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Abstract: The value of climate information has been explored by various scholars and in various

sectors, but its operational use, particularly in water resources management, in countries like Brazil

remains limited. This article describes climate and inflow forecast systems used in the process of

water allocation in the state of Ceará (Brazil) and evaluates their performance at three key reservoirs

in the state for forecasts issued in January for the period from January to May when most of the

annual rainfall and inflows occur. To illustrate the value of forecasting in the water-allocation process,

a simple experiment based on the use of a decision support system (DSS) is carried out. The use of

the DSS SIGA with inflows estimated from observations and forecasts demonstrated the value of

forecasts in the process of water allocation, as the forecasts allowed for better identification of end-of-

the-year reservoir volumes. The use of the forecast system successfully described the variability of

the percentage of demands met and the demands identified using estimated inflows, in particular for

the Banabuiú and Castanhão Reservoirs. Overall, the results of this study highlight the importance of

climatic-hydrological forecasting in the process of water allocation.

Keywords: climate and hydrological forecasts; use of climate information; reservoir operations;

water allocation

1. Introduction

Seasonal climate forecasts with horizons ranging from one month to one year have
diverse societal applications [1]. Forecasts can help anticipate river navigability [2] and
support decision-making related to water allocation [3–5], emergency resource provisioning
during drought [6,7], hydroelectric energy generation [8], and agricultural management de-
cisions, including when farmers should plant, the selection of ideal crop varieties, the choice
of fertilization strategies and disease treatment, and water use for irrigation and commodity
markets [7,9]. Seasonal forecasts with horizons up to one year have also shown potential
value for the identification of early warning signs of diseases such as malaria [10,11] and
dengue [12,13].

Climate forecasting systems, even given their inherent uncertainty, supply valuable
information to decision-makers to implement necessary and previously planned measures
in a timely manner (such as changes in reservoir operations), which can reduce economic,
social, and environmental damage due to climate impacts. However, in our experience,
major challenges must be overcome to transform forecast information from simply available
to usable, including how decision-makers understand the uncertain nature of climate
forecasting and the products derived from it.
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Despite extensive research focused on the use of climate forecasting in various sectors
of the economy, particularly in the context of water resources [14–21], examples of the
operationalization of climate forecasting remain limited. In Ceará, Brazil, motivated by the
state’s climate context, government meteorology and water resource management organs
(FUNCEME and COGERH, respectively) have been applying seasonal forecasting in water
allocation decision-making processes and drought preparation for years [6,22]. Ceará forms
part of Northeast Brazil (NEB), which has a semi-arid climate greatly impacted by frequent
and severe droughts (Although the first record of drought in the region is from the year
1583 [23], the systematic recording of drought events began in the 19th century. The earliest
drought events were recorded based on their impacts, while more recent droughts are
based on meteorological observations. Among these historical events are the droughts of
1877–79, 1888–89, 1898, 1900, 1903, 1915, 1919–20, 1931–32, 1942, 1951, 1953, 1958, 1970,
1979–83, 1987, 1992–93, 1997–98, 2002–03, 2010, and 2012–2018 [6]). The region has high
evapotranspiration rates and high spatiotemporal rainfall variability. This reality helped
construct a national image of the Northeast as a territory with scarce water resources,
although many other regions of Brazil also face water scarcity challenges [24].

This article describes the rainfall and streamflow climate forecast systems used in bulk
water allocation decision-making in the state of Ceará and evaluates their performance for
the period of January to May for three main reservoirs in Ceará. The hydrological forecast
to be evaluated here uses precipitation and potential evapotranspiration forecasts from the
climate modeling system to feed a lumped hydrological model in order to provide the water
inflow into these three strategic reservoirs. This enables the creation of scenarios presented
to River Basin Committees (RBCs)—composed of representatives from the government,
civil society, and water user groups—and the State Water Resources Council in order to
support the water allocation process before the beginning of the rainy season. To illustrate
the value of forecasting in the water allocation process, a simple experiment based on
the use of a decision support system using observed and predicted inflows is carried out.
The volumes of the reservoirs identified at the end of December, based on these inflows,
are compared with each other and with the terciles of volumes obtained from the series of
inflows observed during the reference period (1981–2010), as well as those corresponding
to the scenario of zero inflows.

2. Study Area

Recurrent drought throughout Ceara’s history has motivated the government to design
and implement drought-focused policies and actions [22], albeit with an excessive focus
on infrastructure solutions. With regard to water resources policy, Ceará has responded
not only by investing in infrastructure but also by revolutionizing its water resources
management system, in part through the implementation of a participatory bulk water
allocation decision-making process in the mid-1990s. RBCs are presented with reservoir
streamflow scenarios by COGERH based on seasonal hydrological forecasts made by
FUNCEME [6] and that serve as the base for bulk water allocation decisions to meet the
demands of multiple uses [25].

Between 2010 and 2022, Ceará experienced one of the worst droughts registered for
the months with highest climatological rainfall (February, March, April and May). Rainfall
levels were below average during nine of the 13 years during that period. In 2016, various
reservoirs operated at their lowest water levels registered ever, interrupting water supply in
more than half of the state’s 184 municipalities [26]. At that time, the state forecast system
assumed even greater strategic importance for the water sector, not only in preparation for
a paradigm shift in drought management from reactive to proactive planning, but also in
emergency response planning and resource allocation [26,27].

The study area is the Jaguaribe River Basin, an extremely important river basin for
the state of Ceará. With a drainage area of about 70,000 km2, the Jaguaribe River Basin
covers about 48% of the area of Ceará. It is located in a semi-arid region with a crystalline
basement, ephemeral streams, high evapotranspiration rates (∼2100 mm), and average
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annual rainfall of about 700 mm. Rainfall is highly concentrated during the first half of the
year, and rivers typically flow during two or three months of the year.

The Intertropical Convergence Zone (ITCZ) is the principal atmospheric system that
generates rainfall over Ceará. The activity and northern or southern position of the ITCZ are
regulated by variability in sea-surface temperature (SST) anomalies of the tropical Atlantic
Ocean. The anomalous behavior of the system is related to the excess (lack) of rainfall when
hot (cold) temperature anomalies are observed in the southern (northern) tropical Atlantic
Ocean [28–30]. Severe droughts in Ceará are often, but not always, associated with El
Niño–Southern Oscillation (ENSO) activity [31,32]. Negative (positive) rainfall anomalies
during the wet season in Ceará are related to the positive (negative) phase of ENSO [31].

Hydrologic forecasts, obtained using the climate forecast system, were produced to de-
termine the inflow for the three largest reservoirs in Ceará: Orós, Banabuiú, and Castanhão
(see Figure 1). Table 1 presents the basin area (km2), storage capacity (hm3), and statisti-
cal analysis of the accumulated inflow observed between January and June for the three
reservoirs. Typically, the inflows from June onwards are zero, as considered here.

Figure 1. Incremental basin areas of the Orós (a), Banabuiú (b) and Castanhão (c) reservoirs.

Source COGERH.

Table 1. Basic Data and Statistics for Accumulated Inflow of the Orós, Banabuiú, and Castanhão

Reservoirs from January to June. Source COGERH.

Reservoir

Orós Banabuiú Castanhão

Total Basin Area (km2) 24,960.92 14,244.22 44,806.33

Storage (hm3) 1940 1601 6700

Q10 (hm3) 67.51 8.57 153.84

Q25 (hm3) 129.08 27.15 199.17

Median (hm3) 322.01 90.27 323.69

Q75 (hm3) 758.72 535.05 1139.6

Q90 (hm3) 1438.06 836.18 1904.24

Mean (hm3) 628.21 331.48 877.16

Standard Deviation (hm3) 831.6 495.61 1189.73
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3. Materials and Method

3.1. Climate Seasonal Forecast System

FUNCEME launched its current climate forecast system in 2011, adopting the
ECHAM4.6 as the general atmospheric circulation model [33]. The ECHAM4.6 is the
fourth generation of the atmospheric general circulation model ECHAM, a spectral model
developed by the Max Planck Institute for Meteorology. The model has a Gaussian grid
with a 2.8125° longitude/latitude resolution, triangular truncation 42 (T42), a hybrid ver-
tical coordinate with 19 levels in the atmosphere, and a temporal resolution of 24 min
for dynamic and physical equations, except radiation, which has a two-hour resolution.
Model simulations are initialized once a month using the most recent atmospheric state
from the Atmospheric Model Intercomparison Project (AMIP) [34,35] of the same model.
The main forcing variable for the forecasts is the monthly SST anomaly over the months of
the forecast horizon, respecting the climatological seasonality of each month.

The National Oceanic and Atmospheric Administration (NOAA) Optimum Inter-
polation Sea Surface Temperature (OISSTv2) (1981 to present) was used to construct the
data set of observed SST [36]. The runs are built using 20 different initial atmospheric
conditions (members) and an eight-month forecast horizon, which includes the reference
month itself. The period of hindcast data is 1981 to 2010 (30 years). The hindcast runs
are used to evaluate the predictive skill of the model for the past and to statistically cali-
brate the forecasts. Simulations are carried out completely independently, relying solely
on the availability of SST data used to create the persistence of monthly SST anomalies.
This methodology replaced FUNCEME’s previous forecast system, which was launched
in 2001 and used climate forecasts from an earlier version of the ECHAM made avail-
able by Columbia University’s International Research Institute for Climate and Society
(IRI) [37,38]. FUNCEME gained independence from other climate forecast centers with the
adoption of its current forecast system and subsequently contributed to the National Multi-
Model Ensemble developed by the Center of Weather Forecasts and Climate Studies of
Brazil (CPTEC).

For about 19 years, FUNCEME and COGERH have used a combination of seasonal
climate and hydrological models to support reservoir operations. Inflow forecasts are
made for key regional river basins in Brazil for water resources planning and in response
to drought risk. Current work to improve the seasonal forecast system includes the use
of an interannual statistical model and dynamic global and regional models, as well as a
recent initiative to use a subseasonal timescale (S2S) (Figure 2). The negotiation process
for water allocation commences in early July, the beginning of the dry season in Ceará,
and uses statistical rainfall and water flow forecasts issued in July ( ) as a basis. These

forecasts are updated in October ( ). In January ( ), another update occurs using dynamic
models. From then on, climate and hydrological forecasts are issued monthly until April

( ). The time horizon for water allocation discussed in July is 18 months. It focuses
on the quality of the rainy season of the following year, as water inflow to the state’s
reservoirs is typically not observed from July to December. The forecast system with the
S2S approach is not explored in this article. The analysis here focuses on seasonal forecasts
issued in January.
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Figure 2. Water management in Ceará State, showing the Ceará State inflow forecast system schematic

depicting January–April (rainy period) forecasts. The forecast system schematic includes (1) statistical

models using previous July and October equatorial Pacific and Atlantic indices and (2) monthly

precipitation forecasts from dynamical global and regional seasonal forecast models updated monthly

from January to April. The models and forecasts feed a hydrological model to generate monthly

flow forecasts (brown) and ECMWF subseasonal precipitation forecasts produced every Thursday

for the following 45 days. The results of this model feed a hydrological model to generate daily

flow forecasts during the January–May period (yellow). The blue (gray) bar indicates the wet (dry)

period [39]; ©American Meteorological Society. Used with permission.

3.2. Hydrological Forecasts

In this work, we use the Soil Moisture Accounting Procedure (SMAP) rainfall-runoff
model [40]. The SMAP is a deterministic, lumped hydrologic model with a simple structure
that uses two reservoirs to describe water storage and flows through moisture balance at a
monthly scale (Figure 3). More information about the model can be found in Barros et al.
(2010) [41].

Figure 3. Conceptual diagram of monthly SMAP model. Flow direction of streamflow, evaporation,

and precipitation are indicated by arrows. Source [40].

The monthly rainfall-runoff SMAP hydrologic model was calibrated using rainfall,
potential evapotranspiration, and available inflow series for the three reservoirs of this study
for the period 1986–2010: 1986–2010 for the Orós and Banabuiú Reservoirs and 2002–2010
for the Castanhão Reservoir. These periods were selected based on the availability of
monthly streamflow data for each reservoir (as a function of changes in volume, releases,
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and evapotranspiration of the water body). The monthly inflow data were provided by
COGERH. After the calibration, the flows were calculated for the period 1981–2022 using
the observed rainfall and potential evaporation series.

The monthly rainfall series were obtained for each basin using the Thiessen polygon
method applied to a network of conventional rain gauges monitored by FUNCEME. The po-
tential evapotranspiration series were estimated with the Hargreaves–Samani Equation [42],
using monthly temperature data 2 m from the Brazilian National Institute of Meteorology
(INMET) network of automatic meteorological stations. The method only requires mini-
mum, average, and maximum temperatures. The Food and Agriculture Organization of the
United Nations (FAO) considers this method a way to simplify evapotranspiration calcula-
tions in the absence of observed meteorological data required by the Penman–Montheith
method [43].

Similarly, SMAP was employed to generate streamflow forecast series for the hindcast
period (1981–2010) and the verification period (2011–2022). As input data, the hydrological
model used the monthly precipitation and potential evapotranspiration forecasts from
January to May (JFMAM) from the ECHAM4.6 model for a set of 20 members. The latter
variable was estimated using the same method employed to generate the flows for the
observed period [42], although the predicted monthly temperatures derived from the set of
members of the ECHAM4.6 were used in this case.

Monthly flows were generated for the incremental basins of the Castanhão, Orós,
and Banabuiú Reservoirs and converted to inflows (in cubic hectometers, hm3) into
these reservoirs.

3.3. Metrics of Performance

3.3.1. Climate Model

The performance of a climate forecast system cannot be evaluated by comparing an
individual probabilistic forecast to its corresponding observed value but rather by assessing
the observed variability of signal and noise over a period of time. “Good quality” forecasts
can be obtained by properly generating a large ensemble in order to reduce noise. It may
also be possible to obtain a good quality forecast by adjusting the forecast using post-
processing techniques such as the one used in this article. The evaluation of said forecasts
should be based on verification periods or cross-validation experiments and not over the
historical period, called hindcasts (i.e., predictions made over a past period using only
observations available at that time and that can be used as a basis for the aforementioned
post-processing techniques). The performance of the climate model’s rainfall forecasts is
evaluated using the Pearson correlation coefficient (CORR) and the Ranked Probability
Skill Score (RPSS).

Pearson correlation coefficient (CORR)—To determine the correlation of the forecast
and observation during the verification period, the Pearson correlation coefficient (CORR)
was used (Equation (1)):

CORR =
∑

n
i=1( f cst − f cst)(re f − re f )

√

∑
n
i=1( f cst − f cst)2

√

∑
n
i=1(re f − re f )2

(1)

where f cst is the average of the 20 members of the forecast, re f is the reference (observation
or value of the estimated variable based on the observations), n is the number of years used
in the series. The bars above these variables indicate the respective average for the entire
verification period.

The correlation coefficient takes a value between −1 and 1, where a value of +1 implies
perfect positive correlation between the forecast and verification (e.g., more rain than
average during the same months and less rain than average during the same months),
a value of −1 implies a perfect negative correlation (e.g., the forecast predicts above-
average rainfall and the verification results in less-than-average rainfall), and a value of
zero indicates no correlation.
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Given the proximity of its spatial resolution with the ECHAM4.6 grid, the Climate Pre-
diction Center Merged Analysis of Precipitation (CMAP) monthly precipitation dataset [44]
was used to analyze the CORR of the ECHAM4.6 for NEB. The CMAP precipitation
database is constructed from remote sensing and station observational data and has a grid
spacing of 2.5° × 2.5° for the landmass of the entire globe. For the analysis of the CORR at
the level of the reservoirs’ incremental basins, the monthly precipitation from FUNCEME’s
network of conventional rain gauges was used.

The Ranked Probability Score (RPS)—Ranked Probability Score (RPS) quantifies
the extent to which predicted probabilities deviate from observed outcomes and can
demonstrate systematic bias in location and confidence [45,46]. Thus, the score reflects
the degree of discrimination, reliability, and resolution. Discrimination between results
would be considered successful if higher probabilities were assigned to above-normal
precipitation events compared to below-normal precipitation events. On the other hand,
systematic locational biases would manifest themselves if the probabilities assigned to
above-normal rainfall were very low, while those assigned to below-normal rainfall were
very high, even in cases of successful discrimination.

Systematic confidence-level biases would be reflected in forecasts with probabilities
that deviate from 0.333, and that exhibit greater confidence than warranted by the degree
of discrimination [46]. The use of the value 0.333 in the computation of the Ranked
Probability Score (RPS) is related to the concept of a reference forecast. In RPS calculation,
the reference forecast is typically a climatological forecast or a simple reference model.
Here, the value of 0.333 is derived from a climatological forecast that assumes an evenly
distributed probability across all three forecast categories. Further details on RPS are
provided below.

The Ranked Probability Score (RPS) is a measure of the precision of a probabilistic
forecast. The equation for the RPS is given as:

RPS f cst =

(

1

ncat

) ncat

∑
icat=1

(

Picat
cum f cst − Picat

cumobs

)2
(2)

where icat is the number of categories (1, 2, or 3), which depends on the forecast categories
(below, near, or above normal), and ncat is the total number of categories, which is usually
three in a tercile-based system. The cumulative forecast probability until the category

icat is represented by Picat
cum f cst. The comparable term for the cumulative probability of

the observation is represented by Picat
cumobs. The error is the sum of the squared difference

between the cumulative forecast probability and the corresponding observation, where 1 is
given to the observed category and 0 to the other categories.

Ranked Probability Skill Score (RPSS)—The Ranked Probability Skill Score (RPSS)
is a skill score used to evaluate probabilistic predictions [45,46] (Equation (3), below). It
compares the cumulative squared error, or RPS, of a real set of forecasts (RPS f cst) with
that of a reference forecast (a constant climatological forecast) for which the probability of
each category is 0.333 (RPSclim).

RPS measures a forecast’s squared error, which indicates to what point a forecast
is unsuccessful in discriminating between the different observed results and/or has a
systematic location and confidence-level bias. A positive RPSS implies that the RPS is
smaller for the forecasts than for the climatological forecasts. Thus, the score reflects
discrimination, reliability, and resolution.

Comparing the real and constant climatological forecasts, the orientation of RPSS is
reversed from that of the RPS. A higher RPSS indicates that the real forecasts are success-
ful in discriminating between different observed outcomes and are free from systematic
location and confidence-level biases when compared to constant climatological forecasts.

The RPSS provides a rigorous and objective measure of the capacity of probabilistic
forecasts, which is critical for many applications, including decision-making, risk man-
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agement, and public safety. RPSS is easy to calculate (see Equation (3)), which makes it a
valuable tool to verify forecasts and evaluate models within atmospheric sciences.

RPSS = 1 −
RPS f cst

RPSclim
(3)

3.3.2. Hydrological Model

In order to evaluate the hydrological forecasts in this study, we include the verification
method proposed by Nash and Sutcliffe (1970) [47], in addition to the metrics cited above.
The Nash–Sutcliffe Efficiency (NSE) is widely used to assess the performance of hydrologi-
cal models, verifying the agreement between observed and predicted values, taking into
account systematic and random errors. The NSE varies from −∞ to 1, where values closer
to 1 indicate a better fit between the predicted and observed values. NSE values of less than
0 indicate that the model is a worse predictor than the observed mean. In general, values
above 0.5 indicate good agreement between the predicted and observed values. NSE is
defined as:

NSE = 1 −
∑

n
i=1(Qobsi − Qmodi)

2

∑
n
i=1(Qobsi − Qobs)2

(4)

where Qobs is the estimated flow based on observed precipitation and temperature, the lat-
ter of which is used to estimate potential evapotranspiration and Qmod is the flow cal-
culated by the SMAP model Table 2. When presenting the results referring to the inflow
forecasts obtained from the unidirectional coupling of each of the 20 members of ECHAM4.6
and the SMAP, Qmod represents the mean series of this set (Qprev) and Qobs represents
the series modeled from the observed data. That is, the evaluations of the inflow forecast
system are based on the comparison between the flows derived from the SMAP model
using the observed and predicted hydrometeorological series.

Table 2. Nash–Sutcliffe Efficiency and correlation between observed and SMAP-modeled monthly

inflows for the Orós, Banabuiú, and Castanhão Reservoirs.

Reservoir
1986–2010 2011–2022 1986–2022

NSE CORR NSE CORR NSE CORR

Orós 0.81 0.95 0.28 0.96 0.80 0.95
Banabuiú 0.45 0.66 0.50 0.80 0.52 0.70
Castanhão 0.70 0.87 0.83 0.91 0.87 0.81

Note: All available data from the period 1986 to 2022 were used in the calculation of the metrics. For the Castanhão
Reservoir, the beginning of the observed series was in 2002.

3.4. Reservoir Operations

To analyze the value of the system forecast for reservoir operation, we used a water-
allocation decision support system, the Decision Support System for Water Allocation
Management (DSS SIGA) [41]. For the experiment carried out here used, the initial reservoir
volume was set to 10%, 25%, and 50% capacity. The average demand used was 10.4 m3/s
for the Orós and Banabuiú Reservoirs and 28.8 m3/s for the Castanhão Reservoir.

To calculate the reference values during climatology (1981–2010), simulations with
releases equal to pre-defined demands were performed using DSS SIGA. These operation
simulations were carried out from January to December for the hindcast period (1981–2010)
and verification period (2011–2022) using the streamflows estimated from the observations
(The streamflows here are estimated using the SMAP model, properly calibrated, from esti-
mated monthly average rainfall and potential evapotranspiration series for the incremental
reservoir basin as described in Section 3.2) and forecasts (20 members) for the two periods.
Based on the results corresponding to the estimated streamflows during the climatology
period (1981–2010), the terciles corresponding to the volumes at the end of December and
to the percentage of demands met (33.3% and 66.7%) were calculated. These reference
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values will be used to evaluate the value of forecasting in operations simulations to meet
pre-defined demands.

Likewise, for the predicted streamflows (20 members), DSS SIGA was used to simulate
releases corresponding to each member for the period from 1981 to 2022. Initial volumes of
10%, 25%, and 50% maximum capacity of each reservoir were used to simulate operations
of each reservoir to meet their respective demands. During the simulations, temporal
windows of 12 months, with January as the first month, were used. The value of forecasts
with respect to the reference period (1981–2010) was evaluated using the CORR and RPSS
metrics, comparing the simulation results based on observed and predicted inflows in
terms of reservoir volume at the end of December.

4. Results

4.1. Atmospheric Model Forecasts: Northeast Region

The ensemble mean of the JFMAM precipitation forecasts from the ECHAM4.6 model
is in good agreement with the observational dataset for the hindcast period (1981–2010),
capturing well the interannual variability for much of the NEB except for the southern
part of the region, as shown in the map in Figure 4. The following steps were used to
generate the map presented in Figure 4: 1. Preprocessing both datasets (ensemble mean
of cumulative rainfall forecasts from ECHAM4.6 model, and CMAP observed rainfall
data) in order to align them in terms of spatial resolution, temporal coverage, and format;
2. Calculating the correlation coefficients for each grid cell; and then 3. Mapping the
correlation values onto the geographical representation of Northeast Brazil. This process
helps visualize the spatial patterns and strength of the relationship between the ensemble
mean of cumulative rainfall forecasts and the observed rainfall data.

The spatial distribution of the correlation coefficients shows results above 0.6 for
a large part of North NEB in the states of Maranhão (MA), Piauí (PI), Ceará (CE), Rio
Grande do Norte (RN), Paraíba (PB), Pernambuco (PE), Sergipe (SE), and Alagoas (AL).
This contrasts with the correlation coefficient for the state of Bahia (BA), located in the
south of NEB, which had values less than 0.2.

Figure 4. Pearson correlation coefficients (CORR) for the ensemble mean of cumulative rainfall

forecasts for JFMAM from the ECHAM4.6 model and CMAP (observed) for Northeast Brazil between

1981 and 2010.
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4.2. Atmospheric Model Forecasts: Strategic Reservoir Basins

Figures 5 and 6 show the results of the cumulative rainfall forecasts for the period from
January to May (JFMAM) for the basins of the three reservoirs (Orós, Banabuiú, and Cas-
tanhão) during the hindcast and verification periods, respectively. The dotted horizontal
lines represent the 33 and 66 percentiles for the observed climatology (hindcast period of
1981–2010), with the categories below average, around average, and above average corre-
sponding to the colors orange, green, and blue colored shaded areas, respectively. The red
dots represent the observed cumulative rainfall values. The plotting of the results of the
forecasts per ensemble (20 members) as boxplots is interesting, as it shows the median and
interquartile range and still allows for the identification of extreme values. It is also possible
to identify the dispersion of the 20 members and, in turn, obtain an idea of the forecast
uncertainty of each, even as indicated by the members’ variance. The results indicate that
the ECHAM4.6 model was able to capture the interannual variability for the rainfall totals
for JFMAM during the hindcast period (1981–2010) and verification period (2011–2022) in
the contribution basins of the three reservoirs evaluated in this study. Nonetheless, for the
Orós and Castanhão Reservoirs, the atmospheric model had a tendency to underestimate
a large portion of the observed events in the period, which is not repeated during the
verification period, for which the model achieved less biased results when compared to the
observational data (Figures 5a,c and 6a,c). The less biased results during the verification
period do not necessarily indicate an improvement in performance. Rather, they could be
the result of a verification period (2011–2022) that was actually drier compared to the hind-
cast period, with half of the years with cumulative rainfall in the below-average category
and only two years of rainfall in the above-average category. It is important to note the
rough resolution of the model, which covers the state of Ceará with only two grid points.
The Castanhão and Orós basins are almost entirely covered by a single grid point in the
model, while the Banabuiú basin has significant areas in both grid points.

Figure 5. Cont.
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Figure 5. Forecasts from the ECHAM4.6 model (boxplots) for cumulative rainfall for JFMAM during

the hindcast period for the (a) Orós Reservoir, (b) Banabuiú Reservoir, and (c) Castanhão Reservoir.

The dotted horizontal lines represent the 33 and 66 percentiles of the observed climatology, with the

categories below average, around average, and above average represented by the colors orange,

green, and blue colored shaded areas, respectively. The red dots represent the observed values of

cumulative rainfall.

Figure 6. Forecasts from the ECHAM4.6 model (boxplots) for cumulative rainfall for JFMAM during

the verification period for the (a) Orós Reservoir, (b) Banabuiú Reservoir, and (c) Castanhão Reservoir.

The dotted horizontal lines represent the 33 and 66 percentiles of the observed climatology, with the

categories below average, around average, and above average represented by the colors orange,

green, and blue colored shaded areas, respectively. The red dots represent the observed values of

cumulative rainfall.
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Table 3 summarizes the results for the forecasts obtained for the JFMAM period
using the ECHAM4.6 model for the hindcast, verification, and entire periods, in terms of
correlation (CORR) between the ensemble means and the observed values corresponding
to these periods. The table includes the results of the RPSS for the same forecasts and
observed values for the three periods. The Banabuiú and Castanhão Reservoirs had similar
results for CORR in the hindcast and verification periods, while the Orós Reservoir had a
smaller correlation, albeit still significant, for the verification period. These results reflect
the observed variability captured between the modeled and observed series and can be
considered very good, taking into account the model’s resolution. The verification metric
adopted to evaluate the probabilistic forecasts of the forecast system (RPSS) shows positive
results for the three reservoirs, which indicates that the forecasts add information with
respect to the climatology.

Table 3. Evaluation of the performance metrics for the rainfall forecasts during the JFMAM period, using

the ECHAM4.6 model for the contribution basins of the Orós, Banabuiú, and Castanhão Reservoirs.

Reservoir
1981–2010 2011–2022 1981–2022

RPSS CORR RPSS CORR RPSS CORR

Orós 0.13 0.61 0.31 0.50 0.19 0.60
Banabuiú 0.26 0.66 0.38 0.67 0.30 0.66
Castanhão 0.16 0.64 0.32 0.66 0.21 0.66

4.3. Forecasts of Inflows into the Strategic Reservoirs

For each basin, the estimated inflows based on the observations (Qobs) were obtained
using the monthly SMAP model, which was duly calibrated and used observed rainfall
and average monthly potential evapotranspiration for the basin as inputs. The model
accumulated the flow values obtained during the JFMAM period. The inflow forecasts for
each reservoir were obtained using the same calibrated monthly SMAP model. Instead
of observation data, seasonal forecasts, represented by the 20 precipitation and potential
evapotranspiration members obtained from the ECHAM4.6 model during the hindcast
period (1981–2010) and verification period (2011–2022), were used. For the period from June
to December, the dry period, the inflows were considered zero in the reservoir operation
simulation experiment.

Figures 7 and 8 present the forecasted inflows (Qprev) and estimated inflows (Qobs,
red dots) for the JFMAM period for the contribution basin of each of the three reservoirs
analyzed. The dotted horizontal lines represent the 33 and 66 percentiles of the Qobs series
during the hindcast period, with the categories below average, around average, and above
average represented by the colors orange, green, and blue colored shaded areas, respectively.
For the hindcast period, despite the low resolution of the climatological model, the interan-
nual variability of the accumulated inflows during the JFMAM period was captured for
the contribution basins of the reservoirs. However, there was a tendency to overestimate
the inflows into the Orós and Banabuiú Reservoirs and underestimate the inflows into the
Castanhão Reservoir. Still keeping the model resolution in perspective, the results for the
verification period show that the forecasts capture the interannual variability during the
period analyzed (Figure 8), although between 2017 and 2022 (except 2021), the medians of
the model members for the Banabuiú Reservoir (Figure 8b) consistently underestimated
the observation.

Table 4 summarizes the performance evaluation metrics (NSE, CORR, and RPSS)
for the inflow series of the three reservoirs. The inflow forecasts have high correlation
coefficients for the hindcast and verification periods, with similar results for the three
reservoirs. The RPSS values (around 0.2 for the Orós Reservoir for the verification period
and greater than 0.4 for the Orós and Castanhão Reservoirs for the hindcast period) indicate
that the models add significant information with respect to the climatology. The hindcast
period (1981–2010) and total period (1981–2022) ranged between 0.65 and 0.72. For the



Water 2023, 15, 2460 13 of 21

verification period (2011–2022), the Banabuiú Reservoir had a negative NSE. This may
be attributed primarily to the resolution of the atmospheric model, which resulted in the
forecast system indicating a more optimistic scenario (consistently higher inputs than those
observed) for the reservoir’s contribution basin. The scenario indicated by the forecasting
system cannot be considered optimistic for only three of the twelve years of the short
verification period (2011–2022): 2015, 2016, and 2021. In contrast, the NSE values for the
Orós and Castanhão Reservoirs were positive, although the value for the Orós Reservoir
was low. The RPSS values obtained for the inflow forecasts remained positive for all periods,
indicating that the use of probabilistic forecasts for the three reservoirs adds additional
information with respect to the climatology.

Figure 7. Streamflow forecasts (boxplots) corresponding to the 20 rainfall members of the ECHAM4.6

model, obtained from the SMAP model during the JFMAM period for the (a) Orós Reservoir, (b) Ba-

nabuiú Reservoir, and (c) Castanhão Reservoir for the hindcast period. The horizontal dotted lines

represent the 33 and 66 percentiles of the observed climatology, with the categories below average,

around average, and above average represented by the colors orange, green, and blue colored shaded

areas, respectively. The red dots represent the estimated streamflow values for the JFMAM period.
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Figure 8. Streamflow forecasts (boxplots) corresponding to the 20 rainfall members of the ECHAM4.6

model, obtained from the SMAP model for the JFMAM period for the (a) Orós Reservoir, (b) Banabuiú

Reservoir, and (c) Castanhão Reservoir for the forecast period. The horizontal dotted lines represent

the 33 and 66 percentiles of the observed climatology, with the categories below average, around

average, and above average represented by the colors orange, green, and blue colored shaded areas,

respectively. The red dots represent the estimated streamflow values for the JFMAM period.

Table 4. The performance evaluation metrics for the streamflow forecasts for the Orós, Banabuiú,

and Castanhão Reservoirs for the JFMAM period, obtained through the unidirectional coupling of

the ECHAM4.6 model and the monthly SMAP hydrological model.

Reservoir
1981–2010 2011–2022 1981–2022

NSE RPSS CORR NSE RPSS CORR NSE RPSS CORR

Orós 0.69 0.19 0.82 0.12 0.43 0.47 0.68 0.25 0.81
Banabuiú 0.72 0.24 0.83 −1.40 0.18 0.71 0.66 0.22 0.81
Castanhão 0.65 0.44 0.80 0.59 0.49 0.73 0.66 0.46 0.81

4.4. Reservoir Operation Incorporating Inflow Forecasts

The importance of the inflow forecasts for water resource management becomes more
evident in the context of a multi-year drought, such as the recent drought experienced
in the study area (2012–2018). The information in these forecasts is more relevant for the
operational planning of key reservoirs when reservoir levels at the beginning of the rainy
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period are already relatively low. Low reservoir levels at the beginning of the rainy period
demand a more careful evaluation during the decision-making process regarding water
releases to meet demands. The evaluation should take into consideration the existing
risks, based on inflow forecasts, of arriving at the beginning of the following rainy season
with a storage volume below a predetermined value. Between the years 1986 and 2022,
it was observed that in 19% of the years, the storage level of the Oros Reservoir at the
beginning of the year was at or below 15% of its maximum capacity. Similarly, for the
Banabuiu Reservoir, this occurred in 38% of the years during the same period. If we only
take into consideration the most recent 12-year period (2011–2022), which was selected as
the verification period, these values increase to 33% and 75%, respectively, given that it was
a very dry period. For the Castanhão Reservoir, these relative frequency values are even
higher. The Castanhão Reservoir began the year with a storage level of less than 15% of its
capacity in 48% of the years of the total period (2002–2022) and 58% of the years during the
verification period (2011–2022).

Figures 9 and 10 present the volume of water stored in the three reservoirs at the
end of December, as described in Section 3.4. Reservoir operations simulations were used
to obtain these values. An initial volume in January equivalent to 10% of the maximum
capacity of each reservoir was assumed for three different streamflow scenarios: forecasted
inflow (Qprev) from the forecast system, estimated inflow (Qobs), which are considered
the observed inflow here, and zero inflow during the year; a very restrictive situation that
may be employed by managers with high aversion to the risk of not meeting demands.
The dotted horizontal lines represent the 33 and 66 percentiles of the values identified using
the Qobs series during the hindcast period, with the categories below average, around
average, and above average represented by the colors orange, green, and blue colored
shaded areas, respectively. The red dotted lines represent the estimated volumes for each
year. For the three reservoirs, the forecasted volumes at the end of the year follow the
interannual variability of the corresponding volumes obtained using the estimated inflows
based on the observations during the hindcast period (Figure 9) and verification period
(Figure 10). Although the low resolution of the atmospheric model is emphasized here, high
RPSS and CORR values were obtained for the forecast when compared to the climatology
for the hindcast and verification periods.

The added value of the forecast system, even if based on a low-resolution model,
becomes more evident when the zero-inflow scenario is analyzed. The zero-inflow scenario
is a conservative water allocation scenario that has been adopted in some states of NEB. Im-
portantly, the use of a conservative zero streamflow scenario could lead to economic losses
due to the restrictions imposed on uses. For the zero-streamflow scenario, the Castanhão
Reservoir fails partially in August and fully after that month, while the Orós and Banabuiú
Reservoirs fail partially in June and fully after that month. With initial volumes of 25% and
50%, the demands associated with the three reservoirs are fully met.

Although not reflected in the results obtained here, for an operation with a horizon
of only one year, it seems reasonable to assume that the value of the forecast is very
much a function of the initial volume of the reservoir at the beginning of the year and the
volume of demand to be met in relation to the capacity of the reservoir. In this context,
the simulated operations of the reservoirs with initial volumes of 25% and 50%, whether
based on predicted or zero inflow, did not fail to meet the total demand for the three
reservoirs. However, the positive RPSS values for the three reservoirs during the hindcast
and verification periods presented in Table 5 indicate that the use of inflow forecasts
provides additional value to the reference climatology. In turn, the correlation between
the flows obtained from the observations and the average of the expected flows for the
three reservoirs is around 0.50 for the Orós Reservoir and around 0.70 for the Banabuiú
and Castanhão Reservoirs.
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Figure 9. Volumes of the identified reservoirs at the end of December, beginning with 10% capacity

at the beginning of January, from the simulated operation of the reservoirs to meet demands based

on streamflow forecasts (boxplots) for the hindcast period: (a) Orós, (b) Banabuiú, and (c) Castanhão.

The dotted horizontal lines represent the 33 and 66 percentiles referring to the resulting volumes at the

end of December for the same period (JFMAM) during the verification period. The categories below

average, around average, and above average are represented by the colors orange, green, and blue

colored shaded areas, respectively. The red dots represent the volumes at the end of the month of

December based on simulated operations using streamflow observed for the JFMAM period, while

the black dots are the simulated operations using the hypothetical zero streamflow into the reservoirs.

The percentages of demands met associated with each reservoir at the end of December
were identified using the reservoir operation simulations based on the estimated streamflow
with observed data, as well as from each member of the streamflow forecast (see Table 6).
For the simulations based on estimated streamflow over the 42 years of the analysis period,
the number of years is obtained for each of the four ranges of percent of previously selected
demands (ranges: 0↔25 / 25→50 / 50→75 / 75→100; values: 0, 100). When the streamflow
forecast is used, the number of forecast members was identified for each year, resulting in
a percentage of demands met within each of the ranges. The percentage was calculated
by adding the number of members of each range and dividing the result by 20 (the total
number of members). In this case, the resulting values represent the average number
of years in each range/value indicated by the forecasting system. The values in Table 6
indicate that the use of the forecast system is able to describe the variability of the percent
of demands met identified from the estimated streamflows, particularly for the Banabuiú
and Castanhão Reservoirs.
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Figure 10. Volumes of the identified reservoirs at the end of December, beginning with 10% capacity

at the beginning of January, from the simulated operation of the reservoirs to meet demands based on

streamflow forecasts (boxplots) for the verification period: (a) Orós, (b) Banabuiú, and (c) Castanhão.

The dotted horizontal lines represent the 33 and 66 percentiles referring to the resulting volumes at the

end of December for the same period (JFMAM) during the verification period. The categories below

average, around average, and above average are represented by the colors orange, green, and blue

colored shaded areas, respectively. The red dots represent the volumes at the end of the month of

December based on simulated operations using streamflow observed for the JFMAM period, while

the black dots are the simulated operations using the hypothetical zero streamflow into the reservoirs.

Table 5. Performance evaluation metrics for the volumes at the end of May of the Orós, Banabuiú,

and Castanhão Reservoirs, identified using the simulated operations of the reservoirs for forecasted

and observed inflows into the reservoirs.

Reservoir Initial Volume
1981–2010 2011–2022 1981–2022

RPSS CORR RPSS CORR RPSS CORR

Orós
10% 0.24 0.73 0.26 0.47 0.25 0.73
25% 0.24 0.69 0.26 0.47 0.24 0.70
50% 0.27 0.64 0.26 0.48 0.27 0.65

Banabuiú
10% 0.25 0.79 0.46 0.69 0.31 0.78
25% 0.25 0.76 0.46 0.69 0.31 0.75
50% 0.23 0.69 0.43 0.69 0.29 0.69

Castanhão
10% 0.30 0.77 0.56 0.70 0.37 0.78
25% 0.29 0.74 0.53 0.73 0.36 0.76
50% 0.25 0.67 0.41 0.72 0.29 0.70
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Table 6. Average number of years in each range/percent of the demands met at the end of the De-

cember for the Orós, Banabuiú, and Castanhão Reservoirs, identified using the simulated operations

for the forecasted and observed inflows into the reservoirs.

% Demands Met at the end of December *
Reservoir Info

=0 0↔25 25→50 50→75 75→100 =100

Fcst. 18.7 19.3 0.6 0.4 21.9 21.5
Orós

Obs. 11 14 1 2 25 25
Fcst. 18.5 19.0 0.5 0.2 22.4 22.1

Banabuiú
Obs. 18 20 0 0 22 21
Fcst. 15.6 16.7 0.4 0.6 24.3 23.8

Castanhão
Obs. 9 12 0 0 30 30

* Arrow indicates that the limit is included in the interval.

5. Conclusions

This study evaluated the climate and hydrological forecast systems used for water
allocation in the state of Ceará, specifically focusing on the performance of hydrological
forecasting for the Orós, Banabuiú, and Castanhão Reservoirs. The findings of this research
highlight several important aspects of these systems.

Firstly, the ECHAM4.6 atmospheric model demonstrated its ability to capture inter-
annual accumulated rainfall variability during the JFMAM period in north NEB, encom-
passing the state of Ceará. However, it exhibited lower correlation in the southern region.
Despite this limitation, positive spatial correlation results were found for the basins con-
tributing to the three reservoirs under evaluation. However, the model’s coarse resolution,
which covers the state of Ceará with only two grid points, was a limitation that must be
taken into account.

Regarding cumulative rainfall forecasts (JFMAM) for the three reservoir basins, the
ECHAM4.6 model performed well in capturing interannual variability during both the
hindcast and verification periods. However, it tended to underestimate cumulative rainfall
for a significant number of years in the Orós and Castanhão basins during the hindcast
period. Nevertheless, the results were less biased for the verification period, indicating
a better representation of observed data. This suggests that the model’s performance
improved when the verification period exhibited drier conditions.

Objective evaluation using Ranked Probability Skill Score (RPSS) and correlation
coefficients (CORR) indicated positive results for all three reservoirs. These results demon-
strate that the forecasts provided valuable information beyond climatology, contributing to
improved water allocation decisions.

The coupling of precipitation forecasts with the hydrological model proved to be
valuable in predicting inflows into the three reservoirs during the JFMAM period, thus
facilitating water resource planning and management, particularly during interannual
drought periods.

The study also addressed the importance of considering initial reservoir volumes in
the decision-making process. It was observed that with larger initial volumes (25% and
50% of capacity), the role of forecasting within a one-year horizon became less crucial
due to the magnitude of demands that could be met even under zero inflow assumptions.
However, for initial volumes as low as 10% of capacity, the utilization of forecasting
provided significant benefits, allowing for a better understanding of inflow variability and
improved water-allocation decision-making. Additionally, the use of forecasting in critical
situations, where reservoir volumes risk reaching insufficient levels before the rainy season,
proved particularly advantageous in preventing unnecessary restrictions on water users
and enabling effective water resource management.

Overall, this study emphasizes the importance of climate-hydrological forecasting sys-
tems in supporting water allocation processes and mitigating the impacts of water scarcity
in drought-prone regions. Continued efforts to enhance the precision and resolution of these
models will further improve their reliability and usefulness in water resource management.
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