_lag1
0,01 0,01 0,06 accepted consu_energia_outros_2_diff_lag1
0,01 0,01 0,04 accepted consu_energia_brasil_total_log_2_diff_lag1
0,01 0,01 0,07 accepted consu_energia_industr_log_2_diff_lag1
0,01 0,01 0,03 accepted consu_energia_residencia_log_2_diff_lag1
0,01 0,01 0,03 accepted consu_energia_comercial_log_2_diff_lag1
0,01 0,01 0,09 accepted consu_energia_outros_log_2_diff_lag1
0,01 0,01 0,07 accepted base_monetaria_2_diff_lag1
0,01 0,01 0,05 accepted base_monetaria_log_2_diff_lag1
0,37 0,01 0,19 rejected selic_aa_2_diff_lag1
0,01 0,01 0,30 accepted PNAD_DESOC_2_diff_lag1
0,01 0,01 0,11 accepted var_ipca_bacen_lag2
0,08 0,01 0,14 rejected var_comercializaveis_bacen_lag2
0,01 0,01 0,40 rejected var_nao_comercializaveis_bacen_lag2
0,01 0,01 0,08 accepted var_administrados_bacen_lag2
0,01 0,01 0,09 accepted var_bens_nao_duraveis_bacen_lag2
0,73 0,01 0,29 rejected var_bens_semi_duraveis_bacen_lag2
0,40 0,01 0,59 rejected var_duraveis_bacen_lag2
0,01 0,01 0,96 rejected var_servicos_bacen_lag2
0,27 0,01 0,25 rejected var_medias_aparadas_sem_suavizacao_bacen_lag2
0,02 0,01 0,34 accepted var_nucleo_por_exclusao_ex0_bacen_lag2
0,01 0,01 0,19 accepted var_livres_bacen_lag2
0,04 0,01 0,26 accepted var_nucleo_por_exclusao_ex1_bacen_lag2
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0,21 0,01 0,28 rejected var_nucleo_dupla_ponderacao_bacen_lag2
0,13 0,01 0,31 rejected var_difusao_bacen_lag2
0,50 0,01 0,45 rejected var_nucleo_por_exclusao_ex2_bacen_lag2
0,48 0,01 0,47 rejected var_nucleo_por_exclusao_ex3_bacen_lag2
0,23 0,01 0,20 rejected var_industriais_bacen_lag2
0,01 0,01 0,07 accepted var_alimentacao_em_domicilio_bacen_lag2
0,38 0,01 0,35 rejected var_nucleo_percentil_55_bacen_lag2
0,03 0,01 0,28 accepted var_nucleo_ex_alimentacao_energia_exfe_bacen_lag2
0,01 0,01 0,12 accepted var_incc_lag2
0,02 0,01 2,50 rejected consu_energia_brasil_total_lag2
0,01 0,01 2,94 rejected consu_energia_residencia_lag2
0,07 0,01 2,88 rejected consu_energia_outros_lag2
0,01 0,01 0,73 rejected caged_saldo_norte_lag2
0,01 0,01 0,43 rejected caged_saldo_nordeste_lag2
0,02 0,01 0,48 rejected caged_saldo_sudeste_lag2
0,02 0,01 0,36 rejected caged_saldo_sul_lag2
0,01 0,01 0,61 rejected caged_saldo_centro_oeste_lag2
0,02 0,01 0,54 rejected caged_saldo_brasil_lag2
0,02 0,01 2,49 rejected consu_energia_brasil_total_log_lag2
0,01 0,01 2,93 rejected consu_energia_residencia_log_lag2
0,07 0,01 2,82 rejected consu_energia_outros_log_lag2
0,01 0,01 0,05 accepted MSCI_emerging_1_diff_lag2
0,01 0,01 0,05 accepted MSCI_emerging_log_1_diff_lag2
0,01 0,01 0,09 accepted NOAA_Index_1_diff_lag2
0,22 0,01 0,40 rejected U.S..Treasury.3.months.nominal.yield_1_diff_lag2
0,04 0,01 0,32 accepted U.S..Treasury.2.years.nominal.yield_1_diff_lag2
0,01 0,01 0,28 accepted U.S..Treasury.10.years.nominal.yield_1_diff_lag2
0,01 0,01 0,29 accepted PNAD_DESOC_1_diff_lag2
0,01 0,01 0,08 accepted BRL_USD_1_diff_lag2
0,01 0,01 0,10 accepted BRL_USD_log_1_diff_lag2
0,01 0,01 0,05 accepted VIX_1_diff_lag2
0,01 0,01 0,06 accepted VIX_log_1_diff_lag2
0,01 0,01 0,07 accepted DXY_1_diff_lag2
0,01 0,01 0,08 accepted DXY_log_1_diff_lag2
0,01 0,01 0,14 accepted Ibovespa_1_diff_lag2
0,01 0,01 0,14 accepted Ibovespa_log_1_diff_lag2
0,01 0,01 0,06 accepted Brasil_CDS5Y_1_diff_lag2
0,01 0,01 0,06 accepted Brasil_CDS5Y_log_1_diff_lag2
0,01 0,01 0,10 accepted crb_1_diff_lag2
0,01 0,01 0,14 accepted crb_food_1_diff_lag2
0,01 0,01 0,05 accepted crb_metals_1_diff_lag2
0,01 0,01 0,10 accepted crb_log_1_diff_lag2
0,01 0,01 0,14 accepted crb_food_log_1_diff_lag2
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0,01 0,01 0,06 accepted crb_metals_log_1_diff_lag2
0,01 0,01 0,09 accepted oil_price_brent_1_diff_lag2
0,01 0,01 0,08 accepted oil_price_wti_1_diff_lag2
0,01 0,01 0,07 accepted oil_price_brent_log_1_diff_lag2
0,01 0,01 0,07 accepted oil_price_wti_log_1_diff_lag2
0,01 0,01 0,04 accepted consu_energia_brasil_total_1_diff_lag2
0,01 0,01 0,09 accepted consu_energia_industr_1_diff_lag2
0,01 0,01 0,03 accepted consu_energia_residencia_1_diff_lag2
0,01 0,01 0,02 accepted consu_energia_comercial_1_diff_lag2
0,01 0,01 0,07 accepted consu_energia_outros_1_diff_lag2
0,01 0,01 0,04 accepted consu_energia_brasil_total_log_1_diff_lag2
0,01 0,01 0,08 accepted consu_energia_industr_log_1_diff_lag2
0,01 0,01 0,02 accepted consu_energia_residencia_log_1_diff_lag2
0,01 0,01 0,03 accepted consu_energia_comercial_log_1_diff_lag2
0,01 0,01 0,10 accepted consu_energia_outros_log_1_diff_lag2
0,01 0,01 0,06 accepted ibc_br_sa_1_diff_lag2
0,01 0,01 0,06 accepted ibc_br_sa_log_1_diff_lag2
0,01 0,01 0,07 accepted base_monetaria_1_diff_lag2
0,01 0,01 0,05 accepted base_monetaria_log_1_diff_lag2
0,39 0,01 0,19 rejected selic_aa_1_diff_lag2
0,01 0,01 0,17 accepted consume_confidence_1_diff_lag2
0,01 0,01 0,02 accepted caged_saldo_norte_1_diff_lag2
0,01 0,01 0,02 accepted caged_saldo_nordeste_1_diff_lag2
0,01 0,01 0,04 accepted caged_saldo_sudeste_1_diff_lag2
0,01 0,01 0,02 accepted caged_saldo_sul_1_diff_lag2
0,01 0,01 0,02 accepted caged_saldo_centro_oeste_1_diff_lag2
0,01 0,01 0,03 accepted caged_saldo_brasil_1_diff_lag2
0,01 0,01 0,04 accepted consu_energia_brasil_total_2_diff_lag2
0,01 0,01 0,09 accepted consu_energia_industr_2_diff_lag2
0,01 0,01 0,03 accepted consu_energia_residencia_2_diff_lag2
0,01 0,01 0,02 accepted consu_energia_comercial_2_diff_lag2
0,01 0,01 0,07 accepted consu_energia_outros_2_diff_lag2
0,01 0,01 0,04 accepted consu_energia_brasil_total_log_2_diff_lag2
0,01 0,01 0,08 accepted consu_energia_industr_log_2_diff_lag2
0,01 0,01 0,02 accepted consu_energia_residencia_log_2_diff_lag2
0,01 0,01 0,03 accepted consu_energia_comercial_log_2_diff_lag2
0,01 0,01 0,10 accepted consu_energia_outros_log_2_diff_lag2
0,01 0,01 0,06 accepted ibc_br_sa_2_diff_lag2
0,01 0,01 0,06 accepted ibc_br_sa_log_2_diff_lag2
0,01 0,01 0,07 accepted base_monetaria_2_diff_lag2
0,01 0,01 0,05 accepted base_monetaria_log_2_diff_lag2
0,39 0,01 0,19 rejected selic_aa_2_diff_lag2
0,01 0,01 0,29 accepted PNAD_DESOC_2_diff_lag2
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0,01 0,01 0,11 accepted var_ipca_bacen_lag3
0,08 0,01 0,15 rejected var_comercializaveis_bacen_lag3
0,01 0,01 0,41 rejected var_nao_comercializaveis_bacen_lag3
0,01 0,01 0,08 accepted var_administrados_bacen_lag3
0,01 0,01 0,09 accepted var_bens_nao_duraveis_bacen_lag3
0,70 0,01 0,32 rejected var_bens_semi_duraveis_bacen_lag3
0,29 0,01 0,62 rejected var_duraveis_bacen_lag3
0,01 0,01 0,99 rejected var_servicos_bacen_lag3
0,25 0,01 0,25 rejected var_medias_aparadas_sem_suavizacao_bacen_lag3
0,02 0,01 0,35 rejected var_nucleo_por_exclusao_ex0_bacen_lag3
0,01 0,01 0,19 accepted var_livres_bacen_lag3
0,04 0,01 0,27 accepted var_nucleo_por_exclusao_ex1_bacen_lag3
0,19 0,01 0,29 rejected var_nucleo_dupla_ponderacao_bacen_lag3
0,13 0,01 0,30 rejected var_difusao_bacen_lag3
0,47 0,01 0,46 rejected var_nucleo_por_exclusao_ex2_bacen_lag3
0,46 0,01 0,49 rejected var_nucleo_por_exclusao_ex3_bacen_lag3
0,14 0,01 0,23 rejected var_industriais_bacen_lag3
0,01 0,01 0,07 accepted var_alimentacao_em_domicilio_bacen_lag3
0,36 0,01 0,37 rejected var_nucleo_percentil_55_bacen_lag3
0,03 0,01 0,28 accepted var_nucleo_ex_alimentacao_energia_exfe_bacen_lag3
0,01 0,01 0,12 accepted var_incc_lag3
0,02 0,01 2,49 rejected consu_energia_brasil_total_lag3
0,01 0,01 2,93 rejected consu_energia_residencia_lag3
0,17 0,01 2,87 rejected consu_energia_outros_lag3
0,01 0,01 0,70 rejected caged_saldo_norte_lag3
0,01 0,01 0,41 rejected caged_saldo_nordeste_lag3
0,02 0,01 0,46 rejected caged_saldo_sudeste_lag3
0,02 0,01 0,36 rejected caged_saldo_sul_lag3
0,01 0,01 0,63 rejected caged_saldo_centro_oeste_lag3
0,02 0,01 0,52 rejected caged_saldo_brasil_lag3
0,02 0,01 2,48 rejected consu_energia_brasil_total_log_lag3
0,01 0,01 2,91 rejected consu_energia_residencia_log_lag3
0,01 0,01 0,06 accepted MSCI_emerging_1_diff_lag3
0,01 0,01 0,05 accepted MSCI_emerging_log_1_diff_lag3
0,01 0,01 0,11 accepted NOAA_Index_1_diff_lag3
0,22 0,01 0,43 rejected U.S..Treasury.3.months.nominal.yield_1_diff_lag3
0,05 0,01 0,42 rejected U.S..Treasury.2.years.nominal.yield_1_diff_lag3
0,01 0,01 0,41 rejected U.S..Treasury.10.years.nominal.yield_1_diff_lag3
0,01 0,01 0,29 accepted PNAD_DESOC_1_diff_lag3
0,01 0,01 0,06 accepted BRL_USD_1_diff_lag3
0,01 0,01 0,09 accepted BRL_USD_log_1_diff_lag3
0,01 0,01 0,02 accepted VIX_1_diff_lag3
0,01 0,01 0,03 accepted VIX_log_1_diff_lag3
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0,01 0,01 0,05 accepted DXY_1_diff_lag3
0,01 0,01 0,05 accepted DXY_log_1_diff_lag3
0,01 0,01 0,15 accepted Ibovespa_1_diff_lag3
0,01 0,01 0,17 accepted Ibovespa_log_1_diff_lag3
0,01 0,01 0,05 accepted Brasil_CDS5Y_1_diff_lag3
0,01 0,01 0,05 accepted Brasil_CDS5Y_log_1_diff_lag3
0,01 0,01 0,11 accepted crb_1_diff_lag3
0,01 0,01 0,17 accepted crb_food_1_diff_lag3
0,01 0,01 0,05 accepted crb_metals_1_diff_lag3
0,01 0,01 0,12 accepted crb_log_1_diff_lag3
0,01 0,01 0,16 accepted crb_food_log_1_diff_lag3
0,01 0,01 0,06 accepted crb_metals_log_1_diff_lag3
0,01 0,01 0,10 accepted oil_price_brent_1_diff_lag3
0,01 0,01 0,09 accepted oil_price_wti_1_diff_lag3
0,01 0,01 0,08 accepted oil_price_brent_log_1_diff_lag3
0,01 0,01 0,09 accepted oil_price_wti_log_1_diff_lag3
0,01 0,01 0,04 accepted consu_energia_brasil_total_1_diff_lag3
0,01 0,01 0,10 accepted consu_energia_industr_1_diff_lag3
0,01 0,01 0,02 accepted consu_energia_residencia_1_diff_lag3
0,01 0,01 0,02 accepted consu_energia_comercial_1_diff_lag3
0,01 0,01 0,06 accepted consu_energia_outros_1_diff_lag3
0,01 0,01 0,03 accepted consu_energia_brasil_total_log_1_diff_lag3
0,01 0,01 0,10 accepted consu_energia_industr_log_1_diff_lag3
0,01 0,01 0,02 accepted consu_energia_residencia_log_1_diff_lag3
0,01 0,01 0,02 accepted consu_energia_comercial_log_1_diff_lag3
0,01 0,01 0,09 accepted consu_energia_outros_log_1_diff_lag3
0,01 0,01 0,06 accepted ibc_br_sa_1_diff_lag3
0,01 0,01 0,06 accepted ibc_br_sa_log_1_diff_lag3
0,01 0,01 0,06 accepted base_monetaria_1_diff_lag3
0,01 0,01 0,06 accepted base_monetaria_log_1_diff_lag3
0,38 0,01 0,20 rejected selic_aa_1_diff_lag3
0,01 0,01 0,18 accepted consume_confidence_1_diff_lag3
0,01 0,01 0,03 accepted caged_saldo_norte_1_diff_lag3
0,01 0,01 0,02 accepted caged_saldo_nordeste_1_diff_lag3
0,01 0,01 0,04 accepted caged_saldo_sudeste_1_diff_lag3
0,01 0,01 0,03 accepted caged_saldo_sul_1_diff_lag3
0,01 0,01 0,03 accepted caged_saldo_centro_oeste_1_diff_lag3
0,01 0,01 0,04 accepted caged_saldo_brasil_1_diff_lag3
0,01 0,01 0,04 accepted consu_energia_brasil_total_2_diff_lag3
0,01 0,01 0,10 accepted consu_energia_industr_2_diff_lag3
0,01 0,01 0,02 accepted consu_energia_residencia_2_diff_lag3
0,01 0,01 0,02 accepted consu_energia_comercial_2_diff_lag3
0,01 0,01 0,06 accepted consu_energia_outros_2_diff_lag3

91



0,01 0,01 0,03 accepted consu_energia_brasil_total_log_2_diff_lag3
0,01 0,01 0,10 accepted consu_energia_industr_log_2_diff_lag3
0,01 0,01 0,02 accepted consu_energia_residencia_log_2_diff_lag3
0,01 0,01 0,02 accepted consu_energia_comercial_log_2_diff_lag3
0,01 0,01 0,09 accepted consu_energia_outros_log_2_diff_lag3
0,01 0,01 0,06 accepted ibc_br_sa_2_diff_lag3
0,01 0,01 0,06 accepted ibc_br_sa_log_2_diff_lag3
0,01 0,01 0,06 accepted base_monetaria_2_diff_lag3
0,01 0,01 0,06 accepted base_monetaria_log_2_diff_lag3
0,38 0,01 0,20 rejected selic_aa_2_diff_lag3
0,01 0,01 0,29 accepted PNAD_DESOC_2_diff_lag3
0,01 0,01 0,11 accepted var_ipca_bacen_lag4
0,10 0,01 0,15 rejected var_comercializaveis_bacen_lag4
0,01 0,01 0,43 rejected var_nao_comercializaveis_bacen_lag4
0,01 0,01 0,08 accepted var_administrados_bacen_lag4
0,01 0,01 0,09 accepted var_bens_nao_duraveis_bacen_lag4
0,69 0,01 0,33 rejected var_bens_semi_duraveis_bacen_lag4
0,28 0,01 0,63 rejected var_duraveis_bacen_lag4
0,01 0,01 1,00 rejected var_servicos_bacen_lag4
0,21 0,01 0,25 rejected var_medias_aparadas_sem_suavizacao_bacen_lag4
0,02 0,01 0,35 rejected var_nucleo_por_exclusao_ex0_bacen_lag4
0,01 0,01 0,20 accepted var_livres_bacen_lag4
0,03 0,01 0,26 accepted var_nucleo_por_exclusao_ex1_bacen_lag4
0,15 0,01 0,28 rejected var_nucleo_dupla_ponderacao_bacen_lag4
0,14 0,01 0,29 rejected var_difusao_bacen_lag4
0,46 0,01 0,46 rejected var_nucleo_por_exclusao_ex2_bacen_lag4
0,44 0,01 0,49 rejected var_nucleo_por_exclusao_ex3_bacen_lag4
0,16 0,01 0,25 rejected var_industriais_bacen_lag4
0,01 0,01 0,07 accepted var_alimentacao_em_domicilio_bacen_lag4
0,33 0,01 0,36 rejected var_nucleo_percentil_55_bacen_lag4
0,02 0,01 0,28 accepted var_nucleo_ex_alimentacao_energia_exfe_bacen_lag4
0,01 0,01 0,13 accepted var_incc_lag4
0,01 0,01 2,46 rejected consu_energia_brasil_total_lag4
0,01 0,01 2,90 rejected consu_energia_residencia_lag4
0,31 0,01 2,86 rejected consu_energia_outros_lag4
0,01 0,01 0,68 rejected caged_saldo_norte_lag4
0,01 0,01 0,40 rejected caged_saldo_nordeste_lag4
0,02 0,01 0,44 rejected caged_saldo_sudeste_lag4
0,02 0,01 0,35 rejected caged_saldo_sul_lag4
0,01 0,01 0,59 rejected caged_saldo_centro_oeste_lag4
0,02 0,01 0,49 rejected caged_saldo_brasil_lag4
0,01 0,01 2,45 rejected consu_energia_brasil_total_log_lag4
0,01 0,01 2,89 rejected consu_energia_residencia_log_lag4
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0,37 0,02 2,80 rejected consu_energia_outros_log_lag4
0,01 0,01 0,05 accepted MSCI_emerging_1_diff_lag4
0,01 0,01 0,04 accepted MSCI_emerging_log_1_diff_lag4
0,01 0,01 0,11 accepted NOAA_Index_1_diff_lag4
0,22 0,01 0,43 rejected U.S..Treasury.3.months.nominal.yield_1_diff_lag4
0,06 0,01 0,43 rejected U.S..Treasury.2.years.nominal.yield_1_diff_lag4
0,01 0,01 0,38 rejected U.S..Treasury.10.years.nominal.yield_1_diff_lag4
0,01 0,01 0,28 accepted PNAD_DESOC_1_diff_lag4
0,01 0,01 0,07 accepted BRL_USD_1_diff_lag4
0,01 0,01 0,09 accepted BRL_USD_log_1_diff_lag4
0,01 0,01 0,02 accepted VIX_1_diff_lag4
0,01 0,01 0,03 accepted VIX_log_1_diff_lag4
0,01 0,01 0,05 accepted DXY_1_diff_lag4
0,01 0,01 0,05 accepted DXY_log_1_diff_lag4
0,01 0,01 0,16 accepted Ibovespa_1_diff_lag4
0,01 0,01 0,18 accepted Ibovespa_log_1_diff_lag4
0,01 0,01 0,06 accepted Brasil_CDS5Y_1_diff_lag4
0,01 0,01 0,06 accepted Brasil_CDS5Y_log_1_diff_lag4
0,01 0,01 0,12 accepted crb_1_diff_lag4
0,01 0,01 0,17 accepted crb_food_1_diff_lag4
0,01 0,01 0,05 accepted crb_metals_1_diff_lag4
0,01 0,01 0,12 accepted crb_log_1_diff_lag4
0,01 0,01 0,17 accepted crb_food_log_1_diff_lag4
0,01 0,01 0,06 accepted crb_metals_log_1_diff_lag4
0,01 0,01 0,10 accepted oil_price_brent_1_diff_lag4
0,01 0,01 0,10 accepted oil_price_wti_1_diff_lag4
0,01 0,01 0,08 accepted oil_price_brent_log_1_diff_lag4
0,01 0,01 0,09 accepted oil_price_wti_log_1_diff_lag4
0,01 0,01 0,02 accepted consu_energia_brasil_total_1_diff_lag4
0,01 0,01 0,08 accepted consu_energia_industr_1_diff_lag4
0,01 0,01 0,01 accepted consu_energia_residencia_1_diff_lag4
0,01 0,01 0,02 accepted consu_energia_comercial_1_diff_lag4
0,01 0,01 0,07 accepted consu_energia_outros_1_diff_lag4
0,01 0,01 0,02 accepted consu_energia_brasil_total_log_1_diff_lag4
0,01 0,01 0,08 accepted consu_energia_industr_log_1_diff_lag4
0,01 0,01 0,01 accepted consu_energia_residencia_log_1_diff_lag4
0,01 0,01 0,02 accepted consu_energia_comercial_log_1_diff_lag4
0,01 0,01 0,09 accepted consu_energia_outros_log_1_diff_lag4
0,01 0,01 0,07 accepted ibc_br_sa_1_diff_lag4
0,01 0,01 0,06 accepted ibc_br_sa_log_1_diff_lag4
0,01 0,01 0,06 accepted base_monetaria_1_diff_lag4
0,01 0,01 0,05 accepted base_monetaria_log_1_diff_lag4
0,37 0,01 0,21 rejected selic_aa_1_diff_lag4
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0,01 0,01 0,20 accepted consume_confidence_1_diff_lag4
0,01 0,01 0,03 accepted caged_saldo_norte_1_diff_lag4
0,01 0,01 0,02 accepted caged_saldo_nordeste_1_diff_lag4
0,01 0,01 0,04 accepted caged_saldo_sudeste_1_diff_lag4
0,01 0,01 0,03 accepted caged_saldo_sul_1_diff_lag4
0,01 0,01 0,02 accepted caged_saldo_centro_oeste_1_diff_lag4
0,01 0,01 0,03 accepted caged_saldo_brasil_1_diff_lag4
0,01 0,01 0,02 accepted consu_energia_brasil_total_2_diff_lag4
0,01 0,01 0,08 accepted consu_energia_industr_2_diff_lag4
0,01 0,01 0,01 accepted consu_energia_residencia_2_diff_lag4
0,01 0,01 0,02 accepted consu_energia_comercial_2_diff_lag4
0,01 0,01 0,07 accepted consu_energia_outros_2_diff_lag4
0,01 0,01 0,02 accepted consu_energia_brasil_total_log_2_diff_lag4
0,01 0,01 0,08 accepted consu_energia_industr_log_2_diff_lag4
0,01 0,01 0,01 accepted consu_energia_residencia_log_2_diff_lag4
0,01 0,01 0,02 accepted consu_energia_comercial_log_2_diff_lag4
0,01 0,01 0,09 accepted consu_energia_outros_log_2_diff_lag4
0,01 0,01 0,07 accepted ibc_br_sa_2_diff_lag4
0,01 0,01 0,06 accepted ibc_br_sa_log_2_diff_lag4
0,01 0,01 0,06 accepted base_monetaria_2_diff_lag4
0,01 0,01 0,05 accepted base_monetaria_log_2_diff_lag4
0,37 0,01 0,21 rejected selic_aa_2_diff_lag4
0,01 0,01 0,28 accepted PNAD_DESOC_2_diff_lag4
0,01 0,01 0,14 accepted var_ipca_bacen

Note 1: ADF = Augmented Dickey-Fuller, PP = Phillips-Perron, and KPSS = Kwiatkowski-Phillips-
Schmidt-Shin

Note 2: P-value < 0.01 suggests stationarity for the ADF and PP tests, while for the KPSS test
indicates non-stationarity.

Note 3: The column "Stationarity Decision" means that the series is stationary (accepted) or non-
stationary (rejected) based on the result for the three tests.
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Appendix B

Average Coefficient Levels of the
Selected Features by ElasticNet

Table 11: Average Coefficient Levels

Feature Coefficient
ipca_monitor_0 0.10

var_ipc_fipe 0.09
ipca_monitor_11 0.09

ipca_focus 0.08
ipca_monitor_1 0.08

consu_energia_residencia_log_1_diff_lag2 0.07
var_ipc_br 0.06
var_ipca_15 0.05

ipca_monitor_5 0.05
BRL_USD_log_1_diff_lag4 0.04

var_livres_bacen_lag1 0.03
consu_energia_comercial_log_1_diff_lag1 0.03

U_S__Treasury_10_years_nominal_yield_1_diff 0.03
consu_energia_outros_log_1_diff_lag4 0.02

caged_saldo_nordeste_1_diff_lag1 0.02
PNAD_DESOC_2_diff_lag1 0.02

consume_confidence_1_diff_lag3 0.02
U_S__Treasury_10_years_nominal_yield_1_diff_lag2 0.01

consu_energia_brasil_total_log_1_diff_lag1 0.01
consu_energia_brasil_total_log_1_diff_lag3 0.00

BRL_USD_log_1_diff_lag3 -0.01
PNAD_DESOC_2_diff_lag3 -0.01

DXY_log_1_diff_lag4 -0.01
NOAA_Index_1_diff -0.02

BRL_USD_log_1_diff -0.02
consu_energia_outros_log_1_diff_lag3 -0.02

PNAD_DESOC_2_diff_lag4 -0.03
caged_saldo_nordeste_1_diff_lag3 -0.03
caged_saldo_nordeste_1_diff_lag2 -0.03

var_livres_bacen_lag4 -0.03
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Appendix C

Most Frequent Features Selected by
ElasticNet

Table 12: Frequency Table.

Feature Absolute
Frequency

Relative
Frequency

ipca_monitor_0 108 69.2%
ipca_focus 93 59.6%

BRL_USD_log_1_diff 58 37.2%
consu_energia_outros_log_1_diff_lag4 57 36.5%

PNAD_DESOC_2_diff_lag1 57 36.5%
PNAD_DESOC_2_diff_lag4 56 35.9%

var_ipc_br 55 35.3%
consume_confidence_1_diff_lag3 55 35.3%

ipca_monitor_1 51 32.7%
caged_saldo_nordeste_1_diff_lag2 51 32.7%

consu_energia_brasil_total_log_1_diff_lag3 51 32.7%
consu_energia_outros_log_1_diff_lag3 50 32.1%

U_S__Treasury_10_years_nominal_yield_1_diff 48 30.8%
var_ipc_fipe 48 30.8%

BRL_USD_log_1_diff_lag4 47 30.1%
ipca_monitor_11 47 30.1%

U_S__Treasury_10_years_nominal_yield_1_diff_lag2 47 30.1%
caged_saldo_nordeste_1_diff_lag3 46 29.5%

ipca_monitor_5 46 29.5%
BRL_USD_log_1_diff_lag3 45 28.8%

var_livres_bacen_lag4 45 28.8%
NOAA_Index_1_diff 43 27.6%

consu_energia_residencia_log_1_diff_lag2 43 27.6%
consu_energia_brasil_total_log_1_diff_lag1 43 27.6%

var_livres_bacen_lag1 43 27.6%
DXY_log_1_diff_lag4 42 26.9%

var_ipca_15 42 26.9%
PNAD_DESOC_2_diff_lag3 41 26.3%

caged_saldo_nordeste_1_diff_lag1 41 26.3%
consu_energia_comercial_log_1_diff_lag1 41 26.3%
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