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Abstract

Title: An Approach for High-Level Multi Robot Mission Verification in UPPAAL
The need to leverage means to specify robotic missions from a high abstraction level

has gained momentum due to the popularity growth of robotic applications. As such, it
is paramount to provide means to guarantee that not only the robotic mission is correctly
specified, but that it also guarantees degrees of safety given the growing complexity of
tasks assigned to Multi-Robot System (MRS). Therefore, robot missions now need to be
specified and formally verified for both robots and other agents involved in the robotic
mission operation. However, many mission specifications lack a streamlined verification
process that ensures that all mission properties are thoroughly verified through model
checking. This work proposes a model checking process for mission specification and
decomposition of MRS in Uppaal model checker. In particular, we present an automated
generation process containing hierarchical domain definition properties transformed into
Uppaal templates and mission properties formalized into the Uppaal timed automata
language TCTL. We have evaluated our approach in three robotic missions and results
show that the expected behaviour is correctly verified and the corresponding properties
satisfied in the Uppaal model checking tool.

Keywords: Formal Verification, Model checking, Multi-Robot Systems
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Chapter 1

Introduction

1.1 Motivation

The Multi-Robot System (MRS) field has grown significantly in the past few years. From
task planning to control theory, this field holds many open challenges for researchers. Some
of the main reasons for that are the increasing complexity of tasks entrusted to robots,
robust collaboration between human and robots [6] and the need for unique domain-
specific restrictions for verification and certification of safety-critical MRSs [7]. Some of
those scenarios today include hospital robots [8], social robots [9] and robot assistants
[10]. Many of these systems share the similarity of directly or indirectly interacting with
humans during their operations, which, in turn, demand a more robust certification for
their safety [11] and mission correctness. Therefore, it is imperative that robot systems
must not contain any design flaws that could compromise the integrity of humans involved
in their operation.

Model checking techniques are formal techniques for verification of a given model of a
system through analysis of whether it satisfies specified properties or not [12]. The formal
verification of systems offers automatic and exhaustive verification of the state space in
finite state systems, assuring that any changes made to the specified model will not incur
in new unforeseen errors. These specifications can be evaluated in terms of properties,
such as safety, security, efficiency, reliability, dependability, etc. Model checking has been
used extensively in the MRS field [13, 14, 15] as it is quite useful for evaluating if multi-
robot models working in different settings are free of deadlocks and other design problems
overlooked during design.

Since many robot systems have completely different context settings and objectives,
their representation can be vastly different [16]. Therefore, several software engineer-
ing techniques are employed for designing robotic systems. Specifying behaviour can be
done through frameworks, in fact, a lot of middleware architectures and Model-Driven
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Engineering (MDE) techniques have gained traction for their ability to engineer a MRS
with unique characteristics [17, 18]. Another famous approach is the use of graphical
notations, which can be used to depict systems with a large set of parallel and/or se-
quential actions. The graphical notation is most useful for its inherent characteristic of
visual representation, offering a common ground for both stakeholders and engineers to
discuss specific implementation details with the aid of an illustrative system description.
Some of the most known approaches are Finite State Machine (FSM)s and flowcharts
such as RoboFlow [19]. On the other hand, one can also use Domain-Specific Language
(DSL) approaches to represent a MRS with textual language. DSLs have two central
characteristics: first, as the name suggests, their expressiveness must be directed to the
specific domain, i.e. the use of a specific language must be justified by a significant gain
in expressiveness during design. Second, the notation must be comprehensible for stake-
holders while also being machine tractable [20]. Therefore, it is highly recommended that
stakeholders decide which important features should be addressed in MRS due to scope
restrictions in certain DSLs.

Another important concern is at what level of abstraction the specification must be, i.e.
low-level specifications for MRSs would involve more detailed control over tasks, resulting
in a larger system [16]. On the other hand, this approach would require more granularity
and more thorough specification requirements for their inherent level of detail. Studies
have shown that large systems are better suited for statistical verification, since other
verification methods would often fail due to space state explosion errors [21]. Therefore, a
high-level abstraction MRS is often recommended for non-statistical verification methods
inside model checking. One other aspect that must be taken into consideration when
designing a high-level specification is defining predicates: statements that may change
during the course of a mission. They might be used to evaluate a certain universal state
during the mission execution or simply checking if a robot state has changed while per-
forming an action when it is supposed to. Likewise, it is possible to use agent capabilities
working similarly as predicates to define if a certain agent has the capacity of carrying
out certain actions.

There are many aspects when it comes to designing high-level MRS missions accur-
ately. Some of them might be critical or not for mission success depending on the mission
scope and its complexity. It is important to periodically submit a mission description to
scrutiny (e.g. verification or testing) to ensure that all preliminary steps are being taken
to guarantee mission correctness.
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1.2 Context

An important aspect of the MRS mission specification is describing the system operation
and its behaviour (also known as missions) [3]. Missions play an important role in defining
main goals and tasks that must be carried out in order to achieve mission success. Fur-
thermore, it is possible to create alternative mission paths should the main ones fail, this
adds more complexity to the mission design overall but also expands the list of possible
successful paths. Thus, regarding reachability, a mission is less prone to failure the more
alternative mission paths available it has.

Mission requirements include movement and manipulation as robot capabilities, i.e. if
a robot has some ability in order to carry out particular tasks. Robot capabilities are a
way to define MRSs heterogeneity, i.e. if a group of robots differ from each other in terms
of behaviour, equipment and abilities. Heterogeneity can make MRSs more complex as
they grow larger in size [22].

Other mission requirements include: predicates or statements concerning the mission
environment or the agents involved; and task ordering, as some tasks can be impossible to
perform in a particular order if a previous requirement was not met e.g. a robot must pick
a glass of water before delivering to its destination, this is usually considered under the
communication aspects of systems, as they often need to coordinate actions with other
robots in various missions.

Multi-Robot systems mission Specification and decomposition (MutRoSe) is a mission
modelling framework for goal-oriented, high-level MRS specifications. It specialises in
decomposing its input files into hierarchical task plans and outputting valid combinations
of task instances as well as the execution constraints between them. In order to do so,
it needs a GM [23, 24, 25] with domain-specific contextual runtime additions to accom-
modate flexible and real-world scenarios and a Hierarchical Domain Definition Language
(HDDL) [26] file, which is responsible for describing hierarchical tasks pertinent to the
mission domain.

Similarly to specifying MRSs, verification formalisms are also a very complex issue in
MRS; it is possible to choose from a variety of different formal methods. Formal methods
are mathematical techniques for specification and verification of properties in systems.
They can be employed in MRS using formal verification tools for design, simulation,
verification and testing. Besides, they offer potential for automation in software systems
and MRS systems as well due to their re-usability feature. The survey in [16] identified and
classified formalisms used in MRS, some examples are set-based (such as the B-Method
[27]), state-transition systems [28] and temporal logics [29], for instance Linear Temporal
Logic (LTL), Computational Tree Logic (CTL), Probabilistic Computational Tree Logic
(PCTL) and Timed Computational Tree Logic (TCTL).
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Among the verification tools, model checking is the most prominent and flexible verific-
ation approach due to its automatic nature and the ability to check for every combination
of states within a model [16]; these characteristics also guarantee that an inexperienced
user will be able to quickly design a specification then exhaustively check for safety, live-
ness and other properties within the model. This is not always true for other methods
such as theorem proving or simulation [30] which may require additional specification
(e.g. for the environment) for a thorough verification and a more skilled user beforehand.
Within model checking, one can use one or more different formalisms to tackle a MRS
design, this is mostly done by using process algebras or temporal logics.

One of the direct advantages of using verification is because it is an effective technique
to outline potential design errors [12]. As shown in Fig 1.1, during a software lifecycle,
errors detected during the conceptual design stage are about 40% less costly to fix com-
pared to those detected in operation. Additionally, model checking verifies if important
properties are maintained throughout system operation.

Uppaal [5] is an integrated tool environment used for the creation, verification and
validation of timed automata networks, a subset of FSA systems. UPPAAL has three
main parts: a description language, a simulator and a model checker. These components
will be outlined thoroughly on Section 2. While UPPAAL has a great focus on task
synchronisation and model checking real-time systems (i.e. using TCTL), it can also
be used to CTL as well by simply omitting the timed properties in a model. It uses
locations as an abstraction for states and its transitions are defined by invariants, guards
and synchronisation channels. UPPAAL has been used extensively to model and verify
many MRSs [31, 32]. UPPAAL files are written in eXtensible Markup Language (XML).

1.3 Problem Definition

Demonstrating MRS specification correctness can be difficult without verification pro-
cesses in place due to their complexity, multiple robots configurations and unknown con-
text conditions, predicates, etc. might greatly increase the number of states inside a
mission specification. Therefore, a verification technique such as model checking applied
to MRSs specifications to identify potential inconsistencies would help mission designers
to reason about mission specifications during early stages.

Thus, verification directly generated from specification models in high-level specific-
ation would impact positively on the accuracy of properties being evaluated. Other im-
portant challenge is accurately describing all important aspects of a high-level mission
from the verification process, as other system properties may not be fully covered, even
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if they are evaluated during verification. Defining the important aspects of a mission can
be quite complex as it varies significantly from one mission specification to another.

In this work, important characteristics are defined as several properties such as reach-
ability or mission correctness concerning predicates, capabilities and mission ordering
which could be facilitated if identified through model checking and its exhaustive state
space exploration. For instance, assume that a predicate p would drive the mission to
failure every time it was set to true, hence indicating it must be either removed or safely
guarded for certain contexts of operation in the mission specification. Depending on
the mission complexity, the designer might not be able to identify this alone without a
verification process in place.

This work aims to automate the verification process of high-level MRSs mission spe-
cifications. Specifications can range from behavior, planning, robot capabilities and co-
ordination protocols between robots. This approach particularly focuses on MRS hetero-
geneous missions and how they can be verified through formal methods concerning the the
correctness and consistency of MRS specification model and its requirements expressed
in the form of temporal properties. In order to verify the MRS mission specifications,
the generated models will be submitted to verification using the Uppaal tool and their
properties will be evaluated via TCTL formulas. Uppaal was chosen for this work due to
being able to represent a system as a Network of Timed Automata (NTA), extended with
data types. It supports the system design as a collection of non-deterministic template
with control structures able to communicate with each other through the use of channels
or shared variables [33].

It is possible to evaluate MRS mission specification as verification properties as some
works already show [34, 13]. Other works in MRS formal verification follow a similar
workflow to provide a straightforward process when generating specification model then
offering a verification technique for the given model in order to evaluate its correctness
[35]. Therefore, an automated verification technique such as model checking applied to
the specification of multi-robot models are able to provide more degrees of safety when
compared to other verification techniques such as testing or simulation.

Concerning the properties that need verification, model checking already defines some
default properties such as safety (something bad will never happen), liveness (something
good will eventually happen), reliability, security, availability, survivability, maintainabil-
ity, dependability and others. This work aims to assure safety and liveness inside a MRS
specification, but also tries to guarantee mission reliability by ensuring to a certain level
that they are correctly specified and able to potentially show the presence of design flaws
in the MRS specification.

Although the mission describes the high-level tasks that the MRS must accomplish,

5



Figure 1.1. Software lifecycle and error introduction, detection and repair costs [1]

it is important to note that the mission specification must not necessarily explain how it
will be achieved. Instead, it shows what tasks may be executed in order to successfully
complete the mission [36]. In various MRS applications, this level of detail is crucial when
the scope of the specification is still being defined, for it will define what properties are
verifiable depending on the granularity of the system.

We should note that specification concerns such as mission layout (e.g. terrain char-
acteristics, wall positioning, etc.), physical, kinetic or environment properties are out of
this work’s scope. Therefore, our verification process does not include robot implement-
ation errors or mission environment problems due to the high-level perspective this work
focuses on.

In order to be able to verify mission specifications automatically, the generation process
must abide to rigid specification rules to attest that the output given by any of the
specification files created will always be the same for a given input model. Thus, it is
important to precisely outline how each member included in specification files relates to
the verifiable model e.g. how a mission goal would be represented in the generated file
and how the rule applied would be the same for every goal.

Robot swarms [34] are an example of homogeneous MRS due to no specialised robots.
By specifying different capabilities as one of the many high-level mission requirements
needed to be met by verification, it is possible to define if a predicate is fundamental for
the achievement of a certain mission or what are the possible execution paths to achieve
a certain goal. Which leads to the first research question:
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Research Question 1. (RQ1) : How to automatically verify mission specifications
of heterogeneous MRS from a high-level perspective?

The second research question emerges from the fact that the generated verifiable files
must retain important properties in order to assess the mission specification correctness.
Thus, the scope for the following research question needs to be defined regarding the first
one. For instance, if a given mission specification model is incorrectly specified, then the
generated model verification must output some error indicating that the properties are
not satisfied due to the inconsistency occurring in the model i.e. the properties specified
must conform to the original model in a comprehensible manner. Furthermore, the error
must relate to what problem exists in the specification and preferably suggest or give hints
to what are the possible alternatives to fix them in a way to help the mission designer.

Some of the relevant properties MRS mission specifications verify are safety, security,
correctness and others. As one might expect, it is important to assure to a certain level
that mission correctness is achieved. Likewise, one can verify safety by ensuring absence
of deadlocks. Other relevant characteristics such as reachability, i.e. being able to reach
a certain path during the mission, or liveness are also possible inside verification through
model checking.

The second research question aims to extract relevant characteristics as properties
and other domain-specific MRS properties relevant to the mission context as well as
verifiable in UPPAAL. One of its flaws is not allowing nested operators when writing
formula queries, thus some properties are automatically ruled out by the verifier or require
some modifications for further verification. Nonetheless, some characteristics must be
addressed when it comes to fully verifying robotic mission specifications that are not
common properties to all robot systems. For instance, if there is a mission path capable
of accomplishing the mission with a certain set of capabilities enabled or if the needed
preconditions are met before a certain goal or task. The relevant characteristics must
be extracted from the specification model as verifiable properties in a comprehensible
manner.

Another concern derived from the first question is the possible loss of meaning during
the verification stage i.e. the specification and the verification model do not have the same
implied properties or some properties are missing, and thus would render the verification
model partially or completely useless. Therefore, both generation of verifiable files and
verification properties processes must be sound and thoroughly specified to assure that
such properties were not ignored during the generation process.
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Research Question 2. (RQ2) : Is it possible to extract relevant characteristics
from MRS mission specification models as verifiable properties?

1.4 Contributions

The contributions for this work are twofold:

1. a verification process for high-level MRS mission specification to assure its correct-
ness and identify potential inconsistencies early in the MRS mission engineering
process. This is achieved through a strict set of mapping rules between mission
specification and Uppaal elements;

2. We also propose a framework that automatically implements this translation into
Uppaal models and properties. The output intended is as a set of verifiable TCTL
properties and Uppaal models generated from MRS mission specification inputs
in the form of goal models and complex tasks expressed as Hierarchical Domain
Definition Language (HDDL).

Additionally, a case study verifying mission scenarios from RoboMAX will be used
for evaluation of this work. Figure 1.2 depicts the overview process for MutRoSe along
with a proposed contribution. The area circled in red depicts the proposed addition to
the current process. First, the mission specification elements are mapped and generated
as a Uppaal NTA, then the model is verified using Uppaal model checker verifier tool.
Should the specification verification be incorrect, the user is then able to correct the
specification files and submit them once again for verification, restarting the process, it is
important to stress that the restart is not automatic, however, given the arrow pointing
back to mission specification files. It only points out that the same file (now corrected)
is used once again as input. Note that the main contribution is an automated generation
process derived from the models. One should note that the world knowledge is excluded
from this verification process, that is due to the fact that the world knowledge if considered
in this approach, would instantiate variables inside the verification model, this is not the
best intended option since verification in Uppaal is able to cover extensively multiple
paths of execution. Therefore, the world knowledge is not an input for this verification
process.

1.4.1 UPPAAL

Uppaal is the model checking tool used in this project for specification and verification
of MRSs. Its 3 parts (Design, simulation and verification) consist in an integrated envir-
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Figure 1.2. Proposed contribution overview

onment that will be used for designing and verification of properties. It uses TCTL as
formalism for verification. The designs are focused on channel communication between
timed transitions, but the latter can be omitted by the user if the system does not con-
tain any timed constraints. Additionally, UPPAAL verifies properties by using TCTL,
likewise, timed constraints can be also be omitted, allowing the verification of non-timed
properties as well.

Uppaal is a tool used in several works in the verification field [37, 38], thus establishing
its academical prominence, additionally, it provides a rich environment for verification of
its models. It was the chosen tool due to its ability of providing a comprehensive model
ordering through template graphs, moreover, its communication channels and variables
are useful to link and describe many templates as an unique system.

Additionally, Uppaal has many industrial case studies [39, 40], which proves its re-
sourcefulness in both academic and business settings. This can be attributed to its re-
sponsive interactivity and friendly interface when designing templates. Arguably, Uppaal
has MDE features as it is able to break down complex systems in separate templates de-
scribed as models, which helps to describe various systems timed scenarios.
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1.5 Dissertation Outline

The remaining chapters of this document are structured as follows: Chapter 2 contains
the relevant theoretical background. Chapter 3 presents the solution proposed in this
approach. Chapter 4 displays experiments and their respective results, along with veri-
fication of properties. Chapter 5 approaches related works in MRS. Chapter 6 concludes
this document with final remarks and directions for future works.
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Chapter 2

Theoretical background

2.1 Goal Model

In requirements engineering, it is often beneficial to describe a system as a set of object-
ives and the related steps towards their achievement. In goal-oriented approaches, goal
models are a popular way to graphically describe a tree structure containing tasks and
goals performed by certain actors in a bottom-up fashion. They also provide a compre-
hensive and intuitive language, which is useful for quick visualisation of high-level mission
specifications.

In Fig 2.1, there is an example of a goal model. Goals are shaped as rectangular circles
and the tasks are represented by hexagons. The set of goals and tasks refer to the actor
responsible to enact them. The main task is the root node of the tree, if all sub-goals
and tasks are performed accordingly, then the root goal will be achieved. Usually, a goal
model has more than one way to achieve the main goal, justifying the need of a complex
diagram to represent.

In order to further improve the representation of goal models, CRGM adds runtime
annotations and contexts to the goal model. Contexts can be defined as a partial state of
the system’s surrounding world that may impact it negatively or positively. The algorithm
which defines if the main goal is achieved, namely achievability [2], considers all possible
path branches instances of contextual settings in order to satisfy the root goal, similar to
the SAT problem. A similar process is done in CRGM missions by MutRoSe to derive all
possible mission decompositions and how they can be achieved.

2.2 HDDL

Hierarchical Domain Definition Language (HDDL) is a language extension of Planning
Domain Definition Language (PDDL) for hierarchical planning, the extension adds hier-
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Figure 2.1. Goal model example for a museum’s visitor assistance system [2]

archical planning characteristics while trying to preserve all other aspects of the original
PDDL. The hierarchical language is responsible for representing a domain with abstract
tasks and its respective methods. This domain may also contain variables and predicates
related to them. A HDDL file may have the following elements:

• types: the list of types allowed for variables;

• constants: constants defined for the domain;

• predicates: the possible predicates (preconditions and effects). Predicates may act
as constraints in the case of preconditions or as assignments in the case of effects;

• task: abstract task with name and parameters containing one or more methods;

• method: method with name, parameters and respective types, preconditions and
subtasks;

• action: an atomic primitive task containing parameters, types and predicates

These elements are organised in tasks: they contain the different types involved in one
or more methods that can execute the task. A method contains the actions that must be
accomplished to finish the task and if their ordering is sequential or parallel. Addition-
ally, methods may have preconditions defined by predicates, which could constrain the
execution of the method due to preconditions not being met. Actions have parameters
containing the types involved, since this is done in an hierachical manner, the types in-
volved in an action also belong to the method. Actions also contain effects: they work as
statements which may update values of predicates in HDDL.
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2.3 MutRoSe

MutRoSe [3] is a framework for hierarchical task planning with strict rules for system
description and world knowledge. Additionally, the project contains examples to help
beginners to understand the tool and design their own mission specifications and output
their tasks decomposition provided that mission specifications and world knowledge are
made correctly. The output for MutRoSe are instantiated HTN (iHTN)s, which are the
valid mission decompositions based on specification constraints, also known as mission
plans. Hierarchical Task Network (HTN)s are task networks that represent possible de-
compositions given a HDDL specification and differ from iHTNs for their lack of concrete
variables instantiated. Thus, iHTNs are concrete instances of previously decomposed
HTNs inside MutRoSe. In other words, Multi-Robot systems mission Specification and
decomposition (MutRoSe) is a goal-oriented DSL framework used to specify multi-robot
mission plans. MutRoSe is concerned with the high-level task planning of multi-robot
missions and the allowed decompositions available given a specific state of the system
and its environment. After given the mission specification files, it runs an algorithm and
derives the valid mission decompositions as output.

An incorrect specification can compromise the entire decomposition process. The
reason is that MutRoSe cannot detect if a mission has valid decompositions up until its
execution, leaving the mission planner to discover what is the model error without any
assistance. Moreover, there is not a generation process for MutRoSe missions as veri-
fiable specification files. This process should be done automatically for valid MutRoSe
mission specifications, i.e. a specification syntactically correct, but not necessarily se-
mantically correct, as it could contain design errors. Therefore, model checking could be
greatly beneficial to MutRoSe specification files as they are not subjected to any verific-
ation techniques and these errors could impact a MRS mission performance or even its
achievement. Figure 2.2 shows MutRoSe process overview

2.4 The Uppaal Model Checking Tool

Model checking is a formal verification method that “explores all possible system states
in a brute-force manner" [12] and can help to verify systems at an early stage of design.
A popular model checker to verify real-time systems is Uppaal [5]. It is used for the
creation, verification and validation of networks of timed-automata (NTA), a subset of
FSA systems.

Uppaal provides a graphical interface divided into three main parts: the editor, the
simulator, and the verifier [5]. In the editor, systems are modeled as networks of timed-
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Figure 2.2. MutRoSe process overview [3]

automata inside template files. These networks are composed of locations connected by
edges that can execute functions, hold logical conditions, and synchronize with other auto-
mata in the system through channels [41]. Uppaal uses locations as an abstraction for
states and its transitions are defined by invariants, guards and synchronisation channels.
Uppaal has been used extensively to model and verify many MRSs [31, 32]. Finally, the
system defined in the editor can be executed in the simulator, which displays the state of
the automaton at every step.

Table 2.1. Types of TCTL formulae supported by Uppaal [5].

TCTL
formula

UPPAAL
formula Description

AG ϕ A[] ϕ ϕ should be true in all reachable states, i.e., for all paths ϕ is
always true.

EG ϕ E[] ϕ The should exist a maximal path for which ϕ is always true,
i.e., in every state of this path.

AF ϕ A<> ϕ For all paths, ϕ should be eventually true.
EF ϕ E<> ϕ There should exist at least one path, for which ϕ is eventually

true.
AG(ϕ→ AF ψ) ϕ –> ψ For all reachable states, whenever ϕ is true, then eventually ψ

will be true.

According to several definitions in [5, 42, 43], a timed automaton is defined as a tuple
(L, l0, C,
A,E, I) where L is the set of available locations, l0 ∈ L is the initial location, C is
the set of clocks, A is the set of actions, co-actions and the internal τ -action, E ⊆
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L × ×A × B(C) × 2C × L is a set of edges between locations with an action, a guard
and a set of clocks to be reset, and I : L → B(C) assigns invariant to locations. A
NTA is therefore, a network of n timed automata Ai = (Li, l

i
0, C, A,Ei, Ii). Since no

clock constraints are used in this generation (as MutRoSe itself does not contain timed
constraint properties), C = ∅. Templates automata are defined with a set of particular
parameters defined in our approach by the HDDL types used during task execution, these
parameters may be passed by value or by reference. Due to flexibility concerns, this work
uses pass by reference to define which variables will be passed as parameters.

Properties in Uppaal are specified in Timed Computational Tree Logic (TCTL) lan-
guage [5], which has its syntax shown in Table 2.1. As TCTL implies, Uppaal supports
verification of timed automata, such as real-time systems. Nevertheless, it can be used
for verifying untimed software by simply omitting the timed properties in a model[44].
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Chapter 3

Proposed solution

This chapter contains a detailed explanation concerning the proposed solution discussed
in Section 1.3, comprising the stages of development necessary to achieve the solution.
This section is organised as follows: first, it will be discussed the overall proposed solution,
with a descriptive image showing what the intended contribution is. Next, another figure
will depict in details the process overview used in this work. The process is divided in
stages and the following sections are defined by each stage described in the figure. For
instance, the generation stage will cover the mapping rules used to map MutRoSe elements
to Uppaal structures, alongside a general overview of how the main components of the
NTA interact. Finally, a more internal view of the parsing and generation process is
depicted in order to give the reader a more concrete sense of what is happening inside the
automated process.

3.1 Process overview

The process uses MutRoSe execution to perform the creation of output files used for this
approach, from then on, it is in a separate program used for parsing and generation.
As of now, the verification process is not fully integrated with MutRoSe, as Figure 1.2
suggests, but it is possible to generate Uppaal models by executing MutRoSe and then
the program with the output files.

An explanation of the process itself is available in Figure 3.1, which depicts the input
files and processes involved in the parsing and generation of Uppaal models. The process
begins by executing the MutRoSe framework with input files derived from the specific-
ation files, namely, the MutRoSe execution stage. Next, the generated files are used as
input for the parsing stage, where they are parsed as data structures to be used in the
generation stage. Generation comprises the generation of domain, goal model templates
and verification queries. Lastly, the verification stage is responsible for evaluating TCTL
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Figure 3.1. Process overview

queries designed to verify mission properties. As indicated in Figure 3.1, we further delve
into the sub-parts of our process in the forthcoming sections.

3.2 MutRoSe execution stage and parsing stage

The execution of this stage is necessary to extract information to parse it into data
structures afterwards during the parsing stage. The parsing stage is basically responsible
of reading and transforming the generated files in data structures responsible for the
actual generation process. During the execution stage, two main files are generated from
the goal model file and three from the domain definition input file. For the goal model,
these files are the goal nodes info file and the goal model order file. The goal nodes info
contains all information concerning a node (i.e. a task or a goal) inside the GM.

As for the domain definition, the main generated files are: the types and variables
information file, the available methods for abstract tasks and the method ordering file.
The first one contains the listed variables in the HDDL file and their respective types.
Next, the available methods for an abstract task file contains the names of one or more
methods available in the domain definition. Lastly, the method orderings contains all
possible orderings for actions within a method.

Examples of generation files are shown in A.1 for both domains (i.e. GM and HDDL).
In the following sections, we will discuss the generation stage and the verification stage
in a high-level fashion, i.e. the sections will not concentrate on specifics of code. The
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Figure 3.2. Goal model example
]

generation stage section will also contain the mapping rules needed to generate Uppaal
templates and additional structures derived from MutRoSe elements.

3.3 Generation stage

The generation stage mainly consists in compiling the information available in the parsed
data structures and translating them to templates inside Uppaal. The already parsed
data structures are sent to this stage where they are submitted divided into two main
processes: generation of domain methods templates and generation of goal model tem-
plates. The generation of domain methods is derived from files related to the HDDL while
the goal model templates derive from mission ordering and general goal model inform-
ation data structures. Both processes also comprise the global and system declarations
(textual structures) used for the templates. After the generation of templates, templates
are merged into the same NTA and some automatic verification queries such as deadlock
freedom are added to the verification queries automatically, since they follow the same
syntax in every NTA.

In order to do so, a strict translation process must be established to determine how
the elements of specification in MutRoSe will be adapted to a generated Uppaal NTA for
verification while preserving the original semantics. Therefore, it is imperative to display
in a subsection, namely mapping rules section, to describe exactly how this process occurs.
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Additionally, following subsections will also contain specifics of the generation process
itself with a breakdown of how mapping rule is applied during the generation.

3.4 Mapping rules

To generate a coherent generation, applicable to all missions designed in MutRoSe, one
must define how elements present in the original specification are translated to a verifica-
tion grammar (i.e. the Uppaal NTA). Table 3.1 express the rules derived from elements
which are described in the GM or the HDDL input files and how they are created within
the generation process for the NTA. In addition, rules will be further elaborated in their
respective subsections. A Uppaal timed automaton is defined as a non-deterministic
finite state machine enhanced with clock variables where the clock variables are evaluated
to real numbers during simulation. In the next subsection, we will use the semantics of the
definition present in [43, 5] as grounds to establish the generation process, this semantics
will be used throughout this section.

NTA generation

Two main automata generated are defined as the goal model level template and the task
level template, note that templates and automata will be used interchangeably from now
on. The goal model level template is one automaton responsible for coordinating task and
method execution in the order defined by the CRGM tree, whereas the task level template
is a collection of m available task methods and templates responsible for execution of the
subtasks needed to achieve a particular abstract task, defined in the HDDL file.

When mentioning certain MutRoSe elements, it is worth noting that there is an input
file responsible for each rule ID. For instance, consider rule #1: for the goal model level
template, no particular types are necessary for its creation, therefore no parameters are
used in this template by default, while the task level template may use one or more types,
depending on the types used in the actions defined in their subtasks. Both levels have
their declarations stated in the global declarations, which, as the name suggests, is visible
to all other templates. It is beneficial for tasks to be able to check each other status during
mission simulation, such as capabilities, which are globally visible. This is justified by the
fact that types are elements originated from the HDDL inside MutRoSe. The following
rules try to divide template responsibilities in order to clarify the generation process,
however, this is not possible at all times, since some interaction is needed for both levels
to cooperate inside the same network of automata.

The common flow between those two automata is as follows: the goal model template
triggers the execution of goals and tasks as described by the goal model input file, goals
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may have runtime annotations which are critical to mission ordering, while tasks are used
as execution placeholders to their respective methods. Whenever a task is executed, the
goal model then triggers a channel to execute the particular method template for that
task. The method may finish with a successful or failure state, this indicates that the
task has finished in both cases. Next, a channel is triggered by the task method warning
the goal model template that its execution has ended, which delegates the simulation
execution back to the goal model level. This is done until the mission is finished or fails
by being unable to execute one or more tasks.

Therefore, one of the immediate advantages of using a verifiable model is to investigate
execution traces and how predicates or other mission parameters such as variables may
impact on their behaviour. Next subsections dwell deeper in how rules interact during
the model generation and how these constructions are helpful during mission simulation
and/or verification.

Rules #1 and #2

Types in HDDL are used to define allowed types for variables in the domain [3]. Types
may have predicates, which are more thoroughly defined in rule #3. In our generation
process, a type is mapped as a struct type with a particular method and variables are
instantiated according to the maximum number of parameter variables present in one
single task. Assuring that the number of instance variables will suffice the required amount
of variables associated with that type for the mission description.

A type is therefore a set of predicates T = [P ] where V P ⊆ P is the subset of valid
predicates in P . As rule #2 states: types without preconditions or effects present in the
domain file (i.e. valid predicates) are discarded, as they are not present in the domain
definition. This is done inside the generation process by evaluating the available methods,
their subtasks and actions and removing the types without valid predicates until only V P
are mapped in our approach. In MutRoSe semantics, types can also have their types
defined through the world knowledge, a secondary file which contains objects that will
replace variables with instances. In addition, the world knowledge contains definitions of
predicates and functions being initialised. Since the world knowledge is being discarded
for the sake of generality, some variables have no defined value and cannot be properly
taken into account without this file.

Rules #3, #4 and #5

Predicates are defined as boolean expressions which can be used as preconditions or effects
and are always defined inside a type. Consider the equation with the following semantic
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of a transition [42]:
l

g−→ l′, where

g = t.precondition == true
(3.1)

Equation 3.1 defines a transition from location l to l′ bounded by an guard g, which means
that the transition will only occur when the t.precondition is true. In this approach, the
start location is denoted by l of a method with a predicate precondition == true of
variable t from a type Type. The Figure in rule #4 row depicts a similar transition to
an action bounded by the same guard where l named as "action" for clarity purpose. In
other words, the action will only be performed if the precondition stands, as defined in
the domain specification.

This, however, raises a problem with preconditions defined as guards: if the precon-
dition is not met by some reason, this would result in a deadlock inside the model, as
there would be no other transition available for the template to go to. This was solved
in this approach by adding an extra location with two new transitions: one containing a
guard with negation of the predicate as shown in rule #5 to avoid deadlocks; the other
transition goes back to the initial node, triggering method failure with the assignment
of a boolean variable to true (namely method_0_failed) which denotes mission failure
in templates. The transitions are both represented in the Figure of rule #5 and in the
equation below:

l
¬g−→ lfail,

lfail
u−→ l, where

¬g = t.precondition == false (i.e. the negation of g),

u = method_0_failed = true

(3.2)

Where lfail is the additional location created for failure and l remains the same location
from Equation 3.1, stressing that both must stem from the same initial location where the
precondition rule appears in order to prevent a deadlock condition. ¬g is the negation of
the precondition generated simultaneously. In the case of having more than one predicate
in the same transition, Uppaal is able to support n predicate clauses using boolean
algebra: consider P and ¬P the set of n predicates in a transition, thus the following
equation depicts how predicates and their respective negations are generated:

P = p1 ∧ p2 ∧ p3 ∧ ... ∧ pn

¬P = ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ... ∨ ¬pn

(3.3)

Where p1, p2, ..., pn as well as their negated counterparts correspond to individual
predicates, such as g and ¬g in Equation 3.1 and 3.2. It is also possible to note that
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synchronisation issues are addressed by communication channels. While there are not
imperative mapping rules for them as they are not derived from MutRoSe elements, they
are present throughout implementation in order to guarantee execution in the correct
order of the NTA methods defined by the goal model template, which will be explained
in rules destined for the GM input file.

Rule #6

Predicates also come in the form of effects, which can be defined as the triggered predicate
after performing an action (i.e. a transition). Likewise, a similar pattern is found in rule
#6, where instead of being a guard, it takes form of a Uppaal update. Updates are
used in Uppaal to assign values to variables or invoke functions defined in declaration
templates. An update transition works similarly, where instead of being the target location
for a transition, it is its source location. However, they do not require a negation nor extra
transitions as preconditions do, this is due to the fact that they are only an assignment
to a variable which side effect is changing the system state, thus, they do not cause any
deadlocks. Referring to the rule #6 Figure in Table 3.1, an equation below depicts how
an effect could be generically expressed:

l′
e−→ l′′, where

e = t.effect = true
(3.4)

Where t.effect is another predicate from the same type struct variable t, location l′

is the source location and l′′ is the end node if the method does not contain any more
subtasks or a subsequent action. For reference, an example of the struct used can be seem
in Figures of rule #1 and #3.

Rules #7 and #8

Capabilities are one of MutRoSe particular additions to HDDL syntax and are used to
define capabilities necessary for mission achievement. As such, they work in a similar
manner as predicates, with the exception that capabilities are not assigned such as in rule
#6.

Capabilities have a global scope when mapped to Uppaal as boolean variables but
do not possess any types and are individual instances. This however poses a limitation
to how these capabilities are used inside Uppaal, since they are converted directly to
a variable during generation, it is not possible to have multiple instances of a given
capability, whereas predicates may have as many variables as possible. Capabilities are
mapped as such mostly because it is not possible to infer how many capabilities will be
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needed using only the domain file. The following equation depicts the original capability
transition followed by the additional transitions and location added to prevent deadlocks:

l
c−→ l′, where

c = capability == true

l
¬c−→ lfailc,

lfailc
u−→ l, where

¬c = capability == false

u = method_0_failed = true

(3.5)

It is important to stress that while Equation 3.5 is very similar to equations regarding
preconditions (i.e. Equations 3.1, 3.2) l and l′ are different locations from the former
equations used here for clarity purposes. Furthermore, it is possible to define a set of
C capabilities for a given transition in which the generation process for l, l′,lfailc would
behave very similarly as Equation 3.3. Lastly, capabilities too might compromise the task
execution, therefore its transition also contains the update u.

Rules #9 and #10

1 ( : task AbstractTask : parameters (? r1 ? r2 - robot ?p - person ) )
2 ( : method method -0
3 : parameters (? r1 ? r2 - robot ?p - person )
4 : task ( AbstractTask ? r1 ? r2 ?p)
5 : p r e cond i t i on ( and
6 ( p r e cond i t i on ? r2 )
7 )
8 : ordered - subtasks ( and
9 ( act ion -0 ? r1 ?p)
10 ( act ion -1 ? r1 ?p)
11 ( act ion -2 ? r1 ?p)
12 )
13 )
14 ( : method method -1
15 : parameters (? r1 ? r2 - robot ?p - person )
16 : task ( AbstractTask ? r1 ? r2 ?p)
17 : ordered - subtasks ( and
18 ( act ion -3 ? r2 ?p)
19 ( act ion -4 ? r2 ? r1 )
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20 ( AbstractTask -2 ? r2 ? r1 )
21 )
22 )

Listing 3.1. AbstractTask definition from domain file

Abstract tasks are used in HDDL to describe how they are achieved through the execution
of a method m contained in a set of methods M , which may contain sub-actions and sub-
methods. The domain file does not contain explicit instructions of which methods will
be needed for a particular mission setting, in fact, the method might not be used at all
for that MutRoSe instance should it not be included in M . Thus, the generation process
adopts the naive approach of generating all method templates. The generation process
adopts this behaviour since the abstract tasks which will be executed are only known
during the generation of the goal model template, where goal tasks are directly related
to abstract tasks from the HDDL file. Thus, it is safe to conclude that the collection of
Uppaal template graphs related to a abstract task directly represents the said task.

In order to illustrate how the generation of task in HDDL to a Uppaal template is
done, suppose we have an abstract task with two methods as in Listing 3.1. It depicts an
example of a HDDL abstract task composed by two methods, which are related to the task
due to the task attribute (lines 4 and 16). method-1 does not contain a precondition while
method-0 does (lines 5 through 7). method-1 contains an abstract task in its subtasks.
HDDL specification supports nested abstract tasks inside other tasks, the solution adopted
in this work is to use yet another synchronisation channel inside the method template
referring to the respective available methods for the abstract task in question. In an
Uppaal template, this means that there will be a transition channel linking the generated
template of method-1 to the available methods of AbstractTask-2 when transitioning
from action-4. Suppose that the only available method to execute AbstractTask-2 is
method_2 (since its definition is not shown in Listing 3.1). Whenever the task method
ends (succesfully or not), a channel triggered returns the simulation to the method. From
then on, there are two transitions from which the method continues its execution, one is the
remaining subtasks, where the underlying method has not failed and other where it has.
For the failed method transition, there is a specific location (namely failed_AT) where
the failure state is triggered, which has a transition going back to the end-method node,
which triggers the channel indicating that the method has ended. Figure 3.3 illustrates
how the following output would be for this method. It is important to stress that the only
available method for AbstractTask-2 was method_2, thus, the synchronisation channels
used in this example coincide with the specification. If there was more than one method for
AbstractTask-2 to be achieved, this method would be included as an available transition
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Figure 3.3. Uppaal generated template for method-1

as well. Figure 3.4 displays an example for nested abstract tasks with two available
methods.

Abstract tasks and methods coincidentally have parameters, which are used to define
which parameter variables are used in their subtasks. Thus, the parameter generation
derives from the domain file specification. One important exception is that if the type is
removed due to not having valid predicates (as mentioned in 3.4), the type itself will be
removed from the parameters list. As mentioned before, the parameters are defined by
reference for two main reasons: one is that the domain file also does not instantiate vari-
ables, only defines which variables are used, thus it is possible to infer that the definition
uses call by reference in the domain file as well. The second reason is that by adopting
the call by reference approach when generating, it is possible for the end user to define
which variables are used for each method in system declarations. It is possible to identify
the parameters from the domain file in lines 15 and 3 in Listing 3.1, derived from the
parameters needed for the task (line 1).

Both tasks and parameters are directly involved in system declarations. Uppaal uses
system declarations to define which templates will be instantiated as processes in that
system instance. In more concrete terms, if a template is not attached to the system
process, it will not be accounted for in simulation and verification stages. This allows
for more flexibility while using the templates as the end user is also able to define which
methods will be truly used in its system. For this generation approach, all methods are
included in the system declarations. In addition, variables of a same type can be switched
to evaluate new system configurations, this essentially means that if a variable r of type
Robot is defined in the template, that variable may be reassigned in system declarations
to another robot r2. In doing so, the end user may analyse the behaviour of a single robot
throughout the entire mission to see if the mission itself is compromised somehow. The
only pitfall for this approach is assigning variables not declared in the global declarations,
which will obviously output an error.
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Figure 3.4. Method template with nested abstract task with two methods in Uppaal

Rule #11

Actions (also known as primitive tasks) [3] are concrete tasks from the domain file which
belong to one or more methods and need to be carried out to achieve a certain task. Ac-
tions may have preconditions, effects and parameters, alongside their types (type instances
needed for that action to occur).

Aside from being mapped as locations and having transitions originating from or to
them with guards or updates, actions themselves do not hold much importance since they
do not go into details as how they are achieved. The reason is that actions should not be
specific by design, which overall contributes to the high-level approach MutRoSe has.

Rule #12

In a GM, a goal represents an objective achieved by carrying out its sub-goals and sub-
tasks. It is therefore the representation of a mission goal that is relevant to the mission
context. MutRoSe adds another layer for goals when adding runtime annotations that
may affect the order as well. The tree traversal in a goal model is done depth-first from
the leftmost position, also known as preorder traversal. This order can be changed if a
runtime operation takes place.

In Uppaal NTA generation, Goals are the primary generated structure from the
goal model level template. As stated before, the goal model level template consists of
one template which replicates the ordering present in the CRGM file. Goals without
runtime operators are only added to the Uppaal template graph if they contain a leaf
node containing a task in their traversal path, otherwise they are not generated. This is
done to reduce the state space complexity without loss of meaning for both the model
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and MutRoSe specification as the actual execution is carried out by tasks, there is not
an issue in ignoring nodes which are not crucial for task achievement. Other goals that
possess runtime annotations will be discussed in other specific rules.

Rules #13 and #14

Tasks in the GM translate to abstract tasks (domain file) by name, which, in turn, rep-
resent one or more methods. Tasks are only descriptions of which steps must be taken
in a goal-oriented setting to achieve a particular objective, tasks only contain one id
(e.g. AT1, AT2, ..., ATn), namely task_ID, and a name which refers to the abstract task
method name.

In the generation process, whenever a task node is encountered, the goal model level
template creates two locations: one is the initial task location, named exec_[task_ID]
and other is the end task location, named finish_[task_ID]. The initial task location
is responsible for being a transition target (i.e. an edge with an arrow pointed to in
the initial task location) for a synchronisation channel where it triggers the execution of
the method. The goal model level template is then halted at this location because the
next transition to the end task location contains a synchronisation channel waiting for
the task to be finished, thus it must wait for the channel trigger. The end task location
is responsible for analysing the result of the task execution after its end was triggered
and taking the correct deterministic transition afterwards. Similarly with preconditions,
where there is a failure and a successful state, the end task location has two branching
transitions to decide if the task has failed or not. This is decided by the triggering of
the previously discussed variables in guards which denote mission failure for a method.
Should the task fail and not inside a fallback operator, then this means that the mission
has failed and the execution stops abruptly followed by the triggering of a variable which
represents mission failure, named mission_failed. Otherwise, the mission continues to
the next locations or to the location representing the end of the mission. Figures in rules
#13 and #14 depict how this pattern occurs in the goal model level template.

Rules #15 and #16

A fallback operator is a GM runtime annotation operator contained in goals inside the
CRGM. If a goal contains this operator, a very specific pattern both in MutRoSe and
in the generation process occurs. First, the rule for the fallback operator will be briefly
discussed, next, the generation rule will be explained to establish the relationship between
both representations.
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A fallback runtime operator is one of the three runtime operators in MutRoSe. Having
a fallback annotation means that the goal has an alternative course of action should the
first one fail. The semantics for the fallback operator is:

FALLBACK(N1, N2) (3.6)

Where N1 and N2 are the first and second id node and may be a task or a goal inside the
goal model. What the fallback operator essentially does is: Should N1" fail its execution,
then N2 must execute correctly, or else the mission fails. The fallback operator has nodes
N1 and N2 as children and its execution pattern differs greatly from others. For instance,
if N1 finishes successfully, then N2 is not even executed. On the other hand, N2 should
only be executed when a failure of N1 is confirmed.

In Uppaal, the generation rule takes into account all three possible outcomes.

• If the first operand from fallback is successfully executed, then it transitions directly
for the next node available (i.e. the sibling node, if it exists) or;

• if the first one fails, then the second operand is executed. If it also finishes with a
failure state, then it diverges to a failed mission state;

• If the first one fails and the second one is executed successfully, then a transition is
made where to the next mission node available.

This is illustrated by Figure 3.5 where we have the generation of a fallback oper-
ator as part of a Uppaal template in the following syntax: FALLBACK(AT1, AT2).
goal_G[previous] is the goal location where the pattern begins, as stated in rule #9 and
#10, it is possible to see the transition with a synchronisation channel triggering the ex-
ecution of the AT1 task, executed by the method_0 template. Next, in the finish_AT1
task, there are two transitions: one to the next goal goal_G[next] and other in the case
the method fails. In the failed method transition, it is possible to observe that the second
task AT2 begins its execution, following the same pattern. After trying again with a
different task, the pattern ends in a successful state or a mission failed state, represented
by missionFailed location, if both tasks should fail.

Lastly, another modification is made inside methods involved in fallback operands,
stated by rule #16: if a template method is inside a fallback operator, a default failure
location is added to it. This is done to assure that all mission paths allowed are explored,
even if the method does not possess failure states defined by other conditions, such as
abstract tasks failing or preconditions or capabilities not being met.
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Rule #17

A sequential operator is a runtime operator in the GM inside MutRoSe. It is a very
straightforward pattern: whenever a goal contains a sequential operator, all operands (i.e.
goals or tasks) involved must be executed in that strict order, establishing an execution
constraint. As opposed to a fallback operator, a sequential operator may have two or
more operands, while the fallback operator is binary.

In Uppaal generation, this is done by an algorithm which "unwinds" the goal model
from the sequential root whenever a sequential operator is found. Unwinding the sequen-
tial root means that another generation process takes place to ensure that the tasks are
sequentially executed in the order stated by the operator. The result for one task is de-
picted in the Figure in rule #17. The sequential pattern can be extended to one or more
tasks,

Rules #18, #19 and #20

The rules #18 and #19 state that all generated NTA models possess boolean variables
used to indicate whether a mission has failed or not in the goal model level template.
Necessarily, one of them receives a true value after the end of an execution due to the fact
that they are linked to locations situated at the end of the template graph or in failure
locations. This value is used afterwards during simulations and verification queries to
assert if a mission has ended successfully given a certain configuration.

After a mission has ended, it goes back to the initial node (beginMissionNode), where
it can begin its execution again. Since the values are still stored, the startMission()
global function is used to flush these values whenever a new mission begins, this is done
in the first transition of the system.

Rules #21 and #22

The initial nodes in templates play a central role in triggering mission or method execution
but also pointing out that they have finished. In the goal model level template, aside from
starting the mission, the beginMissionNode is also responsible for being the location where
all final states concerning the previously executed mission can be seem during simulation.

As for the task level template, the init_node location is used to trigger execution
of the method, while the end_method is responsible for triggering the synchronisation
channel which warns the goal model level of its end. Both are generated for every NTA
and are used during generation process by linking of the dynamic parts of the template
(i.e. the mission specification).
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Figure 3.5. Fallback runtime operator template pattern

3.4.1 Generation of TCTL verification properties

Many of Uppaal TCTL verification queries properties could not be automatically gener-
ated for some cases as they are somehow dependent of the generation process itself. How-
ever, some properties were possible to generate automatically since their syntax would
not change from model to model and thus the generation was possible.

Some examples of automatically generated properties are deadlock freedom and reach-
ability, which is described as whether the mission root goal will eventually be successful,
this is also done with intermediary goals to show that ordering constraints still influence
in partial mission achievement. All properties are described in Table 3.2, where each row
represents a different property evaluated for this work: reachability evaluates if a mis-
sion can achieve its root goal given the correct configuration; mission ordering correctness
evaluates if a certain goal is achieved after the execution of its task methods, used in
this work to depict that mission ordering follow the same as the goal model, even sharing
the same mission constraints; predicate or capability reachability is used to verify if a
predicate or a capability with a certain value (i.e. true or false) might compromise the
execution of a method or the entire mission as well, the example for this row contains a
TCTL query where the left side of the formula is a capability and the right side is the
variable triggered if a particular method fails; last property states that the system is free
from deadlocks.

3.5 Verification stage

The verification of TCTL mission properties is done after the generation using the already
completed NTA. Due to some of properties being boolean variables, it is also possible to
explore other mission configurations by changing predicates and capabilities. Additionally,
it is possible to test multiple configurations with different robots, this can be done by
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Property Description Example

Reachability If a root goal will be achieved
successfully or not E<>mission_complete

Mission ordering correctness
or goal satisfiability

A goal is only reached if previous
task methods are completed correctly

A[ ] var_goal_model_template.goal_G8 imply
(not pickup_with_door_opening_0_failed or
not pickup_without_door_opening_0_failed)

Predicate or capability
reachability

A predicate and/or capability
leads eventually to a failure
state in a method

not manipulation - ->fetch_deliver_0_failed

Deadlock freedom The system contains no deadlocks A[ ] not deadlock
Table 3.2. Properties verified in missions

changing system or global declarations depending on which one the end-user plans to
analyse. Once the model is completed after the generation, the verifier is used to assert
verification queries written in TCTL. One limitation is that Uppaal does not accept
nested quantifiers. This limitation required some adjustments in following verification
queries, analysed in the next chapter. Note that Figure 3.1 outlines that the process of
generation ends the automated contribution. Therefore, the verification queries denoting
mission properties (both automatically and manually generated) must be verified by the
user inside the Uppaal verifier tool.
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Chapter 4

Experiments and results

This chapter shows the results from the proposed methodology, how they were verified
and the results obtained from both the generation and verification. It is organised in
four sections: one for the experiment settings, containing the general hypothesis for our
experiments, the experimental setup and overall results. Next, one for each of the three
different experiment scenarios, starting from generation results derived from mapping
rules to the verification queries analysed in each case.

Results are from three different RoboMAX [45] mission settings: Two missions from
the Food Logistics mission domain (i.e Pickup and Delivery scenarios) and one from the
Deliver Goods - Equipment. The food logistics missions share the same HDDL domain
file for both missions, but its GM input files are different. The last scenario is a mission
about delivering equipment to agents.

4.1 Experiment settings

4.1.1 Experimental setup

The experiments were conducted in Uppaal in version 4.1.26-1. The code used to generate
the NTA for missions was made in Python version 3.10.7, with the use of the uppaalpy
library [46, 47] is available at GitHub [48]. Another relevant project is a fork of the
original MutRoSe repository [49], modified to output relevant files, as stated in Section
3.2. Additionally, the experiments were conducted on AMD Ryzen 5 4600H with a total
of 16GB memory.

4.1.2 General hypothesis

For each of the three missions being analysed, it is intended to display generation results
when being compared to the original specification to show that both rules and specification
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Figure 4.1. Food Logistics - Delivery goal model

adhere to each other. Additionally, we verify properties as queries to validate this ap-
proach, properties range from relevant characteristics, deadlock freedom and reachability
as defined in Table 3.2.

For RQ1, the hypothesis for this work is that the results yield the same specification
from MutRoSe as a NTA by following the mapping rules from 3.4 from MutRoSe and
that verification queries are fit for validating the previously stated properties. As for
RQ2, the hypothesis is that the verification such as mission correctness and predicates or
capabilities affect reachability properties.

4.2 Mission description

4.2.1 Food Logistics - Delivery

Goal Model

The food logistics is a mission used to analyse how robot cooperation can be used to
deliver meals to patients who are often unable to pick up a meal tray by themselves.
The scenario offers two alternatives to deliver food to those patients: either deliver them
directly to the patient, that is, if the patient is able to hold the tray; or deliver to another
robot that is capable of delivering the tray next to the patient.

The goal model starts searching for rooms which need delivering in G2. Next, the
model moves to goal G3 which contains two sub-goals: one for the robots to get the meals
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in the kitchen (G4) and other for delivering them to the patient rooms (G7). A sequential
annotation in G3(i.e. G4;G7) already establishes that these tasks cannot be done in no
other order. The Figure 4.1 depicts the goal model of the food logistics mission.

During delivery, one important part of the goal model structure is the OR decom-
position present in goal G10, responsible for defining that either goal G11 or G12 are
executed, but not both. Although runtime operators are primarily associated with chan-
ging mission ordering, the OR decomposition plays a fundamental role in this mission to
establish which goal and subsequent task will be executed per mission configuration.

Domain definition

As stated before, the domain definition file is used for two separate missions with different
goal models. Thus, it contains a lot more method definitions than the ones used in a single
mission. The complete file is shown in Listing A.6. In essence, this file domain defines
a hospital with patients and robots interacting in methods for various reasons such as
object manipulation, delivering and overall logistics inside a health setting.

The abstract tasks used for this mission are as follows: GetFood, DeliverToTable,
DeliverToFetch. The GetFood task, as the name suggests, contains the necessary subtasks
needed for the robot to get a food meal from a certain location. Then, as the food
is obtained, a robot may decide between tasks DeliverToTable and DeliverToFetch, the
first one requires no human interaction, but requires the robot to have the capability
manipulation to be able to deliver the meal correctly. DeliverToFetch needs human
interaction, however, it also requires that the predicate patientcanfetch is true for the
task to be accomplished.

4.2.2 Food Logistics - Pickup

Goal Model

The main goal of this mission is picking up dirty dishes from the rooms where patients
are residing in the hospital, in order to achieve that, it must first survey which rooms
require pickup of dishes. Next, the main mission is identifying and going through each
room to pickup the dirty plates. After dishes have been retrieved, they are delivered to
the kitchen.

This GM contains a slightly less complicated task ordering than the last one, where
two tasks must be executed in any mission path. This is shown in Figure 4.2, where it
is possible to deduct quickly from the CRGM that both tasks must be achieved for a
successful execution. This mission contains the remaining methods not used in the last
one.
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Figure 4.2. Food logistics pickup mission goal model

4.2.3 Deliver Goods - Equipment

Goal Model

This mission scenario from RoboMAX illustrates robots delivering goods or equipment to
agents in an uncertain environment. As Figure 4.3 The main goal, of course, is assuring
that all the deliveries are made. Differently from the other two previous missions, this
one contains fallback operators in 3 goals. In this case, the output will follow rules stated
in Section 3.4.

Domain definition

The domain definition file displayed in Listing A.7. Once again, the domain is still a
hospital, but storage, agent and obj types were added. Unfortunately, it is noticeable that
no predicates are used inside the method definitions, which leaves only action ordering to
be generated in the respective templates. This leads to the conclusion that this HDDL file
is much more simpler, which shifts the responsibility to the CRGM to deal with variable
instances.
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Figure 4.3. Goal model for Deliver Goods - Equipment mission

4.3 Results

4.3.1 Profiling results

The generation program [48] took 0.434s for the food logistics mission (in both cases) and
0.433s for the deliver goods. With the cumulative time for the generation process being
0.319s for the food logistics missions and 0.302s to the deliver goods mission. This could be
attributed to many generation loops which traverse through the data structures and were
not optimised and inner calls made by uppaalpy [46] to other libraries. Base generation
performance does not drastically change since most specifications go through the same
functions before being properly generated. With the exception of a few additional loops
for runtime operators which do not change the general complexity, the overall performance
results are rather similar. This could be attributed to the specification and mission sizes
which are pretty similar as well. The profiling results were captured using snakeviz [50]
and cProfile [51].

4.3.2 Food Logistics - Delivery

On total, 14 templates were generated in Uppaal, with 6 being directly associated with
this execution due to execution paths. The task methods contain many of the original
elements present in the original specification. The goal model, at this version, only sus-
tains the original ordering established by runtime and decomposition operators. The goal
model template for this specification is displayed in Figure 4.4 and clearly shows that
even the OR decomposition was generated correctly, which enables the user to correctly
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Figure 4.4. Goal model template for food logistics

analyse all mission paths. It is also possible to see that tasks are strictly executed in one
of the following orders:

AT1 −→ AT2 or

AT1 −→ AT3
(4.1)

Where abstract tasks representation of execution are present in exec_AT and finish_AT
locations.

It is also important to discuss the declarations created by this generation, the variables
generated are in full conformity with what was expected, even the types for some were
derived correctly from specification. As stated before in the generation stage, capabilities
are defined in the domain definition without a specific type because the domain defini-
tion file does not express directly which robot needs to possess the capability, therefore
the addition of a type would imply that the generation knows which robot possess the
capability in question, which is incorrect. One benefits in this specification from this fact
by not having the necessity to formally assigning another variable to the robot struct
every time it is used. This also helps reducing the state space without compromising the
specification, since the capability is modelled as a guard constraint in either scenario as
shown in Figure 4.5 which corresponds to the template generated for the table-deliver
method from the domain file in Listing A.6.

The list of task method templates related to this mission is described below:

1. Food pickup template (temp_food_pickup_0);
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Figure 4.5. Table deliver template generated in Uppaal

Figure 4.6. Abstract task pattern in FetchMeal inside fetch-deliver method generated for Uppaal

2. Table deliver template (temp_table_deliver_0);

3. Fetch deliver template (temp_fetch_deliver_0);

4. Fetch meal with human template (temp_fetch_meal_with_human_0);

5. Fetch meal with robot template (temp_fetch_meal_with_human_0);

It is important to note that the DeliverToFetch contains abstract tasks as subtasks,
which will result in a pattern used to trigger these tasks. This pattern is displayed in
Figure 4.6. As stated in rule #9 in 3.4, the pattern stands but with its values changed to
the actual methods and their respective reference channels and variables.

4.3.3 Food Logistics - Pickup

The same number of templates as the last mission were created. The results are what was
expected, however, since our approach is not focused on inferring which robot is respons-
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Figure 4.7. Generated template for food logistics pickup mission in Uppaal

ible for each task, this system declaration requires adjustment of variables to successfully
finish the mission. However, it is important that it stays consistent both with GM and
domain file definitions. As expected, the generation process also showed to follow the
same creation when facing the same patterns rules. One interesting observation from this
method is that AT1 possess two available methods: pickup-with-door-opening, pickup-
without-door-opening. This is reflected in the generation process as stated in the rule for
generation of tasks (i.e. Section 3.4) and its behaviour is present in Figure 4.7. Addi-
tionally, it is possible to also see the transition where the task finishes successfully with
two guard values in a single boolean clause. This clause was divided in the missionFailed
target transitions for this mission to improve readability for the model.

4.3.4 Deliver Goods - Equipment

The results were very positive concerning mission ordering for the goal model template,
the method templates, however, fall short due to not having any available predicates
that could work as precondition or effect on task level templates. Figure 4.8 shows the
Uppaal goal model level template and depicts how fallback operators are implemented,
by comparing with Figure 4.3, it is possible to see that structures follow the CRGM
execution pattern, however, it is possible that the execution paths are not clear. In order
to illustrate all successful execution paths concerning tasks, please consider the equation
below:
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Figure 4.8. Generated template for deliver goods - equipment mission in Uppaal.

AT1 −→ AT3 or

AT1_fail −→ AT2 −→ AT3

AT1 −→ AT3_fail −→ AT4

AT1 −→ AT3_fail −→ AT4_fail −→ AT5

AT1_fail −→ AT2 −→ AT3

AT1_fail −→ AT2 −→ AT3_fail −→ AT4

AT1_fail −→ AT2 −→ AT3_fail −→ AT4_fail −→ AT5

(4.2)

Equation 4.2 depicts possible execution paths where the abstract tasks annotated with
the _fail suffix means that they have failed execution. It is understandable how Figure
4.8 may appear confusing, but the goal model itself offered many alternatives concerning
method ordering, hence all the transitions generated.

4.3.5 Properties verification

This section comprises all queries made in Uppaal (i.e. the expressions made in TCTL
syntax for property verification). They are displayed in Tables 4.1, 4.2 and 4.3, one for
each mission previously described.
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Property
ID Formal description Expression in UPPAAL Result Elapsed

time
#1 Deadlock freedom A[ ] not deadlock Success 0,002s

#2

Goal G6 is neeeded for mission conclusion:
For all paths, if the mission is complete it
implies that the goal G6 is also complete
(AT1 did not fail)

A[ ] mission_complete imply not food_pickup_0_failed Success 0,002s

#3

Mission complete: For all paths,
if the mission is complete it implies that
AT1 and AT2 or AT3 were completed
successfully

A[ ] mission_complete imply (not food_pickup_0_failed) and
(not fetch_deliver_0_failed or not table_deliver_0_failed) Success 0,002s

#4
In all paths, if the capability manipulation
is not set, then the method fetch_deliver
will eventually fail

not manipulation –> fetch_deliver_0_failed Success 0,002s

#5 Reachability, a mission has a path of
success in this given configuration E<>mission_complete Success 0,002s

#6 Reachability, a mission has a path of
failure in this given configuration E<>mission_failed Fail 0,002s

Table 4.1. Properties verification for Food Logistics Delivery mission

Food Logistics - Delivery

The properties verified for the food logistics mission are: reachability (i.e. if a mission
is capable of eventually reaching a successfull or a failure state, denoting its end) and
deadlock freedom (if the system does not reach a deadlock state). Other relevant charac-
teristics include mission ordering correctness and a capability which influences the mission
achievement.

Property #1 represents deadlock freedom, this query format is default and it is gen-
erated for all missions, properties #2 through #6 were manually inserted. Property #2
and #3 show mission ordering strictness, which means here that the mission order de-
rived from the specification files still holds in the verification system, in order to show
its correctness. For instance, property #2 states that AT1 (i.e. food_pickup method)
must be successfully executed to enable the mission to succeed. One can see from Figure
4.1 that this is correct, since G3 fails from not executing AT1. As for mission successful
completion, Equation 4.1 shows the available execution paths, which are verified through
their methods failure inside property #3. Both queries result in success, pointing out
that the generated template for the goal model is in accordance with the specification
CRGM. Next, property #4 is a relevant characteristic where the manipulation variable
is evaluated in the fetch_deliver task. The query essentially states that, if the capability
is not enabled, then the method will invariably fail in the future. The last two proper-
ties (i.e. #5 and #6) verify if the mission is always able to reach a failure or success,
since Uppaal verification is based on the present configuration, property #6 fails due to
non-existent failure paths in this configuration since both capabilities are true, while, in
contrast, property #5 is satisfied.
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Property
ID Formal description Expression in UPPAAL Results Elapsed

time
#1 Deadlock freedom A[ ] not deadlock Success 0s

#2

For all paths, for goal G7 to be satisfied
(and goal G8 to be reached), either one
of the task AT1 methods
(pickup_with_door_opening or
pickup_without_door_opening) must
be satisfied

A[ ] var_goal_model_template.goal_G8 imply
(not pickup_with_door_opening_0_failed or
not pickup_without_door_opening_0_failed)

Success 0s

#3
For all paths, mission is completed
successfuly if and only if AT1 and
AT2 do not fail

A[ ] mission_complete imply
(not pickup_with_door_opening_0_failed or
not pickup_without_door_opening_0_failed) and
not dishes_retrieval_0_failed

Success 0s

#4 Reachability, a mission has a path of
success in this given configuration E<>mission_complete Success 0s

#5 Reachability, a mission has a path of
failure in this given configuration E<>mission_failed Fail 0s

Table 4.2. Properties verification for Food Logistics Pickup mission

Food Logistics - Pickup

Food logistics pickup contains only mission ordering correctness as relevant characterist-
ics properties, since no predicates as preconditions or effects are available for this mis-
sion. Property #2 stems from the same mission ordering correctness issues explored
in last mission. In this case, it is possible to see from 4.2 that goal G7 is satisfied by
the execution of AT1 (PickupDishes) which, in turn, possess 2 available task methods:
pickup_with_door_opening and pickup_without_door_opening. Thus, it is possible to
reach task success by executing one of them. The graph then progresses to the next goal
to be executed, which is G8. Therefore, it is safe to conclude that G8 is only reached
if G7 is satisfied. Property #3 is used to evaluate mission conclusion successfully from
the ordering correctness from the point of view of task execution, which means that it
must assure that AT1 and AT2 are executed, hence property #3 states the conditions for
that to be achieved. Property #4 and #5 state reachability issues, and their results are
coherent with what was expected, since this configuration does not possess failure paths
with the current configuration.

Deliver Goods - Equipment

The properties derived from this mission do not come from the domain file because, as
stated before, the domain files do not possess any predicates used during the execution of
tasks. Property #1 stands for deadlock freedom, properties #2, #3 and #4 investigate
mission ordering correctness, finally, #5 and #6 are reachability properties.

In property #2, it is important to note that since there is a fallback runtime operator
(see Figure 4.3), this means that the task may be completed successfully in two separate
conditions:
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Property
ID Formal description Expression in UPPAAL Results Elapsed

time
#1 Deadlock freedom A[ ] not deadlock Success 0s

#2

Meant to fail, this one shows that G11 is
executed if AT1 or AT2 (if AT1 fails)
successfully execute, not just AT1,
once again showing that the fallback
structure is sound

A[ ] var_goal_model_template.goal_G11 imply
not object_get_0_failed Fail 0s

#3

For all paths: Goal G11 is reached if
AT1 or AT2 (in case AT1 fails)are
successfully completed, it also means
that G9 is completed

A[ ] var_goal_model_template.goal_G11 imply
not object_get_0_failed or object_get_0_failed
and not battery_recharge_0_failed

Success 0s

#4
Mission complete is achieved by
adopting one of the execution paths
available in Equation 4.2

A[ ] mission_complete imply
(not object_get_0_failed) or
(object_get_0_failed and not battery_recharge_0_failed) and
(not objects_delivery_0_failed) or
(objects_delivery_0_failed and not object_returning_0_failed) or
(object_returning_0_failed and not alert_trigger_0_failed)

Success 0s

#5 Reachability, a mission has a path
of success in this given configuration E<>mission_complete Success 0s

#6 Reachability, a mission has a path
of failure in this given configuration E<>mission_failed Success 0s

Table 4.3. Properties verification for Deliver Goods - Equipment mission

1. AT1 (with method object_get) finishes successfully;

2. AT1 fails and AT2 (with method battery_recharge) finishes successfully.

Given those two conditions, it is clear why property #2 fails, since it does not take option
2 into account. As opposed to property #2, property #3 takes the alternative path into
account, thus it is satisfied since both paths are the only available paths to reach goal
G11 and satisfy goal G9.

Property #4 pushes the structure of nested fallbacks even further: as the last line in
Equation 4.2 the verification query evaluates the execution path where AT1, AT3 and
AT4 fail, but the necessary tasks are executed and the mission completes with success.
Reachability properties #5 and #6 are the same as the other missions, however, #6 yields
a success result, this is because the failure states are automatically added when a task is
inside a fallback runtime operator, in order to stay true to the specification, where the
task might fail, but also to analyse the execution paths spanned from failed tasks. Thus,
since failure is by default an option, both reachability properties are true at the same
configuration.

4.4 Complexity issues

Given that all locations are currently derived from HDDL and the GM, an analysis of the
generation process itself is necessary to evaluate its space and time complexity. In the
sections below, we will analyse the complexity in the generation stages for each input file,
which will help the reader to assess not only the complexity of this approach, but also its
current limitations for future scalability.
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4.4.1 HDDL

When considering hierarchical domains in Uppaal, the generation process does not dis-
criminate between what methods are used or not. Therefore, all methods present in the
domain file are generated and instantiated as Uppaal processes, even if they do not take
part in a specific mission. Recall that, all methods become one Uppaal template, and
all subtasks are individually created. This applies even if the same action is used for
two different methods or in two different subtasks in the same method. Additionally,
the branching paths preventing deadlocks in templates add a constant number of new
locations, also increasing the state space. Thus, consider that for s subtasks present in all
methods that the same amount of locations will be derived from the generation process,
additionally, we have a constant number of additional locations which bear a k constant
number for all subtasks with preconditions or capabilities needed. Which leads to time
complexity O(s + k) = O(s). Therefore, we conclude that the generation takes linear
time. As for the space complexity, the generation itself also needs to use data structures
containing all methods with all subtasks, thus the complexity also stands at O(s).

4.4.2 GM

The CRGM generation in Uppaal uses a structured tree for generation, where a top-
down creation for the related tasks and goals takes place. Before starting the generation
process, as stated by rule #12 in Section 3.4, the removal of some unnecessary goals
(i.e. goals that are not included in the current approach such as query goals or achieve
goals) takes place, where they are discarded from the generation process. After that,
the node from the tree which contains all tasks as children is the starting node from the
generation, which then generates all nodes as locations (and uses a particular generation
pattern, should the node contain a runtime operator) until a task or a goal leaf is reached.
In case of the latter, the goal leaf is also discarded since it contains no tasks and therefore
does not hold any importance for the current version of this project. Thus, it is possible
to describe the generation process in terms of time complexity could be expressed by the
following equation:

O(n− ug − lg) (4.3)

Where n is the total number of nodes in the goal model, where the tree generation time in
Uppaal is O(n), subtracted by the ug unnecessary goals and lg leaf goals with no tasks.
As for state space, the tree structure is broken down as lists of lists, resulting in a space
complexity of O(n) for the generation process.
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(a) Best case goal model

(b) Worst case goal model

Figure 4.9. Best and worst case scenarios for generation of the goal model

Worst case and best case scenarios

For the best case, it is easy to immediately deduct that the smallest GM (i.e. one with the
minimal valid amount of nodes) is the best case, because the generation would take less
time. Given this scenario, consider a valid MutRoSe CRGM depicted in 4.9a with exactly
three nodes: two goals, a root goal, a goal preceding a task and the task itself. No goals
would be excluded, so the generation process is clearly O(3) = O(C). This is the best
case as the generation would not be void, which would compromise the generation as the
methods generated in task templates depend on channel triggering by the GM template.

In contrast, the worst case scenario is one which:

• No unnecessary goals or leaf goals (i.e. ug and lg) are present;

• All nodes in the GM are generated.

With that in mind, the figure depicted in 4.9b meet this criteria, with the generation
complexity generating all 5 nodes (i.e. O(5)). Now extrapolate this example for a goal
model with n total nodes, it is easy to see that the generation would take O(n) time.
Thus, the worst case scenario for GM generation takes linear time (O(n).

4.5 Discussion

To test the generation tool, seven different scenarios were executed in this approach, all
of them generated outputs for Uppaal. However, two of them gave inconsistent gen-
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HDDL Generated in NTA?
Types and variables Yes
Predicates Yes
Tasks Yes
Methods Yes
Ordered subtasks Yes
Subtasks No
Actions Yes
Capabilities Yes
Goal Model
OCL Statements (monitors/controls syntax) No
Task attributes No
Goal Types Perform goals only
Divisible and group attributes No
Runtime Operators Partially (parallel not implemented)
Mission ordering Yes

Table 4.4. Summary of MutRoSe elements generated to UPPAAL

eration results and one contained syntax errors, this can be attributed to unexpected
nested runtime operations, which have many edge cases able to compromise the genera-
tion process. The three mission scenarios described here were carefully analysed and no
generation errors concerning specification flaws were found.

Generating mission ordering as a NTA took more time than expected during the
project due to many edge cases, this also hindered progress in generating other MutRoSe
GM structures, which were critical to full mission verification. The results generated for
the domain files were very interesting as many of the domain structures are correctly
generated as a verifiable model, with the exception of non-ordered subtasks, which were
not explored in missions analysed. Table 4.4 brings a summary which lists the elements
from MutRoSe that were generated or not in the Uppaal NTA, future works aim to
contemplate more CRGM elements in a near future.

4.5.1 Scalability issues

Scalability is an issue which needs to be addressed for future iterations of the project.
However, it is suggested that the generation would not differ in overall complexity as only
new runtime annotations and divisible and group attributes would add constant time
complexity for template generation. This due to the fact that the levels described in
this approach would be further implemented with more variables and locations without
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the need for more templates. As for Uppaal, it is still uncertain that these additions
would impact severely on the state space, new experiments must take place to assess the
robustness of the tool in larger state spaces. Another alternative is switching to statistical
model checking for the verification of properties if the current approach is not possible.

In conclusion, the solution is incomplete for MutRoSe specifications due to its lack of
many CRGM elements, but holds interesting study points as to where it is possible to
evolve and integrate this solution. One other interesting remark is expanding MutRoSe
specification such as timed constraint to verify more properties with Uppaal. The an-
swers for RQ1 and RQ2 are as follows:

RQ1 (How to automatically verify mission specifications of heterogeneous MRS from a
high-level perspective?) Through the automatic generation of a program [48], it
was possible to not only generate verifiable models for mission specifications from
MutRoSe but also to verify missions from a high-level perspective (predicates, goals,
capabilities, abstract tasks, etc.). Although not all elements were mapped in this
generation process, it has been shown that this the automatic verification is defin-
itely feasible.

RQ2 (Is it possible to extract relevant characteristics from MRS mission specification
models as verifiable properties?) Some properties such as capability were submitted
through verification and have shown interesting results regarding method or mission
reachability. Additionally, the automatic generation of a verifiable model from a
MRS mission specification alongside the manually inserted properties verified have
shown that mission specifications as verifiable models might provide more insight
concerning mission properties to designers.

4.6 Threats to validity

Although the Uppaal models were generated automatically, many edge cases in the pro-
gram implementation could greatly increase the experimenter bias. Additionally, repet-
itive testing was made during the creation of the generation process, thus compromising
internal validity to an extent. On the other hand, these claims could be countered as
many generation stages are the same for the three experiments analysed in this work.
Additionally, mapping rules have not changed during the elaboration of the methodology
through experimental stages, increasing confidence in internal validity. Additionally, since
it is a generation program, the results are not affected by time features.

Since MutRoSe is still a DSL, the generation process is obviously tethered to its
syntax, which means that the generalisation of the experiment is not applicable to other
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frameworks or other MRS without adjustments. Additionally, only functional samples
were analysed, thus, external threats may include selection bias and sample features. A
factor that improve the external validity is that the generator of Uppaal is a project
freely available [48] for replication.

56



Chapter 5

Related works

The MRS area contains many works ranging from operation and planning to specification
and verification. Regarding verification, a survey made in 2019 by Luckcuck et al. [16]
gathered 25 works using model checking in the literature in various tools. The most used
tool was SPIN [52], containing 5 works, followed closely by others such as PRISM [53],
UPPAAL [5] and others. Table 4 in the same survey indicates that model checking the
most popular formal approach for verification in MRSs, containing a total of 32 works,
more than all other formal approaches surveyed combined (24). Thus, this once again
shows that, while there’s not a predominant tool used in model checking since they all
possess many different characteristics when it comes to implementation and could be
applied to many different domains, model checking is often the most adopted formal
verification method as it provides an outlined mathematical proof as to why properties
would hold or not in the states specified.

The MRS field contains many papers using formal verification, since safety, liveness
and reachability are common properties evaluated during design or execution time in
such systems. Additionally, as mentioned before, there are various formalisms and tools
to tackle verification problems on such systems, but not many of them contain a pipeline
of specification and validation inside the same framework. Therefore, works containing a
integrated framework for verifiable MRS will be outlined in this section. Additionally, al-
though some approaches accommodate other types of systems, such as Self-Adaptive Sys-
tems (SAS), the works will be focused in single or multiple robotic applications (namely
MRS). Another important aspect of MutRoSe is that missions are described on a high-
level, meaning that no specific mission context other than being accomplished by MRSs
must be considered before designing a mission inside the framework. One of the compar-
ison levels with other works is if they offer a high-level, top-down approach. Some other
concerns such as heterogeneity, which formalisms and tools are used for verification in
each work (e.g PCTL, TCTL, Process algebras, etc.), lastly, which properties are being
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verified, such as safety, reachability, security, dependability, etc.

5.1 Translating RoboSim models to UPPAAL

The work of [35] aims to translate RoboSim [54] models as UPPAAL Network of Timed
Automata (NTA)s automatically following a strict set of timed automata patterns and
rules, it is also restricted to a specific context of RoboSim metamodel mission i.e the
plugin only generates NTAs for RoboSim models. The work presented in this paper can
describe any mission setting described inside the MutRoSe framework, this indicates that
there is a trend in establishing a streamlined and automatic verification process from the
very DSLs specification in recent works. Additionally, the work also provides a combina-
tion of the NTA and the Network of Stochastic and Hybrid Automata (NSHA) to enable
verification of Weigthed Metric Temporal Logic (WMTL) properties using UPPAAL with
the Statistical model checking (SMC) extension (namely UPPAAL SMC). MutRoSe spe-
cification does not contain any weighted properties, likewise, the models do not contain
this. Another interesting point of comparison between the two works is what are the
input languages for the generated model. RoboSim models are diagrams similar to Uni-
fied Modeling Language (UML) notation, containing roughly two main module levels: a
syntactic unit module, which models the robotic system by specifying the interfaces of
the robotic platform, and the software controllers module, which contains the behaviour
of controllers running in parallel with the unit module.

While MutRoSe focuses on mission specification and decomposition of high-level mis-
sion plans for MRS, RoboSim is a framework used for modelling robotic simulations in
diagrams using state machines using a timed syntax. The work in [35] transforms models
designed in RoboSim to UPPAAL. Both works converge in translating a specification lan-
guage to a verifiable model using UPPAAL as the verification tool. Unlike the latter, it
is much more difficult to generate a automata from a set of tasks. Since RoboSim models
describe a cyclic simulation, Zhang et al. work provide a low-level abstraction transform-
ation process, whereas this approach generates abstractions for verifying abstract plans,
where no detailed explanation of how the tasks will be carried out is provided, only their
ordering (if not partial). One shared similarity is that the two approaches generate default
verifiable properties such as deadlock-freedom from their translation. The case study is a
RoboSim model using the Alpha Algorithm, a algorithm studied in other MRS works [55]
that aims to aggregate a swarm of robots. The work for this paper focuses on high-level
specification in order to be able to accommodate more mission contexts.
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5.2 The Esterel framework

The work of Kim et al. [56] uses the Esterel framework, which consists of a programming
language, a graphical simulator and the XEVE model checker [57], to formally verify a ro-
bot home assistant named Samsung Home Robot (SHR) developed by Samsung Advanced
Institute of Technology (SAIT). XEVE uses model checking on FSM models generated
by the programming language after compilation, however temporal logics are not used in
verification, instead, it uses compositional techniques to reduce the state space complexity
with the removal of redundant states in a process similar as OBDDs in MCMAS. and then
implement verification using observers: reactive components placed in parallel with the
main program which are triggered by signals of success or failure during simulation stage,
where all possible inputs are tested to cover all possible combinations. It is possible to
check for safety and liveness properties within the system by using synchronous observers
as outputs.

The implementation of robot systems is considerably low-level, signals are used for
interaction between components, including timing intervals and counters. Thus the user
can describe each behaviour of the robot accurately, which incur in many code lines. How-
ever, the very use of signals inside the modules allow for the user to preemptively creating
events for error handling and guarantee safety in SHR as well as other properties. While
this allows for more control from the designer when defining properties, it is necessary
that the events are properly rigged to guarantee safety, as such, requirements must be
thoroughly inspected before they are specified in Esterel. Another advantage of specifying
interactions when it comes to debugging is that since signals are the only communica-
tion channels between modules, then the testing among components is simplified by only
observing their signal states.

The Esterel framework and the model checking approach for MutRoSe differ in many
levels, ranging from the verification techniques used to the very scope of robotic applica-
tions (i.e. low-level behaviour of a single robot versus high-level mission goals and tasks).
Some similarities both works share is that both MutRoSe specifications and the SHR are
designed inside their respective frameworks and have safety properties assessed through
model checking. Another coincidence between both frameworks is the use of graphical
simulators to assist designers in the specification process, likewise, the representation
using FSMs shares some similarities with NTAs used UPPAAL.
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5.3 The BIP framework

There is a clear difference between top-down and bottom-up approaches: as mentioned
before, although bottom-up approaches are more likely to capture all aspects of a certain
background as they are more specific, top-down ones tend to create a more simple ab-
straction for MRSs. This is useful for designers who do not have a lot of time to design
a MRS from scratch, however, it is important to note that hurrying modelling stages
may conceal a lot of design-specific problems. Many MRSs use a bottom-up approach to
ensure verification, as shown in the case of [58].

The paper adds the idea of a component-driven design in robotic systems combining
the strengths of GenoM and the (Behavior, Interaction, Priority) (BIP) Framework [59].
Furthermore, the combination of both tools enable automatic generation of correct robotic
software in GenoM through specified behaviours in BIP for the GenoM environment.
Components are described using transition systems written in C/C++ through BIP. By
describing components in an individual level, it is possible to design MRSs in a incremental
and safe manner due to modelling and verification being done on the component itself and
then gradually on others as design progresses, reducing the cost of correction by detecting
the problem at an early stage. This methodology is applied to a autonomous rover robot
as the case study where constraints defined by the BIP framework hold in generated
code. The verification used inside the toolset is a model checker tool called DFinder
[60] which also uses a compositional verification method. With the use of component
and interaction invariants (i.e. descriptors of atomic constraints and constraints between
modules, respectively, described as invariants), it is possible to check if properties remain
satisfied incrementally during verification. The input program for verification is written
in the BIP language. The properties verified are: deadlock-freedom and safety.

While this is not a MRS, this work can be easily adapted to a multiple number of
robots in the same incremental manner. This study also shows an interesting verification
technique: by using the negation of a defined property and checking if there is not a
state where the negation occurs, we can safely assume the property holds. Otherwise, the
potential violation can be investigated further as the state is shown by the verification
tool. In UPPAAL, when a property described in TCTL fails to hold, it is possible to
check which state, i.e. location, is responsible for the violation. This idea is used in
this work to show locations of the negated property when there are more locations of
the property itself during verification queries. Other similarity with the component-based
construction is that control mechanisms coordinate connection and functional elements
by providing a control flow, enforcing a clear separation of responsibilities, likewise, in the
verification stage of MutRoSe, aside from developing a different abstraction for each file,
the generation of each task must be done in a hierarchical approach to assure a harmonic
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interaction with the upper levels.

5.4 MissionLab and VIPARS

The work of [4] offers autonomous verification of behavior-based controllers created in the
Configuration Network Language (CNL), a component of the MissionLab Mission Spe-
cification System [61] by translating specifications to Process Algebra for Robot Schemas
(PARS) and then submitting them to processing with the verification module Verifica-
tion in Process Algebra for Robot Schemas (VIPARS). Additionally, the paper provides
a feedback loop by returning the verification results to the human operator. Figure 5.1
illustrates the overview of the architecture. It is possible to notice that the performance
criteria are distinct from the models and can be parameterised in order to find the best
tuning for the robot controller. Specification of the models is done in CNL, which is a
superset of C++ designed to express the separation between behaviour implementation
and its integration with other previously defined behaviours, thus, a top-down construc-
tion of robotic applications. PARS is the specification language for formal verification. It
is specialised in verification of concurrent systems, as such, it is capable of representing
robot controllers and their hardware as well as the environment and how it affects the
MRS through interactions. In process algebras, the composition of processes follows a
stop and an abort condition, in a way that basic processes can be connected with oth-
ers and generate complex behaviour patterns. The automatic translation of controllers
into PARS is done following a strict set of rules of lexical grammar parsing using Flex
and Bison [62], two parser tools widely known that have also been used for the work of
MutRoSe during its parsing of HDDL. As a downside, the paper reports that it is more
suitable to design and select a set low-level behaviours rather than designing intricate and
complex behaviours for the translation to PARS primitives. This could be attributed to
the corresponding number of CNL nodes generated and a state-space explosion problem
during translation as well as accuracy when parsing behaviours to PARS.

Although the verification using VIPARS uses process algebras, both process converge
in using a similar input, the CNL language converts its controllers into a FSA that is
translated as a PARS, while the base format for UPPAAL specifications is a NTA which
is closely related to the other automata notation. Another point of convergence is that
the translation process starts from a high-level mission structure. As said before, the
complex processes found in the upper levels of PARS are compositions of more primitive
nodes, this is a strong correlation where the mission process specification start its de-
scription from the higher levels of behaviour and starts specialising behaviours as needed.
However, both works differ when analysing description of process algebras and temporal
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Figure 5.1. Overview of the architecture used in [4]

logics, while it is necessary to describe interactive environment behaviours inside VIPARS
to accurately represent the MissionLab specification, which is a robot search mission for
biological weapons in an unknown environment, one does not need to outline contextual
specifications depending on the mission context for MutRoSe, although it is possible with
the use of contextual annotations. As such, the performance criteria defined further dis-
tinguish both framework goals when it comes to the properties verified: the VIPARS
framework is able to define timed criteria for its missions. For instance, in the search
mission, a performance criteria chosen was that the robot must find the target within 60
seconds. In conclusion, since VIPARS framework is concerned with specific performance
criteria i.e qualitative properties, the verification processes between both works are fun-
damentally different when comparing objectives, nonetheless, it is possible to compare
both works when assessing robot specification and automatic translation to verification
models.

5.5 vTSL

verifiable Task Specification Language (vTSL) [63] is a DSL used to specify task trees
which allows formal verification of a set of previously defined safety and integrity restric-
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tions of a robotic application using the model checker SPIN [52]. It is important to note
that it is also possible to define task constraints to be checked against within the language.
Additionally, the paper offers a automatic transformation of vTSL specification models
into Promela models, i.e. the input language for SPIN, and demonstrate its usability and
scalability through experiments that directly use the behaviour specification models. The
example application used for this work was a logistics use case. vTSL uses only a textual
language similar to C/C++ to describe the behaviours of a robotic system, one limitation
of this approach is only being able to describe one robot behaviour in favor of more elab-
orate specification when compared to other works [64]. The specification language has a
fundamental block called action, an action may trigger other single or concurrent actions
and return type values, additionally, each can contain input parameters, thus enabling to
relate actions with one another. Inside a task it is possible to define behaviour blocks,
responsible for defining which action will be taken based on the current conditions. Since
actions are the basic building block, it is safe to conclude that the designer is likely to
follow a bottom-up approach when defining a task tree. It is important to note that
vTSL also has interface connectivity with Robot Operating System (ROS) [65] ranging
from messages to services.

During translation, each action and component stub in vTSL is created as a Promela
component named proctype, which is a similar structure to actions in the specification
language. As Promela also shares a resembling C structure, many of the transformations
for the verification model are considerably straightforward. After generating assertions
and all execution paths in Promela, the model is then submitted for verification inside
SPIN. The verification checks for deadlock-freedom and if assertions are satisfied in all
execution paths. As mentioned before, SPIN uses LTL as formalism for model checking,
assertions are directly generated from the specification model as LTL properties. However,
more complex behaviours must be manually specified in the model.

Compared to the verification approach proposed for MutRoSe, this work focus on
single robot behaviour and is mission-oriented, being able to define in a reasonably low-
level what the specific robot actions are. Conversely, the verification for MutRoSe is not
concerned on which behaviours are allowed during runtime, rather, it focuses on which
actions should be taken, but does not go into detail on how they will be carried out,
only their sequencing. Another interesting comparison is the difficulty of the translation,
whereas there are graphical inputs in the CRGM for MutRoSe, vTSL is a text-only
language similar to C, same as Promela. UPPAAL also shares C/C++ notations, but
has a graphical notation as well. Therefore, it is safe to assume that the properties are
preserved with more precision from the specification model since it has a more direct
translation process. Moreover, the bottom-up approach for modelling vTSL differs from

63



the verification done in MutRoSe, which is high-level and top-down. Finally, one great
point of difference is the depth of each abstraction, as vTSL is focused on one robot, it
is much more likely to go into further details to explain the abstractions and behaviours
it must follow, while MutRoSe is more suitable for a mission specification rather than a
robot specification.

5.6 Translation of high-level models to SMV

In National Aeronautics and Space Administration (NASA) robotic applications, it is
imperative that autonomy of systems is concise, due to long-term mission applications
or environments where human involvement would be too dangerous or too expensive.
The work of Pecheur and Simmons [66] presents formal verification on Livingstone, a
model-based health monitoring system developed at NASA using Model-Based Processing
Language (MPL). The approach used was to design an automatic translator of mission
specifications to the SMV model-checking language, next, the generated models were
checked using the SMV model checker and the results were returned to the source language
in order to assist the designer with the diagnosis process. Additionally, the translation
was done to Task Description Language (TDL) task descriptions of mobile robot systems.
The properties in SMV are expressed in CTL.

The translation process benefits from the fact that MPL and SMV specifications are
reasonably similar, for instance, the synchronous concurrency semantics are present in
both languages. One downside was hierarchically mapping variables to SMV: while the
MPL models do not possess such syntax, SMV variables are linked to modules. Therefore,
one incorrect mapping could compromise the entire hierarchical chain in a specification.
The solution was to map the variables in all three parts of the translation and select
them accordingly. Top-level modules are defined using a similar syntax in MPL, where
some specifications for verification are already in CTL, making the translation to SMV
only a matter of syntax. Specification patterns are used for common properties such
as reachability. For other properties such as completeness and consistency, some disjoint
nodes are used to prevent transition synchronisation issues during SMV translation. Thus,
this enables for two properties from the same node to be able to hold in a specification
pattern. Not many details are given about the robot application, but it is possible to
see a simplified TDL code excerpt dealing with the deployment strategy specification of
a MRS in a related work by the same authors [67].

High-level models often hinder some of the more specific implementations to the user,
this is also true for the work of Simmons and Pecheur: the specification modules only
present how actions will be synchronised, and if there are any concurrency issues where
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properties would not hold. Another similarity with the verification done for the MutRoSe
is the automatic translation to a specification model. Due to language syntax, the process
seems to be more straightforward than the one done in MutRoSe, as a textual and a
graphical language are being translated to a NTA. Another interesting point is the use of
the translation process in more than one language (i.e. MPL and TDL), the same could
be said for CRGM and HDDL as they have different mapping rules inside the generation
process, however, both outputs do not relate in the work of Simmons and Pecheur, as
they are discussing different autonomous applications. Finally, another interesting point
is that TDL is similar to HTN, where tasks are described as hierarchical, showing that
HDDL and TDL indeed share some similarities and both are used to define multi-robot
applications.

5.7 Related works comparison

A comparison between the related works and the current work proposed is done in this
section. The comparison Table 5.1 outlines the differences between all works, in the list
below are the axis of comparison explained and why they are relevant for MRS.

• High-Level Specification: A high-level specification works the same as a high-level
abstraction: it hinders some layers of the implementation in order to prioritise other
more important concerns. One major concern of the Verification and Verification
(V&V) field in robotics is delimiting the scope of verification techniques, since many
robot applications have completely different objectives when it comes to their spe-
cific settings. For example, in service robotics it is difficult to assess which properties
need to be covered to assure correct functioning in a HRI scenario as there is not
a single technique that would provide complete coverage [68]. Therefore, defining
whether it is a high-level specification or not is crucial when defining which proper-
ties are verifiable.

• Tools and formalisms: Verifiable frameworks can use one or more formalisms. Since
this work deals specifically with verification of robot specifications, it is very import-
ant to know and compare what other formalisms are being used in other frameworks
in order to evaluate the current work impact on the current state-of-the-art. An-
other factor that could impact the verification is the tool adopted: UPPAAL, for
instance, does not accept nested operators.

• Design-time verification: In verification, there are many techniques to achieve prop-
erties verification, some of them can offer complete coverage such as model checking,

65



Feature

Work High-Level? Verification Formalism and
Tool used Design-Time? Top-Down (TD) or

Bottom-Up (BU) Automated? Mission-Oriented

[35] Model Checking / UPPAAL 3 TD 3 3

[58] Model Checking / DFinder 3 BU 3 5

[56] 5 Model checking / Xeve 5 BU 5 5

[4] 5 Process Algebras /VIPARS 5 BU 3 3

[63] 3 Model Checking / SPIN 3 BU 3 5

[67, 66] Model Checking / SMV 3 TD 3 5

This work 3 Model Checking / UPPAAL 3 TD 3 3

Table 5.1. Comparison chart of related works

since it evaluates all possible combinations. However, there are other types of veri-
fication, such as running simulations and establishing a level of confidence based on
the test results for a given number of experiments.

• Top-down or bottom-up construction of MRS: An application built from the most
fundamental fragment is more likely to present less errors since it could be verified
from the very beginning. Whereas top-down approaches would benefit from having
less details to worry during first design iterations. Both approaches have their
advantages and flaws, however, it is important to notice that, similar to high-level
and low-level specifications, this construction design also impacts on the types of
properties verified, moreover, how they are specified by each work.

• Automated or manual verification: Manual properties are more likely to capture
specific properties of a MRS. The disadvantage of manually defining them is causing
an overhead during system design for extra translation to a specification language,
often undesirable for many stakeholders while also leaving them prone to errors
[67]. Automatic verification of properties emerges as a interesting alternative to
check such systems without having to worry with writing in a verification language.
While this saves time, many related works studied here may need additional coding
to verify non-common properties [66, 63].

• Mission-oriented: As the verification for MutRoSe is mission-oriented, it may differ
from other verifications, which can be more focused on the overall robot behaviour,
excluding mission concerns. This is valuable for comparison since some properties
would not be feasible if they are not mission-oriented. For instance, the work in [4]
evaluates if the mission can be completed under a certain time, while Heinzemann
and Lange [63] have shown the scalability performance of their approach. Mission
properties can only be evaluated if mission aspects are being placed in specification.

As shown in Table 5.1, the work of [35] possess very similar characteristics to the
ones being evaluated in this work, however, it is not high-level as movement constraints
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and other layout specifics are taken into account inside the RoboSim model, whereas
in this approach they are not. The work in [58] is also not high-level due to its incre-
mental (bottom-up) construction of individual components leading to a connected system
of components, which takes communication and other low-level aspects into consider-
ation. Additionally, the work is heavily focused on component specification and not
mission-oriented, while this approach is not concerned with low-level implementation of
communication modules nor how components behave individually and collectively out-
side a mission context. The work of [56] is clearly low level, as communications signals
between components are included in the robot design, the automated verification pro-
cess proposed here is only palpable for high-level mission specification, thus properties
involving low-level signal communication would not be in the scope of verification. Other
diversion point is that the approach using the XEVE model checker is for only one robot,
whereas this approach is focused in multi-robot settings.

[4] proposes an automated framework for verification of behaviour based controllers,
the formalism uses process algebras and timed constraints in its properties. Although this
work uses Uppaal, such timed properties were not included because there are no timed
constraints inside MutRoSe specification, another difference is that Uppaal uses only
temporal logics as verification formalism. Since controllers are made separately and then
connected, it is safe to conclude that the approach is also bottom-up, another point of
divergence with the work presented in this document. The work in [63] once again brings
a single-robot system in contrast with the ones being verified in this work. The second and
last difference with the axis of comparison used is that the bottom-up approach completely
differs from the top-down verification process used in this work. Lastly, the work of
[67, 66] also proposes an automatic generation, one difference between both works is that
the high-level specification differs from the ones approached here, where the specification
is concerned with the specifics of an inference engine inside Livingstone. This also renders
Livingstone verification more component-based rather than mission-oriented.
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Chapter 6

Conclusion and Future Work

This chapter contains the conclusions made from this work, along with future works and
other important remarks.

6.1 Conclusion

The automatic generation process has proven to be resourceful, however, not all elements
from MutRoSe could be added to the generation process. Still, through properties verified,
it has already been established that MutRoSe mission configurations may only output
success or failure, which is very useful to establish if a mission without fallback tasks
may contain a defective execution path which needs correction. By adding the remaining
CRGM elements to the Uppaal model, deducting successful execution paths simply by
looking at specifications might be challenging.

Verification & Validation has been emerging as one of the most important areas in
multiple fields due to growing complexity of systems. MRSs are no different: testing a
robot application before deployment is a common industry standard to prevent accidents
or flaws during operation. Verification through model checking is a great way to reduce
design flaws by thoroughly and exhaustively analysis of multiple execution paths. Model
checking is as flexible as it is useful: by comprising a small set of rules needed to specify and
verify a system with a few steps, it has been proven during the course of this project why it
is the most used technique to verify MRS. MutRoSe may have many more properties left
to explore, however, the ones done in this work already show how many of the future works
are feasible with formal verification. Therefore, model checking, automated frameworks
and DSLs will surely remain relevant for as long as robots evolve their capacities and
break more boundaries.
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6.2 Future works

Future works include improving the state space of the generated NTAs by reducing con-
trol structures which replicate the mission ordering, this is possible by adding commit-
ted annotations to Uppaal locations as they are being generated. Other works include
expanding the verification of other properties such as CRGM elements left out of this
iteration of the project. It is also possible to expand MutRoSe specification to cope with
timed constraints and make use of Uppaal clock variables to verify even more properties
from a single specification. Other possible addition would be adding knowledge from the
world knowledge file, intentionally left out of this approach in order to improve flexibility.
However, during the course of this project, it has been identified that it is possible to
derive information from the world knowledge without directly using them. Therefore,
future iterations of the project might include partial knowledge about the world state
without actual instances.
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Appendix A

A.1 Files derived from MutRoSe execution

This section includes a more detailed explanation for files derived fromMutRoSe execution
and how they are used within this work. It is important to note that these files only parse
the information contained in the original specification files in order to aid the generation
process afterwards.

An excerpt of the goal nodes information file is displayed in Listing A.1. The GM
order tree file contains a parent node and its children in each line of the file, separated by
an arrow (−− >). If there is more than one child for the current node, they are separated
by white spaces. It is worth noting that some nodes contain a special notation of type
_OP where OP denotes the node runtime operator (e.g. sequential (;), parallel (#), OR
(OR) and fallback (FALLBACK), this is used during later stages of generation to create
patterns which reflect the changes in the node execution order inside Uppaal. This file
is then parsed as a list of lists where its possible to traverse through nodes similarly as a
tree. An example of the goal model order file is displayed in Listing A.2. One can see the
similarities when comparing the ordering of goals and tasks (i.e. the mission ordering)
between Listings A.2 and A.1 with Figure 3.2, where the latter is the visual representation
where the goal order files are derived from.

For the domain definition, the main generated files are: the types and variables inform-
ation file, a snippet of this file is displayed in Listing A.4. Next, the available methods for
an abstract task file is available in Listing A.3. Finally, the method orderings is available
in Listing A.5. If the actions contain preconditions or effects, those will be appended to
the order along with the type and the predicate or capability. This is done to assure that
proper transitions with guards or updates will be generated in Uppaal during the cre-
ation of templates. The file is somewhat illegible for human-reading due to being a direct
product for generation of templates. For each of the methods and respective orderings, a
corresponding template is automatically generated during the generation stage.

Node : G1 : De l i v e r Food to Pat i ent s [G2 ;G3 ]
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Context :
No Context

Parameters :
Group? 1
D i v i s i b l e ? 1
. . .
Node : AT3: Del iverToFetch
Context :

No Context
Parameters :

Param : current_pat i ent
Group? 1
D i v i s i b l e ? 1

Listing A.1. Goal nodes information file

1 G1_; --> G2 G3_;
2 G2 -->
3 G3_; --> G4_; G7_;
4 G4_; --> G5 G6
5 G5 -->
6 G6 --> AT1_1
7 AT1_1 -->
8 G7_; --> G8 G9 G10_OR
9 G8 -->
10 G9 -->
11 G10_OR --> G11 G12
12 G11 --> AT2_1
13 AT2_1 -->
14 G12 --> AT3_1
15 AT3_1 -->

Listing A.2. Goal model order

Name : GetFood
food - pickup
Name : Del iverToTable
tab le - d e l i v e r
Name : Del iverToFetch
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f e tch - d e l i v e r
Name : FetchMeal
f e tch - meal - with -human
fetch - meal - with - robot
. . .

Listing A.3. Excerpt from methods avaliable for Abstact Tasks (AT) in food logistics mission

Var iab le name : ? r Var iab le Type : robot
Var iab le name : ? l Var iab le Type : l o c a t i o n
Var iab le name : ?d Var iab le Type : d e l i v e r y
Var iab le name : ? r Var iab le Type : robot
. . .

Listing A.4. Excerpt from types and variables information file

Method name : food - pickup
navto wait - f o r - food __task_effect pickedmeal_true_argument_ ? r
Method name : t a b l e - d e l i v e r
__method_precondition_table - d e l i v e r pickedmeal_true_argument_ ? r navto approach - p a t i e n t - t a b l e d e l i v e r - to

- t a b l e __method_capability _argument_manipulation
Method name : f e t c h - d e l i v e r
__method_precondition_fetch - d e l i v e r pickedmeal_true_argument_ ? r1 navto FetchMeal
Method name : f e t c h - meal - with - human
__method_precondition_fetch - meal - with - human patientcanfetch_true_argument_ ?p approach - human wait - f o r -

human - to - f e t c h __task_effect pickedmeal_false_argument_ ? r
Method name : f e t c h - meal - with - robot
navto approach - robot grasp - meal __task_effect pickedmeal_false_argument_ ? r2 __task_effect

pickedmeal_true_argument_ ? r1 d e l i v e r - meal - to - p a t i e n t __task_effect pickedmeal_false_argument_ ? r
. . .

Listing A.5. Snippet from method orderings file

A.2 Domain files

This section includes the domain files used for the missions included in the Chapter 4.
As such, they do not require further explanation in the appendix as they are already
explained in the results.

1 ( d e f i n e ( domain ho sp i t a l )
2 ( : types
3 de l i v e r y pickup pat i en t l o c a t i o n - ob j e c t
4 )
5 ( : p r ed i c a t e s
6 ( pa t i en t c an f e t ch ?p - pa t i en t )
7 ( pat ientcanopen ?p - pa t i en t )
8 ( d e l i v e r yp a t i e n t ?p - pa t i en t ?d - d e l i v e r y )
9 ( d e l i v e r y l o c a t i o n ? l - l o c a t i o n ?d - d e l i v e r y )

10 ( p i ckuppat i ent ?p - pa t i en t ?pk - pickup )
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11 ( p i ckup l o ca t i on ? l - l o c a t i o n ?pk - pickup )
12 ( p i ckedd i she s ? r - robot )
13 ( pickedmeal ? r - robot )
14 ( at ? r - robot ? l - l o c a t i o n )
15 )
16 ( : c a p a b i l i t i e s manipulat ion door - opening )
17
18 ( : task GetFood : parameters (? r - robot ? l - l o c a t i o n ?d - d e l i v e r y ) )
19 ( : method food - pickup
20 : parameters (? r - robot ? l - l o c a t i o n ?d - d e l i v e r y )
21 : task (GetFood ? r ? l ?d)
22 : ordered - subtasks ( and
23 ( navto ? r ? l )
24 ( wait - for - food ? r ? l ?d)
25 )
26 )
27 ( : a c t i on wait - for - food
28 : parameters (? r - robot ? l - l o c a t i o n ?d - d e l i v e r y )
29 : e f f e c t ( and
30 ( pickedmeal ? r )
31 )
32 )
33
34 ( : task Del iverToTable : parameters (? r - robot ? l - l o c a t i o n ?p - pa t i en t ) )
35 ( : method tab le - d e l i v e r
36 : parameters (? r - robot ? l - l o c a t i o n ?p - pa t i en t )
37 : task ( Del iverToTable ? r ? l ?p)
38 : p r e cond i t i on ( and
39 ( pickedmeal ? r )
40 )
41 : ordered - subtasks ( and
42 ( navto ? r ? l )
43 ( approach - pat i ent - t ab l e ? r ? l ?p)
44 ( d e l i v e r - to - t ab l e ? r ? l )
45 )
46 )
47 ( : a c t i on approach - pat ient - t ab l e
48 : parameters (? r - robot ? l - l o c a t i o n ?p - pa t i en t )
49 )
50 ( : a c t i on de l i v e r - to - t ab l e
51 : parameters (? r - robot ? l - l o c a t i o n )
52 : r equ i red - c a p a b i l i t i e s ( manipulat ion )
53 )
54
55 ( : task Del iverToFetch : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p -

pa t i en t ) )
56 ( : method fe tch - d e l i v e r
57 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
58 : task ( Del iverToFetch ? r1 ? r2 ? l ?p)
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59 : p r e cond i t i on ( and
60 ( pickedmeal ? r1 )
61 )
62 : ordered - subtasks ( and
63 ( navto ? r1 ? l )
64 ( FetchMeal ? r1 ? r2 ? l ?p)
65 )
66 )
67
68 ( : task FetchMeal : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t ) )
69 ( : method fe tch - meal - with -human
70 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
71 : task ( FetchMeal ? r1 ? r2 ? l ?p)
72 : p r e cond i t i on ( and
73 ( pa t i en t c an f e t ch ?p)
74 )
75 : ordered - subtasks ( and
76 ( approach -human ? r1 ? l ?p)
77 ( wait - for -human- to - f e t ch ? r1 ? l ?p)
78 )
79 )
80 ( : method fe tch - meal - with - robot
81 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
82 : task ( FetchMeal ? r1 ? r2 ? l ?p)
83 : ordered - subtasks ( and
84 ( navto ? r2 ? l )
85 ( approach - robot ? r1 ? r2 )
86 ( grasp - meal ? r2 ? r1 )
87 ( d e l i v e r - meal - to - pa t i en t ? r2 ?p ? l )
88 )
89 )
90
91 ( : task PickupDishes : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p -

pa t i en t ) )
92 ( : method pickup - with - door - opening
93 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
94 : task ( PickupDishes ? r1 ? r2 ? l ?p)
95 : p r e cond i t i on ( and
96 ( not ( p i ckedd i she s ? r1 ) )
97 )
98 : ordered - subtasks ( and
99 ( navto ? r1 ? l )

100 ( navto ? r2 ? l )
101 ( approach - door ? r1 ? l )
102 ( approach - door ? r2 ? l )
103 ( open - door ? r1 ? r2 ? l )
104 ( PickDishesTwoRobotsAtLocation ? r1 ? r2 ? l ?p)
105 )
106 )
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107 ( : method pickup - without - door - opening
108 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
109 : task ( PickupDishes ? r1 ? r2 ? l ?p)
110 : p r e cond i t i on ( and
111 ( pat ientcanopen ?p)
112 ( not ( p i ckedd i she s ? r1 ) )
113 )
114 : ordered - subtasks ( and
115 ( navto ? r1 ? l )
116 ( approach - door ? r1 )
117 ( wait - for - door - opening ? r1 )
118 ( PickDishesOneRobotAtLocation ? r1 ? r2 ? l ?p)
119 )
120 )
121
122 ( : task PickDishesTwoRobotsAtLocation : parameters (? r1 ? r2 - robot ? l -

l o c a t i o n ?p - pa t i en t ) )
123 ( : method pick - d i shes - two - robots - at - l o c a t i o n
124 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
125 : task ( PickDishesTwoRobotsAtLocation ? r1 ? r2 ? l ?p)
126 : p r e cond i t i on ( and
127 ( at ? r1 ? l )
128 ( at ? r2 ? l )
129 )
130 : ordered - subtasks ( and
131 ( PickDishes ? r1 ? r2 ? l ?p)
132 )
133 )
134
135 ( : task PickDishesOneRobotAtLocation : parameters (? r1 ? r2 - robot ? l -

l o c a t i o n ?p - pa t i en t ) )
136 ( : method pick - d i shes - one - robot - at - l o c a t i o n
137 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
138 : task ( PickDishesOneRobotAtLocation ? r1 ? r2 ? l ?p)
139 : p r e cond i t i on ( and
140 ( at ? r1 ? l )
141 ( not ( at ? r2 ? l ) )
142 )
143 : ordered - subtasks ( and
144 ( PickDishes ? r1 ? r2 ? l ?p)
145 )
146 )
147
148 ( : task PickDishes : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p -

pa t i en t ) )
149 ( : method pick - d i shes - with -human
150 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
151 : task ( PickDishes ? r1 ? r2 ? l ?p)
152 : ordered - subtasks ( and
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153 ( approach -human ? r1 ? l ?p)
154 ( wait - for -human- to - place - d i sh ? r1 ?p)
155 )
156 )
157 ( : method pick - d i shes - with - robot - at - l o c a t i o n
158 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
159 : task ( PickDishes ? r1 ? r2 ? l ?p)
160 : p r e cond i t i on ( and
161 ( at ? r2 ? l )
162 )
163 : ordered - subtasks ( and
164 ( pick - pat i ent - d i sh e s ? r2 ?p)
165 ( load - d i sh e s ? r2 ? r1 )
166 )
167 )
168 ( : method pick - d i shes - with - robot - not - at - l o c a t i o n
169 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n ?p - pa t i en t )
170 : task ( PickDishes ? r1 ? r2 ? l ?p)
171 : p r e cond i t i on ( and
172 ( not ( at ? r2 ? l ) )
173 )
174 : ordered - subtasks ( and
175 ( navto ? r2 ? l )
176 ( pick - pat i ent - d i sh e s ? r2 ?p)
177 ( load - d i sh e s ? r2 ? r1 )
178 )
179 )
180
181 ( : task Ret r i eveDi shes : parameters (? r - robot ? l - l o c a t i o n ) )
182 ( : method di shes - r e t r i e v a l
183 : parameters (? r - robot ? l - l o c a t i o n )
184 : task ( Ret r i eveDi shes ? r ? l )
185 : ordered - subtasks ( and
186 ( navto ? r ? l )
187 ( r e t r i e v e - d i sh e s ? r ? l )
188 )
189 )
190
191 ( : a c t i on approach -human
192 : parameters (? r - robot ? l - l o c a t i o n ?p - pa t i en t )
193 )
194 ( : a c t i on approach - robot
195 : parameters (? r1 ? r2 - robot )
196 )
197 ( : a c t i on grasp - meal
198 : parameters (? r1 ? r2 - robot )
199 : e f f e c t ( and
200 ( not ( pickedmeal ? r2 ) )
201 ( pickedmeal ? r1 )
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202 )
203 )
204 ( : a c t i on de l i v e r - meal - to - pa t i en t
205 : parameters (? r - robot ?p - pa t i en t ? l - l o c a t i o n )
206 : e f f e c t ( and
207 ( not ( pickedmeal ? r ) )
208 )
209 )
210 ( : a c t i on wait - for -human- to - f e t ch
211 : parameters (? r - robot ? l - l o c a t i o n ?p - pa t i en t )
212 : e f f e c t ( and
213 ( not ( pickedmeal ? r ) )
214 )
215 )
216
217 ( : a c t i on wait - for -human- to - place - d i sh
218 : parameters (? r - robot ?p - pa t i en t )
219 : e f f e c t ( and
220 ( p i ckedd i she s ? r )
221 )
222 )
223 ( : a c t i on pick - pat i ent - d i sh e s
224 : parameters (? r - robot ?p - pa t i en t )
225 : e f f e c t ( and
226 ( p i ckedd i she s ? r )
227 )
228 )
229 ( : a c t i on load - d i sh e s
230 : parameters (? r1 ? r2 - robot )
231 : e f f e c t ( and
232 ( not ( p i ckedd i she s ? r1 ) )
233 ( p i ckedd i she s ? r2 )
234 )
235 )
236 ( : a c t i on approach - door
237 : parameters (? r1 - robot ? l - l o c a t i o n )
238 )
239 ( : a c t i on open - door
240 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n )
241 : r equ i red - c a p a b i l i t i e s ( door - opening )
242 )
243 ( : a c t i on wait - for - door - opening
244 : parameters (? r - robot )
245 )
246 ( : a c t i on pickup - d i shes - with - robot
247 : parameters (? r1 ? r2 - robot ? l - l o c a t i o n )
248 : e f f e c t ( and
249 ( p i ckedd i she s ? r1 )
250 )
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251 )
252 ( : a c t i on r e t r i e v e - d i sh e s
253 : parameters (? r - robot ? l - l o c a t i o n )
254 )
255
256 ( : a c t i on navto
257 : parameters (? r - robot ? l - l o c a t i o n )
258 )
259 )

Listing A.6. Domain definition file for food logistics example in HDDL

1 ( d e f i n e ( domain ho sp i t a l )
2 ( : types l o c a t i o n s to rage obj agent - ob j e c t )
3 ( : p r ed i c a t e s
4 ( request ingequipment ?a - agent )
5 ( at ?o - obj ? s - s t o rage )
6 ( at ? l - l o c a t i o n ?a - agent )
7 ( r eques ted ?o - obj ?a - agent )
8 )
9 ( : c a p a b i l i t i e s )

10
11 ( : task GetObject : parameters (? r - robot ? s - s t o rage ?o - obj ) )
12 ( : method object - get
13 : parameters (? r - robot ? s - s t o rage ?o - obj )
14 : task ( GetObject ? r ? s ?o )
15 : p r e cond i t i on ( )
16 : ordered - subtasks ( and
17 ( get - ob j e c t ? r ? s ?o )
18 )
19 )
20 ( : a c t i on get - ob j e c t
21 : parameters (? r - robot ? s - s t o rage ?o - obj )
22 )
23
24 ( : task RechargeBattery : parameters (? r - robot ) )
25 ( : method battery - recharge
26 : parameters (? r - robot )
27 : task ( RechargeBattery ? r )
28 : p r e cond i t i on ( )
29 : ordered - subtasks ( and
30 ( recharge - bat te ry ? r )
31 )
32 )
33 ( : a c t i on recharge - bat te ry
34 : parameters (? r - robot )
35 )
36
37 ( : task De l i ve rObjec t s : parameters (? r - robot ? l - l o c a t i o n ) )
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38 ( : method ob jec t s - d e l i v e r y
39 : parameters (? r - robot ? l - l o c a t i o n )
40 : task ( De l i ve rObjec t s ? r ? l )
41 : p r e cond i t i on ( )
42 : ordered - subtasks ( and
43 ( d e l i v e r - ob j e c t s ? r ? l )
44 )
45 )
46 ( : a c t i on de l i v e r - ob j e c t s
47 : parameters (? r - robot ? l - l o c a t i o n )
48 )
49
50 ( : task ReturnObjectsToCheckpoint : parameters (? r - robot ) )
51 ( : method object - r e tu rn ing
52 : parameters (? r - robot )
53 : task ( ReturnObjectsToCheckpoint ? r )
54 : p r e cond i t i on ( )
55 : ordered - subtasks ( and
56 ( return - ob j e c t s ? r )
57 )
58 )
59 ( : a c t i on return - ob j e c t s
60 : parameters (? r - robot )
61 )
62
63 ( : task Ale r tTr i gge r : parameters (? r - robot ) )
64 ( : method a l e r t - t r i g g e r
65 : parameters (? r - robot )
66 : task ( A l e r tTr i gge r ? r )
67 : p r e cond i t i on ( )
68 : ordered - subtasks ( and
69 ( t r i g g e r - a l e r t ? r )
70 )
71 )
72 ( : a c t i on t r i g g e r - a l e r t
73 : parameters (? r - robot )
74 )
75 )

Listing A.7. Domain definition file for deliver goods - equipment mission in HDDL
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