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Abstract

The large volume of documents produced daily in all sectors, such as industry, commerce,
and government agencies, has increased the amount of research aimed at automating the
process of reading, understanding, and analyzing. Business documents can be born digi-
tal, as electronic files, or a digitized form that comes from writing or printed on paper. In
addition, these documents often come in various layouts and formats. They can be orga-
nized differently, from plain text multi-column layouts and various tables/forms/figures.
In many documents, the spatial relationship of text blocks usually contains important
semantic information for downstream tasks. The relative position of text blocks plays a
crucial role in document understanding. However, embedding layout information in the
representation of a page instance is not trivial. In the last decade, Computer Vision (CV)
and Natural Language Processing (NLP) pre-training techniques have been advancing
in extracting content from document images considering visual, textual, and layout fea-
tures. Deep learning methods, especially the pre-training technique, represented by the
Transformer architecture, have become a new paradigm for solving various downstream
tasks. However, a major drawback of such pre-trained models is that they require a high
computational cost. Unlike these models, we propose LayoutQT, a simple rule-based
spatial layout encoding method, which combines textual and spatial information from
text blocks. Given that our focus is on developing a low computational cost solution, we
performed the experiments with AWD-LSTM neural network. We show that this enables
a standard NLP pipeline to be significantly enhanced without requiring expensive mid or
high-level multimodal fusion. We evaluated our method on three datasets (Tobacco800,
RVL-CDIP, and VICTOR) for page stream segmentation tasks and document image clas-
sification and identified an improvement in the results obtained about the baseline. For
document page stream segmentation, the LayoutQT method combining text and layout
features was evaluated with the following backbones: LSTM, AWD-LSTM, and BERT,
leading to the F1 scores of 86.1%, 99.6% and 93.0%, respectively on the Tobacco-800
dataset. In contrast, the baseline results were F1 82.9%, 97.9% and 92.0%. For classi-
fying documents on the RVL-CDIP dataset, our proposed approach also demonstrated
superior performance, resulting in an advantage of 5.5% and 4.4% in the F1 score metric
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compared to the baseline using AWD-LSTM and BERT models, respectively. Further-
more, the result of our approach obtained with the AWD-LSTM model was 1.4% better
than that with BERT. Finally, the performance of our LayoutQT surpasses the state-
of-the-art proposed by Luz et al. (2022) on the VICTOR dataset for document image
classification, proving the effectiveness of our model.

Keywords: Document Intelligence, Natural Language Processing, Computer Vision,
Document Image Classification
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Fusão de Informações Visuais e
Textuais para Análise de

Documentos

Resumo Expandido

Diariamente é produzido um grande volume de documentos nas organizações indus-
triais, comerciais, governamentais, entre outras. Além disso, com o mercado competitivo
na internet, as transações de negócios têm crescido numa velocidade imensa. Esses fa-
tos aumentam cada vez mais a necessidade da automação e extração de informações de
documentos. Os documentos podem ter sido originados digitalmente como um arquivo
eletrônico ou podem ser uma cópia digitalizada de documento impresso em papel. Esses
documentos, geralmente, são ricos de informações visuais e podem estar organizados de
diferentes maneiras, desde páginas simples contendo apenas texto, até páginas com layouts
de várias colunas de texto e uma ampla variedade de elementos não textuais como figuras
e tabelas. Para análise e classificação desses documentos a extração de informações base-
adas somente em blocos de texto ou em características visuais nem sempre é eficaz. Em
geral, a relação espacial desses elementos e blocos de texto contém informações semânticas
cruciais para compreensão de documentos.

O processo de automação da análise e extração de informações de documentos é de-
safiador devido aos vários formatos e layouts dos documentos de negócios, e tem atraído
a atenção em áreas de pesquisa como Visão Computacional (CV) e Processamento de
Linguagem Natural (NLP). Document Intelligence é um termo recente utilizado para
aplicações da Inteligência Artificial que envolve a automatização de leitura, compreen-
são e análise de documentos visualmente ricos de informação. O primeiro workshop de
Document Intelligence (DI’2019) foi realizado no dia 14 de dezembro de 2019 na Confe-
rência sobre Sistemas de Processamento de Informações Neurais (NeurIPS) em Vancou-
ver, Canadá. Essas aplicações, também conhecidas como Document AI, são geralmente
desenvolvidas para resolver tarefas como análise de layout de documentos, extração de
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informações visuais, resposta-pergunta visuais de documento e classificação de imagem de
documentos, etc.

Na última década, várias abordagens multimodais unindo técnicas de CV e NLP vêm
avançando em tarefas de compreensão de documentos, como por exemplo, análise de
layout, segmentação de páginas e classificação de imagens de documentos considerando
a junção de pelo menos duas das modalidades de recursos: visuais, textuais e de layout.
Existem algumas abordagens que foram propostas para lidar com layouts nas imagens
do documento. As abordagens tradicionais baseadas em regras (top-down, bottom-up
e híbridas) e as abordagens baseadas em Machine Learning e Deep Learning. No en-
tanto, o surgimento da abordagem Deep Learning, principalmente com as técnicas de
pré-treinamento, utilizando Redes Neurais Convolucionais e Arquitetura Transformer tem
avançado em pesquisa reduzindo o número de pesquisas com abordagens tradicionais.

A tecnologia de Deep Learning usada em Document Intelligence envolve a extração de
informações de diferentes tipos de documentos através de ferramentas de extração, como
OCR, extração de HTML/XML e PDF. As informações de texto, layout e visuais depois
de extraídas são pre-treinadas em redes neurais para realizar as tarefas downstream. O
modelo de linguagem BERT (Bidirectional Encoder Representations from Transformers)
tem sido usado como backbone para outros modelos de pre-treinamento combinando re-
cursos visuais e textuais para tarefas downstream. Apesar do excelente desempenho dos
modelos Transformer existem vários desafios associados à sua aplicabilidade para configu-
rações prática. Os gargalos mais importantes incluem requisitos para grandes quantidades
de dados de treinamento e altos custos computacionais associados.

Ao contrário desses modelos, nós propomos um método de codificação de layout espa-
cial simples e tradicional baseado em regras, LayoutQT, que combina informações textuais
e espaciais de blocos de texto. Nós mostramos que isso permite que um pipeline de NLP
padrão seja significativamente aprimorado sem exigir custos de fusão multimodal de médio
ou alto nível. O LayoutQT divide a imagem de documento em quadrantes e associa a cada
quadrante um token. Na extração de blocos de texto, são inseridos os tokens relativo às
posições de início e fim dos blocos de texto. Além disso, foram inseridos tokens relativos
às posições centrais de texto. Para avaliar nosso método, nós realizamos experimentos
utilizando as redes neurais LSTM e AWD-LSTM em três bases de dados (Tobacco800,
RVL-CDIP e VICTOR) disponíveis publicamente, sendo uma para tarefas de segmenta-
ção de fluxo de páginas e as outras duas para classificação de imagens de documentos. A
base de dados Tobacco800, possui 1.290 imagens de documentos dividida em duas classes
(FirstPage e NextPage), utilizada para classificar se a imagem é a primeira página de
um documento ou se é uma página de continuidade. RVL-CDIP contém 400.000 imagens
de documentos divididos em 16 classes e é utilizada para classificação de documentos.
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VICTOR é uma base de dados mais robusta contendo 692.966 documentos de processos
judiciais do Supremo Tribunal Federal (STF) do Brasil compreendendo 4.603.784 páginas
dividida em 6 classes. Essa base de dados faz parte de um projeto com mesmo nome,
resultado da parceria entre a UnB, STF e a Finatec Como baseline realizamos os mesmos
experimentos sem os tokens de posição.

Inicialmente nós escolhemos empiricamente dividir os documentos em 24 quadrantes,
sendo 6 linhas por 4 colunas. Em seguida nós alteramos os parâmetros como valores
de quadrantes, inserção/exclusão de tokens posicionais e realizamos vários experimentos
com números de quadrantes diferentes, menos e mais do que 24. No entanto, os melhores
resultados foram obtidos com os 24 quadrantes. Para segmentação de fluxo de páginas
de documentos, o método LayoutQT combinando recursos de texto e layout obteve os
melhores resultados, obtendo pontuação F1 usando LSTM, AWD-LSTM e BERT mo-
delo, respectivamente de 86,1%, 99,6% e 93,0%. Em contraste, o resultado da baseline
obteve F1 de 82,9%, 97,9% e 92,0% no conjunto de dados Tobacco-800. Para classifi-
car documentos no conjunto de dados RVL-CDIP, nossa abordagem proposta também
demonstrou desempenho superior, resultando em uma vantagem de 5,5% e 4,4% na mé-
trica de pontuação F1 em comparação com a baseline usando os modelos AWD-LSTM
e BERT, respectivamente. Além disso, o resultado da nossa abordagem obtido com o
modelo AWD-LSTM foi 1,4% melhor do que com BERT. Por fim, o desempenho do nosso
LayoutQT supera o estado da arte proposto por Luz et al. (2022) no conjunto de dados
VICTOR para classificação de imagens de documentos, comprovando a eficácia do nosso
modelo.

Palavras-chave: Inteligência de Documento, Processamento de Linguagem Natural, Vi-
são Computacional, Classificação de Imagem de Documento
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Chapter 1

Introduction

This Chapter briefly contextualizes our field of study, the motivation, and the statement
of the problem we intend to face. It also includes our objectives, the contributions we
have achieved, and the expected contributions. To conclude the Chapter, an outline of
the entire document is presented.

1.1 Contextualization

Business documents are essential for the operations carried out in their organizations.
Automated processing has helped to organize and extract information from these docu-
ments. However, the massive amount of digitized documents produced in the last decades
requires a significant effort in developing document image processing methods for infor-
mation extraction. Document Artificial Intelligence or Document Intelligence (DI) [48], is
an application of Artificial Intelligence (AI) that involves automatic reading, comprehen-
sion, and analysis of business documents. The first workshop on Document Intelligence
was held on December 14, 2019, at the Conference on Neural Information Processing
Systems (NeurIPS) in Vancouver, Canada [48]. Document AI is very challenging due to
the diversity of layouts and formats from webpages, digital-born or scanned documents,
low-quality scanned document images, and the template structure’s complexity. With the
various structures of business document images, extracting semantic information from its
textual content favors downstream tasks such as document retrieval, information extrac-
tion, and text classification [14].

Furthermore, each document can also be classified as belonging to a certain class of
documents. Given the image of a document, the layout can help to recognize and classify
this document. Document image classification (DIC) is often an important step of the
document image processing system. This classification aims to assign to document image
to one or several pre-defined categories. The document image classification task often
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facilitates the downstream process since images from different categories may undergo
different processes. It can also help automate document image workflows by routing a
document when classes of interest are detected [40].

Documents follow some layout, including vital structural and visual information (e.g.,
font sizes and geographic position of the text). It is important to locate the region of
the structural elements, like text, figures, and tables; it contains most document layout
information. Figure 1.1 presents four documents with different layouts: form, scientific
publication, invoice, and memo. In addition, the information in business documents is
presented in various ways, from plain text to multi-column formats and a wide variety
of tables. These documents often reflect complex legal agreements and refer explicitly or
implicitly to regulations, legislation, case law, and standard business practices. Conse-
quently, the information is not easily accessible for extraction and recognition [72].

Figure 1.1: Examples of document images with different visual styles (a) a form, (b) a scientific
publication page, (c) an invoice, and (d) a memo.

Due to the fundamental importance of document image classification, it has been
explored extensively over the years with the growth of methods from computer vision
(CV) and natural language processing (NLP). Computer vision methods have been used
for optical character recognition (OCR) systems to extract text from image documents
based on their visual appearance [5]. To some extent, OCR could be a solution that can
extract the text from an image of a document and convert it into computer-readable form,
which may further be used for editing. Nonetheless, OCR is prone to errors and is not
always applicable to all documents, e.g., handwriting text is still difficult to read, and
those document images must have high resolution [50]. The main issue with traditional
OCR is that it does not extract and attach the positional values of the text with extracted
text [22].
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On the other hand, much of the relevant information is in the text, so extracting text-
based information from documents has been the subject of NLP studies for some time.
However, a system cannot rely on text alone but requires incorporating structure and im-
age information. Although the text allows retrieving information about the document’s
content, the visual layout plays an equally important role [50]. The document layout
comprises both the structure and visual information (e.g., font sizes, text centering, loca-
tion of parts of the text) that are vital to the understanding of the document by readers
but often ignored by models that consider only the textual content. Thus, combining
visual, textual, and document image layout resources in extracting information is of great
importance [31]. Recent approaches in literature have explored frameworks that utilize
information from text, layout, and document images to serve specific downstream tasks.
However, they are limited by the inability to learn cross-modal representations in text,
layout, and image dimensions for documents and process multi-page documents.

With the acceleration of digitization, the structured analysis and content extraction of
documents, images, and others has become a key part of digital success. Key information
extraction from business document images requires understanding texts in various lay-
outs. Many AI technologies have advanced to improve the use and handling of industrial
documents, such as machine [44] and deep learning [78]. Deep learning methods have
become a new paradigm for solving many machine learning problems.

In addition, most recent approaches try to solve the task by developing pre-training
language models [27, 37, 72, 73] focusing on combining visual features from document
images with texts and their layout using a unified Transformer architecture [65]. The
development of Document AI also reflects a similar trend with other applications in deep
learning, especially in the pre-training technique represented by Convolutional Neural
Networks (CNN), Graph Neural Networks (GNN), and Transformer architecture. Among
all these approaches, a typical pipeline for pre-training Document AI models usually starts
with the vision-based understanding, such as Optical Character Recognition (OCR) or
document layout analysis.

Furthermore, Large Language Models (LLMs) are gaining increasing popularity in
academia and industry owing to their unprecedented performance in various applications.
The core module behind many LLMs is the self-attention module in Transformers [65] and
GPT [53], which serves as the fundamental building block for language modeling tasks.
However, LLMs have high training and updating costs due to the high computational
cost and the spatial complexity of the self-attention mechanism concerning the length
of the input sequence. In real-world application scenarios, a typical Document Intelli-
gence System mainly includes five types of tasks, namely: Document Layout Analysis,
Visual Information Extraction, Document Visual Question Answering, Document Image
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Classification, and Page Stream Segmentation [14].

Document Layout Analysis (DLA) is a means to identify different functional/logical
content elements (e.g. sentences, titles, captions, author names, and addresses) on a
given page. It is realized by segmenting physical contents (e.g. pixels, characters, words,
lines, figures, tables, and background) on the page and classifying them into predefined
functional/logical categories, in other words, by assigning these classified entity labels.
Document layout analysis plays a crucial role within the document digitization procedure
because the correctness of layout analysis determines whether a subsequent text recogni-
tion procedure is operated on the correct text object. When implementing layout analysis,
there are generally two approaches to carry out this procedure, the top-down approach
and bottom-up approach [39], discussed in subsection 2.1.4.

Visual Information Extraction refers to the technology of extracting semantic en-
tities and their relationships from many unstructured visually-rich documents. Visual
information extraction differs in different document categories, and the extracted entities
are also different. Unlike traditional pure text information extraction, the construction
of the document turns the text from a one-dimensional sequential arrangement into a
two-dimensional spatial arrangement. This makes text, visual, and layout information
extremely important influencing factors in visual information extraction [72].

Document Visual Question Answering (VQA) is a high-level understanding task
for document images. Specifically, given a document image and a related question, the
model needs to correctly answer the question based on the given image [14]. A set of VQA
tasks is defined based on various application scenarios, including statistical charts, daily-
life photos, and digital-born documents. Document VQA task aims to extract information
from documents and answer natural language questions.

Document Image Classification is the process of analyzing and identifying document
images while classifying them into different categories, such as scientific papers, resumes,
invoices, receipts, and many others. Document image classification is a special subtask
of image classification. Thus, classification models for natural images can also address
the problem of document image classification [72]. Document Image Classification task
tries to predict the class to which a document belongs by means of analyzing its image
representation.

Page Stream Segmentation is the process of recovering document boundaries from
aggregated streams of pages [64]. Page Stream Segmentation refers to the combined prob-
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lem of both finding document separation points in an ordered collection of page images
and assigning the correct semantic labels to the output documents [23]. One of the key
steps in the batch scanning process is the segmentation of the resulting page stream into
continuous sets of pages corresponding to the physical documents, a procedure also re-
ferred to as document separation.

For these five main Document AI tasks, there have been many open-sourced benchmark
datasets in academia and industry, which has greatly promoted the development of new
algorithms and models by researchers in related research areas. However, this work mainly
focuses on approaches to document image classification and page stream segmentation
tasks combining visual and textual features. The next section presents the document
classification problem statement and divides it into two downstream tasks: Document
Image Classification and Page Stream Segmentation.

1.2 Problem Statement

Automatic information extraction from documents is a challenging task. The physical
documents are generally scanned or photographed before the information extraction pro-
cess begins. Document classification has been widely adopted for various document image
processing applications as a fundamental step of document-related tasks. Developing an
automated system to classify arbitrary document images into their respective true cate-
gories is computationally complex. The complexity of this task is increased due to the
similarity between document classes. Two documents from different classes may look
similar, while two from the same class may look very different. For example, an adver-
tisement may look like a news item, and scientific publications may appear very different
depending on the publisher’s layout (two vs. single-column).

Another challenge for the document image classifier is receiving many pages as input
and needing to separate the documents when one document ends and another begins. This
huge document flow must be processed accurately and quickly. Each scanned document
must be segmented on subsequent pages and then forwarded to the right recipient to be
processed and saved in a database. One of the key steps in the batch scanning process
is segmenting the resulting page stream into continuous sets of pages corresponding to
the physical documents, a procedure also referred to as document separation [23]. In
this context, page stream segmentation refers to the combined problem of both finding
document separation points in an ordered collection of page images and assigning the
correct semantic labels to the output documents. The page stream does not contain any
separator pages or other marks.
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In contrast, the documents in the page stream comprise sets of pages that do not
necessarily bear any similarity between each other. Only document-level labels are avail-
able, while there is no prior information about the number of documents in the stream.
Furthermore, This separation can be done by identifying the first page of each document
in the ordered flow of documents. Figure 1.2 illustrates this segmentation of document
page images into different documents, recognizing the first page of each document. In
this case, the pages of the documents are ordered from the first to the last page, and the
sequence continues with the next document.

Figure 1.2: Illustration of page stream segmentation.

Some classifiers use only image, structural, or textual features; others use a combi-
nation of resources from several groups. Global image features are extracted directly
from the entire document image, and local features are extracted from a segmented image
region. Structural characteristics are obtained from physical or logical layout analysis.
Textual features can be extracted from OCR output or directly from document images.
Recent work [72, 73, 71] has used 2D coordinates to represent visual features of regions
of interest (ROI) and join to text embedding.
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1.2.1 Document Image Classification

Document image classification consists of assigning a document image to one of a set
of predefined document classes. In most research papers and their respective datasets,
the methods treat every page as a sample with a single class. Classification can be
based on various features, such as visual, layout, or textual features. Classifiers solve
various document classification problems, differ in how they use training data to construct
models of document classes, and differ in their choice of document features and recognition
algorithms. Choice of document features is an important step in classifier design [12].

Classification may be performed at different stages of document processing, with a
diverse choice of document features, feature representations, class models, and classifi-
cation algorithms. These aspects are interrelated: design decisions regarding one aspect
influence the design of other aspects. For example, if document features are represented
in fixed-length feature vectors, then statistical models and classification algorithms are
usually considered [12].

Formally, let a set D = {d1, d2, ..., dM} of M documents and C = {c1, c2, ..., cK}
represent the set of possible document classes, then for each di exists a class cK such
that di ϵ cK . The function f : D → C represents Document Image Classification DIC.
In general, different documents dK will contain a different number of pages, even if they
belong to the same class [21].

The publicly available datasets for evaluating the performance of document image
classifiers are Tobacco-3482 [32] and RVL-CDIP [26]. These datasets are subsets of anno-
tated documents from the Truth Tobacco Industry dataset found in the literature. The
VICTOR [17] dataset was built from Brazil’s Supreme Court (Supremo Tribunal Federal
or STF) digitalized legal documents. Three datasets are described in detail in 4.2.

1.2.2 Page Stream Segmentation

Page Stream Segmentation (PSS) is the task of automatically separating a stream of
scanned document page images into a set of documents. In document digitization pipelines,
it is common that multi-page digital documents arrive at the Document Management
System as an ordered set of digital images without indicating the document boundaries.
(PSS) consists in breaking pages into either continuity of the same document (SD) or the
beginning of a new document (ND) [69].

Page Stream Segmentation PSS is defined as a function g : P → D, where P =
{p1, p2, ..., pN} is a set of N pages transformed to D = {d1, d2, ..., dM}, set of M multi-
page documents of sequential pages, using a binary classification function g : N → {0, 1},
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where dk = [pi, pi + 1, ..., pj] for i < j ≤ N . Here, 0 denotes the first page of any document,
and 1 denotes any page other than the first page of any document [24].

Page stream segmentation is not a straightforward task because the limits of the doc-
uments are not always obvious, and it is not always easy to find common features between
the pages of the same document. Some studies in the related domain have been conducted
recently, depending on textual features [16] and some on image features [10] or combining
both resources. An approach [69] that uses image features using convolutional neural
networks (CNN) was built for PSS. By Braz et al. (2021) [10] improved the network ar-
chitecture using EfficientNet pre-trained CNN architecture, replacing the earlier proposed
VGG16 Network and focusing only on the image features.

A key challenge in PSS is finding real-world datasets containing publicly available
multi-page documents. For this work, we identified two datasets. Tobacco800 [35] is a
small annotated subset of the Truth Tobacco Industry Documents used in various PSS
research, which is described in detail in 4.2.1.

This task is not trivial because the document categories can be numerous, and increas-
ing the number of classes increases the complexity of the problem. This work proposes a
preprocessing method to improve DIC and PSS tasks with a low computational cost. In
the next section, we present research question and the objectives of our proposal.

1.3 Research Question and Objectives

Our main research question is “how can we take advantage of layout information to
improve the representation of documents for document classification?”. This question
motivated the elaboration of the following secondary questions:

• “which approaches support researchers in the semantic representation of textual and
visual features for information extraction?”

• “which natural language processing and computer vision techniques were used for
document classification task?”

• “what metrics and datasets were used to evaluate the performance of these ap-
proaches?”

To answer the main question, we set out the following main objective: to propose,
implement, and evaluate document processing methods that combine textual information
and layout by performing experiments on document image classification and page stream
segmentation tasks with low computational cost. More specifically, we aim to:

1) propose a joint feature learning approach that combines positional information of
text block and text embedding for extracting information.
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2) evaluate this approach for document classification and page stream segmentation
tasks.

3) compare the models with baselines and state-of-art.

1.4 Contributions

Our LayoutQT method enriches the textual representation beyond the reading order and
word context. The document is divided into quadrants that serve to mark the text box
location within a page. These quadrants are then injected into the representation in the
form of tags (spatial tokens), a bit like special words that do not belong to any language
but carry layout information.

Instead of representing spatial tokens using fine Cartesian coordinates on the page, the
spatial representation is highly quantised, which reduces the cardinality of the represen-
tations of coordinates, enabling their relevance to be learned by neural representations.
This novel spatial representation of text blocks is encoded along with the text and passed
to the language model.

Therefore, our main contribution is a novel approach to fuse textual and layout infor-
mation which exploits a by-product of the text digitalization process, incurring insignif-
icant additional computational cost in feature extraction. In addition, our model had
real application in the classification of STF legal documents on the VICTOR dataset and
showed an improvement over the baseline of at least 1.4% over the state-of-the-art [17].

The work has generated the following publication:

• De Lucena Drumond, P. M. L. et al. LayoutQT—Layout Quadrant Tags to embed
visual features for document analysis [18].

1.5 Document Outline

This manuscript is structured into 6 chapters. Chapter 1 consists of this introduction,
containing a brief contextualization that served as motivation for defining the problem,
the research question, the objectives, and the contribution of the work.

In Chapter 2, we present concepts necessary to understand how document features are
extracted from image processing. Initially, we show the physical layout analysis processes
for and their strategies.

Chapter 3 describes the methodology of a new approach for inserting spatial tokens of
text blocks into text embedding to improve document classification. LayoutQT divides
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a document page into quadrants to indicate the location of blocks of text without using
cartesian coordinates.

Chapter 4 presents the experiment scenario, four publicly available Document AI
benchmarks for document image classification and page flow segmentation tasks. Further-
more, the results of the LayoutQT evaluation on the two downstream tasks are presented
in tabular and graphical form.

Chapter 5 discusses the proposed model’s final considerations and limitations and
presents some proposals for future work.
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Chapter 2

Background and Related Concepts

Paper documents have traditionally been the main source for acquiring, disseminating,
and preserving knowledge. Automating the analysis and extraction of information from
documents is challenging due to the various document formats and layouts. A scanning
device can obtain a digital image of a paper document. Scanning a paper document
into electronic format needs a way to transform the document into data structures that
computers can understand. A document image may contain text, graphics, and tables. It
can be organized differently, from simple pages containing only text to pages with layouts
of several text columns.

Layout analysis is often a performance-limiting step of optical character recognition
(OCR) systems since the errors made at this stage propagate to all further stages. Divining
page images into text blocks and lines and determining their reading order is a major
performance-limiting step in large-scale document digitization projects. Prior to text
extraction using character recognition and word detection methods in OCR, a series of
physical layout analysis processes are applied for document analysis. The rest of the
chapter is organized as follows. Different processes involved in layout analysis are outlined
in Section 2.1.

2.1 Processes of document digitalization

Physical layout analysis is the step that locates lines of text in the image and identifies its
reading order, and involves different processes. In document layout analysis step, an input
document image is segmented into different regions. These regions are then classified as
text or non-text. The non-text regions are further classified into different sub-classes
like table, image, separator, graphic, chart, etc., whereas text regions are classified as
title, paragraph, header, footer, caption, drop-capital, etc [8]. Most of the layout analysis
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systems use processes of binarization, noise removal, skew correction, page segmentation,
zone classification and reading order determination in some form.

2.1.1 Binarization

Binarization is an important first step in most document analysis systems. To minimize
the impact of physical document degradation on document image analysis tasks (e.g.
page segmentation, OCR), it is often desirable to first the digital images. Such binarize
degradations include non-uniform background, stains, faded ink, ink bleeding through the
page, and uneven illumination. Binarization separates the raw content of the document
from these noise factors by labeling each pixel as either foreground ink or background.

Document binarization aims to convert a given greyscale or color document image into
a bi-level representation. When a document with black text on a white background is
scanned with a flatbed scanner to convert it to digital form, noise from several sources is
added to its digital counterpart. This noise comes from imaging mechanisms like finite
spatial sampling rate, noise in electronic components, pixel sensor sensitivity variations,
scanning processes like de-focusing non-uniform or poor illumination, and print-through
from the other side of the page. Even if the original paper document was bi-level, the
image obtained after scanning is usually greyscale. There are different binarization tech-
niques like Otsu, Adaptive, Sauvola, Global threshold-based, etc. The result of running
a binarization algorithm on a scanned document is shown in Figure 2.1.

Figure 2.1: The result of applying binarization algorithm: a) the input image is the scanned
image of a document. (b) image of the document after the binarization process.
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Thresholding is one of the popular techniques for image binarization, and many meth-
ods based on this technique are proposed in the literature. Thresholding is usually per-
formed in two ways: either globally or locally. In global thresholding, one threshold
value is computed to segment the image, whereas, in local thresholding, many different
threshold values are computed to divide the image into objects and backgrounds. The
global thresholding methods are widely used in many document image analysis applica-
tions for their simplicity and efficiency. However, these methods are usually unsuitable
for degraded document images because they need a clear bimodal pattern separating fore-
ground text and background. So, the local thresholding methods are better for degraded
document images with nonuniform background and foreground distribution. There are
different binarization techniques like Otsu, Adaptive, Sauvola, Global threshold-based,
etc.

2.1.2 Noise Removal

The documents may contain noise during scanning, transmission, or digital transforma-
tion. Usually, most of these contain defects and degradation such as complex backgrounds,
non-uniform intensity, shadows, bleed-through ink, aging, ink fading, and holes. Noise is
a common problem in most of the image understanding problems. Noise and blur can be
caused by some situations, such as environmental conditions and image sensor problems
due to miss-focus, motion, and transmission channels. Noise can also be induced in the
document from sources like printing on low-quality paper, printing by old printers and old
photocopying machines, images taken by portable cameras such as mobile phone cameras,
or webcam of laptops [58].

The noise may be categorized after finding the features, and the same patterns in the
document image may be found to obtain the accurate method for their elimination. Noise
removal is a process that tries to detect and remove noisy pixels in a document introduced
by scanning or binarization. Removing noise from the document image is important for
developing a high-quality Optical Character Recognition (OCR) system.

2.1.3 Rectification

Rectification is a process that detects and corrects the deviation of a document’s ori-
entation angle from the horizontal direction (see Fig. 2.2). Rotation is introduced in
a document image when a document is scanned or imaged at an angle concerning the
reference axes. Paper positioning variations are a class of document degradation that
results in skew and translation of the page contents in the scanned image. The problem
of rectification plays an important role in the effectiveness of many document analysis
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algorithms, such as text line estimation, region boundary detection, etc. For example,
algorithms based on projection profiles assume an axis-aligned scan.

Figure 2.2: Example of rectification of a document image with a rotation of 15 degrees.

The primary challenge in rectification is estimating the exact rotation angle of a doc-
ument image. A variety of techniques are used for the detection of skew. Most of them
assume the presence of some text component in the document and estimate the orientation
of text lines using different methods. A commonly used technique is projection profiles,
in which a given image is rotated at different angles for a range. The maximum difference
between the peaks of the pixel histogram of that image at each angle is calculated. The
angle of rotation for rectification will be the angle for which the maximum difference is
obtained.

2.1.4 Page Segmentation

Page Segmentation is a process that divides a document image into homogeneous zones,
each consisting of only one physical layout structure (text, graphics, pictures, etc.) while
respecting the columnar structure of the document. Note that there are several possible
ways to segment a document image correctly; this is the case with segments A and B in
Fig. 2.3(a) and Fig. 2.3(b), respectively. At the same time, segmentation C in Figure Fig.
2.3(c) shows some common segmentation errors that negatively affect OCR accuracy. In
that case, the page segmentation algorithm should segment all text columns separately
so that the text-lines in different text-columns are not merged together.
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Figure 2.3: An example image showing different segmentations of the same document. Segmen-
tations A and B are both correct as they separate text in different columns as well as images
from text. Segmentation C is considered to have two errors: 1) text in the first two columns is
merged 2) Caption of the top figure is merged with the figure itself.

Page segmentation is a key component of geometric layout analysis. The performance
of OCR systems depends heavily on the page segmentation algorithm. The segments thus
obtained are classified as containing text or non-text elements. The text segments or zones
are then fed to a character recognition module to convert them into electronic format. If
a page segmentation algorithm fails to segment text from images correctly, the character
recognition module outputs many garbage characters originating from the image parts.
Page segmentation algorithms can be categorized into three analysis methods: top-down,
bottom-up, and hybrid approaches. These methods rely heavily on heuristic rules and
require many parameters to improve performance. When the layout of a document is
relatively complex, these methods may fail to deliver optimal results.

Top-down separates the original document into different regions and then uses many
heuristic filters to classify each region [38, 52]. Top-down algorithm starts from the
whole document image and iteratively splits it into smaller ranges using the horizontal
and vertical projection profiles. It segments a page as a whole into one or more content
blocks and recursively segments the segmented blocks into paragraphs, lines, words, and
characters. The splitting procedure stops when some criterion is met, and the obtained
ranges constitute the final segmentation results. These methods were proposed quite
early; some famous examples of these top-down algorithms are the recursive X-Y cut
algorithm [49], the constrained run-length algorithm (CRLA) [66], and whitespace analysis
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[6]. Traditional top-down methods are only effective when the document has a Manhattan
layout1 [62]. While these methods work well in some documents, they require much human
effort to discover better rules. These methods have a low generalization capability since
they depend on the layout structure of the document represented in the input image.
Furthermore, they depend highly on the parameters chosen based on a priori knowledge
of the layout structure, which can vary greatly. In recent decades, documents have become
more varied and complex and do not necessarily follow those rules.

Bottom-up methods are more flexible as they do not require prior knowledge of the
layout structure. Instead, they operate by processing an image from its lowest levels,
such as its pixels or connected components, and increasingly group them into higher-level
regions. The first group of connected components is produced by the black and white
pixel in characters, then words, then lines, then text blocks [39]. The document segmen-
tation process combines them in blocks or paragraphs according to the different structural
characteristics. The Docstrum algorithm [51], the Voronoi-Diagram-based algorithm [30],
and the Run-Length Smearing Algorithm (RLSA) [70] are typical bottom-up algorithms.
Bottom-up methods are usually applicable to various layouts but are generally at least
quadratic in time and space. These methods use a lot of memory space and are time-
consuming. They need higher computational costs as an exchange.

Hybrid Methods are created from the combination of the two basic approaches. One
of the most representative methods is Connected Components (CCs) analysis: CCs are
detected from the entire images first, and then researchers analyze these CCs to acquire
areas of interest [11, 60, 62, 63]. These algorithms mostly analyzed the connected com-
ponents and the whitespaces between them. Hybrid methods can handle a variety of
documents at a relatively fast speed. However, the results of these methods are still
not convincing for problems such as non-text identification. Hybrid methods overcome
the error accumulation from low-level components by foreground analysis and the under-
segmentation of background analysis due to their ignorance of foreground components’
homogeneity. However, it is not trivial to extract proper background regions and to group
them into separators accurately. There is no feasible general approach to achieve this goal
[11].

These rule-based methods are mostly developed to perform document layout analysis.
A DLA system primarily segments an input document image into various regions and
classifies these as text or non-text regions. The non-text regions are further classified into

1Manhattan layouts are defined as layouts that can be decomposed into individual segments by vertical
and horizontal cuts.
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sub-classes like table, image, separator, graphic, and chart. In contrast, text regions are
classified as title, paragraph, header, footer, caption, etc. [8].

2.1.5 Zone Classification

Zone Classification aims at classifying the blocks detected by the page segmentation step
(2.1.4) of a geometric layout analysis system into one of a set of predefined classes. A
document is varied in content. It can contain text, math, figure zones, etc. Each of these
zones has its characteristic features. Every page contains numerous zones. Each zone
is specified by a rectangular box enclosing it and its type, as shown in Figure 2.4. The
classifier uses properties of each zone for the process of classification. A zone classification
is associated with a multi-class discrimination problem. Blocks identified as text can then
be fed to a character recognition module. Similarly, other actions can be taken for zones of
specific types; for instance graphics regions can be sent to a raster to a vector conversion
program, whereas table zones can be fed to a table understanding system.

Figure 2.4: Example image showing a document with zone classification.

A complete system for extracting information from document images can transform
paper documents into a hierarchical representation of their structure and content. The
transformed representation of the document allows the exchange of documents, editing,
navigation, indexing, archiving, and retrieval. The zone classification method plays a key
role in the success of such a document understanding system. It is useful for successive
applications like OCR and table understanding and can also assist and validate document
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segmentation. In the design of a zone classifier, a set of measurements are made in the
area. Each measurement is a feature. Some features are calculated along the zone’s
horizontal, vertical, right, and left diagonal directions [67].

2.1.6 Reading Order Determination

Reading Order Determination tries to recover the order in which a human will go through
different parts (segments) of the document. Detecting the reading order among the layout
components of a document’s page is fundamental to ensure the effectiveness or even
applicability of subsequent content extraction steps. While in single-column documents
the reading flow can be straightforwardly determined, in more complex documents the task
may become very hard. In some cases, the document layout is quite complex, requiring
suitable strategies to determine the correct reading order of these components. Figure 2.5
exemplifies the detection of the reading order of two different documents. Current off-
the-shelf methods usually directly borrow the results from the OCR engines [72], while
most OCR engines arrange the recognized tokens or text lines in a top-to-bottom and
left-to-right way [13].

Figure 2.5: An example image showing two documents with reading order detection performed
correctly for each: (a) and (b) a scientific article and its correct reading order detection, respec-
tively. (c) and (d) an email and its detection of the correct reading order, respectively.

Many applications require sorting elements according to a partial or a total ordering
relationship. The problem can be efficiently solved by applying sorting algorithms when
the ordering relationship is known a priori. However, there are cases where no definition
of an ordering relationship is available due to several difficulties in formalizing one. A
typical example is represented by newspapers, where a page includes several articles that
can be read independently and have a well-defined reading order among their constituent
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components. Since the various articles are composed on the page in several unpredictable
combinations and have different sizes and numbers of components, a simple topdown,
left-to-right reading order of the pages would be ineffective, returning a text flow that
interleaves components from different unrelated articles. So, Reading Order Detection
in a document is a hot problem. In some classes of documents (e.g., single- or multi-
column scientific articles) the reading order is quite stable and hence might, in principle,
be learned if suitable examples for that class are provided. Reading order detection was
first proposed by Aiello and Smeulders (2003) [2], using a propositional approach language
of qualitative rectangular relations to detect reading order from document images. Rule-
based approaches usually aim at one specific domain, while learning-based approaches
are more general but have scalability issues. The work of [68] proposed ReadingBank, a
benchmark dataset with 500,000 real-world document images for reading order detection.

Binarization, noise removal and rectification are typically considered as pre-processing
steps in layout analysis. The core part of geometric layout analysis consists of page
segmentation and zone classification modules. Reading order determination is generally
considered a post-processing step in which a simple ordering criterion can be used to
identify the reading order of the detected page segments. Specific layout approaches have
been proposed in the literature where knowledge used to label zones in document images
comes from geometric characteristics and the physical appearance of the layouts that
the model has already seen during training. Existing approaches for document image
classification and retrieval differ from each other based both on the type of extracted
information (textual or visual) and/or the type of image analysis that is performed over
the processed documents (global or local) [50].

2.2 Feature Extraction

Once the text blocks have been extracted and reading order has been determined, algo-
rithms can focus on the extraction of the text from within each text box to assemble words,
paragraphs, section titles, etc. This is the core process of OCR engines, which analyze the
pixel-level information within each bounding box to recognize and transcribe the text. A
wide range of OCR methods have been proposed over the years. Some methods start by
detecting each individual character, which traditionally was done by locating connected
components in binary images and more recently is done using methods that are similar
to generic object detectors. Once characters are detected, they can be classified into the
letters, numbers and other symbols of the vocabulary using machine learning techniques.
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To group characters into words and then use the context to fix potential mistakes of
character detectors and classifiers, sequence processing methods can be employed.

OCR systems as well as formatted document file formats (such as PDF) internally
store information about the 2D coordinates of word bounding boxes and even individual
characters. Images are 2-dimensional pixel values, while text is typically treated as a one-
dimensional sequence, making it difficult to perform early fusion directly with their raw
representations. In the case of document image classification, the text produced through
OCR comes directly from the document. Hence, the spatial location of the text can be
used to embed a feature representation corresponding to the 2-dimensional bounding box
of where the text occurs in the document.

In order to use the extracted text for machine learning applications, it is necessary
to convert the sequence of characters into a sequence of vectors that represents the text.
These sequences are known as textual embedding, which are dense, low-dimensional vector
representations that capture textual content’s semantic meaning and contextual relation-
ships. Popular techniques for generating textual embedding include word embedding such
as Word2Vec, GloVe, and FastText and more advanced methods such as transformer-based
models like BERT [19], GPT [53], and RoBERTa [41].

These textual embeddings enable the numerical representation of textual content,
facilitating the application of machine learning and deep learning models for various text-
related tasks. By encoding textual information into dense vector representations, textual
embeddings preserve semantic similarities between words, sentences, and documents, en-
abling algorithms to understand and process textual content more effectively. Recent
advancements in computer vision and natural language processing have led to significant
text extraction and representation progress. Some works [68, 71, 73, 72] combine visual
and textual features, using the 2-coordinates of the text block position in text embedding
to improve document classification.

2.3 Document Classification with Machine Learning
Approaches

All processes of document analysis that can be modeled as classification or regression
problems can be dealt with using Machine Learning (ML) approaches. Some researchers
define Machine Learning as a branch of artificial intelligence based on the idea that sys-
tems can learn from data, identify patterns, and make decisions with minimal human
intervention. Algorithms and statistical frameworks help the system learn by itself and
make predictions about certain functions. Image classification and text extraction are
some of the applications of machine learning.
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Machine learning can be divided into supervised learning, unsupervised learning, semi-
supervised learning, and reinforcement learning. In supervised learning, the corresponding
outputs of the training data have been labeled. In contrast, the corresponding outputs of
the training data in unsupervised learning are unlabeled. For semi-supervised learning,
some training data are labeled, and the remaining data are unlabeled; the amount of
unlabeled data often exceeds the number of labeled data. In reinforcement learning,
reinforcement signals provided by the environment are used to evaluate the quality of the
generated actions and improve the strategies for adapting to the environment.

Machine learning techniques create a predictor, such as a classifier or a regressor,
through an inductive learning process. A classifier is created based on relationships be-
tween documents and associated labels in the document parsing task. Then the algo-
rithm classifies a document not yet known in one of the categories learned in the training
phase, making decisions based on experiences gained through previous successful problem-
solving. Several classic machine learning techniques, such as support vector machine
(SVM) [20], K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP) [57], Adaptive
impulse decision tree (Adaboost) [34] and Artificial Neural Networks (ANN) [45], have
been applied to classification.

Artificial Neural Networks (ANNs) are inspired by brain studies and based on the
operation of biological neural networks. They contain a series of mathematical equations
that simulate biological systems processes such as learning and memory. An ANN is
configured for a specific application, such as pattern recognition or data classification,
through a learning process. ANNs learning process involves adjustments to the synaptic
connections between the neurons. ANNs combine several artificial neurons to process
information. Neural networks are trained to execute complex functions in various fields of
application, including pattern recognition, identification, classification, clustering, speech,
vision, and control systems. ANNs combine several artificial neurons to process informa-
tion.

Artificial neurons essentially consist of ‘inputs’, which are multiplied by ‘weights’ and
then computed by a mathematical function, which determines the ‘activation’ of the
neuron, as depicted in Fig. 2.6 (a). Another function computes the ‘output’ of the artificial
neuron, sometimes dependent on a certain ‘threshold’. Weights can also be negative, so
it can be said that the negative weight inhibits the signal. Depending on the weights, the
computation of the neuron will be different. The weights are iteratively adjusted during
the learning or training process until the output for specific inputs is close to the desired
one.

Figure 2.6 (b) shows an ANN, consisting of a layer of input and output nodes (neurons)
connected by one or more layers of hidden nodes. Input layer nodes pass information to
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Figure 2.6: Illustration of an artificial neuron (a) and a single artificial neural network (b)

hidden layer nodes by firing activation functions, and hidden layer nodes fire or remain
dormant depending on the evidence presented. The hidden layers apply weighting func-
tions to the evidence, and when the value of a particular node or set of nodes in the
hidden layer reaches some threshold, a value is passed to one or more nodes in the output
layer.

Feedforward artificial neural networks ANNs have a unidirectional flow of informa-
tion, while feedback ANNs return feedback. Single-layer perceptrons (SLPs) are simple
feedforward ANNs often used for linear binary data classification. In contrast, multilayer
perceptions (MLPs) feature not only an input layer and an output layer but also one or
more hidden layers of fully connected neurons. Unlike SLPs, they incorporate nonlinear
activation functions. Applying supervised machine learning with multilayer perceptrons
falls under deep learning (DL) techniques. A multilayer perceptron is a class of feed-
forward artificial neural networks. A MLP consists of at least three layers of nodes: an
input layer, a hidden layer, and an output layer. Except for the input nodes, each node
is a neuron that uses a non-linear activation function. MLP utilizes a supervised learning
technique called backpropagation for training. Its multiple layers and non-linear activa-
tion distinguish MLP from a linear perceptron. It can distinguish data that is not linearly
separable.

Deep learning (DL) methods have recently become a new paradigm for solving many
machine learning problems. Deep Learning is a branch of machine learning that deals with
deep neural networks, where each layer is trained to extract higher-level representations
of the previous ones. Deep learning methods have been confirmed to be effective in many
research areas [78].
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2.3.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can capture
an input image, assign importance (learned weights and biases) to various aspects/objects
of the image, and differentiate one from the other. These algorithms can identify faces,
individuals, objects, characters, and many other aspects of visual data. Convolutional
networks perform OCR to digitize text and make natural language processing possible in
analogue and handwritten documents, where images are symbols to be transcribed.

A Convolutional Neural Network (CNN) is a regularized form of Multilayer Percep-
tron (MLP) with a layer (convolutional layer) that usually applies a rectified linear unit
activation function. Unlike MLPs with fully connected neurons, in CNNs, the input data
are convolved with individual neurons in the convolutional layer receiving data only for
a specific receptive field. This reduces the probability of data overfitting, a disadvantage
of MLPs.

Recently, deep learning has been widely explored in document layout classification.
A fast CNN based document layout analysis was introduced, where two one-dimensional
projections of images were considered to train the model. A CNN architecture that
learns a hierarchy of features from a raw image was proposed for the document image
classification to identify complex document layouts. A Deep CNN architecture was applied
for classification, where CNNs were extensively used for feature extraction and model
training.

2.3.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a special artificial neural network adapted to work
for time series data or data that involves sequences of data such as text. These Neural
Networks have been applied to several problems, such as NLP tasks, speech recognition,
genomes, and numerical series. RNNs have the concept of ‘memory’ that helps them store
the states or information of previous inputs to generate the next sequence output. The
decision of a recurrent step reached in time step 1 affects the decision to reach a later
time. Thus, recurrent networks have two input sources, the present and the recent past,
which are combined to determine the result on new data, as shown in Fig. 2.7.

Recurrent Neural Networks leverage the backpropagation through time (BPTT) algo-
rithm to determine the gradients. BPTT slightly differs from traditional backpropagation
as it is specific to sequence data. It also differs from the traditional approach in that BPTT
sums errors at each time step, whereas feedforward networks do not need to sum errors
as they do not share parameters across each layer.
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Figure 2.7: Illustration of a Recurrent Neural Network.

2.3.3 Long Short Term Memory networks

Long Short-Term Memory Networks (LSTMs) [61] are a special kind of RNN, capable of
learning long-term dependencies. They work tremendously well on many problems and
are widely used in NLP. LSTMs are explicitly designed to avoid the long-term dependency
problem. Remembering information for long periods is practically their default behavior.
The basic difference between the architectures of RNNs and LSTMs is that the hidden
layer of LSTM is a gated unit or gated cell. It consists of four layers that interact with
one another to produce the output of that cell along with the cell state. These two things
are then passed onto the next hidden layer.

The LSTM consists of three parts, as shown in Fig. 2.8, and each part performs an
individual function. At a high level, LSTM works like an RNN cell. LSTM cells possess
three gates, an input, a forget, and an output gate, that allow changes on a cell state vector
propagated iteratively to capture long-term dependencies. This controlled information
flow within the cell enables the network to memorize multiple time dependencies with
different characteristics. LSTM provides a mechanism that limits the change gradient
realized at each iteration. Hence, LSTM does not allow past information to be completely
discarded.
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Figure 2.8: Illustration of the main elements of the architecture of the cell of a Long Short Term
Memory network.

2.4 ULMFiT

Universal Language Model Fine-tuning (ULMFiT) [29] was a pioneering transfer learning
method proposed for NLP tasks.

ULMFiT consists of the following steps, as shown in Fig. 2.9: In the first step, a
Language Model is pre-trained on a large general-domain corpus to capture general fea-
tures of the language in different layers. Then, the model can predict the next word in a
sequence (with a certain degree of certainty). Following the transfer learning approach,
the knowledge gained in the first step should be utilized for the target task. However,
the target task dataset is likely from a different distribution than the source task dataset.
The LM is consequently fine-tuned on the target task data in the second stage to address
this issue. The full LM is fine-tuned on target task data using discriminative fine-tuning
following a slanted triangular learning rate policy to learn task-specific features. Finally,
the classifier is fine-tuned on the target task in the third stage using gradual unfreezing.
This strategy preserves low-level representations and adapts high-level ones.

ULMFiT involves a 3-layer architecture for its representations, ASGD Weight-Dropped
LSTM [47], a.k.a. AWD-LSTM. The AWD-LSTM architecture is a type of recurrent neu-
ral network that employs DropConnect for regularization, as well as NT-ASGD for opti-
mization - non-monotonically triggered averaged Stochastic Gradient Descent - which
returns an average of the last iterations of weights. Additional regularization tech-
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Figure 2.9: Illustration of ULMFiT architecture.
Source: reproduced from Howard and Ruder (2018) [29] (2018)

niques include variable-length backpropagation sequences, variational dropout, embed-
ding dropout, weight tying, independent embedding/hidden size, activation regulariza-
tion, and temporal activation regularization.

2.5 Transformers

An attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, values and output are all vectors. The output is
computed as a weighted sum of the values, where a compatibility function of the query
with the corresponding key computes the weight assigned to each value. The vanilla
transformer [65] is the first transduction model relying entirely on an attention mechanism
without using sequence-aligned RNNs or convolution to draw global dependencies between
input and output. The original Transformer model follows the architecture of Figure 2.10
using six stacked self-attention layers. The output of layer l is the input of layer l+1 until
the final prediction is reached.

Each encoder layer has two sub-layers. The first is a multi-head self-attention 2 mech-
anism, and the second is a simple, position-wise, fully connected feed-forward network. A
residual connection surrounds each main sub-layer in the Transformer model. These con-
nections transport the unprocessed input of a sub-layer to a layer normalization function.
This way, we are certain that key information such as positional encoding is not lost on
the way [55].

2Self-attention is an attention mechanism relating different positions of a single sequence in order to
compute a representation of the sequence
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Figure 2.10: Vanilla Transformer Model Architecture [55, 65]. On the left, there is an N = 6
layers encoder stack. The inputs enter the encoder side of the Transformer through an attention
sub-layer and FeedForward Network (FFN) sub-layer. On the right, there is an N = 6 layers
decoder stack. The target outputs go into the decoder side of the Transformer through two
attention sub-layers and an FFN sub-layer.
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The decoder layer structure remains the same as the encoder layer for all N = 6
layers of the Transformer model. Each layer contains three sub-layers: a multi-headed
masked attention mechanism, a multi-headed attention mechanism, and a fully connected
position-wise feed-forward network. The decoder has a third main sub-layer, the masked
multi-head attention mechanism. In this sublayer output, the following words are masked
at a certain position, so Transformer bases its assumptions on its inferences without seeing
the rest of the sequence. The Transformer only performs a small, constant number of steps
(chosen empirically). Each step applies a self-attention mechanism that directly models
relationships between all words in a sentence, regardless of their respective position.

In recent years, self-attention-based models like Transformers, Bidirectional Encoder
Representations from Transformers (BERT) [19], and GPT models have achieved state-of-
the-art performance on several Natural Language Processing tasks. The BERT model is
designed to pre-train deep bidirectional representations from the unlabeled text by jointly
conditioning on both left and right contexts in all layers. The overall framework of BERT
is a multi-layer bidirectional Transformer encoder as shown in Fig. 2.11. It accepts a
sequence of tokens and stacks multiple layers to produce final representations.

Figure 2.11: The overall framework of BERT adapted from Devlin et al. (2019) [19]. Apart from
output layers, the same architectures are used in pre-training and fine-tuning. The same pre-
trained model parameters are used to initialize models for different downstream tasks. During
fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added before every input
example, and [SEP] is a special separator token.

There are two steps in the framework of the BERT [19]: pre-training and fine-tuning.
During the pre-training, the model uses two objectives to learn the language representa-
tion: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP), where
MLM randomly masks some input tokens, and the objective is to recover these masked
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tokens, and NSP is a binary classification task taking a pair of sentences as inputs and
classifying whether they are two consecutive sentences, further discussed in section 2.5.1.
In fine-tuning, task-specific datasets are used to update all parameters end-to-end.

LayoutLM [72] model is proposed as the pioneer pre-training method of text and layout
for document image understanding tasks, which expands 1D positional encoding of BERT
to 2D to avoid the loss of layout information. It is trained over a large corpus of business
documents to understand spatial dependencies between text blocks. Image embeddings
are combined in the fine-tuning stage, and the image information is integrated into the
pre-training stage. The overall framework of LayoutLM is shown in Fig. 2.12.

Figure 2.12: The overall framework of LayoutLM [72], where 2-D layout and image embeddings
are integrated into the original BERT architecture. The LayoutLM embeddings and image
embeddings from Faster R-CNN work together for downstream tasks.

Source: reproduced from Xu et al. (2020) [72] (2020)

Xu et al. (2020) [72] add the 2-D position embedding layers with four embedding
representations (x0, y0, x1, y1), where (x0, y0) corresponds to the position of the upper
left in the bounding box, and (x1, y1) represents the position of the lower right. On
the other hand, to align the image feature of a document with the text, they add an
image embedding layer to represent image features in language representation. With the
bounding box of each word from OCR results, they split the image into several pieces and
one-to-one correspondence with the words. Embeddings of the image region are generated
using the Faster R-CNN model to be added to the text embedding. However, the image
processing step with the Fast R-CNN model has a high computational cost and typically
require an expensive GPU to be executed. This motivated our design, which incorporates
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tokens from text regions coming directly from the formatted document or the OCR and
avoids further image processing.

In addition, LayoutLM adopts a multi-task learning objective, including a Masked
Visual-Language Model (MVLM) loss and a Multi-label Document Classification (MDC)
loss, which are discussed in subsection 2.5.1.

2.5.1 Pretraining Objectives Downstream Tasks

Inspired by BERT, many pre-trained language models have emerged to understand visu-
ally rich documents. These models use pre-training jointly with different modalities such
as text, layout and visual information in a single framework. Pre-training objectives have
been used in pre-training and fine-tuning language models.

Masked Language Model (MLM) was proposed firstly in BERT [19] architecture to
learn bidirectional representations by predicting the original vocabulary id of a randomly
masked word token based on its context. The MLM objective allows the representation
to fuse the left and the right context, which allows pre-training for a deep bidirectional
Transformer. Some percentage of the input tokens at random are masked to train a
deep bidirectional representation. In this case, the final hidden vectors corresponding
to the mask tokens are fed into an output softmax over the vocabulary, as in a standard
Language Model. BERT randomly masks 15% of all WordPiece tokens with a special token
[MASK] in each sequence and only predicts the masked words rather than reconstructing
the entire input. The training data generator randomly chooses 15% of the token positions
for prediction. Masked tokens are replaced with a special [MASK] token 80% of the time,
a random word 10%, and an unaltered 10%. Figure 2.13 (a) shows that MLM is a fill-
in-the-blank task; words are masked from the input, and the transformer network must
predict the missing words. The BERT model is then trained to reconstruct these masked
tokens given the observed set.

Next Sentence Prediction (NSP) enables the model to capture sentence-to-sentence
relationships, which are crucial in many language modelling tasks such as Question An-
swering and Natural Language Inference. Given a pair of sentences, the model predicts
a binary label, i.e., whether the pair is valid from the original document or not, see Fig.
2.13 (b). Specifically, when choosing the sentences A and B for each pre-training example,
50% of the time, B is the actual next sentence that follows A, and 50% of the time, it is
a random sentence from the corpus.
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Figure 2.13: BERT [19] (a) Masked Language Model and (b) Next Sentence Prediction ob-
jectives. BERT operates over sequences of discrete tokens comprised of vocabulary words and
a small set of special tokens: [CLS], [MASK] and [SEP]. The first token of every sequence is
always a special classification token [CLS]. The special token [MASK] masks a word that will
be predicted. [SEP] is a special separator token.

Masked Visual-Language Model (MVLM) was proposed to learn language repre-
sentation with the clues of 2-D position embeddings and text embeddings. The model
randomly masks some input tokens during pre-training but keeps the 2-D position em-
beddings and other text embeddings. The model is then trained to predict the masked
tokens given the context. In this way, the LayoutLM [72] model not only understands the
language contexts but also utilizes the corresponding 2-D position information, thereby
bridging the gap between the visual and language modalities.

Multi-label Document Classification (MDC) refers to assigning multiple relevant
labels to each input document, while the entire label set might be extremely large. Lay-
outLM [72] uses MDC loss during the pretraining phase. Given a set of scanned docu-
ments, the model uses the document tags to supervise the pretraining process. The model
can cluster the knowledge from different domains and generate better document-level rep-
resentation [14].

Text-Image Alignment (TIA) was proposed in LayoutLMv2 [73] as a fine-grained
cross-modality alignment task to help the model learn the spatial location correspondence
between the image and coordinates of the bounding boxes. The covering operation ran-
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domly selects some tokens lines and their image regions and covers them in the document
image. During pretraining, a classification layer is built above the encoder outputs. This
layer predicts a label for each text token depending on whether it is covered, i.e., [Covered]
or [Not Covered], and computes the binary cross-entropy loss.

Text-Image Matching (TIM) task is applied to help the model learn image-text
alignment, i.e., to the model learn the correspondence between document image and
textual content. LayoutLMv2 [73] feeds the output representation at tag [CLS] into
a classifier to predict whether the image and text are from the same document page.
Regular inputs are positive samples. Moreover, in negative samples, an image is either
replaced by a page image from another document or dropped. The TIM target labels are
set to tag [Covered] in negative samples.

2.6 Related Works

Various document image classification and page stream segmentation approaches have
been proposed over the past few years. Gordo et al. (2013) [23] focused on segment-
ing a continuous page stream into multi-page documents and classifying the resulting
documents. This section provides an overview of some important works that have been
reported about document classification methods that take textual and visual information
as input.

2.6.1 Page Stream Segmentation

Agin et al. (2015) [1] presented a method for segmentation of document page flow applied
to heterogeneous real bank documents. The approach is based on the content of images,
and it also incorporates font-based features inside the documents. The authors involved
a bag of visual words (BoVW) model on the designed image-based feature descriptors
using three different classifiers: Support Vector Machines (SVM), Random Decision Forest
(RDF) and Multilayer Perceptron (MLP). In addition, they combined the consecutive
pages of a document into a single feature vector representing the transition between these
pages. One of the two classes represented the transitions: the continuity of the same
document or the beginning of a new document. They evaluated the method by comparing
the performance of the three classifiers.

In Gallo et al. (2016) [21], page stream segmentation PSS is performed on top of the
results from a document image classification DIC process. They proposed a supervised
approach for page stream segmentation and document image classification using features
learned by Convolutional Neural Networks (CNN). In the final step of the approach, the

32



CNN predictions are corrected using an additional deep model that analyzes the stream of
classified image documents. The experiments were performed on two datasets that they
built using real documents and evaluated using Accuracy and Kappa metrics.

Wiedemann and Heyer (2021) [69] developed an approach based on convolutional
neural networks (CNN) combining image and text features to perform (PSS) as a binary
classification task on single pages from a data stream. They first create two separate
convolutional neural networks for the binary classification of pages classified into either
continuity of the same document (SD) or the beginning of a new document (ND), one
based on text data and another based on image scans. In a third step, they combine the
learned parameters from the two final hidden layers of both CNN to an input vector of
features for a multi-layer perceptron. This MLP delivers a third and final classification
result based on both feature types. The authors used the VGG16 architecture for images
and a pre-trained FastText model for word embeddings. They evaluated the proposed
model on the Tobacco800 datasets and a sample of the data from the German archive of
their project context using Accuracy and Kappa metrics.

The work of Braz et al. (2021) [10] was built upon the proposal of Wiedemann and
Heyer (2021) [69] by improving the network architecture using EfficientNet pre-trained
CNN architecture, replacing the earlier proposed VGG16 Network. However, they used
techniques focused only on the images on the pages. They proposed a novel approach to
the PSS problem, using four training classes, which can be reduced to the usual two classes
of the PSS problem in the literature. They used two datasets to validate the proposed
model for the PSS problem: Tobacco800 and AI.Lab.Splitter [10], a novel dataset com-
posed of Brazilian court documents. Performance was evaluated using Accuracy statistics,
F1 score, and Kappa and compared with the model by Wiedemann and Heyer (2021) [69]
obtained better results.

A multimodal binary classification approach based on transfer learning techniques
using BERT [19] to solve the PSS problem was proposed by Guha et al. (2022) [24].
The authors considered the model proposed by Wiedemann and Heyer (2021) [69] as the
baseline. They simultaneously used the VGG16 architecture as an image feature extractor
and the BERTBASE pre-trained model for text features. Both features are finally fused
and passed through a fully connected layer of Multi-Layer Perceptron (MLP) to obtain
the binary classification of the pages as the First Page (FP) and the Other Page (OP).
The model was evaluated using real-time document image streams from the archive of
production business processes obtained from a reputed Title Insurance (TI) company, and
the metric used was the F1 score. They compared the results with the work of Wiedemann
and Heyer (2021) [69] and Braz et al. (2021) [10] but used a different dataset.

Table 2.1 summarizes the work proposed for Page Stream Segmentation. Most models
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used a Convolutional Neural Network as a backbone, and the evaluation metrics were
Accuracy and F1 score. Each model combines at least two modalities (textual, visual,
and layout) for downstream tasks, except for the models proposed by Gallo et al. (2016)
[21] and Braz et al. (2021) [10] that used only visual features for PSS. Only two models
[69, 10] used the same Tobacco800 dataset for PSS, and both results were compared and
presented in the work by Braz et al. (2021) [10].

Table 2.1: Comparison between proposed models for the page stream segmentation task w.r.t.
modality, backbone, datasets, accuracy and F1-score evaluation metrics. T, L, and I denote
textual, layout, and image features.

Model Modality Backbone Dataset Accuracy F1
Agin et al.
(2015) [1] T + I BoVW + SVM

RDF and MLP
Banking Dataset

Private DS 87.24% 88.88%

Gallo et al.
(2016) [21] I only CNN + DNN Public Dataset 97.45% -

Wiedemann
and Heyer
(2021) [69]

T + I VGG16-CNN
MLP

Tobacco800
German dataset

91.10%
93.00%

90.40%
-

Braz et al.
(2021) [10] I only CNN

EfficientNet
Tobacco800

AI.Lab.Splitter
92.00%
95.20%

91.90%
95.30%

Guha et al.
(2022) [24] T + I VGG16 + BERT real-time document

Title Insurance 98.56% 97.37%

2.6.2 Document Image Classification

Asim et al. (2019) [4] present a Naïve Deep Learning approach for the task of text doc-
ument image classification, which utilizes both structural similarity and content of text
document images. A filter-based feature-ranking algorithm was utilized to alleviate the
dependency of the textual stream on the performance of underlying OCR. This algorithm
ranks the features of each class based on their ability to discriminate document images and
selects a set of top ‘K’ features retained for further processing. Simultaneously, the visual
stream uses deep CNN models to extract structural features of document images, and
the average ensembling method concatenates textual and visual streams. To assess the
performance of two streams (text and visual) document classification approaches, they
used publicly available Tobacco-3482 and RVL-CDIP datasets. Finally, they used the
accuracy metric to compare results with the state-of-the-art and obtained better results.

A multimodal neural network is designed by Audebert et al. (2020) [5], which can
learn from word embeddings and images. FastText word embedding and MobileNetv2
image embedding were introduced to perform joint visual and textual feature extraction.
First, Tesseract OCR was used to extract the text from the image to perform a fine-
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grained classification using visual and textual features. Then, they computed character-
based word embeddings using FastText on the noisy Tesseract output and generated a
document embedding representing our text features. The visual features are learned using
MobileNetv2, a standard CNN from state of the art. Finally, they introduced an end-
to-end learnable multimodal deep network that jointly learns text and image features
and performs the final classification based on a fused heterogeneous representation of the
document. The approach was evaluated using the accuracy metric on the Tobacco3482
and RVL-CDIP datasets for the document image classification problem. However, they
do not compare the results with the state-of-the-art.

Bakkali et al. (2020) [7] presented a hybrid cross-modal feature learning approach that
combines image features and text embedding to classify document images. They adopt
a late fusion scheme methodology. The built-in network is based on the performance of
lightweight, heavyweight architectures used in experiments for image stream and static,
dynamic word embeddings used to perform text classification. NASNet-Large model
and BERT model pre-trained were used on ImageNet to extract the image and textual
features, respectively, for document classification on the Tobacco-3482 dataset. Every
single modality was trained independently from one another, but merging both streams
boosted the performance of the two fusion modalities and improved classification accuracy.
They compared results with the state-of-the-art and obtained better results.

StructuralLM [36] is a self-supervised pretraining method designed to better model
the interactions of cells and layout information in scanned document images. Unlike
LayoutLM [72], StructuralLM is a structural pretraining approach that jointly exploits cell
and layout information from scanned documents. It uses cell-level 2D-position embeddings
to model the layout information of cells rather than word-level 2D-position embeddings.
To represent the spatial position of cells in scanned document images, we consider a
document page as a coordinate system with the top-left origin. In this setting, the cell
(bounding box) can be precisely defined by (x0, y0, x1, y1), where (x0, y0) corresponds to
the top-left position, and (x1, y1) represents the bottom-right position. It adopts two self-
supervised tasks during the pretraining stage: MVLM [72] and Cell Position Classification
(CPC) task. The authors conduct experiments on publicly available benchmark datasets
for three downstream tasks. These three tasks are the form comprehension task, the
document visual question answer task, and the document image classification task. They
used the RVL-CDIP [26] dataset for the document image classification task. Furthermore,
they compared the results with the LayoutLM model and achieved 1.65% better.

The approach proposed by Zingaro et al. (2021) [77] exploits the side-tuning framework
for multimodal document classification. They combined incremental learning and mul-
timodal features training to learn from both representations, visual and textual, jointly.
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The base model consists of a CNN for image classification, pre-trained on the ImageNet
dataset. The side component presents two different networks: the first one is identical
to the base model but with unlocked weights to allow updates during training. In con-
trast, the second network is a CNN for text classification. To assess the proposed model’s
validity, they evaluated the approach on Tobacco-3482 and RVL-CDIP datasets and two
deep-learning architectures, MobileNetV2 and ResNet50, with parameters 12M and 57M,
respectively. The metric used to evaluate the performance of the model on the test set was
the Accuracy metric. Furthermore, they compared the results with the work of Audebert
et al. (2020) [5] and obtained better results.

DocFormer [3] adopts a discrete multi-modal structure self-attention with shared spa-
tial embeddings in an encoder-only transformer architecture. It also has a CNN backbone
for visual feature extraction and encoding image information to obtain higher resolution
image features and simultaneously encodes text information into text embeddings. All
components are trained end-to-end. DocFormer enforces deep multi-modal interaction in
transformer layers using novel multi-modal self-attention. They describe three modality
features (visual, language, and spatial) prepared before feeding them into transformer
layers. The position information is added to the image and text information separately
and passed to the Transformer layer separately. In addition, DocFormer proposes three
pretraining tasks: multi-modal masked language modeling (MM-MLM), a modification
of the original MLM pre-text task introduced in BERT; learning-to-reconstruct (LTR), is
an image reconstruction task, and the text describes image (TDI) to teach the network
if a given piece of text describes a document image. Each word k in the text also gets
bounding box coordinates bk = (x1, y1, x2, y2, x3, y3, x4, y4). 2D spatial coordinates bk pro-
vide additional context to the model about the location of a word in the entire document.
They reported performance on the test sample using the overall classification accuracy
metric.

The LayoutLMv2 [73] improved over LayoutLM [72] by changing how visual features
are input to the model - treating them as separate tokens instead of adding visual fea-
tures to the corresponding text tokens. Further, additional pre-training tasks were ex-
plored to use unlabeled document data. Xu et al. (2021) [73] proposed the spatial-aware
self-attention mechanism for the LayoutLMv2, which involves a 2-D relative position rep-
resentation for token pairs. Different from the absolute 2-D position embeddings, the
relative position embeddings explicitly provide a broader view of contextual spatial mod-
eling. The multi-modal Transformer accepts inputs of three modalities: text, image, and
layout. The input of each modality is converted to an embedding sequence and fused
by the encoder. The model establishes deep interactions within and between modalities
by leveraging the powerful Transformer layers. They adopted three self-supervised tasks
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simultaneously during the pre-training stage: Masked Visual-Language Model (MVLM),
Text-Image Alignment (TIA) and Text-Image Matching (TIM). They evaluated the clas-
sification task on RVL-CDIP dataset and compared it with LayoutLM [73].

Table 2.2 summarizes the works proposed for Document Image Classification in this
section. The most recent works presented are pre-training multimodal models and used
transformer architecture based on BERT as the backbone. The most recent works pre-
sented merge visual and textual features using 2-coordinates to represent the location of
the text in the document. Instead, our approach uses special semantic tokens to represent
the position of the text block and inserts it into the text embedding to be processed by a
language model.

Table 2.2: Comparison between proposed models for the document image classification task
w.r.t. modality, backbone, datasets, accuracy and F1-score evaluation metrics. T, L, and I
denote textual, layout, and image features.

Model Modality Backbone Dataset Accuracy F1
Asim et al.
(2019) [4] T + I InceptionV3

Multi-channel CNN
Tobacco-3482
RVL-CDIP

95.80%
96.40%

-
-

Audebert et al.
(2020) [5] T + L Multimodal

Neural Network
Tobacco-3482
RVL-CDIP

92.10%
90.60%

91.00%
-

Bakkali et al.
(2020) [7] T + I Cross-modal

BERT
Tobacco-3482
RVL-CDIP

99.71%
97.05% 97.00%

LayoutLM
(2020) [72] T + L Transformer

BERT RVL-CDIP 94.42% -

StructuralLM
(2021) [36] T + L BERT RVL-CDIP 96.08% -

Zingaro et al.
(2021) [77] T + I DCNN Tobacco-3284

RVL-CDIP
90.50%
93.60%

-
-

DocFormer
(2021) [3] T + L + I Multimodal

Transformer RVL-CDIP 96.17% -

LayoutLMv2
(2021)[73] T + L + I Transformer RVL-CDIP 95.25% 96.01%

2.7 Summary

This chapter presented concepts about layout analysis from scanning a document and
its processes for extracting information. Layout analysis is often a performance-limiting
step for optical character recognition (OCR) since errors in this phase propagate to all
subsequent phases of the system. Geometric layout analysis of a document image typically
involves different processes: binarization, noise removal, rectification, page segmentation,
zone classification, and reading order. Some algorithms skip one or more of these processes
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or apply their hybrid. However, most layout analysis systems use these processes in some
form.

Paper documents, such as books, handwritten, magazines, and newspapers, have tra-
ditionally been used as the primary source of acquisition, dissemination, and preservation
of knowledge. An electronic document represents a document using data structures that
computers can understand. An electronic document can be converted into a paper doc-
ument by printing device. Converting a paper document to an electronic format, on the
other hand, requires a way to transform the document into data structures that computers
can understand. Removing text bounding boxes and generating textual embedding is cru-
cial in text extraction and representation tasks. By leveraging advanced image processing
and natural language processing techniques, researchers and practitioners can unlock the
potential of textual data for various applications in fields such as image understanding,
document analysis, and intelligent information retrieval.

Several studies have addressed document analysis using visual and textual resource
extraction for downstream tasks. Approaches have evolved from early-stage heuristic rules
to statistical machine learning. Then, deep learning methods with greater attention to
the pre-trained language models based on BERT [19] have become a trend in Document
AI development. Moreover, some models have designed richer pretraining objective tasks
for different modalities, such as the MLM objective task introduced by LayoutLM [72].
A major drawback of such pre-trained models based on the Transformer architecture
[65] is that they require a high computational cost. Unlike these previous methods, our
approach aims to improve the performance of language models by combining texts and
their spatial information with a low computational cost. Specifically, we propose a spatial
layout encoding method combining textual and spatial information from text blocks.
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Chapter 3

Methodology

In this Chapter, we present LayoutQT - Layout Quadrant Tags, a lightweight prepro-
cessing method focusing on combinations of texts and their spatial information without
relying on visual features or activations from the visual modalities. Specifically, we pro-
pose a new set of tokens that encode spatial region language models and show that they
improve results in downstream tasks with low computational cost.

3.1 Layout Quadrant Tags (LayoutQT)

Our algorithm is based on a bottom-up approach, which defines primitive components
to start the clustering process. It starts with the bounding box of words as a primitive
component of the page. The word grouping process identifies a group of nearest neighbours
of each bounding box to form lines and blocks of text until the page ends. Furthermore,
each document page is divided into rectangular regions with the same height and width
dimensions. Each quadrant has layout location information that is represented by spatial
tokens.

Spatial tokens are added at the beginning and end of each line when indicating the
quantized coordinates of the bounding box that the line belongs to. The text group
beginning tag considers the distances from the top left corner of the bounding box to the
image’s left edge and top edge. Likewise, the end tag considers the distance between the
bottom right corner of the bounding box and the image’s bottom edge and right edge.
Table 3.1 presents spatial tokens and their descriptions used in our LayoutQT model. For
example, the beginning of a text block is marked with xxQri_cj xxbob to indicate the
position (quadrant) of the beginning of the text block. The centered parts of the text are
also marked with spatial tokens xxbcet and xxecet.

LayoutQT’s Algorithm 1 takes single-page or multi-page documents as input and gen-
erates tokenized text t with layout information. The algorithm scans the page from top to
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Table 3.1: Proposed spatial tokens

Special Token Descriptions
xxPnk document page numbering tag, where nk is the page index
xxbob markup tag from the beginning of the text block
xxeob markup tag from the end of the text block
xxbcet tag that marks the beginning of the center of the block
xxecet tag that marks the end of the center of the block

xxQri_cj
quadrant numbering tag, where ri and cj are the indexes of the
quadrant row and column, respectively

bottom and left to right to find the boundaries of text groups and identify the group’s top
left corner. Initially, it adds a spatial token to the text to indicate page. It then uses an
OCR engine [59] to generate word bounding boxes. For that, we used the combination of
heuristics included in the Tesseract package [59]. However, more modern techniques can
be applied using an object detection neural network trained to detect the bounding boxes
of textual elements. An example of such networks is the series of YOLO networks, which
was originally proposed for object detection benchmarks [54] then it has been adapted
for all sorts of objects, including human body parts [46] and even tomatoes [33]. After
getting textual bounding boxes, our algorithm exploits their coordinates by injecting that
information through the spatial tokens. It sorts the groups in the same column on the
page to check which groups are centralized and adds the tokens. Moreover, it ends by
adding the end-of-group spatial token. The text extraction with spatial tags is saved to
a text file.

Figure 3.1 illustrates LayoutQT tag computation on a single document page. The
document input image is divided into quadrants and text groups. Each row is numbered
from left to right, and each column is numbered from top to bottom, so the tags of the
first and last quadrants are, respectively, xxQ00_00 and xxQn−1_m−1, where n and m

are the total of vertical and horizontal quadrants. Inspired by the tokenization of Fastai
[28], which adds spatial tokens at the beginning and end of the sentence, LayoutQT adds
tokens with information about the bounding box position. All spatial tokens start with
the character xx, which is not a common English word prefix. They are added using
rules for the model to recognize the important parts of a text. The image of the text file
tokenized by our model is on the right side of Fig. 3.1.

Following the flow of Figure 3.2, we start by providing document images as input to
our preprocessing step, which virtually maps page space into equally spaced quadrants.
Next, we map each text block’s start and end position into the related quadrant and
inject spatial tokens to mark each text box’s start and end position. Then the text of
each bounding box is extracted along with the spatial tokens considering their position on
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Algorithm 1 LayoutQT Algorithm
Input: multi page document
Output: tokenized text t

1: t = “ ” (empty string)
2: for page = 0, . . . , N − 1 do
3: t+ = xxPnk (add page token where + = means insert symbol in string t)
4: group each word by bounding boxes into lines and blocks
5: group the blocks into coherent page columns
6: for each group do
7: t+ = xxQri_cj xxbob (quadrant coordinate of group top left corner)
8: for each text line in this group do
9: check line centralization w.r.t. its page column center position

10: if the line is centralized then
11: t+ = xxbcet (centre tag)
12: end if
13: t+ = textual contents of the line
14: if the line is centralized then
15: t+ = xxecet (centre tag)
16: end if
17: end for
18: t+ = xxeob xxQri_cj (quadrant coordinate of group bottom right corner)
19: end for
20: end for
21: return t
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Figure 3.1: Illustration of Layout Quadrant Tags, LayoutQT. The rectangles represent the
bounding boxes of text. On the left side, an input document is divided into quadrants and
receives spatial tokens xxQri_cj according to row i and column j positions. On the right side
is the text extracted by the OCR system, with the tags indicating the position (quadrant) of
each text block’s beginning and end.
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the document page. The resulting data then goes through a language modelling pipeline
downstream tasks.

Figure 3.2: Illustration of the LayoutQT pipeline, going from input textual images to an NLP
system. Our method computes layout tags as part of an OCR pipeline which is injected as
special tokens in the text.

3.2 Baseline

As a baseline, we use an architecture similar to our approach. However, without our
pre-processing, the document images fed an OCR engine to extract the text without the
spatial tokens. Subsequently, the extracted texts were tokenized, trained, tested, and
evaluated using the same language modelling for the downstream tasks, as shown in Fig.
3.3.

3.3 Metrics

The performance evaluation metrics used are Accuracy, Precision (P), Recall (R), and the
average F-Score, which measures both. The Accuracy is defined as:

Accuracy = TP+TN
TP+FN+TN+FP , (3.1)
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Figure 3.3: Experiment flow diagram showing the baseline without using the proposed method,
to be compared with our pipeline, shown in Figure 3.2

where TP (true positive) is the number of documents correctly assigned to a category C
they belong to, FP (false positive) is the number of documents incorrectly assigned to the
same category C they do not belong to, TN (true negative) is the number of documents
correctly classified to the other categories to which they belong other than category C
and finally, FN (false negative) is the number of documents originally in category C but
misclassified into other categories.

The confusion matrix is a table with two rows and two columns that reports the number
of TP, FN, FP, and TN. This allows more detailed analysis than simply observing the
proportion of correct classifications (accuracy). Accuracy will yield misleading results if
the data set is unbalanced; that is when the numbers of observations in different classes
vary greatly.

The F1-score takes into account the precision and recall rate. So, in this thesis, the
F1-score is chosen to measure the algorithm’s performance in classification tasks.

F1 = 2 ∗ Precision*Recall
Precision+Recall , (3.2)

whereas precision and recall are defined as follows:

Precision = TP
TP+FP , (3.3)

and
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Recall = TP
TP+FN , (3.4)

We evaluated the models using the parameters with the best average F1 score calcu-
lated on the validation set. After each epoch, we only save the model parameters if the
validation performance is the highest up to that point.

3.4 Evaluation

To train and evaluate the document page stream segmentation, we used the Tobacco800
dataset in three network architectures: a Long Short-Term Memory (LSTM) [61], Uni-
versal Language Model Fine-Tuning (ULMFiT) [29] with ASGD Weight-Dropped LSTM
(AWD-LSTM) [47] and BERT [19] for ranking the pages as first_page or next_page class
on the same dataset.

For document classification with the RVL-CDIP dataset, inspired by Howard and
Ruder (2018) [29], we used ULMFiT with AWD-LSTM for training, testing and evalu-
ation. Each evaluation dataset was split into training, validation and test subsets. We
minimized the loss function using the training set and assessed the model from each epoch
on the validation set. We saved the model’s weights of the lowest loss in the validation
set iteration and evaluated the model with these weights in the test set after the whole
training. We tried the same strategy with the BERT [19] model to classify the RVL-CDIP
dataset.

We also performed experiments with the VICTOR dataset [17] to classify documents
from the legal domain and in Portuguese, using ULMFiT with AWD-LSTM for training,
testing, and evaluation. We performed preliminary experiments with the complete dataset
using AWD-LSTM. Next, we split the VICTOR dataset into two sampling strategies, one
containing only the first page of the documents and the other with the rest of the dataset
inspired by [17]. Finally, we performed some experiments with the first-page sample of
the VICTOR dataset using BERT, with the baseline and LayoutQT.

To evaluate, we compared the execution of the classifier using LayoutQT method
generating the quadrant tags and without the preprocessing with Tobacco800, RVL-CDIP
and VICTOR datasets. To compare the results of our approach with the baseline, we used
accuracy and F1-score metrics. The loss function used by default is the cross-entropy
loss, as we have a classification problem (the different categories are the words in our
vocabulary).
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3.5 Summary

In this chapter, we described the entire methodology of our LayoutQT approach - Layout
Quadrant Tags, a lightweight pre-processing method that combines textual and layout
information. Specifically, we presented a new set of tokens that encode language models
of spatial regions. LayoutQT divides a document into quadrants. Each quadrant is
identified by a positional token that is later inserted into the embedding of text blocks.
Next, we define the baseline architecture. Finally, we present the statistical metrics for
evaluating the model and the methodology for evaluating our approach.
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Chapter 4

Experiments

This chapter presents our experiments and deals with the datasets chosen to evaluate
our proposal. Publicly accessible document image collection with realistic scope and
complexity is important to the document image analysis and search community.

We apply our model to two subsequent tasks, one for page flow segmentation and
another for document type classification. We use the Tobacco800 dataset for the page
stream segmentation task and the RVL-CDIP and VICTOR datasets for document type
classification. For Tobacco800, we follow the training, validation, and testing split defined
by [10], while we use the standard split for RVL-CDIP, and for the VICTOR dataset, we
follow the split defined by [17]. We performed classification experiments with and without
using our model to compare the results.

4.1 Experiment Setting

This section describes the implementation details used for the proposed approach. We
used our preprocessing method, which starts with an OCR engine to generate blocks
of text (bounding boxes) and delimit textual elements for each image in the document.
Then, a parameterised set of quadrants is used to define quantised coordinates to compute
our tags. For this feature extraction processing and insertion of positional tags into text
blocks,We used an Intel Core i5-10210U CPU laptop with 20 GB of memory and 256 GB
of PCIe SSD storage, which proves a low computational cost.

Initially, we performed two experiments with the Tobacco800 dataset for binary clas-
sification of document pages, one with LayoutQT using 24 quadrants (6 horizontal blocks
x 4 vertical blocks) and the other experiment with the baseline. Later, we vary the num-
ber of quadrants by modifying the number of rows and columns. Our first model has an
LSTM backbone (composed of 256 nodes fully connected with activation “ReLU” and a
dropout of 0.3). Furthermore, we use binary cross-entropy as a loss function with softmax
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activation and Adam as an optimizer. The model was trained for 100 epochs with a batch
size of 128.

We also performed the experiments with an AWD-LSTM language model [47] trained
with backpropagation through time with a batch size of 128, an embedding size of 400, 3
layers, 1150 hidden activations per layer, giving a total of 24 million parameters for the
PSS job using the baseline and LayoutQT in the Tobacco800 dataset. We then repeated
this experiment using BERT, which contains 12 layers in the encoder stack, 768 hidden
units, 12 attention heads, totalling 110 million parameters. The model was trained using
one cycle learning rate policy [56] for 100 epochs with a batch size of 128 documents and
a sequence length 72 using NVIDIA Tesla V100 32GB GPU.

Finally, for the document image classification task, we performed similar experiments
using as backbone AWD-LSTM and BERT with the same configurations of the previous
experiments on the datasets RVL-CDIP and VICTOR. However, the experiments with
the dataset VICTOR with AWD-LSTM were divided into three stages. First, we perform
classification experiments with the baseline and LayoutQT on the full dataset. Next,
we divided the dataset into two sets of samples, one containing only the first page of
the documents and the other the not-first page, to see what is the relevance of the first
page of the documents vs other pages. Then, we classified both samples to compare with
the work by Luz et al. (2022) [17]. In the next section we present the publicly available
benchmarks used to evaluate our method.

4.2 Datasets

The Truth Tobacco Industry Documents, formerly known as Legacy Tobacco Documents
Library (LTDL), was created and hosted by the University of California San Francisco
(UCSF). It was built to provide permanent access to the tobacco industry’s internal cor-
porate documents produced during litigation between the US States, the seven major
tobacco industry organizations, and other sources. Complex document image processing
(CDIP) test collection was constructed by the Illinois Institute of Technology (IIT), as-
sembled from 42 million documents (in 7 million multi-page TIFF images) released by
tobacco companies under the Master Settlement Agreement from the LTDL in 2006 [35].
The documents in LTDL range from the late 19th century to the present. The bulk of
the collections dated 1950 through 2003.

At first, we used three publicly available datasets containing business documents in En-
glish, namely Tobacco800 [76, 75], RVL-CDIP [26], and Tobacco-3482 [32] datasets. These
datasets are subsets of the CDIP dataset found in the literature for various downstream
tasks, such as document image classification, PSS, and offline signature verification, among
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others. Next, we briefly describe VICTOR [43, 42], a dataset of court documents in Por-
tuguese proposed for document classification. The properties of all datasets are described
below.

4.2.1 Tobacco800

Tobacco800 [35] is a public subset of the CDIP used for several tasks: offline signature
verification, detection, extraction of document images, etc. Recently, it has been used
for page stream segmentation. The Tobacco800 dataset has only 1,290 document images
of many types, such as letters, fax, memos, etc., that were collected and scanned using
various equipment over time. Since the Tobacco800 dataset sample file name comes with
the page, like the ones shown in Figure 4.1 when merged, it mimics a stream of pages
from multiple documents ideal for splitting by the PSS model. In addition, Tobacco800
[35] was manually annotated, targeting document signature and logos segmentation.

Figure 4.1: Image documents sample of Tobacco800 dataset. In left-to-right order, the first
image is a single-page document, and the next two images are pages of the same document and
are in ascending page order.

A significant percentage of Tobacco800 are consecutively numbered multi-page busi-
ness documents, making it a valuable testbed for various content-based document image
retrieval approaches. Resolutions of documents in Tobacco800 [35] vary significantly from
150 to 300 DPI, and the dimensions of images range from 1200 by 1600 to 2500 by 3200
pixels. Table 4.1 presents the division of the dataset into training, validation and test
sets for each class.

The classification problem here involves two classes: whether the transition between
consecutive pages indicates the continuity of the same document or the beginning of a new
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Table 4.1: Class counts by division into training, testing and validation show the number of
document pages belonging to the FirstPage and NextPage classes.

Label Class Train Validation Test

0 FirstPage 586 150 118
1 NextPage 445 109 88

document. Document images are classified in FirstPage or NextPage, in which FirstPage
represents a document’s first page, and NextPage class is formed by all document pages
except the first page. The Tobacco800 Dataset was used by Wiedemann and Heyer (2021)
[69] to evaluate a binary classification architecture proposed by them. This work developed
a hybrid approach combining image and text for page stream segmentation (PSS). Braz
et al. (2021) [10] also used this dataset to evaluate a series of models for the PSS problem.
They defined a novel approach to the PSS problem using four training classes by dealing
with pairs of pages, which can be reduced to the usual two classes of the PSS problem in
the literature.

4.2.2 RVL-CDIP

RVL-CDIP, also known as BigTobacco, stands for Ryerson Vision Lab Complex Document
Information Processing. The file structure of this dataset is the same as the IIT collection
so that you can query this dataset for OCR and additional metadata. RVL-CDIP is a
huge dataset with 400,000 grayscale images in 16 classes, with 25,000 images per class,
which was introduced by Harley et al. (2015) [26]. There are 320,000 training images,
40,000 validation images, and 40,000 test images. The images are resized, so their largest
dimension is not greater than 1,000 pixels.

The 16 classes include letter, form, email, handwritten, advertisement, scientific re-
port, scientific publication, specification, file folder, news article, budget, invoice, presen-
tation, questionnaire, resume, memo, see Figure 4.2. Table 4.2 presents the number of
training, testing and validation data samples for each document type. The evaluation
metric is the overall classification accuracy.

Recently, pre-training techniques have increased the development of Document AI,
achieving notable progress on downstream tasks. RVL-CDIP is a representative dataset
for evaluating document image classification tasks. It has been used in several state-of-
the-art works for document AI [72, 73, 4, 5].
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Figure 4.2: Samples of different document classes in the RVL-CDIP [26] dataset which illustrates
the low inter-class discrimination and high intraclass variations of document images.

Table 4.2: Number of document pages in each class of the RVL-CDIP dataset, showing counts
per split in training, testing and validation.

Class Document Type Train Validation Test

0 letter 20015 2424 2457
1 form 19871 2526 2495
2 email 19911 2529 2516
3 handwritten 19322 2341 2411
4 advertisement 19005 2383 2386
5 scientific report 19874 2502 2484
6 scientific publication 19834 2522 2568
7 specification 19917 2524 2468
8 file folder 17690 2153 2239
9 news article 19921 2523 2454
10 budget 19909 2474 2488
11 invoice 19868 2569 2468
12 presentation 19933 2457 2481
13 questionnaire 19909 2499 2421
14 resume 19993 2423 2535
15 memo 19877 2527 2478
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4.2.3 Tobacco-3482

Tobacco-3482, also known as SmallTobacco, is another publicly available dataset compris-
ing 3482 images of 10 different classes extracted. It was selected and labeled by Kumar
et al. (2012) [32]. An example image from each of the ten classes (Advertisement, E-mail,
Form, Letter, Memo, News, Note, Report, Resume, Scientific) in Tobacco-3482 is shown
in Figure 4.3. Differently from RVL-CDIP, the Tobacco-3482 does not come with pre-
built subsets for train, validation, and test. Except for the Note and Report class, all
others are already included in the RVL-CDIP dataset. Unlike the RVL-CDIP dataset,
the distribution of the samples across the classes is not the same.

Figure 4.3: Samples of different document classes in the Tobacco-3482 [32] dataset which illus-
trates the low inter-class discrimination and high intraclass variations of document images.

SmallTobacco dataset was used in several related papers for document image classifi-
cation. Tobacco-3482 was used by Noce et al. (2016) [50] to evaluate a document image
classification method based on combined visual and textual information. Asim et al.
(2019) [4] utilized the InceptionV3 model to classify text document images using trans-
fer learning. They have trained InceptionV3 on the RVL-CDIP dataset using ImageNet
weights and utilized transfer learning to classify Tobacco-3482 text document images. To
evaluate the effectiveness of a cross-modal deep network that jointly learns text-image
features to classify document images, Bakkalli et al. (2020) [7] utilized the benchmark
Tobacco-3482 dataset.
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4.2.4 VICTOR

VICTOR [17, 42] is a dataset of legal documents belonging to Brazil’s Supreme Court
(Supremo Tribunal Federal or STF) suits were labeled by a team of experts. This dataset
was built as part of the VICTOR project, a partnership between the STF, UnB, and
Finatec. The project aimed to develop an artificial intelligence tool to assist the STF
in analyzing extraordinary appeals from all over the country, especially regarding their
classification in the most recurrent themes of general repercussions. Some other works
that resulted from this project using the VICTOR dataset are presented in [9, 42, 17, 15].

The VICTOR dataset comprises 45,532 Extraordinary Appeals (Recursos Extraordinários)
from the STF. Each suit contains several documents, ranging from the appeal to certifi-
cates and rulings, totaling 692,966 documents comprising 4,603,784 pages. Most cases
reach the court as PDF files, each representing a specific document or an unstructured
volume containing multiple documents. A significant part of the data provided is in the
form of images obtained by scanning printed documents that often contain handwritten
notes, stamps, stains, and other sources of visual noise, like the ones shown in Figure 4.4.
The dataset contains two types of annotations and supports two tasks: document type
classification and theme assignment, a multilabel problem.

Figure 4.4: The first eight pages of a lawsuit of the VICTOR dataset [17]. While the first page
is clean, the others come from an older document and contain ink stains, stamps, handwritten
signatures, and other artifacts.
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Table 4.3: Class counts per split in training, testing and validation show the number of the first
page and the not-first page.

Train Validation TestClass First page Not first page First page Not first page First page Not first page
Acórdão 301 282 198 116 197 88
ARE 266 3,954 227 2,423 203 2,334
Despacho 265 96 143 40 146 52
Others 37,114 103,672 24,292 67,110 24,193 63,709
RE 450 9,731 317 6,483 301 5,876
Sentença 420 1,757 277 1,336 262 1,216

There are six different labels for document type classification:Acórdão, for lower court
decisions under review; Recurso Extraordinário (RE), for appeal petitions; Agravo de
Recurso Extraordinário (ARE), for motions against the appeal petition; Despacho, for
court orders; Sentença for judgments; and Others for documents not included in the
previous classes.

First, Luz et al. (2020) [17] introduced three versions of this VICTOR dataset: Big,
Medium, and Small. Big VICTOR (BVic) is used only for theme classifications since it
contains all data, including the unlabeled documents. Medium VICTOR (MVic), with
44,855 suits, 628,820 documents, and 2,086,899 pages, is the result of filtering out those
samples and can be employed for both theme and document type classification. The
number of MVic processes was limited for each theme to 100 samples in each set to create
the Small VICTOR (SVic) dataset, which contains 6,510 Extraordinary Features, 94,267
documents, and 339,478 pages.

Luz et al. (2022) [17] also introduced SVic+, a multimodal dataset of lawsuits com-
posed of ordered document images and corresponding texts. This SVic+ dataset is an
extension of Small VICTOR, which was expanded to include the document images and
textual data. Every page in the expanded corpus is stored in at least one of two formats.
First, as text extracted through optical character recognition, with the following additional
preprocessing steps: lower-casing, removal of stop words and alphanumeric tokens, e-mail
and URL tokenisation (e-mails and URLs are replaced by the tokens ‘email’ and ‘link’),
and special tokenisation of legislation references (e.g., Lei (law) 11.419 to LEI_11419).
Second, JPEG images were converted from the original PDF files, with mean width and
height of 1664 and 2322 pixels, respectively. Table 4.3 presents the number of training,
testing and validation data samples for each class.

We present our results from the downstream tasks for each dataset in the form of
tables and graphs in the next section.
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4.3 Results and Discussions

We divided the results according to the downstream tasks performed and the dataset
used. Initially, we present the results and discussions of the page stream segmentation
task on the Tobacco800 dataset, followed by the results and discussions of the document
classification task on the RVL-CDIP and VICTOR datasets.

4.3.1 Page Stream Segmentation on Tobacco800 dataset

We performed the page stream segmentation task based on Braz et al. (2021) [10], which
aims to classify the first page of a document as FirstPage and the continuation pages as
NextPage with the Tobacco800 dataset using our LayoutQT method by adding quadrant
tags and as a baseline processing without placing tags using only text. Such experiments
were processed using the LSTM, ULMFiT with AWD-LSTM and BERTBASE models.

The validation split results in Table 4.4 brought out that there was a large room
for improvement in the baseline by only using text sequence architecture since we have
surpassed Braz et al. (2021) [10] and Weidemann (2019) [69] baselines by at least 6
points of F1-score. After applying LayoutQT, we got 1.7 points more out of the 2.1
possible, which turns out to be 80.9% of the possible gain. Furthermore, comparing the
results obtained from our model with tags and without tags (baseline) using the LSTM,
AWD-LSTM and BERTBASE networks as the backbone, we obtained better results with
AWD-LSTM.

Table 4.4: Accuracy and F1-score (in %) of the page stream segmentation on the Tobacco800
dataset obtained with the baseline and LayoutQT compared to the state-of-the-art.

Model Modality Backbone Accuraccy F1-score
Braz et al. (2021) [10] image only VGG16 92.0% 91.9%
Braz et al. (2021) [10] image only EfficientNet-B0 83.7% 81.9%
Wiedemann et al. (2019) [69] text + image VGG16 91.1% 90.4%
Baseline text only LSTM 84.1% 82.9%
LayoutQT baseline text + layout LSTM 85.9% 86.1%
BERT baseline text only BERTBASE 92.2% 92.0%
BERT with LayoutQT text + layout BERTBASE 93.0% 93.0%
ULMFiT baseline text only AWD-LSTM 97.5% 97.9%
ULMFiT with LayoutQT text + layout AWD-LSTM 99.5% 99.6%

Figure 4.5 shows the confusion matrix of binary classification to Tobacco800 dataset
without tags (baseline) and with tags of quadrants (LayoutQT) using ULMFiT (AWD-
LSTM) model. It is clear that for the detection of first page images, both the baseline
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and our model missed only one image, but for detection of the follow-up pages, the model
without our tags missed four images, while with our tags, there was only one error.

Figure 4.5: Confusion matrix of Tobacco800 binary classification using AWD-LSTM with 24
quadrants.(a) results found from the experiment without the tags, that is, with the baseline.
(b) results obtained with the tags (LayoutQT).

This analysis provides insights into the classifier’s performance for each class, high-
lighting areas where the classifier excels and areas where it may need improvement. After
analyzing the two confusion matrices in Figure 4.5, we review the documents in which the
binary classifier makes a wrong prediction. We verified a wrongly labeled document in the
test sample, which appears in the confusion matrices as False Negative. The document
in Figure 4.6 is the first page and is incorrectly labeled NextPage. The classifier’s perfor-
mance with LayoutQT achieved excellence in the PSS task on the Tobacco800 dataset.

To verify whether the number of quadrants influenced the results, we varied the base-
line, without division of quadrants, with four quadrants, six quadrants, up to 35 quad-
rants, dividing the document into seven lines by five columns. The results obtained from
varying the quadrants with AWD-LSTM on the Tobacco800 data set are shown in Figure
4.7. We can observe that the best result was obtained with 24 quadrants with 99.6% of
the F1 and the worst with 35 quadrants with 96.2% of the F1. The results prove an ideal
value for the number of quadrants. We show that the LayoutQT tags improve classifica-
tion performance by using up to 4x6 quadrants per page. More than that may harm the
performance. We hypothesize that the excessive location tasks are less informative and
make the text noisy.

The LayoutQT method can be easily adapted to other architecture, including BERTBASE.
However, in the Tobacco800 dataset, the AWD-LSTM model outperforms the BERT
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Figure 4.6: Image of the first page of a document from the Tobacco800 dataset [35], which was
mislabeled as a page within the document (“next page” class).

Figure 4.7: F1-score (in %) of the experiments carried out for the page stream segmentation
task using LayoutQT with the variation of the number of quadrants on the Tobacco800 dataset
in the AWD-LSTM architecture.
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model in the classification F1 metric by a large margin (99.6% vs 93.0%). Consider-
ing the fewer parameters of the AWD-LSTM model - while the BERTBASE model has
110M parameters, the AWD-LSTM model has only 24M parameters. For this reason, we
adopted the AWD-LSTM model as our default architecture.

4.3.2 Document Classification on RVL-CDIP dataset

Our proposed approach also demonstrated superior performance over the baseline for
document classification on the RVL-CDIP dataset with AWD-LSTM backbone, as shown
by the confusion matrices in Figure 4.8. When our location tokens are not used, the
resulting F1 score is 80.7% (AWD-LSTM) and 80.1% (BERTBASE). However, when we
use our LayoutQT, the F1 score goes to 85.9% (AWD-LSTM) and 84.5% (BERTBASE),
as shown in Table 4.5.

Figure 4.8: Confusion matrix of RVL-CDIP composed of 16 document classes: 0-letter,
1-form, 2-email, 3-handwritten, 4-advertisement, 5-scientific report, 6-scientific publica-
tion, 7-specification, 8-file folder, 9-news article, 10-budget, 11-invoice, 12-presentation, 13-
questionnaire, 14-resume and 15-memo. Confusion matrix (a) shows the results of processing
without tags, while confusion matrix (b) shows the results of our model using tags.

To classify documents using the RVL-CDIP dataset, we performed an error analysis
of the confusion matrix in Figure 4.8 with tags, using the precision, recall, and F1-score
metrics. Classes such as “Email”, “Resume”, and “Memo”, for example, demonstrate high
precision, recall, and F1 score, indicating accurate classification. Some classes, such as
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“File Folder” and “Advertisement”, have relatively lower precision and recall, suggesting
difficulty distinguishing instances belonging to these classes. We observed several samples
of documents in the cited classes misclassified. The main characteristic of these documents
is that they have little or no text, and the positional tags added by LayoutQT have
little significance in classifying these documents. Figure 4.9 shows a document from the
“File Folder” class, one from the “Advertisement” class, and the respective insertions of
positional tags.

Figure 4.9: Examples of two documents from the RVL-CDIP [26] dataset where both baseline
and the proposed method fail. In both pages, there is little or no textual content. (a) sample
from the File Folder class and (b) tags added by LayoutQT to the document. (c) Sample of the
Advertisement class and (d) tags added by LayoutQT to the document.

In addition, Table 4.5 compares the performance of the document classification pro-
posals, baseline and LayoutQT, from the RVL-CDIP dataset for each document class us-
ing AWD-LSTM and BERTBASE model. The results show that our approach to adding
positional tags performed better for all classes of documents w.r.t. the baseline with AWD-
LSTM backbone. For detection of file folders, LayoutQT obtained a significantly better
result than the baseline. That is, the percentage result of our approach more than doubled
the baseline due to the relevance of the location text in such a document. The overall
ranking result with LayoutQT showed an advantage of 5.2% in the F1 metric compared
to the baseline. The highest F1 score result of 98.3% was obtained in the resume class
with our approach using AWD-LSTM.

In contrast, in the case of BERTBASE, LayoutQT results were lower than the baseline
in only two classes: form and resume, both by a relatively small margin. In the case of
forms, it is likely that those documents have too many text boxes, therefore there is an
overload of layout tags, which are likely to make the representation too noisy for BERT. In
addition, the comparison of LayoutQT results with AWD-LSTM and BERTBASE shows
that AWD-LSTM performed better than BERTBASE in most classes, with only three
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Table 4.5: F1-score (in %) of the document types classification on RVL-CDIP dataset obtained
with the baseline and LayoutQT. The results in absolute numbers of hits and misses by classes
are shown in Figure 4.8

Class Document Type Baseline
AWD-LSTM

LayoutQT
AWD-LSTM

Baseline
BERTBASE

LayoutQT
BERTBASE

0 letter 88.3% 89.7% 83.7% 86.0%
1 form 79.7% 81.3% 77.8% 77.3%
2 email 97.3% 97.6% 93.0% 96.0%
3 handwritten 70.9% 83.3% 63.6% 80.0%
4 advertisement 65.4% 68.2% 66.0% 70.0%
5 scientific report 65.5% 80.8% 74.8% 80.3%
6 scientific publication 90.5% 92.1% 87.4% 89.0%
7 specification 92.1% 93.6% 90.7% 91.0%
8 file folder 31.9% 63.5% 64.0% 73.8%
9 news article 86.4% 86.8% 78.8% 82.6%
10 budget 77.8% 84.0% 78.1% 82.3%
11 invoice 87.9% 89.9% 81.4% 85.9%
12 presentation 79.9% 81.0% 70.3% 81.1%
13 questionnaire 88.9% 89.5% 83.7% 87.9%
14 resume 98.1% 98.3% 98.6% 98.3%
15 memo 91.4% 92.5% 85.4% 90.0%
Average 80.7% 85.9% 80.1% 84.5%

exceptions (advertisement, file folder, and presentation). The overall average F1 score of
our approach with AWD-LSTM was 1.4% points higher than that of BERTBASE.

4.3.3 Document Classification in Portuguese on the VICTOR
dataset

Figure 4.10 shows the document classification confusion matrix for the VICTOR dataset
with only the first page of each document without quadrant tags (Baseline) and with
quadrant tags (LayoutQT) using (AWD-LSTM) model. Analyzing the confusion matrix
and the metrics used, we verified that the Acórdão class presents relatively high precision
and recall, indicating that the classifier performs well in identifying instances of this class
and that LayoutQT obtained better results than the baseline. Precision and recall are
relatively low for the ARE and Despacho classes, suggesting that the classifier has more
difficulty correctly identifying instances of these classes. The Others class exhibits high
precision, recall, and F1 scores, indicating that the classifier performs exceptionally well
in identifying instances of this class.

Table 4.6 exhibits the F1 scores of document image classification with the AWD-LSTM
model on the VICTOR dataset. It also shows the difference in classification performance
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Figure 4.10: Confusion matrix of VICTOR composed of 6 document classes: 0-Acórdão, 1-Agravo
de Recurso Extraordinário (ARE), 2-Despacho, 3-Others, 4-Recurso Extraordinário (RE), and
5-Sentença. Confusion matrix (a) shows the results of processing without tags, while confusion
matrix (b) shows the results of our model using tags using ULMFiT

of samples on the first page of a document versus pages other, considering only text
(baseline) versus fusion of text and layout (our method). We first compared the results
obtained from the baseline with the LayoutQT across the entire dataset. LayoutQT’s
average F1 score result (73.6%) exceeds the baseline (72.3%) by 1.3%.

Also, all F1 score results obtained with LayoutQT were better than the baseline us-
ing the complete VICTOR dataset, except for the result of the Acórdão class, where the
baseline outperformed our approach by 0.3%. The highest F1 score in document classi-
fication with AWD-LSTM model in the full VICTOR dataset was obtained in the Other
class (96.7%) using LayoutQT, and the lowest was in the Despacho class (53.6%) using
the baseline. This F1 score comparison can be best visualized through the bar chart in
Figure 4.11.

In the case of experiments with the sample containing only the first page of documents,
LayoutQT’s F1 score performance was better than the baseline in almost all document
classes except the RE class. Our approach to the Others class obtained the highest F1
score with 99.1%, and the ARE class obtained the worst F1 score with 57.5% using AWD-
LSTM on the VICTOR dataset with the documents’ First-page sample, as shown in Table
4.6. The last two columns present the F1 scores of the sample of the Not-first page or
the First-page complement. LayoutQT was better than the baseline with the Not-first
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Table 4.6: F1 score (in %) classification of document types in the VICTOR dataset obtained
with baseline and LayoutQT using AWD-LSTM for the whole dataset. Then, the dataset is
split into two samples: the first with only the first page of each document and the second with
the rest of the pages.

Class Baseline LayoutQT Baseline
First page

LayoutQT
First page

Baseline
Not first page

LayoutQT
Not first page

Acórdão 80.4% 80.1% 89.5% 90.8% 57.9% 60.2%
ARE 58.5% 62.8% 57.5% 64.9% 64.8% 64.9%
Despacho 53.6% 55.1% 68.9% 77.4% 33.5% 40.8%
Others 96.6% 96.7% 98.9% 99.1% 96.3% 96.0%
RE 70.4% 71.9% 76.6% 76.3% 73.2% 71.8%
Sentença 74.1% 74.8% 78.2% 83.1% 77.2% 76.1%
Average 72.3% 73.6% 78.3% 81.9% 67.2% 68.3%
Weighted 91.6% 93.9% 97.8% 98.2% 92.9% 93.5%

page sample in the first three classes (Acórdão, ARE, Despacho) and worse in the last
three (Others, RE, Sentença). However, on average and weighted, LayoutQT’s F1 score
outperformed the baseline by 1.1% and 0.6% in the Not-first page sample with AWD-
LSTM model, respectively. In all experiments, the average/weighted results of the F1
metric with LayoutQT are higher than the baseline.

The best F1 results for document classification were obtained with the first-page sam-
ple set of the documents with LayouQT. Figure 4.12 shows that the highest bar in each
class is the LayoutQT First Page bar in the legend, the result of running the sample
experiments using only the first page of each document with our approach. The first-page
sample set achieved average/weighted F1 scores of 13.6%/4.7% higher than its comple-
ment. The first-page sample set using LayoutQT also had average/weighted F1 scores of
9.6%/4.3% higher than the full VICTOR dataset. These results show that the first pages
are more informative from the point of view of both textual and layout features.

The comparison of the F1 scores of the performances of the AWD-LSTM, BERTBASE

and BiLSTM-F [17] models on the first-page sample of the VICTOR dataset is presented
in Table 4.7, categorized by the use of textual (Baseline), textual and layout (LayoutQT)
or textual and visual (Luz et al. (2022) [17]) information. Combining positional tags with
text embedding increases the performance of all classes except the RE class, where it
dropped 0.2% from baseline using AWD-LSTM. Furthermore, our LayoutQT approach
improved the performance of all classes using BERTBASE, except for the Others class,
where the same value of 99.0% of the F1 score remained. We can also observe that
LayoutQT with BERTBASE performs better than LayoutQT with AWD-LSTM in almost
all classes, except Despacho and Others classes, with 4.3% and 0.1% less, respectively.
However, on average, BERTBASE outperforms AWD-LSTM by just 0.4% F1 score.
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Figure 4.11: F1 score (in %) for document image classification using baseline and LayoutQT
using AWD-LSTM architecture on the whole VICTOR dataset.

Figure 4.12: F1 score (in %) of document image classification using baseline and LayoutQT
using AWD-LSTM architecture on the VICTOR First-page sample dataset.
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Figure 4.13: F1 score (in %) of document image classification using baseline and LayoutQT
using AWD-LSTM architecture on the VICTOR Not First page sample dataset.

Table 4.7: F1-score (in %) of the document types classification in the sample of the VICTOR
dataset obtained with the baseline and LayoutQT using BERTBASE and AWD-LSTM models
compared to work by Luz et al. (2022) [17].

Class AWD-LSTM
Baseline

AWD-LSTM
LayoutQT

BERTBASE

Baseline
BERTBASE

LayoutQT
BiLSTM-F

Luz et al. [42]

Acórdão 89.5% 90.8% 92.1% 93.4% 93.4%
ARE 57.5% 61.8% 57.5% 64.9% 59.9%
Despacho 68.9% 77.4% 64.0% 73.1% 71.8%
Others 98.9% 99.1% 99.0% 99.0% 99.0%
RE 76.6% 76.3% 72.2% 79.1% 75.5%
Sentença 78.2% 83.1% 82.1% 87.1% 83.1%
Average 78.3% 81.9% 77.8% 82.3% 80.5%
Weighted 97.8% 98.2% 97.9% 98.6% 98.1%
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Finally, our textual feature layout approach overcomes the visual and textual feature
concatenation method proposed by Luz et al. (2022) [17]. In the LayoutQT experiments
with AWD-LSTM, the performance was better than BiLSTM-F [17] in almost all classes,
except for the Acórdão class with 2.6% smaller and the Sentença class whose value is the
same for both models. In the LayoutQT with BERTBASE, performance was better than
BiLSTM-F in almost all classes, except for the Acórdão and the Others classes, which
obtained the same value in both models. In addition, our LayoutQT approach using
AWD-LSTM and BERTBASE performed, on average/weighted, higher than BiLSTM-F.
Thus, the LayoutQT method on the VICTOR dataset showed an improvement over the
baseline of at least three percentage points in average F1 score and an improvement of at
least 1.4% over the state-of-the-art [17].

4.4 Summary

This chapter introduced the experiment settings that were performed using LSTM, AWD-
LSTM and BERT architectures with our LayoutQT method generating the quadrant tags
and baseline without the preprocessing on three datasets: Tobacco800, RVL-CDIP and
VICTOR. In addition, four datasets of images of literature documents for page stream seg-
mentation and document classification were described: Tobacco800, RVL-CDIP, Tobacco-
3482, and VICTOR. The datasets contain visually rich documents containing both text
and non-text. The first three (Tobacco800, RVL-CDIP and Tobacco-3482) contain im-
ages of publicly available English business documents extracted from the Legacy Tobacco
Documents Library (LTDL) and are very similar to each other. The VICTOR dataset
was obtained from STF court documents in Portuguese. After analyzing all the datasets,
we verified that Tobacco-3482 is practically a subset of the RVL-CDIP. Given the above,
only three datasets (Tobacco800, RVL-CDIP and VICTOR) were chosen to evaluate our
proposed approach to the document classification task.

Our method was evaluated using the Page Stream Segmentation and Document Image
Classification tasks. The results of the experiments are exhibited in the form of tables and
graphs, along with the data evaluation metrics used, such as accuracy and F1 metrics.
Furthermore, discussions relevant to the results obtained are presented. The LayoutQT
method combines text and layout features, improving the baseline in experiments with all
chosen datasets. The method can be easily used on various architectures and can improve
the results of downstream tasks by combining text and layout features. AWD-LSTM gives
the best results on Tobacco800 and RVL-CDIP. However, on VICTOR, which is a bigger
dataset with less variation between different classes, BERT, which is a more complex
model, gave better results.
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Chapter 5

Concluding Remarks

In this Chapter, we present the main conclusions of this thesis based on the results
obtained in this research and the limitations found from the error analysis. Finally, we
discuss possible directions for future work.

5.1 Conclusion

We proposed a simple and effective method combining layout and textual features with a
low computational cost for text processing. We use a rules-based and feature engineering
approach. Specifically, it takes information from the bounding boxes issued by an OCR
engine. It extracts coherent information from the text layout, like page and document
position for each text block. Our method, introduced in Chapter 3, divides the document
into quadrants and uses the quadrant location to add spatial tokens to mark each text
box’s start and end position. In addition, we also applied a greedy algorithm to organize
the words in blocks, firstly processing lines and then processing the groups of words.

This method, dubbed LayoutQT, was tested and evaluated with artificial neural net-
works of LSTM, AWD-LSTM/ULMFiT and BERT architectures to perform page flow
segmentation and document image classification. The datasets chosen for training/fine-
tuning were Tobacco800, RVL-CDIP and VICTOR. The first two comprise document
images in .tiff format, and the last was introduced in the Luz et al. (2020) [42] was gen-
erated from documents in .pdf format. Results were evaluated using Accuracy and F1
score, which are the most widely used metrics used for these problems.

We conducted experiments with an initially fixed number of 24 empirically chosen
rectangular regions (quadrants) and compared them with the baseline, as presented in
Chapter 4. Each quadrant is identified by a positional token that is later inserted into
the embedding of text blocks. Next, we performed experiments with varying the number
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of quadrants. We verified that our empirical choice of 24 quadrants gave better results
than using other configurations.

Our model achieved the best result using ULMFiT and AWD-LSTM on the To-
bacco800 dataset for the PSS task, achieving the following values in the evaluation metrics
on the test set: accuracy of 99.5% and F1 score of 99.6%, surpassing the baseline model
by at least two percentage points and the state-of-the-art by seven percentage points.
In the document classification task on the RVL-CDIP dataset, LayoutQT achieved the
best result using the ULMFiT model, with AWD-LSTM outperforming BERT by 1.4%
of F1 score. On the VICTOR dataset sample set containing only the first page, Lay-
outQT achieved better F1 score results than the baseline and the work of Luz et al.
(2020) [42]. Furthermore, this first-page sample set gave better than the full VICTOR
and not-first-page sets. This is consistent with [42].

The general objective of producing a trained document processing model that com-
bines textual information and layout was achieved. The specific objectives were also
met in specific information fusion combining positional information from text blocks and
text embeddings, using different learning models (LSTM, AWD-LSTM and BERT archi-
tecture). We emphasize that LayoutQT showed superior performance against baselines
and state-of-the-art for document classification and PSS tasks on the Tobacco800 and
VICTOR datasets, using a low additional cost in the positional tag insertion step.

5.2 Limitations

The main limitation of our approach is that it is designed to enrich the textual represen-
tation using layout information. The documents with little or no text may not benefit
from layout representation.

5.3 Future Works

By analyzing the results per class in Table 4.5, we observed that classes with a small
amount of text, such as file folder and form, are the most challenging. Therefore, our first
recommendation for future work is to explore ways to automatically balance textual and
visual features such that visual tokens can enrich document representations even when a
very small quantity of textual boxes are present (or none at all).

A second possibility is to exploit the proposed method on other kinds of data where
layout has an even higher level of importance, such as webpages, magazines, catalogues,
etc. A webpage contains text content and images of various sizes, hyperlinks to navi-
gate to other pages, domain and server information, HTML tags, and semantic web tags.
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Therefore, automatic web page classification is challenging due to its complexity, diver-
sity of content, images of different sizes, text, hyperlinks, and computational cost. On
the other hand, they have a lot of layout features that can be exploited to enrich their
representation.

A third suggestion is to evaluate the performance of LayoutQT with other down-
stream tasks, such as machine translation, next sentence predictions, etc. Research into
multimodal machine translation (MMT) has surged, incorporating extra modalities like
images to enhance the translation precision of text-based systems [25]. These multimodal
approaches find specific utility in simultaneous machine translation tasks, where visual
context augments the limited information from the source sentence, which is particularly
beneficial in the initial translation stages [25]

We also recommend exploiting our layout coding method with recent Large Language
Models (LLMs). Nowadays, LLMs have a significant impact on the AI community, and the
advent of ChatGPT1 and GPT-42 leads to rethinking the possibilities of artificial general
intelligence (AGI). Despite the impressive progress and impact of those models, we believe
it is worth exploring the possibility of using LayoutQT tags with them, potentially helping
them in tasks where layout plays an important role for document analysis. For simpler
tasks, such as page classification, we believe that simpler models like the ones used in
this thesis are good enough and it may not be worth using LLMs. Such models are
difficult to train and to perform experiments with (e.g. ablation studies) due to their huge
computation cost [74].

1https://openai.com/chatgpt
2https://openai.com/gpt-4
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