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Abstract

This work investigates the response of semidilute magnetic emulsion subjected

to simple shear flows and a uniform external magnetic field. Our analysis employs

a three-dimensional numerical domain where monodisperse ferrofluid droplets are

randomly suspended in a non-magnetic Newtonian carrier fluid. The incompressible

Navier-Stokes equations are solved using a second-order projection method. More-

over, we use the level set method to capture the interface and, assuming the droplet

surfaces are free of surfactants, implement a repulsive force between droplets to

avoid coalescence. We set different droplet concentrations, capillary numbers, and

magnetic capillary numbers. First, in the absence of a magnetic field, we determine

the effective viscosity for different droplet concentrations and shear rates, obtaining

results that agree well with previous works. Later, we observed that the deformation

and inclination angle of the droplets increase with the magnetic capillary number,

while they decrease when the volume fraction increases. The droplet inclination an-

gle is the angle between its main axis and the main flow direction (x-direction). We

found that droplet-droplet interactions can significantly change the dynamics and

droplet geometry, leading to a dynamic response. These geometrical changes cause

variations in both viscosity and bulk magnetization. As the magnetic capillary num-

ber and volume fraction increase, both properties rise. However, when normalized

by volume fraction, we observed that droplets in dilute regimes contribute more sig-

nificantly to these bulk properties. Despite the superparamagnetic hypothesis for

magnetic droplets, we compute an misalignment angle between the magnetization

and the external magnetic field, which results in torques exerted on the droplets.

At low magnetic capillary numbers, an increase in droplet concentration leads to a

decrease in this angle. In contrast, the angle increases for higher concentrations.

Overall, we investigated the effects that the presence of multiple ferrofluid droplets

has on the bulk properties of the emulsion.

Key-words: magnetic emulsion, concentrated emulsion, simple shear, level set method
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Resumo

Este trabalho investiga a resposta de uma emulsão magnética semidiluída sujeita

a fluxos de cisalhamento simples e a um campo magnético externo uniforme. Nossa

análise emprega um domínio numérico tridimensional onde gotas monodispersas de

ferrofluido estão suspensas aleatoriamente em um fluido carreador Newtoniano não

magnético. As equações de Navier-Stokes incompressíveis são resolvidas usando um

método de projeção de segunda ordem. Além disso, utilizamos o método de level

set para capturar a interface e, assumindo que as superfícies das gotas estão livres

de surfactantes, implementamos uma força repulsiva entre elas para evitar a co-

alescência. Definimos diferentes concentrações de gotas, números de capilaridade

e números de capilaridade magnética. Primeiro, na ausência de campo magnético,

determinamos a viscosidade efetiva variando as concentrações de gotas e os fluxos

de cisalhamento, obtendo resultados que concordam bem com trabalhos anteriores.

Posteriormente, observamos que a deformação e o ângulo de inclinação das gotículas

aumentam com o número capilar magnético, enquanto diminuem quando a fração de

volume aumenta. O ângulo de inclinação é o ângulo entre o eixo principal da gotícula

e a direção principal do fluxo (direção x). Constatamos que as interações entre go-

tas podem alterar significativamente a dinâmica e a geometria das gotas, levando

a uma resposta dinâmica. Essas mudanças geométricas causam variações tanto na

viscosidade quanto na magnetização média da emulsão. À medida que o número de

capilaridade magnética e a fração volumétrica aumentam, ambas as propriedades

se elevam. No entanto, quando normalizadas pela fração volumétrica, observamos

que as gotas em regimes diluídos contribuem mais significativamente para essas

propriedades médias. Apesar da hipótese superparamagnética, calculamos um ân-

gulo de desalinhamento entre a magnetização e o campo magnético externo, gerando

torques nas gotas. Para baixos números de capilaridade, um aumento na concen-

tração de gotas reduz o ângulo, enquanto para concentrações mais altas, o ângulo

aumenta. No geral, investigamos os efeitos que a presença de múltiplas gotas de

ferrofluido causa nas propriedades médias da emulsão.

Palavras-chaves: emulsão magnética, emulsão concentrada, cisalhamento simples,

método de level set
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1 Introduction

1.1 What are ferrofluid emulsions and why are they

important?

Ferrofluid emulsions are a subset of magnetic emulsions found within the larger

group of microstructured soft materials. Lately, this system has gained attention

due to its potential for remote control and has become the basis for many high-tech

devices in the field of microfluidics (Sun et al., 2023). Such a dispersion is created by

mixing an oil-based ferrofluid with another non-magnetic immiscible fluid. In this

context, either the dispersed fluid or the carrier fluid can be the ferrofluid phase.

However, in this work, only emulsions made of ferrofluid droplets are considered.

Emulsions are unstable dispersions in which droplets are subjected to various

types of forces and may tend to come closer to each other, leading to destabilization

processes such as coalescence (i.e. the formation of larger droplets). Thus, the ad-

dition of a surfactant is necessary to maintain the stability of the system for a long

time, achieving a metastable state. Meanwhile, ferrofluids are also unstable mix-

tures, but instead of liquid droplets, they consist of rigid magnetic nanoparticles sus-

pended in a Newtonian liquid. These nanoparticles must be coated with surfactants

to prevent aggregation and maintain stability. When there is no external magnetic

field, particles are randomly oriented and do not exhibit magnetic behavior. However,

when a magnetic field is applied, the magnetic dipole moments of each particle align

with the direction of the external field. On average, this leads the material to ex-

hibit magnetic properties. The first reported preparation process of a monodisperse

ferrofluid emulsion was by Bibette (1993). In their experiment, the sodium dode-

cyl sulfate (SDS) surfactant was dissolved in distilled water, forming the continuous

phase. Then, the dispersed phase composed of kerosene ferrofluid was slowly added

to the first solution under a small shear, resulting in the ferrofluid emulsion. Since

this system is highly polydisperse, a purification method is applied to transform it

into a monodispersed emulsion, with droplet diameters of about 0.7 micrometers.

Later, Montagne et al. (2002) obtained droplets with a narrow size distribution using

only a magnetic field (see Figure 1.1 (a)).

1



Chapter 1. Introduction 2

Although typical emulsions have fascinating dynamics that depend on their mi-

croscopic droplet structure, imposed flow, and composition that modify the macro-

scopic proprieties, ferrofluid emulsions can be even more interesting. For example,

the generation and manipulation of droplets in microchannels are a subcategory of

microfluidics that has emerged as a versatile tool for biological and chemical appli-

cations (Teh et al., 2008). In this context, more precise control of generating droplets

with specific sizes is achieved by using a ferrofluid emulsion and applying a magnetic

field at a microfluidic T-junction (Tan and Nguyen, 2011, Tan et al., 2010). Also, liq-

uid microrobots based on ferrofluid droplets, as shown in Figure1.1 (b), have been

developed to enable access to hard-to-reach regions within the human body for less

invasive medical procedures, by altering their shape through the use of different

magnetic field strengths (Fan et al., 2022, 2020).

Figure 1.1 – (a) Monodisperse magnetic emulsion observed under a transmission
electron microscope. Taken from Montagne et al. (2002). (b) Millimeter-scale fer-
rofluidic robots induced by magnetic drag force to navigate through a complex geom-
etry. Taken from Fan et al. (2022).

At a fundamental level, these applications rely on the fact that ferrofluid droplets,

when subjected to an external magnetic field, introduce an additional relaxation

mechanism to the dynamics of the emulsion. Now, not only the external flow distorts

their equilibrium microstructure, but also a magnetic field. There is a competition

where the interfacial tension tends to maintain the droplet in a spherical shape while

the external magnetic field induces stretching. As an example, in Figure 1.2 (a), one

can see a single ferrofluid droplet in a viscous medium subjected to a pure external

magnetic field. Note that as the strength of this field increases, the droplets are grad-

ually stretched and oriented in the same direction. Inside the droplet, what happens

is that the suspended magnetic nanoparticles experience dipolar interactions, lead-

ing to the formation of chains and migration toward the contact line of the droplet
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(Shyam et al., 2020). This also means that the average alignment of the dipole mo-

ments of the magnetic particles increases. This value per unit of volume is known

as the magnetization vector M. When the external magnetic field is strong enough

and this quantity does not vary at all, we call it saturation magnetization, and the

droplet no longer changes its shape at this limit.

Figure 1.2 – (a) The deformation of the ferrofluid droplet shape intensifies with the
increase of the external magnetic field; adapted from Afkhami et al. (2010). (b) Mag-
netic emulsion in the absence of external magnetic field and the presence, respec-
tively; taken from Montagne et al. (2002).

In emulsion rheology, the volume fraction of the dispersed phase Φ, determines

if the emulsion is dilute, semi dilute or concentrated. Depending on these values

the relationship between stress and strain rate will significantly change. At low vol-

ume fraction (i.e. dilute regime, see Figure 1.3) and small deformation limit, where

there is no hydrodynamics interactions or other types of interactions between the

drops, the emulsion behaves as a Newtonian fluid (purely viscous). It also means

that the viscosity has a linear dependence with Φ. However, as the volume fraction

of the droplets increases, droplet-droplet interactions become significant. Therefore,

higher orders of the volume fraction must be taken into account to determine the

bulk viscosity in a theoretical asymptotic analysis. Moreover, at low interfacial ten-

sion, non-Newtonian effects begin to appear regardless of the volume fraction value.

Let us consider a simple shear case: as the shear rate increases, the droplets tend

to align in the direction of the flow, and this alignment enhances shear-thinning be-

havior, in which viscosity decreases with increasing shear rate. Thus, the complex

dynamics arises from the fact that the droplets are deformable particles. On the

other hand, when we add a large quantity of droplets until we cannot add one more

without deforming the others, we achieve the randomly close-packed state, which is

approximately ΦRCP ≈ 0.64. At this value the droplets are separated by very thin
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liquid films, leading to elastic behavior (Otsubo and Prud’homme, 1994). When the

randomly close-packed value is exceeded, the emulsion becomes jammed and may

exhibit a transition point known as yield stress. Below this point, the emulsion un-

dergoes reversible elastic deformation, similar to a solid. Above this point, it exhibits

irreversible viscoplastic flow. Thixotropy is another typical response of emulsions.

Different from viscoelasticity, the thixotropy has a reversible, inelastic, time depen-

dence of the viscosity or yield stress (Larson and Wei, 2019). This is associated with

time-dependent droplet aggregation or rearrangements.

Figure 1.3 – Schematic representation of how monodispersion emulsions behave as
a function of volume fraction, also indicating the value of the randomly close packed
(RCP) and the microstructure arrangement of the drops. Image inspired by Mason
(1999).

The combination of concentrated ferrofluid emulsions and the analysis of the bulk

properties of these materials while examining their microstructural state has not

been discussed thoroughly. In recent years, a large number of numerical and experi-

mental studies have aimed to determine both the magnetic and rheological properties

of single ferrofluid droplets (Abicalil et al., 2021, Afkhami et al., 2010, Cunha et al.,

2020, Guilherme et al., 2023). These studies have provided invaluable insights into

how these materials respond to imposed flows and no-flow conditions in the presence

of an applied external magnetic field. However, contrary to the analysis of single

ferrofluid droplets, when we introduce more droplets into the system, they not only

deform in response to the external field but also interact with each other. Figure 1.2

(b) shows, from a transmission electron microscope, a concentrated magnetic emul-

sion. In the left figure, where there is no external magnetic field applied, the droplets

are randomly distributed and behave similarly to a typical emulsion. In the right,

under an applied magnetic field, the ferrofluid droplets tend to align in the same di-

rection of the applied field while deforming to a nonspherical shape, experiencing a
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complex self-organization process that may form chains. In this context, this disser-

tation focuses on measuring bulk magnetic properties and analyzing the microscopic

structure of these emulsion, elucidating the influence of the volume fraction, interfa-

cial tension, and magnetic field on this system.

1.2 Literature review

Considering our interest in the response of concentrated ferrofluid emulsions un-

der an external magnetic field, it is relevant to highlight contributions from articles

on non-colloidal suspensions of rigid particles and droplet dispersions, both in dilute

and concentrated regimes, whether magnetic or not. These contributions provide

insights into our study system and support this work.

The dynamics and rheological response of non-Brownian hard spheres suspended

in a carrier Newtonian fluid have been under investigation for over a century. At

very low particle concentrations, Einstein (1906, 1911) was the first to theoretically

quantify the linear increase in effective viscosity as a function of volume fraction.

Later, attempts were made to extend the theory to higher concentrations, revealing

that viscosity increased more rapidly than predicted by the linear expression ηe f f =
ηc(1+ cΦ). Here, ηc represents the viscosity of the carrier fluid and c is a constant,

which in Einstein’s theory is equal to 5/2. Batchelor (1972) was the first to determine

viscosity considering a second-order correction in the volume fraction O(Φ2), i.e.,

considering pairwise interactions. For higher particle concentrations, numerical and

experimental works play an important role in predicting the behavior of suspensions.

Brady and Bossis (1985) and Sierou and Brady (2002) point out that the increase in

viscosity with increasing particle concentration is due to the formation of particle

clusters. They also note that the anisotropic structure resulting from interparticle

forces leads to normal stress differences, which consequently contributes to the non-

Newtonian behavior of the suspensions.

When we consider droplets instead of rigid particles, the behavior of the mate-

rials can be entirely different. Even in low dispersed concentrations, Taylor (1932)

showed under the assumption of low shear rates (droplets remain nearly spherical)

that effective viscosity is ηe f f = ηc(1+5/2Φ(λ+2/5)/(λ+1)). In the limit of a viscosity
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ratio λ→∞, the Einstein expression for hard spheres is recovered. In contrast, when

λ→ 0 the expression simplifies to ηe f f = η0(1+Φ), characterizing the foam regime.

Most of the reported research on single droplet emulsions focuses on determining

the deformation, orientation, particle stress tensor, and breakup regime under an

imposed flow. Besides the pioneering work of Taylor (1934), in which a deformation

model was formulated at the limit of spherical drop shape, several numerical and

experimental studies have been developed. Under shear flow, using different meth-

ods, Kennedy et al. (1994), Kwak and Pozrikidis (1998) and Guido and Villone (1998)

investigated the deformation and orientation of drops for a wide range of viscosity ra-

tios and flow strengths. Also some works considered the effect of confinement (Guido,

2011, Ioannou et al., 2016). A good review on this topic was made by Rallison (1984).

As the flow rate increases, the droplets become more deformed, assume a prolate

ellipsoid shape and continue to deform until they breakup. Amani et al. (2019) in-

vestigated the critical conditions that lead to droplet breakup using level set method.

Another important contribution to dilute suspensions of deformable particles was the

calculation of the stress of each particle relative to the bulk stress using the particle

stress tensor developed by Batchelor (1970).

For higher droplet concentrations, studies focus on investigating the macroscopic

dynamics of the emulsion due to the complexity of computing the interactions be-

tween the droplets, which makes the problem more nonlinear. Thus, most papers

are experimental and numerical. Loewenberg and Hinch (1996) were the first to

measure the rheological properties of emulsions with volume fractions up to 30% in

simple shear flow using the boundary integral method (BIM). Later, under a similar

numerical methodology, Loewenberg (1998) simulated pressure-driven flows and also

made predictions about the emulsion microstructure. Zinchenko and Davis (2002) de-

veloped an efficient algorithm for hydrodynamic interactions using BIM, achieving

higher droplet volume fractions. Srivastava et al. (2016) studied the effective rhe-

ology in the presence of finite inertia using the front-tracking method at moderate

regime concentrations. Meanwhile, several experimental studies have determined

the shear viscosity as a function of the particle volume fraction (Faroughi and Hu-

ber, 2015, Pal, 2001). Jansen et al. (2001) experimentally studied the conditions for

droplet breakup under simple shear for concentrated emulsions. Moreover, coales-

cence is another important process investigated by Shardt et al. (2013) and Yang

et al. (2001) through the approach of two equal-size droplets in simple shear. In
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recent years, there have been studies on multiphase flows with multibody interac-

tions using interface capturing methods. Rosti et al. (2019) used the volume of fluid

method to study the rheology of the system, while De Vita et al. (2019) similarly

investigated the coalescence process and rheology using a repulsive force. At high

volume fractions, when droplets lose their spherical shape and become polygonal, in-

teresting effects emerge, such as a plastic-like response to shear deformations and

the presence of yield stress and interface layers, as evidenced by Mason et al. (1996),

Derkach (2010), and Kondaraju et al. (2012).

Since the synthesis of ferrofluid emulsions reported by Bibette (1993), there has

been a growing interest in studying this type of system. In the diluted regime, the

effect of applied magnetic fields on the shape of ferrofluid droplets and orientation

angle in a simple shear flow has been widely investigated (Afkhami et al., 2010,

Capobianchi et al., 2018, Cunha et al., 2018, Hassan et al., 2018, Jesus et al., 2018).

They reported that, at a fixed shear flow, an increase in the magnetic field strength

increases the deformation of the droplet and tends to align it along the external field.

Also, the conditions for droplet breakup were investigated by Cunha et al. (2018)

and Kawabata et al. (2024) in shear flows. Their study revealed that the external

magnetic field can either inhibit or promote droplet breakup, depending on its di-

rection and strength. Changes in microstructure significantly influence the macro-

scopic behavior of the emulsion. Thus the bulk shear viscosity and differences in

normal stresses in the presence of an external magnetic field were determined by

Capobianchi et al. (2021), Abicalil (2021), Ishida and Matsunaga (2020), Cunha et al.

(2020). Moreover, Abicalil et al. (2021) measured the bulk magnetization under shear

and also quantified a misalignment between the bulk magnetization and the external

magnetic field, which generates a magnetic torque acting on the droplet. Abdo et al.

(2023) determined this under small amplitude oscillatory shear flows. In contrast to

diluted ferrofluid emulsions, studies on systems considering droplet-droplet interac-

tions are scarce. While Wu and Yao (1999) observed structure formation under an

applied magnetic field using an optical microscope, Hassan and Wang (2020) focused

on pairwise interactions between ferrofluid droplets. As far as we know, no studies

have examined both the rheological and magnetic properties of ferrofluid emulsions

at moderate concentrations.
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1.3 Problem setup

In this work, we investigated the behavior of ferrofluid droplets immersed in a

non-magnetic Newtonian fluid at moderate concentrations. The volume fraction of

the droplets ranges from Φ = 0.10 to Φ = 0.30. Figure 1.4 shows a snapshot from

the simulations at Φ = 0.20. The numerical domain is three-dimensional (3D), with

walls of equal length L. At time zero, all droplets are spherical with a unity radius

r and are randomly distributed. The system is subjected to both a simple shear flow

with a shear rate γ̇ and an external uniform magnetic field H0 applied only in the

y direction. The domain is periodic in the x and z directions, while the walls in

y direction have a no-slip and impenetrable boundary condition. These walls move

with a speed of γ̇L/2 in opposite directions. We consider neutrally buoyant drops with

a viscosity ratio of unity. A low Reynolds number is assumed, Re = 0.01. Moreover,

we use a level set method to capture the interface and a projection method to solve the

flow field. These numerical methods have been implemented in an in-house Fortran

code called FENRir (Ferrofluid Emulsion Numerical Rheometer).

Figure 1.4 – Schematic illustration of the problem in this study. The droplets are
immersed in a cubic domain and subjected to a simple shear flow with a shear rate
γ̇. The top wall has a velocity U = γ̇L/2, and the bottom wall has the same magnitude
but in the opposite direction, where L represents the distance between the walls.
Also an external uniform magnetic field is applied H0.



2 Theoretical fundamentals

This chapter provides an overview of the mathematical formulation and theoret-

ical concepts necessary for understanding the behavior of magnetic droplets, which

combines fluid dynamics and electromagnetic theory. First, the balance equations

for fluid flow with a moving interface based on the continuum approach are shown.

Then, Maxwell’s equations will be presented in the context of ferrofluids, includ-

ing the magnetic body force and the main emulsion properties used throughout this

work. Finally, the dimensionless equation and the main dimensionless numbers are

presented.

2.1 Balance equations for two-phase flows

This work focuses on droplet dynamics, and we employ the single fluid formula-

tion for two-phase flows. In this context, fluid motion is governed by the following

equations derived from balance laws

∇·u= 0, (2.1)

ρ(x)
(
∂u
∂t

+u ·∇u
)
=∇·Σ+ fcapδ(x−xΓ)+ fmag, (2.2)

where the first equation is related to the mass conservation principle for an incom-

pressible flow, while the second one is the Cauchy equation with an added term of

body force due to interfacial tension fcap and a magnetic force fmag. Here, ρ repre-

sents the density, which is a position-dependent variable, u is the velocity field, δ

is the Dirac delta function, xΓ is a point on the interface, and Σ is the stress ten-

sor. Buoyancy effects are considered negligible, and the densities of the phases are

assumed to be equal. For an Newtonian fluid, the stress tensor is defined as

Σ=−pI+2η(x)D, (2.3)

where p is the pressure and I is the identity tensor. These quantities together define

the isotropic part of the stress tensor. The second term on the right-hand side is the

deviatoric part, where D= 1/2
[
∇u+ (∇u)T

]
is the strain rate tensor and η the viscos-

9
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ity, which is considered equal for both phases. In two-phase flows, there is a stress

jump at the interface between the fluids. Hence we can determine the capillary force,

which is a force per unit area acting perpendicularly at each point of the interface,

by balancing the hydrodynamic traction exerted by the fluid on both sides of the in-

terface. However, as pointed out by Tryggvason et al. (2011), we can also define a

constitutive equation for the interface by defining an isotropic surface stress tensor

as

ΣS =σIS, (2.4)

where IS = (I− n̂n̂) is the surface identity tensor, n̂ denotes the outward unit vector

normal to the interface, and σ is the interfacial tension coefficient or just interfacial

tension. The capillary body force (force per volume) is equivalent to the divergence

of the surface stress tensor

fcap =−∇S ·ΣS, (2.5)

where ∇S = IS · ∇ is the surface gradient operator. Using vector identities, we can

rewrite equation (2.5) as

fcap =σ(∇S · n̂)n̂−∇Sσ. (2.6)

The first term on the right hand side is associated with a normal stress jump or

capillary pressure, which is equivalent to the Young-Laplace equation. We define the

local mean curvature of the interface throughout the computational domain,

κ=−∇S · n̂. (2.7)

The second term on the right-hand side of equation (2.6) is associated with a tan-

gential stress jump, related to the presence of an interfacial tension gradient known

as Marangoni effects. This work solely considers the normal stress component, as-

suming ∇Sσ = 0; in other words, we consider a clean interface (no surfactants). For

a control volume within the entire domain Ω that includes the interface Γ, the capil-

lary force is calculated by integration along Γ. To include this force in equation (2.2),

we need to convert it from a surface integral over the interface to a volume integral.

Since the capillary force is zero everywhere except at the interface, we can use the

Dirac delta function (three-dimensional version), thus we have that

ˆ
Γ

fcapdS =
ˆ
Ω

fcapδ(x−xΓ)dV . (2.8)
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Applying the localization theorem (Aris, 2012), we get that

fcapδ(x−xΓ)=−σκδ(x−xΓ)n̂, (2.9)

which is the capillary force added to the Navier-Stokes equations to obtain a single-

fluid formulation for flows with interfaces.

2.2 Ferrohydrodynamics concepts

Ferrofluids, also known as magnetic fluids, are stable suspensions of magnetic

nanoparticles (approximately 10 nm in diameter) in a Newtonian liquid. These fluids

are classified as superparamagnetic. To understand ferrohydrodynamics (FHD), we

begin with Maxwell’s equations, which describe most problems involving electric and

magnetic phenomena. In their differential forms, Maxwell’s equations are given by

∇·E= ρe

ϵ0
, (Gauss’ law of electricity)

∇·B= 0, (Gauss’ law of magnetism)

∇×E=−∂B
∂t

, and (Faraday’s law)

∇×B=µ0J+µ0ϵ0
∂E
∂t

. (Ampère-Maxwell’s law)

(2.10)

Here, E represents the electric field, B is the magnetic induction field, ρe is the

electric charge density, ϵ0 is the permittivity of free space, µ0 is the magnetic per-

meability of free space, and J is the total electric current density. For magnetized

(or polarized) matter, it is given by J = J f +Jp, where J f is the free-charge current

density and Jb is the bound current density, which is related to the magnetization

vector M by (Griffiths, 2023)

Jb =∇×M. (2.11)

In FHD, the magnetostatic regime is considered, characterized by the absence of

both free electric charge (J f = 0, non-conducting fluid) and the electric field (E = 0).

Substituting equation (2.11) into the Ampère–Maxwell’s law yields:

∇×B=+µ0∇×M (2.12)
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∇×B−µ0∇×M= 0 (2.13)

∇×
(

1
µ0

B−M

)
= 0. (2.14)

The quantity in parentheses, denoted by H, represents the magnetic field. Combining

this concept, Maxwell’s equations for the magnetostatic regime can be summarized

as follows:

∇·B= 0 (2.15)

∇×H= 0 (2.16)

where B can be written as

B=µ0(M+H), (2.17)

which is composed of a contribution from the magnetic field and the material mag-

netization. In this work, the magnetization vector is always locally parallel to the

magnetic field (in the limit of small H). This allows us to define the following super-

paramagnetic relationship:

M= χH, (2.18)

where χ(x)= (µ(x)/µ0 −1) represents the magnetic susceptibility. Note that the mag-

netic permeability of the continuous phase is equal to the magnetic permeability of

free space, since this fluid is non-magnetic, which leads to χ = 0. To generalize this

quantity to the entire domain, we define the permeability ratio ζ(x) = µ(x)/µ0. Thus,

ζ= 1 outside the ferrofluid droplets, and ζ(x)= 1+χ inside the droplets. Substituting

this into equation (2.17), we have

B=µ0ζ(x)H. (2.19)

If J f = 0 everywhere, the curl of H vanishes (equation (2.16)), and we can express H
as the gradient of a scalar potential ψ:

H=−∇ψ. (2.20)

Combining equation (2.15) with equations (2.19) and (2.20) gives

∇· (µ0ζ(x)∇ψ)= 0. (2.21)
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The boundary conditions for the magnetic potential equation above are described in

Section 2.2.1. The applied external magnetic field results in a force, known as the

Kelvin force, acting on a magnetic droplet (Rosensweig, 2013):

fmag =µ0M ·∇H, (2.22)

where M is the bulk magnetization of a droplet resulting from the mean of all mag-

netic dipole vectors inside it, given by

M= 1
Vd

N∑
i=1

mi (2.23)

where Vd is the volume of the dispersed phase and m is the magnetic dipole mo-

ment of a magnetic droplet. In this work, we compute the bulk magnetization of the

emulsion,

〈M〉 = 1
V c

ˆ
Ω

(
ζ(x)−1

)
HdVc (2.24)

where Vc is the the volume of the system, which encompasses the entire computa-

tional domain Ω, so we take the average magnetization over the entire computa-

tional domain. Using the linear relationship between the magnetization vector and

the magnetic field, the magnetic force can be written as

fmag =µ0(ζ(x)−1)H ·∇H. (2.25)

Note that ζ is not a constant parameter over the entire space, at the interface there

is a jump in this value and also a gradient in H, which induce magnetic forces at

the interface. Thus, in the presence of magnetic fields, the magnetic droplet surface

experiences a capillary and magnetic stress jumps Guilherme et al. (2023),

n̂ · JΣTK=−σκn̂+ 1
2
µ0

(
ζ(x)−1

) ||H||2n̂ (2.26)

where J·K represents the jump of a quantity across the interface between the two

fluids, ΣT represents the total stress contributions from the Newtonian and ferrofluid

phases, and ||H|| is the magnitude of the magnetic field.
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2.2.1 Boundary conditions for magnetic potential

To ensure the continuity of the magnetic field when the droplet crosses the do-

main, we impose a periodic condition in the xz-direction for the magnetic field. To

achieve this, we redefine the magnetic field as

H=H0 +HP (2.27)

where HP is the periodic magnetic field and H0 is the uniform magnetic field. Sub-

stituting the equation (2.27) into equation (2.16), we obtain:

∇× (H0 +HP)= 0. (2.28)

Since the uniform magnetic field is, by definition, a curl-free field, it follows that the

curl of HP also vanishes. In this context, the magnetic induction field becomes

B=µ0ζ(x)(H0 +HP). (2.29)

In this case, it is possible to define a magnetic potential for both magnetic fields: H0 =
−∇ψ0 and HP = −∇ψP. Applying this to equation (2.29) and taking the divergence,

we have that

∇· (ζ(x)∇ψ0
)+∇· (ζ(x)∇ψP

)= 0. (2.30)

Given that ∇ψ0 =−H0 and H0 is uniform, we obtain ∇· (∇ψ0)= 0. Then,

∇· (ζ(x)∇ψP
)=∇ζ(x) ·H0 (2.31)

Therefore, periodic boundary conditions are applied in the x and z directions through

equation (2.31), while for the y-direction we apply the Neumann condition n̂·∇ψP = 0.

2.3 The viscosity of emulsions

A classic approach to studying the rheology of emulsions involves subjecting the

emulsion system containing droplets confined between two parallel walls to simple

shear flow. To describe the overall dynamics of the emulsion, we compute macro-
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scopic properties. It should be pointed out, however, that because of the presence of

repulsive forces between the droplets, we cannot determine the contribution of each

individual droplet to the bulk stress of the emulsion in this work. In other words, we

cannot calculate the stresslet. Therefore, we determine the effective shear viscosity

of the ferrofluid emulsion as:

ηe f f =
〈Σyx〉
γ̇

(2.32)

where

〈Σyx〉 = 1
2LxLz

ˆ
A
ηc
∂u
∂y

dA (2.33)

is the average shear stress on the plates. Here, we are integrating the stress that the

fluid exerts on the plate over its entire area A, and dividing by the total area of the

two plates 2LxLz. The reduced viscosity, which is the effective viscosity minus the

base fluid viscosity, is also determined in this work as

ηred = 〈Σyx〉−ηcγ̇

ηcγ̇
. (2.34)

A great effort has been made to describe the effect of volume fraction on the effective

viscosity of emulsions. Pal (2001) formulated a model that describes the experimental

viscosity data very well,

ηr

[
2ηr +5λ
2+5λ

]3/2
=

(
1− Φ

Φm

)−2.5Φm

. (2.35)

where ηr = ηe f f /ηc is the relative viscosity, φm = 0.637 corresponds to the random

close packing of hard spheres, and λ is the viscosity ratio between the two phases.

We compare our simulation with this model in Section 4.2.

2.4 Dimensionless governing equation

Expressing the main governing equations in dimensionless terms is more appro-

priate because it allows for easier interpretation of crucial parameters that govern

the flow behavior under analysis. For this purpose, characteristic parameters and
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dimensionless variables are introduced, which in this study are

u∗ = u
γ̇r

, t∗ = tγ̇, x∗ = x
r

, p∗ = p
ρr2γ̇2 , κ∗ = rκ, ∇∗ = r∇

δ∗ = rδ, ρ∗ = ρ(x)
ρc

, λ= η(x)
ηc

, H∗ = H
H0

, and ψ∗= ψ

rH0
,

where r is the droplet radius and subscript c is related to properties of the continuous

phase. In this work, the system is in neutral buoyancy with a unit viscosity ratio.

Substituting these non-dimensional parameters into equations (2.1), (2.2), and (2.31)

and dropping the superscript ∗, we get

∇·u= 0, (2.36)

∂u
∂t

+u ·∇ ·u=−∇p+ 1
Re

∇· [2D
]− 1

ReCa
κδ(x−xΓ)n̂+ Camag

ReCa
(ζ(x)−1)H ·∇H, (2.37)

and

∇(
ζ(x)∇ψ)=−∇ζ(x) ·H0. (2.38)

where

Re= ργ̇r2

µc
(2.39)

is the Reynolds number, which represents the ratio of inertial to viscous effects, and

Ca= ηcγ̇r
σ

(2.40)

is the capillary number. When subjected to simple shear, Ca represents the relative

importance between viscous and interfacial tension effects, and can also be inter-

preted as a ratio between a droplet relaxation time due to interfacial tension and a

characteristic flow time. Moreover,

Camag =
µ0rH2

0

σ
(2.41)

is the magnetic capillary number, which represents the relative importance between

viscous effects and the magnetic effect on the droplet shape. Another important

dimensionless parameter is the volume fraction of droplets

Φ= NVd

Vc
, (2.42)
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where N is the number of droplets, Vd = 4/3πr2 is the volume of a droplet, and

Vc = LxL yL y is the volume of the continuous phase. Table 2.1 summarizes all the

characteristic times involved, while Table 2.2 provides a detailed overview of all di-

mensionless parameters, their definitions, and the corresponding values used in the

simulations.

Table 2.1 – Characteristic times existing in the present problem

Flow characteristic time tflow = 1/γ̇

Droplet characteristic relaxation time tdrop = ηr/σ

Magnetic field characteristic time tmag = η/µ0||H0||2

Table 2.2 – Main dimensionless parameters of the problem.

Dimensionless parameter Definition Values

Reynolds number Re= ργ̇r2

ηc
fixed: Re= 0.01

Viscosity ratio λ= ηd

ηc
fixed: λ= 1

Density ratio ρ = ρd

ρc
fixed: ρ = 1

Magnetic permeability ratio ζ= µd

µ0
fixed: ζ= 2

Capillary number Ca= tdrop

tflow
= ηcrγ̇

σ
variable

Magnetic capillary number Camag =
tdrop

tmag
= µ0r∥H0∥2

σ
variable

Volume fraction of droplets Φ= NVd

Vc
variable



3 Numerical methodology

3.1 Level-set method

In problems involving an interface that separates two or more phases, several

tracking or capturing techniques can be employed for numerical description, in-

cluding the boundary integral method, smoothed particle hydrodynamics, immersed

boundary methods, level set (LS) method, volume of fluid, among others. In this

work, we adopt the capturing method based on the level set formulation introduced

by Osher and Sethian (1988).

The level set method is a powerful tool for topology optimization of shapes. It is

well-established in the literature, and there have been a large number of papers pub-

lished for over a decade using this method to analyze a wide range of problems. For

example, Sussman et al. (1994) studied the motion of air bubbles in water and falling

water drops in air, while Xu et al. (2006) and Pimenta and Oliveira (2021) worked

with surfactant-covered droplets. Bashir et al. (2011) and Wong et al. (2017) ana-

lyzed droplet formation in a microfluidic T-junction. Moreover, Amani et al. (2019)

investigated the deformation of a single droplet in shear flow, while Cunha et al.

(2018) and Abicalil (2021) extended this idea to ferrofluid droplets subjected to both

shear flow and external magnetic fields.

Let us consider Ωc and Ωd as the regions occupied by each of the two phases,

where the subscript c corresponds to the continuous phase and d to the dispersed

phase. The LS function is defined across the entire computational domain Ω=Ωc ∪
Ωd∪Γ. Within any arbitrary region, the closed interface Γ is represented by the level

set function φ, which denotes the signed distance from points inΩ to Γ. As commonly

used in the literature, the LS function assumes negative values inside the droplet,

positive values outside, and zero on Γ, thereby the interface is a material surface. In

addition, since the interface is time-dependent and subject to the no-slip condition,

it evolves through an advective equation

∂φ

∂t
+u ·∇φ= 0, (3.1)

18
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where u(x, t) is the velocity field. Note that the gradient of φ is orthogonal to Γ, which

allows us to define geometrical quantities such as the normal vector throughout the

entire domain,

n̂= ∇φ
|∇φ| , (3.2)

and also the mean curvature

κ=∇· n̂. (3.3)

Moreover, the material properties are determined in terms of the LS function, includ-

ing the viscosity and magnetic permeability in the two liquid phases, respectively, by:

η(x, t)= η(φ(x, t)), (3.4)

µ(x)=µ(φ(x, t)). (3.5)

The difference in properties between the droplets and the carrier fluid causes a stress

jump at the interface, which leads to numerical instabilities. To avoid this abrupt

discontinuity, we use a smoothed Heaviside function given by

Hϵ(φ)=



0 if φ<−ϵ,
1
2

[
1+ φ

ϵ
+ 1
π

sin
(
πφ

ϵ

)]
if −ϵ≤φ≤ ϵ,

1 if φ> ϵ,

(3.6)

where the interface has a finite thickness ϵ that is larger than the spacing between

mesh points. In this work, we set ϵ = 1.5h, where h is the mesh spacing, as done

by Abicalil (2021). Thus, the proprieties of equations (3.4) and (3.5) are replaced by

smooth transitions as

λ(φ)=λ+ (1−λ)Hϵ(φ) (3.7)

ζ(φ)= ζ+ (1−ζ)Hϵ(φ). (3.8)

By definition, the directional derivative of the Heaviside function in the normal di-

rection is the Dirac delta function at points near the interface (Osher and Fedkiw,

2006)

δ(x−xΓ)=∇Hϵ(φ(x)) · n̂. (3.9)
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Using the chain rule, we have that:

∇Hϵ(φ(x)) · n̂=H′
ϵ∇φ · n̂=H′

ϵ∇φ · ∇φ
|∇φ| =H′

ϵ|∇φ|. (3.10)

Thus, knowing that H′
ϵ(φ)= δϵ(φ) the equation (3.10) reduces to δ(x−xΓ)= δϵ(φ)|∇φ|

and is used in the capillary term of the momentum balance equation to accurately

concentrate the stresses in the problem formulation with a smoothed Dirac delta

function.

As introduced by Peng et al. (1999), we use a tubes technology, which involves

creating a region γ near the interface, ensuring that φ is updated over time only

in this local region (red region in Figure 3.1). In the FENRir code, we set γ =
6max(∆x,∆y,∆z), and in every region where |φ(x)| < γ the variable Tubes is equal

to 2. At the borders of the tubes, where |φ(x+∆x)| < γ, the value changes as it moves

less than one grid point. Moreover, we create a tube near the wall to use a repulsive

force and prevent droplet-wall contact, as detailed in the Section 3.6.

Figure 3.1 – Tube region and cross section of a drop interface from a real simulation.

We incorporated a cut-off function to smooths the LS function transport equa-

tion within the tube bands, reducing numerical oscillations. Thus, equation (3.1) is

rewritten as:
∂φ

∂t
+ c(φ)u ·∇φ= 0, (3.11)
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where

c(φ)=


1 if |φ| ≤β,
(|φ|−γ)2(2|φ|+γ−3β)

(γ−β)3 , if β< |φ| ≤ γ,

0 if |φ| > γ.

(3.12)

Here, β is a more internal region than γ, defined by the points where |φ| ≤ β, given

by β = 3max(∆x,∆y,∆z). As the interface moves, the level set function may not re-

main as a distance function throughout the simulation, thus we use a reinitialization

technique, as done by Osher and Fedkiw (2006)

∂φ

∂τ
+S(φ)(|∇φ|−1)=λrδ(φ)|∇φ|, (3.13)

where S(φ) is the sign function, τ is a virtual time, and λr is a parameter to pre-

serve the volume during the reinitialization, see Abdo et al. (2023) for further details.

Equation (3.13) must satisfy |∇φ| = 1, meaning it should evolve for a virtual time un-

til this condition is holds, ensuring that the φ represents the distance function.

3.2 Surface and volume integrals

By employing the Heaviside and Dirac delta functions, we can obtain volume in-

tegrals in each phase for an arbitrary function F as follows:

ˆ
Ωc

FdV =
ˆ

V
FHϵ(φ)dV ,

ˆ
Ωd

FdV =
ˆ

V
FHϵ(−φ)dV , (3.14)

ˆ
Γ
FdS =

ˆ
V
Fδϵ(φ)|∇φ|dV . (3.15)

Equations (3.15) and (3.14) are numerically evaluated using a second-order quadra-

ture with a 27-point cubic stencil. These integrals are crucial for computing various

properties, such as the centroids and moments of inertia of the dispersed phase drops.

As the drops move through the periodic domain, the centroid needs to be continuously

adapted. The specific procedure is outlined in Algorithm 1.
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Algorithm 1: The complement of centroid calculation for periodic domain

if xcenter_droplets(N)> Lx then
xcenter_droplets(N)← xcenter_droplets(N)−Lx

end
else if xcenter_droplets(N)≤ 0.0 then

xcenter_droplets(N)← xcenter_droplets(N)+Lx

end
To calculate the moment of inertia

xc ← x(i, j,k)−dx/2− xcenter_droplets(N)

post ← xc−0.5(1.0−sign(1.0,1.0−abs(xc)/(Lx/2)))sign(1.0, xc)Lx

3.3 Projection method

The projection method is a classical scheme for solving the incompressible Navier-

Stokes equations. It involves decoupling the velocity and pressure variables by in-

troducing artificial compressibility in a way that does not affect the final results.

This is necessary because we do not have an explicit equation for pressure, unlike

compressible flows, where pressure is a thermodynamic property determined by an

equation of state. Thus, the projection method follows multi-step process. Firstly,

the incompressibility condition and the pressure gradient terms are neglected, and a

prediction velocity û is calculated. In the second part, this velocity is used to compute

an auxiliary variable for the pressure P , and finally, the pressure and velocity fields

are corrected, satisfying the incompressibility condition.

In this work, to achieve second order accuracy in time O(∆t2), we use the second-

order-explicit Adams-Bashforth scheme for the convective terms and the second-

order-implicit Crank-Nicholson for the viscous terms. Assuming a single value for

the viscosity ratio throughout the entire simulation, as described by Kim and Moin

(1985), the steps of this method are as follows

û−un

∆t
=− (u ·∇u)n+1/2 + 1

2Re

(
∇2û+∇2un

)
− 1

CaRe
[
κ(φ)δ(φ)|∇φ|n̂]n+1/2

+ Camag

CaRe

[(
ζ(φ)−1

)
H ·∇H

]n+1/2
,

(3.16)

un+1 − û
∆t

=−∇Pn+1, (3.17)
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where ∆t is a time step. The terms at n+1/2, including the advective, capillary, and

magnetic terms, as well as the term at n+1, are extrapolated of the form

(u ·∇u)n+1/2 = 3
2

(u ·∇u)n − 1
2

(u ·∇u)n−1 (3.18)

un+1 = 2un −un−1. (3.19)

By applying the divergence to equation (3.17) and noting that the velocity term at

n+1 becomes zero due to incompressibility, we obtain the following Poisson equation

for the pressure auxiliary variable:

∇2Pn+1 = 1
∆t

∇· û. (3.20)

After solving equation (3.20) and calculating un+1 using equation (3.17), the pressure

field can be determined as

pn+1 =Pn+1 − 1
2Re

∇· û. (3.21)

3.4 Discretization and linear system of equations

In this work, the governing equations are solved on a three-dimensional uniform

Cartesian mesh using the second-order finite difference method. Moreover, the mesh

is staggered; thus, the components vector variables are located at the cell faces (ve-

locity, magnetic potential, etc.), and the scalar variables are located on center of the

grid cells (pressure, level set function, etc.).

The advective terms present in the Navier-Stokes equations, the transport equa-

tion of the level set function, and its reinitialization equation are formulated using

the upwind scheme. Thus, it is important to use higher-order methods for spatial

discretization when calculating derivatives. For the terms in equation (3.16), we

use a second-order essentially non-oscillatory (ENO) scheme, which provides bet-

ter numerical approximations. The idea is to compute numerical flux functions us-

ing the smoothest polynomial interpolants possible. To calculate the derivatives of

the advective terms in the transport equation of the LS function, it is important

to use an order higher than two, due to the significant numerical error caused by
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mass loss of the droplet. Therefore, according to Osher and Fedkiw (2006), we use a

fifth-order weighted essentially non-oscillatory (WENO) scheme, which employs the

points {φi−2,φi−1,φi,φi+1,φi+2,φi+3} in the x-direction, for example. Note that this

scheme is a weighted average of all the values obtained by an ENO scheme. For the

spatial discretization in the reinitialization algorithm, we use the upwind scheme

along with WENO and Godunov for computing φ−
x and φ+

x .

For the time evolution of the LS transport and reinitialization equation, where

explicit methods are adopted for temporal discretization, we employ a third-order

strong stability preserving (SSP) Runge-Kutta scheme, as recommended by Peng

et al. (1999) when using fifth-order WENO. As mentioned in Section 3.3, the Navier-

Stokes equations are temporally discretized using second-order implicit Crank-Nicolson

and also Adams-Bashforth schemes.

Based on the previous schemes shown, equations (3.16), (3.20), and (2.31) are

discretized to form linear systems for velocity, pressure, and magnetic potential. For

example, the discretization of the equation for the magnetic potential, considering

only the x-components, is given by

∂

∂x

(
ζ(φ)

∂ψP

∂x

)n+ 1
2 = ∂

∂x
(
ζ(φ)

)n+ 1
2 H0x. (3.22)

The derivative is approximated with second-order accuracy and defined at the

midpoint between two grid points

ζ(φ)i+ 1
2 , j,k

(
ψi+1, j,k−ψi, j,k

∆x

)
−ζ(φ)i− 1

2 , j,k

(
ψi, j,k−ψi−1, j,k

∆x

)
∆x

=
ζ(φ)i+ 1

2 , j,k −ζ(φ)i− 1
2 , j,k

∆x
H0x

(3.23)

We use a harmonic mean in the discretization of ζ(φ)i+1/2, j,k,

ζ(φ)i+1/2, j,k =
2

1
ζ(φ)i+1, j,k

+ 1
ζ(φ)i, j,k

. (3.24)
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Equation (3.23) can be reewriten as

1
∆x2

[
ζ(φ)i+ 1

2 , j,kψi+1, j,k +ζ(φ)i− 1
2 , j,kψi−1, j,k

− (ζ(φ)i+ 1
2 , j,k +ζ(φ)i− 1

2 , j,k)ψi, j,k

]
=
ζ(φ)i+ 1

2 , j,k −ζ(φ)i− 1
2 , j,k

∆x
H0x. (3.25)

Rearranging and grouping the terms, we obtain the following coefficients

ai, j,k =
ζi−1/2, j,k

∆x2 , (3.26)

bi, j,k =
ζi, j−1/2,k

∆y2 , (3.27)

ci, j,k =
ζi, j,k−1/2

∆z2 , (3.28)

di, j,k =−
(
ζi−1/2, j,k +ζi+1/2, j,k

∆x2 + ζi, j−1/2,k +ζi, j+1/2,k

∆y2 + ζi, j,k−1/2 +ζi, j,k+1/2

∆z2

)
, (3.29)

e i, j,k =
ζi+1/2, j,k

∆x2 , (3.30)

f i, j,k =
ζi, j+1/2,k

∆y2 , (3.31)

g i, j,k =
ζi, j,k+1/2

∆z2 , (3.32)

hi, j,k =
ζ(φ)i+ 1

2 , j,k −ζ(φ)i− 1
2 , j,k

∆x
H0x +

ζ(φ)i, j+ 1
2 ,k −ζ(φ)i, j− 1

2 ,k

∆y
H0y (3.33)

+
ζ(φ)i, j,k+ 1

2
−ζ(φ)i, j,k− 1

2

∆z
H0z. (3.34)

Then we form a linear system with variable coefficients for the magnetic potential

as

ai, j,kψi−1, j,k +bi, j,kψi, j−1,k + ci, j,kψi, j,k−1 +di, j,kψi, j,k + e i, j,kψi+1, j,k +
f i, j,kψi, j+1,k + g i, j,kψi, j,k+1 = hi, j,k. (3.35)
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3.5 Boundary and initial conditions

The boundary and initial conditions applied to the problem are described below:

• The drops are initially spherical and homogeneous with a unit radius. They

are randomly distributed by a random number generator;

• In the x and z directions, the magnetic potential is periodic, while it has Neu-

mann boundary conditions in the y direction;

• Velocities and pressure fields are periodic in the x and z directions.

• The pressure field has homogeneous Neumann conditions at the walls;

• Non-homogeneous Dirichlet boundary conditions are applied to u at the non-

periodic boundaries, corresponding to the impenetrability and no-slip condi-

tions.

3.6 Repulsive force model

In emulsions, coalescence occurs when the interfacial film between the surface of

droplets becomes thin and breaks. Droplets approach each other, irreversibly merge,

and form larger droplets until the liquid phases completely separate. The macro-

scopic properties change with the merging or breaking up of droplets. To avoid this

unstable scenario, repulsive forces in numerical simulations play a crucial role, es-

pecially because it is very difficult to numerically resolve the flow in the narrow gaps

between closely spaced droplets. Therefore, we use a repulsive force model as pro-

posed by De Vita et al. (2019),

Frep = ηcrU

(
a
φ
+ b
φ2

)
n̂, (3.36)

where ηc is the viscosity of the base fluid, r is the droplet radius, U is a characteristic

flow velocity, and a and b are calibration parameters. The first parameter can be

interpreted as a contribution from long-range forces, while the second represents a

short-range force. Figure 3.2a shows the system without any repulsive force, while
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Figure 3.2b shows it with repulsive force between the droplets. Note that in Figure

3.2b, the topology of the droplets did not undergo an irreversible change and the

initial number of droplets remained the same.

Figure 3.2 – Snapshots of the simulated domain without repulsive force (a) and with
repulsive force(b). Both simulations started with the same number of droplets for
Φ= 0.25, Re= 0.01 and Ca = 0.05.

To correctly compute the repulsive force, we first attribute an identity (Id) to each

droplet through the level set function. This means that each droplet is identified by

a corresponding integer ranging from 1 to the total number of droplets. Moreover,

the Id is updated as φ evolves. Algorithm 2 describes this scheme. First, we define

a temporary identifier Idtemp. Then, we introduce a conditional statement based on

the variable φ (defined throughout the domain). If the value of φ is greater than

1 it means that we are outside the drop and thus we leave the loop without doing

anything. Otherwise, if the value of φ is less than 1 and Idtemp is equal to 0, we

sweep 1 stencil through the Idtemp and check if this variable identifies any values

different from 0. If such a value is found, this means that the drop has moved and

thus Id receives the value of the temporary variable, updating it.
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Figure 3.3 – Computational domain where two droplets are close enough for the re-
pulsive force to be computed.

Algorithm 2: update Id
Id_temp = Id

if φ> 0 then
Id = 0

end
else if φ≤ 0 and Id_temp = 0 then

Check the neighboring points (stencil of 1)

if Id_temp at any neighboring point ̸= 0 then
Id ← Id_temp at the neighboring point

end

end

Through the Id variable, it is possible to determine if two droplets are close enough

for the repulsive force to be activated. Inside the Tube that encompasses the region

|φ| < γ, where γ= 6max(∆x,∆y,∆z), we check within a 3∆x×3∆y×3∆x stencil if there

are two Id values. If there are, the repulsive force is computed, as shown in Figure

3.3. We add an Id to the walls normal to the y-axis, so the repulsive force is also

computed when droplets are nearby, preventing mass loss. Algorithm 3 describes

how we implement the repulsive force.
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Algorithm 3: repulsive force

if tubes then
Repulsive force=.false. ; /* search the first non-zero Id */

if Id ̸= 0 then
Id_ first← Id

end
Check the neighboring points (stencil of 3)

if Id ̸= 0 and Id ̸= Id_ first then
Repulsive force=.true.

end

end

To evaluate the repulsive force algorithm, we simulate two spherical droplets of

identical size, each with a unit radius r. Both are positioned in a cubic computational

domain of size Lx = 12r, L y = 6r, and Lz = 6r. At time zero, the offsets between the

two droplets are ∆x =−3, ∆y = 1.5 e ∆z = 0. This setup is similar to that in De Vita

et al. (2019). Figure 3.4 shows a plot of the relative y displacement as a function

of the relative x displacement between the centroids of the droplets. First of all, we

check the influence of mesh refinement on the interaction between the two droplets

without repulsive force. We start by using a mesh of 192×96×96 cells (dashed line)

and then double this to 384× 192× 192 cells (solid line). Note that, in the initial

moments, the droplets are not in apparent contact, so the relative vertical distance

remains constant. However, when they start to interact, ∆y increases and then sud-

denly decreases drastically for both the dashed and solid lines without the repul-

sive force. This indicates that, with greater computational power and finer mesh

refinement, the droplets probably would not coalesce, just as predicting De Vita et al.

(2019), despite them using the finite volume method. The solid line achieves a longer

simulation time compared to the dashed line, which has half the mesh refinement.

This indicates that with higher computational power and further mesh refinement,

the droplets probably would not coalesce. The dashed curve comes from our simula-

tion with repulsive force, using coefficient values a = 55 and b = 3.5, the same values

used by De Vita et al. (2019) in all their results with repulsive force summarized

in the dotted curve. Note that the repulsive force model effectively prevents droplet

merging. At first, ∆y starts to increase when the droplets are very close, reaches a

maximum, and then, after separation, returns to a new constant vertical displace-
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ment value until the next collision.

Figure 3.4 – Relative trajectories of two droplets interacting in shear flow. The
dashed, solid, and dash-dot lines are curves from our simulations using the level
set method for Ca = 0.1 and Re = 0.01. The solid line has double the resolution of
the dashed line, and both are without repulsive force. The dash-dot line includes a
repulsive force with parameters a = 55 and b = 3.5, similar to the dotted line from
De Vita et al. (2019) for Ca = 0.1 and Re = 0.1 using VoF. The viscosity and density
ratios in both works are equal to unity.

A comparison with the experimental work of Guido and Simeone (1998) is per-

formed. We established an initial configuration of the droplets with a vertical dis-

tance of ∆y = 0.43 between the centers, for Ca = 0.13, λ = 1.4, and Re = 0.01. The

domain has dimensions Lx = L y = Lz = 10r, with a uniform grid of 160×160×160.

Figure 3.5 shows ∆y as a function of ∆x. We conducted two simulations with differ-

ent intensities of the repulsive force. The dashed curve has coefficients a = 55 and

b = 3.5 for equation (3.36), while the solid line has values a = 0 and b = 3.0. The curve

with open circles is from Guido and Simeone (1998). The droplets approach, reach

a maximum relative distance in y, and then move apart. At all these moments, the

solid curve aligns better with the experimental curve because it has a lower inten-

sity repulsive force compared to the dashed curve case. However, note that for both

cases, the final net relative displacement of the two droplets is significantly higher

than in the experimental cases. Figure 3.6 shows some plots at different instances

of the solid curve from Figure 3.5, illustrating how droplets interact with a repulsive
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force (right column) and without a repulsive force (left column). Even though the

repulsive force effectively prevents droplet merging, it does not fully capture the real

behavior of the interaction between two or more droplets in a flow. It is an artificial

force modeled solely to prevent coalescence in numerical simulations. However, when

analyzing the bulk response of the system, it proves effective, as we will discuss later

on. Moreover, the difference between the initial and final ∆y values occurs due to

a breakdown in flow symmetry caused by conditions of kinematic irreversibility. In

our case, it is the particle deformation, which leads to a self-diffusive phenomenon

(Loewenberg and Hinch, 1997).

Figure 3.5 – Relative trajectories of two droplets interacting in shear flow. Com-
paring our collision force results, represented by dashed and solid lines, with those
obtained from the experimental results (open circles) by Guido and Simeone (1998).
We set Ca = 0.135, λ = 1.37, and Re = 0.01. The red points are the time instants
corresponding to the plots in Figure 3.6.
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Figure 3.6 – Sequences of the trajectories of two droplets interacting in shear flow
over time. The left column shows a simulation without repulsive force, while the
right column includes the repulsive force. The frames on the right correspond to dif-
ferent time instants indicated by red circles on the curve in Figure 3.5. Plot number
1 represents the earliest time instant indicated by the first circle, and so on.

As the relative net displacement between two droplets changes according to the

intensity of the repulsive force, we simulated different values of the calibration pa-

rameters for this force using the same setup as depicted in Figure 3.5. Figure 3.7(a)

shows the relative trajectory between the droplets. For a = 0 and b = 1.5 (yellow curve

with cross symbols), the applied force was not sufficient, and the droplets merged. On

the other hand, there was no merging for a = 5, b = 1.5, as well as for a = 0, b = 3.0,

and a = 10, b = 1.5. These three cases exhibited similar final vertical displacements,

as shown in the insets of Figure 3.7(a). We chose the values a = 0 and b = 3.0 for

all simulations in this work, except when Ca = 0.05, where the tendency for coales-

cence is greatest, we used a = 55 and b = 3.5 (red line with square symbols). Figure

3.7(b) shows the minimum distance between the interfaces of two droplets over time

for two different intensities of collision forces. This minimum distance is calculated

using the closest point method, previously developed by our group and further ex-
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plained in the paper by Pimenta and Oliveira (2021). The initial simulation setup is

the same as in the previous case. At the initial time, the droplets are not in contact,

and the curves remain overlapping and decrease linearly until contact. At this point,

the curves differ because the influence of repulsion is different in each case. For a = 0

and b = 3.0, the minimum distance during contact is smaller, and the shapes of the

droplets are more symmetric and uniform. Conversely, for a = 55, the curvature in-

verts for both droplets due to the high repulsion force applied. The non-smoothness

at the end of the curve is due to mesh refinement, but the values do not fluctuate

significantly.

Figure 3.7 – (a) Relative trajectories between two droplets, ∆y as a function of ∆x,
for different calibration parameters a and b. (b) Minimum distance between two
droplets as a function of time for two different intensities of repulsive force. The
inset in (a) shows further detail on the difference in final net relative displacement
between the cases. We set Ca = 0.135, λ= 1.37, and Re = 0.01 for the tests.

In addition, while testing the collision force model from De Vita et al. (2019), we

formulated a repulsive force to achieve greater similarity with lubrication theory. In-

stead of using a characteristic velocity, we proposed a model with the normal relative

velocity between the droplets, such that the repulsive force is described as

Frep = 6πηcr(u · n̂)

(
a
φ

)
n̂, (3.37)

which, in dimensionless form, is rewritten as:

Frep = 6π
Re

(u · n̂)

(
a
φ

)
n̂. (3.38)



Chapter 3. Numerical methodoly 34

This formulation was not tested in this work, but should be tested in future works.

3.7 Implementation and processing time

All simulations in this work were performed using the computational code FEN-

Rir (Ferrofluid Emulsion Numerical Rheometer), developed by the group in the For-

tran 95 programming language. The Poisson equation for the pressure (equation

(3.20)), which results in the linear system, is solved using the Fast Poisson Solver

(FPS), as well as for the linear system resulting from the momentum equation (equa-

tion (3.16)). On the other hand, due to variable coefficients, the linear system for the

magnetic potential (equation (3.35)) is solved using the conjugate gradient method

with a multigrid cycle, known as V-Cycle, as a preconditioner. For more details, see

Abicalil (2021), McAdams et al. (2010).

In general, direct simulations of a suspension of deformable particles in non-dilute

cases have a high computational cost, as they simultaneously solve various differ-

ential equations to describe the behavior of the particles in the system. Moreover,

obtaining reliable values of properties based on statistical analysis requires a long

simulation time. A time step of 10−3 is used in all cases. Most of the simulations were

performed on an Intel(R) Xeon(R) CPU E5-2660 v4 2.00 GHz processor and took, on

average, 15 days to reach γ̇t = 35, which is the time when the mean properties of the

system reaches an apparent steady state.



4 Results and discussions

This chapter presents the results and discussions of the performed numerical sim-

ulations, divided into three parts. The first part analyzes mesh convergence. The

second part investigates a monodispersed ferrofluid emulsion under shear flow in

the absence of a magnetic field, where we determine the shear viscosity for differ-

ent capillary numbers and volume fractions of the droplets and compare the results

with previous experimental, theoretical, and numerical works to validate our sim-

ulation. Finally, the third part examines the influence of the magnetic field on the

viscosity, deformation, and orientation of the droplets. Moreover, we determine the

bulk magnetic properties. For this purpose, we set three different volume fractions of

the dispersed phase, Φ= {0.10,0.20,0.30}, and simulated them for different capillary

numbers, Ca = {0.05,0.10,0.20}, and magnetic capillary numbers. All simulations are

conducted at a fixed Reynolds number, Re= 0.01, a viscosity ratio, λ= 1, a magnetic

permeability ratio, ζ = 2, and a droplet radius, r = 1. Also, the system is neutrally

buoyant. The number of droplets for each volume fraction is as follows: Φ = 0.10

corresponds to 24 droplets, Φ = 0.20 corresponds to 48 droplets, and Φ = 0.30 corre-

sponds to 72 droplets. We set a domain size of 10×10×10, a grid spacing length of

h = 0.0625, and a time step of ∆t = 10−3.

4.1 Mesh convergence

In this section, we investigate how our results respond to mesh refinement. To this

end, we set up a representative case where Φ= 0.2, which corresponds to 48 droplets

placed in a cubic domain with dimensions 10×10×10, Ca = 0.1, ζ= 2, and Camag = 8.

We chose four different grids, namely 96×96×96, 128×128×128, 160×160×160 and

192×192×192. The total number of grid cells and the mesh size vary from ∼ 880,000

to ∼ 7,000,000 and from ∼ 0.1 to ∼ 0.05, respectively. Furthermore, due to the finite

size of the domain and the small number of drops, wall effects may influence the

overall dynamics of the system; however, this has not been further analyzed.

Figure 4.1 shows the effects of different grids on the average deformation of all

35
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droplets over time. The deformation of each droplet is defined as

DT = ℓ−B
ℓ+B

, (4.1)

where ℓ is the maximum and B is the minimum dimension of the drop. This mea-

surement is based on the principal moments of inertia of the drops, obtained as the

eigenvalues of the inertia tensor. Note that there are fluctuation due to drop-drop

interactions. Hence, we determined the average of any property as the temporal av-

erage over a time interval in which the moving average remains stable, ignoring the

initial transient part of the simulation. In other words, the results are calculated

when the properties reach a approximately steady state. Under the assumptions of

ergodicity, the temporal average of a physical quantity is equal to the ensemble av-

erage Moore (2015). The refinement leads to a convergence of the temporal average

deformation of the droplets despite the fluctuations not following the exact same dy-

namics. This effect may be related to the random initial condition that results in a

different distribution of droplets in each simulation, hence, the approach and separa-

tion between droplets are not the same in all cases. It may also be associated with a

non-definitive steady state, as the applied magnetic field tends to orient the particles

and form chains, while simple shear tends to break them, leading to a disordering

of particle arrangements. Table 4.1 presents the effective viscosity, deformation, and

bulk magnetization along with their respective errors. The errors are calculated as

a temporal average of the standard deviations of the means at each time instant.

Comparing the results of the first three grids to the last, which is the most refined

tested, in terms of viscosity, we observe the following differences: 13.58%, 5.75%,

and 1.087%, respectively, from the coarsest to the finest grid. In terms of bulk mag-

netization, there was no significant percentage variation in the results. However,

for average deformation, the differences are 34.19%, 14.29%, and 4%. Therefore,

we used a mesh 160×160×160 of cells for all simulations, as it shows minimal dif-

ferences in results and takes nearly half the simulation time compared to the most

refined grid tested.
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Figure 4.1 – Variation of average deformation with grid resolution for φ= 20%, Re =
10−2, Ca = 0.1 and Camag = 8.

Table 4.1 – Grid resolution test at φ= 20%, Re = 10−2, Ca = 0.1 and Camag = 8.

Grid resolution h ηe f f /η0 DT 〈M〉
96×96×96 0.104 1.62±0.014 0.155±0.036 0.1458±0.00023

128×128×128 0.078 1.74±0.018 0.182±0.029 0.1464±0.00022

160×160×160 0.0625 1.84±0.044 0.200±0.037 0.1466±0.00047

192×192×192 0.0521 1.86±0.033 0.208±0.046 0.1464±0.00036

4.2 Non-magnetic emulsion in simple shear flow

In the absence of an external magnetic field, ferrofluid emulsions behave like typ-

ical emulsions. The viscosity is determined by equation (2.33) and shows fluctua-

tions over time, which highlights the dynamic behavior of the system (see Figure

4.2). To achieve a steady state in a statistical sense, we calculate the bulk viscosity

by taking a average starting from the moment when the moving average no longer

varies significantly. In this context, Figure 4.3 shows the effective shear viscosity as

a function of volume fraction of the droplets for the case of nearly spherical droplets

at low Reynolds number, Ca = 0.05 and λ = 1. For a small droplets concentration,
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the viscosity follows the Taylor equation (black dashed curve) for λ = 1, which de-

scribes the viscosity behavior of dilute suspensions (Ca→ 0). This indicates that the

interparticle interactions are negligible at low concentrations, and the viscosity be-

haves linearly with Φ. In contrast, for higher values of droplet volume fraction, the

viscosity deviates significantly from the Taylor prediction. This deviation suggests

that droplets interactions become increasingly important as the volume fraction in-

creases, leading to higher stress. We compared our work using the level set method

with that of Loewenberg (1998), which employs the boundary integral method. We

found that the results agree quite well for similar parameters. Moreover, the dashed

curve represents a theoretical result developed by Zinchenko (1984), which consid-

ers O(Φ2). This means it only accounts for interactions between two liquid spherical

particles, so it deviates from the numerical work curves by not considering higher

order volume fraction effects. The dash-dot curve shows an equation proposed by Pal

(2001), based on experimental data covering a wide range of viscosity ratios.

Figure 4.2 – Shear viscosity as a function of time for Φ = 0.30, Ca = 0.20 and
Re = 0.01. The red line corresponds to the average viscosity value calculated for
this simulation.
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Figure 4.3 – Shear viscosity of the emulsion versus the volume fraction of the droplets
at small Reynolds number. The black solid lines represents the Taylor’s equation
for the limit where Ca → 0. The dashed line is a second-order approximation of
effective viscosity developed by Zinchenko (1984). The orange dash-dotted line is Pal
(2001) expression for the viscosity of concentrated emulsions of spherical droplets.
The line with squares symbols is the work of Loewenberg (1998) using boundary
integral method for Ca= 0.05. The line with circles symbols is the present simulation
using level set method at Ca= 0.05, Re= 10−2 and λ= 1

Determining how the effective viscosity of an emulsion changes with an imposed

shear rate is one of the most common ways to understand its rheological behavior.

Figure 4.4 shows this relationship for different droplet concentrations. The circle

symbols represent our numerical simulation results, while the square symbols come

from the simulation performed by Loewenberg (1998) using the boundary integral

method. These curves reveal a typical non-Newtonian behavior of emulsions. At

low shear rates (and therefore low Ca), the droplets remain nearly spherical; this

means that the relaxation time of the droplet is much shorter than the flow time.

On the other hand, at higher shear rates, the flow time is short enough for us to ob-

serve significant changes in the shape of the drops. They stretch into a prolate shape

due to the extensional component of the shear flow while rotating along the vortic-

ity direction. As a consequence, the effective viscosity decreases (shear thinning).

If we compare the case at Φ = 0.30 (blue symbols) with that at Φ = 0.10 (red sym-

bols), we observe more pronounced shear thinning. Loewenberg and Hinch (1996)
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point out that as the Φ increases, the droplets deform more and align more in the

flow direction. Figure 4.5 show how droplets deform for different capillary num-

bers. Although our results agree well with those from the work using boundary inte-

grals, our simulations predict droplet breakup at Ca = 0.30 and Φ= 0.30 (see Figure

4.5(c)). This discrepancy is mainly explained by the fact that these two methods

handle droplet breakup differently; our method deals better with abrupt topological

changes. It means that the Level Set method represents the interface between dif-

ferent phases as an implicit surface defined by a level set function. This function can

evolve over time smoothly and continuously, allowing direct capture of changes in in-

terface topology. It has mechanisms to handle numerical singularities that may arise

during abrupt changes in topology, such as interface collisions. This is facilitated by

the continuous and differentiable nature of the level set function. On the other hand,

the boundary integral method (BIM), while useful in many boundary value problems,

may encounter difficulties in handling abrupt topological changes due to its approach

of discretizing boundaries of a region. Abrupt changes may require redefining or ad-

justing boundaries, which is not always straightforward or efficient within the BIM

framework. Therefore, Figures 4.3 and 4.4 demonstrate that our results exhibit the

expected behavior according to previous research, leading to the conclusion that the

repulsive force is being well computed.
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Figure 4.4 – Shear viscosity of the emulsion as a function of the capillary number for
different values of the dispersed phase. The square symbols represent results from
Loewenberg (1998), obtained using the boundary integral method. The circle and
cross symbols represent our data, obtained with Ca = 0.05 and Re = 0.01.

Figure 4.5 – Snapshots of the emulsion simulation for different capillary numbers:
(a) Ca = 0.05, (b) Ca = 0.25 and (c) Ca = 0.30. All these numerical simulations
were performed with the same Reynolds number Re= 0.01, viscosity ratio λ= 1, and
volume fractions Φ= 0.30.

4.3 Ferrofluid emulsion in simple shear flow

This section presents the influence of the external magnetic field, shear flow rate,

and the droplet volume fraction on drop geometry, effective viscosity, bulk magne-
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tization, the misalignment angle between M and H0, magnetic torque. The results

discussed hereafter are obtained using a repulsive force with coefficients a = 0 and

b = 0.3 for Ca = 0.1 and Ca = 0.2, and a = 55 and b = 3.5 for Ca = 0.05. This is

explained because, at low capillary numbers, the drop remains nearly spherical and

the collision area, which results in coalescence, increases. We observed coalescence

for Camag > 1 using a = 0 and b = 0.3. Also the magnetic field is only applied in

y-direction.

4.3.1 Effects on droplet deformation and orientation

The geometry (shape and orientation) of the drops have a major influence on the

rheological properties of an emulsion. To quantify how deformed the droplets are

under shear and an external magnetic field, we use the Taylor deformation param-

eter (equation (4.6)). Since we are investigating a system with moderate droplet

concentration, the parameter DT does not exactly describe the shape of the drop be-

cause they can deform locally due to the close presence of other drops and also due to

the presence of repulsive forces. However, it provides a useful average deformation

value to predict the microstructure. Figure 4.6 shows the deformation of each drop

over time. The red curve is the average deformation at each instant of all the drops.

Note that there are large fluctuations in these values, and one of the reasons is the

droplet-droplet hydrodynamic interactions. Sometimes, a drop can pass between two

others, undergoing abrupt compression before returning to its equilibrium deforma-

tion shape. This process repeats over time. The inset in the plot of Figure 4.6 shows

exactly this scenario.
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Figure 4.6 – Deformation parameter as a function of time for Φ = 0.20, Ca = 0.1,
Camag = 6 and Re = 0.01. The red curve represents the average deformation, while
the other 48 colored curves represent the deformation of each droplet over time. The
insert in the plot shows the droplets from a real simulation at γ̇t = 38.

Figure 4.7(a) shows the deformation of the ferrofluid emulsion as a function of the

magnetic capillary number at a fixed capillary number Ca = 0.05. For low Camag,

the volume fraction of the droplets has a minor influence on the average deforma-

tion. The curves for Φ = 0.30 (blue), Φ = 0.20 (orange), Φ = 0.10 (red), and Φ ≈ 0

(black) collapse to a deformation value of around DT ≈ 0.07. On the other hand, as

Camag increases, the influence of the volume fraction on the deformation of the drops

becomes more evident, even for low shear flow (almost spherical drops). Stronger ex-

ternal magnetic fields create a larger magnetic force on the drop interface. This force

stretches the drop along the field direction. As a result, deformation increases with

increasing magnetic field strength for all droplet concentrations. However, as the vol-

ume fraction increases, the drops can be compressed due to surrounding drops. This

means that with increasing dispersed-phase volume fraction, both individual and

overall deformation decrease. It should be noted that in the absence of a magnetic

field, previous research has shown that drops deform more as the dispersed-phase

volume fraction is increased Loewenberg and Hinch (1996); we computed this for

Camag = 1. Figure 4.7(a) and also 4.7(b), which presents Ca = 0.05 and Ca = 0.1,

respectively, show this: the emulsion with a single drop reported by Abicalil et al.

(2021) exhibits higher average deformation for most magnetic capillary numbers,
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except for very small values. Moreover, the curves in these figures display nonmono-

tonic behavior. Above Camag = 8, the deformation tends to plateau, which is more

pronounced for higher values of Φ. Figure 4.7(c) shows the results for Ca = 0.20,

where we computed the breakup of droplets for Camag ≥ 6. The figure reveals that

higher magnetic capillary numbers induce greater droplet deformation. Moreover,

we can observe that at Camag = 4, higher droplet concentrations lead to less defor-

mation, while the opposite trend is observed for lower magnetic field strengths.

Figure 4.7 – Deformation as a function of magnetic capillary number. The plots are
for (a) Ca = 0.05, (b) Ca = 0.1 and (c) Ca = 0.2. We compare our simulation with
the diluted case performed by Abicalil et al. (2021). For plots (a) and (b), we set
Camag = 1,4,6,8,12,16. For plot (c), we setCamag = 1,2,4.

In addition to deforming, both the simple shear and the external magnetic field

also tend to orient the drop. Since we are applying a magnetic field in the y-direction,

there is a competition between the effects of the imposed flow and the external mag-

netic field on the geometry of the drops. We compute the angle θ between the semi-

major axis ℓ and the x-direction to measure the orientation of the drop. Figure 4.8
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presents the inclination angle as a function of time; the hydrodynamic interaction

between the droplets contributes to the fluctuations in values over time. Note that

θ = 90° means the droplet is completely aligned in the direction of the external mag-

netic field applied in the y-direction. Figures 4.9(a) and 4.9(b) show θ as a function

of the capillary magnetic number at Ca = 0.05 and Ca = 0.10, respectively. We com-

pared our simulations for Φ = 0.10 and Φ = 0.20 with the diluted case from Abicalil

et al. (2021); we did not compute for Φ = 0.30 (just some cases for Ca = 0.10 and

Ca= 0.2) due to scarce time since we could measure this parameter. We observe that

the average drop orientation decreases as the dispersed-phase volume fraction is in-

creased at a fixed magnetic capillary number. This means that with more surround-

ing droplets, the magnetic field is less effective in aligning them in its direction, and

even for high Camag, this effect is significant. Moreover, for non-magnetic emulsions,

Loewenberg and Hinch (1996) also pointed out that the droplets orient more in the

flow direction with the increase in volume fraction. However, increasing Camag leads

to the alignment of the drop in the direction of the magnetic field, which increases

the average angle until it reaches a plateau for values above Camag ≈ 8. Comparing

Figures 4.9(a) and 4.9(b), we can notice that the θ values are lower for all simulations

with higher shear flow, revealing that the alignment of the drops in the main flow

direction is strongly influenced by the shear rate.

Figure 4.8 – Drop orientation, in degrees, as a function of time forΦ= 0.10, Ca= 0.05,
Camag = 16 and Re = 0.01. The red curve represents the average orientation, while
the other 24 colored curves represent the inclination of each droplet over time.
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Figure 4.9 – Average droplets orientation, in degrees, as a function of magnetic cap-
illary number. The plots are for (a) Ca = 0.05 and (b) Ca = 0.1. We compare our
simulation with the diluted case performed by Abicalil et al. (2021).

4.3.2 Effects on shear viscosity

As seen in the previous section, when the droplets in an emulsion are under shear,

they tend to deform and align in the flow direction, resulting in shear thinning be-

havior. On the other hand, when an external magnetic field is applied, the mag-

netic droplets also respond to this field. The competition between these two effects,

changes the geometry of the droplet, which consequently changes the viscosity of

the emulsion. From Figure 4.10, panels (a) and (b) correspond to simulations with

Ca = 0.05, (c) and (d) to Ca = 0.1, and (e) and (f) to Ca = 0.20. Figures 4.10(a), (c),

and (e) show the effective viscosity as a function of volume fraction for different mag-

netic capillary numbers. Overall, we observe in all these three panels that the shear

viscosity increases as the volume fraction increases. Moreover, at a fixed Φ, as the

magnetic capillary number is increased, the droplets tend to align themselves in the

direction of the applied external magnetic field, resulting in higher effective viscosity.

In weak flow (panel a), this effect is more pronounced than in those with higher shear

rates (panels c and e). For Camag = 12 and Camag = 6 in panels (a) and (c), the curves

do not exhibit a monotonic behavior, indicating that in more concentrated emulsions,

this value may reaches a constant viscosity. Figures 4.10(b), (d), and (f) show the

reduced viscosity as a function of magnetic capillary numbers. In these three graphs,

we observed that with an increase in the number of droplets, the reduced viscosity

increases. On the other hand, plot (f) is for Ca = 0.2 and in this case, the effect of

shear seems to surpass the magnetic effect such that the droplet becomes more de-
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formed in the x direction than in the direction of the external magnetic field. For

Camag = 4 and Φ= 0.30 in plot (f), the reduced viscosity is approximately ηred ≈ 0.65.

In comparison, for plot (b), the reduced viscosity is ηred ≈ 1.2 for the same case.

Figure 4.10 – Effective viscosity as a function of ferrofluid droplets concentrations
(left column). Reduced viscosity as a function of magnetic capillary number. Three
capillary numbers were considered, increasing from top to bottom. The portion (a-b)
Ca= 0.05; (c-d) Ca= 0.10; (e-f) Ca= 0.2.
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The contribution of each droplet to viscosity becomes more prominent when we

normalize this property by the volume fraction. Figure 4.11 shows the reduced vis-

cosity per volume fraction as a function of magnetic capillary number. We observe

that as the shear rate increases, droplets in the diluted regime contribute more to

viscosity. This occurs because droplets can deform more freely in diluted systems

compared to those with higher volume fractions when under the action of magnetic

fields at moderate to high Camag (see Figure 4.7). Note that, at a low shear rate

ηred/Φ as a function of Camag is higher for Φ = 0.10 than for the dilute case. This

suggests the formation of structures due to magnetic interactions between droplets,

as the weak flow is not strong enough to break them apart. In plot (b), for strong mag-

netic field (high Camag), the viscosity difference between the concentrated (Φ= 0.10)

and dilute cases becomes less significant. Here, the stronger flow starts to influence

the behavior of the droplets, leading to more prominent breakage of these structures.

Figure 4.11 – Reduced viscosity normalized by Φ as a function of magnetic capillary
number for Ca= 0.05(a), Ca= 0.10(b) and Ca= 0.20(c).



Chapter 4. Results and discussions 49

4.3.3 Effects on magnetization

The magnetization is determined by equation (2.24). Although each ferrofluid

droplet becomes magnetized when an external magnetic field is applied, we measure

the bulk magnetization of the emulsion 〈M〉. The left column of Figure 4.12 shows

the magnetization scaled by the external magnetic field intensity H0 as a function

of magnetic capillary number, while the right column shows the same parameters

but the magnetization is normalized by the volume fraction of droplets. Panels (a)

and (b) correspond to simulations with Ca= 0.05, (c) and (d) to Ca= 0.1, and (e) and

(f) to Ca = 0.20. For the plots in the left column, the bulk magnetization increases

with the volume fraction in all cases, but initially shows no significant variation with

increasing external magnetic field strength. However, when we normalize 〈M〉 by Φ,

the contribution of each droplet becomes evident. As Camag increases, the droplets

deform more, as explained in the previous section. The deformation of the droplets

is closely related to magnetization, as discussed by Cunha et al. (2020). From pan-

els (b), (d), and (f), as the shear flow increases, the magnetization decreases for all

volume fractions. This occurs because shear stress tends to align the droplets in

the main flow direction, thus the droplets are less stretched by the magnetic field,

resulting in lower magnetization. Also, Figures 4.13(a), (c), and (e) show the magne-

tization as a function of ferrofluid droplet concentration normalized byΦ. Comparing

the curves for Camag = 1, Camag = 6, and Camag = 12 at different Ca, we observe that

the droplet contribution to the bulk magnetization decreases as the shear increases.

Moreover, as Φ increases, magnetization decreases non-monotonically because the

droplets deform less due to the presence of neighboring drops that activate repul-

sive forces, resulting in compression of the drops. Panels (b), (d), and (f) show the

magnetization as a function of volume fraction. For all Camag curves, magnetization

increases almost linearly with the volume fraction of droplets.
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Figure 4.12 – Mean emulsion magnetization as a function of magnetic capillary num-
ber (left column). Mean emulsion magnetization as a function of magnetic capillary
number normalized by Φ (right column). Three capillary numbers were considered,
increasing from top to bottom: (a-b) Ca = 0.05; (c-d) Ca = 0.10; (e-f) Ca = 0.20. We
compare our simulations with diluted cases reported by Abicalil et al. (2021)..
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Figure 4.13 – Mean emulsion magnetization as a function of droplet volume fraction
normalized by Φ (left column). Mean emulsion as a function of droplet volume frac-
tion (right column). Three capillary numbers were considered, increasing from top to
bottom: (a-b) Ca= 0.05; (c-d) Ca= 0.10; (e-f) Ca= 0.20.

4.3.4 Effects on magnetic angle

While we assume the droplets are superparamagnetic, a slight misalignment an-

gle between 〈M〉 and H0 is observed (see Figure 4.14). The right-hand plot of Fig-

ure 4.15 shows the time evolution of θmag, revealing a quasi-periodic behavior. In

magnetic emulsions at moderate concentrations, droplets can form chains under an
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external magnetic field, similar to what occurs in ferrofluids. On the other hand, un-

der shear flow, the emulsion experiences diffusive motion due to shear-induced hy-

drodynamic interactions between the droplets (Malipeddi and Sarkar, 2019), which

induces drop dispersion. When the ferrofluid emulsion is subjected to both shear and

magnetic field, the droplets tend to align with the external magnetic field, while the

shear tends to orient them in the main flow direction, leading to a dispersive process.

This competition on average results in fluctuations of θmag over time, as shown in

Figure 4.15a. The Fourier transform of this signal indicates the presence of dom-

inant frequencies in the system, which could be associated with the breaking and

formation of chains.

Figure 4.14 – Snapshots of the emulsion simulation under an applied magnetic field
applied in y direction.

Figure 4.15 – (a) Angle between the ferrofluid emulsion bulk magnetization and the
external field directio, in degrees, over time for Φ = 0.30, Ca = 0.10 and Camag = 6
(left plot). (b) Signal of θmag decomposed into its frequency ω components using fast
fourier transform (right plot).
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Figure 4.16 shows the misalignment angle between the bulk magnetization and

the external magnetic field for two magnetic capillary numbers. In the left plot, the

magnetic capillary number is Camag = 1, while in the right plot it is Camag = 16. Com-

paring both, we observe that the increase in the external magnetic field can dominate

the droplet orientation at a fixed capillary number. Thus, the quasi-periodic behav-

ior of θmag is less pronounced at high Camag. For this case, the formation of chains

or layers is more probable. Moreover, Figure 4.17 shows two plots for the misalign-

ment angle θmag as a function of the magnetic capillary number. From the results for

Ca= 0.05 (left plot), the ferrofluid emulsion with Φ= 0.10 has a higher misalignment

angle value than for higher concentrations at most Camag values. It can be concluded

that the increase in volume fraction hinders the alignment and misalignment of each

droplet. A similar behavior is also observed for misalignment angle between the bulk

magnetization and the external magnetic field for Ca= 0.1 (right plot).

Figure 4.16 – Angle between the ferrofluid emulsion bulk magnetization and the
external field direction, in degrees, over time for Φ= 0.30, Ca = 0.10, Camag = 1 (left
plot) and Camag = 16 (right plot).
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Figure 4.17 – Misalignment angle between the ferrofluid emulsion bulk magnetiza-
tion and the external field direction, in degrees, as a function of magnetic capillary
number for Ca= 0.05 (left plot) and Ca= 0.1 (right plot). The red curves with trian-
gle symbols correspond to Φ = 0.10, the orange curves with diamond symbols corre-
spond to Φ = 0.20, the blue curves with square symbols correspond to Φ = 0.30, and
the black curve with circle symbols represents the diluted case performed by Abicalil
et al. (2021).

The misalignment between the applied magnetic field and the magnetization cre-

ates a torque on each droplet. This magnetic torque, from a macroscopic point of

view, can be defined as

τmag =
Camag

Ca
〈M〉×H0, (4.2)

where its intensity is given by τmag = (Camag/Ca)|M|sin(θmag). In the absence of

an external magnetic field, the angular momentum balance equation leads to the

sum of external torques being equal to zero, hence the hydrodynamic torque is zero.

This means that the drops are torque-free and rotate with the vorticity of the shear

flow. However, with an external magnetic field, there is a magnetic torque acting

on the drops. This results in a balance where the magnetic torque is equal to the

negative of the hydrodynamic torque. Figure 4.18(a) shows the magnetic torque as

a function of the magnetic capillary number. This result reveals that τmag increases

when Φ increases. Note that the torque values are always positive, thus there is a

counterclockwise rotation which agrees with the work of Abicalil (2021). On the other

hand, in Figure 4.18(b), the magnetic torque for Φ= 0.10 is greater than that for Φ=
0.30. One explanation is that at lower concentrations, a drop has fewer neighboring

drops, allowing it to rotate more. For Φ = 0.30 there are many drops close to each

other, making it difficult for each to rotate, and the bulk torque decreases. Also, τmag
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has a monotonic behavior with the magnetic capillary number.

Figure 4.18 – (a) Magnetic torque as a function of magnetic capillary number for
Ca = 0.1 and Re = 0.01. (b) Magnetic torque normalized by volume fraction as a
function of magnetic capillary number for Ca= 0.1 and Re= 0.01.



5 Conclusion and future work

The main goal of this work was to get a better understanding of non-dilute fer-

rofluid emulsions subjected to simple shear flow and an external magnetic field ap-

plied solely in the direction of the main velocity gradient (y-direction). We investi-

gated the combined effects of these two mechanisms, which disrupt the equilibrium

of the emulsion, on bulk properties, including average droplet deformation, effec-

tive viscosity, magnetization, magnetic misalignment angle, and magnetic torque.

Moreover, we evaluated the effect of the droplet volume fraction on these proper-

ties. Our analysis was performed using a three-dimensional numerical domain where

monodispersed ferrofluid droplets are randomly distributed in a non-magnetic fluid.

Both phases have the same density and viscosity, where inertial effects are not sig-

nificant. The domain was discretized using the finite-difference method, the level

set method was employed to capture the interface, and the second-order projection

method was used to solve the Navier-Stokes equations. We implemented a repulsive

force between droplets to completely prevent them from merging (coalescence). To

ensure this force is effective, we tested different calibration coefficients. These co-

efficients control the strength of the repulsion between the droplets. We found that

under weak flow conditions, where the restoring mechanism of the droplet is strong,

a larger collision surface is noted. Consequently, coefficients similar to those used in

previous studies were employed. However, as the droplets became more elongated

with increasing shear rates, it is possible to decrease the intensity of the repulsive

force. It is important to note that this collision model does not represent a direct

physical phenomenon. Instead, it serves as an artificial implementation solely de-

signed to prevent droplet coalescence, given the limitations of achieving a highly

refined mesh. This is also why we could not reproduce the experimental results of

the vertical displacement in pairwise interactions between droplets.

As a result, we first simulated cases considering a non-magnetic emulsion with an

imposed simple shear. We observed that the effective viscosity does not have a lin-

ear behavior with increasing droplet concentration. Once the interactions between

droplets become significant, the problem becomes highly non-linear, revealing a dy-

namic response. In addition, we determined the effective viscosity for different shear

rates and observed shear-thinning behavior. We also computed a droplet breakup

56
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case forΦ= 0.30 at Ca= 0.30, which was not predicted in previous works using differ-

ent numerical methodologies. Overall, our results for the viscosity of non-magnetic

droplets agree well with previous studies, ensuring that the repulsive force between

the droplets is effective and that our numerical methods are well-implemented.

While the existing literature has mainly focused on examining single-droplet fer-

rofluid emulsions, we investigated a system with multiple ferrofluid droplets. Our

findings reveal that at a fixed shear rate, the average deformation of the emulsion

increases with stronger magnetic field strength while decreasing with the rise in

droplet concentration. This observation can be attributed to two primary factors.

First, as the magnetic field intensity increases, the droplets exhibit a tendency to

align along the direction of the field. This alignment promotes a more elongated

droplet shape, contributing to the observed increase in deformation and inclination.

On the other hand, as the droplet concentration increases, the proximity between

them limits their ability to deform and align effectively in response to the magnetic

field. This constraint results in a decrease in the average deformation of the emul-

sion. Also, with increased shear rates, the droplets align more with the flow direction

and deform more. The geometry of the droplet directly influences the macroscopic

response of the emulsion. Therefore, the effective viscosity increases with higher

magnetic field strength due to greater deformation and alignment in the direction

of the applied external field. An increase in viscosity is also observed with higher

volumetric fraction. In contrast, when the viscosity is normalized by Φ, it is revealed

that the contribution of a droplet in a dilute regime is greater than that in a semi-

dilute regime. Along with the observed deformation changes, we also found that as

the droplets become more elongated under the influence of the increasing magnetic

field, their bulk magnetization also increases. This correlation arises because droplet

shape directly influences magnetization. Our investigations revealed a monotonic

behavior of magnetization with respect to the volume fraction. When normalized,

we observed that droplets in the diluted regime exhibit a higher average magnetiza-

tion compared to those in a concentrated system. Furthermore, we determined that

the misalignment angle between the external magnetic field and the magnetization

increases for a non-diluted emulsion. This increase is directly associated with the

presence and enhancement of the magnetic torque, which acts to rotate the droplet

into alignment with the external field.
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Although this study provides some contributions to understanding the behavior

of non-dilute ferrofluid emulsions, it is still in its early stages and many questions

remain unanswered. Here are some ideas for future research:

• Include the contribution of the repulsive force in the stresslet and thereby study

the complete rheology of the system;

• Obtain probability distribution functions as well as pair distribution functions

for a better understanding of the dynamics of the magnetic emulsion under

shear and external magnetic field;

• Reduce the droplet size to increase the number of droplets for the same droplet

volume fractions as in this study. A larger number of particles contributes to

more statistically significant results;

• Considering a polydisperse system to represent a ferrofluid emulsion more re-

alistically;

• Analyze the influence of initial conditions on the system’s response;

• Investigate the impact of confinement on the system’s behavior;

• Employ small amplitude oscillatory shear (SAOS) instead of simple shear, and

also an external magnetic field. Identifying a characteristic frequency of the

system enables a more in-depth dynamic analysis;

• Investigate strategies to achieve higher droplet volume fractions in ferrofluid

emulsions. In addition, explore the potential of an applied magnetic field to

modulate the yield stress of highly concentrated ferrofluid emulsions;

• Investigate how different viscosity ratios influence the microstructure and prop-

erties of the non-dilute emulsion;

• Investigate the influence of the external magnetic field on droplet breakup in

the non-dilute regime.
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