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ABSTRACT

Title: Advancing Fairness and Differential Privacy in Machine Learning for

Socially Relevant Applications

This thesis investigates privacy-preserving machine learning techniques for socially relevant

applications. Specifically, this work tackles three important problems: the detection and identi-

fication of medias with abuse content, with a special focus on child sexual abuse media (CSAM);

the fairness impacts of utilizing private synthetic datasets in machine learning pipelines; and

the generation of privacy-preserving synthetic data sets from distributed sources.

We address the challenge of developing machine learning-based solutions for CSAM de-

tection while considering the ethical and legal constraints of using explicit imagery for model

training. To circumvent these limitations, we propose a novel framework that leverages file

metadata for CSAM identification. Our approach involves training and evaluating deployment-

ready machine learning models based on file paths, demonstrating its effectiveness on a dataset

of over one million file paths collected from actual investigations. Additionally, we assess the

robustness of our solution against adversarial attacks and explore the use of differential privacy

to protect the model from model inference attacks without sacrificing utility.

In the second part of this thesis, we investigate the opportunities and challenges of utilizing

synthetic data generation in the context of increasing global privacy regulations. Synthetic data

mimics real data without replicating personal information, and offers various possibilities for

data analysis and machine learning tasks. This work addresses the impacts of using synthetic

data sets in machine learning pipelines, especially when only synthetic data is available for

training and evaluation. This thesis examines the relationship between differential privacy and

machine learning fairness, exploring how different synthetic data generation methods affect the

fairness and comparing the performance of models trained and tested with synthetic data versus

real data. The findings contribute to a better understanding of synthetic data usage in machine

learning pipelines and its potential to advance research across various fields.



The third and final part of this thesis proposes a protocol for generating privacy-preserving

synthetic data sets from distributed data. This thesis proposes the first protocol for generation

of synthetic data sets from distributed sources with differentially private guarantees, without

the need for a trusted dealer. The goal of this approach is to enable data holders to share data

without violating legal and ethical restrictions.

Keywords: machine learning, differential privacy, synthetic data, child sexual abuse media,

algorithmic fairness, artificial intelligence



RESUMO

Título: Avanços em Equidade e Privacidade Diferencial em Aprendizado de

Máquina para Aplicações Socialmente Relevantes

Esta tese investiga técnicas de aprendizado de máquina que preservam a privacidade para

aplicações socialmente relevantes, focando em duas áreas específicas: detecção e identificação

de Mídia de Abuso Sexual Infantil (CSAM) e geração de conjuntos de dados sintéticos que com

foco em desenvolvimento ético e privado de inteligencia artifical.

Abordamos o desafio de desenvolver soluções baseadas em aprendizado de máquina para

detecção de CSAM enquanto consideramos as restrições éticas e legais do uso de imagens ex-

plícitas para treinamento do modelo. Para contornar essas limitações, propomos uma nova

estrutura que utiliza metadados de arquivo para identificação de CSAM. Nossa abordagem

envolve o treinamento e avaliação de modelos de aprendizado de máquina prontos para implan-

tação baseados em caminhos de arquivo, demonstrando sua eficácia em um conjunto de dados

de mais de um milhão de caminhos de arquivo coletados em investigações reais. Além disso,

avaliamos a robustez de nossa solução contra ataques adversáriais e exploramos o uso de pri-

vacidade diferencial para proteger o modelo de ataques de inferência de modelo sem sacrificar

a utilidade.

Na segunda parte desta tese, investigamos as oportunidades e desafios do uso da geração de

dados sintéticos no contexto do aumento da adoção de regulamentações globais de privacidade.

Dados sintéticos são dados que imitam dados reais sem replicar informações pessoais, e ofere-

cem diversas possibilidades para análise de dados e tarefas de aprendizado de máquina. No

entanto, pouco se sabe sobre os impactos do uso de bancos de dados sintéticos em pipelines de

aprendizado de máquina, especialmente quando apenas dados sintéticos estão disponíveis para

treinamento e avaliação de modelo. Este estudo examina a relação entre privacidade diferencial

e viés social dos algoritmos aprendizado de máquina, explorando como diferentes métodos de

geração de dados sintéticos afetam o viés social dos algoritmos e comparando o desempenho

de modelos treinados e testados com dados sintéticos versus dados reais. Os resultados contri-



buem para uma melhor compreensão do uso de dados sintéticos em pipelines de aprendizado

de máquina e seu potencial para avançar o estado da arte em diversas áreas.

A terceira e última parte desta tese propõe um protocolo para a geração de bancos de

dados sintéticos que preservam a privacidade a partir de dados distribuídos. Esta tese propõe o

primeiro protocolo para a geração de bancos de dados sintéticos a partir de fontes distribuídas

com garantias de privacidade diferencial, sem a necessidade de um negociante confiável. O

objetivo desta abordagem é permitir que os detentores de dados compartilhem dados sem

violar restrições legais e éticas.

Palavras-chave: aprendizado de máquina, dados sintéticos, privacidade diferencial, mídia de

abuso sexual infantil, imparcialidade algorítimica, inteligência artificial
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CHAPTER 1

INTRODUCTION

The widespread use of digital technology has dramatically changed how people communi-

cate, learn, work, and interact. However, it has also created new challenges for ensuring user

safety and well-being, particularly in ubiquitous communication and data sharing. While te-

chnology companies bear responsibility for addressing harmful social behaviors facilitated by

these platforms, the collection of user data can create socially impactful opportunities and

drive research and knowledge advancement across many fields. This data can provide rese-

archers with unparalleled insights into health, education, economy, psychology, sociology and

other sciences, still, due to privacy restrictions, most of this data is kept away from researchers.

The combination of data sharing, machine learning, and artificial intelligence has revolutionized

many research areas enabling access to the vast amounts of data that are locked in data silos

due to privacy restrictions will be key to research in many fields. This work focuses on a social

good perspective of the challenges and opportunities presented by technology platforms that

share and collect data by examining and proposing machine learning and statistical models

while emphasizing the importance of balancing ethical and legal considerations.

On the challenges side, this work focus on social issues that significantly influence product

development and customer relationships in large organizations, particularly those handling

user-generated content like Pinterest, Facebook, Microsoft, Apple, and Google. One prominent

example is the widespread presence of child sexual abuse material (CSAM) on digital platforms.

Recognizing the seriousness of this issue, these companies have prioritized detecting and remo-

ving CSAM. Nevertheless, despite the collective efforts of non-profit organizations like Project

VIC International1, Thorn2, and the Internet Watch Foundation3, which focus on creating tools

to fight CSAM, its production, and distribution continue to be pressing and expanding chal-

lenges. In the past decade, the amount of CSAM on digital platforms has grown exponentially,
1<https://www.projectvic.org>
2<https://www.thorn.org>
3<https://www.iwf.org.uk>

https://www.projectvic.org
https://www.thorn.org
https://www.iwf.org.uk
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driven by the increasing popularity of online sharing platforms and social media. Given this

context, artificial intelligence presents a potential solution for tackling this large-scale problem,

providing innovative methods to curb the spread of harmful media and safeguard vulnerable

individuals.

The COVID-19 pandemic triggered a significant increase in the distribution of CSAM via

social media and video conferencing apps (SOLON, 2020). The identification of CSAM is a

highly challenging problem. First, it can manifest in different types of material: images, videos,

streaming, video conference, and online gaming, among others. Undiscovered and unlabeled

CSAM on the internet is estimated to be magnitudes greater than the currently identified

CSAM. Second, discovering new material is still highly dependent on human discovery. Despite

the significant progress in machine learning models for CSAM identification with modern deep-

learning architectures (VITORINO et al., 2016; MACEDO et al., 2018; Yiallourou et al., 2017),

these models rely on the availability of labeled images, which can lead to technical limitations.

Training artificial intelligence (AI) models requires large datasets, and in the case of ethically

and legally sensitive problems, such as CSAM, training data presents significant challenges since

the content depicts illegal activities, and possessing it is a crime. This presents a substantial

hurdle for data practitioners and researchers working to advance technology in social issues

with ethical, legal and safety concerns.

As new material is created daily, we understand that utilizing complementary signals can

advance the capability of digital platforms in detecting and removing illegal content. The use

of metadata has been proposed in the past by (PEERSMAN et al., 2016). This is an effective

approach since distributors use coded language to communicate and trade links of CSAM

hosted in plain sight on content sharing platforms, websites, newsgroups, bulletin boards, peer-

to-peer networks, internet gaming sites, social networking sites, and anonymized networks 4. In

particular, peer-to-peer (p2p) file sharing networks is an environment where CSAM is actively

hosted and shared (LATAPY et al., 2013; FOURNIER et al., 2014), and searches in p2p

networks usually work by matching search terms with filenames and file paths.

Considering that those producing and sharing such content may actively work to evade

detection tools and mechanisms is important. This leads to an adversarial situation in which

4https://www.thorn.org/child-pornography-and-abuse-statistics/
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the offender attempts to trick the AI model to prevent CSAM detection. Identifying models less

vulnerable to adversarial attacks is crucial in these circumstances. In addition to the security,

privacy is another important aspect to consider. After training AI models, law enforcement

agencies and NGOs, are often interested in collaborating and sharing their solutions. In this

context, ensuring that models are trained with privacy safeguards is essential to protect against

inference attacks, which could disclose the identities of victims included in the AI model’s

training dataset. AI solutions can be responsibly and effectively developed to identify and

counteract CSAM by addressing these ethical, privacy, and security concerns

On the opportunities side, the data collected daily by technology systems for logs, re-

cords, and telemetry purposes helps researchers and industry understand our behavior better

on both individual and collective levels, and allows important research studies in many dis-

ciplines, including health, education, and economy. At the same time, we see an increase in

privacy regulations globally. Following the introduction of the GDPR,5 more than 60 jurisdic-

tions worldwide have proposed postmodern data privacy protection laws. By 2024, 75% of the

world’s population will have their personal information covered under modern privacy regu-

lations (RIMOL, 2022). While privacy regulations are of extreme importance from an ethics

perspective, they can potentially result in data stored in silos, compromising data usage and

sharing, consequently stalling research.

Synthetic data generation is emerging as a paradigm to break this data logjam. While

data synthesis is arguably best known as a means to create training examples for data hungry

deep learning models (NIKOLENKO, 2021), it is increasingly acknowledged and proposed as a

privacy-enhancing technology (PET) (JORDON et al., 2018; MCKENNA et al., 2021; Science

and Technology Policy Office, 2022; TORKZADEHMAHANI et al., 2019; WALONOSKI et al.,

2018; XIE et al., 2018). When done well, synthetic data has the same distribution or charac-

teristics as the underlying, real data, but, crucially, without replicating personal information.

The latter is often formalized through Differential Privacy (DP) (DWORK et al., 2006a), which

intuitively means that the synthetic data should not reveal specifics about individual records

in the underlying, real data.

Once synthetic data sets become publicly available, they can be used for any analysis and

5European General Data Protection Regulation <https://gdpr-info.eu/>

https://gdpr-info.eu/
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task. From simple statistical analysis, combining the data with other sources for a data aug-

mentation, to training and evaluating machine learning models using solely synthetic data sets

are some of the possibilities synthetic data sets offer. However, little is understood about the

impacts of using such data sets for all these different type of tasks. For machine learning rela-

ted tasks, there are many unknowns about the usage of synthetic data sets in machine learning

pipelines, specially in scenarios where synthetic data is used for training and evaluation.

One important aspect that needs to be considered in machine learning pipelines that utilizes

synthetic data, is how synthetic data might affect algorithmic fairness. Algorithmic fairness

gained much attention with the increase of the utilization of machine learning (ML) models

in decision making. In domains protected by anti-discrimination laws (HARDT et al., 2016),

while ML models can drastically improve the decision making process, it can also strengthen

biases presented in the data, and even introduce new biases (BAROCAS et al., 2017b). In

2016 a White House report (BAROCAS et al., 2017a) introduced a requirement of “equal

opportunity by design” for big data and machine learning systems in domains covered by anti-

discrimination regulations. As a response, several works analysing the impacts of machine

learning models in decision making emerged, where many of such works concluded that ML

models can have disparate impacts on minoritized subgroups (WIENS et al., 2019; COHEN

et al., 2020; RAJOTTE et al., 2021). Unfairness in machine learning can happen, among

other reasons, due to class imbalance and intrinsic bias in the underlying training dataset. It

is known that differential privacy can affect fairness in machine learning models. However,

despite significant work on addressing the relationship between differential privacy and ML

fairness, fundamental questions remain unanswered. For instance, how different synthetic data

generation methods affect fairness is unknown. Also, in the literature, it is usually assumed

that real data is available for testing models trained on synthetic data before deployment. This

is not a realistic assumption. In many scenarios, only synthetic data is available during training

and testing. So, it is important to study the performance of a model trained and tested with

synthetic data vs. its performance when tested against real data. We study this scenario to

answer the question about impacts of synthetic data in machine learning pipelines.

Furthermore, what the existing approaches for generating synthetic data and publication of

data with DP guarantees have in common, is that they all assume that the original, real data,
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exists with one data holder, or, if the data originates from different data holders, that the latter

are able to send their data to a central aggregator who in turn will use it as input for synthetic

data generation or DP publication algorithms. Much of the valuable data in the world however

is under the control of entities (companies, banks, hospitals, biomedical research institutes

etc.) who cannot show their data to each other or to a central aggregator without raising

privacy concerns. This is the bottleneck that we address, namely how to generate synthetic

data based on the combined data from multiple data holders that no one is allowed to see. This

includes data that is horizontally distributed, such as healthcare data across different hospitals,

or financial data held by different banks, as well as data that is vertically distributed, such as

advertising data where the publishers hold the input features while advertisers have the label,

and many more. Finally, in addition to the cross-silo scenarios described above, our proposed

solution makes a scenario practical where millions of users could provide their data to produce

a synthetic dataset in a way that private, individual data would never be exposed in plaintext

(i.e. without being encrypted) to any entity – practically implementing a "synthetic data as a

service"model.

1.1 CONTRIBUTIONS

The objective of this thesis is to develop frameworks and provide analysis that can facili-

tate the practical, reliable, and ethical implementation of privacy-preserving AI tools in socially

relevant scenarios. We explored important unresolved issues, such as ensuring robust AI deploy-

ment for detecting abusive media, examining the impact on utility and fairness when utilizing

synthetic datasets in end-to-end machine learning pipelines, and generating privacy-preserving

synthetic data from distributed sources.

By integrating these three research areas, this thesis offers practical frameworks for creating

artificial intelligence solutions that address socially relevant problems, while upholding ethical

standards, ensuring privacy in data sharing, and promoting algorithmic fairness.
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1.1.1 A Framework for Metadata-based Detection of Child Sexual Abuse Material

In the first part of this work, we propose a comprehensive framework for designing, trai-

ning and testing machine learning models that focus on child safety. Our approach carefully

addresses ethical and privacy concerns and considers potential adversarial attacks by malicious

actors. This framework encompasses the following aspects: Developing novel machine learning

models tailored to detect and identify content related to child safety, while incorporating ethical

and privacy-preserving techniques such as differential privacy. Implementing robust evaluation

methodologies for these models, considering various scenarios, data distributions, and poten-

tial adversarial attacks. Investigating methods to counter adversarial attacks and improve the

model’s resilience against malicious attempts to bypass or manipulate the system.

The scarcity of frameworks for evaluating machine learning models for CSAM detection

prevents a better understanding of model performance under multiple scenarios that can happen

during deployment. Before deployment, organizations should test the CSAM detection model

under different conditions. An evaluation scenario needs a real-world data set with similar data

distributions to what the model will get exposed to after deployment. A critical scenario for

analysis is testing the model on completely benign out-of-sample data sets. The burden caused

by a high false-positive rate can halt the deployment of such systems. Furthermore, it is crucial

to understand how adversarially modified data impact model performance.

We list the contributions as follows:

• We propose a framework for evaluating machine learning models for CSAM identification

to prepare for deployment. Our framework proposes a testing pipeline that covers real-

world scenarios that should be expected when deploying a machine learning model for

CSAM detection: (i) test on CSAM and non-CSAM samples; (ii) test on adversarially

modified CSAM samples to evade detection; (iii) test on benign samples from open data

sources.

• We train and compare several machine-learning models that analyze file paths and file

names from file storage systems and determine a probability that a given file has child

sexual abuse content. Our experiments include traditional machine learning algorithms,

deep neural network architectures, Transformers-based models and differentially private
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models. We train our models on a real-world data set containing over one million file

paths from apprehended hard drives during investigations. It is the most extensive file

path data set composed solely of file paths from apprehended hard drives.

Our best classifier achieves recall rates over 0.94 and accuracy over 0.97 on holdout sets;

it maintains a high recall rate in adversarially modified inputs; when tested against benign

samples from other data distributions, it achieves a false-positive rate of ≈ 0.01.

Although previous works in the literature have proposed machine learning models for CSAM

detection, we propose the first framework for evaluating CSAM detection systems that includes

adversarial examples in the evaluation stage. Our results show that machine learning based on

file paths can effectively detect CSAM in storage systems and achieve the aspired performance

in all the proposed evaluation scenarios. Our work is also the first to train CSAM models with

differentially private learning algorithms.

1.1.2 Assessment of differentially private synthetic data for utility and fairness in

end-to-end machine learning pipelines for tabular data

The second part of this work explores the implications of utilizing synthetic datasets with

privacy guarantees for training and evaluating machine learning models. Specifically, we inves-

tigate the following aspects: Analyzing the effects of synthetic datasets on algorithmic fairness,

examining potential biases that may arise from using perturbed or anonymized data. Asses-

sing the trade-offs between privacy preservation, data utility, and fairness when generating and

using synthetic datasets for machine learning tasks.

This work studies the impacts of differentially private synthetic data on downstream clas-

sification with a focus on understanding the impacts on model performance and fairness. In

this chapter, we investigate the impacts of differentially private synthetic data on downstream

classification, where we focus on understanding the impacts on model utility and fairness. Our

investigation focus on two aspects of such impact:

• What is the impact in model utility when utilizing synthetic data for training machine

learning models? Can synthetic data also be used to evaluate utility of machine learning
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models?

• What is the impact in model fairness when utilizing synthetic data for training machine

learning models? Can synthetic data be used to evaluate fairness of machine learning

models?

This work is the first to evaluate the fairness of machine learning models trained on DP

synthetic data for the important case of tabular data.

1.1.3 Secure Multiparty Computation for Synthetic Data Generation from Distributed

Data

In the third part of this work, we propose the first solution for synthetic data generation from

multiple data holders, where data holders only share encrypted data for differentially private

synthetic data generation. Data holders send shares to servers who perform Secure Multiparty

Computation (MPC) computations while the original data stays encrypted. We instantiate this

idea in an MPC protocol for the Multiplicative Weights with Exponential Mechanism (MWEM)

algorithm to generate synthetic data based on real data originating from many data holders

without reliance on a single point of failure.

We propose and implement the first Previous proposals for differentially private synthetic

data generation from distributed databases use federated learning (FL) for training the data

synthesizer (BEHERA et al., 2022; XIN et al., 2022; XIN et al., 2020).

In these methods, each data holder sends model weights (without privacy protection) to a

trusted aggregator, who computes the average of model weights and adds Laplacian noise.

Our proposal removes the need for data holders to disclose model parameters, and the need

to rely on a single point of failure, by emulating the trusted aggregator with MPC. Additionally,

previous works utilizing FL to train data synthesizers only account for horizontally partitioned

data.

While MPC has emerged as a paradigm for privacy-preserving training of ML models over

distributed data (e.g. (ADAMS et al., 2022; AGARWAL et al., 2019a; De Cock et al., 2021;

GUO et al., 2022; MOHASSEL; ZHANG, 2017; WAGH et al., 2019)) and privacy-preserving
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inference with trained ML models (e.g. (De Cock et al., 2019; FRITCHMAN et al., 2018; LIU

et al., 2017; MISHRA et al., 2020; PENTYALA et al., 2021)), and it has been proposed for

secure computation of histograms (e.g. (BELL et al., 2022)), the idea of using MPC for privacy-

preserving generation of synthetic data, as we propose here, is novel and a practical and secure

technological solution.

The contributions presented in Chapter 3 were published at the IEEE Transactions on

Dependable and Secure Computing (PEREIRA et al., 2023). The contributions presented in

Chapter 4 were first presented at the Machine Learning for Data: Automated Creation, Pri-

vacy, Bias Workshop at the International Conference on Machine Learning (ICML) (workshop

without proceedings) (PEREIRA et al., 2021b). The full version of this work was published at

PLOS ONE (PEREIRA et al., 2024), which significantly extends and sub sums the previous

version. Finally, the contributions presented in Chapter 5 were featured at SyntheticData4ML

Workshop at the Neural Information Processing Systems (NeurIPS) conference (PEREIRA et

al., 2022).



CHAPTER 2

PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

Differential privacy is a rigorous privacy notion used to protect an individual’s data in a data

set disclosure. We present in this section notation and definitions that we will use to describe

our privatization approach. We refer the reader to (DWORK et al., 2014), (MCSHERRY, 2009)

and (DWORK et al., 2006b) for detailed explanations of these definitions and theorems.

Differential privacy allows data analysts to extract insights from databases while protecting

the privacy of the individuals whose data is included. It ensures that the analysis results do

not reveal sensitive information about any single person in the databases.

The main idea behind differential privacy is to add carefully calibrated noise (random values)

to the results of an analysis, making it difficult for anyone to confidently determine whether

a particular individual’s data was present in the computation. This noise is added in a way

to ensure that the overall statistics and trends are preserved while the details about specific

individuals remain protected.

Differential privacy allows data analysts to extract insights from databases while protec-

ting the privacy of the data providers. It ensures the analysis results do not reveal sensitive

information about any single database entry.

The main idea behind differential privacy is to add carefully calibrated noise (random values)

to the results of an analysis, making it difficult for anyone to confidently determine whether

a particular individual’s data was present in the computation. This noise is added in a way

to ensure that the overall statistics and trends are preserved while the details about specific

individuals remain protected. Differential privacy strikes a balance between data privacy and

the utility of the information derived from the dataset. By controlling the amount of noise

added, one can fine-tune the level of privacy protection and the usefulness of the analysis
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results.

The amount of noise added to the analysis output is computed based on the sensitivity of

the function used and the desired privacy guarantees. The sensitivity of a function captures the

maximum change in its output due to the addition or removal of a single individual’s data in

the input dataset. Adjacent databases are datasets that differ by just one individual’s data. To

compute the necessary noise, we first determine the sensitivity of the function. Different ways

to measure sensitivity, such as l1 and l2 norms, are chosen depending on the function and the

problem context. Lower sensitivity functions have a smaller impact on individual data, while

higher sensitivity functions require more noise to ensure privacy.

Once the sensitivity is determined, we must set the desired privacy guarantee, represented

by the parameter ϵ (epsilon). Smaller ϵ values provide stronger privacy protection but reduce

the utility of the analysis results due to the increased noise. On the other hand, larger ϵ values

offer less privacy protection but maintain higher utility. With sensitivity and ϵ defined, we can

compute the amount of noise to be added using various noise-generating mechanisms. Two

popular mechanisms are the Laplace Mechanism and the Gaussian Mechanism.

By adding noise to the output based on the sensitivity and the desired privacy guarantee,

differential privacy ensures that the probability of the output remains similar across adjacent

databases, providing a formal framework to balance privacy and utility in data analysis.

We now provide formal definitions for these concepts.

2.1.1 Distance between Databases and Norms

Database distance in the context of differential privacy refers to the similarity measure

between two databases. It is used to compare how different two databases are by examining

the presence or absence of a single individual’s data. This concept plays a critical role in

understanding how to design privacy-preserving algorithms that can resist privacy attacks and

ensure that individual data remains protected.

Throughout this document, we will utilize two distance metrics: l1-norm and l2-norm.
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2.1.1.1 The l1-norm

The l1-norm of a database D, given by the symbol ∥D∥1, measures the cardinality of the

database. We have

∥D∥1 = |D|. (2.1)

We can utilize the l1-norm to measure the distance between two databases D and D′. The

l1-distance is given by ∥D −D′∥1, and is the number of entries where D and D′ are different.

Two databases are said to be adjacent, or neighboring, if their l1 distance is equal to one,

that is, they differ by a single entry.

2.1.1.2 The l2-norm

We will also need the concept of l2 norm. On a d−dimensional space, the length of a vector

x = (x1, x2, ..., xd) can be measured by the l2-norm, which is defined as:

∥x∥2 =
√

x2
1 + x2

2 + ...+ x2
d. (2.2)

2.1.2 Sensitivity

Sensitivity refers to the maximum possible change in the output of a function when the

input database changes by adding or removing a single individual’s data. It quantifies the

impact of a single individual’s data on the function’s output.

In other words, the sensitivity is the greatest amount a function output can change when

computed on adjacent databases. The norms l1 and l2 are commonly used to measure sensitivity.

Such metrics provide different ways to measure the magnitude of these changes in the function’s

output.

2.1.2.1 The l1-sensitivity.

The l1−sensitivity of a function f : D → R is:
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∆f = maxD,D′ ∥ f(D)− f(D′) ∥1, (2.3)

where D and D′ are neighboring databases.

Sensitivity is a crucial concept in differential privacy because it helps to determine the

amount of noise that must be added to the output to ensure privacy protection.

For example, consider a function f that computes the sum of all salaries higher than U$100

in a database containing salaries. If we have two adjacent databases D and D′ (i.e., they differ

by a single individual’s data), the sensitivity of f is the maximum difference in the sum of

salaries higher than U$100 in D and D′. The sensitivity for such function f is one. This

function is one example of what we call a count query, a type of query that computes the

number of records in a dataset that satisfy a certain condition or meet specific criteria.

2.1.2.2 The l2-sensitivity.

The definition of sensitivity easily generalizes to other norms, such as the l2 norm.

The l2-sensitivity of a d-dimensional function f : D → Rd is:

∆2f = maxD,D′ ∥ f(D)− f(D′) ∥2, (2.4)

where D and D′ are neighboring databases.

2.1.3 Differential Privacy Definitions

2.1.3.1 Pure Differential Privacy

A randomized mechanism M : D → Y with data base domain D and output set Y is

ϵ-differentially private if, for any output Y ⊆ Y and neighboring databases D,D′ ∈ D (i.e., D

and D′ differ in at most one entry), we have

Pr[M(D) ∈ Y ] ≤ eϵPr[M(D′) ∈ Y ]. (2.5)

The privacy loss of the mechanism is defined by the parameter ϵ ≥ 0.
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The definition of differential privacy captures the idea that given a specific outcome or

function computed from a database, the probability of that outcome being computed from

database D and the probability of the same outcome being computed from database D′ are

very close. The closeness of these probabilities is measured by the constant ϵ (epsilon), also

known as the privacy budget. The smaller the value of ϵ, the more difficult it becomes to

distinguish whether database D or D′ was used to compute the result of the function. Since D

and D′ are adjacent databases (meaning they differ by just one individual’s data), this ensures

that any individual in the database used for computing the function has plausible deniability

about their presence (or absence) in the database.

2.1.3.2 Approximate Differential Privacy

A randomized mechanism M : D → A with data base domain D and output set A is

(ϵ,δ)-differentially private if, for any output A ⊆ Y and neighboring databases D,D′ ∈ D (i.e.,

D and D′ differ in at most one entry), we have

Pr[M(D) ∈ A] ≤ eϵPr[M(D′) ∈ A] + δ. (2.6)

Approximate differential privacy is a relaxation of the original differential privacy definition,

which allows for a small probability of large privacy leaks. This relaxation can accommodate

a broader range of more practical scenarios and achieves a better balance between privacy and

utility in certain situations. Approximate differential privacy is formalized by introducing an

additional parameter, δ, in the privacy guarantee.

The introduction of approximate differential privacy is beneficial for obtaining differential

privacy using Gaussian noise and for achieving good levels of privacy with less noise when

repeatedly querying the same database (also known as an arbitrary composition of differential

privacy).



2.1 – Differential privacy 15

2.1.4 Differential Privacy Mechanisms

2.1.4.1 Laplace Mechanism

The Laplace distribution with 0 mean and scale λ, denoted by Lap(λ), has a probability

density function Lap(x|λ) = 1
2λ
e−

x
λ . It can be used to obtain an ϵ-differentially private algorithm

to answer numeric queries (DWORK et al., 2006b).

Let f : D → Rn be a numeric query. Let x be the query input and ϵ the privacy parameter.

The Laplace mechanism is defined as:

ML(x, f(·), ϵ) = f(x) + (η1, . . . ,ηn) (2.7)

where ηi are drawn from the Laplace distribution Lap(∆f
ϵ
).

The Laplace mechanism preserves ϵ-differential privacy (DWORK et al., 2006b).

2.1.4.2 Gaussian Mechanism

The Gaussian mechanism adds noise to a d−dimensional function f : D → Rd, with l2-

sensitivity defined as ∆2f , by drawing from the normal distribution N(0,σ2) samples and adding

to each of the d components of the output. For c2 > 2 ln 1.25
δ

, the Gaussian mechanism with

parameter σ ≥ c∆2f
ϵ

is (ϵ,δ)-differentially private.

2.1.4.3 Exponential Mechanism

Let s : D×K → R be a quality scoring function where s(D,k) denotes the quality of result

k on dataset D and K is the set of possible results. The exponential mechanism (MCSHERRY;

TALWAR, 2007) E selects k from R such that the probability that a particular k is selected is

proportional to exp(ϵ · s(D,k)/2). In other words, the exponential mechanism samples k from

the distribution satisfying

Pr[E(D) = k] ∝ exp(ϵ · s(D,k)/2) (2.8)
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To guarantee ϵ-differential privacy, the scoring function s is required to satisfy a stability

property, where for each result k the difference |s(D,k) − s(D′,k)| is at most the number of

records that would have to be added or removed to change D to D′.

2.2 DIFFERENTIALLY PRIVATE MACHINE LEARNING

Differential privacy is the gold standard technique for protecting against membership in-

ference attacks in machine learning models. The process of transforming a machine learning

algorithm into its differentially private version involves adding random noise to the training

data, model parameters, or predictions to ensure that an attacker cannot extract any sensitive

information about an individual from the model or the data used to train it.

In other words, a differentially private model is a model whose model parameters are dif-

ferentially private releases made on the training data. The process of training a differentially

private machine learning model usually involves bounding the contribution that each individual

in the training data in the model parameters. By bounding the contribution of each indivi-

dual, differentialy private noise can be computed and added to model parameter updates. This

process happens in the differentially private stochastic gradient descent.

2.2.1 Differentially Private Stochastic Gradient Descent

Differentially private stochastic gradient descent (DP-SGD) (ABADI et al., 2016) is an

algorithm that allows training machine learning models on sensitive data sets while providing a

strong guarantee of privacy. The modified version of the stochastic gradient descent algorithm

clips per-sample gradients to bound the contribution of individual examples. Noise from a

Gaussian distribution is sampled and added to the sum of the clipped gradients in a randomly

selected subset of the data, known as a mini-batch.

The general formula for DP-SGD can be written as follows. For each iteration (epoch) t:

• select a random sample L from the training data with probability L
N

, where N is the size

of the training data.
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• Compute the gradient of the loss function for the mini-batch of data:

gt =← ∇θL(xi, θt) (2.9)

where L is the loss function, xi are data points in L, and θt is the model parameters.

• Clip the gradient using a clipping bound C. The value C is chosen using public (or

differentially private) information.

gt ←
gt

max(1, ∥gt∥2
C

)
(2.10)

• Add random noise to the gradient:

g′t =
1

|L|
gt +N (0, σ2C2I) (2.11)

where N represents a Gaussian distribution with zero mean and variance σ2C2, and I is

the identity matrix.

• Update the model parameters using the noisy gradient:

θt+1 = θt − α ∗ g′t. (2.12)

where α is the learning rate. This step is equivalent to taking a step in the direction of

the negative gradient of the noisy loss function.

By adding noise to the gradient in this way, DP-SGD provides a strong guarantee of diffe-

rential privacy while still allowing the model to converge to a good solution. The amount of

noise added is controlled by the privacy parameter ϵ and the sensitivity of the loss function to

changes in the data, which is bounded by a value C. The noise variance σ2 is chosen to ensure

the algorithm satisfies the desired privacy level.

2.3 SYNTHETIC DATASETS

The modern era has given rise to an abundance of personal data, which is obtained from

multiple sources like smartphones and medical devices. The utilization of such data for research

purposes has become increasingly important. However, the privacy regulations in this context
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make it difficult to ensure the fair and equitable usage of such data. While these regulations

are of great importance from an ethical standpoint, they can result in data stored in isolated

silos. This situation can subsequently impede research progress.

To overcome such situation, synthetic data sets have been proposed as a method for dissemi-

nation of data while protecting the privacy of individuals. These data sets have the potential to

help researchers and industry understand our behavior better on both individual and collective

levels, and have also allowed important research studies in many disciplines, including health,

education, and economy.

The generation of synthetic data sets happens by replacing the observed data with synthetic

values. The synthetic values are generated from models based on the original data. The risk

of disclosure is reduced by replacing the original values with synthetic values.

2.3.1 Differentially Private Synthetic Data Generators

We use several differentially private (DP) synthetic data generators that have been specifi-

cally tailored for generating tabular data with the goal of enhancing their utility for learning

tasks. We consider two broad categories of approaches: i) Marginal-based methods, ii) and

Generative Adversarial Network (GAN) based models.

2.3.1.1 Marginal-based Methods

Multiplicative Weights with Exponential Mechanism Algorithm (HARDT et al.,

2012). The MWEM algorithm takes as input a dataset D ⊆ D and a set of linear queries Q

(e.g. counting queries).1 The MWEM algorithm aims to produce synthetic data generation

algorithm by learning a distribution A over D such that the answers to the queries q in Q when

run over A are similar to when run over D, i.e. the difference between q(A) and q(D) should

be small.

This is achieved by repeatedly sampling a query based on it’s approximation score, selecting

the query with the highest score. The approximation score measures, for a query q how distant

1A linear query q is a function that maps data records in D to the interval [−1,+1]. By extension, the
answer of a linear query q on a dataset D is defined as q(D) =

∑
x∈D q(x) ·D(x).
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q(A) is from q(D). The greater the distance, the highest the score.

The algorithm then updates the weight that A places on each record x with the Multipli-

cative Weights update rule to better approximate the distribution of D w.r.t. q.

MWEM satisfies ϵ-DP by leveraging the exponential mechanism for query selection, and

the Laplace mechanism to perturb the query results.

MWEM PGM (MCKENNA et al., 2019) is a variation of the multiplicative weights with

exponential mechanism algorithm (MWEM), which is an algorithm that generated synthetic

data based on linear queries. The algorithm aims to produce a data distribution that produces

query answers similar answers resulted when querying the real dataset. The MWEM PGM

variation combines probabilistic graphical models (PGMs) with the MWEM algorithm. The

structure of the graphical model is determined by the measurements, such that no information

is lost relative to a full contingency table representation.

MST (MCKENNA et al., 2021) is a synthetic data generation algorithm that acts selecting

2- and 3-way marginals for measurement. It combines one principled step, which is to find

the maximum spanning tree (MST) on the graph where edge weights correspond to mutual

information between two attributes, with some additional heuristics to ensure that certain

important attribute pairs are selected, and a final step to select triples while keeping the graph

tree-like.

AIM (MCKENNA et al., 2022). The Adaptive and interactive mechanism (AIM) for

synthetic data generation is a variation of the MWEM PGM algorithm that innovates in the

way it selects the most useful measurements. The ability to produce data with lower error, in

comparison to MWEM PGM, is because of the new proposed features in the select stage, which

defines a quality score that helps determine the private selection of the next best marginal

to measure. The quality score takes into account factors such as the current measure of the

candidate marginal, expected improvement, relevance to the workload, and available privacy

budget. The algorithm also includes other techniques like adaptive selection of rounds and

budget-per-round, as well as intelligent initialization.

PrivBayes (ZHANG et al., 2017). In order to improve the utility of the generated synthetic

data, (ZHANG et al., 2017) approximates the actual distribution of the data by constructing
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a Bayesian network using the correlations between the data attributes. This allows them

to factorize the joint distribution of the data into marginal distributions. Next, to ensure

differential privacy, noise is injected into each of the marginal distributions and the simulated

data is sampled from the approximate joint distribution constructed from these noisy marginals.

2.3.1.2 GAN-based Methods

Generative neural networks (GANs) are a type of artificial neural network used in machine

learning for generating new data samples similar to a given training dataset. In the sense of

game theory, generative adversarial networks are based on a game between two machine learning

models, a discriminator model D and the generator G model. The goal of the generator is to

learn realistic samples that can fool the discriminator, while the goal of the discriminator is to

be able to tell generator generated samples from real ones (XIE et al., 2018).

Conditional Tabular GAN (CTGAN) (XU et al., 2019) is an approach for generating

tabular data. CTGAN adapts GANs by addressing issues that are unique to tabular data that

conventional GANs cannot handle, such as the modeling of multivariate discrete and mixed

discrete and continuous distributions. It achieves these challenges by augmenting the training

procedure with mode-specific normalization, employing a conditional generator and training-

by-sampling that allows it to explore discrete values more evenly. When applying differentially

private SGD (DP-SGD) (ABADI et al., 2016) combined with CTGAN the result is a DP

approach for generating tabular data.

The PATE (Private Aggregation of Teacher Ensembles) framework (PAPERNOT

et al., 2016) protects the privacy of sensitive data during training, by transferring knowledge

from an ensemble of teacher models trained on partitions of the data to a student model. To

achieve DP guarantees, only the student model is published while keeping the teachers private.

The framework adds Laplacian noise to the aggregated answers from the teachers that were

used to train the student models. CTGAN can provide differential privacy by applying the

PATE framework. We call this combination PATE-CTGAN, which is similar to PATE-GAN

for images (JORDON et al., 2018). The original dataset is partitioned into k subsets and a

DP teacher discriminator is trained on each subset. Further, instead of using one generator to
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generate samples, k conditional generators are used for each subset of the data.

2.4 MACHINE LEARNING METRICS

Machine learning model evaluation by applying a trained model to data samples from a test

data set. The test data set is an annotated data set, which means that the data contains the

true values of the outcome variable. The evaluation is done by comparing the outputs of the

machine learning model with the true values of the outcome variable.

We say that a model obtained a true prediction when the result of the machine learning

model is equal to the true value. We say that a model obtained a false prediction when the result

of the machine learning model is different from the true value of the outcome variable. For a

binary machine learning model, predictions can be positive or negative. Positive predictions can

be true positives (TP ) or false positives (FP ), and negative predictions con be true negatives

(TN) or false negatives (FN).

Throughout this work we utilize several metrics to evaluate the proposed machine learning

models. We define below the metrics utilized on this work.

2.4.1 Accuracy

The accuracy, acc, of a machine learning is given by:

acc =
TP + TN

TP + TN + FP + FN
(2.13)

2.4.2 Precision

The precision of a machine learning model is given by:

Precision =
TP

TP + FP
(2.14)
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2.4.3 Recall

The recall of a machine learning model is given by:

Recall =
TP

TP + FN
(2.15)

2.4.4 Area under the curve - AUC

We utilize the area under the receiver operating characteristic curve as a metric for machine

learning models. The receiving operating characteristic curve shows the performance of a

classification model at all classification thresholds, by plotting the relationship between True

Positive Rate (TPR) and False Positive Rate (FPR) for all classification thresholds.

TPR =
TP

TP + FN
(2.16)

FPR =
FP

FP + TN
(2.17)

The AUC measures the two-dimensional area underneath the ROC curve.

2.5 MACHINE LEARNING FAIRNESS

The term bias is often used to refer to demographic disparities in algorithmic systems that

are objectionable for societal reasons. We will minimize the use of this sense of the word bias

in this document, since different disciplines and communities understand the term differently,

and this can lead to confusion. We refer to such disparities as algorithmic fairness.

We present the definition of two different algorithmic fairness metrics: Equal Opportunity

(HEIDARI et al., 2019) and Statistical Parity(BAROCAS et al., 2017b). Given a dataset

W = (X, Y ′, C) with binary protected attribute C (e.g. race, sex, religion), remaining decision

variables X and predicted outcome Y ′, we define Equal Opportunity and Statistical Parity as

follows.
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2.5.1 Equal Opportunity

Equal Opportunity (or Equality of Odds) requires equal True Positive Rate (TPR) across

subgroups:

Pr(Y ′ = 1|Y = 1,C = 0) = Pr(Y ′ = 1|Y = 1,C = 1) (2.18)

where Y’ is the model output.

2.5.2 Statistical Parity

Statistical Parity requires positive predictions to be unaffected by the value of the protected

attribute, regardless of true value of the outcome variable Y

Pr(Y ′ = 1|C = 0) = Pr(Y ′ = 1|C = 1), (2.19)

We follow the approach of (XU et al., 2021; PERRONE et al., 2020) and utilize difference

in Equal Oportunity (DEO) = |Pr(Y ′ = 1|Y = 1,C = 0) − Pr(Y ′ = 1|Y = 1,C = 1)| and

difference in Statistical Parity (DSP) = |Pr(Y ′ = 1|C = 0) − Pr(Y ′ = 1|C = 1)| to measure

model fairness.

2.6 SECURE MULTIPARTY COMPUTATION (MPC)

MPC protocols enable a set of parties to jointly compute the output of a function over the

private inputs of each party, without requiring any of the parties to disclose their own private

inputs (CRAMER et al., 2000). MPC protocols are designed to prevent and detect attacks

by an adversary corrupting one or more parties to learn private information or to cause the

result of the computation to be incorrect. The adversary can have different levels of adversarial

power. In the semi-honest model, all parties (even corrupted parties) follow the instructions of

the protocol, but the adversary attempts to learn private information from the internal state

of the corrupted parties and the messages that they receive. MPC protocols that are secure

against semi-honest or “passive” adversaries prevent such leakage of information.
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In the malicious adversarial model, the corrupted parties can arbitrarily deviate from the

protocol specification. Providing security in the presence of malicious or “active” adversaries,

i.e. ensuring that no such adversarial attack can succeed, comes at a higher computational cost

than in the passive case.

The protocols that we propose are sufficiently generic to be used in settings with passive

or active adversaries. This is achieved by changing the underlying MPC scheme to align with

the desired security setting. We consider an honest-majority 3-party computing setting out

of which at most one party can be corrupted (3PC) (ARAKI et al., 2016; DALSKOV et al.,

2021), an honest-majority 4-party computing setting with one corruption (4PC) (DALSKOV

et al., 2021), and a dishonest-majority 2-party computation setting where each party can only

trust itself (2PC) (CRAMER et al., 2018). All these MPC schemes are based on secret sharing,

where a secret input is split into shares that individually reveal no information about the

original secret, but, when combined, can be used to recover the input. In secret sharing based

MPC, the protocol’s inputs are split into secret shares and these are distributed to the set

of computing parties that run MPC protocols. Computations are performed over these secret

shares, in our case to generate synthetic data. As all computations are done over the secret

shared values, the servers do not learn the values of the inputs nor of intermediate results,

i.e. MPC provides input privacy.

2.6.1 Secure Multiparty Computation Protocols

In the MPC schemes used in Chapter 5, all computations are done on integers modulo q,

i.e., in a ring Zq = {0,1, . . . ,q − 1}, with q a power of 2. As is common in MPC, any input

real values from the data holders are converted to integers using a fixed-point representation

(CATRINA; SAXENA, 2010). Below we give a high level description of the 3PC schemes used

in this work. For more details and a description of the other MPC schemes, we refer to the

papers about 2PC (CRAMER et al., 2018), 3PC (ARAKI et al., 2016; DALSKOV et al., 2021),

and 4PC (DALSKOV et al., 2021).

Replicated sharing (3PC). In a replicated secret sharing scheme with 3 servers (3PC),

a value x in Zq is secret shared among servers (parties) S1, S2, and S3 by picking uniformly
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random shares x1, x2, x3 ∈ Zq such that x1+x2+x3 = x mod q, and distributing (x1,x2) to S1,

(x2,x3) to S2, and (x3,x1) to S3. Note that no single server can obtain any information about

x given its shares. We use [[x]] as a shorthand for a secret sharing of x.

Passive security (3PC). The 3 servers can perform the following operations through

carrying out local computations on their own shares: addition of a constant, addition of secret

shared values, and multiplication by a constant. For multiplying secret shared values [[x]] and

[[y]], we have that x·y = (x1+x2+x3)(y1+y2+y3), and so S1 computes z1 = x1 ·y1+x1 ·y2+x2 ·y1,

S2 computes z2 = x2 · y2 + x2 · y3 + x3 · y2 and S3 computes z3 = x3 · y3 + x3 · y1 + x1 · y3.

Next, the servers obtain an additive secret sharing of 0 by picking uniformly random u1,u2,u3

such that u1 + u2 + u3 = 0, which can be locally done with computational security by using

pseudorandom functions, and Si locally computes vi = zi + ui. Finally, S1 sends v1 to S3, S2

sends v2 to S1, and S3 sends v3 to S2, enabling the servers S1, S2 and S3 to get the replicated

secret shares (v1,v2), (v2,v3), and (v3,v1), respectively, of the value v = x · y. This protocol

only requires each server to send a single ring element to one other server, and no expensive

public-key encryption operations (such as homomorphic encryption or oblivious transfer) are

required. This MPC scheme was introduced by Araki et al. (ARAKI et al., 2016).

Active security (3PC). In the case of malicious adversaries, the servers are prevented

from deviating from the protocol and gain knowledge from another party through the use

of information-theoretic message authentication codes (MACs). For every secret share, an

authentication message is also sent to authenticate that each share has not been tampered in

each communication between parties. In addition to computations over secret shares of the

data, the servers also need to update the MACs appropriately, and the operations are more

involved than in the passive security setting. For each multiplication of secret shared values,

the total amount of communication between the parties is greater than in the passive case. We

use the MPC scheme SPDZ-wiseReplicated2k recently proposed by Dalskov et al. (DALSKOV

et al., 2021) that is available in MP-SPDZ (KELLER, 2020).

MPC primitives. The MPC schemes listed above provide a mechanism for the servers

to perform cryptographic primitives through the use of secret shares, namely addition of a

constant, multiplication by a constant, and addition of secret shared values, and multiplication

of secret shared values (denoted as πMUL). Building on these cryptographic primitives, MPC
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protocols for other operations have been developed in the literature. We use (KELLER, 2020):

• Secure random number generation from uniform distribution πGR−RANDOM : In πGR−RANDOM,

each party generates l random bits, where l is the fractional precision of the power 2 ring

representation of real numbers, and then the parties define the bitwise XOR of these l

bits as the binary representation of the random number jointly generated.

• Secure random bit generation πGR−RNDM−BIT : In πGR−RNDM−BIT, each party generates the

secret share of a single random bit, such that the generated bit is either 0 or 1 with a

probability of 0.5.

• Secure equality test πEQ : At the start of this protocol, the parties have secret sharings

[[x]]; at the end if x = 0, then they have a secret share of 1, else a secret sharing of 0.

• Secure less than test πLT : At the start of this protocol, the parties have secret sharings

[[x]] and [[y]] of integers x and y; at the end of the protocol they have a secret sharing of 1

if x < y, and a secret sharing of 0 otherwise.

• Secure greater than test πGT : At the start of this protocol, the parties have secret sharings

[[x]] and [[y]] of integers x and y; at the end of the protocol they have a secret sharing of 1

if x > y, and a secret sharing of 0 otherwise.

• Other primitives : We use secure maximum protocol (πMAX), secure exponential protocol

(πEXP) and secure logarithm protocol (πLN) as the building blocks for our protocols. πLN

uses the polynomial expansion for computing logarithm and πEXP in turn uses the πLN to

compute exponential. πMAX inherently uses the πGT repeatedly over a list by employing

variant of Divide-n-Conquer approach. At the start of all of these primitives, parties hold

the secret sharings [[x]] and at the end of the protocol they hold the secret shares of the

corresponding computed values.

MPC protocols can be mathematically proven to guarantee privacy and correctness. We

follow the universal composition theorem that allows modular design where the protocols remain

secure even if composed with other or the same MPC protocols (CANETTI, 2000).
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2.6.1.1 Implementing DP in MPC.

Keeping in mind the dangers of implementing DP with floating point arithmetic (MIRO-

NOV, 2012), we stick with the best practice of using fixed-point and integer arithmetic as

recommended by, for example, OpenDP 2. We implement all our DP mechanism using their

discrete representations and use 32 bit precision to ensure correctness.

2https://opendp.org/



CHAPTER 3

ROBUST AND PRIVATE MACHINE LEARNING FOR
CHILD SEXUAL ABUSE MEDIA DETECTION

Building machine learning systems for detecting CSAM media is a complex task. Due to

the associated legal constraints, systems that rely on metadata for detecting and blocking the

distribution of CSAM can expedite the hard work of NGOs and content moderators.

This chapter describes a framework for training and evaluating machine learning models

for CSAM detection based solely on file metadata. Our framework provides guidelines for

evaluating CSAM detection models against adversarial attacks and models’ ability to perform

on different data distributions

Our framework is general, and can be replicated by researchers and organizations. Our

frameworks can also be utilized for machine learning tasks other than file path classification,

such as website content classification, and search terms classification. We list our contributions

as follows:

• We propose a framework for evaluating machine learning models for CSAM identification

to prepare for deployment. Our framework, illustrated in Figure 3.1, proposes a testing

pipeline that covers real-world scenarios that should be expected when deploying a ma-

chine learning model for CSAM detection: (i) test on CSAM and non-CSAM samples;

(ii) test on adversarially modified CSAM samples to evade detection; (iii) test on benign

samples from open data sources.

• We train and compare several machine-learning models that analyze file paths and file

names from file storage systems and determine a probability that a given file has child

sexual abuse content. Our experiments include traditional machine learning algorithms,

deep neural network architectures, and Transformers-based models. We train our models

on a real-world data set containing over one million file paths from apprehended hard
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drives during investigations. It is the most extensive file path data set composed solely of

file paths from apprehended hard drives. Our best classifier achieves recall rates over 0.94

and accuracy over 0.97 on holdout sets; it maintains a high recall rate in adversarially

modified inputs; when tested against benign samples from other data distributions, it

achieves a false-positive rate of ≈ 0.01.

To our knowledge, our work is the first to propose a framework for the evaluation of CSAM

detection systems that include adversarial examples in the evaluation stage. Our results show

that machine learning based on file paths can effectively detect CSAM in storage systems and

achieve the aspired performance in all the proposed evaluation scenarios.

Finally, we remark that our solution has been deployed by the non-profit Project VIC1 and

it is currently in use.

3.1 RELATED WORK

Identification of CSAM via statistical algorithms is a reasonably recent approach. In the

early 2000s, the US and the UK introduced laws targeting the online exploitation of minors

(COPA in the US, Crime and Disorder Act UK)(DAVIDSON; GOTTSCHALK, 2010). Howe-

ver, only in 2008 the first widely used technology for CSAM identification was released.

PhotoDNA Hash. PhotoDNA Hash (PDNA) is a widely used technique for automated

identification of CSAM. The PDNA uses a fuzzy hash algorithm to convert a CSAM image

to a long string of characters. The converted hashes are compared against other hashes to

find identical or similar images. PDNA technology enabled a faster discovery of CSAM while

protecting the victim’s identity. This system is still one of the most widely used methods for

detecting CSAM images worldwide. Search engines, social networks, and image-sharing services

utilize databases of hashed CSAM images to eradicate harmful content from their platforms.

PDNA is a signature-based technology; it recalls only known CSAM. Therefore, identifying

new CSAM in a PDNA-based system requires manual labeling.

Machine Learning for Image Identification. Since PDNA’s first development, compu-

1A non-profit organization whose technologies are used by thousands of law enforcement officers worldwide
- https://www.projectvic.org/vic-point
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Figure 3.1: Pipeline for model training and evaluation of machine learning models for CSAM
detection. (i) During model training, we train models utilizing several machine learning te-
chniques, such as logistic regression, Naive Bayes, boosted trees, and deep neural networks,
including Transformers. (ii) We construct different testing data sets to model performance in
different circumstances of practical relevance during the model evaluation. We propose a tes-
ting framework where the model is tested under three scenarios: File paths from out-of-sample
hard drives, file paths intentionally modified by an adversary to evade detection, and file paths
from benign sources (open data).
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ter vision models have undergone a revolution resulting in novel machine learning-based models

for pornography and CSAM detection (NIAN et al., 2016; MACEDO et al., 2018; Yiallourou

et al., 2017; PEERSMAN et al., 2014). The current approaches either combine a computer

vision model to extract image descriptors (VITORINO et al., 2016), train computer vision mo-

dels on pornography data (GANGWAR et al., 2017), perform a combination of age estimation

and pornography detection (MACEDO et al., 2018) or synthetic data (Yiallourou et al., 2017).

However, due to legal restrictions in maintaining a database of CSAM images, all current works

are based on either unrealistic images (Yiallourou et al., 2017), or validated by authorities in

small data sets (VITORINO et al., 2016; MACEDO et al., 2018; GANGWAR et al., 2017) that

hardly represent the true data distribution in the internet (BURSZTEIN et al., 2019).

Adversarially Modified Data Samples. Adversarial inputs are intentionally crafted

small perturbations to elude detection from a model. For text applications, this can include

injecting random noise that does not dramatically alter the understanding by a human. Substi-

tutions such as replacing "before"with "b4", homoglyph substitutions, and other substitutions,

such as using "Lo7ita"instead of "Lolita"(WOODBRIDGE et al., 2018). The effects of ad-

versarial modifications in text classification have been explored for different natural language

processing (NLP) techniques, including classification (AGARWAL et al., 2007), machine trans-

lation (BELINKOV; BISK, 2017) and word embeddings (HEIGOLD et al., 2017). Depending

on what kind of information is available to the adversary, it distorts portions of the text most

likely to contain a signal important to the classification task.

CSAM File Metadata Classification. While significant efforts have focused on the

images themselves, some researchers have looked for complementary signals to help CSAM

identification. Such measures include queries that return CSAM in search engines, file meta-

data, and conversations that imply grooming or exchange of CSAM (THORN, ). Other efforts

have used textual signals to identify where CSAM might be located, such as keywords related

to website content(Westlake et al., 2012), using NLP analysis (PEERSMAN et al., 2016; PE-

ERSMAN, 2018; NABKI et al., 2020; AL-NABKI et al., 2020; PANCHENKO et al., 2013; DU;

SCANLON, 2019), conversations(BOGDANOVA et al., 2014). Our work falls into this cate-

gory. Previous works have found that perpetrators use a specific CSAM vocabulary to name

files (PEERSMAN et al., 2016). For this reason, using file paths, which is the combination of
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the file location and file name, is a promising approach for CSAM identification.Other related

works aim to identify CSAM based solely on file path (NABKI et al., 2020; AL-NABKI et al.,

2020). However, these works do not address important questions such as classifiers’ robustness

against adversarial examples and performance in out-of-sample benign data sets.

Recent Works. The recent publication of a survey on detecting and preventing online

child sexual abuse material (NGO et al., 2022) compares over 35 studies on the topic. The

findings of this survey highlight the problem’s complexity and the need to combine computer

vision and natural language processing techniques to combat this heinous crime. In (SILVA et

al., 2022), the authors propose a pipeline for extracting signals from data, which they claim

is highly valuable in highlighting essential aspects of the overall distribution of data. This

pipeline can provide valuable insights into databases that cannot be disclosed. Moreover, in

(WOODHAMS et al., 2021), the authors used real-world data from the United Kingdom to

study the behavior and preferences of 53 anonymous CSAM suspects who were active on the

dark web and noticed by the police. This research provides a unique perspective into the minds

of these dangerous individuals and can be used to develop more effective strategies to prevent

them from exploiting innocent children online.

3.2 METHODS

In this section we describe the data set, methods, and algorithms utilized in our experiments.

3.2.1 Training Data Set

Our supervised learning approach to identify CSAM file paths utilizes a binary labeled data

set. To separate the data set into independent training and test sets, we split the data by

storage system information (e.g., driver designations) in order to not leak information from

the training to test set, which is also known as model leakage (KAUFMAN et al., 2012). Our

data set consists of real file paths collected by Project VIC International2. The data consists

of 1,010,000 file paths from 55,312 unique storage systems. File paths are strings that contain

location information of a file (folders) in a storage system and the file name. In Table 3.1, we
2https://www.projectvic.org.
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present details on the different types of content that constitute the data set and the number of

samples for each type.

Table 3.1: Project VIC data set description. The data set is used for model training and model
testing. It contains non-pertinent (label 0) file paths and different types of file paths of child
exploitative and child sexual abuse material (label 1).

Content Type Samples Label

Non-pertinent 717,448 0

Child exploitative and child sexual abuse 292,552 1

The Project VIC data set used in our experiments contains 717,448 non-pertinent file paths

and 292,552 file paths containing child exploitative and child sexual abuse material. We note

that all the 1,010,000 file paths in our data set were extracted from hardware apprehended for

investigations. The training and testing data sets accurately represent the data in a deployment

scenario.

3.2.1.1 File Path Characteristics

The distribution of file path length helps us define the size of the character embedding

vectors in our deep neural networks models and the size of the word vectors used as input to

the transformers-based model we fine-tune to the task of CSAM file path identification.

When analyzing the distribution of file path lengths in the data set, we observe that 95% of

file paths have 300 characters or less. Limiting the size of the character embedding layer helps

increase time and memory efficiency of the model. We set our character embedding layer size

to 300 characters. For file paths with more than 300 characters, we truncate the file path by

discarding the initial characters and keeping only the last 300 characters. We pad with zeros

on the left for file paths with less than 300 characters.

The transformers-based model also takes as input a fixed-sized vector, in this case, a vector

of words. We consider a word to be a sequence of alphanumeric characters that are separated

by a dash, slash, colon, underscore, or period. By counting the number of words in each file

path, we see that over 99% of file paths have at most 64 words. More precisely, in our data set,
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there is only one file path with more than 60 words. For this reason, we set the input vector

size for the transformers-based model to 64 words.

3.2.1.2 Cross Validation Data Split

We use a K-Fold Cross Validation methodology in our experiments with K=10. The file

path contains information about the storage system in our data set. If a storage system contains

a high volume of CSAM files, the model could learn that files from certain storage systems have

a high probability of being CSAM. This is known as model leakage (KAUFMAN et al., 2012).

Leakage in machine learning modeling consists of introducing information about the target of

a machine learning problem at training time. To avoid model leakage, we split the data by

storage system information. In each cross-validation fold is the data is divided into 80% for

training, 10% for validation, and and 10% for testing.

The information before the first backlash of a file path specifies the external storage system

or a laptop/desktop. This information is used to partition the data set for cross-validation.

3.2.2 Text Vectorization

We present the concepts utilized for text vectorization: term-frequency inverse-document-

frequency (TF-IDF), character-based quantization, and word vectors that will serve as input

to the transformers-based model.

3.2.2.1 TF-IDF

This technique attributes weights to words (or sequences of characters) in a text (JONES,

1972). First, it computes the term-frequency (TF), which is the number of times a term occurs

in a given document. The inverse-document frequency-component (IDF) is computed as:

IDF(t) = log
1 + n

1 + df(t)
+ 1. (3.1)

Where n is the total number of documents in the document set, and df(t) is the number of

documents in the document set that contains the term. For each term, the product of the TF
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and IDF components is computed. The resulting TF-IDF vectors are then normalized by the

Euclidean norm.

When vectorizing a text with TF-IDF, the terms in a text can be words or sequences of

characters. We investigate both approaches in our work. When using words as terms in TF-

IDF, we refer to the text vectorization as bag-of-words (BoW). When vectorizing the text

as BoW, for each file path, we consider a word to be a sequence of alphanumeric characters

that are separated by a dash, slash, colon, underscore or period. The bag-of-words model is

constructed by selecting the 5,000 most frequent words from the training subset. We utilize this

text representation in combination with TF-IDF. The data set of vectorized file paths is used

as input to three different learning algorithms: logistic regression, naive Bayes, and boosted

decision trees.

When using sequence of characters as terms in TF-IDF, we refer the text vectorization as

bag-of-n-grams, or simply n-grams. When vectorizing the text as n-grams, we extract from

each file path string its n-grams, for n ∈ {1,2,3}. The set of n-grams of a string s is the

set of all substrings in s of length n. We construct the bag-of-n-grams models by selecting

the 50,000 most frequent n-grams (up to 3-grams) from the training data set. We utilize this

text representation in combination with TF-IDF. The data set of vectorized file paths is used

as input to three different learning algorithms: logistic regression, naive Bayes, and boosted

decision trees.

3.2.2.2 Character-based Quantization

This type of text representation defines an alphabet of size m as the input language, quanti-

zed using 1-of-m encoding. Each textual input, of length l, is then transformed into a sequence

of such m-sized vectors with fixed length l. Texts with more than l characters are truncated,

and the exceeding initial characters are discarded. If the text is shorter than l, it is padded with

zeroes on the left. Characters that are not in the alphabet are quantized as all-zero vectors. The

alphabet used in our models consists of m = 802 characters, including English letters, Japanese

characters, Chinese characters, Korean characters, and special alphanumeric characters. The

alphabet is the set of all unique characters in the training data.
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3.2.2.3 Word Vectors for Pre-trained Models

We utilize transformers-based models in our experiments. We utilize bidirectional encoder

representation from transformers, BERT (DEVLIN et al., 2018) pre-trained model. To prepare

the text to serve as an input to the pre-trained BERT model, we represent the file path as

a sequence of words by removing dash, slash, colon, underscore, and periods. We limit the

sequence of words to 64 as indicated in section 3.2.1.1.

3.2.3 Learning Algorithms

We use several learning algorithms that have been successfully applied to short text clas-

sification. We consider two broad approaches: i) Traditional machine learning models, ii) and

Neural networks models.

3.2.3.1 Traditional ML on Extracted Features

Logistic Regression. This classification algorithm is a discriminative classifier that

models the posterior probability P (Y |X) of the class Y given the input features X by fitting

a logistic curve to the relationship between X and Y . Model outputs can be interpreted as

probabilities of the occurrence of a class (NG; JORDAN, 2001).

Naive Bayes. Conditional probability model that assumes independence of features:

given a problem instance to be classified, represented by a vector x = (x1, . . . ,xn) representing

some n features, it assigns to this instance probabilities P (Ck | x1, . . . ,xn) for each of K possible

outcomes or classes Ck. The problem with the above formulation is that if the number of features

n is large or if a feature can take on a large number of values, then basing such a model on

probability tables is infeasible. The model is reformulated to become more tractable. Using

Bayes’ theorem and assuming independence of the feature variables, the conditional probability

can be decomposed as:

P (Ck | x) =
P (Ck) P (x | Ck)

P (x)

Boosted Decision Trees. Model based on ensembles of trees, where each tree is trained

using a boosting process in which each subsequent tree is built with weighted instances which
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were misclassified by the previous tree (FREUND; SCHAPIRE, 1997). Classification of a new

instance with a trained ensemble of trees is based on a simple majority vote of the individual

trees.

3.2.3.2 Deep Neural Networks on Learned Embeddings

All neural network architectures start with an embedding layer that represents each cha-

racter by a numerical vector. The embedding maps semantically similar characters to similar

vectors, where the notion of similarity is automatically learned based on the classification task

at hand. The variant of long short-term memory (LSTM) network architecture used in our

work is the common "vanilla"architecture as used in (WOODBRIDGE et al., 2016).

Convolutional Neural Networks. One-dimensional Convolutional Neural Networks

(CNNs) are a good fit when the input is text, treated as a raw signal at the character le-

vel (ZHANG et al., 2015). The CNN automatically learns filters to detect patterns that are

important for prediction. The presence (or lack) of these patterns is then used by the quintes-

sential neural network (multilayer perceptron) to make predictions. These filters, (also called

kernels) are learned during backpropagation. Figure 3.2 shows detailed information on the

CNN-based architecture used in our experiments. The architecture in Figure 3.2 includes two

one-dimensional convolution layers, followed by a dense layer. The dimensions of the CNN

architecture presented were tuned during the validation phase of the training experiments.

Long Short-Term Memory Networks. This flexible network architecture generalizes

manual feature extraction via n-grams by learning dependencies of one or multiple characters,

whether in succession or with arbitrary separation. The long short-term memory network

(LSTM) layer can be thought of as an implicit feature extraction instead of explicit feature

extraction (e.g., n-grams) used in other approaches. Rather than represent file paths explicitly

as a bag of n-grams, for example, the LSTM learns patterns of tokens that maximize the

performance of the second classification layer. Figure 3.3 shows detailed information on the

LSTM-based architecture used in our experiments, including data dimensions and weights

in each layer. The dimensions of the LSTM architecture presented were tuned during the

validation phase of the training experiments.
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Figure 3.2: Diagram of the deep neural network architecture with CNN layers used for training
one of our CNN-based model. All data dimensions and number of weights in each layer of our
CNN model are indicated in the above diagram.

Figure 3.3: Diagram of the deep neural network architecture with LSTM layer used for training
one of our LSTM-based model. All data dimensions and number of weights in each layer of our
LSTM model are indicated in the above diagram.
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Transformer-based model. Transformer (VASWANI et al., 2017) is a model architec-

ture that dismisses recurrence and relies solely on an attention mechanism to derive global

dependencies between input and output. BERT’s model architecture is a multilayer bidirec-

tional Transformer (DEVLIN et al., 2018). BERT’s framework comprises two steps: pre-

training and fine-tuning. Pre-trained BERT models are trained on unlabeled data over dif-

ferent pre-training tasks and can be easily fine-tuned to several downstream tasks. We uti-

lize pre-trained bert-base-uncased from the Hugging Face Transformer library 3. We use

BertForSequenceClassification class from the same library for fine-tuning, which is the

downstream task suitable for our classification problem. We fine-tune the BERT model using

the hyperparameters suggested by (DEVLIN et al., 2018).

3.2.4 File Path-Based CSAM Classifiers

Our work investigates four approaches for CSAM file path classification.

1 Bag-of-words. This approach encodes the file path string into a vector of words.

The weights of the words are attributed using TF-IDF. We utilize the resulting vectors

as input to traditional machine learning classifiers (logistic regression, boosted decision

trees, and Naive Bayes).

2 Character N-grams. A list of character sequences on size N encodes the file path. The

weights of the sequences are attributed using TF-IDF. The resulting vectors of the cha-

racter sequences are used with traditional machine learning classifiers (logistic regression,

boosted decision trees, and Naive Bayes);

3 Character-based Neural Networks. Sequences of encoded characters are used with

a convolutional neural network (CNN) and a long short-term memory network (LSTM).

4 Pre-trained BERT Model. Pre-trained bert-base-uncased model is fine-tuned for

downstream sequence classification task.
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Table 3.2: Model evaluation. Experiments with traditional machine learning and neural
networks using Project VIC’s data set. We evaluate the AUC-ROC, accuracy, precision, and
recall. These results were measured across 10-folds in a cross-validation setting. For each me-
tric, we report the mean (µ), and the standard deviation (σ). We highlight the best results,
which were achieved by the character-based CNN.

Model AUC Accuracy Precision Recall

µ σ µ σ µ σ µ σ

BoW Logistic Reg. 0.967 0.035 0.922 0.062 0.904 0.090 0.787 0.202

BoW Naive Bayes 0.972 0.011 0.927 0.032 0.875 0.070 0.859 0.114

BoW Boosted Trees 0.982 0.013 0.934 0.062 0.903 0.096 0.827 0.203

N-grams Logistic Reg. 0.980 0.021 0.931 0.060 0.919 0.088 0.793 0.202

N-grams Naive Bayes 0.958 0.023 0.929 0.032 0.839 0.083 0.913 0.085

N-grams Boosted Trees 0.983 0.015 0.931 0.060 0.906 0.094 0.822 0.203

Character-based CNN 0.990 0.011 0.968 0.019 0.938 0.034 0.943 0.060

Character-based LSTM 0.982 0.017 0.953 0.044 0.937 0.064 0.903 0.129

BERT 0.987 0.013 0.955 0.035 0.934 0.048 0.896 0.100

3.3 MODEL EVALUATION

We present our results for all our classifiers in Table 3.2. All performance metrics were

measured using a 10-fold cross-validation on the Project VIC data set.

For each of our classifiers, we report the mean and the standard deviation over the folds

for the area under the ROC curve (AUC), accuracy, precision, and recall for predicting CSAM

files. We focus on two primary metrics for model comparison: Recall and AUC. Additionally,

we assess all machine learning models’ generalization by looking into the standard deviations

over the cross-validation folds.

3https://huggingface.co/bert-base-uncased
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3.3.1 Traditional Machine Learning Models

There are significant advantages of traditional machine learning models compared to deep

neural networks. Understanding how well these models perform can help scientists and investi-

gators leverage such models’ most remarkable characteristic: feature interpretability. The most

relevant predictive tokens, or n-grams, can give clues about vocabulary words in the data set

and utilize them in other CSAM detection systems. Table 3.2 shows that the model trained

with bag-of-words and bag-of-n-grams operates in similar AUC and accuracy ranges. When

analyzing recall rates of traditional models, we note that both naive Bayes models have the

highest average rates and lowest standard deviations. The naive Bayes with bag-of-n-grams fe-

atures presents the best recall of all traditional models, of about 0.91. Among the other models

trained using bag-of-n-grams, naive Bayes presents a much smaller recall standard deviation

(σ = 0.085) when compared to logistic regression (σ = 0.20) and boosted decision trees (σ =

0.20).

Although the evaluation of CSAM classification models heavily relies on recall rates, when

deploying a model in an environment that potentially analyzes hundreds on thousands of file

systems, and consequently millions of file paths, precision becomes a significant metric. The

burden of having several thousands of false positives can result in an inefficient process and

potentially delay investigations and the discovery of true positives. The AUC metric captures

the ability of a classifier to operate with high recall when low false positive rates are necessary.

By analyzing the traditional models’ AUC, we observe that boosted decision trees perform

better than the two other techniques.

3.3.2 Deep Neural Networks and Transformers-based Models

We achieved the best performance across all categories with deep neural network architec-

ture. We trained three different architectures: a layered CNN, an LSTM-based model, and

BERT. The LSTM model achieves results very similar to the fine-tuned BERT model. Both

models present accuracy above 0.95, precision over 0.93, and recall ≈ 0.9. However, our CNN

model consistently outperforms all the other models in mean performance metrics across all

folds and in the lowest standard deviation.
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3.3.3 Comparison with Previous Works

Although several previous works have proposed using file paths for CSAM detection, they

lack rigorous methodology in which test data correctly emulates the data during deployment.

Without a test data set with a similar distribution to the data during deployment, it is hard

to evaluate the true model performance. In (AL-NABKI et al., 2020), although the authors

did achieve a recall rate of 0.98, the training and testing data utilized in the experiments are

not an accurate representation of data in a deployment scenario. CSAM and non-CSAM file

paths come from entirely different data sources and do not accurately represent file paths’ data

distribution in real deployment scenarios. In (DU; SCANLON, 2019), the authors propose a

sound methodology for collecting CSAM and non-CSAM file paths from a pool of Windows

disk images. However, accuracy, precision, and recall rates of 1.00 indicate that model leakage

and data set size might be leading to model overfitting. A third work focus on detecting CSAM

(PANCHENKO et al., 2013) using filenames. Once again, it does not provide a testing scenario

that reasonably represents a deployment setting. The work explores only traditional machine

learning techniques achieving a maximum accuracy of 0.97.

3.4 MODEL EVALUATION WITH ADVERSARIAL EXAMPLES

In classical machine learning applications, we assume that the underlying data distribution

is stationary at test time. However, a testing pipeline of models aimed at the detection of illegal

activities should anticipate an intelligent, adaptive adversary actively manipulating data. We

know perpetrators purposely add typos and modifications to file identifiers (PEERSMAN et al.,

2016) to evade blocklists and machine learning-based detection mechanisms. We modify our

test data set to simulate an adversary actively changing the file paths to elude the classifiers.

Our CSAM file path detector assumes that file paths contain information about file contents;

therefore, we can detect CSAM files by only analyzing file paths. This is because CSAM files

are often shared among perpetrators, and the file name is usually used to identify file contents

in many scenarios, including peer-to-peer systems (LATAPY et al., 2013; FOURNIER et al.,

2014). In such case, the adversary wants to make the maximum possible changes without

compromising others’ ability to search the file.
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The proposed adversarial analysis certainly has limitations, as criminals could adopt alter-

nate coding methods or randomly name their CSAM files to evade detection. However, the

alarming reality is that the online search for CSAM content has seen a significant surge in re-

cent years, with CSAM content being openly advertised online 4. Given the widespread nature

of this issue, it is reasonable to assume that adversaries will opt for subtle modifications and

obfuscation in the file paths rather than completely concealing them. Our experiments incor-

porate the most commonly observed adversarial techniques in evading text-based classification,

as documented in previous works (KUCHIPUDI et al., 2020; DAWSON, 2022) . It is important

to acknowledge that this is not an exhaustive list of possible attacks, but it provides a solid

foundation for understanding the threat landscape.

3.4.1 Threat Model

In our threat model, the attacker is unaware of the model architecture and parameters and

does not have access to the confidence scores predicted by the model. The attacker attempts to

cause an integrity violation in the model by modifying the input under bounded perturbation

size (GOODFELLOW et al., 2014). The only knowledge the adversary has about the model

is the input space and the output space. Notably, the attacker cannot immediately observe

the output for a given input, so cannot directly optimize for a worst-case outcome. But, since

the attacker generally understands that filenames are being monitored, she uses heuristics,

randomly applied, that attempt to evade.

We assume the adversary has access to a list of CSAM and non-CSAM trigger words, similar

to the adversarial attacks proposed in (KUCHIPUDI et al., 2020) to evade spam email detection

models (see Figure 3.4 for a comparison between an adversary with access trigger words and

an adversary without access). We create a list of trigger words, i.e., words that are highly

correlated with CSAM and non-CSAM file paths using odds ratio. Odds ratio is a widely used

technique in information retrieval which is used for feature selection and interpretation of text

classification models (MLADENIĆ, 1998).

We calculate the odds of the keyword being part of a CSAM file path and the odds of the

4https://www.thorn.org/child-sexual-exploitation-and-technology/
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keyword being part of a non-CSAM file path for all keywords. The Odds ratio of a word w is

computed as:

Odds Ratio =
odds of w appear in CSAM file
odds of w appear in non-CSAM

(3.2)

The CSAM lexicon comprises all keywords with an Odds Ratio greater than two. An

analogous process identifies the non-CSAM trigger words. We assume the list of trigger words

is available to the adversary.

3.4.2 Random Character Replacement

The adversarial examples are generated by randomly selecting a position in the file path

string and substituting the character in the selected position with a random alphanumeric

character. This technique has been previously used to attack language models (BELINKOV;

BISK, 2017). We evaluate our models for three character replacement rates: 10%, 15%, and

20% of file path length.

3.4.3 Homoglyph Replacement

The homoglyph replacement attack (JÁÑEZ-MARTINO et al., 2022) obfuscates words by

modifying words in a text while keeping them readable. This attack replaces characters of

CSAM trigger words in file paths with homoglyphs, i.e. a character with identical or very

similar shapes. We utilize the homoglyph dictionary from (DAWSON, 2022) to make the

character replacements.

3.4.4 Synonym Replacement

In (KUCHIPUDI et al., 2020), authors presented this attack as an effective way to evade

spam classification models. The synonym replacement attack finds trigger words in CSAM

file paths and replaces them with a synonym. We use the natural language toolkit (NLTK)5

5NLTK is a platform for building Python programs to work with human language data. <https://www.
nltk.org>

https://www.nltk.org
https://www.nltk.org
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module to find word synonyms. This attack intends to modify the file path without modifying

its meaning.

3.4.5 CSAM Word Spacing

In (KUCHIPUDI et al., 2020), authors propose the spacing attack. The spacing attack adds

spaces between characters of trigger words. In our attack, since file paths comprise our data,

we add an underscore "_"between every character of words from the CSAM trigger word list.

Intuitively, the text parser and n-gram sequences of the trigger words would not recognize the

new modified word, while a human would still be able to read and recognize the keyword.

3.4.6 Non-CSAM Word Injection

Manipulating the file paths by adding words that are more likely to appear in non-CSAM file

paths was adapted from the ham word injection attack presented in (KUCHIPUDI et al., 2020).

This attack consists in selecting a word from the non-CSAM trigger word list and injecting this

word into the file path. We evaluate our models when injecting one, two and, three non-CSAM

words in the file paths.

3.4.7 Experimental Results

We evaluate the impact of adversarial modifications in test samples on the model’s perfor-

mance. The adversarial modifications are done in the test fold of the cross-validation on the

Project VIC data set. Details on how cross-validation is done are in section 3.2.1. We are

interested in i) understanding which machine learning techniques are more robust when the

data is adversarially modified at test time, and ii) how much the performance of the models

changes. All attacks target only CSAM file paths; therefore, we only evaluate the variation in

recall rates.

Under the random character replacement attack, an adversary randomly modifies a per-

centage of the file path by randomly selecting characters and replacing them with random
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Figure 3.4: Example of adversarial inputs generation. We generate adversarial inputs based on
several different adversarial attacks. Here we illustrate two attacks: (1) In the random character
replacement attack, the adversary chooses random positions in the file path string and replace
the character with a randomly chosen character. (2) The CSAM word spacing attack allows
the adversary access to a CSAM lexicon. The adversary adds spacing between characters in
words that are present in the CSAM lexicon.

characters. A reasonable adversary budget in this scenario is between 10% and 15%. Previous

works have also considered this same percentage range for perturbing text strings (JIN et al.,

2019). Since most file paths have a length between 40 and 200 characters, this changes between

6 and 30 characters in each file path. To stress-test our models, we also analyze the performance

of our models under a 20% change.

Table 3.3 demonstrates the variation in recall rates for different categories of adversarial

attacks. In the presence of file paths generated via the character replacement attack, both

variations of logistic regression models will present a small decay in recall rates when 10% of

the file path is modified. We see the recall rates decrease as we increase the percentage of the

file path that is modified. Logistic regression combined with bad-of-words text representation

achieves a decrease of almost 25 points percentage in the recall rate, compared to the original

recall, when 20% of the file path is modified.

Boosted tree models also see a sharp decrease in recall rates as we increase the percentage

of modified file paths. When compared to the original recall rate of 0.83, a drop of 16 points

percentage is observed in the lowest level of the attack, when 10% of the file path is modified.

Recall rates get to 0.43 at the highest level of the attack when 20% of the file path is modified.



3.4 – Model Evaluation with Adversarial Examples 47

Table 3.3: Recall evaluation of model performance in the presence of adversarial examples.
We evaluate changes in the recall rate of several machine learning models under the following
attacks: random character replacement, homoglyph replacement, synonym replacement and
CSAM word spacing. For all experiments, we report the average recall. We highlight the most
robust results, which were achieved by the n-gram naive Bayes model.

Character replacement

Model 10% 15% 20% homoglyph synonym spacing

BoW Logistic Regression 0.75 0.66 0.54 0.61 0.81 0.62

BoW Naive Bayes 0.85 0.83 0.80 0.81 0.90 0.81

BoW Boosted Trees 0.66 0.55 0.43 0.42 0.85 0.42

N-grams Logistic Regression 0.78 0.74 0.69 0.64 0.83 0.63

N-grams Naive Bayes 0.92 0.93 0.94 0.88 0.92 0.88

N-grams Boosted Trees 0.69 0.61 0.53 0.40 0.85 0.39

Character-based CNN 0.86 0.83 0.79 0.71 0.91 0.80

Character-based LSTM 0.82 0.79 0.76 0.76 0.90 0.77

BERT 0.85 0.83 0.82 0.84 0.91 0.77

At a recall rate of 0.43, more than half of the modified file paths are able to evade the classifier.

CNN, LSTM, and BERT models also present decreases in recall rates as we increase the number

of modifications in the file paths. The BERT model presents the smallest overall decrease of

the three models. The naive Bayes model presented surprising results. The recall rates did

not decrease for any level of the attack. In addition, we notice a small recall increase as the

number of modifications in the file paths increased. We believe that the randomness added

to the CSAM file paths helped the naive Bayes classifier identify better which file paths were

CSAM.

The homoglyph attack is very common in scenarios where an adversary wants to evade spam

email classifiers (DENG et al., 2020). We evaluate the performance of all models to understand

which models are more resilient to this kind of attack. Logistic regression and boosted trees

models all see a significant reduction in recall rates. We observe that n-grams boosted tress
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Table 3.4: Recall evaluation of model performance in the presence of adversarial examples. We
evaluate changes in the recall rate of several machine learning models under the non-CSAM
word injection attack. For all experiments, we report the average recall. We highlight the best
results, which were achieved by the character-based CNN

non-CSAM word injection

Model one word two words three words

BoW Logistic Regression 0.78 0.71 0.63

BoW Naive Bayes 0.80 0.68 0.58

BoW Boosted Trees 0.78 0.71 0.69

N-grams Logistic Regression 0.80 0.73 0.65

N-grams Naive Bayes 0.80 0.64 0.49

N-grams Boosted Trees 0.80 0.73 0.66

Character-based CNN 0.89 0.86 0.84

Character-based LSTM 0.87 0.84 0.81

BERT 0.83 0.74 0.65

recall rate achieve 0.40 under the homoglyph attack, which leads us to conclude that this model

is susceptible to this kind of attack. CNN and LSTM models also present a decline in recall

rate, going down to 0.71 and 0.74, respectively. Once again, the n-grams naive Bayes model

is the best performing under attack, presenting a recall rate of 0.88, followed by BERT, which

presented a recall rate of 0.84.

The synonym attack was the attack that overall impacted less the models’ performance.

Most models did knot see a decrease, and several models experienced a small increase in recall

rates. The spacing attack impacted logistic regression and boosted trees, decreasing the recall

rates of these models by more than 20 points. CNN, LSTM, and BERT suffered decreases in

recall rates of approximately 10 points percentage. N-grams naive Bayes presented, once again,

the smallest decrease in recall rates, with a decrease of 3 points percentage.

Non-CSAM word injection was the attack that most impacted the n-gram naive Bayes

model, as presented in Table 3.4. By injecting only one word highly correlated with non-CSAM
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Figure 3.5: Model confidence scores when evaluating file paths from common crawl. Our best-
performing model, a CNN-based model, exhibits a low number of files with a confidence score
over 0.2. The false positive rate (FPR) is 0.03 for a confidence threshold of 0.5, but achieves
an FPR of 0.002 for a confidence threshold of 0.9. The model presents a higher FPR on Linux
file paths, where at a confidence level of 0.5 it exhibits an FPR of 0.24. However, it drops
significantly for a higher confidence threshold, achieving an FPR of 0.008 at a confidence level
of 0.9. At this confidence level, out of 73k file paths from the Linux set, only 584 would be
identified as CSAM by our model. We highlight the most robust model, which is the n-grams
naive Bayes model.

files, we already see a drop in recall rate to 0.80. As we increase the number of words, the

recall rate decreases to 0.49 when injecting three non-CSAM words into a file path. Logistic

regression, boosted trees, and BERT models also presented a reduction in recall rates with the

addition of non-CSAM words. Even though we see a decrease in recall rates in all models, CNN

and LSTM models presented the most stable behavior under this attack.

By exploring multiple attacks and evaluating the performance of different models under

these attacks, we can identify which learning techniques produce models that are sensitive to

the attacks, such as logistic regression and boosted trees, and which models are more resilient

to attacks, such as n-gram naive Bayes and CNN models. We leave the improvement of the

performance of models under non-CSAM word injection attacks as a future extension of this

work.

3.5 MODEL EVALUATION WITH FILE PATHS FROM COMMON CRAWL

Our training data set perfectly represents the deployment scenario for model deployment:

our model is currently used to identify CSAM files in apprehended hard drives. Our training
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data comprises positive and negative examples from apprehended hard drives. The training

data contains only file paths from hard drives that were suspect in the first place.

We collect file paths from common crawl data 6. For this exercise, we assume all file paths

from the common crawl are benign. However, understanding how the model behaves in other

data distributions, i.e., data sets formed by file paths that come solely from benign sources and

not suspect hard drives, is also essential. Given that we only evaluate the model performance

on benign file paths, the metric we use for evaluating is the false positive rate (FPR). When

a positive detection occurs, detection systems trigger an action, usually human data review.

Suppose the false positive rate is poorly understood and the model operation is not correctly

calibrated. In that case, it can cause a burden on content moderators and jeopardize the

deployment of the system.

3.5.1 Common Crawl data set

The benign samples data set was constructed using the publicly available common crawl

data set. We collected data from the Common Crawl index CC-MAIN-2021-10. The WARC

(Web ARChive) files utilized to construct our data set are:

• Linux file paths: we parsed the first 200 WARCs (00000-00199, inclusive) resulting in

over 73k unique paths.

• Windows file paths: we parsed 11821 WARCS (00000-12000, inclusive) resulting in 32K

unique paths.

We parsed the raw HTML, treating it as a Latin-encoded string. In each HTML, regular

expression functions for identifying Windows and Linux file paths are the following:

Windows_file path_with_ext = r"([a-z]:\\([a-z0-9() ]*\\)*[a-z0-9()]*\.

(jpg|jpeg|png|gif|mp4|mov|m4a|m4v|mpg|mpeg|wmv|avi|flv|3gp|3gpp|3g2|

3gp2|doc|docx|xls|xlsx|ppt|pptx|pdf))"

Linux_file path_with_ext = r"(/([a-zA-Z0-9()]*/)*[a-zA-Z0-9()]*\.
6https://commoncrawl.org
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(jpg|jpeg|png|gif|mp4|mov|m4a|m4v|mpg|mpeg|wmv|avi|flv|3gp|3gpp|3g2|

3gp2|doc|docx|xls|xlsx|ppt|pptx|pdf))"

After collecting the data set using the functions above, we filtered Windows filenames to

exclude “:\u002F”. In Linux filenames, we only keep the file paths that begin with: /usr/,

/home, /etc, /tmp, and /var.

The evaluation of model performance in independent data sets is essential to understand

model generalization. We test our best-performing model against a data set containing only

benign file paths. We measured the false positive rate for the best-performing model, CNN, at

different confidence thresholds.

As we can observe from Figure 3.5, there is a very small number of files that the model

attributes a confidence score above 0.8, with a false positive rate is less than 0.01. For example,

for Linux file paths, a decision threshold of 0.8 results in an FPR of ≈ 0.03, whereas a decision

threshold of 0.95 results in an FPR of ≈ 0.001. For Windows file paths, a threshold of 0.8

prompts an FPR less than 0.01, while a decision threshold of 0.95 leads to an FPR less than

0.001. High decision thresholds are common design choices in detection systems, where only

the high confidence samples are flagged and sent for human review.

Based on this evaluation, we recommend a careful choice of model threshold when using the

model in general scenarios, i.e., scenarios where file paths do not come exclusively from suspect

hard drives. The volume of data to be analyzed should also be considered when defining the

model threshold.

3.5.2 Differentially Private CSAM Classification

To fine-tune a BERT model using DP-SDG in PyTorch, we loaded a pre-trained BERT

model and added an output layer specific to the CSAM file path identification task. The main

advantage of using a pre-trained BERT model is that the model is mostly trained on public

data, resulting in having the privacy budget used only in the fine-tuning task.

The model can then be fine-tuned on a labeled data set using DP-SDG. The DP-SDG

algorithm modifies the gradients computed during backpropagation to satisfy DP constraints.
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Table 3.5: Evaluation of differentially private model performance. We fine tuned a BERT model
using DP-SGD optimization algorithm and the CSAM data set.

epsilon accuracy precision recall

0.1 0.88 0.8 0.72
0.5 0.9 0.82 0.77
1.0 0.89 0.82 0.76
5.0 0.9 0.83 0.8

In our model, the DP guarantees provide file path privacy. This means that for any given file

path, an adversary cannot infer whether the file path was part of the training data or not.

The DP-SGD algorithm ensures that the model’s parameters are updated in a way that

preserves the privacy of each sample training data.

From Table 3.5 we can observe that fine-tuning using a differentially private will result in a

decrease in model utility. Note that the overall utility decrease is about 0.05 points for accuracy,

0.1 points for precision and recall, which is at the same order of magnitude of the standard

deviation is the models presented in 3.2.

One interesting observation is that there is not a significant difference in model utility when

training models with privacy parameters ϵ = 0.5, 1.0 or 5.0.

Our conclusion is that a model trained with differential privacy algorithms, although it

has a decrease in performance, it performs with comparable precision and recall to non-DP

bag-of-words and bag-of-n-grams models.

3.6 DISCUSSION

We presented in this chapter a framework for robust and private training of CSAM detection

model, based solely on metadata. The presented framework, along with the experiments,

provide a solid understanding of which are a the necessary analysis for deployment of robust

machine learning models for CSAM detection. The experiments with privacy-preserving CSAM

detection models show that adding differential privacy to the training process incurs a very small

decrease in utility, enforcing that deployment of DP CSAM detection models can be practical.



CHAPTER 4

FAIRNESS AND UTILITY IMPACTS IN MACHINE
LEARNING PIPELINES CAUSED BY SYNTHETIC

DATASETS

Differential privacy (DP) is the standard for privacy-preserving statistical summaries (DWORK

et al., 2006a). Companies such as Microsoft (PEREIRA et al., 2021a), Google (AKTAY et

al., 2020), Apple (TANG et al., 2017), and government organizations such as the US Census

(ABOWD, 2018), have successfully applied DP in machine learning (HAMIDA et al., 2022;

HAMIDA et al., 2023) and data sharing scenarios. The popularity of DP is due to its strong

mathematical guarantees. Differential Privacy guarantees privacy by ensuring that the inclusion

or exclusion of any particular individual does not significantly change the output distribution

of an algorithm.

In areas ranging from health care, humanitarian action, education, and socioeconomic stu-

dies, the publication and sharing of data is crucial for informing society and fostering scientific

collaboration. However, the disclosure of such datasets can often reveal private, sensitive infor-

mation. Privacy-preserving data publishing aims at enabling such collaborations while preser-

ving the privacy of individual entries in the dataset. Tabular/categorical data about individuals

are relevant in many applications, from health care to humanitarian action. Privacy-preserving

data publishing for such data can be done in the form of a synthetic data table that has the

same schema and similar distributional properties as the real data. The aim here is to release a

perturbed version of the original information, so that it can still be used for statistical analysis,

but the privacy of individuals in the database is preserved.

The biggest advantage of synthetic datasets is that, once released, all data analysis and

machine learning tasks are performed in the same way it is done with real data. As noted by

(QIAN et al., 2023), the switch between real and synthetic data in data analysis and machine

learning pipelines is seamless - the same analysis tools, libraries and algorithms are applied in
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the same manner in both datasets. Other privacy-preserving technologies, such as federated

learning, requires expertise and appropriate tools to perform data analysis and model training.

Due to all the potential benefits of synthetic data, understanding the impacts of synthetic

data in downstream classification tasks have become of extreme importance. A trend observed

in recent studies is to evaluate performance of synthetic data generators of two types: marginal-

based synthesizers (MOVAHEDI et al., 2023) and generative adversarial networks (GAN) based

synthesizers (CHENG et al., 2021; GANEV, 2021; QIAN et al., 2023). Marginal-based synthetic

data generators are suitable for tabular data only, and have gained increased popularity after the

algorithm MST won the NIST competition in 2018 (MCKENNA et al., 2021). Marginal-based

synthesizers are named as such due to the fact that they learn approximate data distributions

by querying noisy marginals from the real data. Notable marginal-based algorithms are MST

(MCKENNA et al., 2021), MWEM PGM (MCKENNA et al., 2019), AIM (MCKENNA et

al., 2022) and PrivBayes (ZHANG et al., 2017). GAN-based synthesizers, on the other hand,

are flexible algorithms, and are suitable for tabular, image and other data formats. GANs

learn patterns and relationships from the input data based on a game, in the sense of game

theory, between two machine learning models, a discriminator model and the generator model.

Among popular differentially private GAN architectures we list DP-GAN (XIE et al., 2018),

DP-CTGAN (ROSENBLATT et al., 2020a) , PATE-GAN (JORDON et al., 2018) and PATE-

CTGAN (ROSENBLATT et al., 2020a).

One of the major applications of synthetic data is for training machine learning models.

Therefore, it is paramount to understand how exchanging real data for synthetic data impacts

the performance of the trained machine learning models. By performance, we mean not only

the utility of the model (its accuracy, for example) but also how well the model performs for

different subgroups of the dataset - the fairness of the model. The impact of machine learning

models on minorities subgroups is an active area of research, and several works have investigated

the trade-offs among model accuracy, bias, and privacy (WIENS et al., 2019; BAGDASARYAN

et al., 2019; CALMON et al., 2017; RAJOTTE et al., 2021). However, only recently bias caused

by the use of synthetic data in downstream classification received attention (GANEV et al.,

2022; MOVAHEDI et al., 2023; GILES et al., 2022). This problem becomes particularly relevant

in the context of synthetic datasets generated with differential privacy guarantees. It is known
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that differential privacy can affect fairness in machine learning models (BAGDASARYAN et

al., 2019). Despite recent work investigating the impact of synthetic data in downstream model

fairness (GANEV et al., 2022; CHENG et al., 2021), there are important questions that remain

unanswered:

• There is no published work that systematically studies the utility and fairness of machine

learning models trained on several GAN-based and marginal-based synthetic tabular da-

taset generation algorithms;

• Previous studies have not evaluated machine learning models trained on synthetic dataset

generation algorithms for multiple definitions of fairness;

• In previous studies, it was always assumed that real data was available for evaluating the

fairness of models trained on synthetic data. Here, we propose and evaluate a pipeline

where no such assumption is necessary.

Contributions In this chapter, we investigate the impacts of differentially private synthetic

data on downstream classification, where we focus on understanding the impacts on model

utility and fairness. Our investigation focus on two aspects of such impact:

• What is the impact in model utility when utilizing synthetic data for training machine

learning models? Can synthetic data also be used to evaluate utility of machine learning

models?

• What is the impact in model fairness when utilizing synthetic data for training machine

learning models? Can synthetic data be used to evaluate fairness of machine learning

models?

In our investigations we also evaluate if there are clear differences in performance between

marginal-based and GAN-based synthetic data, and if there is a synthesizer algorithm type

that produces data that clearly outperform others.

Our research work evaluates the impact of utilizing synthetic datasets for both training and

testing in machine learning pipelines. We empirically compare the performance of marginal-

based synthesizers and GAN-based synthesizers within the context of a machine learning pi-
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Figure 4.1: Pipeline for model training and evaluation using synthetic data (1) We generate
Synthetic datasets for model training and model testing utilizing differentially private synthe-
sizers. (2) We train models utilizing differentially private synthetic data and evaluate on a
differentially private synthetic test data. Model selection is made during this phase. (3) Based
on the previous phase results, model is trained using synthetic data and deployed. Model is
applied to real (test) data in production phase.

peline for classification tasks. Our experiments yield a comprehensive analysis, encompassing

utility and fairness metrics. Our main contributions are:

• We propose a training and evaluation framework that does not assume that real data

is available for testing the utility and fairness of machine learning models trained on

synthetic data.

• We present an extensive analysis of synthetic dataset generation algorithms in terms of

privacy-loss, utility and fairness when used for training machine learning models. In

particular, this is the first systematic comparison of several marginal-based and GAN-

based algorithms for fairness and utility of the resulting machine learning models.

• This is the first of such studies that includes several different definitions of fairness.

Main Findings:

1 Marginal-based synthetic data can accurately train machine learning models

for tabular data. Marginal-based synthetic data can train models with similar utility

to models trained on real data. Our experiments show that for a privacy-loss parameter

ϵ > 5.0, models trained with AIM (AUC = 0.683), MWEM PGM (AUC = 0.684), MST
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(AUC = 0.662) and Privbayes (AUC = 0.668) provides utility very similar to models

trained on real data (AUC = 0.684). Additionally, we evaluated models using synthetic

data, and found that marginal-based synthetic provides a good evaluation, with synthetic

data providing an AUC = 0.666 versus AUC = 0.684 (measured using real data).

2 Synthetic datasets generated with AIM and MWEM PGM have the poten-

tial be used for accurate model training and fairness evaluation in the case

of tabular data. Our experiments show that AIM and MWEM PGM synthetic data

can train models that achieves very similar utility and fairness characteristics of models

trained with real data. Additionally, the synthetic data generated by AIM algorithm, in

our experiments, showed very similar behavior to real data when used to evaluate utility

and fairness of machine learning models. This is the first study that presents evidence,

from the perspective of utility and fairness, that synthetic data can be a substitute for

real datasets in end-to-end machine learning pipelines for tabular data. It is interesting

to investigate how these results generalize to larger data sets.

4.1 RELATED WORK

Synthetic data generation is a promising practice for privacy-preserving data sharing and

publishing, understanding the impacts of utilizing synthetic data in machine learning pipelines

is of significant importance. Although previous works have advised against using synthetic

data to train and evaluate any final tools deployed in the real world (JORDON et al., 2022),

in very sensitive scenarios, such as human trafficking data (RESEARCH, 2022), and electronic

health records (HERNADEZ et al., 2023; YAN et al., 2022), synthetic data is seen as a way

to drastically increase the availability of research data. Particularly in health care, synthetic

data can unlock research in areas like etiology of diseases, personalization of medicine, and

healthcare administration assessment.

The promises synthetic data brings generated an interest in understanding impacts of utili-

zing synthetic in data analysis and machine learning. Some of these works include analyzing the

utility of differentially private synthetic data in different tasks (TAO et al., 2021), investigating

if training models with differentially private synthetic images can increase subgroup disparities
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Publication Evaluation of synthetic data Evaluation of
as training as testing Algorithmic

data data Fairness
(TAO et al., 2021) yes no no
(GANEV et al., 2022) yes no only subgroup accuracy
(MOVAHEDI et al., 2023) yes yes no
(GILES et al., 2022) yes no no
(ABAY et al., 2019) yes no no
(YOON et al., 2020) yes no no
This work yes yes yes

Table 4.1: Previous works evaluating differentially private synthetic data generation in machine
learning pipelines for tabular data. The works presented in this table all focus on understanding
the impact of utilizing differentially private synthetic datasets in machine learning pipelines
either from a perspective of utility or from a perspective of algorithmic fairness.

(CHENG et al., 2021), the impacts different types of synthetic data can have in model fairness

(GANEV et al., 2022), utility of synthetic data in downstream health care classification sys-

tems (MOVAHEDI et al., 2023), and whether feature importance can be accurately analyzed

using differentially private synthetic data (GILES et al., 2022). The evaluation of impacts of

synthetic datasets in machine learning pipelines is made by comparing models trained with real

data with models trained on synthetic data. The comparison is performed by testing both mo-

dels on real data.The comparison can be performed using utility metrics (AUC-ROC, F1-score,

accuracy) and also fairness metrics (subgroup accuracy, statistical parity, equality of odds). A

complete survey of evaluation metrics for synthetic datasets can be found in (HERNADEZ et

al., 2023; YAN et al., 2022).

Many of these works have made important findings in impacts of synthetic data in model

utility and algorithmic fairness. In (TAO et al., 2021) a comparison among different types of

differentially private synthetic data generation algorithms found that marginal-based algorithms

outperform all other types of DP synthetic data generators when training machine learning

classifiers, with performance nearly matching the performance of a classifier trained on real

data. The paper (GANEV et al., 2022) finds that marginal-based synthetic data (PrivBayes)

impacts machine learning pipelines by decreasing model bias, while GAN-based synthetic data

increases model bias. All these works are ultimately trying to answer the same question: to

which extent can we substitute real data with synthetic data, and which are the best synthetic

data generation techniques for model training?
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However these works still left questions unanswered. First of all, there hasn’t been a sys-

tematic study of impacts of using synthetic datasets in end-to-end machine learning pipelines,

which means evaluating the use of synthetic data for model training and model evaluation.

Additionally, there has been a lot of focus on image classification tasks (CHENG et al., 2021;

GANEV et al., 2022) where the disparity in accuracy are largely attributable to the class im-

balance in these datasets: i.e disadvantaged classes are also rare classes in the dataset thereby

leading to worse performance on these. In contrast, our work studies these issues in the context

of tabular datasets and in settings where the data has an intrinsic bias against sub-populations

that are not necessarily rare in the dataset. We summarize in Table 4.1 how previous works

have evaluated the impacts of synthetic tabular data in machine learning pipelines, and how

our work differentiates from previous analysis. Although several works have assessed the perfor-

mance of machine learning models trained with synthetic datasets (TAO et al., 2021; GANEV

et al., 2022), this is the first study to analyze if synthetic datasets can be used for model

assessment, and how close to reality such assessment is from the point of view of utility and

fairness. Moreover, our work focus on comparing two types of data synthesizing algorithm

families: marginal-based and GAN-based data synthesizers. While, these two type of data

synthesizing algorithms have been previously compared for utility (TAO et al., 2021), no such

extensive comparative analysis exists for fairness.

We are the first to extensively study the differences of applying data generated by these

two families types of data synthesizing algorithms in end-to-end machine learning pipelines for

utility and multiple fairness metrics.

4.2 DATASETS

We now describe the datasets used in our work. These datasets are commonly used in the

literature for benchmarking algorithmic fairness in classification tasks (NGONG et al., 2020;

CALMON et al., 2017; CELIS et al., 2021).
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4.2.1 Adult dataset

In the Adult dataset (32561 instances), the features were categorized as protected variable

(C): gender (male, female); and response variable (Y): income (binary); decision variables

(X): the remaining variables in the dataset. We map into categorical variables all continuous

variables.

4.2.2 Prison Recidivism dataset

From the COMPAS dataset (7214 instances), we select severity of charge, number of prior

crimes, and age category to be the decision variables (X). The outcome variable (Y) is a binary

indicator of whether the individual recidivated (re-offended), and race is set to be the protected

variable (C). We utilize a reduced set of features as proposed in (CALMON et al., 2017).

4.2.3 Fair Prison Recidivism dataset

We construct a "fair"dataset based on the COMPAS recidivism dataset by employing a

data preprocessing technique for learning non-discriminating classifiers from (KAMIRAN; CAL-

DERS, 2012), which involves changing the class labels in order to remove discrimination from

the dataset. This approach selects examples close to the decision boundary to be either ’pro-

moted’, i.e label flipped to the desirable class, or ‘demoted’, i.e label flipped to the undesirable

class (ex: the ’recidivate’ label in the COMPAS dataset is the undesirable class). By flip-

ping an equal number of positive and negative class examples, the class skew in the dataset is

maintained.

4.3 RESULTS

One potential outcome of synthetic data sharing is the utilization of synthetic data for

training and evaluating an ML model. The trained model could be deployed without assessing

its performance on real data, due to lack of data access. However, it is important to acknowledge

that these trained models are ultimately applied to real data. This scenario is illustrated in
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Figure 4.1. In our experiments, we address the concern that there may be substantial disparities

in performance between the evaluation phase (employing synthetic data) and the deployment

phase (utilizing real data). We refer to the experiments emulating the evaluation phase as train

on synthetic, test on synthetic (TSTS), and the experiments emulating the deployment phase

as train on synthetic, test on real (TSTR). We compare the performance of machine learning

models trained with differentially private synthesizers, focusing on two performance dimensions:

utility and fairness. We follow the approach of (GANEV et al., 2022) and use logistic regression

for downstream classification evaluation to avoid another layer of stochasticity. The utilization

of a linear model allows us to better focus on the effects of different synthetic data generators

in algorithmic fairness and model utility and reduce the effect of randomness in the training

algorithms.

To assess the utility performance, we employ the AUC-ROC metric, which quantifies trade-

off between the recall and false positive rate. We examine fairness performance through three

different perspectives. Previous research (BAGDASARYAN et al., 2019) has indicated that

differentially private machine learning models tend to perform worse on minority groups. To this

point we evaluate the decay in accuracy for the different subgroups in the protected attribute.

We also measure the difference in equality of odds (DEO) and the difference in statistical parity

(DSP). These metrics allow us to assess any disparities or bias in the model’s predictions across

different groups. Furthermore, we also investigate the extent to which one can accurately assess

a model utilizing synthetic datasets. Again, we evaluate two performance dimensions: utility

and fairness.

We utilized multiple differentially private marginal-based synthesizers (AIM, MST, MWEM-

PGM, and PrivBayes) as well as GAN-based synthesizers (DP-GAN, DP-CTGAN, PATE-GAN,

and PATE-CTGAN) to generate synthetic data. In our experiments, we generated datasets

utilizing each synthetic data generation technique in combination with four different privacy-loss

budgets ϵ = {0.5, 1.0, 5.0, 10.0}. The privacy-loss budget quantifies the privacy risk associated

with the publication of the synthetic data set, as defined in Chapter 2. The choice of these

budgets is based on previous research in synthetic data analysis and published synthetic datasets

(GANEV et al., 2022; RESEARCH, 2022). Previous studies showed that budgets at and lower

than ϵ = 0.1 (GANEV et al., 2022; ROSENBLATT et al., 2020a) result in synthetic data with
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very low utility, so our experiments focused on budgets greater than 0.5. The selection of ϵ =

10.0 as the maximum budget aligns with other works in the literature on differentially private

synthetic data generation (GANEV, 2021; GANEV et al., 2022; MOVAHEDI et al., 2023) .

We also observed this magnitude of privacy-loss budget in published synthetic datasets, such as

the Global victim-perpetrator synthetic data, which was generated with a privacy-loss budget

of ϵ = 12 (RESEARCH, 2022).

We divide the real dataset into 10 random 80/20 data splits, separating the data into

generator and test datasets. For the TSTR experiments, we run 10 rounds of synthetic DP data

generation on the 80% splits (generator data), used to generate the synthetic train datasets. We

use the remainder 20% split as test data in the TSTR experiments. For the TSTS experiments,

we run 10 rounds of synthetic DP data generation on the 80% splits (generator data), where

we generate synthetic train datasets. We use the same generator data to generate the synthetic

test data used in the TSTs experiments. We utilize the SmartNoise Library (VADHAN et

al., 2019) and DiffPrivLib (HOLOHAN et al., 2019) implementations of the synthesizers, and

approximate-DP approaches use the library’s default value of δ.

We train Logistic Regression models using the generated DP synthetic train datasets. In

experiments where we test the trained models on real data, model performance is evaluated on

the real test data (the 20% test split from the real data). In experiments where we test the

trained models on synthetic data, models are evaluated using the synthetic test datasets.

We report, for each technique and each value of privacy loss parameter, the mean across

10 rounds. The mean across multiple rounds serve to capture the behavior of each synthesizer

and attenuate the effects of randomness. A similar approach was used in (GANEV et al.,

2022). Our experiments use three datasets: the UCI Adult dataset (DUA; GRAFF, 2017) and

ProPublica’s COMPAS recidivism data (BARENSTEIN, 2019), and a fair COMPAS dataset

as defined in Section 4.2.3. The fair COMPAS dataset provides a way to evaluate synthetic

data generation performance in fair and biased versions of the same dataset.
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4.3.1 Utility analysis: impacts of synthetic data in machine learning pipelines

We evaluate the quality of models trained with synthetic datasets by measuring AUC and

accuracy of the protected class. We consider privacy-loss budgets of ϵ = 0.5, 1.0, 5.0 and 10.0.

We compare the AUC obtained in our experiments with the AUC measured by training models

with the real (non-synthetic) Adult, COMPAS, and fair COMPAS datasets.

Figure 4.2 shows AUC for different privacy losses and different synthesizers. The plots

show the variation of AUC as a function of privacy-loss parameter ϵ for marginal-based and

GAN-based synthesizers. The first row refers to marginal-based synthesizers in the TSTR

mode. Experiments with COMPAS and fair COMPASS datasets showed that models trained

on marginal-based synthetic data perform similarly to the baseline model (trained on real data).

For all four synthesizers, we see an increase in AUC as we increase ϵ. Experiments with Adult

dataset showed that AIM synthesizer outperformed all other synthesizer in both experimental

settings: TSTR and TSTS. For COMPAS dataset (which has a small dimension) the perfor-

mance of marginal-based synthetic datasets as training data is very close to the performance of

the real data. The second row of figure 4.2 presents the performance of GAN-based synthetic

data. Overall, the performance of GAN-based synthesizer is worse and the performance of the

marginal-based synthesizer. The utility of data produced by GAN-based synthesizers fluctu-

ated as we increased privacy-loss budget. This phenomenon had been previously observed in

(ROSENBLATT et al., 2020a). With AUC mostly fluctuating around ≈ 0.5, we can say that

GAN-based synthetic data do not do much better than random guessing (for various values

of ϵ). We attribute the fluctuations to the fact that GAN-based synthesizers are known to

be data hungry and not capture well the intrinsic relationships between features when using

small data sets for training data synthesizers (DHAMI et al., 2021). The inferior performance

of GAN-based synthesizers was also noted by (TAO et al., 2021), which showed that models

trained on GAN-based synthetic data perform worse than models trained on marginal-based

synthetic data.

In third and fourth rows of Figure 4.2 we present the plots of variation of AUC for different

values of epsilon for TSTS models. The plots in the third row refer to performance of models

trained on marginal-based synthesizers, the the plots in the fourth row refer to GAN-based

synthesizers. By comparing the models trained with marginal-based synthetic data when eva-
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Figure 4.2: Impact in utility caused by the use of differentially private synthetic data in model
training and testing. In the first two rows we show the decay in model utility when utilizing
marginal-based and GAN-based synthetic datasets for model training. In the third and fourth
rows we show what is the measured model utility when the instrument for measuring model
performance is a synthetic dataset.
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luated in different modes - TSTR and TSTS , we see that the assessment is very similar in both

cases when the synthesizers are MST, AIM and MWEM PGM. When assessing with synthetic

data, we notice that PrivBayes present a large difference in assessment results when assessing

model trained on Adult and fair COMPAS synthetic data. GAN-based synthetic data, once

again, present inconsistent behavior when used for model assessment. When comparing the as-

sessments TSTR and TSTS, we notice that using DP-GAN sythetic data for model assessment

can over estimate model AUC. Overall, GAN-based synthetic data made assessments that are

as good as random guessing.

4.3.2 Fairness analysis: impacts of synthetic data in machine learning pipelines

4.3.2.1 Impacts on subgroup accuracy

In the previous section, we showed that adding privacy by utilizing synthetic datasets in

machine learning pipelines results in a utility decrease in most cases. We now proceed to

perform a fairness analysis. In the first experiment, presented in Table 4.2, we analyzed model

accuracy for different groups in the protected class. The goal of the experiment is to understand

whether the addition of privacy to the data pipeline harms model utility more for the minority

class than it does for the privileged class. Results in Table 4.2 refer to the Adult, COMPAS

and COMPAS (fair) datasets.

We first note that the model accuracy decay when training models with marginal-based

(AIM) Adult synthetic data is smaller for the minority subgroup (Female), which presented

an accuracy decay of 0.005, than it is for the privileged subgroup (Male), which presented an

accuracy decay of 0.01. Models trained with marginal-based COMPAS synthetic data presented

a slightly larger accuracy decay for the minority subgroup (Black) when compared to the

accuracy decay for the privileged subgroup (Caucasian). Models trained on synthetic COMPAS

fair dataset did not show accuracy decay in any of the subgroups. Overall, marginal-based

synthesizers do not further accentuate subgroup accuracy disparities.

In the case of models trained with GAN-based synthetic datasets, no clear pattern of sub-

group accuracy disparity was observed. For models trained with GAN-based Adult synthetic

data, accuracy decay of the minority class (Female) was smaller than accuracy decay for the
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Accuracy of different subgroups
Synthesizer minority (R) minority (S) privileged (R) privileged (S)

Adult data
Real 0.924 – 0.804 –
AIM 0.919 0.916 0.794 0.807
MWEM PGM 0.909 0.898 0.779 0.770
MST 0.914 0.895 0.756 0.765
PrivBayes 0.892 0.713 0.709 0.648
DP-GAN 0.733 0.929 0.585 0.855
PATE-CTGAN 0.892 0.938 0.695 0.942
DP-CTGAN 0.889 0.999 0.693 0.999
PATE-GAN 0.892 0.874 0.695 0.854

COMPAS data
Real 0.632 – 0.644 –
AIM 0.630 0.610 0.645 0.633
MWEM PGM 0.630 0.627 0.644 0.598
MST 0.616 0.614 0.631 0.616
PrivBayes 0.619 0.598 0.639 0.622
DP-GAN 0.497 0.514 0.451 0.452
PATE-CTGAN 0.536 0.497 0.377 0.499
DP-CTGAN 0.499 0.463 0.527 0.450
PATE-GAN 0.466 0.370 0.624 0.422

COMPAS (fair) data
Real 0.690 – 0.679 –
AIM 0.690 0.693 0.679 0.701
MWEM PGM 0.690 0.678 0.679 0.707
MST 0.691 0.685 0.704 0.699
PrivBayes 0.674 0.632 0.672 0.656
DP-GAN 0.513 0.366 0.542 0.474
PATE-CTGAN 0.471 0.499 0.437 0.510
DP-CTGAN 0.491 0.524 0.489 0.528
PATE-GAN 0.528 0.389 0.562 0.442

Table 4.2: Accuracy comparison for different subgroups of the protected attribute. The com-
parison presented accounts for synthetic data generated with privacy-loss parameter ϵ = 5.0.
We show a comparison of model accuracy for the different groups measured with real data (R),
and model accuracy measured with synthetic data (S).
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privileged class (Male). In the case of models trained with GAN-based COMPAS and COM-

PAS (fair) synthetic data, accuracy of both subgroups were close to 0.5, confirming previous

results, that showed model trained with GAN-based data acting like random classifiers. What

we confirmed with this experiment is that this phenomenon happens for all subgroups.

4.3.2.2 Impacts on statistical parity

A model presents statistical parity if the percentage of positive predictions are the same

for all subgroups. The goal of the experiments in this section is to measure whether models

trained with synthetic data preserve the characteristics of models trained on real data.

Our experiments measure the difference in statistical parity (DSP) of models. We measure

DSP of models using real data - DSP(R), and using synthetic data - DSP(S). We present a

detailed comparison of DSP for all three datasets and all synthesizers on Table 4.3. We notice

from our experiments that several models trained on synthetic data seem to be less biased

than the model trained on real data. In terms of training models that performs similarly to

models trained with real data, AIM synthesizer outperformed all other algorithms, followed

by MWEM PGM synthesizer. AIM presented the best results in preserving statistical parity,

based on experiments with all three datasets: Adult, COMPAS and COMPAS fair. GAN-

based synthesizers, overall presented an intriguing performance: in some cases it seems like it

has achieved perfect fairness.

To understand better what is behind this apparent fairness provided some GAN-based

synthetic datasets, we investigate the percentage of positive labelled samples in the training

data, evaluation data and predictions of models on TSTR and TSTS modes. We present

percentages for minority and privileged classes in Table 4.4.

As we investigate GAN-based synthetic data, we observe in Table 4.4 that synthetic data

generated with PATE-GAN and PATE-CTGAN presents very similar percentages of samples

with positive labels for each subgroup that belongs to the protected attribute. At a first sight,

this seems like a dataset with promising fairness capabilities. However, when training models

with such data, in most cases there were no positive predictions resulting from the model scoring.

The model trained with PATE-GAN and PATE-CTGAN data acts like a majority baseline
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Data Synthesizer DSP(R) DSP(S) DSP delta
Adult AIM 0.193 0.184 0.009

MST 0.083 0.072 0.011
MWEM PGM 0.168 0.159 0.009
PrivBayes 0.051 0.043 0.008
DP-CTGAN -0.001 0.000 -0.001
DP-GAN 0.346 0.253 -0.093
PATE-CTGAN 0.000 0.000 0.000
PATE-GAN 0.000 0.000 0.000
Real 0.189

COMPAS AIM -0.207 -0.204 -0.002
MST -0.182 -0.101 -0.082
MWEM PGM -0.218 -0.190 -0.028
PrivBaeys -0.211 -0.153 -0.058
DP-CTGAN -0.034 0.001 -0.034
DP-GAN 0.072 -0.089 0.161
PATE-CTGAN -0.008 -0.009 0.001
PATE-GAN 0.000 -0.001 0.001
Real -0.205

COMPAS AIM 0.009 0.020 -0.010
(fair) MST -0.185 -0.090 -0.095

MWEM PGM -0.018 0.015 -0.032
PrivBayes -0.065 0.005 -0.060
DP-CTGAN -0.034 -0.004 -0.030
DP-GAN 0.066 0.096 -0.030
PATE-CTGAN 0.000 0.000 0.000
PATE-GAN 0.000 0.000 0.000
Real -0.025

Table 4.3: Difference in statistical parity (DSP) of models trained with synthetic data. We
measure the DSP of models using real test data - DSP(R) and synthetic test data DSP(S).
DEO delta quantifies the difference between DSP(R) and DSP(S). All synthetic data where
generated using privacy-loss parameter ϵ = 5.0.

classifier for all groups. The datasets generated with DP-CTGAN presented an accentuated

disparity in positive labels percentages between minority and privileged classes. In the real

Adult data 30% of privileged class contains positive labels, while only 10% of minority class

contains positive labels. Although DP-GAN synthesizer generates data where 31% of privileged

class with positive labels (a value similar to the one presented in the real data - 30%), there is

a significant decrease in the percentage of positive class in the minority class, which is ≈ 6%.

This imbalance is even further accentuated by the models trained with DP-GAN synthetic data.

Model predictions resulted in over half of samples from the privileged class being classified with

positive labels (versus 20% of minority class). For models trained with COMPAS and COMPAS
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Ratio of positive labels
Synthesizer Generated data Predictions(R) Predictions(S)

Adult data
Female Male Female Male Female Male

Real 0.109 0.303 0.055 0.244
AIM 0.110 0.303 0.049 0.242 0.056 0.239
MWEM PGM 0.120 0.307 0.042 0.209 0.043 0.202
MST 0.123 0.297 0.032 0.115 0.031 0.102
PrivBayes 0.259 0.342 0.004 0.060 0.102 0.143
PATE-GAN 0.125 0.144 ≈ 0 ≈ 0 ≈ 0 ≈ 0
PATE-CTGAN 0.056 0.058 ≈ 0 ≈ 0 ≈ 0 ≈ 0
DP-GAN 0.061 0.307 0.199 0.545 0.016 0.269
DP-CTGAN ≈ 0 0.002 0.227 0.130 ≈ 0 ≈ 0

COMPAS data
Black Caucasian Black Caucasian Black Caucasian

Real 0.504 0.402 0.499 0.294
AIM 0.503 0.405 0.504 0.297 0.500 0.297
MWEM PGM 0.504 0.403 0.514 0.294 0.498 0.302
MST 0.477 0.443 0.567 0.384 0.538 0.433
PrivBayes 0.489 0.436 0.566 0.352 0.550 0.387
PATE-GAN 0.231 0.196 0.397 ≈ 0 ≈ 0 ≈ 0
PATE-CTGAN 0.548 0.541 0.715 0.975 0.981 0.949
DP-GAN 0.745 0.583 0.442 0.908 0.004 ≈ 0
DP-CTGAN 0.471 0.455 0.302 0.218 0.217 0.179

COMPAS (fair) data
Black Caucasian Black Caucasian Black Caucasian

Real 0.454 0.493 0.488 0.463
AIM 0.453 0.493 0.487 0.487 0.478 0.492
MWEM PGM 0.454 0.491 0.480 0.463 0.466 0.478
MST 0.485 0.446 0.495 0.310 0.478 0.393
PrivBayes 0.450 0.497 0.561 0.491 0.530 0.520
PATE-GAN 0.232 0.194 0.397 ≈ 0 ≈ 0 ≈ 0
PATE-CTGAN 0.606 0.598 0.397 ≈ 0 ≈ 0 ≈ 0
DP-GAN 0.593 0.664 0.560 0.836 0.865 0.744
DP-CTGAN 0.581 0.576 0.492 0.398 0.421 0.401

Table 4.4: Ratio of samples with positive labels for each subgroup in the protect class in the
Adult , COMPAS and COMPAS (fair) datasets. We compare percentages present in the true
labels of the real data and the predicted labels. Analogously, we measure the ratio of samples
with positive label present in the synthetic generated data and predicted labels for datasets
generated using distinct synthesizer techniques. Predictions(R) represents ratio of positive
prediction labels of an experiment where model trained on synthetic data was evaluated on
real data, and Predictions(S) ratio of positive prediction labels of an experiment where model
trained on synthetic data was evaluated on synthetic data.
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fair synthetic datasets, similar behavior was observed.

AIM once again was the best overall performing model, as it preserves similar percentages

of positive labels for all groups, 11% and 30% (compared to 11% and 30% in real data).

Models trained with AIM also presented similar metric to models trained with real data, and

even presenting slightly improvement in fairness. The runner-up synthetic data generator in

preserving the ratio of positive labels was the MWEM algorithm.

The DSP delta presented in Table 4.3 quantifies the difference in DSP observed during

model evalution with real data and model evaluation with synthetic data. For Adult dataset,

a positive DSP delta means that evaluation with synthetic data observed fairer results than

evaluation with real data. For COMPAS and fair COMPAS data, a negative DSP delta means

that evaluation with synthetic data observed fairer results than evaluation with real data.

Across all datasets, models trained with AIM and MWEM PGM presented DSP metrics

very similar to models trained with real data, this is captured by the DSP(R) metric.

4.3.2.3 Impacts on equal opportunity

Equal Opportunity requires equal True Positive Rate (TPR) across subgroups. Difference

in equal opportunity (DEO) measures the difference of privileged group TPR and minority

group TPR.

We perform a thorough analysis to understand two points related to equal opportunity.

First, what is the DEO of models trained with synthetic datasets, and how does it compare

with models trained with real data? Second, given that true positive rate is the foundation for

understanding equal opportunity, we investigate whether synthetic data preserves true positive

rates across all subgroups.

We present in Table 4.5 experiment results comparing DEO of models trained with differen-

tially private synthetic datasets (ϵ = 5.0). These experiment are similar to the statistical parity

experiments, we use real data - DEO(R) - to measure DEO of models trained on synthetic data,

as well as synthetic data - DEO(S).

Model trained with AIM and MWEM PGM synthetic data were the only ones that presented

a similar DEO to the baseline model, outperforming all other models trained with synthetic
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Data Synthesizer DEO (R) DEO (S) DEO delta
Adult AIM 0.209 0.200 0.009

MST 0.038 0.076 -0.037
MWEM PGM 0.206 0.200 0.006
PrivBayes 0.094 0.026 0.067
DP-CTGAN -0.002 ≈0.00 -0.002
DP-GAN 0.527 0.641 -0.116
PATE-CTGAN 0.000 0.000 0.000
PATE-GAN 0.000 0.000 0.000
Real 0.173

COMPAS AIM -0.201 -0.195 -0.006
MST -0.150 -0.089 -0.061
MWEM PGM -0.215 -0.224 0.009
PrivBayes -0.177 -0.127 -0.051
DP-CTGAN -0.031 -0.000 -0.031
DP-GAN -0.075 0.020 0.055
PATE-CTGAN -0.011 -0.009 -0.002
PATE-GAN 0.000 -0.001 0.001
Real -0.204

COMPAS AIM 0.007 0.013 -0.006
(fair) MST -0.181 -0.073 -0.107

MWEM PGM -0.019 0.037 -0.056
PrivBayes -0.057 0.005 -0.062
DP-CTGAN -0.030 -0.005 -0.026
DP-GAN 0.097 0.087 0.010
PATE-CTGAN 0.000 0.000 0.000
PATE-GAN 0.000 -0.001 -0.000
Real -0.027

Table 4.5: Difference in equal opportunity (DEO) of models trained with synthetic data. We
measure the DEO of models using real test data - DEO(R) and synthetic test data DEO(S).
DEO delta quantifies the difference between DEO(R) and DEO(S). All synthetic data where
generated using privacy-loss parameter ϵ = 5.0.
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data. Note that our comparison, as in the DSP case, focus on understanding which synthetic

datasets can train models that behave as close as possible to models trained with real data.

Models trained with MST, which presented promising utility metrics and subgroup accuracy,

did not capture as well the difference in equality on odds in experiments with the Adult data.

For experiments with COMPAS and fair COMPAS data, MST performs better, but still worse

than AIM and MWEM PGM, as we can see on Table 4.5.

As we investigate the details of variation in TPR it becomes clear AIM algorithm is the

the best technique for training models that preserve fairness characteristics of models trained

with real data, followed by MWEM PGM algorithm. Experiments with Adult data (Figure

4.3) show that the difference between the privileged group TPR and the minority group TPR

of models trained with AIM data is very similar to the difference between subgroups TPR of

models trained with real data, for all values of privacy-loss parameter ϵ. Similar conclusion is

achieved by observing experiments with COMPAS and COMPAS fair data (Figures 4.4 and

4.5). Not only the difference between the subgroup TPR of the model trained with AIM and

MWEM PGM synthetic data is close to that of the model trained with real data, but the true

positive rates of the subgroups are also very similar to the TPR of the model trained with real

data. Figures 4.3 , 4.4 and 4.5 show that models trained with marginal-based synthetic data

outperforms models trained with GAN-based synthetic data for our tested datasets.

We make a similar analysis when evaluating how good synthetic datasets are for assessing

TPRs. Figures 4.3, 4.4 and 4.5 also present plots of TPR when synthetic data is used during

model assessment. Models trained with AIM and MWEM PGM data present very similar

assessment when using both real and synthetic data as test data. Models trained on MST

and PrivBayes present greater discrepancies. Models trained on GAN-based data present even

greater discrepancies between assessments made with real and synthetic data as test data.
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Figure 4.3: True positive rate (TPR) variation of different subgroups of the protected attribute
of the Adult data. The top three rows shows TPR variation for different values of privacy-loss
parameter ϵ, TSTR mode. The bottom three rows shows TPR variation for different values of
privacy-loss parameter ϵ, TSTS mode.
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Figure 4.4: True positive rate (TPR) variation of different subgroups of the protected attribute
of the COMPAS data. The top three rows shows TPR variation for different values of privacy-
loss parameter ϵ, TSTR mode. The bottom three rows shows TPR variation for different values
of privacy-loss parameter ϵ, TSTS mode.
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Figure 4.5: True positive rate (TPR) variation of different subgroups of the protected attribute
of the COMPAS (fair) data. The top three rows shows TPR variation for different values
of privacy-loss parameter ϵ, TSTR mode. The bottom three rows shows TPR variation for
different values of privacy-loss parameter ϵ, TSTS mode.
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Adult COMPAS COMPAS Fair
Synthesizer Rank AUC (R/S) Rank AUC (R/S) Rank AUC (R/S)
AIM 1st 0.886/0.882 2nd 0.683/ 0.666 2nd 0.761/0.771
MWEM PGM 2st 0.850/0.820 1st 0.684/ 0.666 1st 0.762/0.762
MST 3rd 0.836/0.804 4th 0.662/0.647 3rd 0.763/0.756
PrivBayes 4th 0.846/0.650 3rd 0.668/0.645 4th 0.738/0.710
DP-GAN 5th 0.667/0.880 7th 0.503/0.568 5th 0.557/0.546
PATE-CTGAN 6th 0.343/0.504 5th 0.552/0.492 6th 0.556/0.502
DP-CTGAN 7th 0.284/0.485 6th 0.504/0.502 7th 0.515/0.501
PATE-GAN 8th 0.210/0.597 8th 0.362/0.587 8th 0.283/0.588

Table 4.6: Synthesizer utility comparison. We compare and rank all synthesizers by their
ability to generate quality training data and evaluation data for machine learning pipelines.
The comparison presented accounts for synthetic data generated with privacy-loss parameter
ϵ = 5.0. In addition to present a performance ranking for Adult, COMPAS data and COMPAS
(fair) data, we show a comparison of model AUC measured in TSTR mode - AUC(R), and
model AUC measured in TSTS mode - AUC(S).

4.4 DISCUSSION

4.4.1 Marginal-based synthetic data does better at training and assessing utility of

models.

The results in section 4.3.1, showed that models trained marginal-based synthetic data can

have similar performance to models trained on real data. We observed the AIM synthetic data

generation algorithm generated data that performed very closely to real data when training

and evaluating machine learning models. The AIM data synthesizer presented a consistent

performance across all datasets and for all values of privacy-loss parameter ϵ. To showcase a

clear comparison between marginal-based and GAN-based synthesizers, we ranked the utility

performance of all synthesizers taking based on two criteria: ability to generate synthetic data

for model training and ability to generate synthetic data for model assessment. We ranked

the synthesizers for each dataset used in our experiments. Table 4.6 shows the ranking of

synthesizers when generating training and assessment data for the Adult data, COMPAS data

and COMPAS (fair) data. The table also shows a comparison of model AUC measured in

TSTR mode - AUC(R), and model AUC measured in TSTS mode - AUC(S). All table results

accounts for synthetic data generated with privacy-loss parameter ϵ = 5.0.

Synthetic data generated with the AIM algorithm outperforms (or tie with) all other synthe-
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tic data for both tasks: utility as training data for machine learning models and utility as evalu-

ation data for machine learning models. The performance of synthetic datasets generated with

AIM was very similar to real data, both when using the synthetic data for model training and

model assessment. For model training, when comparing the AUC achieved by model trained

with the real Adult dataset (AUC = 0.892 ) to the metrics achieved by models trained with AIM

Adult synthetic data (AUC= 0.886) and MWEM PGM Adult synthetic data (AUC = 0.850 ),

the decrease in performance is small. The synthetic datasets also present a good performance

as assessment data. The model assessment with AIM generated data showed good results, with

an assessment of AUC = 0.882. Assessment with other marginal-based synthesizers, MST data

(AUC = 0.804) and MWEM PGM data (AUC = 0.820), also presented consistent results, with

a small decay. Although PrivBayes data presents good performance in model training (AUC =

0.846), there is a significant discrepancy between assessment utilizing real data and assessment

utilizing synthetic data. We reached similar conclusions when analysing results for COMPAS

and COMPAS (fair) data. Overall, our experiments using GAN-based data as training data

resulted in models with utility very close to random guess. DP-GAN synthetic data performed

slightly better than the rest of GAN-based datasets. We believe that the fact that the datasets

used in our experiments are relatively small (less than 50k rows), GAN-based synthesizers do

not have enough data samples to capture correctly the relationships between features. Although

experiments with larger datasets can be useful to uderstand whether GAN-based synthesizers

could do better with more data, the datasets used in our experiments are great representations

of datasets found in the real world. Such datasets are rarely larger than a couple of thousand

rows.

4.4.2 Marginal-based synthetic data preserves and better assess model fairness

We evaluated the performance of the synthetic datasets based on two key model fairness

tasks: the ability to mirror the behavior of actual data in downstream model fairness, and the

ability to produce synthetic data for assessing model fairness. Our analysis includes a rigorous

assessment of model fairness, which includes measuring subgroup accuracy, the difference in

statistical parity(DSP) and the difference in equal opportunity (DEO). Beyond measuring the

classical fairness metrics, we also assess the Positive Predictive Value (PPV) and True Positive
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Metric Best Synthesizer Runner up
Subgroup accuracy AIM MWEM PGM
Difference in statistical parity AIM MWEM PGM
Difference in equality of odds AIM MWEM PGM
PPV accross subgroups AIM MWEM PGM
TPR accross subgroups AIM MWEM PGM

Table 4.7: Best synthesizers for each fairness metric evaluated in the experiments: subgroup
accuracy, difference in statistical parity and difference in equality of odds. We also present the
synthesizers that best preserve PPV and TPR accross subgroups. We present the two best
synthetic data generator for each task. We selected best synthesizer and runner up based on
experiments with privacy-loss budget ϵ = 5.0.

Rate (TPR) for each subgroup within the protected class. The significance of evaluating PPV

and TPR lies in understanding if the model upholds fairness because it accurately represents

PPV and TPR for all subgroups, or if it does so merely by acting as a random classifier.

Table 4.7 shows the best synthesizers in end-to-end machine learning pipelines when evalua-

ting for fairness metrics. All table results accounts for synthetic data generated with privacy-loss

parameter ϵ = 5.0.

Throughout fairness experiments we observed that marginal-based synthetic datasets perfor-

med better than GAN-based synthetic dataset across all algorithmic fairness metrics. AIM and

MWEM PGM synthetic data generation algorithms not only outperformed all other synthetic

data generation algorithms, but these synthesizers generated data that performed similarly to

real data in the three fairness metrics, and in our deeper investigations on PPV an TPR. This

advantage was observed for multiple values of privacy-loss parameter ϵ, when synthetic data

was used as a training dataset as well as when used as a testing dataset.

The investigation of subgroup PPV and TPR metrics clarified our observations regarding

model fairness performances. We note that AIM and MWEM PGM synthetic data presents a

ratio of positive labels comparable to that obtained with real data (Table 4.4), for all subgroups.

When evaluating the ratio of positive labels in prediction for all subgroups in the Adult data

(female and male) and in the COMPAS and COMPAS (fair) data (black and caucasian) in

Table 4.4, we see that AIM and MWEM PGM also results is metrics that are the closest to

real data.

The evaluation of true positive rate provides more insights into the bias introduced by

synthetic dataset in end-to-end machine learning pipelines. Figures 4.3, 4.4 and 4.5 shows
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the variation of TPR for different values of ϵ, in experiments with Adult, COMPAS and fair

COMPAS, respectively. For COMPAS dataset, AIM provides the best performance, comparable

the real dataset in an end-to-end analysis. For Adult data, ϵ > 1 provides comparable metrics.

Other algorithms, such as PrivBayes, that presented utility results (AUC metric) comparable

to real data, showed low performance in terms of TPR. Finally, marginal-based synthesizers

presented similar performance from the point of view of utility and fairness for both biased and

fair versions of the COMPAS dataset.



CHAPTER 5

SECURE MULTIPARTY COMPUTATION FOR
SYNTHETIC DATA GENERATION FROM

DISTRIBUTED DATA

We live in an era of abundant data, where enormous amounts of personal data are collec-

ted daily via smartphones, social media, smartwatches, medical devices, among many other

services. These datasets have helped researchers and industry understand our behavior bet-

ter on both individual and collective levels, and have also allowed important research studies

in many disciplines, including health, education, and economy. At the same time, we see an

increase in privacy regulations globally. Following the introduction of the GDPR,1 more than

60 jurisdictions around the world have proposed postmodern data privacy protection laws. By

2024, 75% of the world’s population will have its personal information covered under modern

privacy regulations (RIMOL, 2022). While privacy regulations are of extreme importance from

an ethics perspective, they can potentially result in data stored in silos, compromising data

usage and data sharing, and stalling research.

Synthetic data generation is emerging as a paradigm to break this data logjam. While

data synthesis is arguably best known as a means to create training examples for data hungry

deep learning models (NIKOLENKO, 2021), it is increasingly acknowledged and proposed as a

privacy-enhancing technology (PET) (JORDON et al., 2018; MCKENNA et al., 2021; Science

and Technology Policy Office, 2022; TORKZADEHMAHANI et al., 2019; WALONOSKI et al.,

2018; XIE et al., 2018). When done well, synthetic data has the same distribution or charac-

teristics as the underlying, real data, but, crucially, without replicating personal information.

The latter is often formalized through the notion of Differential Privacy (DP) (DWORK et

al., 2006a), which intuitively means that the synthetic data should not reveal specifics about

individual records in the underlying, real data.

1European General Data Protection Regulation <https://gdpr-info.eu/>

https://gdpr-info.eu/
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The contributions of this paper are the following: (1) We introduce a framework for synthetic

data generation from distributed databases that utilizes Secure Multiparty Computation (MPC)

(CRAMER et al., 2015) protocols that are run by two or more computing parties to emulate

a trusted curator. This simulation enables the generation of synthetic data from training data

held by multiple data holders, without requiring these data holders to disclose their data to

anyone in an unencrypted manner. (2) We modify the Multiplicative Weights with Exponential

Mechanism (MWEM), to generate synthetic data with DP guarantees, based on real data

originating from many data holders, and without reliance on a single point of failure. (3)

We propose an MPC protocol for secure sampling from distributed data using the exponential

mechanism.

5.1 CONTRIBUTIONS.

Previous proposals for differentially private synthetic data generation from distributed da-

tabases use federated learning (FL) for training the data synthesizer (BEHERA et al., 2022;

XIN et al., 2022; XIN et al., 2020). In (BEHERA et al., 2022; XIN et al., 2022; XIN et al.,

2020), synthetic data is generated utilizing generative adversarial networks (GANs) in combi-

nation with FL. (XIN et al., 2020) proposes a method based on serial training, and (XIN et

al., 2022) presents a variation of the framework to account for non-IID datasets. In (BEHERA

et al., 2022), the training of the data synthesizer occurs in parallel, resulting in more efficient

results. In these methods, each data holder sends model weights (without privacy protection)

to a trusted aggregator, who computes the average of model weights and adds Laplacian noise.

Our proposal removes the need for data holders to disclose model parameters, and the need to

rely on a single point of failure, by emulating the trusted aggregator with MPC. Additionally,

previous works utilizing FL to train data synthesizers only account for horizontally partitioned

data.

While MPC has emerged as a paradigm for privacy-preserving training of ML models over

distributed data (e.g. (ADAMS et al., 2022; AGARWAL et al., 2019a; De Cock et al., 2021;

GUO et al., 2022; MOHASSEL; ZHANG, 2017; WAGH et al., 2019)) and privacy-preserving

inference with trained ML models (e.g. (De Cock et al., 2019; FRITCHMAN et al., 2018; LIU

et al., 2017; MISHRA et al., 2020; PENTYALA et al., 2021)), and it has been proposed for



5.2 – Methods 82

Algorithm 1: The MWEM algorithm (Hardt et al. [2012])
Input : Dataset D over a universe D, set of linear queries Q, number of iterations T , and privacy

parameter ϵ > 0.
Let n denote |D|, the number of records in D.
Let A0 denote n times the uniform distribution over D.

1 for i ∈ {1, . . . , T} do
2 Exponential Mechanism: sample a query qi ∈ Q using the Exponential Mechanism

parametrized with epsilon value ϵ/2T and the score function: si(D,q) = |q(Ai−1)− q(D)|
3 Laplace Mechanism: Let measurement mi = qi(D) + Lap(2T/ϵ)
4 Multiplicative Weights: Let Ai be n times the distribution whose entries satisfy

Ai(x) ∝ Ai−1(x)× exp(qi(x)× (mi − qi(Ai−1))/2n)

5 end
Output: A = avgi<TAi

secure computation of histograms (e.g. (BELL et al., 2022)), the idea of using MPC for privacy-

preserving generation of synthetic data, as we propose here, is novel and a practical and secure

technological solution.

5.2 METHODS

5.2.1 MWEM algorithm

As aeen in Chapter 2, the MWEM algorithm is a marginal-based synthetic data generation

algorithm that takes as input a dataset D ⊆ D and a set of linear queries Q (e.g. counting

queries).

The algorithm aims to produce a distribution A over D such that the answers to the queries

q in Q when run over A are similar to when run over D, i.e. the difference between q(A) and

q(D) should be small. This is achieved by repeatedly sampling a query for which the difference

is still large (line 2 in Alg. 1), and updating the weight that A places on each record x with the

Multiplicative Weights update rule to better approximate the distribution of D w.r.t. q (line

4). Furthermore, MWEM satisfies ϵ-DP by leveraging the exponential mechanism for query

selection, and the Laplace mechanism to perturb the query results.

In the MWEM algorithm, the set of “results” to be selected from at each iteration is the set

of queries Q = {q1,q2, . . . ,qN}, and the value of the scoring function for query qi is s(D,qi) =

|q(A) − qi(D)|, i.e. the difference in the answer for query qi when run over the approximate
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data A vs. when run over the real data D. Alg. 2 provides pseudocode for the exponential

mechanism for query selection (HARDT et al., 2012; ROSENBLATT et al., 2020b). Lines 1–6

generate the probability distribution over the set of results (queries) as per Eq. (2.8), while

lines 8–13 sample a result (query).

Algorithm 2: Algorithm for sampling a query using the Exponential Mechanism
Input : Answers to linear queries for synthetic data q(A) and real data q(D), number

of linear queries N , and privacy parameter ϵ′.
1 // Compute the probability distribution over the set of queries
2 for i← 1 to N do
3 err[i] = 0.5 · ϵ′· abs(qi(A)− qi(D)) //Note : s(D,qi) = |qi(A)− qi(D)|
4 end
5 max_err = max(err)
6 for i← 1 to N do
7 err[i] = exp(err[i]− max_err)
8 end
9 // Sample the query

10 e_s =
∑N

i=1(err[i])
11 r = random value drawn from uniform distribution in [0,1]
12 c = 0
13 for i← 1 to N do
14 c = c + err[i]
15 if c > r · e_s then
16 return i
17 end
18 end
19 return N

5.2.2 Distributed MWEM algorithm

We address the scenario where, instead of residing with one entity, the dataset D that we

wish to give as input to the MWEM algorithm is distributed among multiple data holders who

cannot disclose their data to anyone in an unencrypted manner. We distinguish between the

data holders who hold the data sets, and the computing parties who run the MPC protocols

for synthetic data generation and noise addition. Our solution works in scenarios in which each

data holder (e.g. hospital or bank) is also a computing party, as well as in scenarios where the

data holders outsource the computations to untrusted servers (computing parties) instead. The

data holders send secret shares of their data to a set of computing parties.
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Protocol 3: πQEM - Protocol for secure sampling a query using the Exponential Me-
chanism

Input : The number N of queries in Q, secret-shared true query answer [[qi(D)]] and approximate
query answer qi(A) for each qi in Q, privacy parameter ϵ′ = ϵ/(2T )

1 Initialize a vector err of length N
2 for i← 1 to N do
3 [[diff]] ← [[qi(D)]]− qi(A)
4 [[sign]] ← πLT([[diff]], 0) // with secure comparison protocol πLT

5 [[abs_diff]] ← πMUL(1− 2 · [[sign]], [[diff]]) //with secure multiplication protocol πMUL

6 [[err[i]]] ← [[abs_diff]] · 0.5 · ϵ′
7 end
8 [[max_err]] ← πMAX([[err]]) // with secure maximum protocol πMAX

9 for i← 1 to N do
10 [[err[i]]] ← πEXP([[err[i]]]− [[max_err]]) // with secure exponentiation protocol πEXP

11 end
12 // Get random threshold to sample query
13 es ← 0
14 Initialize a vector c of length N
15 for i← 1 to N do
16 [[es]] ← [[es]] + [[err[i]]]
17 [[c[i]]] ← [[es]]
18 end
19 [[r]]← πGR−RANDOM(0,1) // with protocol for random number generation πGR−RANDOM

20 [[t]] ← πMUL([[es]],[[r]])
21 s ← 0
22 for i← 1 to N do
23 [[cnd]] ← πGT([[c[i]]], [[t]])
24 [[s]] ← [[s]] + [[cnd]]
25 end
26 [[cnd]] ← πEQ([[s]], 0)
27 [[k]] ← N − πMUL([[s]]− 1, 1− [[cnd]])

Output: Secret-sharing [[k]] of the index of the selected query

Without loss of generality, we assume that the computing parties have secret shares of [[D]]

of D, which they can use to compute a secret-sharing of the query result [[q(D)]] for each q in

Q using primitive MPC protocols for addition and multiplication.

The execution of the overall MWEM algorithm can be coordinated by one of the data

holders or any other entity interested in generating the synthetic data. Indeed, there are only

two crucial steps in Alg. 1 that rely directly on the encrypted data [[D]], or rather [[q(D)]], hence

requiring MPC computations involving all computing parties: (1) the query selection in line

2; and (2) the measurement in line 3. Note that the output of the computations in line 2 and

line 3 is protected with DP guarantees. In other words, if we let the computing parties run

MPC protocols for the computations and the DP mechanisms, then they can publicly reveal

the selected query (line 2) and the perturbed query result (line 3), which can subsequently be

used for further computations. Furthermore, there is no need to encrypt the synthetic data
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distribution A, as it is not based on any information from D that is not already protected with

DP. This is a welcome observation because it means that query evaluations need to be done

only once over encrypted data, namely to compute [[q(D)]], and any further query evaluations

on new versions of A can be done in-the-clear, i.e. without the need for encryption.

Description of πQEM. For the secure query sampling on line 2 of Alg. 1, we propose MPC-

protocol πQEM (see Prot. 3) which is called with privacy budget ϵ′ = ϵ/(2T ). πQEM consists of

two parts: on lines 1–9 the parties compute secret shares of the probability distribution over the

queries, while on lines 10–23 the parties subsequently sample a query qk from that distribution.

Pseudocode for a corresponding algorithm in-the-clear, i.e. without regards for privacy, and the

MPC primitives used in MWEM algorithm are described in Chapter 2.

The number and the kind of operations to construct the probability distribution and to

compute the threshold (lines 1–9 in Alg. 2) are deterministic in the sense that they do not depend

on the value of the data, hence their MPC counterpart in Prot. 3 is relatively straightforward.

The implementation of the counterpart of the for-loop that starts on line 11 in Alg. 2 requires

more care, as exiting the for-loop prematurely could allow an adversary to infer the value of

the returned index from the runtime.

The code in line 18-23 in Prot. 3 is written to prevent such side-channel attacks. To

understand this part of the code, note that we have a list c[1..N ] of non-decreasing values,

i.e. the cumulative probability sums, and we – or rather the computing parties – have to find

the first index i in c[1..N ] for which c[i] > t. In a mock example with N = 10, and assuming

that the first such c[i] value is at position 7, the tests on line 20 will generate the results

0,0,0,0,0,0,1,1,1,1. On line 21, these results are accumulated in s, which eventually becomes 4,

and the desired index is computed as N − (s − 1) = 10 − 3 = 7. Lines 22–23 take care of the

edge case when c[i] ≤ t for all i (i.e. s is 0). We protect the value of s by employing MPC

primitives for multiplication to simulate a conditional statement.

Description of πLAP. For the measurement computed in line 3 of Alg. 1, we design πLAP (see

Prot. 4) to securely sample noise from from the Laplacian distribution and add to the secret

sharing of qi(D). The noise is sampled as b · ln x· c where b = 2T/ϵ is the privacy budget, x is

a random value drawn from the uniform distribution in [0,1] and c is a random value selected

from {−1,1}. On lines 1–2, the parties straightforwardly compute x and its natural log. To
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Protocol 4: πLAP - Protocol for Laplace mechanism
Input : Secret shared true query answer [[qi(D)]] and b = 2T/ϵ

1 [[x]] ← πGR−RANDOM(0,1) // with protocol for random number generation πGR−RANDOM

2 [[ln_x]] ← πLN([[x]]) // with secure logarithm protocol πLN

3 [[r]] ← πGR−RNDM−BIT() // with protocol for random bit generation πGR−RANDOM

4 [[c]] ← 2 · [[r]]− 1
5 [[mi]] ← [[qi(D)]] + b · πMUL([[ln_x]], [[c]]) // with secure multiplication protocol πMUL

Output: Secret sharing of measurement [[mi]] for the query qi, with mi = qi(D) + Lap(2T/ϵ)

compute c, the parties, on line 3, generate secret shares of a random bit [[r]], i.e. a value ∈ {0,1}

is chosen, where each value has a chance of 50% to be chosen. On line 4, the parties transform

r to a value ∈ {−1,1} using the logic c = 2· r −1. Line 5 is straightforward where the parties

compute secret shares of measurement [[mi]] for the query qi, which is then made public for

further computations in Alg. 1.

5.3 EXPERIMENTS

We evaluate MPC-MWEM against a centralized version of MWEM (HARDT et al., 2012)

using two publicly available datasets, namely the Car and Adult datasets, which have been

featured in previous DP synthetic dataset generation analyses (HARDT et al., 2012; ROSEN-

BLATT et al., 2020b). In all the results below, centralized refers to the setting in which all

data holders disclose their data to a central, trusted curator who runs the MWEM algorithm

over all the data combined, while distributed refers to the setting in which the data holders

secret share their data with computing parties who run MPC protocols. The distributed setting

protects the privacy of the inputs, while the centralized setting does not. The results for the

centralized setting are obtained with an implementation of MWEM in SmartNoise (ROSEN-

BLATT et al., 2020b). For the distributed setting, we implemented our MPC protocols πQEM

and πLAP in the MPC framework MP-SPDZ (KELLER, 2020).

Experimental Settings. We empirically validate the utility of the produced synthetic data

and measure performance by training logistic regression (LR) models using synthetic data and

testing the models on real data, as in (ROSENBLATT et al., 2020b). We evaluate model

performance using AUC-ROC. We compare the performance of models trained on synthetic

data generated in the centralized mode, and synthetic data generated in the distributed mode

using MPC where the data is split horizontally across data holders. We repeat the comparison
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process for different privacy parameter values. We measure runtimes of our method for different

numbers of MWEM iterations T and compare with the centralized setting, while keeping other

parameters constant.2 We use a maximum number of iterations of 1000 and other default

parameters of LR available in Scikit-learn (PEDREGOSA et al., 2011) to train the models.

Figure 5.1: AUC-ROC of LR models trained on synthetic data generated by two different modes
(centralized and distributed) with varying privacy budget. The results presented are averaged
over 10 runs.

Quantitative Analysis of Utility. In Fig. 5.1, we investigate the trade-off between the

privacy parameter ϵ and utility of models trained with synthetic data generated by the two

different modes (centralized and distributed). The models perform similarly in terms of AUC-

ROC, for the different values of ϵ. Additionally, the trends are also consistent for both datasets.

In the experiments using the Car dataset we see a upward trend for both modes, whereas for

the adult dataset we see a small spike for ϵ = 1 for both modes. Based on similar trendlines for

both settings, we conclude that MPC emulates the centralized mode of operation. The small

differences observed in the plots are a result of the noise introduced by the DP mechanisms.

The results in Fig. 5.1 are averaged over 10 runs.

Quantitative Analysis of Iterations and Runtime. We measure runtime for different

values of the number of iterations T , which is a hyperparameter of MWEM. Previous works

have demonstrated the trade-off between the number of iterations and quality of the synthetic

data (HARDT et al., 2012). Tab. 5.1 shows the runtime for different choices of T averaged over

3 runs for the centralized setting and for the distributed setting with 2, 3, and 4 computing

parties. All MPC based computations were done in ring Zq with q = 264. As observed, the
2We use the same parameters (such as number of queries, etc.) as in the SmartNoise tutorial notebooks.

Similarly, for the Adult dataset, we use only the categorical columns as per the notebook (ROSENBLATT et
al., 2020b).
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runtimes increase with T . We note that the runtimes further depend on the dimensions of the

datasets and the number of queries, as shown in (HARDT et al., 2012). The increased runtimes

for the distributed setting when compared to their corresponding centralized setting are due to

the runtimes of the MPC protocols. For example, in a 3PC passive security setting for |T | = 1,

each call to πQEM adds ∼0.74 secs for |Q| = 400 and πLAP adds ∼0.006 secs to the synthetic

generation process. The differences in runtime observed across different security settings are in

line with existing literature (DALSKOV et al., 2021). All the experiments were run on Azure

D8ads_v5 8 vCPUs, 32Gib RAM.

Table 5.1: Runtime for different values of T (MWEM iterations). Central: Centralized setting
runs the MWEM algorithm; Other columns: Distributed setting with 2 data holders and MPC
protocols run on different number of computing servers with different security settings: 2PC,
3PC, 4PC. |Q| is the number of queries, (a x b) denotes the dataset dimension.

Dataset T Central 2PC passive 3PC passive 3PC active 4PC active

Car
(1,728 x 7)
|Q = 400|

10 0.33 sec 12.14 sec 10.09 sec 20.52 sec 11.81 sec
20 0.71 sec 23.50 sec 20.26 sec 43.01 sec 23.98 sec
30 1.30 sec 37.86 sec 31.91 sec 66.4 sec 36.22 sec
40 2.13 sec 51.20 sec 43.60 sec 87.53 sec 51.85 sec

Adult
(12,499 x 12)
|Q = 500|

10 3.96 sec 156.62 sec 39.98 sec 75.88 sec 111.75 sec
20 4.95 sec 161.20 sec 41.70 sec 78.78 sec 115.72 sec
30 6.45 sec 168.89 sec 44.80 sec 83.13 sec 121.59 sec
40 8.53 sec 178.84 sec 48.80 sec 89.07 sec 129.77 sec

5.4 DISCUSSION

Marginal-based synthetic data generation algorithms, such as MWEM, are flexible synthetic

data generation algorithms that can be adapted to generate synthetic data from distributed

sources. The usage of MPC protocols for generating synthetic data without relying in a cen-

tralized authority does increase the running time of the data generation process, as shown in

Table 5.1 , but also presents many advantages. The main advantage of using MPC, rather than

other frameworks such as federated learning, is that MPC computations do not result in an

utility reduction, as seen in Figure 5.1 (which is not the case of federated learning).



CHAPTER 6

CONCLUSION

While digital technology has transformed society in numerous ways, it has also created

challenges for ensuring user safety and preserving privacy. Technology companies must address

harmful social behaviors facilitated by their platforms, but they also have the potential to col-

lect valuable data that can drive research and knowledge advancement in many fields. The

combination of data sharing, machine learning, and artificial intelligence has already revoluti-

onized research in several areas. However, privacy restrictions often limit researchers’ access

to the vast amounts of data that are locked in data silos. This work has focused on explo-

ring and proposing machine learning and statistical models that can navigate these challenges

while prioritizing ethical and legal considerations. By striking a balance between the potential

of technology and the need for responsible use, we can advance research and make valuable

contributions to numerous fields while also ensuring user safety and privacy.

6.1 DETECTING CHILD SEXUAL ABUSE MEDIA

The first part of this work proposes several machine learning models for CSAM file path

detection and an evaluation framework for preparing machine learning models for CSAM file

detection for deployment. Our evaluation framework covers real-world scenarios that surface

when deploying a machine learning model for CSAM detection.

The proposed system for CSAM identification based solely on file paths has the advantage

of not working directly with CSAM photos or videos. The classifier is a medium agnostic

CSAM detector of easy maintenance and reduced legal restrictions for acquiring training data.

Our classifier achieves precision and recall rates over 0.90 in out-of-sample hard drives. Our

experiments also show that our models generalize well to identifying CSAM content in file

storage systems and preserve low FPR in out-of-sample negative samples. Additionally, we
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present a testing framework to evaluate model robustness to adversarial attacks introduced at

test time.

The proposed framework is an essential addition to the available tools for CSAM detection.

The community can leverage the proposed framework to train and evaluate models for CSAM

metadata and short-text classification tasks, such as file path classification and CSAM search

terms classification.

Operationally, using a CNN can dramatically reduce the burden on human evaluation. For

example, using a threshold of 0.5, the CNN achieves a TPR of 0.94 and an FPR of 0.02. This

suggests human review of results will discover 94% of actual CSAM examples, with an estimate

of 24 false positives files for every 1000 non-CSAM files the model scans. While this does not

remove the burden of human review, it significantly improves the status quo.

In combination with PhotoDNA hash, computer vision tools, and other forensics tools, our

CSAM file path classifier integrates a global toolset that enables organizations to fight the

distribution of CSAM.

Online child sexual abuse imagery falls into a category of content that should not be dis-

tributed or be present in file storage systems. The distributed nature of the internet makes

CSAM detection a complex problem to solve. Automated tools and machine learning-based

systems can help technology companies and investigation agencies rapidly identify such content

and take the appropriate actions.

6.2 UNDERSTANDING IMPLICATIONS OF THE UTILIZATION OF SYNTHETIC

DATA IN ML PIPELINES

As the privacy-preserving research community develops new and more sophisticated tech-

niques for privacy-preserving data publishing, the natural question of fairness impacts arises.

The second part of this work investigates the implications in model fairness when utilizing

differentially private synthetic data for model training. We observe that model utility conti-

nuously decreases as we increase the privacy guarantees of synthetic data. However, fairness

performance seems to be synthesizer dependent. Additionally, we observe that models trained

with differently private synthetic data tend to perform more unfairly when tested on real data
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versus when tested on synthetic data. This is an important observation as we see synthetic

data techniques becoming more accepted as the standard data publishing approach in domains

such as health care, education, and other population studies.

Our research comprehensively evaluates the impact of differentially synthetic datasets for

training and testing machine learning pipelines in the case of tabular datasets. Specifically, we

compare the performance of marginal-based and GAN-based synthesizers within a machine-

learning pipeline and analyze various utility and fairness metrics for tabular datasets, across

multiple values privacy-loss parameter ϵ.

Our main findings are as follows: Marginal-based synthetic data demonstrated comparable

utility to real data in end-to-end machine-learning pipelines. AIM and MWEM PGM synthetic

data generators provided the best utility across experiments, for various values of ϵ. AIM

synthetic data, in particular, performed provided utility very close to models trained on real

data, for multiple values of epsilon, for all datasets: Adult (AUC(R) = 0.892 vs AUC(S) =

0.886), COMPAS ( AUC(R) = 0.684 vs AUC(S) = 0.683) and COMPAS fair (AUC(R) =

0.762 vs AUC(S) = 0.761 ). Furthermore, we show that model evaluation using synthetic

data also provides similar results to evaluation using real data, for tabular data. The metrics

obtained when utilizing AIM marginal-based synthetic data are comparable to real data, across

all datasets and for multiple values of epsilon. Synthetic datasets trained with AIM and MWEM

PGM synthetic data do not increase model bias and can provide a realistic fairness evaluation.

Our study reveals that AIM and MWEM PGM synthetic data can train models that achieve

similar utility and fairness characteristics as models trained with real data. Additionally, when

used to evaluate the utility and fairness of machine learning models, our experiments showed

that the synthetic datasets generated by the AIM algorithm exhibits behavior very similar to

real data, for various values of ϵ .

One important point to raise is that, across all datasets used in our experiments (Adult,

COMPAS and COMPAS fair) marginal-based algorithms (AIM and MWEM PGM specifically)

were the best performing algorithms in terms of utility and fairness. From our experiments we

gained evidence about an important fact: that synthesizer performance is independent from

fairness characteristics of the original dataset.

These findings highlight synthetic data’s potential reliability and viability as a substitute
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for real datasets in end-to-end machine learning pipelines for tabular data. Furthermore, our

research sheds light on the implications of model fairness when utilizing differentially private

synthetic data for model training.

One crucial observation is that synthetic data that does well in model training might per-

form differently when used as evaluation data. This was the case with Privbayes and most

of the GAN-based synthetic data generators. This observation is important as synthetic data

techniques gain acceptance as a data publishing approach in domains such as healthcare, hu-

manitarian action, education, and population studies.

6.3 SECURE MULTIPARTY COMPUTATION FOR SYNTHETIC DATA GENERA-

TION FROM DISTRIBUTED DATA

In this thesis we introduced and started the study of a novel approach for generating dif-

ferentially private synthetic data from distributed databases based on MPC. Our experiments

show that utilizing MPC to emulate a central authority produces synthetic datasets with utility

at par with data produced in a centralized fashion.

Many useful applications call for synthetic data generated based on original data that is held

by multiple data owners. In this paper we proposed to replace the trusted curator that is used

in current approaches by MPC protocols that generate synthetic data and privately perturb

the data to satisfy DP requirements. We demonstrated this approach with MPC protocols for

the MWEM algorithm, which is an MPC-friendly technique in the sense that the majority of

the computations that need to be done over secret shares can be performed efficiently with

state-of-the-art MPC schemes.

While the simplicity of MWEM makes it attractive to many applications and to adapting

it to our framework, MWEM is a marginal-based synthetic data generator, and therefore, the

proposed approach can be easily adapted to other marginal-based synthetic data generator such

as MWEM-PGM, AIM and MST. From our assessment of different synthesizers in Chapter 4,

we know that marginal-based synthesizers can present better performance than other kinds of

synthesizers for some specific tasks.
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6.4 FUTURE WORKS

Detection of medias with abusive content. This research presented a framework for

robust deployment of CSAM detection models based on metadata. Future research should focus

on expanding the framework to internet content such as URLs, web page metadata, social media

users, social media pages and forums.

Assessment of synthetic data in machine learning pipelines. Although the datasets

utilized in our analysis are commonly employed in fairness literature, extending the validity of

our findings to larger-scale datasets would provide a more comprehensive understanding of the

generalizability and robustness of marginal-based synthetic data approaches. Future research

should focus on exploring the performance of these frameworks in real-world scenarios with

diverse and extensive datasets, such experiments would clarify whether synthesizers behave

differently in the presence of different types of dataset . This would contribute to the broader

applicability and reliability of synthetic data methods in various domains and facilitate a more

nuanced understanding of their limitations and capabilities. Finally, our work focuses solely on

classification tasks. Extending our analysis to regression tasks, and evaluating fairness metrics

(AGARWAL et al., 2019b) in regression tasks when in presence of differentially private synthetic

data hasn’t been studied yet and would be an interesting sequel to this work.

Synthetic data generated from distributed sources. The work presented in this thesis

proposes the first MPC-based differentially private synthetic data generation protocol. The

proposed protocol focus on a marginal-based synthesizer, MWEM. Extending this protocol

to other marginal-based synthesizers is a straightforward extension, however an interesting

extension of this work would be modifying the algorithms of the marginal-based synthesizers

to be more efficient when making the computations using MPC protocols.
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