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Altered structural connectivity 
in olfactory disfunction after mild 
COVID‑19 using probabilistic 
tractography
Diógenes Diego de Carvalho Bispo 1,2,3,10*, Pedro Renato de Paula Brandão 4,5,10, 
Danilo Assis Pereira 6, Fernando Bisinoto Maluf 3, Bruna Arrais Dias 3, Hugo Rafael Paranhos 3, 
Felipe von Glehn 2,5, Augusto César Penalva de Oliveira 7,  
Alexandre Anderson de Sousa Munhoz Soares 2, Maxime Descoteaux 8,9,11 & 
Neysa Aparecida Tinoco Regattieri 2,11

We aimed to investigate changes in olfactory bulb volume and brain network in the white matter 
(WM) in patients with persistent olfactory disfunction (OD) following COVID‑19. A cross‑sectional 
study evaluated 38 participants with OD after mild COVID‑19 and 24 controls, including Sniffin’ Sticks 
identification test (SS‑16), MoCA, and brain magnetic resonance imaging. Network‑Based Statistics 
(NBS) and graph theoretical analysis were used to explore the WM. The COVID‑19 group had reduced 
olfactory bulb volume compared to controls. In NBS, COVID‑19 patients showed increased structural 
connectivity in a subnetwork comprising parietal brain regions. Regarding global network topological 
properties, patients exhibited lower global and local efficiency and higher assortativity than controls. 
Concerning local network topological properties, patients had reduced local efficiency (left lateral 
orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal strength 
(right anterior orbital gyrus), and reduced nodal strength (left amygdala). SS‑16 test score was 
negatively correlated with clustering of whole‑brain WM in the COVID‑19 group. Thus, patients with 
OD after COVID‑19 had relevant WM network dysfunction with increased connectivity in the parietal 
sensory cortex. Reduced integration and increased segregation are observed within olfactory‑related 
brain areas might be due to compensatory plasticity mechanisms devoted to recovering olfactory 
function.

Since its discovery in Wuhan, China, in late 2019, coronavirus disease 2019 (COVID-19), caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than 600 million infected and 6 million 
 deaths1 and put unprecedented pressure on social, economic and health systems around the  world2. While initial 
research on COVID-19 has focused on acute illnesses, it lately has become clear that long-term consequences 
 occur3. Many survivors of acute infection have persistent and disabling neurological symptoms, which can have 
socioeconomic and personal consequences. It is, therefore, imperative that there is a thorough understanding 
of evolving clinical syndromes and underlying pathophysiological mechanisms, allowing rational therapeutic 
interventions to be implemented  quickly2.

Olfactory dysfunction has variable severity, including anosmia, hyposmia, and parosmia, and affects 30–70% 
of patients with COVID-194. It occurs early in the course of infection, with no direct association with disease 
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severity or viral  burden5. In one study, hyposmia was the first clinically presenting symptom in around 12% of 
 patients6. In most cases, recovery is spontaneous within 3 to 4  weeks5,7. However, some patients develop persis-
tent olfactory impairment up to 12 months after infection, suggesting that the damage to the olfactory system 
may be severe or  permanent5.

Several hypotheses were proposed to explain the underlying mechanism for olfactory dysfunction in COVID-
198,9. The most notable theory regarding COVID-related hyposmia is the direct infection of olfactory receptor 
neurons by SARS-CoV-2 through the nasal mucosa. However, there is conflicting evidence on whether SARS-
CoV-2 can indeed infect these  neurons10. Angiotensin-converting enzyme 2 receptors—the target molecules for 
SARS-CoV-2, are not expressed in neural cells but by non-neuronal support cells in the olfactory epithelium. The 
lack of direct neuronal damage could justify the rapid recovery of olfactory function in most  patients11. Despite 
this, SARS-CoV-2 infection seems to generate axonal pathology and microvasculopathy in the olfactory bulbs 
and tracts in those with olfactory alterations, due to local  inflammation12.

Olfactory dysfunction during or after COVID-19 represents a marker of neurological disease and can be 
assessed with olfactory nerve imaging. Magnetic resonance imaging (MRI) can help evaluate patients with 
anosmia and hyposmia because it allows for elaborate visualization and measurement of the olfactory anatomi-
cal structures. Yet, studies that describe MRI-based anatomical changes in olfactory structures in COVID-19 
are sparse and mainly represented by case reports. Despite this, a reduction in olfactory bulbs was described 
in 36 participants who had COVID-19 olfactory dysfunction compared to a control group 2 to 8 weeks after 
 infection13, and in 196 subjects who had COVID-19 compared to controls 1 to 582 days after disease  onset14. 
The association between olfactory bulb atrophy and severity of the olfactory dysfunction was not evaluated in 
these studies. Furthermore, the impact on brain connections is relatively unknown, especially in sensory and 
olfactory-related regions.

Diffusion-weighted magnetic resonance imaging (dMRI)-derived tractography is an advanced technique that 
may be used to investigate the mechanisms underlying anosmia by reconstructing major brain fiber pathways. 
This method allows for the mapping of white matter (WM) pathways through voxel-wise fiber orientations. It 
enables the reconstruction of structural connectivity matrices, generating networks that represent parts or the 
whole brain’s anatomical organization, with streamlines serving as proxies for WM fiber  bundles15. The Convex 
Optimization Modeling for Microstructure Informed Tractography 2 (COMMIT2) framework is used to remove 
false positive brain connections by assigning to each streamline its contribution to the dMRI signal, while 
imposing an anatomical regularization encouraging streamlines to group together as bundles in the connectivity 
 matrix16,17. This filtering method significantly improves the accuracy of the resulting structural connectomes, 
thereby enhancing the reliability of the  findings18.

Graph analysis is used to explore changes in the WM network based on graph  theory18. After defining the 
nodes and edges (connections between regions), graph theory metrics represent distinct aspects of global or local 
network connectivity. A small-world architecture, for instance, indicates that the minimum path length between 
any pair of nodes is approximately equivalent to a comparable random network, but the network nodes have 
greater local interconnectivity or cliquishness than a random  network15. The relationship between olfaction and 
brain network metrics is intimate. Studies have shown that hyposmia in aging and neurodegeneration relates to 
WM disconnection using graph analysis  methods19,20, whereas individuals with the highest olfactory abilities, 
such as sommeliers, exhibit increased functional network connectivity and higher small-world topology than 
 controls21. However, there is still a need for further exploration of WM network changes in non-neurodegener-
ative hyposmia. The use of graph theory in understanding changes in the WM network may help elucidate the 
underlying mechanisms of olfactory dysfunction.

The current study used a cross-sectional design to examine changes in the olfactory bulb volume and inves-
tigate brain networks in patients after COVID-19 compared to a control group. Our secondary objective was to 
determine whether there was an association between olfactory bulb volume, structural connectivity measures, 
and olfactory performance.

Results
Demographic and clinical characteristics. In this study, we recruited a total of 67 individuals, out of 
which three participants from the COVID-19 group (COV +) were excluded. Two of the exclusions were due to 
MRI contraindications, while the third exclusion was due to a Montreal Cognitive Assessment (MoCA) score of 
less than 15. In addition, two participants from the control group (COV−) were excluded from the study. One 
exclusion was due to a positive SARS-CoV-2 IgG test result, while the other exclusion was due to the detection 
of a brain structural change on MRI. These exclusions were necessary to ensure the integrity and validity of the 
data obtained from the study population.

Clinical examinations, cognitive tests, and MRI were administered to a total of 62 participants, comprising 
38 in the COV + group and 24 in the COV− group. The groups did not exhibit any significant differences in age 
(p = 0.520), sex (p = 0.550), education (p = 0.555), or comorbidity profiles (Table 1). The average time between 
COVID-19 diagnosis and study´s clinical/imaging procedures was 91.7 (± 26.0) days, with a range of 31 to 
167 days. No subjects in the COV + group required hospitalization during the acute phase or thereafter.

There was a significant difference between the two groups in the Sniffin’ Sticks smell identification test (SS-16) 
score (p < 0.001). In the COV + group, 50% of patients were hyposmic (SS-16 test score below 12)22. None of the 
subjects in the COV− group had hyposmia. MoCA scores did not differ between groups (p = 0.663) (Table 1).

Assessment of the olfactory bulbs. The olfactory bulbs of 53 participants (33 in the COV + group and 
20 in the COV− group) were manually segmented. Nine participants were excluded due to movement or mag-
netic susceptibility artifacts, usually due to metallic material in the oral cavity. In the assessment of interobserver 
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agreement for manual segmentation of the olfactory bulbs, Pearson’s correlation coefficients were r = 0.877 for 
the right olfactory bulb and r = 0.900 for the left olfactory bulb (two-tailed, p < 0.001). The mean and standard 
deviation of the Dice similarity coefficient (DSC) for right and left olfactory bulbs were 0.815 + /− 0.0354 and 
0.794 + /− 0.0483, respectively, indicating a good agreement between examiners.

The volume of the right (t = − 4.19, p < 0.001), left (t = − 4.42, p < 0.001), and both (t = − 4.42, p < 0.001) olfac-
tory bulbs was significantly reduced in the COV + group when compared to the COV− group (Table 2). This 
reduction in the normalized total olfactory bulb volume remained even after controlling for the sex, age, and 
allergic rhinosinusitis (F = 17.19, p < 0.001) (Fig. 1A).In the COV + group, there was no difference in normal-
ized total olfactory bulb volume between participants with SS-16 < 12 and SS-16 ≥ 12 (p = 1.000, Bonferroni 
correction). The normalized total olfactory bulb volume was smaller in these COV + subgroups compared to 
the COV− group (Fig. 1B).

A positive correlation was found between total olfactory bulb volume and SS-16 test performance in the 
study sample (n = 53) (rho = 0.281, p = 0.014). In the control group, there was a positive association between the 
volume of the olfactory bulbs and the SS-16 test score (rho = 0.706, p = 0.003) (Fig. 1C). In the COV + group, 
there was no association between the volume of the olfactory bulbs and the total score of the SS-16 test score 
(rho = 0.009, p = 0.964) (Fig. 1D).

Voxel‑based diffusion imaging analysis. No between-group differences were observed for fractional 
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) using Tract-based 
Spatial Statistics (TBSS), controlling for age and sex (p > 0.05).

Network‐based statistics (NBS). Using a whole-brain exploratory analysis, NBS identified significant 
differences in structural connectivity between the COV + and COV− groups. Compared to the control group, 
COVID-19 patients exhibited significantly higher structural connectivity in a subnetwork composed of three 
brain regions (one on the right side and two on the left side) and two interhemispheric connections (threshold 
value t = 3.0, p < 0.05) (Fig. 2, Supplementary Table S1).

Table 1.  Demographic and clinical features (COV + and COV − groups). COPD chronic obstructive 
pulmonary disease. Data are shown as mean ± standard deviation (minimum, maximum) or n (%). 1 Mann–
Whitney U test. 2 Chi-square test.

Demographic and clinical characteristics
COVID-19 (COV +) Control (COV−)

Statistic(n = 38, 61%) (n = 24, 39%)
Age 36.4 ± 9.5 (20, 56) 39.3 ± 12.9 (22, 60) U = 411; p = 0.5201

Sex
 Male, n (%) 10 (26.3%) 8 (33.3%)

χ2 = 0.35; p = 0.5502

 Female, n (%) 28 (73.7%) 16 (66.7%)
Years of formal education 15.1 ± 3.2 (11, 24) 15.5 ± 3.0 (11, 20) U = 415; p = 0.5551

Comorbidities, n (%)
 Hypertension 3 (7.9%) 0 (0.0%) χ2 = 0.199; p = 0.1602

 Diabetes mellitus 2 (5.3%) 1 (4.2%) χ2 = 0.04; p = 0.8402

 Obesity 1 (2.6%) 1 (4.2%) χ2 = 0.11; p = 0.7402

 Asthma/COPD 2 (5.3%) 2 (8.3%) χ2 = 0.23; p = 0.6302

 Allergic rhinosinusitis 11 (28.9%) 8 (33.3%) χ2 = 0.13; p = 0.7202

 Thyroid disorder 2 (5.3%) 1 (4.2%) χ2 = 0.04; p = 0.8402

 Mood disorder 4 (10.5%) 2 (8.3%) χ2 = 0.08; p = 0.7802

 Migraine 12 (31.6%) 7 (29.2%) χ2 = 0.04; p = 0.8402

Sniffin’ Sticks identification test (SS-16) 11.4 ± 2.1 (6, 15) 13.6 ± 1.1 (12, 16) U = 177; p < 0.0011

Montreal Cognitive Assessment (MoCA) 24.9 ± 3.2 (17, 30) 25.2 ± 3.4 (17, 30) U = 426; p = 0.6631

Table 2.  Comparison of the olfactory bulb volume between COV + and COV − groups. All data are shown as 
mean (standard deviation). 1 Independent sample t-test. 2 Adjusted p value for FDR.

Measure
COVID-19 (COV +) Control (COV−)

Statistic1 Adj  p2(n = 33, 62%) (n = 20, 38%)
Right olfactory bulb volume  (mm3) 32.2 (9.5) 43.2 (8.8) t =  − 4.19; p < 0.001 p < 0.001
Left olfactory bulb volume  (mm3) 31.0 (9.4) 43.1 (10.2) t =  − 4.19; p < 0.001 p < 0.001
Total olfactory bulb volume  (mm3) 63.2 (18.4) 86.3 (18.4) t =  − 4.42; p < 0.001 p < 0.001



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12886  |  https://doi.org/10.1038/s41598-023-40115-7

www.nature.com/scientificreports/

Graph theory analysis: global network. COV + group showed lower global efficiency (p = 0.019) and 
local efficiency (p = 0.047) and higher assortativity (p = 0.027) than COV− group. No significant differences were 
found in other global network metrics (p > 0.05) (Table 3). Both groups had sigma > 1, which means they satis-
fied the criteria of a small-world (Table 3). In the COV + group, there was an association between the clustering 
and the SS-16 test score (rho =− 0.457, p = 0.019), controlling for sex, age, education, comorbidities, and time 
between COVID-19 diagnosis and study clinical/imaging procedures. No association was identified between 
global network measures and the SS-16 test score in the COV− group.

Graph theory analysis: local network. Compared with controls, patients exhibited reduced local effi-
ciency (left lateral orbital gyrus and pallidum), increased clustering (left lateral orbital gyrus), increased nodal 
strength (right anterior orbital gyrus), and reduced nodal strength (left amygdala) after adjusting for multiple 
comparisons (Table 4, Supplementary Fig. S1).

Discussion
Our study findings reveal that patients with persistent subjective hyposmia following COVID-19 infection exhib-
ited a 25% reduction in olfactory bulb volume at a mean follow-up of three months. In comparison to controls, 
SARS-CoV-2 infected hyposmic subjects demonstrated significant aberrations in the WM network, but no 
changes TBSS. The NBS analysis identified a subnetwork in the parietal sensory areas with increased connectivity. 
The global and local network topological properties demonstrated reduced integration and increased segregation, 
including olfactory-related brain areas (pallidum, amygdala, and orbitofrontal gyrus). Moreover, the SS-16 test 
score was negatively correlated with clustering in the COVID-19 group. Therefore, we hypothesize that changes 
in connectivity in the parietal sensory regions and olfaction-related brain areas may be due to compensatory 
plasticity mechanisms aimed at restoring olfactory function.

Unlike other upper respiratory infections, COVID-19 olfactory dysfunction is not associated with nasal 
discharge and conductive obstruction of the olfactory cleft, suggesting a neurological  origin23. SARS-CoV-2 
does not infect the sensory neurons, and sustentacular cells are the primary target of this virus in the olfac-
tory  mucosa10,24–27. Several studies have also reported changes in olfactory bulb volume, olfactory cleft volume, 

Figure 1.  (A) Comparison of the normalized total olfactory bulb volume between the COV− and 
COV + groups using ANCOVA. (B) Comparison of the normalized total olfactory bulb volume among the 
COV-, COV + with SS-16 ≥ 12 and COV + with SS-16 < 12 subgroups using ANCOVA. (C) Association between 
normalized total olfactory bulb volume and SS-16 test score in the COV− group. (D) Association between 
normalized total olfactory bulb volume and SS-16 test score in the COV + group. SS-16 Sniffin’ Sticks smell 
identification test, ANCOVA analysis of covariance. *ANCOVA with covariates including sex, age, and allergic 
rhinosinusitis.
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olfactory sulcus depth, and olfactory nerve  morphology28. In our study, the COVID-19 olfactory bulb volume 
was significantly smaller than that of the control group, even after accounting for head size.

In the control group, olfactory bulb volume showed a significant positive correlation with olfactory func-
tion, even after controlling for confounding variables, which is consistent with prior  research29. However, this 
correlation was not observed in patients with COVID-19. There are several hypotheses that could explain this 
absence of correlation. Firstly, many individuals who experienced anosmia or hyposmia during the acute phase of 
COVID-19 eventually recovered their olfactory  function5. This restoration could be due to the rapid regeneration 
of the supporting cells in the olfactory nerve from stem  cells30. In addition, there is evidence that SARS-CoV-2 

Figure 2.  Whole-brain network-based statistics results. The connectivity analysis with threshold value t = 3.0 
showed a subnetwork with greater connectivity in the COV + group compared to the COV− group (red edges). 
Significance was thresholded at p < 0.05. Permutations = 5000. Inf  inferior, R right, L left.

Table 3.  Comparison of global network metrics between the COV + and COV −. Modularity, clustering, and 
nodal strength are shown as median (interquartile range). The other variables are shown as mean (standard 
deviation). 1 Independent sample t-test. 2 Mann-Whitney U test. *p < 0.05.

Measure
COVID-19 (COV+) Control (COV-)

Statistic Cohen’s d(n = 32, 59%) (n = 22, 41%)
Betweenness centrality 0.00760 (0.00027) 0.00765 (0.00023) t =  − 0.695; p = 0.4901 –
Modularity 0.588 (0.577, 0.591) 0.585 (0.580, 0.590) U = 327; p = 0.6692 –
Assortativity 0.01751 (0.0181) 0.00696 (0.0147) t = 2.271; p = 0.0271* 0.629
Participation 0.248 (0.0111) 0.247 (0.0115) t = 0.532; p = 0.5971 –
Clustering 1.18 (1.14, 1.25) 1.14 (1.09, 1.19) U = 263; p = 0.1201 –
Nodal strength 91.1 (86.5, 92.0) 89.7 (88.4, 91.3) U = 329; p = 0.6942 –
Local efficiency 49.8 (2.36) 51.2 (2.86) t =  − 2.031; p = 0.0471*  − 0.562
Global efficiency 39.1 (1.96) 40.6 (2.55) t =  − 2.413; p = 0.0191*  − 0.668
Density 0.147 (0.006) 0.150 (0.007) t =  − 1.808; p = 0.0761 –
Path length 97.4 (3.77) 98.7 (5.23) t =  − 1.046; p = 0.3001 –
Edge count 2.40 (0.0422) 2.40 (0.0421) t =  − 0.268; p = 0.7901 –
Omega − 0.0266 (0.0244) − 0.0205 (0.0202) t =  − 0.966; p = 0.3391 –
Sigma 1.47 (0.0491) 1.45 (0.0703) t = 1.281; p = 0.2061 –
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can affect WM and gray matter (GM), even in subjects with mild symptoms without hospitalization, which can 
impact higher processing in brain regions related to the olfactory  system31–33.

Reduced global and local efficiency was observed in COV + group, including the olfactory-related regions, 
compared to the COV− group indicating potential disruption in brain network connectivity. Consistent with 
these findings, a longitudinal imaging study using UK Biobank data revealed a significant detrimental effect 
of SARS-CoV-2, mainly on the limbic and olfactory cortical system, as well as changes in diffusion measures 
in regions functionally connected to the piriform cortex, olfactory tubercle, and anterior olfactory nucleus. 
Moreover, in that study, participants infected with SARS-CoV-2 showed a more pronounced reduction of grey 
matter thickness in the left parahippocampal gyrus and lateral orbitofrontal  cortex31. In other studies, WM 
microstructural alterations were also observed in the brain during the subacute, post-acute, and chronic phases 
of COVID-1932–34, with the potential to disrupt brain network connectivity.

Cerebral plasticity after a sensory loss has been well documented in respect of visual and auditory loss, but 
less is known about the effects of olfactory input loss on the adult brain. Previous research has demonstrated 
that acquired anosmia alters GM volume or density in olfactory-related areas, such as the piriform cortex and 
the orbitofrontal cortex, as well as in non-olfactory-related areas, such as the prefrontal cortex. The higher 
assortativity in the COV + group suggests that the network nodes are more interconnected with nodes that have 
comparable properties, which may reflect a compensatory mechanism in response to the disruption of brain 
network connectivity caused by COVID-19. Our study also showed increased structural connectivity in the 
posterior parietal cortex, involving multisensory areas such as the postcentral gyrus, inferior parietal gyri, and 
precuneus, in whole-brain analysis. In a functional study, elevated brain connectivity between the orbitofrontal 
cortex and the visual association cortex and fusiform gyrus in the COVID-19 anosmia group was  identified14. 
One could hypothesize that the absence of olfactory input to these parietal multisensory areas alters the neuronal 
constellation and promotes a more efficient multisensory-based integration of visual and auditory perception 
in anosmic  individuals35.

A recent study on patients with olfactory dysfunction following COVID-19 releaved an increased functional 
intranetwork connectivity within the default mode network, as well as greater internetwork connectivity between 
the olfactory and default mode networks. This suggests that the compensatory mechanism of greater intranetwork 
functional connectivity may help to address the deficits in olfactory processing and overall well-being in COVID-
19  patients36. In another study, structural and functional connectivity metrics were significantly increased in 
individuals previously infected with SARS-CoV-2. Greater residual olfactory impairment was associated with 

Table 4.  Comparison of local network metrics between the control and COVID-19 groups, adjusting for 
multiple comparisons (FDR). Age and sex were included as covariates. Supra supracallosal, sub subgenual, pre 
pregenual, ns not significant, adj adjusted. Significant p values < 0.05 are indicated in bold font.

Tract N
Right Hemisphere Left Hemisphere
statistic p-value adj p statistic p-value adj p

Betweenness centrality
 Lateral orbital gyrus 54 0.482 0.632 ns − 2.314 0.025 ns
 Insula 54 − 0.826 0.412 ns − 2.100 0.041 ns
 Anterior cingulate cortex (supra) 54 0.916 0.364 ns − 2.044 0.046 ns
Clustering
 Lateral orbital gyrus 54 − 0.102 0.919 ns 3.344 0.002 0.006
 Insula 54 2.213 0.031 ns − 0.518 0.607 ns
Edge count
 Anterior cingulate cortex (pre) 54 2.061 0.044 ns − 2.576 0.013 0.049
Local efficiency
 Lateral orbital gyrus 54 − 0.664 0.510 ns − 2.824 0.007 0.025
 Hippocampus 54 − 1.024 0.311 ns − 2.139 0.037 ns
 Putamen 54 − 1.287 0.204 ns − 2.063 0.044 ns
 Pallidum 54 − 1.398 0.168 ns − 2.532 0.014 0.049
 Anterior cingulate cortex (supra) 54 − 1.861 0.069 ns − 2.187 0.033 ns
Nodal strength
 Anterior orbital gyrus 54 2.477 0.017 0.037 1.781 0.081 ns
 Lateral orbital gyrus 54 − 0.784 0.436 ns 2.070 0.044 ns
 Amygdala 54 0.555 0.581 ns − 2.703 0.009 0.028
 Anterior cingulate cortex (sub) 54 0.713 0.479 ns 2.096 0.041 ns
 Nucleus accumbens 54 − 1.639 0.107 ns − 2.106 0.040 ns
Path length
 Anterior cingulate cortex (pre) 54 − 0.182 0.856 ns − 2.241 0.029 ns
Participation
 Insula 54 0.536 0.594 ns − 2.507 0.015 ns
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more segregated processing in regions functionally connected to the anterior piriform  cortex37. Similarly, we 
evidenced an increase in segregation in the orbitofrontal cortex and identified a negative correlation between 
clustering of whole-brain WM and the olfactory test in the COVID-19 group, which was not observed in the 
control group.

The present study has some limitations that should be acknowledged. Firstly, this was a cross-sectional study 
with a non-probabilistic sample, which may limit the generalizability of the findings. Additionally, patients were 
evaluated only once during the post-acute phase, and there was no serial evaluation at different time points, 
precluding inferences about the temporal dynamics of abnormalities in the olfactory bulbs and WM. Further-
more, the diffusion parameters selected (e.g., low b-values) may have limited the quantitative diffusion analysis, 
although they better reflect the clinical protocol context.

In summary, our study highlights the presence of reduced olfactory bulb volume and WM structural net-
work disruption in patients with persistent hyposmia after COVID-19. Our findings suggest that compensatory 
mechanisms in the parietal sensory and olfactory-related areas may help alleviate the deficiency in olfactory 
processing in COVID-19 patients. While larger brain connectivity studies are needed to confirm these obser-
vations, longitudinal analyses are particularly important to assess the long-term neurological consequences of 
COVID-19. Further research is also required to explore the potential impact of olfactory dysfunction on quality 
of life and daily functioning.

Methods
Participants. This cross-sectional prospective analytical study was conducted as part of the Neuro-
COVID-19 Brazilian Registry (NeuroCovBr, https:// www. neuro covbr. com/)38, between October 2020 and May 
2021 in Brasilia, Brazil. Participants were recruited with a non-probabilistic sampling strategy from a popula-
tion of health professionals and patients assisted at the Brasilia University Hospital before the implementation 
of mass vaccination campaigns. We consecutively contacted a list of 364 patients diagnosed with COVID-19 by 
real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) to invite them to the study.

The inclusion criteria for the COVID-19 group (COV +) were: (a) diagnosis of SARS-CoV-2 infection con-
firmed by detection of viral RNA by qRT-PCR testing of a nasopharyngeal swab, without requiring hospitalization 
during infection, (b) COVID-19-related persistent subjective hyposmia, and (c) age between 18 and 60 years 
old. Patients were evaluated at least four weeks after the diagnosis of COVID-19 to ensure that the acute phase 
had already passed. The control group (COV-) was recruited from the same population (patients or health 
professionals from Brasilia University Hospital) using convenience sampling, with age, sex, and education level 
matched to the COV + group. Subjects in the COV− group had not been previously infected with SARS-CoV-2, 
had a negative SARS-CoV IgG/IgM test, and had no olfactory dysfunction.

The exclusion criteria for both groups included (a) pre-existing brain structural disorders (e.g., stroke, epi-
lepsy, multiple sclerosis, neoplasia, hydrocephalus, traumatic brain injury, Parkinson’s disease, and dementia), (b) 
severe psychiatric diseases, (c) MoCA global score of less than  1539, (d) MRI contraindications, and (e) illiteracy.

This study was approved by the local ethics committee at the University of Brasilia and adhered to current 
regulations, such as the Helsinki Declaration. All participants provided written informed consent and underwent 
clinical, cognitive, and MRI examinations during the same visit.

Clinical assessment. Demographic and clinical data were collected using electronic forms, including eval-
uation of neurological, chemosensory, respiratory, and constitutional symptoms. In addition, demographic vari-
ables such as age, education, sex, and a list of self-reported comorbidities were obtained.

The Sniffin’ Sticks smell identification test (SS-16) was used to evaluate participants’ ability to identify odors. 
This psychophysical test was developed by  Burghardt® (Wedel, Germany) and previously adapted to Brazilian 
 Portuguese26,27. The test comprises 16 pens containing common and recognizable odorants. The length of each 
pen is 14 cm (approximately 5.51 in), with an internal diameter of 1.3 cm (about 0.51 in) and a 4 mL cap con-
taining odorless or odorous liquids dissolved in propylene glycol. The participant had to identify the odor using 
a four-option forced-choice paradigm.

All participants also responded to a cognitive test, MoCA, to screen for cognitive  impairment39,40. It is a 
brief 30-point test that assesses attention, executive functions, memory, language, visuoconstructional skills, 
conceptual thinking, and calculations.

MRI data acquisition. The MRI was performed using a Philips Achieva 3 T scanner (Best, Netherlands) 
equipped with an 8-channel SENSE coil. The following MRI sequences were obtained: (1) Three dimensional (3D) 
T1-weighted sequence, turbo field echo (TFE), sagittal, with field of view (FOV) = 208 × 240 × 256 mm, recon-
structed resolution of 1 × 1 × 1 mm, echo time (TE) = min full echo, repetition time (TR) = 2300 ms, TI = 900 ms, 
two times accelerated acquisition; (2) Diffusion-weighted sequence, axial, with FOV 232 × 232 × 160 mm, recon-
structed resolution of 2 × 2 × 2  mm, TE = 71  ms; TR = 3300  ms, 32 directions (b = 800  s/mm2); (3) Diffusion-
weighted sequence, axial, with FOV 232 × 232 × 160 mm, reconstructed resolution of 2 × 2 × 2 mm, TE = 71 ms; 
TR = 3300 ms (reversed phase encoded b0); (4) 3D-fluid attenuated inversion recovery (FLAIR) sequence, sag-
ittal, with FOV 256 × 256 × 160  mm, reconstructed resolution of 1.2 × 1 × 1  mm, TE = 119  ms, TR = 4800  ms, 
TI = 1650  ms. (5) T2-weighted sequence, coronal, with FOV 264 × 204  mm, reconstructed resolution of 
0.25 × 0.25 × 1.5 mm, TR = 2500 ms, TE = 80 ms; flip angle = 90, with coverage of the anterior cranial fossa.

Manual segmentation of the olfactory bulbs. Two independent evaluators blinded to clinical and 
olfactory data manually segmented the volumes of the olfactory bulbs using ITK-SNAP (version 3.8) (Fig. 3)41. 
The limits of the olfactory bulb in the coronal plane were determined by the surrounding cerebrospinal fluid, 
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while an abrupt diameter change defined the posterior boundary of the olfactory bulb at the transition with the 
olfactory  tract42. The volumetric measures of the right and left olfactory bulbs were taken independently and 
then summed. The mean values established by the two evaluators were used in all subsequent analyses. Interob-
server agreement was evaluated using Pearson’s correlation coefficient and the DSC (Fig. 3).

The estimated total intracranial volume (eTIV) was computed using FreeSurfer (version 7.1.1, http:// surfer. 
nmr. mgh. harva rd. edu) which normalized the volumes of the olfactory bulbs to eliminate biases caused by une-
qual head sizes.

Diffusion magnetic resonance imaging processing. TractoFlow was used to analyze dMRI and 
T1-weighted images (Fig. 4)43. As an automated tool for processing dMRI, it extracts diffusion tensor imag-
ing (DTI) measures. FA, MD, RD, and AD were calculated. Probabilistic whole-brain anatomically constrained 
particle filtering tractography was performed on a fiber orientation distribution function (fODF) of maximum 
spherical harmonics order of  644. The output of TractoFlow was then further processed via advanced steps to 
generate structural connectomes using SCILPY library version 1.0.045. Then, COMMIT2 with ball & sticks for-
ward model was used to filter the raw tractogram and compute the COMMIT2 weights of each  streamline16,17.

Voxel‑based diffusion imaging analysis. The TBSS pipeline in FSL (version 6.0)30 was used to compare 
MRI metric differences between the COV + and COV− groups (Fig. 4). The FA maps were nonlinearly aligned to 
the FMRIB-58 map in the template space of the Montreal Neuroimaging Institute (MNI). The FA skeleton mean 
was computed following the deformable registration. The FA maps deformation fields were utilized for FA, MD, 
RD, and AD. The registered maps were projected onto the FA skeleton.

Network construction. The brain network is composed of nodes and edges. To determine the nodes 
within the network, we selected 171 grey matter regions of the brain from the AAL3  atlas46. Each AAL3 region in 
standard MNI space was back-transformed to the participant’s native diffusion space. The COMMIT2-weighted 
tractogram and AAL3 parcellations were used to derive COMMIT2-weighted structural connectivity matrices 
(Fig. 4). The COMMIT2 weight of a streamline is a measure that quantifies the contribution to the diffusion MRI 
signal of each streamline and is proportional to the cross-sectional area of the biological fibers along their path. 
By its turn, the COMMIT2 weight of a connection corresponds to the sum of the individual weights assigned 
by COMMIT2 to each streamline connecting two parcels of the matrix and was used as a marker of connectiv-
ity strength. Through its ability to take into account the tracking bias related to variations in bundle width, the 
COMMIT2 weight constitutes a more biological proxy than the frequently used streamline  count15. The pos-
sibility to inject priors about brain anatomy and its organization, and not only about microstructural properties, 
represents a powerful and novel way to tackle the false-positive problem in tractography and brain structural 
 connectivity16,17. COMMIT2-weighted 171 × 171 whole-brain matrices were computed.

Three-dimensional projections of structural connections and nodes were visualized using BrainNet Viewer 
(version 1.42)47, for comparison of COMMIT2 weight matrices and graph theory analyses.

Figure 3.  Manual segmentation of the olfactory bulbs. A. Coronal T2-weighted image of a participant. B. 
Coronal T2-weighted image with segmentations made by the two evaluators. Red: Rater 1; Green: Rater 2; 
Yellow: Overlap.

http://surfer.nmr.mgh.harvard.edu
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Network‐based statistics. NBS was performed following Zalesky’s methods with NBS Connectome (ver-
sion 1.2) to determine the different  connections48,49. NBS is a statistical method based on graph theory and is 
often used to explore differences in the structural connectivity in the brain WM network. Typically, NBS analysis 
is conducted to identify subnetworks consisting of pairs of nodes and connections whose structural connectivity 
strength varies significantly between groups.

Network measures. The Brain Connectivity Toolbox (BCT) computed network measures for each 
 subject50. For global networks, betweenness centrality (corresponding to the fraction of all shortest paths in the 
network), modularity (reflecting the segregation of the network), assortativity (reflecting whether nodes tend to 
be connected to other nodes with similar strengths), participation (measure of diversity of intermodular con-
nections), clustering coefficient (fraction of connected triangles around a node), mean strength (corresponding 
to the average of all the nodal strengths, where the nodal strength is the sum of the weights of links connected 
to the node), global efficiency (corresponding to the average inverse shortest path length in the network and 
inversely related to the characteristic path length), density (corresponding to the fraction of present connections 
to possible connections), characteristic path length (average of the shortest path length across all nodes), edge 
count, and small-worldness (ratio of average clustering coefficient to characteristic path length) were analyzed.

We analyzed regional network measures, calculated for each node, including betweenness centrality (number 
of shortest paths that pass through a node), clustering (fraction of connected triangles around a node), edge 
count, local efficiency (average of the inverse shortest path length in the neighborhood a node), nodal strength 
(sum of weights of links connected to the node), path length (shortest path length across the (average of the 
shortest path length across all nodes), and participation (a measure of the diversity of intermodular connections 
of a node).

Figure 4.  Processing flowchart. ((A) and (B)). The TractoFlow pipeline processes diffusion-weighted and 
T1-weighted images (C) T1-weighted images are labeled in 171 brain regions of the AAL3 atlas. (D) Diffusion 
MRI-derived measures are computed. (E) Whole brain probabilistic tractography is performed using an 
anatomically constrained particle filter algorithm. (F) Extraction of the COMMIT2-weighted connectivity 
matrix. (G) Voxel-based analysis investigated FA, MD, RD, and AD metrics. (H) Network-based statistics 
analysis. (I) Graph theory analysis: global and local network. AAL automated anatomical labeling, COMMIT 
convex optimization modeling for microstructure informed tractography, FA fractional anisotropy, MD mean 
diffusivity, RD radial diffusivity, AD axial diffusivity.
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Local network measures were calculated for the olfactory-related brain regions (olfactory cortex, gyrus rectus, 
medial orbital gyrus, anterior orbital gyrus, posterior orbital gyrus, lateral orbital gyrus, insula, hippocampus, 
parahippocampal gyrus, amygdala, caudate nucleus, putamen, pallidum, thalamus [mediodorsal medial nucleus 
and mediodorsal lateral nucleus], anterior cingulate cortex [subgenual, pregenual and supracallosal], and nucleus 
accumbens)51,52.

MRI quality control. The MRI images were inspected for significant gross geometric distortion, mass 
movement, and signal drop artifacts to ensure their quality. For T1-weighted and dMRI images, a Nextflow 
pipeline for dMRI quality control (Dmriqc-flow) was also  utilized53.

Statistical analysis. Demographic and clinical assessments. The demographic and clinical characteristics 
of the groups were compared using independent-sample t-tests for normally distributed continuous variables, 
Mann–Whitney tests for nonnormally distributed continuous variables, and χ2 for categorical variables. Fulfill-
ment of the normality assumption was inspected through visual examination of variable distributions and the 
Shapiro–Wilk test. The significance level was set at p < 0.05. All statistical analyses were performed in R, version 
4.1.0 (R Foundation for Statistical Computing, Vienna, Austria).

Segmentation of the olfactory bulbs. The olfactory bulb volumes were compared using a t-test for independ-
ent samples. To account for multiple comparisons, the results were adjusted using the False Discovery Rate 
(FDR)  method54. The eTIV corrected the volumes obtained with the formula: (volume of the olfactory bulb/
eTIV) × 100.

An analysis of covariance (ANCOVA) was performed to compare the normalized total olfactory bulb vol-
ume between groups, while controlling for variables such as sex, age, and allergic rhinosinusitis. As necessary, 
significant p-values were adjusted using post hoc Bonferroni tests (p < 0.05).

The level of interobserver agreement for the segmentation of the olfactory bulbs was assessed by the Pear-
son’s correlation coefficient and the DSC. The DSC is an overlap similarity index that reflects agreement in size 
and location. It ranges from 0 (no overlap) to 1 (complete overlap) (Fig. 3). A satisfactory overlap exists when 
DSC > 0.7055.

Voxel-based diffusion imaging analysis. To test for group differences, a general linear model (GLM) with con-
trast was performed on VBA data. The TBSS  framework30 includes nonparametric permutation testing (5000 
permutations) to correct multiple comparisons and threshold-free cluster enhancement (TFCE). Age and sex were 
used as nuisance covariates. Results were considered significant at p < 0.05, TFCE corrected for multiple com-
parisons. WM regions were named according to the Johns Hopkins University white-matter tractography atlas.

Network‐based statistics. Between-group differences (COV−   > COV + and COV- < COV + contrasts) were 
tested on structural connectivity matrices for a range of primary thresholds (from t = 2.5 to t = 3.5), with age and 
sex as nuisance variables. Five thousand permutations were used, with intensity as the measure of network size 
and a statistical significance threshold set at p < 0.05.

Network metrics. Between-group differences were tested with either Mann–Whitney (modularity, clustering, 
and nodal strength) or independent-sample t-tests (other global network metrics). A GLM was used to ana-
lyze the local network metrics differences in olfactory-related brain areas between the control and COVID-19 
groups, using age and sex as covariates. All results were corrected using the FDR  method54.

We performed a partial correlation analysis between global network measures, SS-16 test score, and normal-
ized total olfactory bulb volume, adjusting for age, sex, education, comorbidities (allergic rhinosinusitis and 
migraine), and time between COVID-19 diagnosis and study clinical/imaging procedures. Data were analyzed 
using Spearman’s coefficient. Statistical significance was defined as a two-tailed p < 0.05.

Data availability
The anonymized dataset that supports these study findings is available upon reasonable request from the cor-
responding author from a qualified investigator if the intent is to increase reproducibility. The data were not 
publicly available because of privacy or ethical restrictions.
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