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ABSTRACT

User Centric Massive MIMO or Cell Free MIMO propose an alternative to conventional
cellular MIMO systems, where the latter aims for a more uniform distribution of data rates
among the user equipments. Cell free achieves that by expoiting the macro diversity of the
communication media, by connecting the user equipment to various acess points scattered
around the grid. Early reasearch on user centric systems have suggested that the user equip-
ment should be served by all of its neighboring access points for near optimal performance.
Recent studies, however, have shown that such configuration may be unfeasible when there
are many such access points. An algorithm that assigns the user equipment to access points
based on interference cancellation metrics has been shown to require less computational
power, with minimum performance loss. Such method does not perform well, however,
on environments where greater channel estimation quality is required. This monograph pro-
poses alternative methods, that show themselves to be more feasible on such situations. Also,
two of those methods of access point assignment do not depend on the channel estimate tech-
nique, being suitable even for environments with non-linear channel estimation, opposed to
traditional methods. One key point of this work is to establish a comparison between the
access points clustering methods on feasibility of conventional networks, such as the in-
creasing number of user equipments, quality of channel estimation, and addition of nerwer
acess points. Another key objective is the comparison of such methods to more conventional
network configurations such as cellular networks. Another key aspect is the performance
over known and unknown channel statistics, and the limitaions of such methods on imper-
fect channel statistics environments. The final objective, is to compare performance of such
methods for different interference cancellation metrics (the pilot assignemnt algorithms).

Keywords: User Centric MIMO, DCC, MMSE Channel Estimation, Scalability.



RESUMO

Título: Uma Comparação de Algoritmos Dinâmicos de Clusterização e Métodos de Assi-
nalamento de Pilotos no Desempenho, Complexidade e Distribuição de Taxas no Uplink de
Sistemas Usuários Cêntricos.

User Centric Massive MIMO ou Cell Free MIMO propõem uma alternativa aos con-
vencionais sistemas celulares MIMO, visto que possuem como objetivo uma distribuição
mais uniforme das taxas de transmissão entre os usuários. Cell free atinge esse objetivo
ao explorar a diversidade geográfica do meio de comunicação, ao conectar o usuário a vá-
rios pontos de acesso espalhados ao longo de uma grade. Pesquisas iniciais a respeito de
sistemas usuàrio centrado sugeriram que o usuário deveria ser servido por todos os pontos
de acesso em sua proximidade, o que resultaria em desempenho quase ótimo. Estudos re-
centes, no entanto, mostraram que tal configuração pode ser irrealizável na presença de um
número elevado de pontos de acesso. Um algoritmo que conecta um usuário aos pontos de
acesso por meio de métricas de cancelamento de interferência provou requerer menos potên-
cia computacional, com uma perda mínima de desempenho. Tal método possui desempenho
insuficiente em ambientes em que uma estimativa de canal de maior qualidade se faz neces-
sária. Este trabalho propõe métodos alternativos, que se mostram mais realizáveis em tais
ambientes. Adicionalmente, dois desses algoritmos para assinalamento dos pontos de acesso
não dependem da técnica utlizada para estimar o canal, de tal maneira que podem ser usados
até em ambientes em que se faça uso de estimativa não linear do canal, contrário a técnicas
tradicionais. Um ponto chave deste trabalho é estabelecer uma comparação entre os méto-
dos de assinalamento de pontos de acesso no que se refere à viabilidade de seus usos em
redes convencionais, por exemplo em relação ao aumento do número de usuários, qualidade
de estimativa do canal e adição de novos pontos de acesso. Outro objetivo é a comparação
desses métodos aos convencionais, como sistemas celulares. Outro objetivo é a comparação
do desempenho de sistemas com estatísticas perfeitas e imperfeitas de canal, e, finalmente,
o desempenho destes métodos para diferenres métricas de cancelamento de interferência (os
algoritmos de assinalamento de pilotos).

Palavras-Chave: User Centric MIMO, DCC, Estimaitva de Canal MMSE, Escalabilidade
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INTRODUCTION

This chapter aims to introduce the concepts that will be used
on this monograph. Section 1.1 has focus on showing the mo-
tivation behind studying cell free systems, while section 1.2
establishes a comparison between traditional cellular sys-
tems and cell free with respects to limitations and benefits,
over topics as signal to noise ratio and signal to noise to in-
terference ratio variations for implementation in 5G systems.
Section 1.3 elaborates on the need of finding an access point
(AP) clustering algorithm that provides appropriate perfor-
mance while mantaining system complexity on manageable
terms.

1.1 INTRODUCTION AND MOTIVATION

The main objective of any network is to provide users with reliable access to data among
various geographical locations. Initially, the focus was on telephone and voice calls, however
nowadays with the advent of internet connection, the applications vary ranging from simple
text messages, to the uploads of files and videos that might require a large amount of data and
processing in order to be reliably transmitted. On primitive communication networks, analog
signals were transmitted and decoded, as focus was primarily on telephone communication,
which did not require a high quality to be performed. Analog communication is still used
nowadays, but digital communication is much more used, since it can lead better with the
effects of thermal noise, as the focus is decoding data packets, opposed to the entire analog
waveform, as explained in Chapter 7 of [1], that better exemplifies this transition.

When dealing with wireless systems, the effects of the communication channel suffer
much more variation than wired systems. For instance, the mobility between the user equip-
ment (UE) and the transceiver responsible for decoding information, the AP is a factor that
makes data transmission challenging, since the communication channel changes rapidly in
time, making it very hard to estimate. A more detailed explanation can be found in the
works of [2]. Over the years various mobile technologies have been proposed: the authors
in [3] have studied code division multiple access (CDMA) techniques, that are basically the
transmission of information over the same bandwidth by use of spread spectrum techniques.
High speed packet access (HSPA) systems have been used extensively on the beginning of
this century, along with wideband code division multiple access (WCDMA), and were able
to provide download rates of up to 168 Mbps and uploads of up to 22 Mbps. Before that,
frequency time division multiple access (FTDMA) techniques were used to transmit infor-
mation either at the same time over different frequency ranges or at the same frequency over
different time slots. This has been used by 2G systems global system for mobile communi-
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cation (GSM) that were able to provide a download rate up to 97 kbps. Such systems were
not able, however, to connect many UE in the same grid, since available bandwidth was very
limited. After HSPA came the long term evolution (LTE), which composed the 4G of wire-
less systems, the first of which employed multiple input multiple output (MIMO) systems,
such as seen in [4], in an effort to explore the spatial diversity of the channels, so that infor-
mation could be transmitted at the same time over the same bandwidth over different spatial
paths. It was this technology that also used the notions of orthogonal frequency division
multiple access (OFDMA), which consisted on the modulation of subcarriers in order to turn
a frequency selective channel into one frequency flat channel, in order to diminish distor-
tion. A more complete description of cellular systems up to orthogonal frequency division
multiplexing (OFDM) can be found in [5].

At this time, the demand for ever higher transmission rates started to grow, and thus
alternative technologies to guarantee higher rates with small delays were suggested. One
such method was the Massive MIMO that was explored in [6], that consists on employing
a very large number of antennas at each AP, so that there are a very large number of multi-
path components of the transmitted signals that, when combined, provide a robust detection.
This, in theory, could lead to an infinite value for the channel capacity, as long as the number
of antennas at each AP kept increasing, and some favorable propagation conditions hold, as
shown in [7]. On practical networks, however, this was proved to act differently, as spatial
correlation between the AP antennas prevented the statistical independence of the multipath
components from happening, which was a crucial property for such systems. Thereby, au-
thors such as [8] have proposed an alternative type of MIMO in the form of cell free (CF).

One such thing that exists in conventional networks is the concept of cell. A cell is a
geographical area (which could take any form, from hexagonal, to square, to circular) where
the total signal to noise ratio (SNR) of a transmitted signal is greater than a certain threshold.
Conventional networks operate in a way that each UE connects to an AP based on a cell,
that provides the largest SNR to it. The cellular network is divided into a core and an edge.
The edge network is the region where the hardware units and the APs are involved with the
physical layer communication with the UEs. The core network is responsible for facilitating
the services requested by the UE, such as routing of data packages and connection to the
internet. The connection between the edge and the core is defined a the backhaul links, that
can be wired, by use of for example optical fibers, or partially wired using fixed microwave
links.

A fact about the electromagnetic signal strength, is that it decays exponentially with
the distance of the transmitter to the receiver. The minimum decaying value is quadratic,
meaning that it still decays rapidly. This means the closer the UE is to the AP, the better the
SNR values it will experience. UEs that are on the cell edge, which is defined as the frontier
between cells, will experience low values of SNR, and additionally may experience higher
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interference from other cells. In fact, it is very common that a cell-edge UE has an SNR
gap of up to 40 dB in relation to an UE in a privileged location. With the data rate being
an increasing function of the signal to interference to noise ratio (SINR), we see that data
rates variations are very common in cellular networks. Fig. 1.1 shows the data rate of the
downlink (DL) operation achieved by the UEs at different locations when each AP deploys
fixed gain antennas and transmits with the maximum power. We can see that the maximum
achievable rate, taking in consideration a system bandwidth of 20 MHz, is 200 Mbps, which
happens when the UE is close to one of the AP. On the other hand, UEs who are far from
the APs achieve a rather low rate (many of them actually achieve rates below 0.5 Mbps).
The lower rates are clearly not enough for the transmission of videos and streaming. They
are, nonetheless, much suitable for voice calls, which was the primary reason that cellular
systems were implemented. We see that by deploying a large number of antennas at each AP,
the rates have a more uniform distribution when compared to the first case, however there
are still very large variations, specially in the cell edges. In summary, the peak rates are very
substantial for the UEs that are nearby the AP, but they get progressively smaller for the far
away UEs. For the actual demand of high rates and specially, connectivity everywhere, we
must find a way to obtain rates that are more uniformly distributed. For instance, one of the
aspects of 5G is the possibility of connectivity at every location, with minimum information
delay and minimum outage (by outage we mean the amount of time the network will not
be able to provide coverage). Conventional cellular networks have inherently rates that are
distance variant, so we must break free of the cell definition by studying an architecture that
does not rely on it: the CF architecture.

1.1.1 Cell Free Systems

First, we shall describe the architecture of CF systems. The channel models and mathe-
matical properties shall be discussed later on in Chapter 2. A cell free network is composed
of L APs that jointly serve the UEs that compose the grid. Each one of those APs is con-
nected by the fronthaul to a central processing unit (CPU), that in turn is responsible for AP
cooperation. Multiple CPUs connected by multiple fronthaul links can exist. Fig. 1.2 rep-
resents the architecture of a CF network composed of single antenna APs. Just like cellular
networks, CF can also be decomposed into a core and an edge. The APs and the CPUs are all
part of the edge and are connected by the fronyhaul links, while the connections between the
edge and the core are called backhaul links. Thus, the backhaul links can be used to send/re-
ceive data from the internet, and other sources, to facilitate data services. The fronthaul links
can be used to share physical layer signals that will be transmitted in the DL, forwarding
received uplink (UL) signals that will be decoded, and sharing channel state information
(CSI). The fronthaul can also facilitate phase-synchronization between the APs by providing
a phase reference. In this work, we shall also assume that they have infinite capacity, are
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(a) Each AP is equipped with a single antenna with a 12 dBi gain

(b) Each AP is equipped with 128 omni-directional antennas

Figure 1.1 – Example of the downlink data rate achieved by a UE at different locations in the
cellular network, assuming each AP transmits with full power. The cell-edge SNR is 0 dB in
1.1a and the power is assumed to decay as the distance to the power of four. The bandwidth
is 20 MHz, and the maximum spectral efficiency (SE) is 10 bit/s/Hz. We can see that the
rates vary largely along the grid.
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Core Network

Fronthaul

Backhaul

Figure 1.2 – Cell free architecture where many APs are geographically distributed and con-
nected to the CPUs via fronthaul links. The CPUs are all connected to the core network via
backhaul links. The APs are jointly serving all of the UEs in the grid.
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error free and possess negligible latency, which are common limitations of real life fronthaul
links.

In CF networks, no cell boundaries exist for connecting UEs, meaning that all of the APs
affecting the UE will be part of the communication protocol. The method to select the APs
that will take part in decoding the information data can be of various forms: for example,
all of the APs in the area could serve the UE, or only the APs with a SNR above a certain
threshold, or other methods of AP assignment that shall be discussed later on Chapter 4.
Therefore, not all of the APs in the coverage area must be serving the UE, in fact there could
be the possibility of an AP not serving any UE at all. Cellular architecture and CF are very
similar in regards to signal processing, as we shall see later in Chapter 2. For that reason,
the UE should be able to change from cellular to CF or vice versa without any upgrade to
its software. For the simulation setup of Fig. 1.3 we have deployed a total of L = 49 APs
along a square grid, serving a total of K = 400 UEs. Each AP was equipped with N = 16

antennas with unitary gain. We can see that the cellular case has data rates varying from 47 to
200 Mbps, again taking in consideration a bandwidth of 20 MHz, while the cell free case has
rates that range from 128 to 200 Mbps. This proves once again that increasing the number
of antennas at the AP does indeed help, however this act alone is not enough to provide
high rates for the UEs that are at the cell edges. Instead, if we look at the cell-free system,
we see that even the UEs that are far away from the APs still have fairly high rates, due to
cooperation between the APs to decode the intended signals. One important aspect that was
used to generate the CF system was that every AP serves every UE. Also, another key point
was assuming perfect CSI, thus those rate values represent an upper bound performance and
should be only seen as comparison measures between the cellular system and the CF.
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(a) Each AP is equipped with a single antenna with a 12 dBi gain

(b) Each AP is equipped with 128 omni-directional antennas

Figure 1.3 – Example of the downlink data rate achieved by a UE at different locations in the
cellular network, assuming each AP transmits with full power. The cell-edge SNR is 0 dB in
1.3a and the power is assumed to decay as the distance to the power of four. The bandwidth
is 20 MHz, and the maximum SE is 10 bit/s/Hz. We can see that the rates vary largely along
the grid.
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1.2 BENEFITS AND LIMITATION OF CELL FREE AND CELLULAR
MASSIVE MIMO IN 5G

The proposed method of interest in 5G systems is the Cellular Massive MIMO. This
concept, that dates back to 2010, says that each AP is equipped with a large number of
antennas, usually possessing low gains, as opposed to conventional cellular networks, that
employ antennas of high gains and highly directive. The key concept that makes Massive
MIMO an option is spatial diversity, that is, the property of the signal to propagate along
spatially diverse paths. Another key factor is the spatial multiple access, that consists on the
ability of multiple UEs to be served by the same AP at the same time-frequency interval.
This way multiple UEs can be served by the same AP simultaneously in the same cell with
negligible interference.

1.2.1 Benefits of Cellular Massive MIMO

The most important aspect of the network for Massive MIMO to be used efficiently is
each AP being equipped with a number of antennas such that it far surpasses the number of
served UEs. When this is guaranteed, two such phenomena are observed: favorable propa-

gation and channel hardening. The first refers to the fact that the channels of spatially diverse
UEs are nearly orthogonal due to the high directivity of the transmitted and received signal
beams, while the latter refers to the possibility of neutralizing the small scale fading variation
by combining the replicas of the same signal transmitted and received over many antennas.
Initially, it was believed that simple linear receivers such as maximal ratio (MR), that do
not possess any interference cancellation whatsoever, were implementable in such systems,
as seen in [9]. However, it has been later shown that linear methods that actively suppress
interference are more adequate, such as minimum mean squared error estimator (MMSE), as
seen in [10] and [11], where the effects of pilot contamination and spatial correlation were
discussed as fundamental limitations to the use of simple linear receivers. Nonetheless, the
use of linear methods to suppress interference seem to lead to desirable performance out-
comes, which makes the use of non-linear and more complex signal detection techniques
optional.

1.2.2 Limitations of Cellular Massive MIMO

As seen in Fig. 1.1 and 1.3, the data rates on Massive MIMO technology are greatly
increased compared to traditional systems, however they do still vary a considerable amount.
Besides that, the antennas at the APs, in commercial real-life systems, are not deployed in
an uniform linear array (ULA), as conventionally they are in literature, but rather on planar
arrays. Planar arrays exhibit low resolution regarding the azimuth domain, which is not the
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case of ULAs, therefore the service quality of such systems is diminished. Therefore, a new
architecture that aims to provide more rate uniformity, and also, that allows for the use of
ULAs is proposed in the form of CF MIMO.

1.2.3 Benefits of Cell Free MIMO

Among the benefits of CF systems, we can enumerate two that summarize them as viable
solutions for network architecture: the ability to manage interference and the presence of
small SNR variations.

1.2.3.1 Benefit 1: SNR with smaller variations

Lets assume first a Massive MIMO setup, where there is only one cell and one AP with
multiple antennas. We initially do not consider the small scale fading variations, and focus
solely on the large scale fading. Moreover, we shall notice that the SNR expression between
the l-th AP and the k-th UE, where β(d) is the pathloss, p is the transmitted power and σ2 is
the noise power, is given by

SNRkl =
p

σ2
β. (1.1)

Since pathloss is dependent on the distance between the UE and the AP, it can be inferred
that the pathloss from the UE to all of the antennas of the AP is the same. Therefore, the
SNR of Massive MIMO systems can be summarized as

SNRMIMO =
p

σ2
Mβ(d), (1.2)

whereM is the number of AP antennas.

Lets now assume traditional cellular, where the UE can connect between a range of L
single antenna APs, and will choose the strongest between them. Therefore, the SNR of this
case, which will be called the small cell, is given by

SNRsmall-cell =
p

σ2
argmax
l∈{1,...,L}

β(dl). (1.3)

Finally, when comparing the CF setup, which has the same AP distribution as the small cell,
we consider that each one of the APs serve the UE, and therefore, a superposition of the
signals of each AP will compose the collective SNR in the form

SNRcell-free =
p

σ2

L∑
l=1

β(dl). (1.4)

We shall compare numerically those setups in Chapter 3, but for now we can observe that
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the Massive MIMO SNR is highly dependent on this particular UE location, and can vary
greatly with its position. For instance UEs that are far away from the AP are very likely to
have low SNR due to high pathloss. When comparing the case of small cell, we see that the
chosen AP is the one that has the lowest pathloss to that particular UE, which surely makes
fluctuations smaller than Massive MIMO. On the case of CF MIMO. however, the received
SNR is a superposition of the ones for each AP to that particular UE, therefore it has always
larger values than the single cell, as the latter is only a special case of the former. It also
possesses much lower SNR variations, due to the fact that it connected to all APs, so the
likelihood of an stronger AP serving the UE increases.

1.2.3.2 Benefit 2: Ability to Manage Interference

We will see that CF also has the ability to suppress interference that surpasses that of
conventional cellular networks. Lets consider the Massive MIMO architecture, with the
channel gk ∈ CM between the UE k and the AP. The signal received at the AP is given by

yMIMO =
K∑
i=1

gisi + n, (1.5)

with si being the information data transmitted by UE i, such that E {{|si|2}} = p and n ∼
NC(0M , σ2IM), the receiver noise. In order to decode the information, the AP uses the
receiver combining vector vk ∈ CM to the received UL signal, in order to obtain the data
estimate

ŝMIMO
k = vH

k y
MIMO =

K∑
i=1

vH
k gisi + vH

k n (1.6)

of the UE k. Therefore, the SINR is given by

SINRMIMO
k =

E
{∣∣vH

k gksk
∣∣}2

E


∣∣∣∣∣∣
K∑
i=1
i ̸=k

vH
k gisi + vH

k n

∣∣∣∣∣∣
2

=

∣∣vH
k gk

∣∣2 p
vH
k

p
K∑
i=1
i ̸=k

gigH
i + σ2IM

−1

vk

≤ pgH
k

p

K∑
i=1
i ̸=k

gig
H
i + σ2IM


−1

gk, (1.7)

where the combiner that was used to obtain the upper bound for the SINR is given by

vk =

p

K∑
i=1
i ̸=k

gig
H
i + σ2IM


−1

gk, (1.8)
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and can be found by applying the principle of the Rayleigh quotient maximization described
in Corollary 5.1.

When dealing with small cells, the only connected AP will be the AP l, that provides the
best SINR to the UE, therefore the received UL signal in AP l is:

ysmall-cell
l =

K∑
i=1

hilsi + nl (1.9)

where nl ∼ N(0, σ2) denotes the noise at the receiver, and hkl ∈ C is the channel response
between the AP l and UE k. The SINR expression is

SINRsmall-cell
kl =

E
{
|hklsk|2

}
E


∣∣∣∣∣∣
K∑
i=1
i ̸=k

hilsi + nl

∣∣∣∣∣∣
2

=
p|hkl|2

p
K∑
i=1
i ̸=k

|hil|2 + σ2

. (1.10)

Therefore, the AP that has the maximum SINR with respect to UE k is the AP that UE is
going to connect to, and the SINR is

SINRsmall-cell
k = max

l∈{1,...,L}
SINRsmall-cell

kl . (1.11)

Notice that the small cell setup chooses the AP that provides the best SINR value, not neces-
sarily the best SNR, since the AP with the best SNR value could potentially introduce a high
degree of interference, thereby leading to a smaller performance when compared to the best
SINR case.

Finally, we shall consider the CF setup. For that, we suppose the same L APs that were
deployed in the small cell setup are used here. Also, we consider that each AP is single
antenna. The signal received by the APs in the UL are then given by

ycell-free =
K∑
i=1

hisI + n, (1.12)

where hi = [hi1, . . . , hiL]
T and n = [n1, . . . , nL]

T . In a similar way to the one of Massive
MIMO, a combiner vector is used to detect the signal from UE k. Therefore, the estimate of
sk is

ŝcell-free
k = vH

k y
cell-free =

K∑
i=1

vH
k hisi + vH

k n, (1.13)
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and the SINR expression is given by

SINRcell-free
k =

E
{∣∣vH

k hksk
∣∣}2

E


∣∣∣∣∣∣
K∑
i=1
i ̸=k

vH
k hisi + vH

k n

∣∣∣∣∣∣
2

=

∣∣vH
k hk

∣∣2 p
vH
k

p
K∑
i=1
i ̸=k

hihH
i + σ2IM

−1

vk

≤ phH
k

p
K∑
i=1
i ̸=k

hih
H
i + σ2IM


−1

hk. (1.14)

We can easily see that the SINR expression in Eq, (1.11) is nothing more than a particular
case of Eq. (1.14). For evaluating the expressions of the CF and Massive MIMO cases,
however, we need to resort to simulations, since the expressions are very similar. For the
simulation setup, we shall consider K = 10 UEs randomly placed along a square grid of
500 m × 500 m, where the channel between UE and AP is generated by

√
β(d)ejϕ, with the

complex exponential denoting the random phase due to multipath propagation in the complex
envelope domain, β is evaluated by

βkl(dkl)[dB] = −30.5− 36.7 log10

(
dkl
1 m

)
, (1.15)

and the phase ϕ is an uniform random variable ranging from 0 to 2π. In the Massive MIMO
setup, we have considered the AP centered at the middle of the square grid, whereas the setup
of small-cell and CF have the APs evenly distributed along the square grid. There are once
again L = 49 APs, and we assume the transmit power to be p = 20 mW, and the noise power
is σ2 = −96 dBm. Also, we assume an height h = 10m between the UEs and the APs.
The resulting SINR cumulative distribution function (CDF) can be seen in Fig. 1.4. We can
immediately notice that the benefits of geographically distributed antennas are much larger
than the ones obtained from deploying a large array in one location: for instance there is a
variation of almost 40 dB between the lowest and the highest SINR in the massive MIMO
case, whereas there is a 30 dB gap between them in the CF case. This indicates that on those
conditions, the SINR of CF outperforms that of massive MIMO by at least 10 times. We
can also see that the values for the small-cell have an even larger variance than the other two
methods, being even more outperformed by the CF architecture.

1.2.4 Limitation of Cell Free MIMO

The benefits of CF makes it a very promising solution for the issue of uniformity in
throughput. However, there are some limitations that should be taken in account before one
is to implement this technology: the most immediate of them is the synchronization needed
between the APs to jointly decode the data, which can be seen in works such as [12], that
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Figure 1.4 – CDF for the SINR of small cell, massive MIMO and CF architectures. The
single-antennas APs, for CF and small-cells, are deployed on a square grid of 500m× 500m
and serve K = 10 randomly deployed UEs. In the case of massive MIMO the AP is equipped
with L antennas, and is located at the center of the grid.

focus on synchronizing the clocks of the APs to jointly decode data. Another key point is
the ever growing system complexity, since more APs being connected to the same UE mean
more resources needed to compute the combining vector for that particular UE. We will see
in Chapter 2 that this is a fundamental issue, preventing the implementation of the traditional
CF (when all APs serve all UEs), except on very reduced networks.

1.3 THE IMPORTANCE OF SELECTING THE DYNAMIC COOPER-
ATION CLUSTERING METHOD

We shall see in Chapter 2 that the ideal CF setup, with all of the UEs being served by
all APs in the grid, is not viable in conventional networks, since system complexity grows
large, and an ever growing amount of resources is needed for signal detection. Addressing
that, a discussion about the metric to measure the feasibility of systems has been established
in [13], and the authors of [8] have proposed a method such that only a subset of APs is
connected to each UE. Since this AP assignment changes as channel conditions change, they
called it dynamic cooperation clustering (DCC). They have shown that, by choosing the DCC
method appropriately, the throughput loss from the ideal case is negligible, for much more
manageable complexity.

Although this DCC method addresses the problem of the ideal CF architecture, it also
possesses some limitations: one of them is the growing complexity with channel estimation
quality. We will see in Chapter 3 that multiple antennas architectures, and by extension, the
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CF architecture, need some measure of knowledge of the communication channel in order to
decode the transmitted data. The chosen channel estimation method is linear, in that known
signals are transmitted from the UEs to the AP in the UL, and the response is processed into
an estimate of the channel. The DCC method is dependent on the length of the transmitted
training data (which we should call pilot). Therefore, as this length increases, so does the
number of APs that are connected to a given UE, thereby increasing system complexity.
Although this change in complexity is perfectly manageable in the simulation setups of this
monograph, it clearly presents itself as a challenge in conventional networks, with thousands
of APs, hundreds of UE and hundreds of pilots.

1.4 CONTRIBUTIONS AND WORK ORGANIZATION

The objective of this work is to introduce a DCC method that benefits from acceptable
performance as the one of [8], but also possesses a much lower complexity, that makes signal
detection less computationally expensive. To illustrate the motivation to such methods, we
shall repeat the simulation that generated Fig. 1.3b, but with L = 100 APs, where each one is
equipped with N = 4 antennas. Additionally, the decaying path loss exponent is 3.67, which
sits well with urban environments, according to [14]. The communication channel is known
by the receiver and there is no shadowing effect. Also, the APs are deployed following a
wrap around topology.

1.4.1 Unscalable and Orthogonal Users Cell Free Architectures

We shall compare two cell free architectures: the first one will be called unscalable,
because it does not meet the criteria that shall be presented in Chapter 2 in any way. This
architecture consists on every AP serving every UE, and thus, the APs can all jointly cooper-
ate to generate a estimate of the transmitted data. The second cell free architecture is called
orthogonal users (OU). It consists on allowing the AP to serve only the UEs that have been
assigned orthogonal pilot sequences. Since channel estimation is considered perfect on this
simulation setup, we shall allow each AP to serve the 100 strongest UEs, in order to better
approximate the results to those that will be shown in Chapter 6. The rates in Mbps are
shown in Fig. 1.5 and Fig. 1.6

Clearly there is a larger variation of the rates in OU than on the unscalable configuration.
Such variation is, however, very small: In the OU architecture the minimum rate is 151 Mbps
while the unscalable configuration has a minimum rate of 158 Mbps. We shall see in Chapter
6 that the reduction in the minimum rate value is greatly compensated by the reduction in
system complexity.
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Figure 1.5 – UE throughput in Mbps for the unscalable cell free architecture of an K = 400
UEs over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped
with N = 4 antennas. The system bandwidth is 20 MHz.

Figure 1.6 – UE throughput in Mbps for the OU cell free architecture of an K = 400 UEs
over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped with
N = 4 antennas. The system bandwidth is 20 MHz.
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Figure 1.7 – UE throughput in Mbps for the NT cell free architecture of an K = 400 UEs
over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped with
N = 4 antennas. The system bandwidth is 20 MHz.

1.4.2 Normalized Threshold and Orthogonal Users Normalized Threshold Archi-
tectures

Now let us compare the architectures of normalized threshold (NT) and orthogonal users
normalized threshold (ONTU). Both are contributions of this author. The architecture of NT
is more detailed in [15], while ONTU is proposed in this monograph in Chapter 4. Both of
them rely on a parameter that should be called the normalized threshold, γth. This value could
depend on various metrics, such as the channel gains, the correlation between the channels,
the shadowing coefficients, etc. We shall define this parameter based on the channel gains,
such that

β̃kl =
βkl − β̄l√

Var(βl)
(1.16)

is the normalized channel gain, since it consists on the subtraction of the actual channel
gain and the mean channel gain vector wit respect to AP l divided by the standard deviation
of the same vector, hence the normalized name. The normalized threshold value may be
obtained from the percentile of the normalized channel gains. Having defined β̃kl, we might
discuss the differences of the NT and ONTU architectures. The first one applies the threshold
condition to every AP-UE pair while the latter consists on selecting the APs by OU and then
choosing the UEs above the threshold condition. It is to be expected that ONTU yields more
variation in the rates than OU, since less UEs are served by each AP. Fig. 1.7 and Fig. 1.8
show the rates for those architectures

The threshold value has been chosen as γth = {0.906, 0.127} for the NT and ONTU
respectively. Those values correspond to the 80-th and 60-th percentiles of the normalized

17



Figure 1.8 – UE throughput in Mbps for the ONTU cell free architecture of an K = 400 UEs
over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped with
N = 4 antennas. The system bandwidth is 20 MHz.

channel gains, which means that on average 20% of the AP-UE pairs will be connected for
the NT while on average 40% of the UEs connected to a given AP by OU will be served
by that AP on the ONTU architecture. Fig 1.7 shows that the lowest rate in the network is
of 135 Mbps, which is shorter by 23 Mbps than the uscalable architecture. Still, it provides
satisfactory performance. The minimum rate of ONTU is 151 Mbps, which is virtually the
same as OU. We will see in Chapter 4 and Chapter 6 that the complexity for ONTU is reduced
when compared to OU, which justifies its use.

Additionally, one should notice that pilot contamination is not a factor when dealing with
known communication channels, which is the assumption of this section simulations. Thus,
the rates of NT under unknown channel assumptions are actually different from the ones
shown in this section, since one AP might serve UEs that share the same pilot sequence,
which in turn results in pilot contamination, that is discussed in Chapter 3. The architectures
of OU and ONTU assume the AP may only serve the UEs that have been allocated orthogonal
pilot sequences, thereby the rate values under perfect channel knowledge should be similar
to the ones of imperfect channel knowledge.

1.4.3 Power Threshold Architecture

Finally, two alternative architectures are discussed in this section. One such is the power
threshold (PT), which can be found in [16], while the other is the Orthogonal PT, which is
again a contribution of this monograph. Both methods allow the UEs to be served only by
the APs that contribute to a given power threshold percent of the total power of the UEs,
that shall be written as βδ

k, and the total power is given by
∑L

l=1 βkl. The main difference
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Figure 1.9 – UE throughput in Mbps for the PT cell free architecture of an K = 400 UEs
over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped with
N = 4 antennas. The system bandwidth is 20 MHz.

of both methods is that PT allows for UEs with the same pilot sequence to be served by the
same AP, while Orthogonal PT has the condition that each AP should serve only the UEs
that have orthogonal pilots allocated to them. For the purpose of this section both methods
have the same performance, such that the simulation will be performed only for PT. Also,
the power percent threshold will be βδ

k = 0.9, which corresponds to 90 % of the total UE
power. Additionally, for comparison sake, the same simulation should be done for a small
cell setup, with the same parameters. Fig. 1.9 and Fig. 1.10 show those results

The minimum rate value for the PT is of 155 Mbps, while it is merely 21 Mbps for the
small cell. The rate values are very similar to the ones of the unscalable case, and to the OU
and ONTU cases. When comparing to the cellular setup one notices that the rate variations
are much more severe than on cell free architectures. Therefore, even the less effective of
the cell free setups is still able to provide more rate uniformity than the cellular setup.

1.4.4 Work Organization

We shall establish comparison between the DCC method of [15], that operates with satis-
faction on networks where the number of UEs do not change abruptly, and is dependent on a
determined threshold value, the proposed methods, and the ones introduced by [8]. We shall
also analyze all of the DCC methods in the case of imperfect channel statistics knowledge,
since we will see in Chapter 4 that the DCC methods rely on knowledge of those parameters.

This work is organized as follows: Chapter 1 gives motivation for the use of CF networks,
as well as the need for the alternative proposed DCC methods. Chapter 2 introduces the
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Figure 1.10 – UE throughput in Mbps for the small cell architecture of an K = 400 UEs
over a square grid of 1 km2. The number of APs is L = 100 and each one is equipped with
N = 4 antennas. The system bandwidth is 20 MHz.

system model, while Chapter 3 discusses key parameters of importance for CF architecture,
such as capacity bounds and channel estimation quality. Chapter 4 introduces the DCC
methods, the ones proposed in this work, and the ones proposed by other authors. Chapter 5
discusses UL operation and evaluates performance and complexity metrics for the network.
Chapter 6 compares the DCC and pilot methods numerically, in order to further motivate the
use of the proposed methods. Finally, Chapter 7 presents the conclusions and suggestions on
future research.

Chapter Summary

• Conventional Cellular systems aim to provide throughput to the UEs with man-
ageable interference, by connecting them to the AP that provides the best per-
formance. Systems such as cellular massive MIMO also manages interference
by use of concepts such as spatial diversity and multiplexing.

• The throughput variations of cellular systems are often very significant, with
the UEs near one of the AP having far greater performance than the ones far
from it, or at cell edges. The ones at the edges are also more prone to suffer
from interference. CF acts as a viable solution to those cases, since it does
not require that each UE be connected to only one AP, allowing for the APs to
jointly decode the information. This in turn makes the throughput more distance
invariant.

• Among the benefits of CF is the higher value of SNR when compared to tra-
ditional cellular setup. Also, it has the ability to manage interference that far
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surpasses conventional networks systems. Among the limitations are the in-
creasing system complexity and the need for acceptable AP synchronization.

• The choice of the DCC method is of vital importance to CF system. Along this
monograph some DCC methods ill be suggested and compared to find the ones
that offer better system performance and simultaneously lower complexity, for
large scale network deployment.
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CELL FREE MIMO SYSTEM MODEL

This chapter aims to introduce the CF model. First, it in-
troduces the concept of coherence block. Then, the CF UL
model is explained as well as the notion of dynamic cluster-
ing. Next, scalability concepts are introduced and discussed.
Finally, it introduces the channel model using the correlated
Rayleigh fading model and then favorable propagation and
channel hardening are introduced and discussed.

2.1 COHERENCE BLOCK MODEL

Mobile communication systems experience the phenomena of multipath scattering. This
refers to the multiple paths the communication signal can propagate, thus being detected at
different times at the receiver. Works such as [20] show that the amount of multipath scatter-
ing is inversely proportional to the essential bandwidth at which the transmitted signal suffers
negligible distortion. This bandwidth is defined as Bc, the channel coherence bandwidth. In
a similar fashion, the communication channel suffers variations over time, due to the relative
displacement between transmitter and receiver. Thus, the rate at which the channel suffers
negligible variations in time is defined as Tc, the channel coherence time. To account for both
multipath propagation and the varying nature of the communication channel, the coherence
block model is derived. The coherence block, C, is the time-frequency interval at which the
channel is constant. It is obtained by

C = BcTc. (2.1)

One can see that the coherence block is greater for systems with less mobility, since the chan-
nel varies slowly with time, and greater for systems with large coherence bandwidths, since
more information can be transmitted over a larger range of frequencies. We will generally
work with systems with high mobility to generate worst case scenarios, which might prove
useful to estimate lower bound system behavior.

2.2 CELL FREE MODEL

Consider a communication network consisting of L APs, each deployed with N antennas,
that are randomly located in a geographical area. The total number of antennas in the network
is given by M = NL, and they serve a number of K single-antennas UEs. Such system can
be seen in Fig. 2.1
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Figure 2.1 – Cell Free architecture.

Traditional cellular systems have the UE connected to the strongest AP in the grid. How-
ever, the CF system aims to connect one UE with multiple APs. The objective, as already
discussed, is to jointly combine the transmitted signal in order to more reliably decode it.
The model was first proposed by [18], where all of the APs serve all of the UEs. From
Fig. 2.1, we can see that, taking UE 1 in consideration, there are few APs that are close
to it, and a lot more that are far away from it. Since the greatest contribution to reliable
estimation should come from the nearest APs, it is reasonable to say that the farthest ones
have a much lower influence. We will see in the subsequent sessions that the complexity of
the system should not increase much as the number of APs and UEs grow large. Therefore,
the proposed method will be proven as unscalable, giving rise to alternative methods of AP
clustering. Thus, we define one such method below:

DEFINITION 2.1 DCC is defined as the subset of APs,Mk ⊂ {1, . . . , L}, that serve UE
k.

It is called dynamic because the clusters are regularly updated as the channel time-
variations occur. Those changes may be due to different UE locations, the inclusion of
new APs on the grid, interference, etc. Fig. 2.2 shows the example of a DCC for a set of 5
UEs. We can see from the figure that the colors represent each clusterMk of the APs that
serve each UE. Also, there are intersections between the clusters, so that into a DCC config-
uration, it is impossible to separate the APs into disjoint sets that serve disjoint subsets of the
UEs. So, there are APs that are serving multiple UEs, which may give rise to interference.
Therefore, methods to mitigate this interference will be discussed accordingly in the later
sections.

Another important aspect of DCC, is that it should not change for various coherence
blocks, since it follows the changes caused by macro propagation effects, such as the large
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Figure 2.2 – DCC for a cell free MIMO with a large number of APs and a smaler number of
UEs.

scale fading. Thus the channel fading variations should occur a fair amount of times before
DCC is updated.

Since each UE can be served by any AP, it is convenient to define a matrix Dkl ∈ CN×N ,
for the UE index k = 1, . . . , K and the AP index l = 1, . . . , L, so that

Dkl =

IN l ∈Mk

0N×N l ̸∈ Mk.
(2.2)

One can notice that the consideration of Dkl = IN for all l, k leads to the definition of
CF system described by [18]. Also, this notation holds the special case of today’s cellular
networks, whenMk has only one element in it, which means that each UE is connected to
only one AP.

2.3 TRANSMISSION

The channel between UE k and AP l into a coherence block is given by the complex-
valued vector hkl ∈ CN . Each of its elements consist in the channel coefficient, recalling
that in the block fading model, the channel is said to be flat, thus there is only one coefficient
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Figure 2.3 – The used transmission protocol of pilots and data over a coherence block of area
TcBc.

to define the channel characteristics, between the UE and the n-th antenna of the AP. It is also
interesting to define the collective channel, that consists of all of the APs to UE k, hk ∈ CM ,
as

hk =


hk1

...
hkL.

 (2.3)

Also, recalling the block fading model, the channel takes one random realization through-
out the block duration, from a random distribution, to be defined in later sections. One aspect
of the MIMO technology is the necessity of the APs to know the channel realizations, or at
least an estimate of it, so that the interference between antennas and UEs be correctly mit-
igated. One efficient way to estimate the channel is to assign pilots, that is, a sequence of
known symbols, to the UEs. This has the advantage of being a linear method of channel es-
timation, however it has the drawback of requiring actual symbols to be transmitted, which
takes space from the coherence block. Therefore, the UL transmission requires τc symbols,
of which τu are used to actually transmit useful data and τp of which are used to transmit
the pilots, according to Fig. 2.3 In real-life implementations, there is also the DL, which can
use the time division duplex method taking advantage of channel reciprocity. In this case,
the coherence block would be divided between pilots, UL symbols and DL symbols. This
monograph, however, covers only UL transmission, so the DL will not be analyzed.
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2.4 UPLINK TRANSMISSION MODEL

During the UL transmission, the APs receive from all UEs a superposition of signals.
The received signal, yul

l ∈ CN at the l-th AP is given by

yul
l =

K∑
i=1

hilsi + nl, (2.4)

where si ∈ C is the UL data signal transmitted by UE i, with power pi = E{|si|2}. The
term nl is the addictive white gaussian noise (AWGN) at the receiver, nl ∼ NC(0, σ

2
ulIN).

The UL signals can be of useful data or pilots, and the channel realizations are constant over
the coherence block length. The noise, however, takes an independent realization at every
transmitted symbol.

By taking a look on Eq. (2.4), one can notice that AP l is able to compute an estimate
ŝkl of the transmitted symbol sk from UE k. Based on DCC however, the AP should only do
that if l ∈ Mk. For ease of notation, we should set ŝkl to 0 if l ̸∈ Mk. This can be done by
means of a receive combining vector vkl ∈ CN , that is used by AP l to decode information
sent from UE k. Then, the effective receive combining vector is represented as

Dklvkl =

vkl l ∈Mk

0N l ̸∈ Mk

(2.5)

The received symbol is then estimated by taking the inner product between the effective
combiner and the transmitted UL signal so that

ŝkl = vklDkly
ul
l . (2.6)

By use of Eq. (2.5):

ŝkl =


vH
klhklsk +

K∑
i=1
i ̸=k

vH
klhilsi + vH

klnl l ∈Mk

0 l ̸∈ Mk.

(2.7)

We can see that the estimated symbol is composed of the desired estimated symbol vH
klhklsk,

the interference from the other UEs,
K∑
i=1
i ̸=k

vH
klhilsi, and the noise, vH

klnl. The interference

between UEs can be greatly reduced by allocating the pilots wisely. The receive combining
vector is highly dependent on the CSI available, so the greater the quality of CSI available,
the better the capacity of the combiner to suppress interference will be.
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2.5 SCALABILITY CONCEPT AND CRITERIA

The coverage area of the network could be huge, which sometimes make the addition
of APs necessary. More UEs can also be added to the network at any give moment. Such
acts should not increase the overall capabilities of the existing APs and UEs, On traditional
cellular networks, each cell has a maximum number of UEs that can be served by use of
spatial multiplexing techniques, so the addition of new APs and UEs will not affect the
operation of the cell, which makes cellular networks scalabale.

On the case of CF, however, we can’t affirm that so easily, since the addition of those ele-
ments would impact on new effective combining vectors, since the overall combining vector
is dependent on all of the APs that serve a given UE. Therefore, we should evaluate if the
resources of given network remain sufficient even if the number of UEs grows indefinitely, or
K →∞. So we must check if the following tasks remain implementable over this condition:

1. Signal processing for channel estimation

2. Signal processing for data reception and transmission

3. Fronthaul signaling for data and CSI sharing

4. Power allocation optimization

The authors in [8] have shown and discussed those conditions, and we should do the
same to prove scalability or unscalability.

DEFINITION 2.2 Scalability - A CF MIMO is said to be scalable if all of the four tasks
listed above have finite computation complexity as K →∞ for each AP.

It is important to say that this definition does not imply that an infinite amount of UEs
will be added to the network, which would be impossible on real network deployments, but
rather to show scalability issues that arise in the asymptotic regime. There are a handful of
algorithms proposed that have reasonable complexity if generated at simulations related to
academic papers, but unfeasible complexity on real-life applications, where the number of
APs and UEs is large.

2.5.1 Example of an Unscalable Network

To better understand the concept of scalability it is reasonable to start with the opposite:
unscalability. Let’s suppose that the l-th AP is serving all the K UEs in the grid. The signal
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detection and channel estimation are all performed locally at the AP. Then we shall analyze
if the proposed configuration obeys the above scalability list.

Firstly, the channel estimation method, although not officially defined, will surely scale
at lest linearly with K, since it was already mentioned that the method is linear. Besides
that, the stored memory for the channel estimates is finite, and the number of UEs is infinite,
therefore there is not such memory to store the estimates.

Then AP l should compute the symbol estimate, which, as already seen in dependent
on the implementation of the combining vector. If said implementation is linear, then its
complexity should again vary at least linearly with K, which makes the operation unscalable.

Next, the AP should forward the processed receives signals over the fronthaul links.
Since the number of scalars grow with K, then again if K → ∞ the number of scalars will
grow indefinitely, making the system unscalable once more.

Finally, for adequate power allocation, power allocations methods should be deployed.
Such methods also scale at least linearly with K, so such operation would be unscalable for
an infinite number of UEs.

All of that has been done to show that the main issue is the fact that the AP is serving all
of the UEs. Therefore, the method proposed on [18] is unscalable and thus the importance
of selecting a cluster of serving APs by means of DCC.

2.5.2 Scalability Criteria

By noticing that Dil is non-zero if AP l serves UE i, we can define the set of UEs served
by AP l

Dl = {i : tr(Dil) ≥ 1, i ∈ {1, . . . , K}} . (2.8)

The following lemma shows a condition on Dl that partially guarantees scalability.

LEMMA 2.1 For a network of unlimited UEs, K →∞, if the cardinality of Dl remains
finite, for l = 1, . . . , L, then the network satisfies the first three scalability conditions.

Proof 2.1: The AP l needs only to compute the channel estimates and combining vectors
for the UEs on the set Dl. Therefore, the complexity remains finite as long as the set Dl

remains finite. Besides, the AP needs only send/receive data related to the UEs in the set
over the fronthaul links, which is also finite. □

Lemma 2.1 implies that the number of active UEs that each AP serves should be lim-

28



ited. It is apparent that the AP should serve the UEs that are closer to it, since they would
contribute more on the network performance. However, this task in not as simple, given the
set Dl should be small and finite to ensure scalability, which can become challenging as the
number of APs and UEs increase. That said, only the fourth condition of scalability remains
to be proven, which will be discussed as follows:

LEMMA 2.2 Suppose every UE is assigned a transmit power by only one of its serving
APs, and that this AP selects that power based only on information about the Dl UEs
that it serves. Then, the power control scalability constraint is satisfied.

Lemma 2.2 implies that the transmit power should be selected in a distributed manner
in order to achieve scalability. Thus, algorithms that rely on convex optimization or exhaus-
tive searches would provide a polynomial complexity with respect to the UEs, and would
be unscalable. In order to find a scalable solution, each algorithm should be implemented
separately for each AP with no or limited interactions between the APs.

2.6 CHANNEL MODELLING

To better compare the performance of CF systems, reliable channel models should be
used. In the case of wireless communications, due to multipath propagation and mobility,
the channel variations get very complicated to predict. Thus, those variations appear to be
random, come from a random distribution, making it possible to use stochastic models to
describe it. The authors in [19] have suggested deterministic and stochastic models. The de-
terministic model has the clear advantage of more accurately reproduce the reality, however
it has the drawback of only be applicable to very specific propagation scenarios, whereas
he random model can be applied to a variety of environments. Nevertheless, the stochastic
models limit the scope of each to the propagation conditions, such as urban, rural, suburban,
etc.

A classic model for non line of sight (NLoS), used by many authors such as [20] is the
uncorrelated Rayleigh fading, where the channel between AP l and UE k is given by hkl ∼
NC(0N , βklIN). This happens because there is not a favorable direction for propagation, and
moreover, there is mobility of the transmitter, which makes the superposition of the signals
of each path become the sum of independent random variables, which by use of the Central
Limit Theorem makes the channel Gaussian distributed.

On the coherence block model, the channel is generated as an independent random vector
following a Gaussian distribution if Rayleigh fading is considered. Moreover, the variance
βkl denotes the large scale fading, and describes the average channel quality as the UE moves
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around a relatively small area. Those coefficients may be determined by use of deterministic
models, such as the geometric pathloss, and stochastic models, such as shadowing, which
will be discussed later. The uncorrelated Rayleigh fading is the chosen model of the major-
ity of the academic works because it is easy to implement and is also analytically tractable.
However, measurements in real-life applications have shown that the channel measurements
between antennas are not independent and makes the channel vectors elements actually cor-
related, since there are directions to the transmitted beam that are more likely to reach the
UE, and also, there is the antenna array geometry, which greatly contributes to correlate the
channel coefficients. We will not discuss that in detail, but there are very rare occasions in
which uncorrelated Rayleigh fading, and they are generally very specific, such as the one
shown in [21].

2.6.1 Correlated Rayleigh Fading and Large Scale Fading Model

This model is chosen because of its relative ease of tractability. It is used considering a
NLoS channel with a fair amount of multipath propagation, that makes it possible to model
the channel elements as Gaussian random variables. However, the channel variance cannot
be considered a multiple of the identity matrix, since the channel is spatially correlated.
Thus, the channel between AP l and UE k can be written as

hkl ∼ NC(0N ,Rkl), (2.9)

where Rkl is the spatial correlation matrix. The effects of small scale fading are accounted
by the Gaussian distribution, and the effects of geometric pathloss, shadowing and array
geometry are all inside the spatial correlation matrix, as explained in [19] and [20]. We will
define that the large scale coefficients are the average value of the channel vector, or

βkl =
1

N
tr(Rkl). (2.10)

Besides that, we will also assume, quite reasonably, that the channel vectors of different APs
are uncorrelated, or E{hklh

H
kj} = 0N×N for l ̸= j. This holds, because usually the APs are

much more spaced than the UE to its connecting AP. Thus, the collective channel follows
the distribution:

hk ∼ NC(0M ,Rk), (2.11)

where Rk = diag(Rk1, . . . ,RkL) ∈ CM×M is the collective spatial correlation matrix.

The model used in this work assumes that the APs are deployed in urban environments
with a large amount of UEs. Each AP is also deployed ten meters above the UE, according
to the 3GPP Urban Microcell model, which can be found in [14]. The model was designed
for 2GHz band, but is also usable for other sub- 6GHz frequency bands. According to this
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model, the large scale fading coefficients (channel gains) are obtained, in dB, as

βkl[dB] = −30.5− 36.7 log10

(
dkl
1m

)
+ Fkl (2.12)

in which dkl is the physical distance between the AP l and the UE k. The chosen attenuation
coefficient of 3.67 reflects a dense urban environment, as already discussed, and the atten-
uation of -30.5 dB is dependent on the carrier frequency, as well as the geometric pathloss.
Also, the term Fkl represents the shadowing, which are fluctuations on the signal power that
occur because of phenomena such as multiple reflections and scattering. Since each of those
phenomena is considered to be independent from another, and since the total power fluctua-
tion is multiplicative, then this phenomena may be interpreted as a sum of random variables,
when the power losses are converted to dB. Thus, by use of the Central Limit Theorem,
we can say that Fkl ∼ N (0, σ2

sf ), where σsf represents the shadowing standard deviation.
Moreover, we consider the correlated shadow fading model, described in [14]

E{FklFij} =

σ2
sf2

−δkl/9m l = j

0 l ̸= j
(2.13)

in which δki is the distance between UE k and UE j. Again, the APs are assumed to be far
away from each other, and thus, their shadowing coefficients are uncorrelated.

2.6.2 Spatial Correlation Matrix Using Local Scattering Model

The spatial correlation matrix is dependent on two factors: the angular distribution of the
multipath components and the array geometry. In the simulations, we will use smaller sized
APs. Because of that, it is reasonable to use the ULA, in which the N antennas are equally
spaced along an horizontal line. We will consider that the spacing between antennas is the
half-wavelength, and by doing that, the (i, j)-th element of the spatial correlation matrix R

can be computed as

[R]ij = β

∫ ∫
ejπ(i−j) sin(φ̄) cos(θ̄)f(φ̄, θ̄)dφ̄dθ̄, (2.14)

where β is the large scale coefficient, φ̄ is the azimuth angle and θ̄ is the elevation angle
of a multipath component, all of them computed with respect to the broadside of the array,
as shown in [22]. The f(.) function is the joint probability density function (PDF) of the
angles. This integral could be computed numerically for any given distribution of the angles.
however, for simulations purposes, we will use the local scattering model, which assumes
that the multipath components are symmetrically distributed across a straight line between
the AP and the UE. This is made so that there be a scattering cluster around the UE and
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Figure 2.4 – NLoS propagation for the local scattering model. The scatterers are located
around the UE. The figure shows two multipath components, and the azimuthal angle be-
tween the AP and the UE is φ, with σφ being the ASD

the multipath components arrive from nearby angles. Since those variations in the azimuth
and elevation angles are said to be independent, then we can assume the jointly Gaussian
distribution

f(φ̄, θ̄) =
1

2πσφσθ

e
− (φ̄−φ)2

2σ2
φ e

− (θ̄−θ)2

2σ2
θ , (2.15)

where σφ, σθ are the angular standard deviations (ASDs). Fig. 2.4 shows the model,

This model works with sufficient precision when the angles are small, and thus the ASDs
are small. Being a linear model, that relies on a Gaussian distribution, this model also has a
closed form expression for the spatial covariance matrix elements and is also computationally
inexpensive to compute, if one chooses a computationally inexpensive method to compute
the integrals.

2.6.2.1 On the Effects of Spatial Covariance

We will now quickly discuss the effects of spatial covariance on the system. One efficient
way to quantify this effect is to study the eigenvalues of Rkl. For this, we analyze a matrix
for an UE-AP system with N = 10 antennas and azimuth and elevation angles of φ = 45o

and θ = −20o. The ASDs are considered the same and are σ = 5o, 15o and 25o. Fig. 2.5
shows the eigenvalues for the ASDs and the uncorrelated case. The uncorrelated case of
Rkl = IN is also considered. As we can see, this case has the eigenvalues to have equal
values. Since they are normalized such that tr(R)/N = 1, this value is 0 dB. As the ASD
decreases, the eigenvalues are vastly different in values, and also, the gap between them is
much larger. For instance , when the ASD is of 5o, the gap between the first and second
eigenvalues is near 10 dB, which means that the first eigenvalue is ten times larger than the
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Figure 2.5 – Eigenvalues of the spatial correlation matrix when using the Gaussian local
scattering model with N = 10 antennas at the AP. The azimuth and elevation angles are
φ = 45o and θ = −20o. The uncorrelated case is also considered.

second. When considering the ASD of 25o, the gap is much smaller, being near zero. This
means that smaller ASDs will have a preferred propagation direction, since the eigenvectors
corresponding to the eigenvalues of said direction will be dominant.

Spatial correlation studies show that the large gaps between eigenvalues, when the num-
ber of antennas is large, play a key role in mitigating the effects of the interference between
UEs. This can be seen in works such as [18] and [22]. On the case of CF however, the
spatial correlation matrix cannot do that, since the number of antennas is small at each AP.
However, we will see in subsequent sessions that the effect of pilot contamination is much
less severe for channel estimation when highly correlated systems are considered.

2.7 FAVORABLE PROPAGATION AND CHANNEL HARDENING DEF-
INITIONS AND APPLICATIONS

When analyzing MIMO systems, two concepts must always be taken in consideration:
channel hardening and favorable propagation. Those concepts have been extensively used
and discussed by authors such as [18], [22], [23] between others. They rely strongly on the
number of antennas in the grid and also, on the spatial channel correlation properties. The
aim of this section is to provide an insight on when those concepts may be used in theoretical
or practical applications, as well as define them for CF systems.
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2.7.1 Channel Hardening

The communication channel considers a stochastic behavior, in which every channel
vector has one random realization along a given coherence block. Considering that the vari-
ance of the channel vectors realizations (which are related to the large scale coefficients) are
small, the value of the realizations would be closer to the mean. Thus, although the channel
realizations vary between APs and coherence blocks, those variations are small. Thus, the
channel coefficients will have the same scalar value for every coherence block. When this
happens, the achieved phenomena is called channel hardening, since the channel is getting
more deterministic (being then hardened).

DEFINITION 2.3 For a set ofMk serving APs, and power coefficients pk1, pk2, ..., pkL,
the effective channel to UE k is said to achieve channel hardening if

∑
l∈Mk

√
pkl

E{||hkl||2}
||hkl||2

E
{∑

l∈Mk

√
pkl

E{||hkl||2}
||hkl||2

} → 1 (2.16)

in the mean square sense as N →∞.

The definition 2.3 implies that the effective channel converges to its mean value as N

grows large. If the channel model is the correlated Rayleigh fading, then the following
ensures channel hardening:∑

l∈Mk
pkl

tr(R2
kl)

Nβkl

N
(∑

l∈Mk

√
pklβkl

)2 → 0 as N →∞ (2.17)

Proof 2.2: The convergence required for the channel hardening property is the mean
squared sense convergence. Thus, we must apply the variance to the quotient of Eq.
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(2.16) so that it goes asymptotically to 0

V


∑

l∈Mk

√
pkl

E{||hkl||2}
||hkl||2

E
{∑

l∈Mk

√
pkl

E{||hkl||2}
||hkl||2

}
 =

∑
l∈Mk

pklV
{

||hkl||2√
E{||hkl||2}

}
(∑

l∈Mk
pklE

{√
||hkl||2

E{||hkl||2}

})2
=

∑
l∈Mk

pkl
tr(R2

kl)

tr(Rkl)(∑
l∈Mk

√
pkltr(Rkl)

)2
=

∑
l∈Mk

pkl
tr(R2

kl)

Nβkl

N
(∑

l∈Mk

√
pklβkl

)2 (2.18)

□

where we have used the independence between the channels of different APs and the
fact that tr(Rkl) = Nβkl. It is important to notice that channel hardening only applies
to the asymptotic regime, with an unlimited number of antennas. However, one can define
the degree of channel hardening for setups with limited antennas. Also, it has been shown
in [22] that spatial correlation greatly reduces the degree of channel hardening. Indeed, if
the uncorrelated case has all of the eigenvalues of the matrix Rkl having the same number,
and tr(R2

kl) is the sum of the squared eigenvalues, then Nβ2
kl ≤ tr(R2

kl) ≤ N 2β2
kl,

where the lower case occurs when all of the eigenvalues are equal, and the second when
only the first eigenvalue is nonzero. By taking a look at Eq. (2.17) one can see that the
lower case (uncorrelated) ensures the quotient stays proportional to 1/N , which ensures
that it converges to 0 as N →∞. On the upper case (highly correlated), the quotient value
doesn’t depend on N , and thus achieves higher values than the lower case.

2.7.1.1 Impact of the Geographical Distribution and Number of APs

For CF systems, the number of antennas at each AP is smaller than tradi-

tional Massive MIMO systems. The number of serving APs is however much

larger. One interesting aspect would be if the effect of having a large number

of antennas could be replaced by the effect of having a large number of APs for

channel hardening. This, we shall analyze the degrees of channel hardening for

CF systems. We shall assume, for simplicity, that the channel is uncorrelated,
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Figure 2.6 – The variance of the ratio between the effective channel and its mean value is
plotted for different numbers of AP antennas, according to Eq. (2.19). The dotted black line
corresponds to the Cellular MIMO case with 80 antennas, the dotted blue line corresponds
to the median CF with 80 uniformly distributed APs, and the bars correspond to the region
where 90 % of channel realizations occur.

so Rkl = βklIN . The expression of Eq. (2.17) can then be written as∑
l∈Mk

pklβkl

N
(∑

l∈Mk

√
pklβkl

)2 . (2.19)

In the case where |Mk| = 1, or one AP has the term pklβkl much larger than the others,
Eq. (2.19) becomes approximately 1/N . In the case that all of the APs have the same βkl

term, it becomes 1/(N |Mk|). Thus, we can see that channel hardening can also be obtained
by having a large number of serving APs. However, since the number of antennas is still
present on the equation, the degree of channel hardening should be smaller than the degree
of traditional Massive MIMO systems. This degree should be even smaller if the terms pklβkl

vary greatly between APs, which is the likely situation for practical systems, where the APs
are spaced by several wavelengths. To check the degree of channel hardening, we consider
a 500 m × 500 m square grid with one UE at its center. A number of L = 80 APs are
uniformly distributed and transmit with equal power to the UE. The large scale fading model
of Eq. (2.12) is used and the channel is said to be independent and identically distributed (iid)
Rayleigh. Different values of N are considered. The results are compared to the traditional
Massive MIMO system with only one AP equipped with N = 80 antennas. From Fig.
2.6, we can see that the degree of channel hardening (lower values corresponds to higher
degrees of channel hardening) are lower for the Cellular MIMO case. In fact, for N = 1,
the variance is fairly big for the CF case, which correspond to a fairly low degree of channel
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hardening. It is not up to N = 5 antennas that the median value achieves the same value as
the Massive MIMO. Still, the majority of the realizations are greater than this case, and some
are substantially higher. It is only for N = 8 and onward that we can say that the degree of
channel hardening is comparable to the traditional system. We can then notice that the total
number of antennas on the grid becomes at minimum 8 times greater than the traditional case
for comparable;e degree of channel hardening.

The degree of channel hardening is fairly smaller for the analyzed CF case (and even
smaller if we consider DCC). This might appear as a nuisance, however, in practice this is
not detrimental to the system, it only makes some tasks such as estimating lower bounds for
the channel capacity easier, however, it is not mandatory for the operation of CF systems, as
discussed in [8].

2.7.2 Favorable Propagation

When there is spatial multiplexing between multiple UEs, there is generally interference
between them. The precoding or combiner can then be deigned to meet a balance between
getting a strong desired signal power and mitigating interference. However, if the UE chan-
nels are orthogonal, then we can safely say that there is no interference and the inter-user
interference is mitigated simply by use of MR. When this happens, we say that favorable

propagation has been achieved.

If we take in consideration the received UL signal, then the interference between the
desired signal of UE k and UE i is given by

∑L
l=1 v

H
il Dilhkl. If we use the MR combiner,

that is, vkl = hkl, the effective interfering channel is

L∑
l=1

√
pilh

H
il Dilhkl =

∑
l∈Mi

√
pklh

H
il hkl. (2.20)

The magnitude of the effective interfering channel compared to the effective channel of the
desired signal determine how strong is the interference. If the ratio is small, then the inter-
ference will be small and thus the system will benefit from favorable propagation. Then, we
can define favorable propagation:

DEFINITION 2.4 UE k experiences favorable propagation with respect to UE i if the
following is satisfied ∑

l∈Mi

√
pilh

H
il hkl

E

{ ∑
l∈Mk

√
pkl||hkl||2

} → 0 (2.21)
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in the mean squared sense as N →∞.

Definition 2.4 says that the effective interfering channel should go asymptotically to 0
when normalized by the average value of the effective channel. Notice that the numerator
depends on the set of APs that serve the interfering UE, whereas the denominator depends
on the set of APs that serve the desired UE. If we consider correlated Rayleigh fading, then
the following can be said ∑

l∈Mi

piltr(RilRkl)(
N
∑

l∈Mk

√
pklβkl

)2 → 0 as N →∞. (2.22)

Proof 2.3: To prove Eq. (2.22) we need only remember that convergence on the mean
squared sense means that the variance should go asymptotically to 0, then

V


∑

l∈Mi

√
pilh

H
il hkl

E

{ ∑
l∈Mk

√
pkl||hkl||2

}
 =

∑
l∈Mi

pilV
{
hH
il hkl

}
(
E

{ ∑
l∈Mk

√
pkl||hkl||2

})2

=

∑
l∈Mi

piltr(RilRkl)( ∑
l∈Mk

√
pkltr(Rkl)

)2

=

∑
l∈Mi

piltr(RilRkl)(
N
∑

l∈Mk

√
pklβkl

)2 (2.23)

□

Like channel hardening, we can use the expression of Eq. (2.22) to evaluate a certain
degree of favorable propagation. If this equation is near zero, then favorable propagation
is approximately achieved. Differently from the channel hardening, which depends on the
desired spatial correlation matrix Rkl, this time the dependence of Eq. (2.23) is on the desired
and interfering spatial correlation matrix product. This analysis is not as trivial, but we can
affirm that the numerator gets its maximum when the spatial correlation matrices Rkl and Ril

are all identical up to a scaling factor (meaning the UEs have the same spatial directivity, or
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are highly correlated). On the other hand, the numerator gets near to zero when the matrices
have identical eigenvectors, but the eigenvalues are such that they are matched together on
the opposite order, that is, large eigenvalues of a matrix are multiplied by small eigenvalues
of the other matrix. This means that the UEs have very different spatial directivity, or their
channels are highly uncorrelated. This last case clearly represents the situation that has the
largest degree of favorable propagation.

2.7.2.1 Impact of the Geographical Distribution and Number of APs

Let us assume that the desired UE as well as the interfering UE have spatially uncorre-
lated channels. (that is, Rkl = βklIN and Ril = βilIN ). The expression of Eq. (2.22) is then
simplified to ∑

l∈Mi

pilβklβil

N

( ∑
l∈Mk

√
pklβkl

)2 (2.24)

This expression again decays with the number of antennas N , which means that more anten-
nas guarantee a higher degree of favorable propagation. We can notice that the sum of the
numerator depends on the subset of APs that serve the interfering UE, and the denominator
on the subset of APs that serve the desired UE. Considering that the UEs are far away from
each other, then its serving APs may be also different, and we might say that the coefficients
βkl of the numerator will be very small. This means that favorable propagation could be
achieved even if N = 1. On the other hand, if the subsetsMi andMk are similar, then it
might be necessary for the APs to have more antennas to reach the same degree of favorable
propagation. Also, the power control plays a key role in this effect. If the power coefficients
pil are small compared to pkl, we can also guarantee a higher degree of favorable propagation
with few antennas. We shall demonstrate the effect of the number of antennas at each AP as
well as the geographical location of the APs. For that, we shall use the same setup as the one
that was used to generate Fig. 2.6, with the addition of an interfering UE that is placed either
150 m or 30 m to the east of the desired UE. However, instead of having all of the APs save
the UEs, the UE is served by the 6 APs that have the largest large scale fading coefficients,
and all of them transmit with equal power. Fig. 2.7 shows those results. We can immediately
see from Fig. 2.7 that the situation of nearby interfering-desired UE pair, the variance can
assume large values, which mean lower degree of favorable propagation. In fat, although
the median is comparable to the reference case (Cellular Massive MIMO), at N = 10, the
fluctuations of the random realizations is still very large more than half of the time. This
shows that we cannot achieve a satisfactory degree of favorable propagation for nearby UEs
even if we increase the number of antennas. In fact, we would need to increase the number of
antennas to an extent that it would be comparable to the reference case number of antennas.
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Figure 2.7 – The variance of the ratio between the effective interfering channel and the mean
of the effective channel described in Eq. (2.24) is plotted for various N . When the variance
is small there is a high degree of favorable propagation between the UE pair. The Cellular
Massive MIMO corresponds to a setup of a single AP with n = 80 antennas. The CF setup
consists of an interfering UE placed at either 30 m or 150 m to the left of the desired UE,
both served by the 6 APs providing the best channel gains among a pool of L = 80 APs. The
line shows the median value and the bars show the 90 % interval of random realizations.

For the case of far away interfering-desired UE pair, however, the degree of favorable
propagation is fairly high for a small number of antennas at each AP. In fact, it becomes
near identical to the reference case at N = 4, although the results at N = 2 still show that
the variance fluctuations are not as significant as the nearby case. Favorable propagation is a
desirable property that makes the use of simple combiner vectors possible. It is not however
mandatory for the operation of CF systems. For instance, the case of UEs that are nearby
each other, and thus are served by partially the same APs, favorable propagation cannot be
achieved. Thus, since such situations are fairly common, it is necessary for the combiner
vector to have an interference suppressing method, as it will be discussed later.

Finally, although the mathematical models of favorable propagation and channel hard-
ening may look very similar, the phenomena are not the same: one UE might experience
favorable propagation with respect to other, but have a low degree of channel hardening. The
opposite could also happen, as well as the UE having none of those properties or both of
them. It is important not to confuse the definitions or think they are the same.

Chapter Summary

• The coherence block model is an efficient way to analyze the effects of more
complex techniques as for example OFDM with less computational complexity.
One must only ensure that the transmitted signal has lower bandwidth than the
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channel coherence bandwidth and lower duration than the channel coherence
time.

• A CF MIMO system consists of L APs. equipped with N antennas, that jointly
serve the UEs in the grid, to jointly process the information transmitted by or
received from the UEs over the duration of one coherence block.

• By having a large number of APs antennas, such that M = LN >> K, the sys-
tem has a high number of spatial degrees of freedom, to suppress interference
by use of linear methods. Such can also be said to traditional Massive MIMO
systems, where each UE connects to only one AP equipped with M antennas.
However, on the latter case, the fact that the antennas are near each other makes
so that the channel stochastic means converge to the real mean and the interfer-
ence between UEs be suppressed.

• The latter case also implies that the degrees of channel hardening and favorable
propagation are high, whereas the CF case has the APs scattered geographi-
cally, thus increasing channel variability and decreasing the degrees of channel
hardening and favorable propagation. On the matter of channel hardening, in-
creasing the number of antennas at each AP seems to solve this matter. On the
matter of favorable propagation, ensuring the UEs are far from each other seems
to increase its degree.

• The situation of large coverage areas makes impracticable to connect every AP
to a UE in the grid. Scalable methods must be implemented, such that at every
moment new APs amd UEs can be added to the grid with minimum increasing
computational capability of each AP and fronthaul capacity.

• The fact of the APs in CF systems having a low number of antennas, the spatial
correlation between their channel coefficients must be accounted for, given the
fact that the channels in real life applications are spatially correlated. Also, the
correlation between the shadowing coefficients of each UE must be considered,
since in real life applications the shadowing between different UEs might be
correlated.

41



CHANNEL ESTIMATION AND
CAPACITY BOUNDS

This chapter aims to introduce channel estimation theory
and channel capacity concepts. First, MMSE theory is dis-
cussed. Then channel capacity theory is introduced, and
lower bounds for it are derived. Finally channel estimation
theory is discussed, as well as the factors that could improve
or worsen its quality, such as spatial correlation, geograph-
ical locations, system architecture and pilot contamination
interference.

3.1 MINIMUM MEAN SQUARED ERROR ESTIMATION THEORY

To properly process the signal information from the APs to the UE, MIMO systems
must have some degree of knowledge of the channel coefficients. To begin our analysis, we
consider a realization of a Gaussian random variable from an observation that is corrupted
by independent additive Gaussian noise. There is a large variety of methods to estimate such
variables, however we shall use the MMSE method, as defined below:

DEFINITION 3.1 Consider a random variable x ∈ CN defined over an interval Ω and
let the variable x̂(y) denote an estimator of x obtained from the observation of y ∈ CM .
The choice of estimator x̂(y) : CM → CN that minimizes the mean squared error (MSE)

E
{
||x− x̂(y)||2

}
(3.1)

is defined the MMSE estimator of x. It can be obtained as

x̂MMSE(y) =

∫
Ω

xf(x|y)dx, (3.2)

in which f(x|y) is the conditional PDF of the variable x given the variable y.

The MMSE estimator of the Gaussian random variable that is corrupted by additive in-
dependent noise and independent interference can be obtained in closed from as follows

LEMMA 3.1 Consider we wish to estimate the N -dimensional vector x ∼ NC(0N ,R),
with a positive semi-definite correlation matrix R, from the observation y = xq + n ∈
CN . The transmitted signal q ∈ C is known and vector n ∼ NC(0N ,S) is an independent
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noise/interference vector with a positive definite correlation matrix.
The MMSE estimator of x is

x̂MMSE(y) = q ∗R
(
|q|2R+ S

)−1
y, (3.3)

with the estimation error correlation matrix as

CMMSE = R− |q|2R
(
|q|2R+ S

)−1
R (3.4)

and the MSE as
MSE = tr

(
R− |q|2R

(
|q|2R+ S

)−1
R
)
. (3.5)

Proof 3.1: We first begin this demonstration by defining the following

DEFINITION 3.2 An N -dimensional circularly symmetric complex Gaussian ran-
dom vector x with mean µ ∈ CN and positive definite covariance matrix R ∈ CN×N

has the PDF

f(x) =
e−(x−µ)HR−1(x−µ)

πNdet(R)
(3.6)

then , we notice that

f(x) =
e−(x)HR−1(x)

πNdet(R)
(3.7)

and

f(y) =
e−(y)H(|q|2R+S)−1(y)

πMdet(|q|2R+ S)
. (3.8)

We then compute the conditional probability f(y|x),

f(y|x) = e−(y−xq)HS−1(y−xq)

πMdet(S)
(3.9)

and we use the Bayes theorem to obtain the conditional probability f(x|y),

f(x|y) = f(y|x)f(x)
f(y)

. (3.10)
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Thus, the desired conditional probability is given by

f(x|y) =
e−(y−xq)HS−1(y−xq)

πMdet(S)
e−(x)HR−1(x)

πNdet(R)

e−(y)H (|q|2R+S)−1(y)

πMdet(|q|2R+S)

=
e−(x−(Rq(|q|2R+S)−1y)H(R−1+|q|2S)−1)(x−(Rq(|q|2R+S)−1y)

πNdet((R−1 + |q|2S−1)−1)
, (3.11)

where we have used the matrix relationships

(A+ xxH)−1 = A−1 − 1

1 + xHA−1x
A−1xxHA−1 (3.12)

(A+ xxH)−1x =
1

1 + xHA−1x
A−1x. (3.13)

By taking a look at Eqs. (3.2) and (3.11), we can see that the mean of f(x|y) is the
estimator. Thus,

x̂ = qR(|q|2R+ S)−1y. (3.14)

Following the same logic, the correlation error matrix is

C = (R−1 + |q|2S−1)−1 = R− |q|2R(|q|2R+ S)−1R (3.15)

and the MSE is obtained simply by taking the trace of C, by the trace definition, com-
pleting the proof. Also, the estimate is distributed as

x̂MMSE ∼ NC(0N ,R−CMMSE). (3.16)

□

3.2 CAPACITY BOUNDS

The SE is the mean amount of information that can be transferred per complex-valued
sample per bandwidth with an arbitrarily small error. This is a very natural metric in broad-
band applications, where the required data volume is large. The SE is the chosen metric for
analysis of this work, and will be extensively used throughout all of its duration.

When communication occurs over a bandwidth B, the Nyquist-Shannon sampling the-
orem dictates that the communication signal can be fully recovered by B complex valued
samples per second. What the SE describes is how much data can be transmitted per such
complex sample. Thus, given that there are B samples per second, the measure of the SE
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must be either of bit per complex sample or bit per second per Hertz, bps/Hz. Another related
metric is the information rate, which is the product of the SE by the bandwidth, resulting in
a measure of bit/s.

It is of great importance to define which would be the upper bound on the SE of some ar-
chitectures. For that, there is the channel capacity metric. Its definitions can be found on the
work of its original author, [24], and [17], as well as various other information theory papers.
In wireless communications, it is usually of interest the situation where the communication
channel is composed of a receives signal that is a scaled version of the desired signal plus
interference/noise. Those channels are the already defined AWGN channels, since each in-
put signal results into an output signal that is independent of previous and future inputs, thus
defining a memoryless channel. We shall now begin our analysis for the capacity bounds for
random channels, one of the metrics that act as a comparison measure in this monograph.

3.2.1 Capacity Bounds for Random Channels

For this section, we consider fading channels, that, as already seen, are random complex
variables that take a new realization every coherence block. From this setup rises the concept
of ergodic capacity. The transmission generates many realizations of the random variable
describing the channel and the word "ergodic" means that all of the statistical properties of
the channel are obtainable from a single sequence of channel realizations. We begin with the
case of which the only disturbance is Gaussian noise.

LEMMA 3.2 Consider a discrete memoryless channel that has the input x ∈ C and
output y ∈ C, given by

y = hx+ n, (3.17)

where n ∼ NC(0, σ
2) is the independent noise and the input distribution has power

limited by E {|x|2} ≤ p. The channel h is a realization of a random variable H that is
independent of the signal and the noise. and known at the receiver. The ergodic channel
capacity is then given by

C = E
{
log2

(
1 +

p|h|2

σ2

)}
, (3.18)

where the expectation operator is with respect to h. This expression is achieved when
selecting the input distribution x ∼ NC(0, p).
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Proof 3.2: We shall fist define the differential entropy

DEFINITION 3.3 Given a random variable y with PDF f(y) defined over the domain
Ωy. The differential entropy of y is given by

H(y) = −
∫
†
log2(f(y))f(y)dy. (3.19)

If the random variable x with PDF f(x) defined over the domain Ωx is given, then
the conditional differential entropy is

H(y|x) = −
∫
Ωy

∫
Ωx

log2(f(y|x))f(y|x)f(x)dxdy. (3.20)

The differential entropy H(y) measures the amount of information that the observation
of y conveys. If we want to quantify the mutual information between the variables x and
y, it is the difference between the differential entropy of x and the differential entropy of
x given y:

I(x; y) = H(x)−H(x|y). (3.21)

Next, given x ∼ NC(0, q), we evaluate the differential entropy of x, defined in the
domain D, as

H(x) = −
∫
D
log2

(
e−|x|2/q

πq

)
e−|x|2/q

πq
dx

=
log2(e)

q

∫
D
|x|2 e

−|x|2/q

πq
dx︸ ︷︷ ︸

=q

+ log2(πq)

∫
D

e−|x|2/q

πq
dx︸ ︷︷ ︸

=1

= log2(eπq), (3.22)

where the integrals are solved by applying the properties of the zero-mean Gaussian
distribution (the variance and the total probability).
Next, we have y = hx + n. We have that the conditional entropy of y given x is only
dependent on the noise n, since only the noise is unknown at the output. Thus, we have
that

H(n) = log2(eπσ
2). (3.23)

Next, we shall compute the differential entropy of y. Since the power of the output signal
y is given by E{|y|2} = |h|2E{|x|2} + E{|n|2} ≤ |h|2p + σ2. We can find in [24] and
[17] that the entropy is maximized when the random variable has a circularly symmetric
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complex Gaussian distribution. Thus, we shall select x ∼ NC(0, q). By doing that, the
maximum of the mutual information between x and y is the channel capacity:

C = sup
f(x)

(H(y,H)−H(y,H|x)) = sup
f(x)

(E {H(y,H = h)−H(y,H = h|x)}) (3.24)

Since the expected value considers the value of h as deterministic, we can write

C = log2
(
eπ(|h|2p+ σ2)

)
log2(eπσ

2) = log2

(
1 +

p|h|2

σ2

)
(3.25)

completing the proof. □

The value of (3.25) is the instantaneous capacity value. If we instead wish to obtain the
ergodic capacity, we should write

C = log2

(
1 +

pE{|h|2}
σ2

)
. (3.26)

Next, we extend our analysis to the case of an interfering signal on the AWGN channel. The
ergodic capacity in this case does not have a closed form expression, since the distribution
of such interference is generally not known and also, it is not always additive. However, a
lower bound can be obtained if we treat the interference as noise, as seen in [25] and [26].
Lemma 3.3 provides a lower bound for the capacity.

LEMMA 3.3 Consider a memoryless interference channel with input x ∈ C and y ∈ C
given by

y = hx+ v + n, (3.27)

with n ∼ NC(0, σ
2) as the independent noise, h ∈ C as the channel response, known by

the receiver, and v ∈ C a random interference with an arbitrary distribution. The input
power is bounded as E{|x|2} ≤ p.
Suppose now h ∈ C is a random realization of the random variable H and U is the
random variable with realization u that describes the interference variance. The realiza-
tions of those random variables are all known by the receiver. If the noise n is condi-
tionally independent of v given h and u, the interference v has conditional zero mean,
E{v|h, u} = 0, and conditional variance pv(h, u) = E{|v|2h, u}, and also the inter-
ference is conditionally uncorrelated with the input, that is, E{x∗v|h, u} = 0, then the
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lower-bound ergodic channel capacity C is

C ≥ E
{
log2

(
1 +

p|h|2

pv(h, u) + σ2

)}
(3.28)

.

Proof 3.3: First, we express the channel capacity,

C = sup
f(x)

(H(x)−H(x|y)). (3.29)

if H and U are known at the receiver, the capacity can be lower bounded as

C ≥ H(x)−H(x|y,H,U)

= log2(eπp)− E {H(x|y,H = h,U = u)} , (3.30)

where the result of Eq. (3.30) follows from the fact that x ∼ NC(0, p), using the results
of Eq. (3.22), and then conditioning on particular realizations of H and U. The expec-
tation of Eq. (3.30) is with respect to h and u. Now, we assume that the variable x is
estimated from y by use of MMSE. From Eq. (3.14), its scalar form is given by

x̂ =
E{xy∗}
E{|y|2}

y, (3.31)

where
E{xy∗} = E{xx∗h∗}+ E{xv∗}+ E{xn∗} = ph∗, (3.32)

since the noise and the input are independent and also the interference has conditional
zero mean. Also,

E{|y|2} = p|h|2 + pv + σ2, (3.33)

utilizing the independence between the noise and the interference and the conditional
zero mean for the interference. From that, the MSE of the MMSE estimator is as follows

MSE = E{|x|2} − E{xy∗}
E{|y|2}

= p− p2|h|2

p|h|2 + pv + σ2
. (3.34)

If we take the upper bound of the conditional differential entropy

H(x|y) (a)
= H(x− x̂|y)

(b)

≤ H(x− x̂)
(c)

≤ log2(eπMSE), (3.35)
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where (a) follows from the fact that the estimate x̂ is a known value, and the entropy is
invariant to constant displacement, (b) follows from removing the remaining informa-
tion in y (which also does not change the entropy), and (c) follows from the fact that
the largest entropy is obtained from a random variable that is circularly symmetric and
Gaussian distributed. Since the random variable x− x̂ has zero mean and variance MSE,
the expression of Eq. (3.35) is obtained. Finally, by using the expression of Eq. (3.30),
we obtain

C ≥ log2(eπp)− log2(eπMSE) = − log2

(
1− p|h|2

p|h|2 + pv + σ2

)
= log2

(
p|h|2 + pv + σ2

pv + σ2

)
= log2

(
1 +

p|h|2

pv + σ2

)
, (3.36)

completing the proof. □

Although the expression of Eq. (3.28) may look simple at the first look, it is actually of
significant importance for this work. In later sections, the interference term, pv, will contain
not only the interference of one source, but also the interference of various sources, and also
the "noise", or uncertainty of the channel estimation. This expression is the base expression
of all of the SE derivations that will be used on this work. In the next section, we discuss
channel estimation techniques

3.3 CHANNEL ESTIMATION

This section aims to describe how channel estimation is performed into CF MIMO sys-
tems. There are various ways to estimate the channel: one could estimate it by use of non-
linear methods such as the ones used in [27], [28] and [29]. For instance, [28] uses an
estimation method that relies on the singular value decomposition of the channel matrix in
order to separate the subspaces of the desired signal and the interference/noise, in order to
estimate the desired channel with minimum interference from other UEs. There are also
linear methods of channel estimation. [9] and [30] use a method of transmitting known pilot
signals in the UL and observing the received signal. Such a method of estimation will be
the chosen method through this work, and we begin to introduce it by describing the system
model as follows
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3.3.1 Uplink Pilot Transmission

The model is described by Fig. 2.2: K single antennas UEs are served by L APs, each
of them equipped with N antennas, and are randomly deployed along the coverage area.
The APs are connected to the CPUs via fronthaul links, that can be used for sharing the
CSI and channel statistics among the APs, that are needed to decode the UL data. UE k is
served by the APs belonging to the subset Mk, which is assumed to be fixed and known
everywhere. in order to correctly decode the desired signal from the UE, knowledge of the
channel response between the AP and UE is required. It is of importance that AP l has the
estimates of the channel vector hkl from the k-th UE if l ∈ Mk. The channels are assumed
to be constant during the duration of one coherence block, and take independent realizations
from one block to another. Therefore, it is necessary to estimate the channel only once per
coherence block. From the transmission protocol in Section 2.3, τp symbols are transmitted
as pilots during each coherence block. Thus, each UE can transmit a pilot sequence of τp
symbols, and each AP can use the receives signals in order to estimate the channel.

Ideally, every UE would have a different orthogonal pilot sequence in order to cancel
the interference between the channel estimate of UEs. However, since the pilot sequence is
τp-dimensional, we can only have a total of τp mutually orthogonal pilot sequence. Also,
the length of the coherence block imposes the constraint τp ≤ τc, that makes impossible to
assign mutually orthogonal sequences in real life networks, where the number of UEs, K, is
larger than τc. Thus, the network will use the set of τp pilot sequences, ϕ1, ..., ϕτp ∈ Cτp , that
satisfy ||ϕt||2 = τp for t = 1, ..., τp. Also, they must be mutually orthogonal:

ϕH
t1
ϕt2 =

τp t1 = t2

0 t1 ̸= t2.
(3.37)

More than one UE might be assigned the same pilot sequence. We denote the index of the
pilot assigned to UE k as tk ∈ {1, ..., τp} and we define

Pk = {i : ti = tk, i = 1, ..., K} ⊆ {1, ..., K} (3.38)

as the set of UEs that use the pilot tk. Thus, the transmitted pilot signal, scaled by the UL
transmitted power, ηk is received by AP l as the received UL matrix Ypilot

l ∈ CN×τp ,

Ypilot
l =

K∑
i=1

√
ηihilϕ

T
ti
+Nl (3.39)

where Nl ∈ CN×τp is the receiver noise, whose elements are iid and distributed asNC(0, σ
2).

The received UL signal Ypilot
l is the observation that AP l can use to estimate the channels

to all of its served UEs. The estimation can either be performed locally at AP l, or be
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delegated to the CPU via fronthaul link. Since the channels are independent from each other,
the estimation occurring locally does not have any loss of quality when compared to the
centralized estimation, in the CPU.

3.3.2 MMSE Channel Estimation

We want to estimate the channel hkl based on the observation Ypilot
l , in Eq. (3.39). First,

we should remove the interference from the UEs that use orthogonal pilots, by multiplying
the received signal with the normalized conjugate of the pilot sequence ϕtk , yielding ypilot

tkl
=

Ypilot
l ϕ∗

tk
/
√
τp ∈ CN , which is given by

ypilot
tkl

=
K∑
i=1

√
ηi√
τp
hilϕ

T
ti
ϕ∗
tk
+

1
√
τp
Nlϕ

∗
tk

=
√
ηkτphkl︸ ︷︷ ︸

Desired channel

+
∑

i∈Pk k

√
ηiτphil︸ ︷︷ ︸

Interference

+ ntkl︸︷︷︸
Noise

(3.40)

The first term in Eq. (3.40) is the desired estimate, scaled by the square root of the total
pilot power. The second term is the interference generated by the UEs sharing the same pilot
sequence and the third term is the noise ntkl = 1√

τp
Nlϕ

∗
tk
∼ NC(0N , σ

2IN). Notice that

the received signal ypilot
tkl

is a sufficient statistic for the estimation of hkl, as affirmed by [10],
since the pilot signals used are mutually orthogonal. Thus, we are able to use the following
result

COROLLARY 3.1 The MMSE estimate of hkl based on ypilot
tkl

is

ĥkl =
√
ηkτpRklΨ

−1
tkl
ypilot
tkl

, (3.41)

with
Ψtkl = E

{
ypilot
tkl

(ypilot
tkl

)H
}
=
∑
i∈Pk

ηiτpRil + σ2IN , (3.42)

the correlation matrix of the received signal. The estimated channel ĥkl and the estima-
tion error h̃kl = hkl − ĥkl are independent and distributed as

ĥkl ∼ NC(0N , ηkτpRklΨ
−1
tkl
Rkl) (3.43)

ĥkl ∼ NC(0N ,Ckl) (3.44)
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with the error correlation matrix

Ckl = E{h̃klh̃
H
kl} = Rkl − ηkτpRklΨ

−1
tkl
Rkl. (3.45)

Proof 3.4: By taking a look at the received signal of Eq. (3.40), and defining q =
√
ηkτp,

n =
∑

i∈Pk k

√
ηiτphil+ntkl, R = Rkl and S =

∑
i∈Pk k

ηiτpRil+σ2IN . By invoking Lemma

3.1, the MMSE estimate and properties follow directly from it. □

The MMSE estimator has its name because it minimizes the MSE E{||hkl − ĥkl||2} =
E{||h̃kl||2} among all possible estimators. This means that the use of non-linear estima-
tors will not reduce the MSE even more. The computation of the channel estimate is then
dependent on the knowledge of two matrices:

1. The spatial correlation matrix Rkl

2. The matrix sum Ψtkl =
∑

i∈Pk
ηiτpRil + σ2IN of the correlation of the pilot sharing

UE and the noise.

Both matrices depend on the channel statistics and are therefore constant. Thus, the ma-
trix √ηkτpRklΨ

−1
tkl

can be precomputed. This matrix is described by N2/2 complex scalars,
which can be exchanged via the fronthaul links in order to make this matrix available ev-
erywhere in the grid. The fronthaul signaling is negligible, since the channel statistics are
deterministic through the transmission. If the aforementioned matrix is precomputed , the
MMSE estimate requires computing ypilot

tkl
and then multiplying it with√ηkτpRklΨ

−1
tkl

of each
UE served by the l-th AP. The inverse matrix operation requires Nτp complex multiplica-
tions per pilot sequence while the matrix multiplication needs N2 complex multiplications
per UE, as shown in [22]. Thus, the computation complexity for channel estimation at the
l-th AP is

|Dl|(Nτp +N2) complex multiplications (3.46)

per coherence block, considering that every UE that it serves use a different pilot sequence
(which is desirable, since the interference from neighboring UEs that are served by AP l is
canceled. Since this value stays finite for K →∞, considering |D|l finite, then the scalability
condition of Lemma 2.1 is satisfied.
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3.3.3 Spatial Correlation Matrix Estimation

All of the aforementioned methods assume the fact that channel statistics are known
everywhere. However, in practical systems, the knowledge of those parameters are often
obtained from estimations. There are various ways of estimating the channel spatial corre-
lation matrix, such as the ones seen in [31], [32], [33] and [34]. We will explore the most
straightforward of those methods, consisting on taking samples of the estimated matrix over
coherence blocks and averaging it. We begin by allocating pilots to the UEs, so that each
pilot is used exactly K/τp times, i.e., this means that the number of pilots must be a multiple
of the number of UEs. There is also a generalization for any τp, but this will not be covered
here. Thus, each group of τP UEs, using orthogonal pilots, transmit to every AP in the grid.
The received signal Yestimate

l ∈ CN×τp is given by

Yestimate
l =

∑
i∈Tp

√
ηihilϕtk +Nl, (3.47)

where Tp is the set of all of the transmitting UEs. Then the interference is canceled by
performing the same operation of Eq. (3.40) as

hLS
kl =

∑
i∈Tp

√
ηi√
τp
hilϕ

T
ti
ϕ∗
tk
+

1
√
τp
Nlϕ

∗
tk

(3.48)

where hLS
kl ∈ CN is the least squares (LS) estimate of the channel between UE k and AP l.

Since the pilots of the transmitting UEs are orthogonal. Eq. (3.48) can be simplified as

hLS
kl =

√
ηkτphkl + ntkl (3.49)

that is a scaled up version of the desired channel plus noise. Since the channel spatial correla-
tion matrix is defined as E{hklh

H
kl}, the estimated channel spatial correlation matrix, Rsample

kl

can be expressed by

Rsample
kl =

1

NcNt

Nc∑
n=1

Nt∑
nt=1

hLS
klntnc√
ηkτp

(hLS
klntnc

)H
√
ηkτp

(3.50)

where Nt is the total number of transmissions for each estimation of the matrix and Nc is the
number of coherence blocks that are used for estimation.

The greater the number of transmissions, the better the spatial correlation matrix esti-
mate. However, the greater the number of coherence blocks that will be used to estimate it,
which in turn shrinks the available space for data transmissions.
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3.3.4 Normalized MSE

The values of the MSE depends on the channel gains βkl, so a strong channel might have
larger errors in absolute values than a weak channel. To better measure the error in a given
estimate of the channel, is best to use a normalized version of the MSE, the normalized mean
squared error (NMSE). In respect to the channel between AP l and UE k, the NMSE is given
by

NMSEkl =
E{||hkl − ĥkl||2}

E{||hkl||2}
=

tr(Ckl)

tr(Rkl)
= 1−

ηkτptr(RklΨ
−1
tkl
Rkl)

tr(Rkl)
(3.51)

and it is a measure of the estimation error variance per antenna. When the estimate is perfect,
the NMSE goes to 0. However, when the UL transmit power is ηk = 0, meaning that the
received signal is composed of only interference and noise, the NMSE has its maximum
value 1.

In the case of single antennas, the NMSE is obtained as

NMSEkl = 1−

ηkτp

βkl

(∑
i∈Pk

ηiτpβil + σ2

)−1

βkl


βkl

= 1− ηkτpβkl

ηKτpβkl +
∑

i∈Pk {k}
ηiτpβil + σ2

= 1− SNRpilot
kl

SNRpilot
kl +

∑
i∈Pk {k}

SNRpilot
il + 1

, (3.52)

where
SNRpilot

kl =
ηKτpβkl

σ2
(3.53)

is the effective SNR of the pilot transmission from UE k to AP l. Notice that the pilot
sequence length τp increases this value, given that during the transmission, the receiver cap-
tures the transmitted pilot energy without necessarily increasing the noise. Since the total
pilot energy, τpηk, is dependent on the pilot sequence length and the UL transmit power, it is
possible to choose between concentrating all the energy in one of the τp samples, or spread-
ing it between all of the samples. The second solution seems more plausible, since it keeps
the peak to average power into a realizable range. However, this solution is highly sensitive
to hardware imperfections, that might lead to approximately orthogonal pilot sequences be-
ing generated from the UE, when it is only able to generate its own pilot sequence. Thus, in
real life applications, the system can improve its effective SNR of the pilot transmission by
increasing the pilot sequence length and by boosting the pilot power into specific samples.

Also, we see the effect of the interference of the pilot-sharing UEs into the value of the
NMSE. This interference will be discussed in the next section.
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3.3.5 Pilot Contamination

From Eq. (3.52), we can see that the interference from pilot sharing UEs increases the
value of the NMSE, which in turn reduces the channel estimation quality. Assuming that
uncorrelated fading, Rkl = βklIN , we can see that the NMSE has the same expression as
Eq. (3.52). This means that the number of antennas, in the case of uncorrelated fading, does
not interfere in the quality of channel estimation. On the case of correlated fading, however,
it is not as straightforward. For instance, if the interference from the pilot-sharing UEs is
increased, it leads to an increase of the NMSE. Also, it depends clearly on the relationship
between the spatial correlation matrices Ril and Rkl. When the correlation between their
vectors is weak, meaning that their UEs channels have widely different multipath compo-
nents directions, then their corresponding dominating eigenspaces will be widely different,
which will somehow increase the quality of channel estimation, as will be confirmed later.

The interference of pilot sharing UEs is called pilot contamination. It is different from
the interference generated from receiver noise, since besides reducing the channel estimate
quality, it also correlates the desired transmitted information with the interference of the
pilot-sharing UEs. To see that, let the estimate of hkl, ĥkl, be the MMSE estimate as

ĥkl =
√
ηkτkRklΨ

−1
tkl
ypilot
tkl

(3.54)

and the estimate of another UE i ∈ Pk {k} using the same pilot as UE k. In that situation,
we have that Ψtkl = Ψtil and ypilot

tkl
= ypilot

til
, such that Eq. (3.54) can be rewritten as

ĥil =
√
ηiτiRilΨ

−1
tkl
ypilot
tkl

(3.55)

and, by comparing Eq. (3.54) and Eq. (3.55), we have that

ĥil =

√
ηi
ηk

RilR
−1
kl ĥkl i ∈ Pk. (3.56)

Thus, we can see that the two estimates are correlated, even though the two channels are
considered statistically independent (E{hklh

H
il } = 0N×N , for i ̸= k). In fact, at the case of

uncorrelated fading, the relationship between the estimates will be given by ĥil =
√

ηiβ2
i

ηkβ
2
k
ĥkl

which makes ĥkl a scaled version of ĥil, and thus the estimates are fully correlated. This
shows that the reuse of pilots makes the channel estimates correlated, reducing the quality of
the estimates. However, pilot contamination is not only detrimental to channel estimation:
it also reduces the capability of the combiner to mitigate interference, as will be seen at
subsequent chapters.
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3.3.6 MMSE Estimation of the Collective Channel

To this moment, we have only estimate the channels between AP l and UE k. However,
in order to coherently process the signals, the system must have knowledge of the collective
channel hk between the UE k to all of the APs in the grid. In the case of the estimated
channels, it is not mandatory for the system to have the estimates of UE k to all APs. Instead,
it is only necessary for it to have the estimates between UE k and the subset of APs that serve
it, that is, the APs in Mk ∈ {1, ..., L}. This means that, following the collective channel
properties of Section 2.3, the following partial channel is known

Dkĥk ≜


Dk1ĥk1

...
DkLĥkL

 ∼ NC(0M , ηkτpDkRkΨ
−1
tk
RkDk), (3.57)

where Ψ−1
tk

= diag
(
Ψ−1

tk1
, . . . ,Ψ−1

tkL

)
and the estimation error is Dkh̃k = Dkhk −Dkĥk ∼

NC(0M ,DkCk) in which Ck = diag (Ck1, . . . ,CkL). The collective NMSE of UE k is then
computed as

NMSEk =
E
{
||Dkhk −Dkĥk||2

}
E {||Dkhk||2}

=
tr(DkCk)

tr(DkRk)
=

L∑
l=1

tr(DklCkl)

L∑
l=1

tr(DklRkl)

= 1−
ηkτp

∑
l∈Mk

tr(RklΨ
−1
tkl
Rkl)∑

l∈Mk

tr(Rkl)
. (3.58)

If the APs are equipped with only one antenna, then the expression of Eq. (3.58) is written
as

NMSEk = 1−
ηKτp

∑
l∈Mk

β2
kl

ηkτpβkl+
∑

i∈Pk {k}
ηiτpβil+σ2∑

l∈Mk

βkl

= 1−

∑
l∈Mk

(SNRpilot
kl )2

SNRpilot
kl +

∑
i∈Pk {k}

SNRpilot
il +1∑

l∈Mk

SNRpilot
kl

, (3.59)

where it is easily seen that the presence of pilot sharing UEs will establish a correlation
between the channel estimates, which in turn, will increase the NMSE.
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3.4 IMPACT OF SPATIAL CORRELATION, CONTAMINATION AND
ARCHITECTURE

This section aims to numerically exemplify the affects of the architecture,

pilot contamination and spatial correlation on channel estimation accuracy.

3.4.1 Impact of Cell Free Architecture

To understand the basics of the impact of the CF architecture into channel

estimation, we begin by analyzing single antenna APs and the estimation of

the collective channel of an arbitrary UE k that is assigned one unique pilot

sequence Pk = {k}. In this situation, the expression for the NMSE on Eq.

(3.59) is reduced to

NMSEk = 1−

∑
l∈Mk

SNRpilot
kl

1+ 1

SNRpilot
kl∑

l∈Mk

SNRpilot
kl

. (3.60)

If one AP has a much larger SNR than the other APs inMk, then Eq. (3.60) is
reduced to the approximation

NMSEk ≈ 1− 1

1 + 1

SNRpilot
klmax

=
1

SNRpilot
klmax

+ 1
, (3.61)

with lmax being the AP that has the highest effective SNR to the UE k among all of the
elements composingMk. This approximation is exact if |Mk| = 1, or if all the serving APs
have the same effective SNR. However, in the case the APs have different values of effective
SNR, the NMSE values will be higher than the ones in Eq. (3.60).

To show this, we propose a simulation setup with one UE k, that may be served by
Mk = 2 APs or just one of them. We let the value of SNRpilot

k1 be fixed to 20 dB, and
the value of SNRpilot

k2 vary from -20 dB to 40 dB. The results are shown in Fig. 3.1 It is
possible to see that the NMSE with the two APs serving UE k is higher than the case of
only AP 1 serving the UE if SNRpilot

k2 < SNRpilot
k1 . However, a lower NMSE is obtained when

SNRpilot
k2 > SNRpilot

k1 . This shows that having two serving APs does not necessarily improve
the quality of the collective channel estimation. To a satisfactory estimate one must ensure
also that the effective SNR of both APs is high. This can be seen in the case that for low
values of SNRpilot

k2 , the NMSE increases to more than one serving AP to the point it starts
decreasing, because the effective SNR of AP 2 is high enough.
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Figure 3.1 – NMSE when at most two APs serve UE k. The value of SNRpilot
k1 if fixed to 20

dB, while the value of SNRpilot
k2 ranges from -20 to 40 dB.

To further explore the influence of the architecture on the NMSE, we propose another
simulation scheme, with a square grid of 600 m ×600 m, with L = 81 single antenna APs
across the grid. The UE is placed randomly in the grid. The bandwidth is 20 MHz, and
the noise power is σ2 = −93 dBm. Fig. 3.2 shows the simulated setup. The channels are
Rayleigh fading, and the channel gains are given by

βkl(dkl)[dB] = −30.5− 36.7 log10

(
dkl
1 m

)
, (3.62)

where the propagation distances dkl are computed assuming the APs are 10 m above the UEs.
In the case of the Massive MIMO, the channel is considered uncorrelated. Fig. 3.3 shows the
NMSE curves for the three described setups. The pilot transmit power ηk varies from 1 mW
to 1 W, the pilot sequence length is τp = 10. When we compare all of the setups, we can see
that the average NMSE is always greater in the Massive MIMO case. This shows that, for
channel estimation quality, its always more beneficial to place more APs in the grid than to
increase the number of antennas of a single AP. In the case of the small cell setup, the NMSE
is lower than the CF, given the chosen AP from the UE is always the one that has the best
channel quality, which in turn will have the lowest NMSE. However, one should not confuse
the fact that lower channel estimation quality implies lower communication performance in
this case. Since the CF uses the combined information of the APs to jointly decode the
desired signal, its communication performance is generally higher than the small cell setup,
even though channel estimation quality is lower.

The SE gain of CF systems will be discussed later in this work. However, we will give
an indication of the performance gain by evaluating the SNR that is achieved during data

58



(a) Massive MIMO setup

(b) Small cell setup

(c) Cell free setup

Figure 3.2 – Simulation setups. (a) shows the Massive MIMO setup, (b) the small cell setup,
and (c) the CF setup.

59



Figure 3.3 – Average NMSE for a single UE in the three setups described in Fig. 3.2

detection. Supposing that only UE k is active in the network, then the local estimate of the
transmitted symbol sk, as defined in Eq. (2.7) is given by

skl = vH
klĥklsk︸ ︷︷ ︸

Signal over the estimated channel

+ vH
klh̃klsk︸ ︷︷ ︸

Signal over unknown channel

+vH
klnl︸ ︷︷ ︸

Noise

. (3.63)

This is the estimated signal at AP l. All of the estimates of the serving APs are sent to the
CPU, where they are combined and a final estimate of sk is obtained:

ŝk =
∑
l∈Mk

vH
klĥklsk +

∑
l∈Mk

vH
klh̃klsk +

∑
l∈Mk

vH
klnl. (3.64)

We will assume, for the sake of simplicity, that MR combining is applied, with vkl = ĥkl,
and compute the resulting SNR as

SNRdata
k =

E


∣∣∣∣∣ ∑l∈Mk

vH
klĥklsk

∣∣∣∣∣
2


E


∣∣∣∣∣ ∑l∈Mk

vH
klnl

∣∣∣∣∣
2


=

pkE


∣∣∣∣∣ ∑l∈Mk

∥∥∥ĥkl

∥∥∥2∣∣∣∣∣
2


σ2
∑

l∈Mk

E
{∥∥∥ĥkl

∥∥∥2}

=

∑
l∈Mk

pk tr
(
(Rkl −Ckl)

2)
∑

l∈Mk

σ2 tr (Rkl −Ckl)
+
∑
l∈Mk

pk tr (Rkl −Ckl)

σ2
, (3.65)

where the expectations are with respect to the channel estimate. By using the results of Eq.
(3.65), we propose the same simulation setup as the one that was used to generate Fig. 3.3.
We let pk = ηk = 20 mW. Fig. 3.4 shows the SNR distribution for random UE locations. We
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Figure 3.4 – CDF of the SNR achieved in the UL with MR combining and MMSE channel
estimation in the same setups as Fig. 3.3

.

can see from it that the CF system achieves the larger values of SNR most of the time. The
Massive MIMO setup has the lowest values of the SNR, since it can’t exploit the advantage
of having APs at different geographical locations. The setup of Small Cell has a performance
similar to the CF setup for large values of SNR. This happens due to the fact that for those
values, the jointly processing of the APs with weaker channels is overcompensated by the
processing of stronger channels in CF. Thus, the CF has the largest gains since it is able to
coherently process the information at multiple APs. Also, we will see in later sections that
in the presence of multiple UEs it achieves an even better performance, by jointly mitigating
the interference from the UEs.

3.4.2 Impact of Pilot Contamination

The next point of interest is to show the effect of pilot contamination for channel estima-
tion. For this, we assume the scenery of a single-antenna APs l, and that it wants to estimate
the channel of UE 1, with UE 2 using the same pilot sequence, and acting as interference.
From Eq. (3.59), we obtain

NMSEk1 = 1− SNRpilot
1l

SNRpilot
1l + SNRpilot

2l + 1
(3.66)

The increasing value of pilot contamination on Eq. (3.66) depends on the term SNRpilot
2l + 1,

which are the interference and noise. When this term is close to 1, the pilot contamination is
small, whereas values much greater than 1 imply a high level of pilot contamination. To show
that, we consider 5 values of SNRpilot

1l ∈ {−20,−10, 0, 10, 20} dB, and the values of SNRpilot
2l
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Figure 3.5 – NMSE as function of the varying SNR, SNRpilot
2l of the interfering pilot signal

ranging from -40 to 30 dB. Fig. 3.5 shows that the NMSE increases when the effective
SNR of the interfering UE increases, specially when the effective SNR of the desired UE
is high. For instance, when SNRpilot

1l = 20 dB, the NMSE increases drastically when the
SNR of the interfering signal reaches -10 dB. From that, we can see that, if the interfering
signal is 10 dB weaker than noise, then pilot contamination is negligible. Thus, we can
affirm that pilot contamination is an aggravating factor when the interfering UEs are near the
desired UE. Since those UEs are probably being served by the same AP, it would be logical
to assign different pilot sequences to the UEs being served by the same AP, as proposed by
[8]. This is very similar to cellular systems, where UEs that are in the same cell are assigned
preferably orthogonal pilot sequences, to reduce pilot contamination. Since the main factor
on determining the SNR from the interfering signal is the distance between the AP and the
interfering UE, we propose a simulation scheme, similar to the one that was used to generate
Fig. 3.4, where the effective SNR, from Eq. (3.53), is evaluated for different distances
between the interfering UE and its serving AP, and the pilot sequence length takes values of
τp ∈ {1, 5, 10}. From Fig. 3.6 we can see that for shorter distances, the pilot contamination
is significantly large, given that the values of the effective SNR of the interfering UE are
large. Also, for longer pilot sequences, the effect of pilot contamination is ever present
for longer distances. We have seen that above the -10 dB line, the pilot contamination is
neglectful. This means that at distance of 215 m, for τp = 1, 330 m, for τp = 5, and 400
m for τp = 10, the pilot contamination is neglectful, which means that in this setup, if we
have a frequency reuse factor of 1 (τp = 1), the interfering UEs should be at least 400 m for
the AP in order to have neglectful pilot contamination. Thus, the increasing values of the
pilot sequence makes the pilot contamination effect much more manageable. Therefore, one
could argue that increasing τp would always be beneficial, since the interference from pilot
contamination is mitigated. However, we will see in later sections that this is not always the
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Figure 3.6 – The effective SNR of the interfering UE, from Eq. (3.53) as function of the
distance between the interfering UE and the AP. The pilot sequence length is such that τp ∈
{1, 5, 10}.

ideal case, since the complexity of signal processing at the AP grows significantly, and the
SE gains are negligible.

3.4.3 Impact of Spatial Correlation

This section aims to quantify the effect of spatial correlation on channel estimation of the
AP antennas, and on pilot contamination.

3.4.3.1 Impact of Spatial Correlation in Channel Estimation

Let us consider the spatially correlated channel h ∼ NC(0N ,R) between an AP and an
UE. We assume the UE uses a unique pilot sequence, so that Eq. (3.58) can be written as

NMSE = 1−
ητp tr

(
R (ητpR+ σ2IN)

−1
R
)

tr (R)
(3.67)

Now, we let R = VΛVH be the eigenvalue decomposition of the spatial correlation matrix
R, in which the unitary columns of the unitary matrix V ∈ CN×N are the eigenvectors, and
the diagonal matrix Λ = diag(λ1, ..., λN) has the correspondent non-negative eigenvalues,
with

∑N
n=1 λn = tr (R) = Nβ. By using the eigenvalue decomposition, Eq. (3.67) can be
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rewritten as

NMSE = 1−
ητp tr

(
VΛVH

(
ητpVΛVH + σ2IN

)−1
VΛVH

)
Nβ

= 1− ητp
Nβ

tr
(
Λ
(
ητpΛ+ σ2IN

)−1
Λ
)

= 1− ητp
Nβ

N∑
n=1

λ2
n

ητpλn + σ2

= 1− 1

Nβ

N∑
n=1

SNRpilotλ2
n

SNRpilotλn + β
(3.68)

Now, by defining Lemma 3.4

LEMMA 3.4 For matrices A ∈ CN1×N2 and B ∈ CN2×N1 , it is true that

(IN1 +AB)−1A = A (IN2 +BA)−1 (3.69)

tr (AB) = tr (BA) . (3.70)

We see that the second equality of Eq. (3.68) is obtained from moving the matrices V and
VH into the inverse and applying Lemma 3.4. We can see from this equation that the NMSE
depends on the eigenvalues, but not on the eigenvectors. Although we cannot change the
spatial correlation properties of a practical channel, we can understand how it impacts the
NMSE, and by that, try to find a eigenvalue distribution that maximizes or minimizes the
NMSE under the constraint

∑N
n=1 λn = Nβ. For that, we announce Lemma 3.5:

LEMMA 3.5 The function NMSE : RN
≥0 → R≥0 of the eigenvalue vector λ =

[λ1, ..., λN ]
T given in Eq. (3.68) is strictly concave on its domain

Proof 3.5: The proof can be found in Appendix A.1. □

A consequence of Lemma 3.5 is that the maximum value of the NMSE expression of
Eq. (3.68), under the constraint

∑N
n=1 λn = Nβ, is achieved when all the eigenvalues are

equal and is an unique solution, λn = β, for n = 1, ..., N . This shows that the uncorrelated
model of the spatial correlation matrix is the one that has the highest NMSE. Now, we focus
on finding the spatial correlation matrix that would instead minimize the NMSE expression.
For that, we make use of Lemma 3.6:
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LEMMA 3.6 Consider the eigenvalues of the spatial correlation matrix R sorted in de-
scending order

λ1 ≥ λ2 ≥ ...λr > λr+1 = ... = λN = 0, (3.71)

where r ≤ N is the rank of R. Let λ = [λ1...λr−2λr−1λr0...0]
T be the eigenvalue vector.

Then NMSE(λ) > NMSE(λ′), where λ′ = [λ1...λr−2λr−1 + λr0...0]
T .

Proof 3.6: The proof can be found in Appendix A.2. □

Lemma 3.6 shows that is possible to reduce the NMSE by replacing the two smallest
eigenvalues of R, λr−1 and λr with the sum λr−1 + λr and 0. If we repeat this procedure
a sufficient number of times, we will reach the case where λ1 = Nβ, and λn = 0, for
n ≥ 2, which has the lowest NMSE. This case corresponds to a rank-one spatial correlation
matrix, which is the case of strongest correlation between the channels of the antennas at
the AP. Thus, we can conclude that, the bigger the spatial correlation between the antennas,
the easier is to estimate the channel, since there is more known data to be provided to the
estimator.

Those properties are seen in Fig. 3.7, where the local scattering model spatial correlation
matrix, of Eq. (2.14), is used to estimate the NMSE as function of the azimuth ASD σφ. The
results are averaged over different nominal azimuth angles, and the elevation angle is fixed
at θ = −10o and the elevation ASD is such that σθ ∈ {0o, 10o, 20o}. The effective SNR
is of 20 dB, and there are N = 10 antennas at the AP. We can see from Fig. 3.7 that the
NMSE is smaller as the ASD reduces (that is, when the channel is highly correlated). As the
ASD increases, the NMSE also increases to the point where it converges to the uncorrelated
case, when all eigenvalues from the spatial correlation matrix are equal, β, as opposed to
the fully correlated case of σφ = σθ = 0o, when there will be only one nonzero eigenvalue
of value Nβ. Also, we can see that ahead of the ASD σφ = 40o the spatial characteristics
of the channel cannot be exppolited to generate a better NMSE. Thus, as we can see, fully
correlated channels leads to better channel estimation quality, which would contradicy con-
ventional MIMO literature, like [19] and [20]. Next, we analyze the effect of the number
of AP antennas N on the NMSE. For that, we consider the same setup as the one that gen-
erated Fig. 3.7, but we fix the ASDs to be σφ = σθ = 15o, and the effective SNR to be
such that SNR ∈ {−10, 0, 10, 20} dB. We can see from Fig. 3.8 that the NMSE decreases as
the number of AP antennas increases, since the channel between adjacent antennas become
strongly correlated. However, there is a point around N = 12, where the NMSE stays the
same, irrespective of the number of antennas. This happens due to the fact that the ULA
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Figure 3.7 – NMSE in the estimation of an arbitrary channel as function of the azimuth ASD.
The local scattering model of Eq. (2.14) is used, with Gaussian angular distribution. The
results are averaged over all azimuth nominal angles, and the elevation angle is θ = −10o.
The effective SNR is 20 dB and each AP is equipped with N = 10 antennas.

Figure 3.8 – NMSE in the estimation of an arbitrary channel as function of the number of
antennas at the AP. The effective SNR is -10, 0, 10 and 20 dB, and the spatial correlation is
like Fig. 3.8 with σφ = σθ = 15o.
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gets so big that the channel of the antennas at its beginning and its end become uncorrelated,
irrespective of the effective SNR value.

3.4.3.2 Impact of Spatial Correlation in Pilot Contamination

Next, we shall analyze the effect of spatial correlation on pilot contamination. For that,
we consider UE 1 and UE 2, who share the same pilot sequence, and one arbitrary AP. The
NMSE of Eq. (3.51) is given by

NMSE1 = 1−
ητp tr

(
R1 (η1τpR1 + η2τpR2 + σ2IN)

−1
R1

)
tr (R1)

(3.72)

Differently from the single-antenna case, the NMSE depends not only on the effective SNR
of Eq. (3.53), but also on the full spatial correlation matrices R1 and R2. We can also state
Lemma 3.7 as

LEMMA 3.7 For the positive semi-definite matrices A ∈ CN×N , C ∈ CN×N , and
positive-definite matrix B ∈ CN×N , the following inequality is true:

tr
(
A (B+C)−1) ≤ tr

(
AB−1

)
, (3.73)

where the equality holds only when CB−1A = 0N×N

Proof 3.7: Performing the eigenvalue decomposition of C = VΛVH = V1Λ1V
H
1 ,

where U ∈ CN×N is the unitary matrix of eigenvectors and Λ = diag (λ1, ..., λN) with
the eigenvalues λN ≥ 0, for n = 1, ..., N . V1 ∈ CN×r and Λ1 ∈ Cr×r are the partitions
of V and Λ corresponding to the positive eigenvalues. Then we can state, by applying
the matrix inversion properties to the inverse of B+V1Λ1V1

H , that

tr
(
A
(
B+C−1

))
= tr

(
AB−1

)
− tr

(
AB−1V1

(
VH

1 B
−1V1 +Λ−1

1

)−1
VH

1 B
−1
)

(3.74)

that is necessarily less than tr
(
AB−1

)
if VHB−1AB−1V1 is nonzero, noting that the

matrix
(
VH

1 B
−1V1 +Λ−1

1

)−1 is positive definite. If VHB−1AB−1V1 = 0r×r, or in
other words, CB−1A = 0N×N , then both sides on Eq. (3.73) are equal. □

Then, from Lemma 3.7, we can say that the NMSE expression of Eq. (3.72) is lower
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Figure 3.9 – NMSE of the desired channel estimate in the presence of pilot contamination
from an interfering UE. There are N = 8 antennas, and the local scattering model is used
with θ1 = θ2 = −100, σφ = 15o and σθ = 5o. The desired UE has an azimuth of φ = 45o,
while the interfering UE has an azimuth of−60o and 90o. The NMSE for uncorrelated fading
is shown as a reference case.

bounded by

NMSE1 ≥ 1−
ητp tr

(
R1 (η1τpR1 + σ2IN)

−1
R1

)
tr (R1)

, (3.75)

where the NMSE is equal to the expression in Eq. (3.75) if and only if, the correlation
matrices are orthogonal, that is R1R2 = 0N×N . In this case, the NMSE is completely un-
affected by the interfering UE. That means that pilot contamination would not occur, in a
similar fashion to the favorable propagation phenomena of Chapter 2. Since the orthogonal-
ity condition is unlikely to hold in real life applications, it would be sufficient to ensure that
tr (R1R2) is as small as possible. The NMSE of the desired channel estimate is shown in
Fig. 3.9. The AP is equipped with N = 8 antennas, and there are two UEs, the desired UE
1 and the interfering UE 2. The spatial correlation matrix is modeled by the local scattering
model, with elevation angles θ1 = θ2 = −100, and the ASDs σφ = 15o and σθ = 5o. The
azimuth angle of the desired UE is φ = 45o, while the azimuth of the interfering UE lies in
the range−60o and 60o. The effective SNR of the desired signal is 20 dB, and the interfering
signal has the same SNR or it is 20 dB weaker. The NMSE is low, and far away from the
reference case when the angle of the interfering UE is significantly different from the angle
of the desired UE. This gap is much larger when the two signals have the same SNR, since
pilot contamination is more aggressive the higher the SNR. This shows that, in the case the
interfering UE has a large transmit power, it should be located such that its azimuth angle
is different from the desired UE’s angle, given the elevation angle is the same. When the
interfering signal is much weaker than the desired one there are not such large variations in
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the NMSE, therefore the channels might be strongly correlated and still the channel will be
estimated with reasonable quality. Thus, there are two ways one could mitigate pilot con-
tamination effect: either by assuring the desired UE has a much larger effective SNR, or if
this is not possible, assigning the same pilot to UEs that have much different spatial channel
characteristics, or in other words, have orthogonal spatial correlation matrices.

Chapter Summary

• MMSE estimation theory is an important step to understand linear channel esti-
mation techniques, as well as received symbols estimates as will be seen in later
sections

• Channel capacity is a measure of the amount of information that can be reliably
transmitted through a communication channel. Although the bounds introduced
in this chapter may look simple, they are actually quite helpful to understanding
the SE metrics that will be introduced and discussed in later chapters.

• Channel estimation is very important to reliably decode the transmitted signal.
On the adopted model, since the channel is constant along one coherence block,
it needs to be estimated only once in this interval

• MMSE channel estimation uses channel statistics, like the spatial correlation
matrix, to obtain an estimate of the channel. The interference generated by
reuse of the same pilot sequence by neighboring UEs gives rise to statistical
dependence between the estimates, which in turn decreases estimation quality.
This phenomena is called pilot contamination.

• Spatial correlation might help to improve channel quality. Given one knows the
spatial statistical properties of the UEs in the grid, it is possible to assign pilots
in such a way that UEs with similar spatial correlation matrices don’t share the
same pilot.

• The estimation quality when using many single-antennas APs is much higher
than that of many antennas at a single AP. The highest quality of estimation is
achieved when the UE is served by only the APs near it. However, CF systems
are robust to lower-quality channel estimates.
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DYNAMIC COOPERATION
CLUSTERING ALGORITHMS AND
PILOT ASSIGNMENT WITH PERFECT
AND IMPERFECT SPATIAL CHANNEL
STATISTICS

This chapter aims to introduce pilot assignment algorithms
and DCC. Section 4.1 introduces the pilot assignments algo-
rithms and metrics, using the NMSE of channel estimation
as a performance metric. Section 4.2 introduces DCC algo-
rithms and discusses its scalability related to various param-
eters. It also introduces some key parameters that will be fun-
damental to evaluate system processing complexity at later
chapters. Both sections cover the behavior of the algorithms
in the situation of imperfect channel statistics also. Finally,
Section 4.3 summarizes the algorithms into a table ans dis-
cusses the advantages and disadvantages of using each one.

Having studied methods to estimate the communication channels, as well as the pilot
contamination interference in Chapter 3, we now shift our focus to the pilot assignment
methods, in order to improve the NMSE of the desired channel estimate, and to the formation
of DCC. We also analyze the NMSE over the situations of perfect and imperfect knowledge
of channel statistics.

4.1 PILOT ASSIGNMENT ALGORITHMS

As seen in Chapter 3, Section 3.3.5, if we consider linear MMSE channel estimation,
the reuse of the same pilot sequence by more than one UE gives rise to pilot contamination,
that in turn makes the channel estimates correlated, impacting on loss of channel estimation
quality.

Therefore, it is of importance to propose pilot assignment methods such that the pilot
contamination effect is reduced. Ideally, the pilots would be assigned such that each UE
in the grid transmits a different orthogonal pilot sequence. However, since the maximum
number of pilot sequences is limited to K, the total number of UEs, there will be the necessity
to reuse orthogonal sequences, thus leading to pilot contamination.
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Figure 4.1 – Schematic of two UEs connected to the same AP.

4.1.1 Metrics for Pilot Assignment

Since the interference of the UEs using the same pilot sequence is dependent on the
distance between the desired UE and the interfering UEs to the AP that performs channel
estimation, it would be adequate to assign orthogonal pilots to the UEs that are nearby the
desired UE, and the same pilot sequence to the ones that are far away from it. However,
geographical distance is not the only measure of how weak the interference is: as seen in
Chapter 3 Section 3.4.3, the spatial correlation properties of the channels play a key role in
determining the strength of pilot contamination . For instance, two UEs can be near each
other, but have vastly different azimuth and elevation angles to the AP, impacting in weak
cross correlation between its channels. Therefore, the same pilot sequence could be assigned
to both, having a neglectful impact on channel estimation accuracy.

We can then think on two metrics that would help in assigning the pilots to the UEs. One
of them is the average channel gain, or simply channel gain, β, as defined by Eq. (2.12)

βkl[dB] = −30.5− 36.7 log10

(
dkl
1m

)
+ Fkl. (4.1)

We can see from this equation that there is a clearly dependency on the distance between the
UE and the AP, again suggesting that far away UEs to the AP lead to smaller interference.
However, the presence of the term Fkl, that corresponds to shadow fading, makes that anal-
ysis more complicated. To see that, lets assume that the distance between an arbitrary UE 1
to an AP is d1 = 50m, and the distance between UE 2 and this AP is d2 = 100m, and that
their shadowing coefficients are F1 = 1 dB and F2 = 12 dB. Fig. 4.1 shows this scenery
The values of β for both of those UE is β1 = β2 = −92 dB. This means that the interfer-
ence, not considering the effect of spatial correlation, will have the same effective SNR as
the desired signal, which will introduce a great amount of pilot contamination, even though
the interfering UE is distant two times more than the desired UE from the AP. This happens
due to the shadowing, that could be more aggressive for one UE and less so for the other.
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Notice, however, that if the spatial correlation matrices of both UEs to the AP are orthogonal,
then pilot contamination will not occur, even with aggressive shadowing. Therefore, another
metric to be considered in the pilot assignment is the amount of cross correlation between
the channels. This can be measured by the cross-correlation coefficient given by

ρki =
tr
(
RH

k Ri

)√
tr (RH

k Rk) tr (RH
i Ri)

, (4.2)

where ρki ∈ C measures the cross correlation between the spatial channel correlation matri-
ces of UE k and UE i to the AP. Since this is a complex quantity, only its magnitude matters
for the analysis: if |ρki| = 0, then there is no correlation between the channels, and they are
orthogonal. However, if |ρki| = 1, the correlation is at its fullest, and the UEs angles are very
similar, making their channel estimates correlated. One interesting aspect of this metric is
that it has the potential to cancel pilot contamination interference irrespective of the distance
to the AP. This means that it is a quite reliable metric in the situation of different shadowing
attenuation of the neighboring UEs using the same pilot sequence. Notice that, if the spatial
correlation matrices are the identity (the uncorrelated case), or in the case of single antenna
AP, the expression in Eq. (4.2) can be rewritten as

ρki =
βkβi√
β2
kβ

2
i

= 1 (4.3)

showing that in uncorrelated or in single antennas scenarios, the cross-correlation metric is
not a great measure, since the channels will posses similar spatial propagation characteristics.

If now we consider that one UE is served by more than one AP, we consider the collective
spatial correlation matrices as defined in Chapter 2 Section 2.6.1, then the cross correlation
coefficient can be calculated as

ρki =
tr
(
RH

k Ri

)√
tr (RH

k Rk) tr (RH
i Ri)

=

∑L
l=1 tr(RH

klRil)√∑L
l=1 tr(RH

klRkl)
∑L

l=1 tr(RH
il Ril)

(4.4)

which is the mean cross correlation coefficients of an UE pair with respect to the APs. It
measures how correlated the two UE channels are on average per AP.

It is important to notice the cross correlation metric is quite useful to assign the same
pilot sequence to the UEs that are near each other and have weak cross correlation. Also, one
should notice that, unlike the case of a single AP, the cross correlation coefficient provides
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UE 1

UE 2

d

Figure 4.2 – Proposed simulation setup. The APs are randomly placed, and the UEs are
places at a varying distance d above and below the grid center.

insights into the channel gains of the UEs. We can notice that by doing

ρki =

∑L
l=1 tr(RH

klRil)√∑L
l=1 tr(RH

klRkl)
∑L

l=1 tr(RH
il Ril)

=

∑L
l=1 βklβiltr(UH

klUil)√∑L
l=1 β

2
kltr(U

H
klUkl)

∑L
l=1 β

2
iltr(U

H
il Uil)

=

∑L
l=1 βklβiltr(UH

klUil)√√√√ L∑
l=1

L∑
m=1
m ̸=l

β2
klβ

2
imtr(UH

klUkl)tr(UH
imUim) +

L∑
l=1

β2
klβ

2
iltr(U

H
klUkl)tr(UH

il Uil)

, (4.5)

where U = R/β, thus it is the spatial correlation matrix without the channel gain. Assuming
the channels of both UEs to the AP are strongly correlated, such that Ui = Uk for every l.
The channel gains, however are different. Then Eq. (4.5) is written as

ρki =

∑L
l=1 βklβiltr(UH

klUkl)√√√√ L∑
l=1

L∑
m=1
m ̸=l

β2
klβ

2
imtr2(UH

klUkl) +
L∑
l=1

β2
klβ

2
iltr2(U

H
klUkl)

=

∑L
l=1 βklβil√√√√ L∑

l=1

L∑
m=1
m ̸=l

β2
klβ

2
im +

L∑
l=1

β2
klβ

2
il

.

(4.6)
This leads to very interesting results: although the UE channels are greatly correlated, the
cross correlation coefficient does not necessarily go to 1, as would in the case of Cellular
systems, where each UE only connects to one AP. To better check the influence of the chan-
nel gains in ρki, we propose the simulation scheme, with the same parameters of the one that
generated Fig. 4.4. This time, however, the grid is 1 km × 1 km, and the UEs are placed at a
distance d from the middle of the grid, according to Fig. 4.2 The cross correlation coefficient
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(a) Cross correlation coefficient ρβki versus dis-
tance.

(b) Cross correlation coefficient ρUki versus dis-
tance.

Figure 4.3 – Cross correlation coefficients for varying distance d and number of APs, L ∈
{1, 4, 8, 16}. The coefficients are generated assuming the cross correlation definition of Eqs.
(4.7) and (4.8), where 0 imply no correlation between the channels and 1 imply maximum
correlation between them.

is divided into two distinct groups, defined by

ρβki =

∑L
l=1 βkβi√∑L

l=1 β
2
k

∑L
l=1 β

2
i

, (4.7)

ρUki =

∑L
l=1 tr(UH

klUil)√∑L
l=1 tr(UH

klUkl)
∑L

l=1 tr(UH
il Uil)

. (4.8)

This separation is made assuming that all of the spatial correlation matrices are the identity
(the uncorrelated case), for ρβki, and that the channel gains are equal for every AP, for ρUki.
Also, the number of APs is in the range L ∈ {1, 4, 8, 16}. The mean cross correlation coef-
ficients are given in Fig. 4.3 We can see from Fig. 4.3a that ρβki is maximum for the case of
single AP. As L increases, the cross correlation value decreases. This happens because the
channel gains become more diverse as the number of APs increases, since the UEs have dif-
ferent channel gains for each AP, given the cross correlation coefficient is given by the mean
cross correlation coefficient ρβkil across the APs. Also, the value of ρβki decreases with the
distance, since the UEs besides having diverse channel gains from each AP, are also physi-
cally far away from each other, which makes their interference even smaller, thus reducing
the correlation. In the case of the cross correlation between the normalized spatial correla-
tion matrices, ρUki, its behavior is very similar irrespective of the value of L. One could also
argue why it decreases with the UEs separation, since it is independent of the channel gains.
The answer is, although it is independent of the channel gains, it depends on the azimuth and
elevation angles between the APs and the UEs. Therefore, it stands to reason that far away
UEs will have different angles, which in turn decreases cross correlation, as would the single
AP case.
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(a) Cross Correlation versus shadowing standard
deviation (b) Cross Correlation versus ASD

Figure 4.4 – Cross Correlation Coefficient CDF for varying ASDs and shadowing standard
deviations. The coefficients are generated assuming the cross correlation definition of Eq.
(4.2), where 0 imply no correlation between the channels and 1 imply maximum correlation
between them

4.1.2 Random Pilot Assignment

The simplest of pilot assignment algorithms is the random pilot assignment (RPA). This
algorithm consists on randomly allocating pilots to the UEs, such that each pilot is used at
least once. Clearly, this method has the advantage of not requiring coordination between
the AP and the UEs, but also has the drawback of suffering for pilot contamination, since
the probability of a sequence being used by a neighboring UE is of 1/τp. To better show
how this method of pilot assignment can increase the influence, we shall simulate a system
with K = 40 UEs that are served by an arbitrary AP. The simulation grid is of 1 km ×
1 km, and the shadowing standard deviation σsf ∈ {4, 8, 12, 16} dB. The number of AP
antennas is N = 4, and the spatial correlation matrices are evaluated according to the local
scattering model, with both the ASDs σφ = σθ ∈ {5o, 10o, 15o, 20o}. The channel gains
βk are calculated using Eq. (2.12). The cross correlation is evaluated for each pair of UEs,
according to Eq. (4.2). The CDF of the cross correlation coefficients are shown in Fig. 4.4

We can see from Fig. 4.4a that shadowing variance does not interfere in the distribution of
the cross-correlation coefficients. This is a reflex of the fact those coefficients depend only
on the correlation of the spatial properties of the UE channels. Since σsf only influences
the value of β, the coefficients distribution is not heavily altered by them. On the case of
ASD, is different, as seen in Fig. 4.4b: the higher the ASD, the more dispersed will be the
coefficients. Thus, the probability of having a higher correlation between the UEs is greater,
the greater the value of the ASD. This figure also shows why it is not advisable to assign
the pilots randomly. Since even in the case of low ASD, σ = 5o, the probability of having a
correlation coefficient above 0.8, P (ρkl ≥ 0.8) = 0.25, meaning that in 25% of the cases, the
interfering UE will have high correlation with the desired UE. If they are placed near each
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other the effect of pilot contamination interference would greatly degrade channel estimation
quality. Therefore, more efficient methods will be discussed.

4.1.3 Repulsive Pilot Assignment Algorithm

Since the RPA method is unable to lower the interference caused by pilot contamina-
tion, we propose another method to mitigate this effect. The main objective of any pilot
assignment algorithm is to maximize or minimize a given metric f given some constraints,

Maximize f(t1, . . . , tK)

subject to tk ∈ {1, . . . , τp}, k = 1, . . . , K.
(4.9)

Ideally, the maximization of such metric would mean the exhaustive search, between all of
the possible pilot sequences assignments, for the assignment that maximizes f . The exhaus-
tive search is virtually impossible computationally to be performed when the number of UEs
grow large. For instance, when the number of UEs is K and the number of possible pilot se-
quences is τp, the number of possible pilot assignments is τKp , which for K = 20 and τp = 5

(small values) is already a whooping 3.2 × 106 possible sequences. Therefore, instead of
finding a global maximum, we should be able to design an algorithm that finds a sub-optimal
value. One such algorithm is the repulsive pilot algorithm (RP), defined in [35]. It consists
on clustering the UEs based on a metric, such that each cluster carries elements that share
a dissimilarity between them (hence the name repulsive). For that, let us consider a binary
matrix X, where its elements are xk,t = 1 if the UE k belongs to the cluster (or pilot) t, and
xk,t = 0 otherwise. So the repulsive clustering is obtained by solving the following problem

Maximize
τp∑
t=1

K−1∑
k=1

K∑
k′=k+1

xk,txk′,tfr(k, k
′)

subject to
τp∑
t=1

xk,t = 1, k ∈ {1, . . . , K}

[
K

τp

]
≤

K∑
k=1

xk,t ≤
[
K

τp

]
+ 1, t ∈ {1, . . . , τp}

xk,p ∈ {0, 1}, k ∈ {1, . . . , K}, p ∈ {1, . . . , τp};

(4.10)

where fr(k, k
′) is a metric, or score, that depends on UE k and UE k′. It can be predefined

and static, such as an Euclidean function, or it can be learned, for example, by use of neural
networks. The main objective of this function is to assign a repulsion score such that the
overall repulsion score in Eq. (4.10) is increased. A simple, yet efficient heuristic algorithm
to evaluate this score is given by Algorithm 1. This algorithm works by assigning pilots
randomly to the UEs, by use of the pilot sequence vector t. This vector is such that each
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Algorithm 1 Repulsive Pilot Assignment
Input: Number of clusters τp, set of UEs K
Output: Pilot assignment vector t
Randomly divide K UEs into τp equal sized clusters C
while Overall repulsion function is increasing do

for C1, C2 ∈ C do
for u ∈ C1 and w ∈ C2 do

if exchanging clusters of u and w increases the overall repulsion function then
Swap the clusters of u and w.

end if
end for

end for
end while
for t = 1 : τp do

Assign pilot ϕtk to UEs in cluster t
end for

sequence is used at the same amount among all the UEs. Then, the overall score of Eq.
(4.10) is evaluated. Defining the group of UEs that use the same pilot sequence t1 as C1, one
of the elements, u is swapped, from cluster C1, with an element w, of cluster C2. By doing
that, the overall repulsion score of Eq. (4.10) is again evaluated. In case this score increases,
then the elements u and w are permanently swapped. Otherwise, they swap back to their
original clusters. This is repeated for every u and w of every cluster. After passing through
every cluster, the new overall repulsion score value is compared to the old value. If the new
value is bigger, then repeat the process. Otherwise, end the algorithm.

This solution is sub-optimal, in the sense that it does not achieve the global maximum
of the overall repulsion score. It also selects randomly the initial pilot assignment sequence.
Since the assignment is randomly generated, one random sequence could generate an out-
come that is widely diverse if compared to the outcome of another pilot assignment sequence.
For instance, one sequence could lead to an outcome that has lesser pilot contamination than
the other sequence. However, experimental results show that the difference in pilot contami-
nation is not as huge, so the random sequence is not a limiting factor after all, as we will see
in later sections.

For now, we shall define the simulation setup that will be thoroughly used in this mono-
graph, and is proposed by [22] and [8], according to Table 4.1,

Having defined the simulation setup, we now simulate the average NMSE of UE k. We
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Parameter Value
Number of APs L = 100
AP deployment Uniformly deployed (wrap-around topology)

Number of AP antennas N = 4
Number of UEs in the grid K = 40

Grid dimensions 1 km × 1 km
Noise variance σ2

n = −94 dBm
Uplink transmit power p = 20 dBm

Shadowing standard deviation σsf = 4 dB
Bandwidth B = 20 MHz

Pilot sequence length τp = 10
Coherence blok length τc = 200
Channel gain at 1 km γ = −140.6 dB

Pathloss exponent α = 3.67
Height difference between the UEs and the APs 10 m

Angular standard deviation σφ = σθ = 15o

Table 4.1 – Parameters for the simulation setup of this monograph. Those will always be
considered, unless explicitly said otherwise.

compare the following metrics for the repulsive function fr(k, k
′):

fr(k, k
′) = ||dk − dk′||2 (4.11)

fr(k, k
′) = ||βk − βk′||2 (4.12)

fr(k, k
′) = 1− ρβkk′ (4.13)

fr(k, k
′) = ρUkk′ , (4.14)

where ||a−b||2 is the squared Euclidean distance between a and b, that could also be written

as

√
L∑
l=1

(al − bl)

2

. The average NMSE of an arbitrary UE k was calculated according to Eq.

(3.58). In Fig. 4.5a, the CDF of the NMSE for the RP method metrics and for the RPA are
shown, while in Fig. 4.5b the mean NMSE is shown as function of the uplink transmit power
p varying from 1 mW to 1 W for the same pilot assignments algorithms as Fig. 4.5a. We
can see from Fig. 4.5 that the NMSE values are the lowest when using the distance metric
of the RP. This is to be expected, since assigning the same pilot to UEs that are far apart
from each other is the main objective of any pilot assignment algorithm. Therefore, if the
distance between the UEs and the APs is known, it is much easier to infer whether the UEs
are far away or not. Next comes the channel gains metric. As already discussed, this metric
is similar to the distance metric if the random variations of shadow fading are small. Since
those variations have a standard deviation of σsf = 4 dB, the resulting NMSE is very similar
to the NMSE of distances knowledge.

The RPA has the highest values of NMSE, as expected. The correlation metrics for RP
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(a) NMSE CDF (b) NMSE versus uplink transmit power p

Figure 4.5 – NMSE CDF and average NMSE versus uplink transmit power p for RP method
using the metrics of Eq. (4.11) to Eq. (4.14). RPA is also used for a reference case.

lead to a NMSE, that in the case of Eq, (4.13) becomes similar to the metric of Eq. (4.11),
and leads to even better results than Eq. (4.12) This happens because, as seen in Fig. 4.3a,
as the number of APs gets large, the cross-correlation coefficients tend to zero. Therefore,
the RP algorithm interprets those small coefficients as having a higher repulsion score, and
thus the overall repulsion score of Eq. (4.10) gets progressively bigger. The same thing
happens for the metric of Eq. (4.14), however, since this metric measures the correlation
between the spatial properties of each UE-AP link, it does not have any knowledge of the
UEs distance. Therefore. it cannot precisely assign the same pilot to UEs that are far apart,
instead relying on correlation of the U matrices. For instance, picture a UE k that is far
away from another UE i. Suppose that those UE are weakly correlated. According to the
metric of Eq. (4.14), the repulsion score in that case would be small, which would prevent
the two UEs from sharing the same pilot, even though they are far apart. Thus, the NMSE of
this metric is slightly lower than the RPA, given that spatial correlation at least assigns some
metric, as opposed to just randomly assign pilots with no metrics whatsoever. Finally, the
NMSE values decrease with the uplink transmit power, which is to be expected, since the
effective SNR increases. However, the interference of the neighboring UEs also increases,
given that all UEs transmit with equal power p. This leads to an stabilization of the NMSE
value irrespective of the pilot assignment method.

4.1.4 Greedy Pilot Assignment Algorithm

Another method of pilot assignment is the greedy pilot assignment algorithm (GPA) pro-
posed by [8]. It assigns the pilots to τp random UEs and evaluates at which pilot does the
interference of neighboring UE is minimized. Then it assigns the pilot to this UE. Algorithm
2 summarizes this. This method can be performed by selecting the AP that has the best
channel condition to the UE, or in other words. highest channel gain. Then, for each pilot
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Algorithm 2 Greedy Pilot Assignment
Output: Pilot assignment vector t
for k = 1, ..., τp do

tk ← k ▷ Assign orthogonal pilots tot he first τp UEs
end for
for k = τp + 1, ..., K do

l← argmax
l∈{1,...,L}

βkl ▷ Find the best AP for UE k

τ ← argmin
t∈{1,...,τp}

k−1∑
i=1
ti=t

βil ▷ Find the pilot with least interference at AP l

tk ← τ ▷ Assign pilot τ to UE k
end for

(a) NMSE CDF (b) NMSE versus uplink transmit power p

Figure 4.6 – NMSE CDF and average NMSE versus uplink transmit power p for RP and GPA
method using the metrics of Eq. (4.11) and Eq. (4.12), as well as GPA with UEs separations
known (optimal), and unknown (non-optimal). RPA is also used for a reference case.

t, this AP computes the sum of the interference generated by UEs sharing the same pilot,
and select the pilot τ that has the minimum interference. Again, we can identify the random
property making this option of pilot assignment sub-optimal: In case a different set of UEs
that are nearby each other were assigned orthogonal pilots, thus initializing the assignment
algorithm, the interference minimization would surely lead to a situation of assigning the
same pilot to UEs that are far apart. To check this, we propose a simulation scheme similar
of that from Table. 4.1, but with K = 20, L = 50 and τp = 5. The reason for the decrease in
the value of the variables, specially τp is that, since the GPA with knowledge of the distance
between the UEs requires that an exhaustive search be made to assign orthogonal pilots to
the UEs that are nearby, thus enhancing the complexity of the pilot assignment algorithm,
which would become too large if we used all of the parameters of Table 4.1. The corre-
sponding NMSE distribution, as well as the NMSE variations for different uplink transmit
power are shown in Fig. 4.6a and Fig. 4.6b As we can see from Fig. 4.6, the RPA has the
highest values of NMSE, for reasons already discussed. In respect to the GPA, it can be seen
that the optimal case ,using the distance between the UEs, and the non-optimal have similar
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performances. This means that the non-optimal solution, that does not require exhaustive
search, nor distance estimations, can be deployed with satisfactory results. In the case of RP,
the results are even better, with the channel gains correlation metric having the better per-
formance, even higher than the distance metric. This might indicate that RP should always
be used, but we must heed the warning: it is only usable when the UEs can be grouped into
equal sized clusters, which requires that K be a multiple of τp. Therefore, it has limited uses,
whereas the GPA can be used without this restriction.

4.1.5 NMSE for Pilot Assignment Algorithms with Imperfect Channel Statistics

So far, we have always assumed that the statistics, namely the spatial correlation matrices
R are known everywhere and every time needed. However, it is interesting to investigate
the behavior of the pilot assignment algorithm under imperfect channel spatial correlation
matrices knowledge. Since the assignment methods are all dependent on the statistics from
those matrices, it is likely that imperfect knowledge impacts the value of the NMSE, and
thus system performance.

In the case of known R, increasing the UL transmit power would affect the NMSE value
because it would make the noise interference more negligible. However, if we take a look at
Eq. (3.49) and Eq. (3.50) from Chapter 3,

hLS
kl =

√
ηkτphkl + ntkl (4.15)

and

Rsample
kl =

1

NcNt

Nc∑
n=1

Nt∑
nt=1

hLS
kl√
ηkτp

(hLS
kl )

H

√
ηkτp

, (4.16)

the quality of the estimation depends on the noise power, therefore the increasing value of
the UL transmit power would improve system performance in two ways instead of one. To
prove this, we propose the simulation scheme with the same parameters as Table 4.1. Also,
each UE transmits a total of Nt ∈ {10, 15, 20} times over a total of Nc = 20 coherence
blocks to obtain an estimate Rsample

kl . The pilot assignments used are RPA, the RP with
the channel gains correlation metric and the GPA. The CDF of the NMSE is obtained for
the pilots assignments, and also, we simulate the mean NMSE by varying the UL transmit
power between 1 mW and 1 W. The NMSE is obtained for all pilot assignments, under the
assumption of perfect and imperfect knowledge of the spatial correlation matrix, in the case
of imperfect correlation, the parameters for estimation are Nt = 15 and Nc = 20. The results
are shown in Fig. 4.7

We can see from Figs. 4.7a, 4.7b and 4.7c, that the CDF for the imperfect channel

81



(a) CDF for the NMSE of RP. (b) CDF for the NMSE of GPA.

(c) CDF for the NMSE of RPA.

(d) NMSE versus UL transmit power for RP,
RPA and GPA with perfect and imperfect chan-
nel statistics.

Figure 4.7 – NMSE CDF for imperfect and imperfect channel statistics for GPA,RPA and
RP. The chosen metrics for the RP is the channel gains correlation, and non-optimal GPA.
The mean NMSE versus UL transmit power is also shown, for perfect and imperfect channel
statistics.
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statistics knowledge is very similar to the one of perfect knowledge. The case of Nt = 10

still has a little gap between the curves, but for Nt = 15 and forward, the CDF’s curves
are virtually the same. Also, from Fig. 4.7d, the gap between imperfect and perfect spatial
correlation matrix estimation is dependent on the UL transmit power. When it is smaller,
for example, 1 mW, the difference between the NMSEs is clearly seen, since the spatial
correlation matrix becomes less reliable. However, as the power increases, the estimate gets
progressively better, thus making the performances of imperfect and perfect spatial channel
knowledge similar. Also, as already seen, the RPA has the worst performance, followed by
GPA, and finally the RP, with perfect and imperfect channel statistics knowledge.

It is important to notice that the value of Nt has a limit dictated by the coherence block
length. For instance, if we assume that τp UEs transmit simultaneously, then in a total of Nt

transmissions, the number of symbols that will be used for those transmissions is

τl = K ×Nt. (4.17)

Therefore, if Nt is such that τl > τc, then there cannot be this amount of transmissions, since
some of them would be made into another coherence block, which would include a different
realization of the channel. Therefore, we must ensure that Nt ≤ τc/K. For example, in
our simulation schemes the value of τc = 200, so Nt = 200/40 = 5, therefore there can
be a maximum of Nt = 5 transmissions for each UE per coherence block. The larger the
coherence block length, the more robust will be the spatial covariance matrix estimation,
since more transmissions will be made by the UEs.

We now explore the effect of the number of coherence blocks into channel statistics
estimation. It is obvious from Eq. (3.50) that the use of more coherence blocks for channel
statistics estimation increase the quality of estimation. Unlike the parameter Nt, that is
bounded by the coherence block length, the value of Nc is bounded only by the number of
coherence blocks until the channel statistics suffer significant variation. This value usually
takes values on the magnitude range of hundreds. Therefore, if we use a value of Nc that
is in the range of dozens, then the number of coherence blocks used for transmission would
still be considerable. Therefore, we now propose the same simulation scheme as the one that
was used to simulate Fig. 4.7, but we assume that each UE transmits a total of Nt = 5 times
per coherence block, and also that the number of used coherence blocks for channel statistics
estimation lies in the range Nc ∈ {10, 20, 30}. Fig 4.8 contains those results. We can see
from Figs. 4.8a, 4.8b and 4.8c, that the CDF for the imperfect channel statistics knowledge
is very similar to the one of perfect knowledge. Even for a small number of used coherence
blocks, Nc = 10, and for an even smaller number of transmissions Nt = 5, the quality of
estimation is such that the estimated NMSE CDF approaches the real NMSE CDF. Also, we
can see from Fig. 4.8d, that the UL transmit power plays an important role into the quality
of estimation. Since for smaller power, the noise is predominant, the quality of estimation
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(a) CDF for the NMSE of RP. (b) CDF for the NMSE of GPA.

(c) CDF for the NMSE of RPA.

(d) NMSE versus UL transmit power for RP,
RPA and GPA with perfect and imperfect chan-
nel statistics.

Figure 4.8 – NMSE CDF for imperfect and imperfect channel statistics for GPA,RPA and
RP. The chosen metrics for the RP is the channel gains correlation, and non-optimal GPA.
The mean NMSE versus UL transmit power is also shown, for perfect and imperfect channel
statistics.
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is decreased, and even with Nc = 20 can the estimated NMSE be comparable to the real
NMSE. As the power increases, the quality of estimation also increases, to the point where
p = 100 mW, the values of the NMSEs are almost equivalent. As a result, increasing the
transmit power is an option of reliably estimating channel statistics. However, if we increase
the value of p, we enter the curve part where the NMSE is constant irrespective of power, so
we should increase it wisely. Also, this method of estimating the spatial correlation matrices
is only one of the many possible methods. If one does not have as much coherence blocks
available for estimation, or the length τc does not allow for many transmissions, one could
use alternative methods to estimate Rkl.

4.2 DYNAMIC COOPERATION CLUSTERING METHODS

Having defined the pilot assignment algorithms, we now focus on developing clustering
methods for the APs. Ideally, the UE would connect to every available AP in the grid, thus,
by the definition of Mk, Mk ∈ {1, 2, ..., L} ∀k ∈ {1, 2, ..., K}. However, this clustering
method is not scalable on the senses defined in Chapter 2, therefore alternative clustering
methods will be analyzed.

When proposing any clustering method, it is important to select which metric would be
more suitable for the problem at hand. This is the focus of the next section.

4.2.1 Metrics for AP Clustering

When choosing the metric for clustering, it is important to choose a metric that would
take new realizations over a longer period. For example, if one is to choose any coherence-
block related metric, then the interval at which the metric would be applicable would be
limited to τc, the length of the coherence block. This interval is too short for any application
of AP clustering, as it would require that a new AP clustering formation be made for each
channel realization. Thus, a metric that changes slowly with time will have to be chosen.
With that in mind, two possible variables come naturally: the spatial correlation matrices,
and by those, the channel gains. They are considered constant for hundred of coherence
blocks, and thus the AP clustering should be remade after a couple of hundreds of coherence
blocks, which seems plausible. Having defined that, we can introduce the SNR metric,
defined by

SNRkl =
ηkβklτp∑

i∈Pk\{k}
ηiβilτp + σ2

, (4.18)

where ηk is the UL transmitted power of UE k. This metric measures the SNR of the desired
UE k to an AP l, and by doing that measures if the UE would have a reasonable signal
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strength to connect to the AP if compared to the noise. Another suggested metric would be
the normalized channel gain coefficients, that is

β̃kl =
βkl − β̄l√

Var(βl)
(4.19)

where

β̄l =
1

K

K∑
k=1

βkl (4.20)

Var(βl) =
1

K − 1

K∑
k=1

(βkl − β̄l)
2. (4.21)

Thus, we define a channel gain that is normalized across the UEs, that is, the values of those
channel gains will have equal weights independent of the analyzed AP. Fundamentally, this
means that the distribution of β̃kl is independent on the number of APs, therefore more can
be added on the grid without changing its behavior. Also, if all UE have the same weight
irrespective of the AP, then we would prevent a situation where the AP is nearby a lot of
UEs and gets connected to them all, therefore leading to an overload on the number of UE
of which it should process the signals, which might cause the complexity to significantly
increase, as will be discussed in Chapter 5.

Another useful metric is a variation of Eq. (4.19), proposed by [16], where instead of the
normalized channel gains, we define

βδ
k =

∑
l∈Mk

βkl

L∑
l=1

βkl

, (4.22)

where the formation ofMk is dependent on a predetermined number of APs that each UE
should be connected to, and by that select this amount of the largest values of either normal-
ized channel gains or actual channel gains for the APs to the desired UE. This metric, as well
as the normalized channel gains metric does not take in consideration pilot contamination.
That is, since the same AP could be connected to pilot-sharing UEs, the interference from
pilot contamination could severely weaken the processing of an AP that is farthest from its
desired UE than the interfering pilot-sharing UE.

To prevent this, one approach is to define a secondary metric, the correlation between the
spatial correlation matrices of the UEs connected to a certain AP, or

ρkil =
tr
(
RH

klRil

)√
tr (RH

klRkl) tr (RH
il Ril)

(4.23)
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and by that, apply the fact that weak correlation means very different spatial propagation
properties. If the pilot sharing UEs have a weak correlation coefficient between them, then
they can be served by the same AP with negligible pilot contamination. Therefore, even if
the UEs that share the same pilot are geographically close, the pilot contamination effect will
be negligible if their correlation is low.

4.2.2 Normalized Threshold AP clustering

One such way of clustering the APs in a DCC manner, is by defining a given threshold βth

to the normalized channel gains, as defined in Eq. (4.19). The UEs will connect to those APs
with whom they have a channel gain above the threshold value βth. Thus, this DCC algo-
rithm, initially proposed by [15], which we will call normalized threshold algorithm (NTA),
is given by Algorithm 3 From this algorithm, we should notice that there is no dependence

Algorithm 3 Normalized Threshold Algorithm
Input: Channel gains βkl

Output: DCC setsM1,M2...MK

for k = 1 : K do
for l = 1 : L do

β̃kl =
βkl−β̄l√

Var(β̄l)
▷ Normalize the channel gain coefficients along the UEs axis

if β̃kl ≥ βth then
l ∈Mk ▷ Add AP l to clusterMk

else
l ̸∈ Mk

end if
end for

end for

on the pilot sequence length. In fact, there is no dependence on the pilot assignment vector
t at all. This has the advantage of being a scalable DCC method with respect to the num-
ber of pilots, but it also carries the disadvantage of introducing an additional source of pilot
contamination: since the APs are clustered based solely on the channel gains, there is a high
probability that pilot sharing UEs will be connected to the same AP.

The better the pilot assignment method, the less interference caused by pilot contamina-
tion, however, since it allocates the same pilot that are far away from each other, and will
most probably be connected to different APs. There will be cases, however, in which the
distance of the AP from the pilot sharing UE will be comparable, so the pilot contamination
will be more aggressive. Also, there will be situations where the UE will have very weak
channel gains with respect to all APs in the grid, and will connect to a handful of them in
order to improve signal detection quality. If this UE shares a pilot with a stronger UE, then
certainly the stronger one will interfere in the channel estimation of the weaker one, thereby
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Figure 4.9 – Percentiles of the normalized channel gain coefficients versus number of UEs
K. Notice that the percentile number represents the percentage of normalized channel gain
coefficients that are above it.

reducing its performance.

It is also interesting to analyze how the normalized coefficient behave by varying the
grid parameters, such as the number of APs, the number of UEs, and also the number of
AP antennas. With respect to the antennas, it is possible to say that it will not interfere
in the values of the normalized coefficients, since they rely on the channel gains, which
are independent of N . With respect to the number of APs L, we can say that it will also not
interfere in the values of β̃ since the normalization occurs in the UEs axis, that is, irrespective
of the analyzed AP, the normalized channel gains will be a random variable with zero mean
and unit variance. With respect to the number of UEs, however, the dependence will be
observed: a low number of UEs will have a sample size that is so small that random variations
occur much more aggressively. In resume, the number of UEs is small, thus the channel gains
are more diverse, since one UE could be placed more closely to the analyzed AP while the
other is placed near it, causing a much more varied channel gains pattern. To show how these
variations occur, we propose the reference scheme simulation of Table. 4.1, and we vary the
number of UEs. Fig. 4.9 shows the percentiles of the normalized channel gains versus the
number of UEs in the grid, That is, it shows the percentage of normalized channel gains that
are above a certain value. This value is highly dependent on the number of UEs: when K

is small, the value is higher, and when K is large the value is higher, and also tends to be
constant, as already discussed. This values can also be a measure of the amount of UEs that
are connected to an AP, or the amount of APs that are connected to a given UE. From that,
we can see that the NTA DCC is unscalable with respect to the number of UEs: If we fix
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a value βth, and vary the number of UEs, then as K gets progressively bigger, so does the
percentiles. If we take the 80-th percentile for K = 40, we have that its value is -0.3. If now
we consider that K = 60, this value is closer to -0.25. Supposing we fixed a threshold of
βth = −0.3, then in the first case an average of 80% of the AP would be connected to the
UE. In the second case, this percentage would be near 90%, thus making the system more
unscalable, since the more APs connected to the UE, the more operations needed to decode
its signal.

This family of curves can be used to estimate a threshold coefficient that connects a
desired percentage of the APs to the UE while maintaining scalability, so the system is
unscalable only if the threshold value does not change.

4.2.3 Power Threshold Algorithm

Similar to NTA, the power threshold algorithm (PTA), which has been proposed by [16],
selects the APs that satisfy a given threshold condition. However, differently from simply
selecting them based on the channel gains alone, this time the APs that have the higher
channel gains are selected, by means of the power metric βδ

k, defined in Eq. (4.22). This
metric creates the AP clustering based on the APs whose channel gains contribute to δ of
the total UE power, that it would have if all of the APs were connected to it. This metric
does not depend also in the pilot assignment vector t, thereby it also may be an additional
source of pilot contamination. In order to reduce the effect of pilot contamination another
DCC method will be proposed.

Algorithm 4 Power Threshold Algorithm
Input: Channel gains βkl, Pilot Assignment vector t
Output: DCC setsM1,M2...MK

for k = 1 : K do
Mk =

{
l ∈ 1, 2, ..., L :

∑
l∈Mk

βkl∑L
l=1 βkl

≤ δ
}

▷ Select the APs that contribute to at least
δ% of the total power from all of the APs in the grid to the UE.
end for

4.2.4 Orthogonal Power Threshold Algorithm

In order to reduce the pilot contamination effect, we propose an alternative to PTA that
allows only the UEs that have been allocated orthogonal pilots to be served by the same AP,
which we shall call Orthogonal PTA. We first define Kl as the set of UEs that are served
by AP l, and then we propose an algorithm Algorithm 5, which is given as follows This
algorithm consists on many parts. First, we select the AP cluster that is responsible for a δ

percentage of the total UE power, for each UE. Then, since the probability of selecting pilot-
sharing UEs for a given AP is high, we search the UEs that share the same pilot sequence
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Algorithm 5 Orthogonal Power Threshold Algorithm
Input: Channel gains βkl, Pilot Assignment vector t
Output: DCC setsM1,M2...MK

for k = 1 : K do
Mk =

{
l ∈ 1, 2, ..., L :

∑
l∈Mk

βkl∑L
l=1 βkl

≤ δ
}

▷ Select the APs that contribute to at least
δ% of the total power from all of the APs in the grid to the UE.
end for ▷ If we wish to mitigate pilot contamination interference, we proceed
for l = 1 : L do

for t = 1 : τp do
Utl = {k ∈ Kl : k ∈ Pk} ▷ Find the set of UEs that share the same pilot sequence

tk.

if |Utl| > 1 then ▷ If there are UEs sharing the same pilot t
for k ∈ Utl do ▷ Evaluate the percentage of the power that the UEs sharing

pilot t carry over the setMk

pk =

∑
l′∈Mk

βkl′∑L
l′=1 βkl′

▷ Evaluate the percentage of the power of UE k if AP l is disconnected

p′k =

∑
l′∈Mk
l′ ̸=l

βkl′∑L
l′=1 βkl′

p% = 1− p′k/pk ▷ Calculate the percentage variation of the total power of
each UE.

end for
kmin ← argmax

k∈Utl

p% ▷ Select the UE that has the highest percent change if

AP l was disconnected, and disconnect all other UEs.
Mkmin ←Mkmin ∪ {l}

end if
end for

end for
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and are connected to AP l. Then, we recalculate Eq. (4.22) with the l-th AP disconnected.
The UE that has the highest variation of the overall percent power is reconnected to AP l.
This way we are ensuring that each AP is connected to UEs with orthogonal pilot sequences,
and also the total power of each UE is not gravely reduced, by removing APs that have low
channel gains with respect to the UE.

This method is much more scalable than the NTA, since the AP has a tendency of se-
lecting the UEs that have orthogonal pilots, which would account for a maximum of τp UEs.
Also, the pilot contamination is greatly reduced with this method.

4.2.5 Orthogonal Users Algorithm

Another DCC algorithm has been proposed by the authors in [8]. There, it is simply
known as DCC, but in this work we shall call it orthogonal users algorithm (OUA). It consists
on connecting each AP with the strongest τp UE that have orthogonal pilots, as seen in
Algorithm 6 This algorithm has the advantage of reducing pilot contamination, since each

Algorithm 6 Orthogonal Users Algorithm
Input: Channel gains βkl, Pilot Assignment vector t
Output: DCC setsM1,M2...MK

for l = 1 : L do
for t = 1 : τp do

i← argmax
k∈{1,...,K}:tk=t

βkl ▷ Find UE that AP l serves on pilot t

Mi ←Mi ∪ {l}
end for

end for

AP is connected to the UE that have orthogonal pilots allocated to them ,hence the name of
the algorithm, and also is capable of guaranteeing a reasonable performance for each UE,
since each of them are very likely to be connected to a handful of strong APs. It is however
unscalabe when we take the number of orthogonal sequences τp into consideration, since its
complexity grows with τp: If for instance τp = 40 in the reference simulation scenario, then
we have the case of all serving APs serving the UE, hence unscalable. We shall then propose
another DCC algorithm that aims to reduce pilot contamination, but also make the system
scalable with respect to τp.

4.2.6 Orthogonal Normalized Threshold Users Algorithm

Since the main limitation of the OUA is the unscalability with respect to the length of
the pilot sequence, we propose yet a new algorithm that attempts to make it scalable: the
orthogonal normalized threshold users algorithm (ONTUA). It acts as a middle ground for
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the NTA and OUA, since it selects the UE based on a threshold coefficient and it also selects
the UEs that are assigned orthogonal pilot sequences. The method is described in Algorithm
7 Algorithm 7 shows that, by discarding the UEs that have channel gains below a given

Algorithm 7 Orthogonal Normalized Threshold Users Algorithm
Input: Channel gains βkl, Pilot Assignment vector t
Output: DCC setsM1,M2...MK

for l = 1 : L do
for t = 1 : τp do

i← argmax
k∈{1,...,K}:tk=t

βkl ▷ Find UE that AP l serves on pilot t

β̃il =
βil−β̄l√

Var(βl)
▷ Calculate the normalized channel gain coefficient for UE i

if β̃il ≥ βth then
Mi ←Mi ∪ {l} ▷ If the normalized channel gain between UE i and AP l is

above the threshold, connect i to l
else
Mi ←Mi

end if
end for

end for

threshold , that is, the UEs that have weak channel gains, one could reduce signal detection
complexity, while keeping performance similar to OUA, since the discarded APs would have
a low contribution to the UE performance if compared to the contribution of the connected
APs.

Also, one should notice that the choice of the threshold value is rather different in this
case than in the NTA case. On the latter, the threshold value would select the AP-UE pairs
on the entire grid. On the ONTUA this value only selects the UEs that are connected to a
given AP. Therefore, the ONTUA threshold value would be generally lower than the one of
NTA, since we would expect a high percentage of τp to be connected to every AP, which
would ensure we wouldn’t discard a strong AP-UE pair. Still, Fig, 4.9 can still be used to
select the threshold βth. For example, if we check the reference case, in which K = 40, in
order to have an average of 60% of the τp UEs connected to a given AP, we would need to
select a value of βth = −0.23. If the same value was used to the NTA, we would select on
average 60% of the UEs for each AP, resulting in a much more unscalable system.

4.2.7 Complexity Metrics for DCC Algorithms over Known and Unknown Chan-
nel Statistics

In this section, we shift our focus to establish a comparison between the scalability of the
proposed DCC methods. To do this, we use as metric the length of the AP cluster, |Mk|, and
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(a) DCC AP length |Mk| CDF (b) Partially served UEs clusters set length |Sk|

Figure 4.10 – CDF for the length of the DCC cluster sets of APs, |Mk| and the partially
served UEs cluster, |Sk|

we define
Sk = {i : DkDi ̸= 0LN×LN} (4.24)

as the set of UEs that are partially served by the same set of APs that serve UE k. We now
compare the DCC cardinalityMk, defined in Definition 2.1 for each of the DCC algorithms
analyzed. For the NTA, we consider βth = −0.1, and for the ONTUA we shall consider
βth = −0.23. For the PTA, we make δ = 0.95. We consider both the cases of PTA and
Orthogonal PTA. The results are shown in Fig. 4.10. From Fig. 4.10, we can see that the
PTA curve has the largest variance in the length of the clusters. This happens due to the
large variability of the channel gains in the grid. Also, it has a high probability of having
|Mk| = 1, since this method selects the APs based on the contribution of their channel gains
to the overall power of the desired UE, an AP that has a large channel gain to an UE will
be very likely to carry almost all of the power of the UE, specially in the case the other
APs have weak channel gains to that UE. At the same time, there will be cases where all of
the APs are placed far away from the UE, configuring a situation of a large value of |Mk|.
The same can be applied to |Sk|. In the case of the PTA Orthogonal, the results are a little
bit different, since it disconnects from each AP the UEs that have the same pilot sequence
assigned to them. However, in order to maintain the overall UE power high, not as much
APs are disconnected, leading to results similar to those of regular PTA.

When we analyze the curve for NTA, we see that it has the smallest values of |Mk| among
all curves. Since this threshold value according to Fig. 4.9 corresponds to a percentile lower
to the ones shown in the figure. This means that less APs will be connected to the UEs,
therefore reducing the values of both |Mk| and |Sk|. In the case of |Sk|, its values are bigger
than the PTA because for the latter, a vast number of UEs will be served by only one AP, such
that it will have fewer common serving APs with the other UEs. As expected, the results for
the OUA and ONTUA curves are very similar, however the latter has smaller values due to
the fact that some of the connected UEs of OUA are disconnected with ONTUA. Since the
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(a) Average DCC AP length |Mk|
(b) Average Partially served UEs clusters set
length |Sk|

Figure 4.11 – Average length of the DCC cluster sets of APs, |Mk| and the partially served
UEs cluster, |Sk| versus the pilot sequence length τp for the DCC methods of Section 4.2.

value of τp = 10 is not as big, this difference is small, however we will see that for larger
values of τp this gap gets significantly larger. For that, we repeat the simulation scheme that
was used to generate Fig. 4.9, but instead we consider the effect of the pilot sequence length,
to obtain the average value of the lengths of Mk and Sk. The results can be seen in Fig.
4.11. Analyzing the lengths ofMk, we notice that the NTA and the orthogonal-regular PTA
do not have a strong influence of the pilot sequence length τp. That is, they remain constant
irrespective of the value of τp, in the case of PTA Orthogonal, it has a small variation for
small values of τp, therefore they are scalable with respect to τp. The OUA and ONTUA
however, have a strong dependence on τp. The relationship between OUA and τp is such that
it is linear, thus clearly unscalable. On the case of ONTUA, however, the length ofMk tends
to stabilize around L = 60 for higher pilot sequence lengths, since the AP only selects the
UEs that are orthogonal and have channel quality above the threshold. With respect to the
lengths of Sk, we can say again that OUA and ONTUA have a high dependence on τp while
NTA and orthogonal-regular PTA do not. For the case of the PTA Orthogonal, it has a lower
value of |Sk|, because of the discarded APs. The NTA and ONTUA have a growing value
of |Sk| until it gets stabilized at the value K = 40. This happens because, since the AP is
connected to at maximum τp UEs, then as τp gets larger, the probability that every UE will
have a common serving AP with other UEs gets bigger.

Despite the fact that the set of partially served UEs is maximized for larger τp for the
ONTUA, which one might think could lead to unscalabilty, we will see in later chapters
that it is the value of |Mk| that impacts the system complexity value the most. Therefore,
opposed to OUA, which has larger values of |Mk|, ONTUA remains scalable. Finally, we
shall analyze the behavior of the algorithms for UE variations. We shall analyze a system of
K ∈ {20, 30, ..., 100} UEs. On real life applications, this is the scenery of greater relevance,
since we shall analyze if the given DCC algorithms allow for the addition of more UEs to
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(a) Average DCC AP length |Mk|

(b) Average Partially served UEs clusters set length |Sk|

Figure 4.12 – Average length of the DCC cluster sets of APs, |Mk| and the partially served
UEs cluster, |Sk| versus the total number of UEs in the grid, K, for the DCC methods of
Section 4.2.

the grid without the need of much greater processing power by the APs. Fig 4.12 shows
those results We can see from Fig. 4.12a, that the AP clusters size decrease in all of the
cases, except the NTA and regular PTA. In the case of the latter, it actually increases with the
addition of more UEs. This is explained by the fact that, with more UEs, the probability of
them being placed at an "unfavorable" location, that is, a location at which all channel gains
from the APs are weak, is increased, therefore more AP will be needed in order to obtain βδ

k

percent of the overall power, thus increasing the AP cluster size. As for the NTA, it remains
constant because the addition of more UEs makes that some possess high channel gains to
the AP while others posses lower channel gains, creating a balance such that the number of
APs each UE is connected to stays virtually the same.

However, if we shift the focus for the partially served UE clusters, from Fig. 4.12b, we
see that the ONTUA and OUA have an increasing mean value of |Sk| until K = 60, after
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(a) Average DCC AP length |Mk|

(b) Average Partially served UEs clusters set length |Sk|

Figure 4.13 – Average length of the DCC cluster sets of APs, |Mk| and the partially served
UEs cluster, |Sk| versus the total number of UEs in the grid, K, for the DCC NTA and
ONTUA for different values of βth. OUA is shown as a reference case.

which it decreases. This happens because when the number of UEs is high, the number of
partially served UEs is decreased, due to the fact each AP can serve only up to τp UEs. The
same can be said for PTA Orthogonal, albeit it increases and decreases at a slower pace. For
the case of PTA and NTA, since there are no such constraints of a maximum of UE per AP,
the number of partially served UEs increase with the increasing value of K. This in turn,
contributed to unscalability, as we will see later.

In order to further analyze the DCC algorithms clusters behavior, we now explore the
variations of the threshold coefficient βth for the NTA and ONTUA, and δ for the PTA and Or-
thogonal PTA. For that, we set βth ∈ {0,−0.1,−0.2} for the NTA and βth ∈ {0,−0.2,−0.4}
for the ONTUA, as well as δ ∈ {0.91, 0.95, 0.99} for the PTA and Orthogonal PTA. The
results can be seen in Figs. 4.13 and 4.14

We can see from Fig 4.13 that NTA is clearly unscalable for a high value of βth, since
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(a) Average DCC AP length |Mk|

(b) Average Partially served UEs clusters set length |Sk|

Figure 4.14 – Average length of the DCC cluster sets of APs, |Mk| and the partially served
UEs cluster, |Sk| versus the total number of UEs in the grid, K, for the DCC PTA and
Orthogonal PTA, by varying the parameter δ.
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|Mk| increases with the number of UEs for βth = −0.2. If we take a look at Fig. 4.9, we
notice that this value of βth is equivalent to say that the percentile of AP-UE pairs connected is
40 for K = 30, 50 for K = 50 and 70 for K = 90. That means that with the increasing value
of K, the percentage of UEs that will be connected to a certain AP will grow. which will
demand significantly more processing power of each AP, thus making the system unscalable.
However, for values of βth above -0.1, we have the percentiles curves shown in Fig. 4.9 such
that the percentile of connected AP-UE pairs is below 40%, meaning that even though the
number of UEs may rise, this value will keep the percent of connected APs under control.
As for the case of ONTUA, the values of βth are interpreted differently from the NTA. On the
first case, βth = 0 implies that a very small percentile of the UEs that are connected to each
AP will be effectively connected to that AP. That is, the cluster sizes are smaller, since each
UE is connected to few APs. However, as we lower the values of the threshold, the number
of connected UEs for each AP is increases, up to a maximum of τp, making the clusters size
bigger. However, since there is a limit to the number of connected UEs per AP, the system
remains scalable as K increases. For instance, when βth = −0.4, for K ≥ 30, more than
90% of the UEs will be connected to each AP, which is very similar to OUA. As K increases
this percent approaches its maximum value, and ONTUA and OUA achieve the same result.
Therefore, it is of utmost importance to select a value of threshold such that it connects on
average the strongest UEs while removing the weaker ones. Intuitively, we would say that
the 60-th percentile coefficient would be adequate, hence the chosen value of βth = −0.23
for K = 40, as seen in Fig. 4.9.

By now taking a look at Fig. 4.14, we can see that the mean PTA AP cluster size is
independent of K, which would assume unscalability, as the cluster size should reduce with
K. When we shift our focus to the UE cluster size, this becomes even more apparent, since
the size scale linearly with K, with different inclinations, but linearly nonetheless. For Or-
thogonal PTA, however, since each AP can only be connected to UE that have orthogonal
pilot sequences, at most τp UEs could be connected to a given AP. Therefore, the system is
always scalable with the increasing values of K, as expected.

Finally, we shall explore the behavior of the DCC methods in the presence of imperfect
channel statistics. Since the methods are highly dependent on the channel gains βkl, not only
for DCC formation, but as well as for pilot assignment, it is important to analyze if the DCC
algorithms can still be applied with those constraints. For that, we let βth = −0.1 for the
NTA case and -0.23 for the ONTUA, δ = 0.95 for both PTA and Orthogonal PTA, and we
use nt = 5 and nC ∈ {20, 60}. The UL transmit power is varied from 1 mW to 1 W

Fig 4.15 shows that the cluster size variations are rather severe for the PTA and Orthog-
onal PTA. This happens because, since noise influence is stronger for lower UL transmit
power, the spatial correlation matrix cannot be accurately estimated, and therefore the es-
timated channel gains are rather different from the actual channel gains. Since those algo-
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(a) Average DCC AP length |Mk|

(b) Average Partially served UEs clusters set length |Sk|

Figure 4.15 – Average length of the DCC cluster sets of APs, |Mk| and the partially served
UEs cluster, |Sk| versus the UL transmit power p in mW, for the DCC methods of Section
4.2.
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rithms rely on gathering the APs that contribute to a given percentage of the UE total power,
and the estimated channel gains are likely to have small values, due to the LS channel esti-
mation being mainly composed of noise, it is likely that more APs will be needed in order for
each UE to reach the desired power constraint. In the case of Orthogonal PTA, some APs are
disconnected, and therefore the variations are smaller. However, like PTA, those variations
are only stabilized once the UL power p is close to 100 mW. For the NTA case, since the
main factor for the clustering is the normalization of the channel gains, the relative difference
between their magnitudes is more relevant than the actual overall magnitude. Therefore, it
remains constant irrespective of the value of p. The same can be said for ONTUA and OUA,
since they do not rely on the actual order of magnitude of the channel gains, but on the rel-
ative difference between their magnitudes, they are constant with respect to p. We can also
see that the number of coherence blocks used for estimation, nC , offers insights only when
p is low. In that case, since the noise is dominant, more samples would be needed in order to
mitigate its effects, leading to the offset that can be seen between the curves of nC = 20 and
nC = 60 in Fig. 4.15b.

4.3 A SUMMARY OF THE ALGORITHMS STUDIED ON THIS CHAP-
TER

Throughout this chapter, various pilot assignments and DCC algorithms were introduced.
Table 4.2 shows the reference of which every algorithm was taken, as well as their advantages
and disadvantages with respect to the NMSE and DCC cluster sizes

With respect to the variance of the cluster sizes in PTA algorithms, we will see in later
chapters that it implies that some UEs are not able to achieve higher values of SE as other
lower variance algorithms such as NTA and ONTUA. In the case of the RP, the distance
metric of (4.11) was initially proposed by [35], the euclidean distance of channel gains metric
of Eq (4.11) was proposed by [15], and the correlation metrics of Eq. (4.13) and Eq. (4.14)
were proposed by this work.
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Algorithm Reference Advantage Disadvantage

RPA Does not require co-

ordination between the

APs

Leads to a high degree of pi-

lot contamination

RP [35] Besides reducing pilot

contamination, assigns

the same number of

UEs to one pilot

Only usable if the number of

UEs is a multiple of τp

GPA [8] Usable for any combi-

nation of UEs and pilot

sequences

Has a lower NMSE if com-

pared to RP

NTA
[15]

Proposed
Scalable with respect

to τp

Unscalable with respect to K

PTA [16] Scalable with respect

to τp

Unscalable with respect to

K and large variance of the

cluster sizes

Orthogonal

PTA
Proposed Scalable with respect

to τp and K

Large variance of the cluster

sizes

OUA [8] Scalable with respect

to K

Unscalable with respect to τp

ONTUA Proposed Scalable with respect

to K and τp

Small performance loss com-

pares to OUA. This loss will

be covered in Chapter 6

Table 4.2 – Proposed algorithms of Chapter 4

Chapter Summary

• Pilot assignment algorithms are essential when the objective is to increase the
NMSE by reducing pilot contamination

• We proposed three such algorithms: RPA, RP and GPA. RPA does not require
AP coordination, but has the highest values of channel NMSE due to pilot con-
tamination. RP has the lowest values of NMSE at the cost of being limited to
situations where K is a multiple of τp. GPA has a slightly higher NMSE than
RP, but it can be used with any τp-K relationship.

• With respect to the AP clustering algorithms we have proposed five algorithms:
NTA, PTA, Orthogonal PTA, OUA and ONTUA

• NTA has the advantage of having cluster sizes invariant to the pilot sequence
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length τp. It has, however, the disadvantage of having increasing cluster sizes
with the variation of the UEs in the grid, K.

• PTA and Orthogonal PTA have the advantage of guaranteeing a minimum power
percent value for each UE, which in turn guarantees a minimum performance.
They are both scalable with τp, however PTA is unscalable with K.

• OUA and ONTUA eliminate pilot contamination between the UEs connected to
the same AP, since they have orthogonal pilots assigned to them. They are both
scalable with K. OUA, however is unscalable with τp. ONTUA is scalable with
τp at the expense of performance, as we will see in later chapters.

• In a situation of imperfect channel statistics, NTA, ONTUA and OUA can be
still used with satisfactory performance. PTA and Orthogonal PTA cannot be
used under weak spatial correlation matrices estimations, since they are highly
dependent on the actual value of the channel gains, and become increasingly
unscalable the worse the estimation quality.
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CELL FREE MASSIVE MIMO UPLINK
SPECTRAL EFFICIENCY AND
COMPLEXITY OVER CENTRALIZED
AND DISTRIBUTED SYSTEMS

The goal of this chapter is to introduce the centralized and
distributed operation for UL. Section 5.1 introduces the cen-
tralized operation and the SE for various combining vectors
methods. Section 5.2 introduces the distributed operation
and the SE for various combining vectors methods and in-
troduces the concept of Large Scale Fading Decoding, used
to enhance system performance. Section 5.3 summarizes the
complexity comparison for various UL data detection meth-
ods.

Having introduced the DCC and the pilot assignment algorithms, we now shift our fo-
cus to the performance metrics. We shall evaluate the SE of the systems as a performance
metric. since as already discussed, the SE measures the amount of information that can be
transmitted over a fixed bandwidth.

When we are analyzing the UL, two implementations, all of which are characterized by
the degree of cooperation among the APs, are suggested: the centralized operation and the
distributed operation. The centralized operation consists on gathering all of the information
received by the APs, by means of the fornthaul links, at a central unit, the CPU. The CPU
then performs channel estimation and data detection. The distributed operation consists
on gathering the information received by an arbitrary AP, and at this AP, perform channel
estimation and data detection. Fig. 5.1 shows the distributed and centralized operations

Regardless of the operation, channel estimation will always be performed by use of
MMSE, and data detection will make use of receive combining techniques, such as the opti-
mal receiver (which we will see, is unscalable), and the scalable receivers.
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Channel estimation

Receive combining

Data detection

Received Signals

CPU

AP

(a) Centralized Operation

Channel estimation

Receive combining

Data estimates

CPU

AP

Data detection

(b) Distributed Operation

Figure 5.1 – Centralized and distributed UL operations. The centralized system performs
channel estimation, receive combining and data detection at the CPU, while distributed op-
eration performs everything but data detection at the AP.

5.1 CENTRALIZED OPERATION

The centralized UL operation of CF MIMO is the most advanced implementation of
studied systems, where the AP serves merely as remote radio heads (RRHs) that sends their
received baseband signals to the CPU, where it is actively processed. An arbitrary AP l

sends the τp received pilot signals, ypilot
tl , as defined in Chapter 3, and the received UL data

signal yul
l , defined in Chapter 2 to the CPU, that in turn performs channel estimation, receive

combining and data detection.

At the CPU, for each UE k, the pilot signals are used to compute the partial MMSE
estimates of the collective channels from all the UEs to the APs that serve UE k, that is
l ∈Mk. The received signals at the serving APs are then jointly used to compute an estimate
ŝk of the signal sk that is transmitted by UE k, or

ŝk =
L∑
l=1

ŝkl

=
L∑
l=1

vH
klDkly

ul
L = vH

k Dky
ul, (5.1)

with vk =
[
vT
k1 . . .v

T
kL

]T ∈ CLN as the centralized combining vector and yul ∈ CLN as the
collective data UL signal, given as

yul =


yul
1
...
yul
L

 =
K∑
i=1

hisi + n (5.2)

with n =
[
nT
1 . . .nT

L

]T ∈ CLN being the noise collective vector. The received UL signal in
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Eq. (5.2) is composed of all of the transmitted UEs signals, that is, its dependent on all of
the UEs channels hi, Despite that, when computing the combiner vectors, the CPU will only
take into consideration the channels of the APs such that l ∈Mk, by means of the collective
Dk matrix. Therefore, the CPU does not necessarily need to estimate all of the channels
from the UEs to the APs, but rather only those APs that are on the setMk.

Also from Eq. (5.2), we see that the expression is equivalent to the single cell Massive
MIMO with correlated fading, if the CPU is treated as a receiver equipped with M = LN

antennas. However, there are some key differences between those setups:

1. The pilot sequences are frequently reused by the UEs managed by the CPU, which is
generally not the case in single cell Massive MIMO

2. The APs are distributed over distinct geographical locations. Thus, the collective chan-
nel is distributed as hk ∼ NC(0LN ,Rk), and the spatial correlation matrix Rk =

diag (Rk1, . . . ,RkL) ∈ CLN×LN has a diagonal structure , which is not the case for
the single cell Massive MIMO, where the spatial correlation matrix is usually not di-
agonally structured.

3. Not all of the antennas of the system are being used for signal detection, only those of
the serving APs of UE a particular UE k.

Regardless of the differences between the architectures, we can still compute an achiev-
able SE using the methods described in [18] and [23]. All of the methods will assume the
CPU has perfect or imperfect knowledge of the spatial correlation matrices of every UE
{Rk : k = 1, . . . , K}.

5.1.1 Spectral Efficiency for Centralized Operation

By using the capacity lower bounds that were defined in Chapter 3, Section 3.2, we can
derive a SE expression under imperfect CSI. To do that, we consider the estimated symbol
expression of Eq. (5.1) and use Eq. (5.2) to obtain

ŝk = vH
k Dkĥksk︸ ︷︷ ︸

Desired signal over estimated channel

+ vH
k Dkh̃ksk︸ ︷︷ ︸

Desired signal over unknown channel

+

K∑
i=1
i ̸=k

vH
k Dkhisi

︸ ︷︷ ︸
Interference

+vH
k Dkn︸ ︷︷ ︸
Noisel

.
(5.3)

The desired parcel of the estimated symbol was divided into one parcel of the estimated
channel and another of the unknown channel. Only the former can effectively be used for
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signal detection, while the latter will be treated as noise. Additionally, according to Section
3.2, the interference should also be treated as noise. With that in mind, we can announce
Theorem 5.1

Theorem 5.1

An achievable SE of an arbitrary UE k, in the UL centralized operation is given by

SEc
k =

τu
τc
E {log2 (1 + SINRc

k)} bit/s/Hz (5.4)

with the instantaneous effective SINR given by

SINRc
k =

pk

∣∣∣vH
k Dkĥk

∣∣∣2∑K
i=1
i ̸=k

pi

∣∣∣vH
k Dkĥi

∣∣∣2 + vH
k Zkvk + σ2 ∥Dkvk∥2

(5.5)

where

Zk =
K∑
i=1

piDkCkDk (5.6)

with the expectation with respect to the channel estimates. The matrix Ci is the error
correlation matrix of channel hi.

Proof 5.1: The proof can be found on Appendix A.3. □

The pre-log factor τc/τc is the fraction of the symbols that are being used to transmit
data. The SINR is composed of a numerator that corresponds to the desired signal over
the estimated channels, and a denominator that consists on interference from the other UEs,
from the unknown channel in the form of Zk, and from noise. This SE expression bears a
similarity to the single antenna fading expression derived in Lemma 3.3, showing the data
signal can be encoded and the receiver signal decoded as if communication occurred over a
traditional AWGN channel.

The SE expression is not on closed form, due to the expected value operator in it. How-
ever, it can be easily computed by means of Monte Carlo simulations, meaning it can be
approximated by an average over a large number of realizations. In other words, we could
generate a handful of channel realizations over various sets of coherence blocks, and then
average the result to obtain an approximation for the SE.

The derived Theorem 5.1 is general in the sense that it serves the purpose of systems
with multiple antennas APs with correlated or uncorrelated fading channels of an arbitrary
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distribution, as well as any arbitrary DCC setup. Multiple authors have considered the case
of N = 1, such as [36], [37] and [38]. The case of multiple antennas with uncorrelated
fading has been analyzed by authors such as [39] and [40] and with correlated fading having
being analyzed among others by [41] and [13]. We will analyze the system by use of this
expression for various DCC methods, showing how versatile it is. In the unscalable case,
where all of the APs serve all the UEs, the SINR expression of Eq. (5.5) can be rewritten as

SINRc
k =

pk

∣∣∣vH
Kĥk

∣∣∣2∑K
i=1
i ̸=k

pi

∣∣∣vH
Kĥi

∣∣∣2 + vH
k

(∑K
i=1 piCi + σ2ILN

)
vk

, (5.7)

which is a simplified version.

5.1.2 Optimal Receive Combining

We want to find the combining vector vK that maximizes the SE in Eq. (5.4). For that,
we notice that Eq. (5.5) can be written in such a manner that it has the form of a generalized
Rayleigh quotient:

SINRc
k =

pK

∣∣∣vH
k Dkĥk

∣∣∣2
vH
k

(∑
i=1
i ̸=k

piDkĥiĥH
i Dk + Zk + σ2Dk

)
vk

. (5.8)

With that in mind, the optimal combining vector is as it follows:

COROLLARY 5.1 The instantaneous SINR of Eq. (5.4) is maximized by the MMSE
combining vector

vMMSE
k = pk

(
K∑
i=1

piDk

(
ĥiĥ

H
i +Ci

)
Dk + σ2ILN

)−1

Dkĥk (5.9)

that yields the maximum SINR value

SINRc
k = pkĥ

H
k Dk

 K∑
i=1
i ̸=k

piDkĥiĥ
H
i Dk + Zk + σ2ILN


−1

Dkĥk (5.10)
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Proof 5.2: The proof begins by defining the generalized Rayleigh quotient∣∣vHh
∣∣2

vHBv
(5.11)

and by adopting v = vk, h =
√
pkDkĥk and B =

∑K
i=1,i ̸=k piDkĥiĥ

H
i Dk+Zk+σ2ILN .

Then by the Rayleigh quotient maximization principle, the proof is complete. □

The optimal combining vector is composed of 1) the estimates Dkĥk of the k-th UE
channels, and 2) the inverse of a matrix that is correspondent to E

{
Dky

ul(yul)
HDk|{ĥi}

}
,

the conditional correlation matrix of the received signal, given the channel estimates. The
first part is responsible to maximize the desired signal power, while the second is intended to
strike a balance between maximizing the desired signal power and suppressing interference,
when the combining vector is multiplied by the received signal. [8] shows that this is equiv-
alent to a spatial whitening filter. Moreover, we notice that Dkĥi is always nonzero, except
when Dk = 0LN×LN . This shows that the CPU needs to compute all of the channel estimates{
ĥi : i = 1, . . . , K

}
corresponding to any AP l that is serving UE k. The total number of

complex multiplications for channel estimations and for computing the combining vector
over one coherence block are taken from [22] and are given by

CMMSE
m = (Nτp +N2)K|Mk|︸ ︷︷ ︸

channel estimation

+
(N |Mk|)2 +N |Mk|

2
K + (N |Mk)

2 +
(N |Mk|)3 −N |Mk|

3︸ ︷︷ ︸
combining vector

.

(5.12)
From Eq. (5.12) we can see that the complexity grows linearly with K, which in turn makes
the system unscalable, according to the scalability remarks of Chapter 2 . We shall then look
for alternative combining vectors.

5.1.3 Scalable Receiver Combiners for Centralized Operation

We shall now introduce alternative combining methods that aim to guarantee scalability
to centralized systems.

5.1.3.1 Maximal Ratio Combiner

We have already used the unscalable MR combiner, which consists only on the MMSE
channel estimate of the collective UE channel. To keep it scalable, we only need to estimate
the channels that are effectively used by UE k under DCC. Therefore, the scalable MR
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combiner is given by
vmr
k = Dkĥk (5.13)

which in turn maximizes the numerator of the instantaneous SINR expression of Eq. (5.4),
thus maximizing the desired signal power. The existence of interference and noise, however,
is neglected, which makes the performance poor in the presence of strong interference, since
not all of the APs will have a high degree of favorable propagation to UE k. In regard to the
number of complex multiplications, since the combining vector is composed of the channel
estimates, it is necessarily only to estimate the channel in order to compute it. Therefore,

CMR
m = (Nτp +N2)|Mk|︸ ︷︷ ︸

channel estimation

. (5.14)

This is the least complex combining method, however also the one that has the lowest per-
formance. Thus, we shall introduce two other combining methods that are scalable and also
achieve a better performance in the presence of interference.

5.1.3.2 Partial MMSE Combining

In large networks, it is plausible to assume that almost all of the interference that affects
UE k is generated by a subset of UEs that are nearby k. We can use this information to reduce
the complexity of the optimal MMSE combiner and provide a scalable solution. Therefore,
we make only the UEs that are served partially by the same APs as UE k be included in the
inverse matrix of Eq. (5.9), that is, the UEs that belong to the set Sk, as defined in Chapter
4. By use of this set, an alternative partial MMSE (P-MMSE) scheme can be defined:

vP-MMSE
k = pk

(∑
i∈Sk

piDkĥiĥ
H
i Dk + ZSk

+ σ2ILN

)−1

Dkĥk (5.15)

with
ZSk

=
∑
i∈Sk

piDkCiDk. (5.16)

Contrary to the optimal combiner, this scheme does not aim to achieve an optimal SE value,
but rather to obtain a more scalable solution while maintaining a reasonable system perfor-
mance. Also, in the situation where only the UEs in the set Sk are active, the optimal MMSE
and the P-MMSE combiners are the same. In regard to the number of complex multiplica-
tions, we can also resort to [22] to obtain

CP-MMSE
m = (Nτp +N2)|Sk||Mk|︸ ︷︷ ︸

channel estimation

+
(N |Mk|)2 +N |Mk|

2
|Sk|+ (N |Mk)

2 +
(N |Mk|)3 −N |Mk|

3︸ ︷︷ ︸
combining vector

.

(5.17)
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Eq. (5.17) shows the importance of what was discussed in Chapter 4 related to the cluster
sets Mk and Sk, since those are the key values that define system complexity. Since the
expression is independent of the number of UEs K, it might be scalable, depending on the
value of |Sk|. Regardless, it is more scalable than its optimal counterpart, and we will see
that it also exhibits similar performance. We shall introduce another combining method that
aims to reduce complexity even more without too much lowering of system performance.

5.1.3.3 Partial Regularized Zero-Forcing Combining

The complexity of computing the MMSE and P-MMSE combiners scale with the term
N |Mk|. Since in CF networks, the number of AP antennas is usually smaller than single cell
Massive MIMO, the value of N is generally not an issue. On the other hand, |Mk| might be
large when there are a large number of APs nearby UE k, or for example, when a large num-
ber of APs is needed to satisfy a given power threshold, such as the one discussed in Chapter
4. Therefore, it is interesting to explore if further complexity reduction is achievable without
compromising performance as much. For that, we notice that if the channel conditions of
all of the interfering UEs in Sk are good, then the estimation error correlation matrices are
negligible, thus we can neglect the term ZSk

, to obtain the partial regularized zero forcing
(P-RZF) combiner

vP-RZF
k = pk

(∑
i∈Sk

piDkĥiĥ
H
i Dk + σ2ILN

)−1

Dkĥk. (5.18)

This change enables a reformulation of the expression. For instance, let ĤSk
∈ CLN×|Sk| be

the stacked collective channel vectors ĥi with indices i ∈ Sk. in which the first column is
ĥk. Let us also define PSk

∈ R|Sk|×|Sk| a diagonal matrix containing the transmit powers pi
for i ∈ Sk, following the order of the columns of ĤSk

. Then we can rewrite Eq. (5.18) as

vP-RZF
k =

[(
DkĤSk

PSk
ĤH

Sk
Dk + σ2ILN

)−1

DkĤSk
PSk

]
[:,1]

=

[
DkĤSk

PSk

(
ĤH

Sk
DkDkĤSk

PSk
+ σ2I|Sk|

)−1
]
[:,1]

=

[
DkĤSk

(
ĤH

Sk
DkĤSk

+ σ2P−1
Sk

)−1
]
[:,1]

(5.19)

where the [.][:,1] denotes the operation of taking only the first column of the matrix. The
name P-RZF comes from the fact the expression in Eq. (5.19) has similar format as the

pseudo-inverse DkĤSk

(
ĤH

Sk
DkĤSk

)−1

of the partial channel matrix ĤH
Sk
Dk. The name

regularized comes from the fact the pseudo-inverse has been regularized by the matrix that
contains the noise variance and the transmit powers. Thus, it does not suffer the same losses
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that traditional zero-forcing algorithms, such as the one described in [17] does. Thus, it
forces the interference between the UEs to zero, which might seem an advantage. However,
in situations where the UEs have similar channels this cancellation might lead to large losses
of the desired signal power, as it will be interpreted as interference by the combiner.

With respect to the number of complex multiplications, [22] shows that it is the following

CP-RZF
m = (Nτp +N2)|Sk||Mk|︸ ︷︷ ︸

channel estimation

+
|Sk|2 + |Sk|

2
N |Mk|+ |Sk|2 + |Sk|N |Mk +

|Sk|3 − |Sk|
3︸ ︷︷ ︸

combining vector

.

(5.20)
This expression is also independent of K, which might indicate scalability. Besides that,
we can see that Eq. (5.20) grows more rapidly with |Sk| instead of N |Mk| as would the
P-MMSE. Since |Sk| is usually much lower than N |Mk| in CF systems, the complexity is
greatly reduced. This comes with a cost of SE as already discussed, due to the cancellation
nature of the pseudo-inverse matrix.

5.1.4 Combining Vector Performance Comparison

Having introduced the centralized operation combining vectors, we now numerically
compare the performance of all of the combiners. In order to observe a cleaner influence
of the combiners without the bias of DCC, we shall consider the unscalable case where all
APs serve all UEs. Also, for pilot assignment we resort to RP, from Chapter 4, with the cor-
relation metric. Finally, for simulation purposes we shall downsize the parameters of Table
4.1, because of the unscalability, which would require too much resources and time to sim-
ulate the system with those parameters. Instead, we consider K = 20, L = 50, τp = 5 and
τc = 100. The CDF of the combining vectors can be seen in Fig. 5.2. We notice that the per-
formances of MMSE and P-MMSE are the same. This happens because under the assump-
tion of every AP serving every UE, the subsetMk is such thatMk = l ∈ {1, 2, . . . , L} ∀k,
and also Sk = k ∈ {1, 2, . . . , K} ∀k, so that all of the APs are counted as partially serving
all UEs, since all of them are serving the same set of UEs. Therefore, performances are the
same.

In regard to signal detection quality, MR combining has the worst performance since al
already discussed, it requires a high degree of favorable propagation to work properly, as
it lacks the capacity of handling interference. When we analyze P-MMSE and P-RZF, we
can see that there is a gap in performance, since the P-RZF combining vector neglects the
estimation error correlation matrices, which in turn makes it unable to distinguish what is the
desired signal and what is interference when their channel conditions are similar. When we
talk about system complexity, we are using the unscalable solution, |Mk| = L and |Sk| = K

∀k. We shall make comparisons with the various pilot assignments and DCC methods later
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Figure 5.2 – SE for the CF UL system where all of the APs serve all UEs. The combining
vectors P-MMSE,MMSE, MR and P-RZF are used.

in this chapter.
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5.2 DISTRIBUTED OPERATION

The centralized operation delegates channel estimation, computation of the combining
vectors and the data detection to the CPU. Distributed operation aims to delegate only data
detection to the CPU. Channel estimation and combining vector computation are then dele-
gated to each one of the APs of the grid. This is supported by the fact each AP could easily
be equipped with a baseband processor, thus we could design a system where CPU capabili-
ties are defined by the number of UEs, but invariant to the number of APs. That is, we could
add more APs to the grid without having to upgrade the CPU, as we would in centralized
operation. To achieve that, each AP l receives pilot signals

{
ypilot
tl : t = 1, . . . , τp

}
in order

to locally estimate the channels
{
ĥi : i ∈ Dl

}
. For each UE k, the AP can use the local

estimates and compute and select a combining vector vkl. Then the estimated symbol ŝkl at
the AP is then obtained as

ŝkl = vH
klDkly

ul
l . (5.21)

Next, the local estimates of the APs are gathered at the CPU, and there they are combined
into a final UE data estimate. The CPU performs a linear combination of the local data
estimates to obtain

ŝk =
L∑
l=1

a∗klŝkl =
L∑
l=1

a∗klv
H
klDkly

ul
l (5.22)

where akl ∈ C is the weight that the CPU assigns to the local estimate of the symbol ŝk at
AP l. To shrink fronthaul signaling, the APs only send the sata estimates, not the channel
estimates to the CPU. Thus, the CPU selects the weights {akl : k = 1, . . . , K, l ∈Mk} as a
function of the channel statistics. For instance, the UE that has a high SNR with respect to
an AP should be prioritized, that is, should be granted a larger weight, than another UE that
has a smaller SNR with respect to it. Also, interference management and combining scheme
should be accounted for when selecting the weights. Those weights are denoted as large
scale fading decoders (LSFDs), and receive that name due to being selected basing on the
channel statistics, which are dependent on the large scale fading coefficients. We shall derive
the SE expression for distributed operation by considering the use of the LSFD weights next

5.2.1 Spectral Efficiency for Distributed Operation

We shall now compute the SE expression for UE k in distributed operation. For that, we
remember that

yul
l =

K∑
i=1

hilsi + nl (5.23)
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and we plug Eq. (5.23) into 5.22, so that we have

ŝk =

(
L∑
l=1

a∗klv
H
klDklhkl

)
sk +

K∑
i=1
k ̸=i

(
L∑
l=1

a∗klv
H
klDklhil

)
si + n′

k (5.24)

where n′
k =

∑L
l=1 a

∗
klv

H
klDklnl is the noise. We shall use the substitution propose in [8] for

brevity and define the vector gki ∈ CL as

gki =


vH
k1Dk1hi1

...
vH
kLDkLhiL

 (5.25)

which is the vector whose elements are the receive combined channels between UE i to UE
k for each AP. By using this notation, we can express Eq. (5.24) as

ŝK = aH
k gkk +

K∑
i=1//i̸=k

aH
k gkisi + n′

k (5.26)

where ak = [ak1, . . . , akL]
T ∈ CL is the LSFD weight vector of UE k. The realizations of

the g vectors change at each coherence block, while the realizations of ak are constant for
a large number of coherence blocks. The effective channel aH

k gkk is unknown at the CPU,
however the average of it E

{
aH
k gkk

}
= aH

k E {gkk} is known if the receive combining vector
has been correctly selected. Thus, we can calculate the achievable SE.

Theorem 5.2

An achievable SE of an arbitrary UE k, in the UL distributed operation is given by

SEd
k =

τu
τc
E
{
log2

(
1 + SINRd

k

)}
bit/s/Hz (5.27)

with the instantaneous effective SINR given by

SINRd
k =

pk
∣∣aH

k E {gkk}
∣∣2

aH
k

(∑K
i=1 piE {gkigH

ki} − pkE {gkk}E {gH
kk}+ Fk

)
ak

(5.28)

where
Fk = σ2 diag (E {∥Dk1vk1∥} , . . . ,E {∥DkLvkL∥}) ∈ RL×L (5.29)

Proof 5.3: The proof can be found on Appendix A.4. □
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The expression of Eq. (5.28) is a ratio between the desired signal power pk
∣∣aH

k E {gkk}
∣∣2

and the interfering signals and noise, as well as a parcel of the desired signal power that
comes from imperfect channel knowledge. This SE expression bears a similarity to the single
antenna fading expression derived in Lemma 3.3, showing the data signal can be encoded and
the receiver signal decoded as if communication occurred over a traditional AWGN channel.

The SE expression is not on closed form, due to the expected value operator in it. How-
ever, it can be easily computed by means of Monte Carlo simulations, meaning it can be
approximated by an average over a large number of realizations. In other words, we could
generate a handful of channel realizations over various sets of coherence blocks, and then
average the result to obtain an approximation for the SE.

Theorem 5.2 serves the purpose of systems with multiple antennas APs with correlated
or uncorrelated fading channels of an arbitrary distribution, as well as any arbitrary DCC
setup. It should hold for any combining vector as well. We would like, however, to derive a
combination of combiner and LSFD weights that makes the SE as high as possible.

5.2.2 Optimal Combining Vector and LSFD Weights

We start by taking a look at the combining vector. Differently from the centralized op-
eration, the AP cannot compute a combiner that is optimal network-wide, since it does not
hold the information of the other AP channel estimates. However. it can optimize a local
performance metric, for instance the local MSE metric

E
{∣∣sk − vH

klDkly
ul
l

∣∣2 |{ ˆhil : i = 1, . . . , K
}}

. (5.30)

The combining vector that minimizes the MSE expression of Eq. (5.30) is

vL-MMSE
kl = pk

(
K∑
i=1

piDkl

(
ĥilĥ

H
il +Cil

)
Dkl + σ2IN

)−1

Dklĥkl (5.31)

This can be proven by evaluating the conditional expectation of Eq. (5.30) and equating
its first derivative with respect to vkl to zero, as it is a minimization problem. We call this
combiner local MMSE (L-MMSE) because it is like the centralized MMSE, except that it
minimizes the MSE locally. Thus, it would equate the MMSE combining vector in a sit-
uation where only AP l serves UE k. Since on this situation |Mk| = 1, we have that the
computational complexity of this combiner also grows linearly with K, being also unscal-
able. By applying the adequate modifications in Eq. (5.12), we have that the number of
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complex multiplications for L-MMSE combining is

CL-MMSE
m = (Nτp +N2)K|Mk|︸ ︷︷ ︸

channel estimation

+
N2 +N

2
K|Mk|+N2|Mk|+

N3 −N

3
|Mk|︸ ︷︷ ︸

combining vector

(5.32)

Notice that the square and cubic terms now are independent of |Mk|, due to combining
vector computation being delegated to the AP.

Now we shall discuss the optimal LSFD weights. This vector is optimized with knowl-
edge of the channel statistics. We notice that Eq. (5.28) has the form of a generalized
Rayleigh quotient with respect to ak. Thus, the SINR can be maximized by the optimal
LSFD weights vector aopt

k according to Corollary 5.2:

COROLLARY 5.2 The effective SINR in Eq. (5.28) is maximized for UE k by

aopt
k = pk

(
K∑
i=1

piE
{
gkig

H
ki

}
+ Fk +Dk

)−1

E {gkk} (5.33)

with Dk ∈ RL×L being the diagonal matrix with entry (l, l) being one if l ̸∈ Mk and
zero otherwise. This in turn leads to the maximum SINR value of

SINRd
k = pkE

{
gH
kk

}( K∑
i=1

piE
{
gkig

H
ki

}
− pkE {gkk}E

{
gH
kk

}
+ Fk +Dk

)−1

E {gkk}

(5.34)

Proof 5.4: Taking a look at the proof of Corollary 5.1, we notice that expression in
Eq. (5.28) is a generalized Rayleigh quotient with v = ak, h =

√
pkE {gkk} and

B =
∑K

i=1 piE
{
gkig

H
ki

}
− pkE {gkk}E

{
gH
kk

}
+ Fk + Dk. The term Dk has been

added so that matrix B becomes positive definite and should not impact the result as
DkE {gkk} = 0L. □

The computing of aopt
k requires the knowledge of the L-dimensional vector E {gkk}, the

L × L matrix E
{
gkig

H
ki

}
, for i = 1, . . . , K, and the L diagonal elements of matrix Fk.

Those vectors can all be computed on the APs based on the receives UL signals and the local
combining vectors. However, the CPU is unable to acquire this information by its own and
needs to receive it from the APs by the fronthaul links. From that, we can see that the number
of parameters that is sent to the CPU grows with K, which also makes this LSFD weights
vector unscalable. We also see that the computation of this vector can be carried out while
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ignoring the L − |Mk| APs that are not serving UE k. Therefore, computing this vector is
only a matter of inverting a |Mk|×|Mk|matrix and multiplying it by an |Mk| length vector.
Thus, the number of complex multiplications for the optimal LSFD weights is

CLSFD-opt
m = |Mk|2 +

|Mk|3 − |Mk|
3

. (5.35)

5.2.3 Scalable Combining Vectors and LSFD Weights

The previous section dervied the optimal combining vector and LSFD weights that max-
imizes the SE. However, such methods are not scalable, the combiner complexity growing
linearly with K, and the statistical information required to compute the LSFD weights grow-
ing also with K, thus requiring an ever growing number of parameters be sent to the CPU
via fronthaul link. Therefore, we shall derive more scalable combining vectors and LSFD
weights.

5.2.3.1 Maximal Ratio Combining

The simplest scalable solution is to use MR combining which is given by

vMR
kl = Dklĥkl. (5.36)

The main benefit of using this combining scheme is the low complexity, which again will be
given by

CMR
m = (NτP +N2)|MK | (5.37)

Another benefit of this combiner is the possibility of computing all of the expected values of
Theorem 5.2 analytically, so there is a closed form for the SE.

COROLLARY 5.3 If MR combining is used, the expectations of Eq, 5.28 become

[E {gki}]l =


√
ηkηiτp tr

(
DklRilΨ

−1
tkl
Rkl

)
i ∈ Pk

0 i ̸∈ Pk

(5.38)

with
[
E
{
gkig

H
ki

}]
lr
= [E {gki}]l [E {g∗

ki}]r for r ̸= l and

[
E
{
gkig

H
ki

}]
ll
= ηkτp tr

(
DklRilRklΨ

−1
tkl
Rkl

)
+

ηkηIτ
2
p

∣∣tr (DklRilΨ
−1
tkl
Rkl

)∣∣2 i ∈ Pk

0 i ̸∈ Pk

(5.39)
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and
[Fk]ll = σ2ηkτp tr

(
DklRilΨ

−1
tkl
Rkl

)
(5.40)

Proof 5.5: The proof can be found on Appendix A.5. □

With Corollary 5.3, we can obtain a closed form expression for the SE of MR combining.
However, such expression is lengthy, so we opt to present the simpler case of N = 1.

COROLLARY 5.4 The case where each AP has N = 1 antenna, the MMSE channel
estimate of the channel hkl ∈ C has variance

γkl =
ηkτpβ

2
kl∑

i∈Pk
ηIτpβil + σ2

. (5.41)

The instantaneous effective SINR is given by

pk

∣∣∣∣∣ ∑l∈Mk

a∗klγkl

∣∣∣∣∣
2

K∑
i=1

pi
∑

l∈Mk

|akl|2γklβilγkl +
∑

i∈Pk\{k}
pi

∣∣∣∣∣ ∑l∈Mk

a∗klγkl
√

ηi
ηk

βil

βkl

∣∣∣∣∣
2

+ σ2
∑

l∈Mk

|akl|2γkl

(5.42)

Proof 5.6: By using the γkl definition, we can rewrite the expected value in Corollary
5.3 as [E {gki}]l =

√
ηi
ηk

βil

βkl
γklfor i ∈ Pk, and 0 otherwise. Also, [Fk]ll = σ2γkl and

[E
{
gkig

H
ki

}
]ll = βilγkl +


ηiβ

2
il

ηkβ
2
kl
γ2
kl i ∈ Pk

0 i ̸∈ Pk

(5.43)

for l ∈ Mk and zero otherwise. By inserting those values in Eq. (5.28) the proof is
complete. □

The expression of Eq. (5.42) shows the behavior of the CF operation. The desired signal

term pk

∣∣∣∣∣ ∑l∈Mk

a∗klγkl

∣∣∣∣∣
2

contains the desired signal power weighted by the sum of the contri-

butions of the serving APs. The contribution of each AP is proportional to the variance of
its channel estimate γkl, that was used to compute the combining vector. The combination of
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the contributions from different APs are done coherently and are represented as the square
of the sum. The denominator contains the interference, which is non-coherently combined,
and is represented as the sum of the interfering powers at each of the l ∈ Mk serving APs.
Each of those terms is multiplied by a scaling factor |akl|2γkl that contains the LSFD weights
and the contribution of MR combining. The second term of the denominator is the interfer-
ence caused by pilot contamination. Finally, the third term refers to the noise power. If we
consider an unitary LSFD vector ak = [1, . . . , 1]T , then the SE expression of the distributed
operation is equivalent tp that of centralized operation (by using MR combining). Thus, cen-
tralized MR combining can be used in a distributed fashion. Despite that, distributed MR
combining still suffers from the same problem as its centralized counterpart, which is the
inability to manage interference. Therefore, we shall explore combining vector schemes that
manage interference better.

5.2.3.2 Local P-MMSE Combining

Taking inspiration from the P-MMSE combiner, we can derive a local P-MMSE alterna-
tive, that aims to reduce L-MMSE’s complexity, by considering only the statistics of the UEs
that are served by AP l, that is,

{
ĥil : i ∈ Dl

}
. By considering only the UEs in Dl, we can

rewrite Eq. (5.31) as

vLP-MMSE
kl = pk

(∑
i∈Dl

piDkl

(
ĥilĥ

H
il +Cil

)
Dkl + σ2IN

)−1

Dklĥkl. (5.44)

The number of complex multiplications of this combining method is given by

CLP-MMSE
m = (Nτp +N2)

∑
l∈Mk

|Dl|︸ ︷︷ ︸
channel estimation

+
N2 +N

2
)
∑
l∈Mk

|Dl|+N2|Mk|+
N3 −N

3
|Mk|︸ ︷︷ ︸

combining vector

,

(5.45)
which is independent of K, and thus scalable. If we compare it to P-MMSE, we can see that
it has a much lower complexity per UE, since it requires the inversion of a N × N matrix
as opposed to a N |Mk| × N |Mk| matrix. Also, one could notice that local P-MMSE (LP-
MMSE) and L-MMSE coincide in the case where the l-th AP serves all UEs. As opposed to
MR the expected values of Eq. (5.28) cannot be obtained in a closed form, however they can
easily be simulated by Monte Carlo techniques.

5.2.3.3 Local P-RZF

As opposed to the centralized case, where the complexity of P-MMSE could be as large
that it would require much more computation capacity of the CPU, its local counterpart
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LP-MMSE already has a rather low complexity per UE. Therefore, the existence of a local
P-RZF (LP-RZF) is not needed, as it would reduce an already low complexity at the cost
of reducing system performance, which differently from centralized operation, is a handicap
distributed systems do not need to maintain.

5.2.3.4 Scalable LSFD

The optimal LSFD vector is not scalable for implementation in large networks. The main
reason for that is the fact that all UEs in the network affect the interference levels at all APs,
determining how accurate the local estimates are. To find a scalable way, we need to limit
the amount of interfering UEs that will be considered in computation. The simplest solution
is to assign equal weight to all of the APs by having aK = [1, . . . , 1]T , as proposed in [42].
In that case, the CPU takes the local data estimates of UE k, and combines them to obtain a
final data estimate

ŝk =
L∑
l=1

ŝkl. (5.46)

This is called no LSFD (n-LSFD), since the LSFD weights are non existent. This was largely
used in previous CF and Massive MIMO application, before the concept of LSFD were
introduced. The main benefit of this approach, is that no statistical knowledge is needed at
the CPU to compute Eq. (5.46). The drawback is that, since each AP is given the same
importance, APs with high SNR with respect to UE k are given the same importance as
APs with low SNR with respect to it. Therefore, one AP could introduce a high amount of
interference at an AP that has a high SNR, and by that actually decrease the SE.

The CPU should then use at least some statistical information about the channels in
order to assing the weights, much like the optimal LSFD weights vector. By observing the
peculiarity of the P-MMSE combining method when compared to the MMSE, we see that
the former uses information of only the UEs that are partially served by the same set of
APs, that is i ∈ Sk, since those should be the UEs causing the majority of interference at
the estimates of UE k. Therefore, like P-MMSE combining, we can select an near optimal
LSFD weight vector, such that it uses only the estimates of the UEs that are present in |Sk|.
Thus, the optimal LSFD vector can be approximated as

an-opt
k = pk

(∑
i∈Sk

piE
{
gkig

H
ki

}
+ Fk + D̃k

)−1

E {gkk} , (5.47)

which is called near optimal LSFD (nopt-LSFD) vector proposed by [43]. It is called nearly
optimal because it has performance similar to the optimal LSFD weights, which will be
proven numerically. In regards to complexity, it has the same number of complex multipli-
cations as its optimal counterpart, since the dimensions of its matrices are equal. However,
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unlike the optimal solution, the nopt-LSFD does send fewer statistical parameters over the
fronthaul links to the CPU, and this number is independent of K, which makes fronthaul
signaling scalable

5.2.4 Fronthaul Signaling for Distributed Operations

The fronthaul signaling that is required by the distributed operation is quantified as fol-
lows. The l-th AP sends the estimates ŝkl for k ∈ Dl to the CPU, corresponding to a total of
τu|Dk| complex scalars over one coherence block. When the DCC is scalable with respect to
K, so is fronthaul signaling. Besides that, the statistical parameters needed to compute the
LSFD vectors must be sent to the CPU, and this number is different if we use the optimal
and near optimal solutions as we will quantify in this section.

The following parameters must be sent from each AP l to the CPU for computing the
optimal LSFD vector for an UE k ∈ Dl:

• E {[gki]l}, for i = 1, . . . , K;

• E
{
|[gki]l|2

}
, for i = 1, . . . , K;

• [Fk]ll.

We notice that E {[gki]l[g
∗
ki]r} = E {[gki]l}E {[g∗

ki]r}, for l ̸= r. This means each AP must
send complex scalars that correspond to the expected value of gki and its complex conjugate
with respect to all other APs. Therefore, each AP must send 3K + 1 complex scalars. How-
ever, by discounting the repeated scalars, we see that the total number of complex scalars is
(3K + 1)/2. Each AP sends those values to each of those served i ∈ Dl UEs. Therefore
(3K + 1)/2

∑L
l=1 |Dl| values are needed in total. This number relies on K, so it is unscal-

able, as already commented. If we instead use the nopt-LSFD vector, then AP l must send
(3|Sk| + 1)/2 complex scalars, and the total number of complex scalars the CPU should
receive is given by

∑L
l=1

∑
k∈Dl

(3|Sk| + 1)/2. This value does not depend on K, so this
alternative provides an scalable solution to the network if allied to any scalable combining
vector solution. Finally, in the case of n-LSFD we have that no channel statistics must be
sent to the CPU, so the number of complex scalar that must be sent is zero. A summary of
complex scalars that must be sent over the fronthaul links for each of the methods is given in
Table 5.1.

We simulate the same system that was used to generate Fig. 5.2, only that time in a
distributed manner. The results can be seen in Fig. 5.3. We notice that under the unscalable
case of every AP serving every UE, the performances of L-MMSE and LP-MMSE coincide.
That happensa because Sk = {1, . . . , K} for every k. The same thing can be said about
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Scheme Number per coherence block Statistics
Centralized (τp + τu)NL -

Distributed: opt LSFD τu
L∑
l=1

|Dl| 3K+1
2

L∑
l=1

|Dl|

Distributed: nopt-LSFD τu
L∑
l=1

|Dl|
∑L

l=1

∑
k∈Dl

3|Sk|+1
2

Distributed: n-LSFD τu
L∑
l=1

|Dl| -

Table 5.1 – The number of complex scalars that must be sent to the CPU from the APs
over the fronthaul per coherence block and per channel statistics (that is over a new spatial
correlation matrix realization). Centralized and distributed operations are considered

Figure 5.3 – SE for the CF UL system where all of the APs serve all UEs. The combining
vectors L-MMSE,LP-MMSE and MR with and without LSFD are used.

the optimal and near optimal LSFD weights. We can also notice the importance of prop-
erly computing the LSFD weights: LP-MMSE and L-MMSE have a large performance drop
when they do not operate with LSFD compared to their LSFD counterparts. Their perfor-
mances are however still better than any MR curve, because they still manage to mitigate
interference. When we take a look at the MR curves, we can see that MR with LSFD has
greater performance than MR without LSFD, for already discussed reasons. Therefore, we
stress another time the importance of efficiently selecting the LSFD weights in order to better
make use of the distributed operation benefits.

122



5.3 COMPLEX MULTIPLICATIONS FOR DISTRIBUTED AND CEN-
TRALIZED OPERATIONS

Also, the number of complex multiplications needed to estimate the channel and compute
the combining vector, as well as compute the LSFD weights is shown in Table 5.2 for the
distributed schemes and Table 5.3 for centralized schemes

Scheme Number of complex multiplications

opt and n-opt LSFD |Mk|2 + |Mk|3−|Mk|
3

L-MMSE (Nτp +N2)K|Mk|+ N2+N
2

K|Mk|+N2|Mk|+ N3−N
3
|Mk|

LP-MMSE (Nτp +N2)
∑

l∈Mk

|Dl|+ N2+N
2

)
∑

l∈Mk

|Dl|+N2|Mk|+ N3−N
3
|Mk|

MR (Nτp +N2)|MK |

Table 5.2 – Number of complex multiplications per coherence block to compute the local
channel estimates and combining vectors of UE k. Different local combining methods are
listed.

Scheme Number of complex multiplications

MMSE (Nτp +N2)K|Mk|+ (N |Mk|)2+N |Mk|
2

K + (N |Mk)
2 + (N |Mk|)3−N |Mk|

3

P-MMSE (Nτp +N2)|Sk||Mk|+ (N |Mk|)2+N |Mk|
2

|Sk|+ (N |Mk)
2 + (N |Mk|)3−N |Mk|

3

P-RZF (Nτp +N2)|Sk||Mk|+ |Sk|2+|Sk|
2

N |Mk|+ |Sk|2 + |Sk|N |Mk +
|Sk|3−|Sk|

3

MR (Nτp +N2)|MK |

Table 5.3 – Number of complex multiplications per coherence block to compute the central-
ized channel estimates and combining vectors of UE k. Different local combining methods
are listed.

We shall use such tables in the next chapter, in order to compute the complexity of the
described DCC methods.

Chapter Summary

• There are two ways in which the UL in CF systems could be implemented:
distributed and centralized

• In the centralized operation, the channel estimation, combining vector computa-
tion and data detection are all delegated to the CPU. In the distributed operation
channel estimation and combining vector computation are locally made at each
AP, with the CPU being responsible for data detection.

• The MMSE combiner for centralized operation is optimal, in which it maxi-
mizes the SE for MMSE channel estimation. It is unscalable however. A more
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scalabe approach is to use P-MMSE, which has a similar performance at the ex-
pense of complexity. If complexity is still an issue, then P-RZF can be used at
the expense of performance. Finally, if there is a sufficient degree of favorable
propagation, or if complexity reduction is the main goal, then MR combining is
an alternative.

• In distributed operation, the CPU has the power to attribute weights to the data
estimates of each AP. This weights are based on the channel conditions of each
AP and are called LSFD. The appropriate computation of LSFD weights is of
vital importance to the operation of such systems.

• The combining method that maximizes SE for distributed operation with MMSE
channel estimation is the L-MMSE. It is, however, unscalable, so we have the
LP-MMSE, that ha a similar performance at the expense of complexity. If there
is a high degree of favorable propagation between the UEs, then MR combining
can be used with satisfactory results. However, unlike the centralized operation,
complexity is usually not such an issue in distributed operation.

• The optimal LSFD weights maximize the SE for distributed operation, but re-
quire an ever growing number of scalars be sent to the CPU over the fronthaul
links as the number of UEs increases. To remedy that, the near optimal solution
is proposed, as it does not demand an ever growing number of complex scalars
be sent to the CPU, since this number is independent of K.
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EXPERIMENTAL RESULTS

This chapter aims to establish a comparison betwen the DCC
methods as well as the pilot aasignment algorithms intro-
duced in Chapter 4. section 6.1 compares the performance
and complexity of the DCC methods for various network pa-
rameters. section 6.2 compares performance for the various
pilot assignment methods. Finally section 6.3 compares per-
formance for unknown channel statistics.

Having introduced the distributed and centralized UL operations in Chapter 5, as well
as the complexity expressions for computing the combining vectors, channel estimates and
sending statistical information to the CPU through the fronthaul links, we would like now to
establish comparisons between the DCC and pilot assignments methods described in 4. For
that, we resort to the simulation setup described in Table 4.1.

6.1 DCC METHODS COMPARISON

For this section we simulate a CF MIMO system with the described DCC methods intro-
duced in Chapter 4. For the pilot assignment method, we use RP with the correlation metric
of the large scale fading coefficients of Eq. (4.13). We compare the DCC methods for the
various combiners discussed in Chapter 5 over centralized and distributed UL operation.

6.1.1 Spectral efficiency for DCC methods

We aim to compare the SE values for the DCC methods and different combining vector
techniques. Fig. 6.1 shows the SE if MMSE combining method is used We can see that,

Figure 6.1 – SE CDF for MMSE combining vector for various DCC methods
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Figure 6.2 – SE CDF for P-MMSE combining vector for various DCC methods

for the lower percentiles of the CDF curve, corresponding to the percentage of time the SE
is higher than the corresponding value, the NTA has the weakest performance. That is to
be expected, since this method does not take in account the interference between the UEs
that are connected to the same AP, which in turn results in smaller values of SE for the UEs
that have weaker channel conditions. When we consider PTA, OUA, Orthogonal-PTA and
ONTUA, their performance for lower percentiles are very similar. On the case of PTA and
ONTUA this happens because the UEs that are connected to the AP have mutually orthogonal
pilot sequences, and therefore do not interfere between each other. For the case of PTA such
similarity is explained by the fact that the threshold power percentage is high, meaning that
the UE with the weakest channel condition is likely to be connected to many APs and in turn
achieve a satisfactory SE value. Now taking a look at the higher percentile values, it is clear
that the PTA and Orthogonal-PTA methods have a much lower performance than the other
methods. This is due to the UE having excellent channel condition being connected to few
APs, since they already obey the power threshold criteria. Since the other DCC methods
rely on connecting more APs to the UE, even if it has the strongest channel conditions, the
performance is greater. The same conclusions can be extended to the P-MMSE and P-RZF
combining vector of Fig. 6.2 and Fig. 6.3

When we analyze MR combining of Fig. 6.4 we reach a more interesting conclusion for
the lower SE percentiles: performance is actually greater for the NTA method. This is not
very intuitive, since NTA is prone to having performance loss due to the lack of interference
cancellation between the neighboring UEs as already discussed. However, when we refer to
MR we remember that it also lacks the capacity to mitigate the interference between pilot-
sharing UEs. Therefore, since NTA will connect a large number of UEs and APs pairs. In
fact, from Fig. 4.9, we see that this corresponds to more than 60% for K = 40. Therefore,
even though the UEs connected to the same AP may share one or more pilot sequences, the
fact that more APs will serve each UE makes that NTA has a greater performance than the
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Figure 6.3 – SE CDF for P-RZF combining vector for various DCC methods

Figure 6.4 – SE CDF for MR combining vector for various DCC methods
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Figure 6.5 – SE CDF for optimal L-MMSE combining vector for various DCC methods

other methods for MR.

From centralized operation methods, we can see that NTA and ONTUA act in order to
enhance the overall SE of the system, that is, they act in a manner such that the UE with
good channel conditions also benefit from connecting to a large number of APs and by doing
that, enhance their already high SE. On the other hand, PTA and Orthogonal-PTA act in a
manner such that they prioritize a fairer distribution of the SEs in the grid, that is, they try
to enhance the performance of the worst channel condition UE to an acceptable level. One
could argue that ONTUA and OUA also have this behavior, but we have to keep in mind that
they allow for a large number of APs to be connected to a given UEs irrespective of individual
channel condition. However, we have to consider that OUA and ONTUA also aims to cancel
interference between the neighboring UEs being served by the same AP, allowing for a fairer
distribution of grid SE in a level.

We now analyze the results of optimal L-MMSE combining in Fig. 6.5 From it we can
see that the performance of every DCC method is very similar. This derives from the fact
the CPU performs optimal fusing of the data estimates of each AP, which in turn makes
the SE values proportional to the channel conditions of the UEs. That is, if an UE has an
average channel condition, then the optimal fusing by means of the LSFD weights allied by
the interference mitigation of L-MMSE will be such that the UE will have a performance that
is on pair with the quality of its collective channel. Also, the L-MMSE combining vector
does not depend on the set Sk of neighboring interfering UEs that, as already seen at Chapter
4, have a rather diverse behavior for the various DCC methods. The near optimal LP-MMSE
combining vector of Fig. 6.6 on the other hand depends on the neighboring interfering UEs
set. Since OUA and ONTUA have an interference mitigation method, their performance is
higher, specially for the lower SE percentiles. NTA is slightly worse than them performance
wise, since it lacks the ability to mitigate said interference. PTA and Orthogonal-PTA have
the worst performance due to the fact the near optimal LSFD weights cancel the benefit
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Figure 6.6 – SE CDF for near optimal LP-MMSE combining vector for various DCC meth-
ods

Figure 6.7 – SE CDF for near optimal MR combining vector for various DCC methods

of the weaker UEs of connecting to more APs, because they are dependent on the set of
neighboring interfering UEs, which in PTA case might share the same pilot sequence. Near
optimal MR of Fig. 6.7 has the same behavior of Fig. 6.6, since the near optimal LSFD
weights are actually detrimental to the PTA and Orthogonal-PTA performance. When we
analyze the effects of n-LSFD LP-MMSE on the SE, we see that, unlike the optimal or nearly
optimal cases, the performance for PTA and Orthogonal-PTA greatly increases. This happens
because the UEs with weak channel conditions are benefited from connecting to a handful of
APs in order to reach the power threshold percentage, and are not "punished" by LSFD the
way they would be under optimal or nearly optimal conditions. The results can be seed in Fig.
6.8 and Fig. 6.9 We notice that for LP-MMSE, the lack of LSFD actually increases the SE
for higher percentiles, however for lower percentiles performance for PTA and Orthogonal-
PTA is still low. This is explained by the fact the LP-MMSE combining vector relies on the
set Sk, which is composed of the interference that weaken their performance. Regardless, it
is clear those DCC methods work better in the case of n-LSFD, which might explain why
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Figure 6.8 – SE CDF for n-LSFD L-MMSE combining vector for various DCC methods

Figure 6.9 – SE CDF for n-LSFD LP-MMSE combining vector for various DCC methods
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Figure 6.10 – SE CDF for n-LSFD MR combining vector for various DCC methods

PTA was widely used in earlier literature, when the LSFD weighting technique had not yet
been proposed.

Finally, the SE for distributed MR combining is analyzed. Since the distributed MR has
a similar behavior to its centralized counterpart, the same assumptions that were made for
centralized MR can be used. The NTA method has the best performance overall due to the
MR combining method lacking the ability to mitigate interference, which in turn makes the
UE with the highest amount of connected APs more likely to have a higher value of SE.

On a general basis for distributed operation, the DCC scheme that exhibits the larger
performance gains is the OUA and the ONTUA. Their ability to mitigate interference be-
tween the UEs being served by the same AP is greatly beneficial for performance, specially
when allied to nearly-optimal or optimal LSFD (except in the case of MR combining without
LSFD). NTA stands on the middle, since, despite lacking the ability to mitigate interference
it still allows for a large number of UE-AP pairs to be connected. Finally, the PTA and
Orthogonal-PTA exhibit the worst performance in an optimal or nearly-optimal LSFD sce-
nario, although they exhibit the best performance when there is no LSFD. In situations where
the frotnhaul link capacity is limited. thus making use of near optimal LSFD impossible, then
those DCC methods might be useful.

6.1.2 Complexity for the DCC methods

Now we aim to establish a comparison between the DCC methods’ complexities for
the various combining vectors over centralized and distributed operations. Table 6.1 shows
the average number of complex multiplications per UE per coherence block to compute the
combining vectors or perform channel estimation.
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DCC Method
Operation Combiner PTA Orthogonal PTA NTA OUA ONTUA

Centralized

MMSE 117398 101797 64471 189259 151377
P-MMSE 110095 93678 59225 189257 151348
P-RZF 6502 5838 8693 12684 11892
MR-cent 298 281 310 560 509

Distributed

opt L-MMSE 3148 3066 2899 3594 3390
n-opt LP-MMSE 873 771 625 1614 1351
L-MMSE 2732 2727 2748 2820 2805
LP-MMSE 457 432 475 840 766
n-opt MR 715 620 461 1334 1095
MR-dist 298 281 310 560 509

Table 6.1 – Average number of complex multiplications per coherence block to compute the
combining vector, the channel estimates and, when needed, the LSFD weights vector

From Table 6.1, we see that, for centralized operation, MMSE has the largest complexity
while MR has the lowest. As already discussed, OUA has the largest number of required
complex multiplications, since each AP is always connected to τp UEs, which makes the
minimum value of |Sk| be τp. Moreover, ONTUA has lower complexity than OUA in all
cases, deriving from the fact ONTUA is a subset of OUA. In regard to SE, however, they
have very similar performance, which makes ONTUA a viable solution for AP since it has
high performance with lower complexity. NTA has less than half of the required complex
multiplications of OUA and ONTUA for P-MMSE and MMSE, at the expense of some SE
loss, while PTA and Orthogonal-PTA have half that number while keeping the SE for lower
percentiles on a satisfactory level. For MR combining, the complexity for NTA is lower than
OUA and ONTUA, and still the SE is higher. Thus centralized MR has the peculiarity of
being able to lower complexity while simultaneously increasing performance.

For distributed operation, it is possible to see that L-MMSE has the largest complexity,
irrespective of the DCC method and the existence or not of LSFD. Complexity-wise, the
performance of all DCC methods for those combining vectors is very similar, so there should
be no aggressive SE trade off of using either of those DCC algorithms. For LP-MMSE,
however, the complexity of ONTUA and OUA are the largest. We should recall, however,
that the two lowest performance schemes, PTA and Orthogonal-PTA, also suffer from large
performance losses under near optimal LSFD weights data fusing. Therefore, for a better SE-
complexity trade off it would be adequate to choose NTA. In the case of no LSFD, one could
then reach the ideal situation of the least complex method being also the one with the best
performance. The conclusions for distributed MR are the same as those from centralized
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(a) MMSE (b) P-MMSE

(c) P-RZF (d) MR

Figure 6.11 – Average number of complex multiplications for the centralized operation com-
bining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus total number
of UEs in the grid

MR. For the nearly optimal LSFD MR, the complexity for NTA is the lowest among the
methods that could be used without significant performance losses. Therefore, it is again the
chosen DCC method.

6.1.3 Complexity and performance comparison for DCC methods versus number
of UEs

Having compared the complexities of the DCC methods under an specific scenario, K =

40, we now explore the scalability of such methods with respect to the number of UEs in
the grid. We compare once again the performance for the combining vectors introduced in
Chapter 5. Fig 6.11 shows the results for centralized operation It is possible to immediately
identify that the PTA and NTA methods are unscalable with respect to K, since the average
complexity increases with the total number of UEs in the grid. For NTA this is explained in
Fig. 4.9, from Chapter 4: as the number of UEs increases, so does the percentile of connected
UE-AP pairs. As for PTA, when K increases, so does the number of connected AP-UE pair,
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and consequently, the lengths of the sets Mk and Sk. With respect to OUA, ONTUA and
Orthogonal-PTA, all of them have some form of interference mitigation, meaning UEs that
share the same pilot sequences will never connect to the same AP. Therefore, the maximum
number of UEs that might be connected to the same AP is τp. As K increases, the number
of connected UEs partially served by the same AP tends to decrease, therefore lowering the
length of the set Sk, and in turn, average complexity. Another insight is that the complexities
of ONTUA and OUA converge as K increases. This is explained by again looking at Fig.
4.9 and noticing that the simulated threshold value of -0.23 leads to more UEs being served
by the same AP up to a limit of τp, that is reached as K increases.

Shifting the focus to the combining vectors, we see that, as anticipated, MMSE is un-
scalable, since its complexity does not decrease with K. P-MMSE was introduced as an
scalable alternative, and we can see form the scalable DCC schemes, that complexity indeed
reduces as K increases. One interesting fact is that P-RZF, which we should recall, was an
alternative to complexity reduction of the P-MMSE combiner, has its complexity increased
with K. This is explained by the fact the length of the partially served UEs set Sk increases
from K = 20 to K = 60. After that, it starts decreasing, but the complexity stabilizes at a
much higher value than K = 20. Therefore, besides the SE loss, P-RZF also experiences an
increased complexity for large K, meaning that P-MMSE would be more suitable for those
scenarios. With respect to MR, we see that the complexity is almost unaffected by K for
OUA, since this combiner has an overall low complexity.

We now shift the focus to the centralized operation, which is seen in Fig. 6.12. Once
again, the DCC methods that do not cancel interference, such as PTA and NTA), are the
ones unscalable with respect to the number of UEs. The remaining methods are scalable,
given the used combining vector is also scalable. Contrary to this is the case of L-MMSE
and opt-L-MMSE, which, as previously discussed, are unscalable. As for the combiner,
LP-MMSE with no LSFD has Orthogonal-PTA as the one that has the lowest complexity
with respect to K. It is also the one that has the best performance. For nearly optimal LP-
MMSE, the performance for any PTA is weak, so the viable and scalable solutions are OUA
and ONTUA. Finally, with respect to nearly optimal MR and MR without LSFD, we have
that on the former either OUA or ONTUA could be used in order to reduce complexity and
attain good performance. On the latter case, the performance is very similarfor the three
interference canceling DCC methods, therefore we should use Orthogonal-PTA since it is
less complex.

On the performance, when adding more UEs but keeping other grid parameters constant,
the newly added UEs will have a high probability of being assigned an already used pilot
sequence to estimate its channels. Therefore, the SE values are expected to decay with K.
For simulation purposes, we opt not to use any of the unscalable combining vectors, as they
would require a large amount of computation to obtain the SE values. Thus, we shall use the
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(a) optimal L-MMSE (b) near optimal LP-MMSE

(c) L-MMSE (d) LP-MMSE

(e) near optimal MR (f) MR

Figure 6.12 – Average number of complex multiplications for the distributed operation com-
bining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus total number
of UEs in the grid
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P-RZF and MR combiners for centralized operation and nearly optimal LP-MMSE and MR
for distributed operation. Fig. 6.13 shows those results It cab be seen that the performance is

(a) P-RZF (b) MR

(c) nopt-LP-MMSE (d) nopt-MR

Figure 6.13 – Average SE for the centralized and distributed operations combining vectors
for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus total number of UEs in the
grid

generally higher when using the OUA and ONTUA methods. They are also the most scalable
methods with respect to the number of UEs in the grid, alongside Orthogonal-PTA. With
respect to Orthogonal-PTA, we notice that its complexity is much lower than the two other
methods when K is not as large. Therefore, despite its SE loss when compared to OUA
and ONTUA, the preferred DCC method one should apply when striving for complexity
reduction is Orthogonal-PTA since, despite performance loss, complexity is much lower. If
one instead wishes for performance, then ONTUA for P-RZF should be used and NTA for
centralized MR.

When comparing distributed operation, we notice the considerable performance loss of
PTA and Orthogonal-PTA methods when LSFD weights are used. Therefore, ONTUA or
OUA should be used for distributed case. Moreover, if complexity reduction is desired,
ONTUA would be the ideal choice. For lower values of K, NTA could be also used, since it
has lower complexity than OUA and ONTUA with similar SE results.
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(a) P-RZF (b) MR

(c) nopt-LP-MMSE (d) nopt-MR

Figure 6.14 – 95-th percentile SE for the centralized and distributed operations combining
vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus total number of UEs
in the grid

We can also conclude with more certainty that PTA and Orthogonal-PTA do not work as
efficiently when the subject is increasing the network SE, since their performance is always
the lowest, as evidenced in Fig. 4.12 of Chapter 4, regardless of the combining vector. We
see that NTA and ONTUA do a better job performance-wise, and their SE values are very
close. Therefore ONTUA is a great alternative for OUA, since it generally requires much
less complex multiplications to compute the combining vector and the channel estimates.

We now compare the performance by considering the 95-th and 5-th percentiles of the
SE. We use the same combining methods as Fig. 6.13 and the results are shown in Fig. 6.14
and Fig. 6.15

From Fig. 6.14 we can see that the NTA generally is incapable of providing a satisfactory
SE for the UEs with worse channel condition. The main reason for that is the lack of interfer-
ence mitigation techniques that OUA has, to exemplify. The exception for that is centralized
MR for reasons already discussed. However, as the number of UEs grow large, the perfor-
mance gets increasingly similar to that of OUA, since the percentile of connected APs to
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(a) P-RZF (b) MR

(c) nopt-LP-MMSE (d) nopt-MR

Figure 6.15 – 5-th percentile SE for the centralized and distributed operations combining
vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus total number of UEs
in the grid
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each UE gets larger. Considering PTA and Orthogonal-PTA, the performance for distributed
operation with LSFD weights is the weakest, for reasons already exposed. For centralized
operation. however, we can see that they possess a rather satisfactory performance while
keeping complexity manageable, such as the (Orthogonal-PTA case. Therefore, for central-
ized operation, PTA and Orthogonal-PTA are methods with great fairness values, since the
weakest channel UE is likely to have a reasonable value of SE.

When we take a look at Fig. 6.15, the obvious result is that OUA and ONTUA are
the methods that guarantee the highest performance for the UEs with the greatest channel
conditions. As opposed to the 5-th percentile case, the PTA and Orthogonal-PTA methods
do not have such a great performance when considering the best UEs. That happens because
those methods aim to establish an power percentage threshold, which imposes all of the
UEs having that percent of the total grid power they would have when connecting to all
APs. Since ONTUA and OUA do not have such imposition, the high quality channel UEs
can increase their throughput. For this situation, NTA also works well, since the lack of
interference management is likely to affect the weaker UEs, but not the strongest. It is
preferred, however, to use ONTUA due to its low complexity when compared to NTA, an
unscalable method.

From the simulations, we can then conclude, for centralized operation, that the ONTUA
method is the one that has the highest SE values while simultaneously being scalable with
respect to K. OUA has also those characteristics, but has almost the same performance as
ONTUA, with greater complexity. Also, when the goal is to prioritize fairness in the SE
distribution, then Orthogonal PTA might be used, with reduced complexity. NTA and PTA,
while having acceptable performance, are unscalable, thus should not be used. When the
focus is on maximizing the net SE while increasing K, then undoubtedly ONTUA should be
chosen, since it has the best performance and lowest complexity among the scalable methods.
If we consider distribution operation, however, one should choose ONTUAor OUA, since the
PTA and Orthogonal-PTA are inefficient in scenarios where there is LSFD, which modern
distributed operation most commonly systems use. NTA once again is an alternative, but its
scalability makes it a not so viable solution. Our final conclusion, therefore, is that ONTUA
is the DCC method that offers satisfactory performance in terms of fairness, and in terms of
the overall grid SE, while being scalable with respect to K, and, moreover, having the lowest
complexity among the scalable methods.

6.1.4 Complexity and performance versus pilot sequence length

We would like now to check scalability for the DCC methods with respect to the pilot
sequence length τp. Intuitively, we can see that OUA is unscalable on that regard. That can
be proven when considering the case of τp = K. Since each AP is allowed to be connected
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(a) P-MMSE (b) nopt LP-MMSE

Figure 6.16 – Average number of complex multiplications for the centralized and distributed
operations combining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus
pilot sequence length τp

to τp UEs, then on that case, K UEs will be connected to each AP. Therefore, all APs will
serve all the UEs in te grid, and we have seen that this leads to unscalability. When we
consider instead ONTUA, we see that a maximum of τp UEs can be connected to each AP.
This number, however, is determined by the threshold limit, which we have set as -0.23. By
Fig. 4.9 we have that this value allows on average 40 % of the total τp UEs to be connected
to each UE, which grows with τp, but at a much slower rate than OUA. NTA and PTA do not
depend on τp, and therefore are scalable. Finally, Orthogonal-PTA follows the same logic as
ONTUA, so it is unscalable, but its complexity grows at a much lower rate than OUA.

We now present the complexity for centralized and distributed operations. For simulation
purposes, we have selected the P-MMSE combiner for the centralized operation and nopt-
LP-MMSE for the distributed operation, Also, we have used the GPA for pilot allocation,
since it does not depend on the condition of K being a multiple of τp. The results are shown
in Figure 6.16: As one would expect, the average number of complex multiplications is
a crescent function with respect to τp, even in the cases when it was stated that the DCC
method was invariant, since channel estimation complexity still depends on τp. It is seen
that PTA, Orthogonal-PTA and NTA are the methods that have the lower complexity values,
while OUA and ONTUA have the highest. For both PTA methods this is explained by the
fact many UEs will connect to few APs in order to satisfy the power percent threshold. In
Orthogonal-PTA even lower AP-UE pairs will be connected, since each AP is only allowed to
serve orthogonal UEs. Although ONTUA complexity still seems pretty high, when compared
to PTA and Orthogonal-PTA, one has to keep in mind that, for τp = 20, the OUA method has
almost three times the complexity of ONTUA, which, when we are leading with complexity
orders of 105 is a very significant gap. Considering the case of no frequency reuse τp = 40,
we have an even bigger gap, of 8 times the complexity of ONTUA. Therefore, although
the number of complex multiplication is still high for ONTUA, it is still scalable and lead
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to satisfactory performance, as we see in Fig. 6.17, that shows the 5-th, average and 95-th
percentile of the SE. For simulation purposed, we have selected the P-RZF instead of the P-
MMSE combiner, since it has a similar performance, as we have seen, only a small SE loss
between them. We can immediately notice that the increased value of τp is more detrimental
to performance in the distributed operation than on centralized. That happens due to inferior
quality of channel estimation, since it is done locally, and without information of the other
APs channel, in the distributed case. Thus, the overhead caused by limiting the amount of
useful data has a much large impact on this system than in the centralized. Also, we can
see that the performance of ONTUA and OUA are very similar in every situation, further
showing why ONTUA can be chosen as an efficient DCC method.

Now analyzing the average SE, we notice that PTA and Orthogonal-PTA have the lowest
performance, because they aim to guarantee a power threshold that in fact does not allow the
UEs with good channel condition to achieve the higher SE they could achieve, since usually
those will only be connected to one or two APs. The same being extended to the average
channel UEs, which will be usually connected to few APs. The NTA, achieves higher average
performance, because more AP are connected to each UE. Also, as the length of the pilot
sequence grows, the amount of interference between UEs that are served by the same AP
tends to decrease, up to a point where useful data is limited and the overhead becomes too
big. Finally, for ONTUA and OUA, performance is the highest, because they allow for, on
average, the same number of AP to be connected to each UE.

Focusing on the UEs with the worst channel conditions, we can see that, for distributed
operation, both PTA and the NTA have the same performance, much lower than the other
methods, due to the lack of interference mitigation techniques allied with lower channel esti-
mation quality inherent to distributed operation. For centralized operation, the performance
of both PTA methods is greater than the NTA, because they aim to provide satisfactory per-
formance for the weakest UEs, due to the already discussed fairness metric. Finally, when
analyzing the best channel condition UEs, we can see that the performance for distributed
operation has a curious behavior: it decreases significantly after τp = 10. In fact, for some
DCC methods, once the pilot sequence length is close to its maximum value, the perfor-
mance is worse than the case of full frequency reuse, when all the UEs share the same pilot.
Although counter intuitive at first, this is explained by the fact the stronger UEs do not benefit
from increasing quality channel estimation the same amount weaker UEs do. Additionally,
they do benefit from lower pilot sequence lengths, since more useful data can be transmitted
by coherence block length. Therefore, with less useful data and no additional benefit from
channel estimation quality, the 95-th percentile SE decreases with the length τp. On central-
ized operation a similar behavior is noticed, however not as strong, since channel estimation
is better (thus, the effects of reduced performance are apparent at τp = 20). In regards
to the DCC method, the only ones that doe not provide a satisfactory performance are the
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(a) near optimal L-MMSE (b) P-RZF

(c) near optimal LP-MMSE (d) P-RZF

(e) near optimal LP-MMSE (f) P-RZF

Figure 6.17 – Average, 5-th percentile and 95-th percentile SE for the distributed and central-
ized operations combining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA
versus pilot sequence length
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(a) P-MMSE (b) nopt LP-MMSE

Figure 6.18 – Average number of complex multiplications for the centralized and distributed
operations combining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA versus
number of APs in the grid

PTA. NTA does have a performance gap in comparison to OUA and ONTUA, however the
complexity for NTAis far smaller for higher pilot sequence lengths. In general, OUA and
ONTUA have the better performances, with ONTUA having the benefit of scalability.

One could notice that complexity reduction is not such a benefit when leading with high
mobility systems, in which the overhead significantly impact the SE for large pilot sequences
length. However, when dealing with high mobility systems, complexity reduction becomes
a factor due to the advantage of using large τp values without large overhead. Therefore, in
such cases ONTUA becomes a solid alternative to OUA.

6.1.5 Complexity and performance versus number of APs

Analyzing the scalability and performance of the DCC methods, when we add APs to
the grid. From intuition, one can say that a large number of APs will lead to an increasing
value of the cluster Mk size, irrespective of the method. However, we must notice that
OUA will always assign τp UEs to each added AP, and therefore lead to an ever increasing
value of the AP cluster length for UE k. Since the addition of new APs will not affect the
normalized channel gains distribution, since they are normalized with respect to the UEs
number, it is expected that the same amount of UE-AP pairs be formed, which in turn should
make the complexity of NTA increasing with the number of APs, but still lower than OUA
and ONTUA. Such assumptions can be observed at Fig. 6.18. We have assumed that RP
has once again be used for pilot assignment. For the PTA and Orthogonal-PTA, we see that
the complexity curve grows slower in the centralized case, while in distributed operation it
actually decreases. The reason is that, as new APs are added to the grid, the likelihood of
an UE being connected to one or few APs increases. For instance, if there is an UE such
that it has weak channels to every AP in the grid, and one new AP is placed nearby it, at
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this moment, instead of connecting to a several number of APs in order to satisfy the power
threshold, the UE now has to connect to one or few, which in turn impacts on complexity
reduction. Therefore, the most scalable methods are PTA and Orthogonal-PTA in distributed
operation, and NTA on centralized.

Analyzing the performance for the 5-th percentile, 95-th percentile and average SE,
which are shown in Fig. 6.19. As it would be expected, the performance increases with
the number of APs, because of more degrees of freedom for propagation, provided by the
geographical location of the newly added APs. With respect to the average SE value, we can
notice that OUA and ONTUA have virtually the same performance, once again proving that
ONTUA is an effective alternative in complexity to OUA. Also, for distributed operation, the
performance of NTA and both PTA methods are similar, and lower than OUA and ONTUA.
For centralized operation, the performance of NTA is higher, but still lower than OUA and
ONTUA. The reason for that difference between operations is that nopt LP-MMSE uses the
LSFD for fusing the data estimates, which in turn makes interference from the UEs being
served by the same AP even more aggressive. When looking at performance for the weakest
UEs, we see that the NTA and both PTA methods have the lowest SE values, in distributed
operation, for reasons already discussed. When taking a look at centralized operation, how-
ever, PTA becomes a very solid alternative, due to its objective in fairness. Allied with the
significant complexity reduction, Orthogonal-PTA is therefore a strong candidate for an scal-
able system with respect to the number of APs when the objective is a fairer SE distribution.
Finally, when we analyze the performance of the strong UEs, the distributed operation can
be explained in the same fashion as the 5-th SE percentile curves. For centralized operation,
however, we see that an increased number of APs lead to an increase in the number of con-
nected UE-AP pairs, which in turn increases the performance of the strong UEs, since they
are connected to more APs and do not suffer the effects of interference as strongly as weaker
UEs, assuming an efficient pilot allocation method has been used, such as RP.

Finally, we can conclude that, for distributed operation, the method that offers bet-
ter scalability with satisfactory SE in all of the cases is ONTUA. However, when leading
with centralized operation, the NTA method acts as efficiently and with reduced complexity
when increasing performance for the UEs with the best channel is the main goal, and the
Orthogonal-PTA method is the most efficient when the goal is a fair SE distribution among
the grid.

6.1.6 Effect of threshold on ONTUA and Orthogonal-PTA on performance and
complexity

The NTA and the PTA methods have been shown to be unscalable with respect to K.
We would like to verify the scalability for ONTUA and Orthogonal-PTA by varying their
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(a) near optimal L-MMSE (b) P-RZF

(c) near optimal LP-MMSE (d) P-RZF

(e) near optimal LP-MMSE (f) P-RZF

Figure 6.19 – Average, 5-th percentile and 95-th percentile SE for the distributed and central-
ized operations combining vectors for the PTA, Orthogonal-PTA ,NTA, OUA and ONTUA
versus number of APs in the grid
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(a) P-MMSE (b) nopt LP-MMSE

Figure 6.20 – Average number of complex multiplications for the centralized and distributed
operations combining vectors for the , Orthogonal-PTA , OUA and ONTUA versus number
of UEs in the grid, for various system parameters.

threshold parameters, We would like also to investigate the performance under such varia-
tions. For that, we refer to the same system we have been using to simulate the figures of
this chapter, but we consider λth ∈ {−0.1,−0.2,−0.3}, and also δ ∈ {93, 95, 97}%. We
once again use the combining vector P-MMSE for investigating complexity and P-RZF for
the SE, in centralized operation. In distributed operation, we use nopt LP-MMSE for all of
the cases. The results are shown in Fig. 6.20 and Fig. 6.21.

From Fig. 6.20, we can see that system complexity increases as the threshold value γth

gets lower. That is to be expected, since a lower value means that more UEs will be allowed
to connect to the AP. We can observe the dependence of the threshold on the number of UEs:
for K = 40, the ONTUA with γth = −0.3 is such that its complexity is the same as OUA,
which strongly suggests that every AP is connected to τp UEs. That happens because at this
value, the percentile of connected UEs is equal to 100 %, which, in the case of ONTUA
means the percent of the strongest τp UEs that are connected to a given AP. For γth = −0.2,
the complexities of OUA and ONTUA become similar when K = 60, for the same reasons.

Comparing the Orthogonal-PTA method, it is clear that the higher the power threshold,
the higher the complexity. In fact, we can argue against the increasing value of this parameter,
since for δ = 97%, the complexity becomes similar to that of ONTUA and OUA, for worse
performance, as we will see next.

Regarding the average SE, we can see that the Orthogonal-PTA method leads to poor per-
formance, however the complexity drop makes it a viable choice. When the power threshold
δ is high, however, there are no significant performance gains and the complexity value gets
near to those of ONTUA. Therefore, Orthogonal-PTA is only a viable choice if we set the
power threshold to values below δ = 95. On that regard, we notice by looking at the 5-th
percentile of the SE, that results for Orthogonal-PTA are rather satisfying for centralized
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(a) near optimal L-MMSE (b) P-RZF

(c) near optimal LP-MMSE (d) P-RZF

(e) near optimal LP-MMSE (f) P-RZF

Figure 6.21 – Average, 5-th percentile and 95-th percentile SE for the centralized and dis-
tributed operations combining vectors for the , Orthogonal-PTA , OUA and ONTUA versus
number of UEs in the grid, for various system parameters.
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operation, even with lower threshold values. For distributed operation, they can still be ac-
ceptable, due to the reduced complexity, however, given that complexity is not such an issue
in distributed operation, ONTUA still is more viable. Finally, when analyzing the 95-th per-
centile, we see that Orthogonal-PTA is definitely not a viable choice, since the SE values are
pretty small. One curious fact is that ONTUA with the highest threshold value γth = −0.1
has a similar performance to OUA in centralized operation. That can be explained by the
fact ONTUA still lets the strongest UEs connect to the AP. On distributed case, however, the
presence of the LSFD weights makes that the AP is assigned a unfavorable weight for the UE,
but reasonable overall, and with the lack of other connected APs to the UE, it experiences
the SE loss seen in Fig. 6.21f.

To summarize, when the main goal is to provide satisfactory performance for the UEs
with best channel quality, then ONTUA might be used with a low threshold value, which
has the lowest complexity values, if centralized operation is considered. For the distributed,
we can again make use of ONTUA, but with a higher threshold value. For the case of the
lower percentiles, we can use Orthogonal-PTA to guarantee satisfactory performance and
lower complexity, in centralized operation. For distributed, we can use ONTUA, with lower
threshold values. Finally, when the main goal is to improve the average SE, then Orthogonal-
PTA is not a viable solution, and neither is ONTUA with lower threshold values. To better
results, we see that we must use a threshold value of γth of around -0.2, the reason why this
value was chosen as -0.23 for almost every scenario.

6.1.7 Summary of the DCC methods scalability and performance

Having compared the DCC methods for various system parameters, we now summarize
them, with regard to scalability, in Table 6.2.

Centralized Operation Distributed Operation

DCC Method
Parameter UEs Pilots APs UEs Pilots APs

PTA No Yes Yes No Yes Yes

Orthogonal PTA Yes Yes Yes Yes Yes Yes

NTA No Yes Yes No Yes Yes

OUA Yes No No Yes No No

ONTUA Yes Yes No Yes Yes No

Table 6.2 – Scalability for the DCC methods. Centralized operation assumes use of P-MMSE
and distributed use of nopt LP-MMSE.

Just by looking at scalability alone we can select the Orthogonal-PTA as the most scalable
method. PTA, NTA and ONTUA also offer scalability for at least one of the three parameters,
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with the most unscalable method being OUA, being only scalable with respect to the number
of UEs. With that in mind, we analyze Table 6.3 with the SE performance.

Average SE 5-th Percentile SE 95-th Percentile SE

DCC Method
Parameter UEs Pilots APs UEs Pilots APs UEs Pilots APs

PTA 1.3 2.3 0.9 0.8 1.5 0.2 1.7 3.0 1.8

Orthogonal PTA 1.3 2.3 0.9 0.8 1.5 0.3 1.7 3.0 1.8

NTA 0.4 1.5 0.2 0.95 2.0 0.8 0.4 1.0 0.2

ONTUA 0.05 0.02 0.01 0.3 0.01 0.02 0.1 0.03 0.01

Table 6.3 – Largest SE gap for the DCC methods. Centralized operation is assumed and the
P-RZF combiner is used. The "Best" legend correspond to the DCCmethod with the highest
values, and the other values correspond to the highest SE gap between the DCC method and
the highest DCC method.

Average SE 5-th Percentile SE 95-th Percentile SE

DCC Method
Parameter UEs Pilots APs UEs Pilots APs UEs Pilots APs

PTA 0.9 0.8 0.6 1.0 0.6 0.6 0.5 0.5 0.5

Orthogonal PTA 0.9 0.8 0.6 1.0 0.6 0.6 0.5 0.4 0.4

NTA 0.9 0.7 0.5 0.8 0.5 0.3 1.0 0.9 0.9

ONTUA 0.4 0.05 0.01 0.3 0.1 0.01 0.1 0.01 0.01

Table 6.4 – Largest SE gap for the DCC methods. Distributed operation is assumed and the
nopt LP-MMSE combiner is used. The "Best" legend correspond to the DCCmethod with
the highest values, and the other values correspond to the highest SE gap between the DCC
method and the highest DCC method.

From Tables 6.2, 6.3 and 6.4, we can see that, when analyzing the total number of UEs
in the grid, OUA has the best SE performance. Since it is scalable, it would be adequate to
chose this as the DCC method. However, since the gap between the SE values of ONTUA
and OUA is small, and ONTUA has lower complexity, then ONTUA will be the chosen
method, regardless if distributed or centralized operation is considered.

When analyzing the pilot sequence length parameter, then ONTUA is the method with
scalability and satisfactory SE values. However, at the expense of some SE loss, we can
choose to use NTA when the objective is to increase the SE of the strongest UEs, and
Orthogonal-PTA if we wish for more fairness. For distributed operation an alternative to
ONTUA, if some SE loss is allowed, is NTA, whatever the SE maximization goal is, due to
reduced complexity. Finally when analyzing the effect of adding APs to the grid, we notice
that ONTUA is not scalable, so we should choose between Orthogonal-PTA and NTA. For
centralized case, we clearly see that NTA is the chosen method when the goal is to provide
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a higher average SE or to enhance the SE of the strongest UEs. If the goal is to enhance the
SE for the weakest UEs, then Orthogonal-PTAshould be used instead. For the distributed
case NTA should be used in every case, since it has low complexity and the SE performance
is very similar to Orthogonal-PTA, which is more complex. After those analysis, we can
safely say that, if one DCC method should be chosen for an arbitrary network, then ONTUA
should be chosen, since it overall demands lesser computation power than OUA, while hav-
ing very similar performance. When complexity is high, it is not usually as unscalable, as for
example, optimal MMSE: as we see from Fig. 6.18a, the complexity value tends to stabilize
on a given value as the number of APs increases, and given Table 6.2, the only unscalable
ONTUA parameter is the number of APs in the grid, L. For distributed operation, the com-
plexity grows more linearly with L, but still it must not be an issue, as complexity on those
systems is generally much manageable than centralized operation.

6.2 PILOT ASSIGNMENT METHODS PERFORMANCE COMPARI-
SON

Comparing the pilot assignment methods that were introduced in Chapter 4. Unlike the
DCC methods, we shall not simulate scenarios such as varying K and L, so the simulations
should not take a large amount of computer power, and therefore we could use a more refined
combining vector in centralized operation as P-MMSE instead of the P-RZF combiner.

6.2.1 Comparison between pilot assignments CDF performance

As ONTUA is the DCC method that has the best trade off between complexity and per-
formance, according to Section 6.1, we shall use it for AP clustering. Moreover, we will
simulate with RPA, GPA and RP, with the correlation metric of Eq. 4.13, and the euclidean
distance metric of Eq. 4.13. The CDF of the SE is shown in Fig. 6.22a

From Fig. 6.22a and Fig. 6.22b, that represent the CDF distribution of the SE up to 90%

of the time, we see that RPA has the lowest values, due to the weaker UEs suffering the most
from pilot contamination interference. The other methods that attempt to effectively mitigate
pilot contamination have a much higher performance, with RP with the correlation metric
being the most effective. GPA and RP with the euclidean distance metric have almost similar
performances. The reason for performance gap is that the GPA metric assigns orthogonal
pilots to the τp UEs randomly, which might lead to UEs that are geographically far apart, or
experience very different spatial propagation characteristics, to be assigned distinct pilots.
Therefore, the chance of a nearby UE sharing the same pilot sequence increase. In RP,
the pilots are randomly allocated, but then they are rearranged into a new configuration,
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(a) P-MMSE (b) near optimal LP-MMSE

(c) P-MMSE (d) near optimal LP-MMSE

(e) P-MMSE (f) near optimal LP-MMSE

Figure 6.22 – CDF SE for the centralized and distributed operations combining vectors for
the RPA, RP and GPA
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whereas the τp UEs in GPA will always have mutually orthogonal pilots. As for the difference
between RP metrics performance, it is explained because the euclidean distance metric does
not take in account the correlation between large scale fading coefficients, but rather the
distance between the collective vectors.

When comparing the overall SE CDF , we see that, apart from RPA, every other pilot
assignment method has pretty much the same performance. When analyzing the SE up to
10% of the time, we see that RP and GPA have once again similar performance, except for
RPA. This is explained by the fact the UEs with the best channel conditions do not suffer
as much from the ineffectiveness of a bad pilot assignment, although they can still suffer
from random allocation, as there is a chance two strong UEs that are geographically closer
be assigned the same pilot. Therefore, RPA should be considered just a worst-case scenario,
while RP with the correlation metric should be used if one desires a fair SE distribution. GPA
and RP with the euclidean distance metric could be used in every other situation alongside
RP with the correlation metric.

Regarding the operation, we see that centralized operation tends to achieve higher values
of SE, since all of the collective channels are known for combining vector computation,
but also that RPA has a much aggressive influence on this operation when compared to the
distributed. This happens because distributed operation has the advantage of LSFD weights,
that help mitigating the interfering UEs signals powers by assigning the weights of each
AP. For instance, if an AP has many interfering UEs but is assigned a lower weight, then
the signal of a desired UE, that connects to this AP and would be subjected to a strong
interference, is fused with a small interference contribution at the CPU.

6.2.2 Comparison between pilot assignment performance versus pilot sequence
length

Now we compare the behavior of the pilot assignment methods with the variations of the
pilot sequence length τp. It is expected that system performance is the same irrespective of
the method, in the special case of τp = K, since there is no frequency reuse. Also, it would
be expected that the gap between performance gets smaller the largest the value of τp, since
channel estimation is improved and the interference between UEs diminishes, since there are
less of them using the same pilot. Also, since we are using ONTUA, it would be expected
the SE values saturate for a given pilot sequence length, and after to this point, its values
gets progressively smaller, again for every pilot assignment method. The values of SE can
be seen of Fig. 6.23

By Figs. 6.23a and 6.23b, we see that the performance for RPA is the smallest. GPA
and RP with the Euclidean metric possess similar performance for smaller τp, but as it grows
larger, GPA has the better performance. For the case of RP with the correlation metric, it has
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(a) near optimal P-MMSE (b) nopt LP-MMSE

(c) P-MMSE (d) nopt LP-MMSE

(e) P-MMSE (f) nopt LP-MMSE

Figure 6.23 – Average, 5-th percentile and 95-th percentile SE for the centralized and dis-
tributed operations combining vectors for RPA, RP and GPA versus pilot sequence length,
for various system parameters.
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the best performance for smaller and larger τp, once again proving the point that this pilot
assignment method has the objective of fair SE distribution. When we consider Figs. 6.23c
and 6.23d, tha gap between GPA and RP with the Euclidean metric gets larger for centralized
operation. This can be explained by the fact the Euclidean metric only considers the norms of
the differences between the collective large scale fading coefficients. Therefore, it does not
take in account the correlation of such vectors, which makes it possible to assign a distinct
pilot sequence to UEs that are far apart, thus increasing the likelihood of UE interference.
Since GPA minimizes the interference on a greedy manner, it takes to account the interfer-
ence on the strongest AP only. On the distributed operation the gap is not as intense because
of the LSFD weights presence, that tends to influence the behavior of all metrics, which in
turn diminishes the likelihood of a strong UE interfering on an equally strong UE, that would
in turn result in a SE drop. Finally, when analyzing the average network SE, we see that once
again RP with the Euclidean metric has lesser SE values than the other methods, except from
RPA, for reasons already stated. The performance of GPA and RP with the correlation metric
are very similar, however. From this scenery, we can conclude once again that RPA consists
on a reference case, and thus has limited applicability in real world networks, due to its huge
performance loss, at least on the considered correlated Rayleigh channel model. Also, RP is
a valid alternative for pilot assignment, but one should notice that it requires the collective
large scale fading coefficients computation, while GPA requires only the strongest AP large
scale coefficient for computation. In distributed operations, it could pose as a more scalable
method, since it only requires the computation of one statistical parameter, whereas the other
method would require the computation of the entire collective channel.

6.3 DCC AND PILOT ASSIGNMENT METHODS OVER UNKNOWN
CHANNEL STATISTICS

So far we have analyzed performance for various DCC methods and pilot assignment
algorithms by assuming full knowledge of the spatial correlation matrices. Moreover, the
described methods all require knowledge of the large scale coefficients, which are dependent
on the channel statistics. Therefore, for satisfactory performance, some degree of knowledge
of the spatial correlation matrices is required. This section aims to explore system perfor-
mance on the case of imperfect channel statistics knowledge, and by that, evaluate if such
methods could still be employed under those limiting situations with satisfactory reliability.

6.3.1 DCC methods SE comparison with imperfect statistics

For comparison purposes, we shall select the RP method with the correlation metric.
Also, since we consider τc = 200, we have that a maximum of 200 transmissions may
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be performed over each coherence block. Since for spatial correlation matrix estimation,
we assume that τp UEs are simultaneously transmitting orthogonal pilot sequences while the
others are not transmitting at all, if we consider τp = 10, we have that 10 UEs will transmit at
the same time. If we also consider K = 40, then the maximum number of transmissions that
each UE is allowed per coherence block is equal to 5. Therefore, this is the chosen value for
the number of transmissions nt = 5. For the number of coherence blocks used for estimation,
we can consider a large range of values, given that the channel statistics are invariant usually
for hundreds of coherence blocks. Initially, we shall select nC = 100, but we shall analyze
the system for other nC values. The results of DCC methods for known statistics and for
unknown with nt = 5 and nC = 100 are given in Fig. 6.24a and Fig. 6.24b. Besides the
considerations that were made in Section 6.1, we can see that the imperfect statistics, which
are the dotted lines curves, knowledge does not seem to have a big impact on the SE values.
The method that seems to have the smallest performance gap is Orthogonal-PTA, given that
this method relies on the percentage power threshold to assign the UEs to the AP. Therefore,
an imperfect knowledge of the large scale coefficients is not likely to impact which APs
should be connected to the AP in order to satisfy the threshold. Despite that, on the OUA
and ONTUA cases, the gap is larger, because the imperfect knowledge of the large scale
fading coefficients will make very likely that one AP that has a weaker channel conditions to
all UEs selects the UE with worst channel gain, therefore reducing performance. The same
can be applied to NTA. We can also observe that imperfect statistics are more likely to impact
negatively on the performance of weaker UEs. Stronger UEs usually have a larger channel
gain with respect to an AP than the others. Therefore, an imperfect knowledge of the channel
gains will not interfere with the ability of the DCC method of selecting the better UE for the
AP or the better AP to the UE. To better explore the effects of spatial correlation matrices
estimation, we should conduct an analysis on the behavior of the system for transmitted
UL power variations. The spatial correlation matrices are still estimated over a range of
coherence blocks nC = 100, but now each UE transmits with a power p ranging from 1mW
to 1W. The results are shown in Fig. 6.25. Some interesting conclusions may be made when
we take a look on the distributed operation SE of Fig. 6.25b: we notice that the gap between
the SE without and with perfect channel statistics is almost non existent, irrespective of the
UL transmit power. This behavior is explained by the presence of the LSFD weights: the
main limiting factor of imperfect large scale fading coefficients knowledge is the possibility
of inefficient DCC AP assignment. However, since distributed operation actually lets each
AP be defined a weight relative to an UE, and also, that the weaker UEs are the most impacted
from imperfect statistics, the LSFD weights help diminishing the weights of highly impacted
UEs, therefore reducing the impact of wrong DCC choices.

Another aspect of discussion arises when we analyze the behavior of imperfect PTA and
Orthogonal-PTA systems for lower transmit powers: since in this case the SNR for the spatial
correlation matrices estimation is low, then each of the large scale fading coefficients is
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(a) P-MMSE

(b) nopt LP-MMSE

Figure 6.24 – CDF SE for the centralized and distributed operations combining vectors for
PTA, ONTUA, OUA, NTA and Orthogonal-PTA, for known and unknown channel statistics.
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(a) P-MMSE (b) nopt LP-MMSE

Figure 6.25 – Average SE for the centralized and distributed operations combining vectors
for PTA, ONTUA, OUA, NTA and Orthogonal-PTA, for known and unknown channel statis-
tics versus UL transmit power p in mW.

likely to assume a value that has the noise distribution. Therefore, since those DCC methods
rely on a given power threshold, more APs will be connected to each UE to satisfy that
threshold, which will then make the complexity increase. Therefore those DCC methods
should be avoided in the case of imperfect channel statistics allied with low SNR. Now taking
a look at the centralized operation of Fig. 6.25a, we see that the gap between perfect and
imperfect statistics is more clearly shown. As expected, the gap is larger for low transmitted
power, since the coefficients are poorly estimated, and tends to zero as the transmit power
increases. One logical solution would be to transmit with increased power in order to obtain
better estimates, however, besides the obvious complications increasing the transmit power
brings to the system, such as increased cost on amplifiers, there is also the fact of pilot
contamination, which limits performance no matter how much p in increased. Furthermore,
we can see the performance gap is small at p = 100 mW, which corresponds to a part of the
SE curve that has not saturated, which shows that we do not need to increase p as much in
order to achieve satisfactory system performance.

6.4 COMPARISON BETWEEN DCC CELL FREE AND CELLULAR
SYSTEMS

After establishing the comparison between the DCC methods in the case of imperfect
channel statistics knowledge, we shift our focus to comparing the overall performance of CF
architecture with some of the analyzed DCC methods and traditional cellular systems such
as the Massive MIMO and Small Cell. The simulation setup is the same as the one that
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Figure 6.26 – Throughput for centralized and distributed CF operations for ONTUA and
NTA, small cell and Massive MIMO architectures. P-MMSE and n-opt LP-MMSE are used
in centralized and distributed operations respectively, and L-MMSE is used in both cellular
setups.

was used to simulate all of this works figures, according to Table 4.1. However, instead of
having the APs randomly deployed along the square grid, we shall have the configuration of
Fig. 3.2, with the APs being deployed following in a square manner. For CF and small cell
setups, there are L = 100 APs with N = 4 antennas, whereas the Massive MIMO has L = 4

APs equipped with N = 100 antennas, where each AP stands at the center of a 500 m× 500
m square. For the case of small cell, the connected AP will not be the one that possess the
highest SINR to a particular UE, instead obeying l ∈Mk, whereMk i obtained from OUA,
or

ℓ = arg max
l∈Mk

βkl. (6.1)

In the case of Massive MIMO, each UE is connected to the AP that possess the highest
average channel gain βkl relative to it. Additionally, each one of the cells contain τp = 10

UEs, that have been assigned each one orthogonal pilot sequences. The pilot assignment
method as well as the correct UE deployment are explained in [8]

For the CF architecture, we have chosen ONTUA and NTA as the DCC methods, since
they offer less complexity and similar throughput than their OUA and PTA counterparts.
Also, we wish to establish a comparison for distributed and centralized operation. Thus,
we shall use P-MMSE combining for centralized operation and n-opt LP-MMSE combining
for distributed, all with scalability in mind. For the cellular setups, we shall use L-MMSE
combining. The Fig. 6.26 shows that centralized operation, not surprisingly, has the best
results, since, besides having the APs jointly cooperating to decode the data, there is also
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knowledge of all of the channel estimates for combining vector computing, which in turn
results in better interference cancellation. ONTUA has, as expected, higher performance
than NTA, but only up to a 0.5 bps/Hz margin, which still makes it a viable solution. When
analyzing distributed operation, we can see that it still has overall better performance than
cellular Massive MIMO, while it has, for higher percentiles, lower performance than the
small cell setup. Still, for lower percentiles, which are the main focus fro a point of view
f fairness, it greatly surpasses the small cell, having a gap of approximately 1 bps/Hz at
the 1-th percentile. Therefore, as evidenced in Chapter 1, the CF architecture has a larger
uniformity of SE values when compared to the cellular setup, be it Massive MIMO or small
cell.

Chapter Summary

• There were two main factors that were measured in this chapter: the scalability
of the proposed methods and the network performance.

• When talking about scalability and performance, we have established four such
factors for it: the possibility of adding UEs and APs to the grid, as well as
the possibility of sending statistical information over the fronthaul links and
increasing channel estimation quality with minimum additional computing re-
sources and with satisfactory network performance

• When analyzing the combining vectors we observed that the optimal solutions,
in the form of MMSE and L-MMSE, albeit optimal are not scalable. Also the
optimal LSFD weights are also not scalable with respect to the fronthaul links.
We have then selected the more scalable combiners P-MMSE, P-RZF and LP-
MMSE.

• From a general case, we observed that the DCC method that has the lowest
complexity while maintaining satisfactory performance is ONTUA, when talk-
ing about the entire network. When we focus on fairness, then Orthogonal-PTA
presents itself as an alternative solution, and when focusing on increasing the
performance of the UEs with the best channel condition, NTA is generally a
good solution.

• In regards to the pilot assignment, we see that RPA is only a reference scenario,
as it has a rather low performance. RP and GPA are almost equal performance-
wise with RP having a tiny better performance in terms of fairness

• Finally, when dealing with imperfect statistics, we see that performance is re-
duced whatever the DCC method is. Also, we notice that increasing the transmit
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power is not always beneficial, and that we should instead use more coherence
blocks for the training phase of estimating the spatial correlation matrices.
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CONCLUSIONS

This chapter summarizes the discussions that were made in
earlier chapters, specially chapter 6. Section 7.1 presents the
conclusions and insights on the DCC methods and pilot as-
signments that were discussed in this monograph, regarding
performance and complexity. It also compare the different
network architectures to provide an insight on the pros of us-
ing CF architecture. Section 7.2 suggests the path of future
researches on topics and systems that were not contemplated
on this monograph.

7.1 CONCLUSIONS AND INSIGHTS ON DCC METHODS AND PI-
LOTS ASSIGNMENTS

CF Massive MIMO systems aim to guarantee a more uniform throughput for each UE in
a network grid, when compared to cellular systems. Contrary to traditional Massive MIMO
systems, it does not deploy a large array at each AP, instead relying on the geographical
distribution of the antennas to obtain scattering richness and increase throughput.

The main objective of connecting a cluster of APs to an UE is to coherently and jointly
decode the signal intended for this UE in order to obtain a more robust estimation of the
desired transmitted data. We have seen in chapters 1 and 3, that it outperforms the small cell
setup, which consists on the connection between UE and strongest AP relative to it: small
cell cannot use the information of other APs to coherently and jointly decode the intended
information, hence the inferior performance.

7.1.1 DCC methods insights and conclusions

Ideally, each UE would be connected to every AP in the grid. However, we have seen in
Chapter 2, that such arrangement possesses a complexity that grows linearly with the num-
ber of UEs in the grid, therefore adding UEs to the grid would cause an increasing use of
computation resources. To counter that, we have introduced algorithms to connect each UE
to a subset of APs that keeps performance similar to the case of every AP connected. We call
those DCC algorithms, since they vary dynamically as the macro channel conditions, that is,
the channel statistics that vary slowly with time, change. Such methods can take a range of
parameters to create an AP cluster for each UE, ranging from correlation from maximiza-
tion, learning techniques among others. Various network measures can also be accounted
for clustering, such as transmit power, small scale fading and spatial correlation matrices.
Among those, we have chosen the large scale coefficients as the network metric, as they
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do not change rapidly with time (usually they remains constant for hundreds of coherence
blocks), and even after this interval, their variation are not so drastic, so they can be obtained
by use of adaptive techniques.

Additionally, they possess information on the physical distances between AP and UE, as
well as the correlation of the collective AP coefficients between two UEs. The clustering
can also be done with some goal for the network performance, such as increasing the overall
network performance or fairness SE distribution. However, one must keep in mind that such
methods should work under variable network conditions, as the number of connected UEs
might change with time, as well as the AP number in the grid. Also, in some cases, more
robust channel estimation must be done in order to guarantee an agreeable level of service
for the UEs, thus the number of pilots must be increases. The methods should be able to
accommodate those changes without requiring a large amount of additional computation
resources.

One sure way to guarantee that the use of computer resources stay finite is to assign a
limited number of APs to each UE, or vice versa. One such method was connecting exactly
a maximum of τp UEs to each AP, so, no matter the increasing in the values of K and L,
each APis still able to process the information efficiently. From those conditions, we have
studied the OUA, ONTUA and Orthogonal PTA. Both ONTUA and Orthogonal PTA are
viable solution when increasing the value of τp, whereas OUA requires too much computer
power for large τp.

Another way to guarantee that the AP cluster is limited is to assign a threshold below
which there is no connection. We have proposed ONTUA, NTA, PTA an Orthogonal PTA.
PTA and NTA act as pure threshold algorithms, where NTA is responsible to assign UEs that
have reasonable channel quality to the APs, while PTA aims to assign the APs to the UE
in order to satisfy a power threshold for each UE. From those, we can clearly see that they
do not rely on τp, so they can be used on networks that require better channel estimation.
However, they also cannot accommodate a large variation of K and L, since they would
assign more APs to each UE, thus increasing the AP cluster size indefinitely. When analyzing
interference mitigation between the UEs being served by the same AP, we consider OUA,
ONTUA and Orthogonal PTA. OUA connects the strongest UEs relative to n AP and that are
assigned orthogonal pilot sequences. ONTUA does the sane, however it discards the UEs
that have a small channel gain (below the given threshold). On doing so, it reduces system
complexity, at the expense of a small, in many times negligible performance loss, since the
removed AP are very likely to influence little on the UE performance. This is specially
helpful when dealing with situations that require great channel estimation quality, as the
increasing number of pilots lead to a complexity increase that is much lower than the one
presented by OUA. Regarding Orthogonal PTA. it also aims to connect orthogonal pilots to
the UEs being served by the same AP, however, unlike the other two DCC methods, it relies
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on the power threshold, which forces the UEs with greater channel conditions to connect to
fewer APs, while the weaker UEs are served by more APs. The result is some performance
loss for the strongest UEs, since they do not connect to as much APs as OUA and ONTUA.

The combining vector also influences on the choice of the DCC method: one strong
example is the MR, where there is no form of interference mitigation between neighboring
UEs. Therefore, methods as OUA, ONTUA and Orthogonal PTA are not ideal, whereas ones
that connect the APs based on thresholds alone are more efficient, as NTA and PTA. The UL
operation also influences that choice: distributed operation for instance has the presence of
the LSFD weights, that change the weight of the APs in the grid, thus "confusing" algorithms
based on power thresholds. Centralized operation does not possess such peculiarity, thus
those algorithms can be used freely on this kind of operation.

When analyzing the feasibility of every method, we notice that ONTUA and OUA can
have a local knowledge of the channel gains (that is, each AP can know the information of
channel gain only from itself), so that DCC be also performed locally, thus reducing the fron-
thaul load even more in distributed operation. The other methods are all dependent on the
UEs choosing the APs, therefore clustering for them should be made in a centralized manner.
Knowledge of the channel gains is highly desirable in every method, and we have seen that
imperfect knowledge influences the DCC methods efficiency differently. For example, meth-
ods that rely on power thresholds suffer greatly from imperfect channel statistics knowledge,
increasing signal detection complexity. Methods such as OUA do ot suffer as much, since
imperfect knowledge is not likely to impact the distribution of the larger channel gains the
same way it would impact the smaller. NTA works in a similar fashion, and ONTUA acts
the same as OUA.

One aspect that has not been covered on this monograph is the effect of the pilot assign-
ment into DCC performance. Intuitively, we can say that, if two UEs with a strong channel
to an arbitrary AP share the same pilot sequence, then methods such as OUA and ONTUA
would not allow those two UEs to be connected to that AP, which would in turn prevent one
of them to connect to a strong AP, thereby reducing performance. For methods that do not
have interference mitigation techniques such as NTA and PTA, the performance drop would
be even ore aggressive: with a bad pilot assignment, the interfering UEs could be placed
nearby each other, which would result in two stronger interfering UEs being connected to
the same AP, which would lower the performance of both, thus the performance gap between
the non and interference mitigation methods would be even larger. Also, for distributed op-
eration we would have another aggravating situation in the form of the LSFD weights: since
their scalable counterpart rely on the subset of interfering UEs on the desired one, a bad
pilot assignment would also weaken the estimation of those weights, which would in turn
promote an even more aggressive performance loss on distributed operation if compared to
centralized.
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Finally, we have evaluated performance and complexity for variations of the threshold
parameters of each method. We have perceived that the threshold value must be carefully
chosen on the case of NTA, as an arbitrary choice could lead to a huge increase in system
complexity. In fact, the larger the number of UEs in the grid, the lesser the variance of this
threshold value, as we can see from Fig, 4.9 of chapter 4.. Therefore, for larger K, it would
be even more important to choose appropriately, as the slight variation of the threshold could
lead to a large number of APs being connected to each UE. Thus, it is important to construct
the normalized channel gains curves and from them pick the appropriate threshold. When
considering ONTUA, we do not have the same problem as NTA, however a bad choice could
lead to very few UEs connected to each AP, in some cases none at all, or the asymptotic
case of τp of them connected to each AP, which is exactly the OUA configuration. For PTA
we have seen that the increasing value of the power threshold increases the performance
very little at the expense of a huge complexity increase. Therefore, it is recommended to
stick with the 95% power value, as it guarantees acceptable performance while maintaining
complexity on a feasible level.

7.1.2 Pilot assignment algorithms insights and conclusions

When dealing with MMSE channel estimation, the CSI is obtained from the transmit-
ted UL pilots. If those pilot signals are all transmitted over a distinct frequency range, then
there should be no interference from neighboring UEs into channel estimation, and there-
fore thermal noise would be the only limiting factor. On practical networks it is usually not
possible to allocate orthogonal pilot sequences to every UE, since bandwidth is limited, so
some frequencies ranges must be used by more than one UE. This makes the channel esti-
mates correlated, and lowers quality of estimation. This effect is shrunk the farther apart the
UEs are between each other, since signal strength decays rapidly with distance. Therefore,
a method to mitigate this interference would be to reuse pilots for the UEs that are distant
between each other, since the farther away UE would most probably not connect to the AP
the nearer would., and consequently, assign orthogonal pilot sequences to the UEs connected
to sets of APs that share many intersections.

Usually the situation to be avoided is the one where a UE with average channel condition
shares a pilot with an UE that has a great channel condition. In this situation, the stronger
UE would greatly affect the estimation of the weaker UE channel, which would greatly
affect the SE of the weaker one. Also, thee could be two UEs with high channel gains
sharing the same sequence, which would result on both channel estimated being impacted,
resulting in a huge performance loss of two UEs that should have had high SE values. Thus,
removing neighboring pilots interference from the grid is an act that aims to improve overall
performance, be it for weaker or stronger UEs. There are, however, different degrees for
this improvement: stronger UEs do not need such quality in the channel estimates, merely
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requiring that they do not share a pilot with another strong UE. For the case of the weaker
ones, however, channel estimation quality is of utmost importance, since they cannot rely
on high channel gains to obtain satisfactory performance. Thus, we see that efficient pilot
assignment methods are used in order to guarantee a given degree of fairness in the network.

One method of pilot assignment that has been suggested and observed in chapters 4 and
6 is the RPA. This method consists on assigning the pilots to each UE in a random manner,
with the condition that each pilot is used at least once. The advantage of such method is
that it requires no form of coordination between the CPU and UEs for the assignment, as
well as no additional statistics. The biggest disadvantage is that each UE is likely to be
sharing a pilot sequence with a neighboring UE. For instance, if only twp pilot sequences
are used, the probability of two UEs that are nearby sharing the same pilot is as high as 50%,
which incurs in high performance loss. With that in mind, we have also proposed alternative
methods, that rely on the channel statistics to be performed. The reason for that is once again
the fact channel statistics remains invariant for thousands of coherence blocks, so this kind
of assignment must be repeated after a large amount of time, opposed to repeating it once
every coherence block.

One method that was proposed is GPA, which can also be found in [8], where each
UE selects the AP that has the highest channel gain as its "master" AP. Then, τp UEs are
randomly assigned mutually orthogonal pilots, and the master AP begins inviting UEs to
form a connection, if they are such that the interference between the pilot sharing UEs is
minimum. This method obviously requires coordination between the APs and the CPU, as
each AP must have channel statistics knowledge of the entire grid in order to assign the pilots.
One discussed limitation of this method was the initial random allocation, as it could lead
to a situation where UEs that re far away are allocated orthogonal pilots, thereby reducing
efficiency. Another limitation is the use of statistics of only the master AP, as opposed
to those of every AP in the grid. With that in mind, we have analyzed the RP, originally
proposed by [35]. This algorithm aims to first assign the same number of pilots, or if not the
same, a similar number, to the UEs in the network grid. By doing that interference is likely
to be uniformly distributed among the UEs, as all of them will have an equal number of pilot
sharing interfering UE. This, allied with an efficient pilot assignment can lead to satisfying
interference mitigation.

The RP is dependent on the metric for the repulsion score: the distance metric has been
proposed by [35], while the euclidean distance has been implemented initially by [15]. The
correlation metrics have been proposed by this monograph. When we have analyzed the
distance metric, we have seen that it succeeds in placing the same pilot in UEs with vastly
different collective channel gains. This happens because it has knowledge of the real dis-
tances between the APs and UEs, so it can efficiently design a metric that "repels" the pilot
sharing UEs to far away locations into the grid. Since this is an ideal case, as distance must
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be estimated in conventional networks, another studied method was the euclidean distance
between the collective channel gains. The performance of this metric is inferior to that of
distances, since we account for the channel gains. It is, however, superior than RPA, since
UEs that have a large collective euclidean distance are assigned the same pilot. This met-
ric takes in account the channel gain difference, which can lead to wrong assumptions. For
instance, suppose the collective euclidean distance is small for tow UEs. That would only
mean that those UEs have similar channel gains, however they could still be far away from
each other, which would make assigning distinct pilot sequences fruitless, since they would
not interfere strongly on the channel estimates at the first place. To establish a stronger
indication of whether the UEs are nearby, we have proposed the collective channel gains
correlation metric: this is a much more reliable method, since UEs with lower correlations
are very likely to have vastly different channel gains, and therefore are more likely to be
spaced far away from each other, while UEs with a high correlation do have very d=similar
channel gains, which in fact increases the likelihood of them being nearby each other. In fact,
this metric is so efficient that performance is almost similar as the case where the distances
are known. Finally, we tried proposing the spatial correlation metric, which measures the
correlation between the collective spatial correlation matrices of UEs. However, opposed to
the correlation between the channel gains, this metric is not very effective when dealing with
pilot assignment. For instance, two UEs can be highly correlated spatial-wise and still be
far away from each other. The algorithm would interpret the high degree of correlation as a
signal to assign orthogonal pilots to both UEs, when in reality the same pilot sequence could
be reused without compromising the performance of both UEs. Thus, spatial correlation is
not such an interesting metric when we wish to discuss pilot assignment.

Another point of interest is that GPA has a slight lower performance than RP with the
correlation between collective channel gains metric when we consider fairness. This hap-
pens due to the randomness of GPA in allocating orthogonal pilots in the beginning of GPA,
whereas RP do not have any randomness associated to it, besides the initial configuration
of the assignment, which is then completely changed due to the repulsion score behavior.
Thus RP has the ability to mitigate interference better which in turn reflects on better perfor-
mance for the UEs with bad channel conditions. For the ones with good to excellent channel
conditions, RP and GPA eliminate the possibility of two strong UEs sharing the same pi-
lot sequence, and therefore, performance is very similar in both cases. When dealing with
imperfect channel statistics, we notice that the pilot assignment methods do not suffer varia-
tions as high as the ones experienced by the DCC methods. This is explained by the fact pilot
assignment does not need such a refined estimate of the channel gains to assign the pilots, as
correlation values that are high will still be high, as well as the master AP will still generally
have a much larger channel gain. The exception is in the case of very poor statistics, for low
UL transmit power, where the estimate is dominated by noise, and thus the metrics become
corrupted.
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Finally, we have noticed that systems with high mobility, that is, systems where the
coherence block length is small suffer from increasing channel estimation quality, since the
amount of useful data is limited in favor of the training process. This overhead decreases
performance, specially for the stronger UEs, who do not benefit as much for increasing
quality channel estimates. Thus, it is crucial for high mobility networks to have efficient
pilot assignment methods, since the value of τp must be as small as not to cause the discussed
overhead, while channel estimation quality should not suffer as much in order to provide
satisfactory performance.

7.1.3 Conclusions on different architectures

Finally, having discussed DCC methods and pilot assignments, we now provide reasons
for the implementation of CF architecture. The main objective of any MIMO technology is
to exploit the scattering richness of the media in order to coherently combine the copies of
the intended signal, that passes through distinct paths, to obtain a robust approximation of the
transmitted data. Massive MIMO aims to use this information allied to the proposition that,
when the number of antennas at a given AP grows large, the mean channel value becomes
deterministic, in what is known as channel hardening. Such proposition has thoroughly been
used by authors as [9], [30] and [31], that both consider a scenario of spatially uncorrelated
APs, that is, where the signals propagate without any preferred direction. Unfortunately,
such scenarios are very rare in real network environments, where there is spatial correlation
between the antennas of a given AP, and where the signals propagate more in certain angular
directions than others. In such cases, the desired degree of channel hardening to obtain reli-
able performance can require the AP to be equipped with a large array, sometimes containing
hundreds of antennas.

We notice that a configuration of hundreds of antennas at each AP could lead to chal-
lenging implementation, so CF MIMO arises as an alternative: instead of deploying a very
large array in only one AP, we distribute a range of sub-arrays at each AP, so that each one
is equipped with a much smaller number of antennas. We immediately notice that the geo-
graphical variability of the system increases drastically, and also, that spatial correlation acts
as an ally rather than a limitation, since the UEs with different spatial characteristics can be
allocated the same pilot without considerable interference in their channel estimates. Also,
the possibility of the UE being connected to many APs makes it more likely that it will be
connected to an AP that has a high channel gain, thereby avoiding the cell edge problem
that arises in Massive MIMO and on more traditional networks architectures. Therefore, CF
provides a more uniform distribution of the network throughput among the UEs, while it
does not considerably rises the network throughput, as it is the objective of Massive MIMO.
Also, it requires a much higher degree of coordination among the APs and the CPUin or-
der to jointly decode the signals, as well as correctly applying the DCC methods and pilot
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assignments.

When comparing to traditional network systems, in the form of small cells, where each
AP connects only to the strongest AP, we notice the per-user throughput still has a very large
variance when compared to CF. This again happens because the APs cannot cooperate in
order to provide a more robust estimate of the transmitted data. Although pilot assignment
specially becomes much more simple on this case, since we are not leading with the collec-
tive channels, but rather with the single AP-UE link. Nevertheless, the throughput is much
more uniform in CF rather than single cell, additionally having no cell-edge whatsoever,
which helps cement CF MIMO as a strong alternative for modern networks architecture.

7.2 FUTURE RESEARCH

Throughout this work, we have covered a lot of crucial aspects in the implementation of
CF MIMO networks. We have considered some models to compose the simulation scenery
in order to compare performance and scalability. One assumption was that of MMSE chan-
nel estimation. This method of channel estimation is a linear technique, however, there are
many authors who have proposed non-linear methods of channel estimation, such as blind
methods proposed by [28] or semi-blind methods such as the one in [29]. Since those tech-
niques do not rely on pilot transmissions, we cannot assign the APs using most of the DCC
methods discussed in Chapter 4, that rely on assigning orthogonal UEs for each AP. Thus,
one could design new DCC methods that attempt to mitigate interference between channels
that are estimated by non-linear methods. On that regard, many possibilities come into place,
since one could make use of reinforcement learning techniques, in order to obtain a precise
knowledge of the network variations, and by that design a DCC method that accompanies
those changes.

Another point of interest is that we have used the correlated log-normal for generating
the shadowing variations of the large scale fading coefficients, as well as considering an ur-
ban environment where the attenuation coefficient α is 3.65. It would be interesting to apply
the same algorithms over environments where the distribution of APs is sparse, and where
the attenuation is not as aggressive. For example, if there is less attenuation then perhaps
the behavior of threshold algorithms change accordingly. Either way, the distribution of the
channel gains would surely change, which makes the more important the correct design on
the curves of Fig. 4.9. Also, we have assumed the correlated Rayleigh fading model for the
communication channel. This model holds for scenarios where there is a large amount of
scattering, with the multipath signal components having on average the same power. There
are, however, situations where there is the presence of line of sight (LOS) signal compo-
nent, which has a much greater power than the other multipath components. As DCC and
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pilot assignment formation are independent on the small scale variations, they should not
be affected by this difference, however the spatial correlation model will surely be altered,
and with it, system performance. Authors such as [44] have already proposed models for
spatially correlated Rician fading for Massive MIMO and [45] have done the same for CF. It
would be interesting to apply the same to the CF systems with the DCC methods that were
proposed, as well as the pilot assignments. Additionally, there are alternative channel mod-
els that could also be explored, such as the Nakagami model, or eventually the κ-µ model,
which is a very general model for conventional networks.

On conventional networks, the rate at which the large scale fading suffer variations is
very slow compared to small fading, usually taking hundreds or even thousands of coherence
blocks to observe a change at all. Still, even when it changes, it has a tendency not to
do so as abruptly. For instance, unless the UE is experiencing high mobility, it is likely
that over the next channel gains variation it still stays at the same geographical location.
That makes the channel gain variations for that particular UE very small. On our proposed
simulation scheme, we have assumed total large scale fading variations for each setup, and
have performed DCC entirely at each one of them. Still, since the large scale variations do
not change as harshly, there could be some form of adaptive clustering, where DCC would
only need to be redone in situations where the channel gain suffers considerable variations.
This in turn would surely save a huge amount of computer processing, which would make
the described DCC methods all the more implementable. Authors such as [46] have already
proposed such methods for some DCC formations, so it would be a possibility to do the
same with the proposed DCC methods of this monograph and check whether they can work
on adaptive environments.

On this monograph, P-MMSE for the centralized operation and n-opt LP-MMSE have
extensively been used to compare system performance, because they are sub optimal with
respect to mitigating interference while at the same time provide scalability to the system.
Although they do improve performance, they are still computationally costly, and there are
situations where they are not entirely needed. For instance, lets suppose a situation where the
spatial correlation matrices of two UEs are such that they are orthogonal, and that the other
UEs that share pilots with those UE are in similar situation. Than, in this case, where there is
no form of interference between neighboring UE, the combining method of P-MMSE would
yield values of performance very similar to those of MR, with the latter providing a much
more scalable solution. Let us now suppose that those UEs do not possess correlation among
the channel estimates, which would also make the P-RZF combining method effective, as
well as less costly than P-MMSE. Then a viable solution to improving scalability would be
the design of some form of artificial intelligence that selects the combining method based on
channel conditions (that is, based on correlation, spatial correlation and measure of interfer-
ence) in order to select one combiner that improves spectral efficiency while at the same time
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reduces computation work. The same could also be made for the number of antennas used
for signal detection at each AP: UEs with high channel gains would perhaps not need a high
degree of diversity in order to decode the information, so the AP could employ less antennas
in this case, and even use only one of them, which would surely save a lot of computational
expenses.

Still another point is that no form of spatial multiplexing between the UEs was consid-
ered, since they were all single antennas. In the case where each UE is equipped with more
than one antenna, the spatial correlation matrices as well as the channel coefficients matrix
would suffer changes, as would the performance values. Although the model still holds for
this case, it would be nonetheless helpful to investigate the effects of the proposed DCC and
pilot assignment methods for those systems. Also, no analysis was conducted whatsoever
on the number of antennas at each AP. From chapter 2 we have seen that increasing the
number of antennas improves the SNR only until a certain point, specially in scenarios with
frequency reuse. However, a deeper analysis should be conducted to find the optimal number
of AP antennas that provides increased performance.

Finally, no power control algorithms were used in this monograph. Those methods aim
to allocate different transmit powers for each UE in the grid, in order to guarantee various
objectives, such as more fairness or higher network throughput. Also, power control tech-
niques could change behavior of some of the introduced DCC methods. For instance PTA
relies heavily on the total power of each UE to the grid APs. If power control techniques
are used, then probably the weakest UEs would be compensated with higher transmit power
(if fairness is the goal), which in turn would make them more likely to connect to less APs
in order to satisfy the power threshold conditions. Since exploring power control was not
the main objective of this monograph, we have opted not to cover it and left it for future
research. Those techniques were used to estimate the channel via UL pilots in [47], although
they could additionally be used to simulate the systems described in this monograph. Regard-
ing the transmission protocol, we have only covered the UL transmission. Other researches
could also explore the effects of the described methods in the DL. For instance, the DL op-
eration makes use of the so called precoders, that aim to decode the information transmitted
by the APs, by using the CSI acquired from UL pilot training, if we consider time division
duplex (TDD) and channel reciprocity. Power control techniques also play a crucial role
here. Future works could simulate the same scenarios that were analyzed in this monograph,
but now with focus on DL operation.

Chapter Summary

• Among the introduced DCC methods, the one with the best trade off between
performance and complexity seems to be ONTUA. In centralized operation, if
we wish for a method with great fairness and low complexity, then we should
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use Orthogonal PTA. If we wish to improve the overall network with less com-
plexity, then we should use NTA. For distributed operation complexity is not
such an issue, therefore we can use ONTUA.

• Regarding pilot assignment, we can either use GPA or RP. For a fairness objec-
tive RP has a slight better performance than GPA, when the collective channel
gains correlations metric is used. In a theoretical basis, the best metric for RP
would be the distance. Since it is usually not known, we use the correlation in-
stead. Euclidean distance of the collective channel gains and correlation of the
collective spatial correlation matrices are not as efficient.

• Conventional small cell network systems provide the advantage of connecting
the UE with the AP providing the best channel gain, which greater reduces com-
plexity. On the other hand, it cannot use the information of other APs to jointly
decode information, and also it suffers from cell edge effect. Massive MIMO
has the advantage of exploiting spatial diversity to reliably decode the signals.
However, it has the disadvantage of requiring a sometimes unreal number of an-
tennas to obtain the so important degree of spatial diversity. CF systems have the
main goal of providing uniform throughput to the network, by jointly decoding
the signals. It has an overall high complexity and requires perfect cooperation
and synchronization between the APs and the CPU

• Non-linear channel estimation has not been covered in this monograph, as well
as DL operation, spatial multiplexing of the UEs information and distinct chan-
nel models as Rician, Nakagami and κ− µ. Future researches could investigate
the effect of such scenarios on the DCC and pilot assignment methods that were
analyzed in this monograph. Additionally, some kind of artificial intelligence
could be developed to better select the combining/precoding vector based on
channel statistics and interference patterns. Also, this same intelligence could
be used to select the number of AP antennas to be used for detection of each UE
signal. This would efficiently reduce system complexity along with offloading
the APs.
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APPENDIX

A.1 Proof from Lemma 3.5:

The result is proven by simply showing the Hessian matrix D2NMSE(λ) is negative
definite for γn ≥ 0. The Hessian matrix D2NMSE(λ) is given by

D2NMSE(λ) =
1

Nβ
diag

(
−2ητpσ2

(ητpλ1 + σ2)3
, ...,

−2ητpσ2

(ητpλN + σ2)3

)
. (A.1)

and, since its elements are all negative, this matrix is negative definite, thus completing
the proof.

A.2 Proof from Lemma 3.6:

First, we notice that the elements of λ and λ′ are similar except the r-th and the (r− 1)-
th ones. Thus, the difference between NMSE(λ) and NMSE(λ′) is the summation of the
terms of Eq. 3.68 for n ∈ {r − 1, r}. Thus, the difference is

ητp
Nβ

(
(λr−1 + λr)

2

ηtaup(λr−1 + λr) + σ2
−

λ2
r−1

ητpλr−1 + σ2
− λ2

r

ητpλr + σ2

)
(a)
=

1

Nβ

(
(x+ y)2

x+ y + c
− x2

x+ c
− y2

y + c

)
=

(x+ y)2(xy + c(x+ y + c))− (x2(y + c) + y2(x+ c))(x+ y + c)

Nβ(x+ y + c)(x+ c)(y + c)

(b)
=

(x+ y)2xy + 2cxy(x+ y + c)− xy(x+ y)(x+ y + c)

Nβ(x+ y + c)(x+ c)(y + c)

(c)
=

2cxy(x+ y + c)− cxy(x+ y)

Nβ(x+ y + c)(x+ c)(y + c)

(d)
> 0 (A.2)

where we have made x = λr−1, y = λr, and c = σ2/(ητp) in (a). In (b) and (c), we have
canceled the terms (x + 2 + y2)c(x + y + c) and (x + Y )2xy in the numerator, and (d)

was obtained from the fact that x, y, and c > 0.
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A.3 Proof from Theorem 5.1:

The signal in Eq. 5.1 can be interpreted as a discrete memoryless interference channel
described in Lemma 3.3 with estimated channel h = vH

k Dkĥk, the input x = sk and
the output y = vH

k Dky
ul, and realizations u =

{
Dkĥi : i = 1, . . . , K

}
that affects the

conditional variance of the interference. For this case, all of the interference and noise is
included in v, with n = 0, since the noise does not necessarily has to be Gaussian. The
inputs power is p = E

{
|sk|2

}
= pk. The term v is written as

v =
K∑
i=1
i ̸=k

vH
k Dkĥisi +

K∑
i=1

vH
k Dkh̃isi + vH

k Dkn (A.3)

Now, we need to show that the requirements of Lemma 3.3 are satisfied. We can see
that the realizations of h and v are known at the CPU, and also v has conditional zero
mean given (h.u), that is E {v|h, u} = 0, since the symbols si and the noise vector n are
independent of the channel estimates and the zero mean estimation errors. Additionally,
the conditional variance given (h, u) is given by

pv(h, u) = E
{
|v|2|h, u

}
= E

{
|v|2|

{
Dkĥi

}}
=

K∑
i=1
i ̸=1

pi

∣∣∣vH
k Dkĥi

∣∣∣2 + K∑
i=1

piv
H
k DkE

{
h̃ih̃

H
i

}
Dkvk

+ vH
k DkE

{
nnH

}
Dkvk

=
K∑
i=1
i ̸=1

pi

∣∣∣vH
k Dkĥi

∣∣∣2 + K∑
i=1

piv
H
k DkCiDkvk + σ2vH

k DkDkvk

=
K∑
i=1
i ̸=k

pi

∣∣∣vH
k Dkĥi

∣∣∣2 + vH
k Zkvk + σ2 ∥Dkvk∥2 (A.4)

Where we have assumed that the terms of v are uncorrelated , and the combining vector
is independent of the channel estimation errors. Also, the input signal x = sk is con-
ditionally uncorrelated with v given (h, u), due to the independence of the symbols and
the zero mean estimation errors.
Finally, we notice that only a fraction of the transmitted symbols are actually used to
convey information. Therefore the expression should be multiplied by the pre-log factor
τu/τc.
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A.4 Proof from Theorem 5.2:

The CPU has no information about the channel estimates (as they are delegated to the
AP). So it needs to treat the average channel gain aH

k E {gkk} as the true channel. The
signal can then be written as

ŝk = aH
k E {gkk} sk + vk (A.5)

where vK is the interference plus noise term

vk =
(
ak

Hgkk − aH
k E {gkk}

)
sk +

K∑
i=1
i ̸=k

ak
Hgkisi + n′

k (A.6)

The term vk has zero mean and is uncorrelated with sk since

E
{
ak

Hgkk − aH
k E {gkk}

}︸ ︷︷ ︸
=0

E
{
|sk|2

}
= 0 (A.7)

Thus, we can apply Lemma 3.3 with h = aH
k E {gkk}, x = sk, p = pk, v = vk, and

σ2 = 0. Also, the signals of different UEs are independent and the receiver noise at
different APs are also independent. Therefore,

E
{
|vk|2

}
=

K∑
i=1

piE
{
|aH

k gki|2
}
− pkE

{
|aH

k gkk|2
}
+ aH

k Fkak. (A.8)

Then, from Lemma 3.3 we can derive the SE expression. Finally, we notice that only a
fraction of the transmitted symbols are actually used to convey information. Therefore
the expression should be multiplied by the pre-log factor τu/τc.

A.5 Proof from Corollary 5.3:

We begin with the term

[E {gki}]l = E
{
vH
klDklhil

}
= tr

(
DklE

{
ĥilĥ

H
kl

})
=


√
ηkηiτp tr

(
DklRilΨ

−1
tkl
Rkl

)
i ∈ Pk

0 i ̸ inPk

(A.9)

where the second equality comes from Lemma 3.4, and the independence of ĥk and ĥi.
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In a similar manner:

[Fk]ll = σ2E
{
∥Dklvkl∥2

}
= σ2 tr

(
DklE

{
ĥklĥ

H
kl

})
= σ2[E {gkk}]l (A.10)

We need only to compute the elements of E
{
gkig

H
ki

}
. We see that E {[gki]l[g

∗
ki]r} =

E {[gki]l}E {[g∗
ki]r} for r ̸= l because the channels of different APs are independent.

Thus, we need only compute

[E
{
gkig

H
ki

}
]ll = E

{
ĥklDklhilh

H
il Dklĥ

H
kl

}
= tr

(
DklE

{
hilh

H
il Dklĥklĥ

H
kl

})
(A.11)

where we have again used Lemma 3.4. If i ̸∈ Pk we can say that hil and ĥkl are
independent, so that

tr
(
DklE

{
hilh

H
il Dklĥklĥ

H
kl

})
= tr

(
DklE

{
hilh

H
il

}
DklE

{
ĥklĥ

H
kl

})
= ηkτp tr

(
DklRilRklΨ

−1
tkl
Rkl

) (A.12)

where one term Dkl was ommited for brevity.
If i ∈ Pk, then

tr
(
DklE

{
hilh

H
il Dklĥklĥ

H
kl

})
= tr

(
DklE

{
ĥilĥ

H
il Dklĥklĥ

H
kl

})
+ tr

(
DklE

{
h̃ilh̃

H
il Dklĥklĥ

H
kl

}) (A.13)

where the equality follows from splitting the channel hil into ĥil, the estimated channel
and h̃il, the estimation error. The second term becomes ηkτp tr

(
DklCilRklΨ

−1
tkl
Rkl

)
due

to the independence between the estimate and the estimation error. The first term is
computed by writing the estimate as ĥil =

√
ηi
ηk
RilR

−1
kl ĥkl:

tr
(
DklE

{
hilh

H
il Dklĥklĥ

H
kl

})
=

ηi
ηk

tr
(
DklE

{
Ril(Rkl)

−1ĥklĥ
H
kl(Rkl)

−1RilDklĥklĥ
H
kl

})
=

ηi
ηk

E
{∣∣∣ĥH

klDklRil(Rkl)
−1ĥkl

∣∣∣2}
= ηkηIτ

2
p

∣∣tr (DklRilΨ
−1
tkl
Rkl

)∣∣2 + ηkηIτ
2
p tr

(
Dkl(Ril −Cil)RklΨ

−1
tkl
Rkl

)2
(A.14)

where the full demonstration of the last step can be found in the Appendix of [8]. By
adding the terms, we conclude the proof.
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