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Prof. Dr. Genáına Nunes Rodrigues Dr. Yara A. Rizk

CIC/UnB IBM Research

Prof. Dr. Ricardo Pezzuol Jacobi

Coordinator of the Graduate Program in Informatics
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Abstract

Guaranteeing goal achievement in a Multi-Robot System (MRS) is challenging, espe-

cially considering operations in dynamic environments. Despite the Multi-Agent Planning

(MAP) literature presenting several approaches to solve this problem, there is space for

improvement. One open challenge in MRS is related to plan recovery. Thus, this work

integrates MAP to MRS, presenting the Multi-Robot System Architecture with Planning

(MuRoSA-Plan) focusing on plan recovery. To illustrate the architecture, a multi-robot

mission coordination case in healthcare service uses the Robot Operating System (ROS2)

and IPyHOP planner with hierarchical task networks. Experiments with the MuRoSA-

Plan prototype present improvement compared to the Planning System Framework for

ROS2 - PlanSys2 framework. The experimental results show that MuRoSA-Plan gen-

erates runtime-adapted plans mitigating mission disruptions, satisfying the goals of the

healthcare service case, indicating a promising solution for plan recovery in MRS.

Keywords: Multi-agent Planning, Multi-robot Systems, Multiple Robotic Systems, Plan

Recovery
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Resumo Expandido

Garantir o cumprimento de objetivos em um Sistema Multi-Robô (SMR) é um desafio,

especialmente considerando operações em ambientes dinâmicos. Apesar da literatura

sobre Planejamento Multiagente (PMA) apresentar diversas abordagens para resolver

esse problema, há espaço para melhorias. Um desafio em aberto em SMR está relacionado

a recuperação de planos. Assim, este trabalho integra o PMA a SMR, apresentando a

arquiteturaMulti-Robot System Architecture with Planning (MuRoSA-Plan), que tem foco

na recuperação de planos.

Considerando os apesctos metodológicos, esta pesquisa pode ser classificada como um

estudo exploratório com desenvolvimento experimental e análise quantitativa de Plane-

jamento Automatizado (PA), SMR, Sistemas Multiagentes (SMA) e PMA. Os passos

metodológicos para atingir os objetivos desta pesquisa são: (1) estudar os principais con-

ceitos de PA, SMR, SMA e PMA; (2) realizar uma revisão sistemática da literatura para

mapear o estado da arte, identificar resultados de trabalhos relacionados e posicionar

a pesquisa no contexto internacional; (3) definir, implementar e validar a arquitetura

proposta neste trabalho; (4) analisar quantitativamente os resultados obtidos com a ar-

quitetura desenvolvida em comparação com trabalhos do estado da arte em ambiente

simulado; (5) publicar os resultados alcançados em evento cient́ıfico na área de inter-

esse do estudo; (6) redigir a dissertação detalhando o trabalho de pesquisa, incluindo

contribuições e limitações.

Para validar a solução, um protótipo que utiliza o Robot Operating System (ROS) e

o planejador IPyHOP (Bansod et al., 2022) com redes de tarefas hierárquicas foi imple-

mentado. Dois estudos comparativos foram conduzidos e comparados com o resultado

de uma solução do estado da arte, o PlanSys2 (Mart́ın et al., 2021). Nos exeperimen-

tos, um programa em Python cria configurações do Docker com base na especificação do

experimento. O Docker usa essa configuração para iniciar os contêineres para executar

nós do ROS. Todos os logs são inclúıdos em um arquivo de log usado por um programa

em JavaScript para compilar informações de execução (tempo de execução e dados de

compilação do plano). Os resultados gerados são condensados em gráficos e tabelas com

informações de execução para análise dos resultados da simulação.
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O primeiro estudo comparativo é o da Patrulha, onde um robô precisa patrulhar uma

sala com colunas. Há um ponto wp control e quatro outros pontos: wp 1, wp 2, wp 3

e wp 4. Quando o robô chega a um ponto, ele precisa patrulhá-lo. O PlanSys2 e o

MuRoSA-Plan têm quase 100% de execuções bem-sucedidas. O PlanSys2 possui um

tempo de execução menor devido ao seu protocolo de execução de ações mais simples

e à falta de aspectos de SMA. Embora o MuRoSA-Plan seja mais lento, possui maior

flexibilidade, pois utiliza abordagens SMA para incluir diferentes agentes, o que pode ser

observado no segundo estudo do Serviços de Saúde (Healthcare Service).

O segundo estudo comparativo é o do Serviços de Saúde, uma missão multi-robô que

veio do Lab Samples Logistics, cenário adaptado dos exemplares do RoboMax (Askarpour

et al., 2021). Na missão, os robôs deverão transportar amostras de pacientes de suas

salas até o laboratório. Um profissional da saúde é responsável por coletar as amostras

e solicitar a entrega ao laboratório, identificando a sala onde deverá ocorrer a coleta. Os

robôs possuem uma gaveta trancada com segurança para navegar até a sala de coleta,

identificar a enfermeira, abordá-la, abrir a gaveta, aguardar o depósito, fechar a gaveta

e depois navegar até o laboratório que transporta a amostra. No laboratório, o braço

robótico coleta amostras, escaneia o código de barras de cada amostra, classifica-as e

carrega-as no módulo de entrada das máquinas de análise.

Analisando o tempo médio de conclusão do plano em segundos considerando o prob-

lema de porta fechada vemos que à medida que o replanejamento é ativado, há um aumento

de tempo em todos os cenários. Quando o problema acontece sem o replanejamento, a sim-

ulação encerra a execução, enquanto com o replanejamento, o sistema continua operando.

Além disso, o tempo médio de conclusão do plano no PlanSys2 é mais lento que no

MuRoSA-Plan, pois o Serviços de Saúde é um exemplo de multi-robôs, e embora o Plan-

Sys2 possa executá-lo, não foi definido para essa caracteŕıstica.

Para verificar a completude do plano foi considerado o problema de uma porta fechada

no percurso a ser executado pelo robô. Observa-se que quando o replanejamento é ati-

vado, todos os cenários são conclúıdos. Isso é esperado, pois a ideia do replanejamento

é garantir a integralidade do plano, mitigando problemas. No PlanSys2, notamos um

problema devido à modelagem do estado do ambiente. Mesmo quando a ação encontrou

um problema, o sistema notificou o problema, mas continuou trabalhando sem replanejar.

Comparando os resultados dos experimentos pode-se perceber alguns pontos impor-

tantes. O PlanSys2 usa Planning Domain Definition Language (PDDL) para arquivos

de domı́nio, enquanto a arquitetura MuRoSA-Plan instanciada com ROS usa Hierar-

chical Task Network (HTN), incorporando poder de abstração ao descrever objetivos.

No PlanSys2, um objetivo final é definido como (and(arm has sample a)), enquanto no

MuRoSA-Plan o objetivo é o método abstrato pickup and deliver sample.
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O agente Coordenador na arquitetura MuRoSA-Plan pode ter mais responsabilidades

do que o Controlador no PlanSys2, resultando em uma solução mais robusta. Como o

PlanSys2 não foi projetado para aspectos SMA, apresentou melhor desempenho com um

único agente. No entanto, quando o plano envolvia muitos agentes, isso não era um gargalo

e nossa arquitetura era mais rápida, embora o PlanSys2 tivesse um novo algoritmo para

execução paralela de fluxos de ação (action flows).

A arquitetura doMuRoSA-Plan tem foco na recuperação de planos. Quando ocorre um

problema, é atualizado corretamente o modelo e ocorre o replanejamento. O PlanSys2 não

foi desenvolvido com o mesmo foco, falha em ter um modelo que represente com precisão

o ambiente na ocorrência de problemas. Na simulação, a falha significa um resultado falso

positivo. Porém, em ambientes reais, o robô não completaria o plano e o Controlador do

PlanSys2 não descobriria o problema. Assim, uma boa representação e atualização do

modelo é essencial quando a recuperação do plano é necessária.

Os resultados experimentais para validar a arquitetura proposta mostram que é posśıvel

gerar planos de adaptação em tempo de execução que satisfaçam os objetivos em um am-

biente dinâmico, com dois estudos comparativos com o PlanSys2 - Patrulha e Serviços

de Saúde. Os resultados com missões paralelas apresentam o melhor tempo de execução

na arquitetura do MuRoSA-Plan, enquanto missões sequenciais foram melhores no Plan-

Sys2. No entanto, somente o MuRoSA-Plan pode replanejar uma missão na ocorrência

de problemas.

Resumindo, este trabalho apresenta uma arquitetura para recuperação de planos que

permite o desenvolvimento de aplicações de SMR para diferentes domı́nios voltadas para

ambientes dinâmicos. A arquitetura segue uma abordagem centralizada de coordenação

e distribuição da execução de ações por meio de robôs heterogêneos. A arquitetura foi

instanciada usando ROS e o planejador IPyHOP. Comparando nossa arquitetura com

trabalhos relacionados, verificamos que é a única arquitetura que implementa SMR para

diferentes missões de domı́nio utilizando planejadores com domı́nios de problemas, ações

e aplicações, onde um Coordenador monitora as tarefas dos agentes, forma equipes e

replaneja em tempo de execução.

Esta pesquisa atinge o objetivo principal ao desenvolver uma solução para SMR com

foco na recuperação de planos em tempo de execução para lidar com ambientes não

determińısticos, usando uma abordagem de aplicação não espećıfica. Como objetivos se-

cundários, este trabalho apresenta a definição da arquitetura de SMR espećıfica para ROS,

o design do protótipo e implementação da arquitetura proposta com código dispońıvel para

ciência aberta, e a validação com o framework de planejamento PlanSys2 com dois estu-

dos comparativos. Concluindo, a hipótese de que é posśıvel desenvolver uma arquitetura

para SMR com foco na recuperação de planos para ambiente dinâmico e não espećıfico
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da aplicação foi validada positivamente durante o desenvolvimento deste trabalho.

Esta pesquisa apresenta trabalhos futuros em diferentes áreas. Em SMR, podemos

destacar a integração com soluções de outras etapas do complexo fluxo de tarefas. A

especialização da arquitetura de SMA para lidar com cenários não determińısticos mais

complexos, a definição de outros aspectos da solução, como protocolos de interação e a

verificação da veracidade na troca de mensagens entre agentes são exemplos de posśıveis

trabalhos futuros. Em PMA, estudos para verificar qual a melhor abordagem para plane-

jar a recuperação (replanejar ou reparar) também podem ser inclúıdos na arquitetura.

Além disso, a adição de um planejador utilizando cadeias de Markov para planejamento

probabiĺıstico. A implementação da arquitetura noutros domı́nios e contextos e com prob-

lemas mais complexos, também estão no âmbito de trabalhos futuros.

Palavras-chave: Planejamento Multiagente, Sistemas Multi-robôs, Múltiplos Sistemas

Robóticos, Recuperação de Planos
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Chapter 1

Introduction

This chapter discloses the motivation behind this work. It shows the importance of

Multi-Robot Systems (MRS) and some of the current challenges in the area. Then, the

role that Automated Planning (AP) and Multi-Agent Planning (MAP) have in those

challenges. Thus, the structure of this chapter includes, in Section 1.1 aspects of mo-

tivation, in Section 1.2 the problem description with the work goals, in Section 1.3 the

research methodology, in Section 1.4 the work contributions and limitations, and finally,

in Section 1.5, an overview of the rest of the document.

1.1 Motivation

Planning and performing complex tasks robotically poses many challenges, one of them

being repairing or replanning a plan when a problem occurs, i.e., plan recovery. Since

robots are becoming more common in our lives, as depicted in Figure 1.1, many studies

that add planning to MRS are arising in the literature.

Figure 1.1: Moxi robot that aids clinical staff do more in less time, adopted by American
hospitals. Picture: Foto/Youtube, https://www.diligentrobots.com/moxi.
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The studies on AP imply the reasoning side of acting computationally. Many studies

in the literature bring established solutions to single-agent planning problems imposing

restrictions, like finite and static environments, no explicit time, and no concurrency, de-

terminism, and no uncertainty. However, Multi-Agent Systems (MAS) solutions deserve

more study related to planning or when those restrictions are relaxed. The application of

AP techniques in MAS can be seen as MAP. Since MAS refers to physical and computa-

tional agents, some MAS and MAP solutions can be used in MRS.

One aspect that passes through the works in MRS is the complex task-completing

process. For Rizk et al. (2019), this process is viewed as decoupling complex tasks into

simpler sub-tasks (a task refined into more low-level actions that a robot can perform),

forming a coalition of robots that will perform them, allocating to the coalitions, and

using MAP to transform those tasks into sequential actions to the robots perform.

Figure 1.2 presents an adapted MRS workflow cited by the authors and proposed

by Kiener and von Stryk (2010). Note the workflow includes a human designer to decom-

pose complex tasks into simpler sub-tasks based on the robots’ capabilities available and

the coalition formation of a set of agents. Then, the task (re)-allocation and robot plan-

ning and control steps are autonomously performed by the robot teams or MAS, being

the focus of this work.

Figure 1.2: Adapted MRS workflow. Source: Figure 2 of Rizk et al. (2019).

Currently, many studies develop solutions involving the coordination and planning

problem of heterogeneous MRS (Bischoff et al., 2021; Carreno et al., 2020; Cashmore

et al., 2015; González et al., 2020; Lesire et al., 2022; Mart́ın et al., 2021; Miloradovic

et al., 2021; Nir and Karpas, 2019; Nägele et al., 2020; Wohlrab et al., 2022). Most

solutions create a centralized form of analyzing the environment’s state and coordinat-

ing the plan execution. These works focus on MRS’s aspects like goal decomposition,

task allocation strategies, quality of attributes, plan adaptation using probabilistic and

temporal planning, interactive coordination of heterogeneous robotic teams, and related

architectures, frameworks, and robot operating systems.

The plan’s recovery and the environment’s dynamism are not always a priority of

the works in the literature. Nevertheless, the works present approaches to tailor robotic
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mission adaptation (Askarpour et al., 2021; Carreno et al., 2022) and architectural design

patterns to MRS involving heterogeneous robots, as the MissionControl of (Rodrigues

et al., 2022). The MissionControl architecture proceeds a coalition formation and task

allocation to execute a mission in run time, previously decomposed by the MutRoSe

framework during design (Gil et al., 2023).

Nevertheless, the MissionControl does not include a process definition for the task re-

allocation and planning and control as presented in Figure 1.2. Our motivation concerning

MissionControl architecture originated from the need to complete the mission in the

presence of problems (replanning). Also, we recognize the importance of integrating

the process taken by the MutRoSe framework and MissionControl architecture associated

with the present work to have a more robust architecture that automatically fulfills the

MRS workflow, as pointed out by Rizk et al. (2019).

However, AP techniques integrated into MRS towards an architectural design for non-

specific applications are missing. Plan recovery in dynamic environments needs more

investigation. Since robots act in the real world, the initial plan can become impractica-

ble due to environmental changes. In addition, the robot’s mechanical components can

encounter some problems, making it impossible to achieve tasks that compromise the plan.

So, replanning or repairing the plan becomes essential to the plan’s conclusion in nonde-

terministic environments. Thus, this work introduces an architecture that joins aspects

of MAP and MRS to achieve plan completion, focussing on dynamic environments.

1.2 Problem and Goals

One of the complexities of MRS comes from the coordination of robots, which is needed

to achieve the system’s goals (Verma and Ranga, 2021). While some architectures focus

on solving the problem of robot mission coordination (Carreno et al., 2020; González

et al., 2020; Rodrigues et al., 2022), those might not include planning protocols to dy-

namic environments challenging to extend. In that direction, the definition of a novel

architecture focusing on the Planner-Controller-System framework intending to combine

existing architectural modules, solving other MRS aspects, would achieve a more robust

solution.

Like in MAS, the coordination, communication, and interaction between agents is

a challenging problem (Salzman and Stern, 2020; Weiss, 2016; Wooldridge, 2009). In

addition, classical planning does not always consider dynamism in the real-world environ-

ment (Ghallab et al., 2016). That tends to most planning techniques assuming that the

only changes come from an agent’s action, which is not the case in a dynamic scenario.
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The initial plan can become unavailable after an unexpected event, resulting in the need

for some form of plan recovery.

Such a complex scenario is related to the research on MAP, concerned with planning

that involves coordinating the resources and activities of multiple agents (Komenda et al.,

2016; Moreira and Ralha, 2021a, 2022a). The problem this work deals with is the devel-

opment of an MRS that uses MAP and relaxes the static environment restriction of AP.

The hypothesis is defined as:

It is possible to develop an architecture for MRS focusing on plan recovery for
dynamic environments and non-application specific.

This research’s prime goal is to develop a solution for MRS focusing on plan recovery

at the run-time phase to cope with non-deterministic environments using a non-specific

application approach.

As secondary goals, we cite:

• defining an MRS architecture specific to the Robot Operating System - ROS2 (Ma-

censki et al., 2022),

• designing and implementing a prototype of the proposed architecture, making it

available in an open-source repository,

• validating the architectural prototype with the PlanSys2 comparative study, which

is a state-of-the-art planning framework used in robotics (Mart́ın et al., 2021).

1.3 Methodology

This work might be classified as an exploratory study with experimental development

and a quantitative analysis of AP, MRS, MAS, and MAP. The methodological steps to

achieve the objectives of this research are:

• study the key concepts of AP, MRS, MAS, and MAP;

• carry out a systematic literature review to map the state of the art, identify results

of related work, and position the research in the international context;

• define, implement, and validate an architecture proposed in this work;

• analyze quantitatively the results obtained with the developed architecture com-

pared to state-of-the-art works in a simulated environment;

• publish the results achieved at a scientific event in the study interest area;

• write the dissertation detailing the research work, including contributions and lim-

itations.
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1.4 Contributions and Limitations

This work focuses on the union of MRS and plan recovery with the proposition of an

architecture instantiated with ROS2. We illustrate the architecture with a multi-robot

case in healthcare. The main contributions are:

• the architecture definition aiming MRS non-specific applications for heterogeneous

robots focusing on plan recovery at dynamic environments;

• the design and implementation of a prototype for MRS coordination integrating

ROS2 and the IPyHOP Hierarchical Task Networks (HTN) planner (Bansod et al.,

2022), with code available to promote open science;1 and

• the proposed MRS architecture focusing on plan recovery for dynamic environ-

ments published in the 20 23 IEEE Symposium Series on Computational Intelli-

gence (SSCI) held in Mexico City from December 5th to 8th, 2023 (da Silva and

Ralha, 2023).

It is important to highlight that MAP relates planning and controlling to ensure the

plan continues to be feasible during execution. Considering the workflow of Figure 1.2,

this work focuses on the planning and control process, including AP task allocation (high-

lighted in green boxes). However, we consider all steps salient to have a robust architecture

for MRS in dynamic environments. Nevertheless, considering the recovery scope, this work

limits the initial discussion of points that MRS architectures should have to ensure plan

recovery in a broader sense beyond the commonly used battery and navigation problems.

Another prime point deals with recovery strategies in dynamic multi-agent environ-

ments that address many topics. Like applying the best recovery strategy with replanning

and repairing to specific cases, considering the number of agents, goals, actions, failure

probability, and agent’s coupling levels, and metrifying plan length and planning time.

This work applies replanning as a plan recovery strategy in dynamic MRS environments,

as Moreira and Ralha (2022b) demonstrates that replanning builds plans with fewer ac-

tions than repairing since the final plan length is strongly correlated to failure occurrence.

There are many other aspects related to robots’ decision-making in dynamic environ-

ments affected by exogenous events in planning. In Moreira and Ralha (2021a), the au-

thors designed a MAP model combining planning, coordination, and execution to evaluate

how a centralized or decentralized strategy affects the decision-making process of robots

using intralogistics scenarios where manufacturing and warehousing are continuously per-

formed. A centralized planning approach is used in this work to ease the heterogeneous

robot’s coordination during task allocation, planning, and control performed by teams.

1https://github.com/CJTS/missioncontrol-planning
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1.5 Document Outline

The rest of the manuscript presents, in Chapter 2 the concepts and definitions used in

this work, in Chapter 3 an overview of the literature review, in Chapter 4 the proposed

architecture, in Chapter 5 details the experimental results with discussions, and finally,

in Chapter 6 conclusion and directions for future work.
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Chapter 2

Background

This chapter covers basic concepts to understand this work. The structure includes

Section 2.1 with automated planning definitions using the theory presented by Ghallab

et al. (2016). In Section 2.2, multi-agent system concepts, multi-agent planning in Sec-

tion 2.3, and multi-robot system in Section 2.4. Finally, ROS and ROS2 overview are

included in Section 2.5.

2.1 Automated Planning

AP is an Artificial Intelligence (AI) field that studies the abstract, explicit reasoning

side of acting computationally (Nau et al., 2004). In other words, planning is the creation

of a sequence of actions to achieve a goal, and AP is creating that computationally. Types

of AP include:

• path and motion planning - plans that involve the geometric path between the initial

and final position;

• perception planning - plans that involve actions for gathering data;

• navigation planning - plans that involve the motion and perception parts of a plan;

• manipulation planning - plans that involve manipulating objects;

• communication planning - plans that involve the communication between agents,

artificial or human.

Since AP is concerned with the reasoning side of acting, the best way to do that is

by using a plan synthesis model of AP. For that, we need a conceptual model. The first

thing we will do is define in our model what is a classical planning domain.
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Definition 1 A classical planning domain is a triple Σ = (S, A, γ), where

• S = {s1, s2, . . . } is a finite set of states;

• A = {a1, a2, . . . } is a finite set of actions;

• γ: S × A → S is a partial function called the prediction function or state-

transition function. If (s, a) is in γ’s domain (i.e., γ(s, a) is defined), then a

is applicable in s, with γ(s, a) being the predicted outcome. Otherwise, a is

inapplicable in s.

In Definition 1, the function states that if (s, a) are in γ‘s domain, then the action a

can be applied in the state s and γ(s, a) is the new state.

The first part of our domain is a set of finite states. In a state representation, each

state s that belongs to S represents properties of objects in the environment. A rigid

property remains the same in every state in S, whereas a varying property can differ from

one state to another. Ghallab et al. (2016) uses B, R, and X to represent the set of object

names, the rigid properties, and varying properties, respectively.

Definition 2 A state variable over the state’s object name B is

x = sv(b1, . . . , bk),

where sv is a symbol called the state variable’s name, and each bi is a member of

B. Each state variable x has a range Range(x) ⊆ B, which is the set of all possible

values for x.

With Definition 2, we can define a variable-assignment function over the state‘s varying

properties X. The function maps each xi of X into values zi in Range(xi). If X =

{x1, . . . , xn}, then, because a function is a set of ordered pairs, we have

s = (x1, z1), . . . , (xn, zn),

which we often will write as a set of assertions:

s = x1 = z1, x2 = z2, . . . , xn = zn.

Because X and B are finite, so is the number of variable-assignment functions.
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Definition 3 A state-variable state space is a set s of variable-assignment functions

over some set of state variables X. Each variable-assignment function in s is called

a state in S.

Definition 3 defines a state as a variable-assignment function that attributes a value

of our object’s name for each varying property. To finish defining our classical planning

domain, we need to define actions. But before that, we need some other definitions.

Definition 4 A positive literal, or atom, is an expression having either of the

following forms:

rel(z1, . . . , zn) or sv(z1, . . . , zn) = z0,

where rel is the name of a rigid relation, sv is a state-variable name, and each zi is

either a variable (an ordinary mathematical variable) or the name of an object. A

negative literal is an expression having either of the following forms:

¬rel(z1, . . . , zn) or sv(z1, . . . , zn) ̸= z0,

A literal is ground if it contains no variables, and unground otherwise.

Another way of viewing states with Definition 4 is like a set of ground atoms such that

every state variable x ∈ X is the target of exactly one atom.

Definition 5 Let R and X be sets of rigid relations and state variables over a set

of objects B, and S be a state-variable state space over X. An action template for

S is a tuple α = (head(α), pre(α), eff(α), cost(α)) or α = (head(α), pre(α), eff(α)).

The tuple α elements are as follows:

• head(α) is a syntactic expression of the form act(z1, z2, . . . , zk), where act is a symbol

called the action name, and z1, z2, . . . , zk are variables called parameters. The

parameters must include all of the variables (here we mean ordinary variables, not

state variables) that appear anywhere in pre(α) and eff(α). Each parameter zi has

a range of possible values, Range(zi) ⊆ B.

• pre(α) = {p1, . . . , pm} is a set of preconditions, each of which is a literal.

• eff(α) = {e1, . . . , en} is a set of effects, each of which is an expression of the form

sv(t1, . . . , tj)← t0
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where sv(t1, . . . , tj) is the effect’s target, and t0 is the value to be assigned. No

target can appear in eff(α) more than once.

• cost(α) is a number c > 0 denoting the cost of applying the action. If it is omitted,

then the default is cost(α) = 1.

Action templates can also be written in another format:

act(z1, z2, . . . , zk)

pre: p1, . . . , pm

eff: e1, . . . , en

cost: c

Now, we can define an action using Definition 5.

Definition 6 A state-variable action is a ground instance of an action template

α that satisfies the following requirements: all rigid-relation literals in pre(a) must

be true in R, and no target can appear more than once in eff(a). If a is an action

and a state s satisfies pre(a), then a is applicable in s, and the predicted outcome of

applying it is the state

γ(s, a) = {(x,w) | eff(a) contains the effect x← w}

∪ {(x,w) ∈ s | xis not the target of any effect in eff(a)}.

If a isn’t applicable in s, then γ(s, a) is undefined.

Thus, if a is applicable in s, then

(γ(s, a))(x) =

w, if eff(a) contains an effect x← w,

s(x), otherwise
(2.1)

The classical planning domain definition is complete. The following important defi-

nition in AP is the plan definition, which is a solution to a planning problem. But to

understand a planning problem, we first need some other definitions.
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Definition 7 Let B, R, X, and S be the same as defined in Definition 5. Let A

be a set of action templates such that for every α ∈ A, every parameter’s range is a

subset of B, and let A = {all state-variable actions that are instances of members of

A}. Finally, let γ be as in Equation 2.1. Then Σ = (S,A, γ, cost) is a state-variable

planning domain.

Definition 7 gives us the scope of a planning problem through the domain definition. In

the sequence, a more formal definition of a plan is given. The plan and its characteristics

become easy to define after defining actions.

Definition 8 A plan is a finite sequence of actions

π = ⟨a1, . . . , an⟩

The plan’s length is |π| = n, and its cost is the sum of the action costs

cost(π) =
n∑

i=1

cost(ai)

As a special case, the empty plan ⟨⟩ contains no actions. Its length and cost are 0.

With Definitions 8, we can define the applicability of a plan in a state.

Definition 9 A plan π = ⟨a1, . . . , an⟩ is applicable in a state s0 if there are states

s1, . . . , sn such that γ(si − 1, ai) = si for i = 1, . . . , n. In this case, we define

γ(s0, π) = sn

As a special case, the empty plan ⟨⟩ is applicable in every state s, with γ(s, ⟨⟩) = s.

Lastly, we can formally define a state-variable planning problem.

Definition 10 A state-variable planning problem is a triple P = (Σ, s0, g), where Σ

is a state-variable planning domain, s0 is a state called the initial state, and g is a set

of ground literals called the goal. A solution for P is any plan π = ⟨a1, . . . , an⟩ such
that the state γ(s0, π) satisfies g. Alternatively, one may write P = (Σ, s0, Sg), where

Sg is a set of goal states, and a solution for P is any plan π such that γ(s0, π) ∈ Sg.

With the definitions of planning domain and problem, we now need an algorithm that

can find plans to solve a planning problem.
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A simple algorithm that satisfies a planning problem is presented in Listing 2.1. The

idea behind the algorithm is that you start with an empty plan π and the current state

s as the initial state s0 and check if s satisfies g. If it does, then return π as the plan. If

not, you find all possible action A that can be applied to the current state. If there are

none, then there is no possible plan. You choose nondeterministically an action a from A

and apply that action to the current state, concatenate the action to π, and check again

if s satisfies g.

Listing 2.1: Algorithm Forward State-Space Search.

Forward−Search (Σ, s0, g)

s ← s0; π ← ⟨⟩
loop

if s satisfies g, then return π

A’ ← { a ∈ A | a is applicable in s }
if A’ = ∅, then return failure

nondeterministically choose a ∈ A’ (i)

s ← γ(s,a); π ← π.a

Some other common search algorithms include Breadth-First Search, Depth-First Search,

Hill Climbing, Uniform-Cost Search, A⋆, Depth-First Branch and Bound, Greedy Best-

First Search and Iterative Deepening.

After defining the AP basis, follow other related concepts. A Hierarchical Task Net-

work (HTN) is a way of structuring dependency of actions hierarchically. Instead of

always using atomic actions, you can describe them more abstractly as methods, which

work like a template of sets of actions. Figure 2.1 illustrates the method respond to user

requests decomposed to more concrete methods as bring o7 to room2 (bring the seventh

object to room 2), go to hallway, move to door, open door, until reach very low-level

actions, like identify type of door, move close to knob, grasp knob, and so on.

Planning with this representation is similar to planning with the domain and problem

as in Definitions 7 and 10, respectively. But instead of using a sequence of actions to

represent the plan, you can have a partially or totally ordered set of tasks and actions.

Methods can have different formal definitions depending on the automated planner chosen.

An informal view of how they work is a list of possible simple methods or actions that

can be replaced by the complex method.

Listing 2.2 presents the algorithm used in IPyHOP to expand the methods’ list until

it finds a suitable decomposition tree. The idea behind the algorithm is that it receives

the current state s and a decomposition tree with a complex task. The algorithm verifies

all nodes looking for a way to decompose that node if there is not an action that can be

replaced directly by it. It only finishes when all nodes are expanded into other methods,

and all leaves of the tree are actions.
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Figure 2.1: Deliberative action with multiple levels of abstraction. Source: Ghallab et al.
(2016).

The IPyHOP algorithm starts receiving a current state s and a decomposition tree w.

It creates a variable p with w’s root. Then, a loop begins where it returns w if all the tasks

in w have been expanded. If not, it creates u, a variable that has the first un-expanded

node of w. If u has been visited already keeps its state in s. If not, define its state as the

current state. It then marks the node u as visited. It extracts the task from the node,

and if it matches one of the possible operators and e applies to s, then a new state s is

produced by applying the operator o to s and the node u is marked as visited. If it is

not applicable, then it searches for all methods that match the task. If a method has not

been tried, and it is applicable in s, then the node u is marked as expanded, the method

children as installed as children of the node and it exists in the loop. Last, the algorithm

verifies if u hasn’t been expanded, if that is the case, it backtracks the expanded nodes.

After looking at planning definitions, we can understand the existing problems in AP.

Ghallab et al. (2016) states that several restrictions exist in classical planning:

• finite and static environment;

• no explicit time and no concurrency;

• determinism and no uncertainty.

13



Listing 2.2: IPyHOP’s HTN pseudocode. Source: Bansod et al. (2022)

IPyHOP(current state s, decomposition tree w):

p = w’s root

loop

if all tasks in w have been expanded then return w

u = the first un−expanded node of w

if u has been visited then

s = state(u)

else state(u) = s

mark u as visited

t = task(u)

if t matches an operator o then

if o is applicable in s then

s = the state produced by applying o to s

mark u as expanded

else

for each method m that matches t

if m hasn’t been already tried for t

if m is applicable in s then

mark u as expanded

install m’s subtasks as children of u

exit the for loop

if u hasn’t been expanded then

backtrack(w, u)

backtrack(w, u):

v ← non−primitive task node expanded before u

un−expand all nodes expanded after and including v

Also, acting (when an agent executes the plan) is as important as planning. Real

environments seldom will satisfy all assumptions defined in classical planning, and because

of that, some problems may arise at runtime:

• execution failures;

• unexpected events;

• incorrect information;

• partial information.

There are some ways that the agent can fix those problems. Agents can keep planning

at every process step or replan when necessary. Ghallab et al. (2016) presents some

algorithms to solve those problems:

• run-lookahead - replanning before every action to ensure that we’ll always have the

best plan;

• run-lazy-lookahead - only replans if a problem is detected;

• run-concurrent-lookahead - acts and replans at the same time.
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2.2 Multi-Agent System

An agent is a computational entity capable of performing an independent action on

behalf of its users or owners (Wooldridge, 2009). For Russell and Norvig (2010), agents

need to perceive the environment in which they are, analyze it and be able to act on it.

MAS are systems made of several agents capable of interacting with each other. Thus,

intelligent agents can have the following characteristics:

• reactivity - perceive and react to changes that occur in the environment to satisfy

goals;

• proactivity - taking the initiative to achieve goals;

• social skill - interact with other agents to satisfy individual or social goals.

Based on these characteristics and what Agent-Oriented Software Engineering de-

fines (Ciancarini et al., 2001; Wooldridge, 2009), the following properties are needed to

build agents:

• autonomy - the ability to act independently without direct intervention from humans

or other agents (Bellifemine et al., 2001). It is an inherent property of agents that

implies a more robust software;

• deliberativeness - the ability of an agent to make decisions considering information

from their environment, as well as information about previous experiences;

• reactivity - the ability of agents to perceive their environment and respond to ex-

ternal stimuli;

• organization - establishment of a cohesive behavior for a group of agents, where the

behavior of each one is restricted by a set of social norms (Dignum and Dignum,

2001);

• socialization - the ability to cooperate and coordinate their activities with other

agents in the environment. Agents can communicate their beliefs, goals, and plans

with each other;

• interaction - the ability to communicate with the environment and other agents.

According to Bellifemine et al. (2001), communication is one of the key components

of MAS, since to achieve a goal, agents often need to be able to communicate with

users, resources, or other agents.

However, the agent paradigm presents challenges and obstacles to balance between

proactive and reactive behavior. Agents need to interact continuously with the environ-

ment to pursue their goals. This balance occurs by making the decision-making process
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sensitive to the context. That results in a significant degree of unpredictability about

which goals the agent will pursue, under what circumstances, and what methods will be

used. The design of how agents reason, act, and interact with each other and the en-

vironment is essential for the development of MAS so they can meet the objectives and

expectations of users.

Agent’s characteristics can be simple or very complex depending on the system. There

can be simple agents that work in a reactive way, where they only perceive and act. We

can also have agents that need to store the state of the past environment, acting depending

on past actions and environment states, a stateful agent. There are goal-oriented agents,

where agent goals are defined, bringing the need for planning. An even more complex

agent implements what it should do, employing metrics and utility functions to find the

best way to achieve goals. And the most complex agents with learning capabilities apply

machine learning techniques to take action.

Therefore, agents are software or hardware entities that can be simple or complex.

Agents must be able to interact with the environment. There are techniques to model

agents, but we need to define the agents’ perceptions and actions. For that, the en-

vironment characteristics have to be defined for the agent’s characterization. Ways to

measure its performance are also important. The environment characterization involves

defining whether it is accessible, deterministic or stochastic, sequential or episodic, static

or dynamic, discrete or continuous, single-agent or multi-agent.

Russell and Norvig (2010) defines an agent model using a pre-project called PEAS

(Performance, Environment, Actions, Sensors). The authors declare this set of items as

the agent’s task environment. Performance is defined according to the objective that one

has for the agent. If it is, for example, a vacuum cleaner to clean the room, regardless of

the cost, its performance is the duration of time it takes to clean. However, if you want

to do this cleaning at the lowest cost, then a model accounting for the energy used is

necessary.

In addition to defining what each agent will perform, we need to define how these

agents interact with each other, and whether there is any hierarchy between them. MAS

represents a powerful distributed computing model, enabling agents to cooperate and

compete and to exchange semantic contexts to more automatically and accurately inter-

pret the content. For that, an interaction protocol must be defined (Poslad, 2007). Since

agents can interact with each other using message exchanges, the design project of agents

must define the performatives available in a language for communication between agents,

called Agent Communication Language (ACL). The communication and interaction pro-

tocols are defined in the MAS architecture, where the relationships between the objectives

of our agents are detailed.
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Goal-Oriented Modeling

In complement to the pre-project of agents, one might use a Goal-Oriented Modeling

(GOM) approach to define goal-oriented agents. The study of goal models in require-

ments is called Goal-Oriented Requirements Engineering (GORE) Horkoff et al. (2019).

There are several methodologies to carry out these models; one that addresses all phases of

software development, from initial requirements to implementation, is the Tropos method-

ology (Giunchiglia et al., 2002).

GOM focuses on the goals that must be achieved rather than the actions taken. It

can be part of Software Engineering (SE) both to define the relationships between the

system’s objectives (van Lamsweerde, 2009) and to define the behavior of an intelligent

and autonomous agent within an agent-oriented approach (Wooldridge, 2009). For SE,

GOM allows the analysis of the contexts and scenarios in which the system will be inserted,

trying to ensure that the requirements are accurate and correct.

Within the MAS, the Tropos goal modeling is important to define agents’ actions and

goals, determining their behavior. There are several notations for modeling the goals of a

system. The i* (Yu, 2009), GRL (Liu and Yu, 2004), KAOS (Mylopoulos et al., 1999) and

even through UML use case diagrams (Booch et al., 2005). However, Tropos encompasses

a goal modeling notation based on i*, focusing on the development of MAS that covers

all stages of software development, from requirements gathering to implementation.

The Tropos modeling methodology provides constructs to analyze objectives hierar-

chically, in a top-down approach, and discover requirements and alternative sets of tasks

that the system can use to perform the functionalities necessary to satisfy the objec-

tives. The models are built to capture the intentions of the interested parties (i.e., users,

owners) adopting the Intentional Strategic Actor Relationships (i* or i STAR) modeling

framework (Yu, 1996). With Tropos, we may represent the concepts of actors (agents,

positions, or roles), objectives (quantitative and qualitative), tasks or plans, resources,

and their interdependencies through its notation. This representation is available in tools

associated with Tropos. Figure 2.2 illustrate Tropos elements using the piStar pluggable

online tool for goal modeling (Pimentel and Castro, 2018).

A MAS project using the Tropos methodology includes five stages: early requirements,

final requirements, architectural design, detailed design, and implementation.

• early requirements - we seek to understand the problem by understanding the or-

ganizational context. During this phase, requirements engineers model stakeholders

as social actors who depend on each other with intentions to achieve goals, perform

tasks, and provide resources. (Liu and Yu, 2004).
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Figure 2.2: piStar tool notation for GOM. Source: Pimentel and Castro (2018).

• final requirements - concerns the previous phase refinement. Components should be

verbose to present the reasons behind their dependencies. The tasks and objectives

need to be reviewed, analyzed, and detailed through decomposition links and means-

ends;

• architectural design - seeks to define the system architecture, modeling its structure

in terms of subsystems interconnected through data control flows. Tropos represent

subsystems as actors and interconnections as dependencies between actors;

• detailed design - this phase involves specific development platforms and depends on

the characteristics of the adopted programming language. Thus, this step is usually

strictly related to implementation choices. To document the project, one can include

the specification of the structure of communication and behavior of agents adopting

UML, using class, sequence, and communication diagrams;

• implementation - this phase involves the implementation of the designed system

using a programming language.

2.3 Multi-Agent Planning

Ghallab et al. (2004) views MAP as planning in domains where several agents plan

and act together and have to share resources, activities, and goals. It is considered a major

issue in the MAS community and has many applications in areas like MRS, cooperative

software distributed over the internet, logistics, and games, including:

• cooperative planning - trying to achieve a common goal with multiple agents;

• competitive planning - agents can have conflicting goals;

• coordinated planning - agents have their local plans that together create a bigger

goal;
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• communication - how to communicate within all agents;

• uncertainty - how to handle uncertainties in multi-agent;

• resource allocation - limited resources like time or physical resources.

To understand how AP can be applied in MAS, Brafman and Domshlak (2008) expands

the formal single-agent definition of a task to comprise multi-agent with a MAP task.

Definition 11 A MAP task is defined as a 5-tuple T = ⟨AG,P , {Ai}ni=1,L,G⟩,
where:

• AG is a finite set of n planning entities or agents;

• P is a finite set of atoms or prepositions;

• Ai is the finite set of planning actions of the agent i ∈ AG. The union of all

planning actions is T =
⋃
∀i∈AG Ai;

• L ⊆ P is the initial state of T ;

• G ⊆ P is the common goal of T .

In Definition 11, an action can be the same as defined in Definition 6. Most of the

other definitions follow the same idea of single-agent.

Some main aspects of cooperative MAP solution are defined in Torreño et al. (2017),

as follows.

Agent distribution

Agents can have two different roles: execution agents and planning agents. Four

distinct categories arise when the number of execution and planning agents is analyzed.

Figure 2.3 presents those categories. Single-agent planning is when one planning agent

plans for one execution agent (a). Factored planning occurs when n planning agents

plan for one execution agent (b). Planning for multiple agents is when one planning

agent plans for n execution agents (c). And last, planning by multiple agents is when n

planning agents plan for n execution agents (d).
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Figure 2.3: Distribution roles for execution and planning agents.

Computational process

Discloses where and how the system is executed. It is centralized if all agents are in

the same machine or distributed/agent-based when agents are in different machines. Cen-

tralized implementation can happen when there is no need for external communication or

because a robust and single-agent planning solution is used. Distributed implementations

are made using MAS.

Plan synthesis schemes

Another aspect of a MAP solution is how the final plan is synthesized. Since there are

tasks that have dependencies between agents and resources, coordination is needed. There

are two different synthesis schemes: unthreaded and interleaved. Unthreaded planning

and coordination are sequential and viewed as distinct black boxes. The agents plan, and

there is some form of coordination before (pre-planning coordination), after (post-planning

coordination), or sequentially (iterative response planning). In unthreaded schemes, the

agents do not communicate with each other while planning. It is suitable for tasks that

have goals met by only one agent. Interleaved planning and coordination define that both

steps happen interleaved.

Communication mechanisms

Communication between agents is as essential in MAP as it is in MAS. Internal com-

munication happens when centralized implementation is made. While external communi-

cation occurs in MAS using network sockets or a messaging broker.

Heuristic Search

Heuristic searches can happen locally, where the planning agents can only use limited

information about the task to calculate the cost. In global heuristics, the agent has all
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the available information about the task, but other problems arise, like communication

bottlenecks and privacy.

Privacy

Privacy is the preservation of sensitive information of agents. A MAP solution can have

private information, some form of information sharing, or practical privacy guarantees like

no privacy, weak privacy, object cardinality privacy, and strong privacy.

2.4 Multi-Robot System

Robotics is an important area that has exponentially increased over the years due to

technological advances. Many studies in different areas have been conducted that combine

robotics with AI, but few focus on deliberation (Ingrand and Ghallab, 2017b).

Considering the diversity of environments, tasks, and interactions, the ability of a

robot to act autonomously is becoming essential, where deliberation is needed. Some

important concepts are defined to understand MRS:

• action - the process that can change the robot’s state or the environment;

• command - the lowest level in the hierarchy of actions;

• robot’s platform - collections of devices and sensory-motor functions that integrate

sensing and closed-loop actions;

• plan - an organized collection of actions synthesized by a planner;

• policy - universal plan;

• skill - an organized collection of actions retrieved from a library of skills;

• task - the specification of a mission;

• event - an occurrence that changes the robot’s state or the environment.

.

Deliberation Function

Based on features like environment variability, task diversity, semantics, dynamics,

partial observability, cost and criticality, interaction and cooperation, and level of auton-

omy, Ingrand and Ghallab (2017b) categorizes robotic applications as:

• manufacturing robots;
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• industrial mobile robots;

• exploration and rescue robots;

• service and domestic robots;

• autonomous spacecraft;

• autonomous aerial vehicles;

• autonomous cars.

.

The service and domestic robots category, used in this work, is defined as having a high

level of environment variability since the environment they act in is rich and very diverse

and has a high level of task diversity. A high level of semantics is also needed to describe

the tasks and environments. It is not very dynamic and is highly observable. The cost

and criticality are considered low, while the need for interaction and cooperation is high.

Their level of autonomy is considered medium to high. Ingrand and Ghallab (2017b) also

defines the deliberation functions used by robots to perform AP:

• planning - prediction and search combined to find a path in an action space using

prediction models of the environment and the feasibility of the actions;

• action - turning actions into robot commands and reacting to events;

• observing - detecting and recognizing the state of the environment as well as events,

actions, and plans relevant to the current task;

• monitoring - comparing the plan prediction with the environment observation;

• goal reasoning - monitoring at the mission level;

• learning - acquiring, adapting, and improving through models needed for delibera-

tion.

Figure 2.4 presents the functions and how they relate to the robot’s platform and the

environment. In the middle of the figure, there are the models, data, and knowledge bases

the robot has, and all six functions connect to them (learning, goal reasoning, planning,

acting, observing, and monitoring). They are updated by the user through missions,

criteria, and goals. While learning, goal reasoning, and planning only need to interact

with them, action, observing, and monitoring need the robot’s platform to interact with

the environment.
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Figure 2.4: Schematic representation of deliberation functions. Source: Ingrand and Ghal-
lab (2017a).

Figure 2.5 presents a schematic of how, after defining a task, i.e., a mission, the robot

uses its planning function to transform that task into a sequence of actions. After, the

acting function maps the actions to the actual robots’ skills, which will be translated into

commands the robot’s platform can execute.

Figure 2.5: From the mission, the actions, skills, and commands. Source: Ingrand and
Ghallab (2017a).

Complex Task Workflow

Figure 1.2 of Rizk et al. (2019) presents the components in the workflow to auto-

mate complex tasks, including task decomposition, coalition formation, task allocation,

perception, and MAS planning and control, as described in the sequence.
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• Task decomposition is the process where complex tasks are divided into primitive

sub-tasks. Many MRSs need a human expert to decompose complex tasks. However,

there are three strategies to achieve the decomposition automatically. Decompose-

then-allocate focuses on decomposing the complex task first and then allocating the

sub-tasks list to the agents. Allocate-then-decompose allocates a list of tasks to the

available agents, and the agents try to decompose their tasks into sub-tasks. Last,

simultaneous decomposition and allocation create a solution based on auctioning

and task trees.

• Coalition formation - some tasks need to be performed by more than one robot.

Creating a group of robots and allocating them to such tasks indicates efficient

results. Coalition or team formation is the process of creating such groups.

• Task allocation is the process where the MRS tries to find an optimal or near-optimal

mapping between the agents/group of agents and tasks. Some common algorithms

use auctioning and market-based solutions.

• Perception allows the MRS to model their environment from the information re-

ceived from the sensors and obtain important knowledge needed to successfully

achieve their goal.

• MAS planning and control is the main module of MAS that needs decision-making.

After the complex task is determined and decomposed into sub-tasks, the planner

creates a sequence of actions that will be performed to complete the sub-tasks.

Architecture Example

A recently developed MRS architecture that relates workflow processes of Figure 1.2

is presented in Figure 2.6 with the MissionControl for the coordination of heterogeneous

robots (Rodrigues et al., 2022). The MissionControl architecture served as inspiration for

the definition of this work with the inclusion of planning and control processes.

The MissionControl architecture includes the design and runtime components. In the

design time, Users are responsible for creating a global mission plan and the System Inte-

grator creates the environment and skills descriptions and implementations. At runtime,

there are two main components, the Coordinator and the Robot.
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Figure 2.6: The MissionControl architecture (Rodrigues et al., 2022). Source: Rodrigues
et al. (2022)

The Coordinator component stores Mission and Workers Data needed to perform the

missions, including information on what the mission is, available robots, environment

state, and formed teams. With such information, the Coordinator performs the Coalition

Formation Process to find the best robot team to perform the user’s defined mission.

After the Coordinator creates the local mission plan, the robots receive the plan and

start the execution by performing actions sequentially, as defined in their Sequencing

process. The Robot’s Active Skill executes the current action using its sensors and actua-

tor devices. The Synchronization Manager module is responsible for synchronizing tasks

executed by multiple robots.

The MissionControl architecture executes a decomposed mission that already had

the coalition formed and task allocated by the MutRoSe framework (Gil et al., 2023).

Thus, MissionControl does not include a process definition for the task (re-)allocation

and planning and control processes as presented in Figure 1.2.

2.5 Robot Operating System

ROS is a framework to develop robotics software adopted by the community. It became

a standardized way of implementing robots, presenting two versions: ROS and ROS2. The

latter has compatibility with the first. In this work, we adopt ROS2, considered the world

standard in multi-robot operational systems Macenski et al. (2022).

ROS2 is based on the Data Distribution Service (DDS), a communication standard

used in critical infrastructure. ROS2 emerged to solve problems that ROS had when

implementing modern robotic applications. Such problems refer to data delivery over

lossy links, a single point of failure, and lacking built-in mechanisms to provide security.
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One important difference between both is the network architecture. While ROS has a

centralized server that controls everything that passes, ROS2 uses a peer-to-peer discovery

protocol. That difference makes ROS2 much more friendly to MAS applications.

There are a few concepts to understand how ROS works: nodes and the communication

protocols between them. When we talk about a system that uses ROS (ROS System),

the main component is the ROS Graph, a network of ROS nodes working together and

connected by the messages they exchange. In that graph, we have our nodes (ROS

Entity), messages (ROS data type used between communication), topics (work-like rooms

the nodes can enter to communicate with each other by a shared interest), and discovery

(the process by which nodes find other nodes).

We call each node a participant in the ROS Graph. To ROS, the basis of the system

is a node. They should be responsible for a single modular purpose. The architecture is

designed to be as modular as possible. The idea is that many components forming your

robots can be divided into nodes, and can exchanged by other nodes that could do the

same skill. They can communicate via topics or by providing and consuming services and

actions. They can have parameters and like software agents in MAS can run in the same

process, different processes, or even on distinct machines.

Their communication can happen via the topics method using a publisher-subscriber

model, where a node subscribes to a published node to exchange one-way messages to all

subscribers. In Figure 2.7, there’s a representation of that protocol, showing also two ROS

nodes. Service is another available communication method, which works as a client-server

model, where a node acts like a server and other nodes act like clients to that server. In

this two-step protocol, the client node sends a request to the server node that responds

only to the requester. Figure 2.8 illustrates the service protocol.

Figure 2.7: ROS2 topic protocol.
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Figure 2.8: ROS2 service protocol.

Figure 2.9 presents the ROS2 action method that works in three steps. The first one

uses the service method to define an action goal. The client sends a request, and the

server responds to it. While the action is performed and the node is trying to achieve

the goal, it uses a topic method to convey the progress. When it finishes, it uses another

service method to inform the action result.

Figure 2.9: ROS2 action protocol.

In this chapter, we presented concepts related to AP, MAS, MAP, MRS, ROS, and

ROS2. In Chapter 3 these concepts are used in the state-of-the-art approaches related to

MRS, MAs, and MAP.
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Chapter 3

Literature Review

In this chapter, we present a state-of-art literature review. A systematic literature

review was carried out using the protocol presented by Kitchenham et al. (2009) with the

Parsifal tool (Freitas, 2014). The review protocol includes three main phases: planning,

conducting, and reporting. Section 3.1 describes the protocol used in the systematic

literature review with the three phases, detailing the PlanSys2, a state-of-the-art planning

framework handled as a comparative study. Finally, Section 3.2 presents an extension of

the literature review focusing on MRS, AP, and MAS/MAP works.

3.1 Systematic Literature Review

The review goal is to present state-of-the-art works related to AP and MRS. The

following PICOC (Population, Intervention, Comparison, Outcome, Context) was defined:

• population - automated planning, multi-robot systems;

• intervention - models, solutions, frameworks, architectures, tools;

• comparison - theoretical models, implemented framework, implemented tools, im-

plemented architecture, validated solutions, experimental results;

• outcome - the quality assessment checklist has to fulfill at least 4 points (40%),

where yes is one point, partially is a half point, and no is zero;

• context - research conducted in academia, research results also applied to industry.

With the review goal and PICOC definitions, the following research question was

formulated:
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How a multi-robot system approach associated with automated planning can
help in the execution of action plans in dynamic environments?

Figure 3.1 presents the systematic literature review method workflow. The first step

represents the search parameters definition. In the second step, we used the parameters

created in the first step to search and import the studies using four digital libraries. The

third step encompasses the study selection, excluding the duplicated papers and abstract

reading. The fourth step is the quality assessment with the reading of the studies. Finally,

a snowballing process was conducted to improve the results with well-related work. The

workflow steps are detailed in the sequence, considering the three main phases of the

systematic review protocol.

Figure 3.1: The adopted systematic literature review method workflow.

Planning

In the first step, we had to define the search parameters. Analyzing the PICOC, we

note the keywords automated planning and multi-robot systems or multiple robotic sys-

tems. Combining those, we defined as search string: ‘automated planning’ AND (‘multi-

robot systems’ OR ‘multiple robotic systems’). The review period is from 2018 to 2022.

The used digital library databases include: ACM Digital Library,1 IEEEXplore,2 ISI Web

of Science,3 and Scopus.4 The inclusion criteria were automated systems and multi-robot

system studies. The exclusion criteria were surveys and studies before 2018. Table 3.1

overviews the systematic review characteristics defined during the planning step.

1https://dl.acm.org/
2https://ieeexplore.ieee.org/Xplore/
3https://www.isiknowledge.com/
4https://www.scopus.com
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Table 3.1: Characteristics of the systematic review protocol carried out.

Review characteristic Description

Publication period 2018–2022
Publication type conference and journal articles (peer-reviewed)
Publication language English
Literature review tool Parsifal
Digital library ACM Digital Library, IEEEXplore, ISI Web of Science, Scopus
Search string automated planning AND (multi-robot system OR multiple robotic

systems)

For the quality assessment checklist, ten questions were defined, as follows. The work

selection must have four points of ten (40%), where yes is one point, partially is a half

point, and no is zero.

1. Is a multi-robot system?

2. Has heterogeneous robots?

3. Has automated planning?

4. Has a replan or repair process?

5. Proposes an architecture?

6. Was it validated in a simulated environment?

7. Was it validated in a real environment?

8. Is the code available?

9. Does the model/framework take into account human-robot interaction?

10. Has temporal planning?

Conducting

In the second step, we explore the bases using the search string to extract works. As a

result, four papers were found in the ACM Digital Library, nine in the IEEEXplore, two

in the ISI Web of Science, and six from Scopus. In total, there were 21 papers.

Five duplicate papers were removed, leaving 16 papers during the third step. After

the abstract reading, six papers were removed, leaving ten at the end of this step.

During the quality assessment in the fourth step, ten papers were read, resulting in

three papers being rejected and seven accepted. Table 3.2 presents the outcome of the

read papers using the quality assessment checklist with ten questions (numbered in the

columns) as described in the Planning step.
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Table 3.2: Overview of papers computing the quality assessment checklist.

Reference 1 2 3 4 5 6 7 8 9 10 Score

Lesire et al. (2022) 1 1 1 1 1 1 1 1 0.5 8.5
Nir and Karpas (2019) 1 0.5 1 1 0.5 1 5
Miloradovic et al. (2021) 1 1 0.5 1 1 1 5.5
Nägele et al. (2020) 1 1 1 3
Garćıa et al. (2019) 1 0.5 1 2.5
González et al. (2020) 1 1 1 1 1 1 1 7
Carreno et al. (2022) 1 0.5 1 0.5 0.5 1 0.5 1 6
Carreno et al. (2020) 1 0.5 1 0.5 0.5 1 0.5 1 6
Sukkerd et al. (2018) 1 1 0.5 2.5
Bischoff et al. (2021) 1 1 1 0.5 0.5 1 1 6

Then, a snowballing process took place with six new papers. After reading the six

papers only two were accepted. At the end of the systematic literature review, we had

nine papers from 21 studies extracted from digital libraries from 2018 to 2022.

Figure 3.2 displays a pie chart with the percentage of selected papers per base, showing

that most articles come from the IEEE Digital database. Figure 3.3 includes selected

works per year, exhibiting the growing number of articles in the area. Figure 3.4 presents

a bar chart of selected and accepted papers per digital base.

Figure 3.2: Selected papers percentage per base.

Figure 3.3: Selected papers per year.
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Figure 3.4: Selected and accepted papers per base.

Reporting

In this section, we report the works resulting from the systematic literature review.

The authors in Carreno et al. (2022) present the Temporal Planning and Multi-Agent

Coordination under Uncertainty (TPMACU) framework. TPMACU addresses the com-

putationally expensive and impractical online planning and execution, providing a solu-

tion to problems that require long-term robot operability using temporal planning and

reinforcement learning. TPMACU was validated using an offshore mission presented pre-

viously in the group’s work Carreno et al. (2020). The work in Lesire et al. (2022) shows

a framework to design architectural solutions for hierarchical reasoning to help develop

and customize autonomous robotic systems.

Related to automated planning associated with MRS, the work of Miloradovic et al.

(2021) shows how to cast a mission for heterogeneous robots as an extension of the trav-

eling salesperson problem, proposing mixed-integer linear programming within a genetic

mission planner with a local plan refinement algorithm. The work of Bischoff et al. (2021)

presents an optimization framework based on a genetic algorithm for heterogeneous multi-

robot task allocation problems with cooperation and precedence constraints. The authors

in Nägele et al. (2020) have a modular two-layer planning approach for multi-robot as-

sembly, while Wohlrab et al. (2022) present a solution for the dynamic adaptation of

quality attributes for the dynamic environment using ad-hoc planning techniques based

on software requirements.

Integrating automated planning to MRS, the authors in González et al. (2020) present

a layered architecture with deliberation modules such as robot actions, reactor, and

scheduling for the logistics league simulation. The work of Cashmore et al. (2015) has

an architecture for integrating task planning with ROS. The work of Mart́ın et al. (2021)

implements a task planning framework for ROS2.
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Authors in Moreira and Ralha (2021b) deal with multi-agent plan recovery strategies

in dynamic environments (i.e., replanning, repairing), presenting a three-phase process

with a benchmark simulation tool and a statistical evaluation method to evidence that

agent autonomy is more effective in performing local repair with loosely coupled envi-

ronments (e.g., satellite from Komenda et al. (2016)). The work of Moreira and Ralha

(2021a) evaluates centralized and decentralized strategies to affect decision-making in in-

tralogistics problems with a technique to identify the most suitable one. The authors

investigated how strongly connected homogeneous and heterogeneous mobile robots are

according to their nature, conditions, and action execution effects. Results show that

the robot’s nature influences the system’s performance more than the robot’s coupling

level. A domain-independent statistical method to evaluate plan recovery strategies in

dynamic environments demonstrates that repair presents faster results and replans better

final plans as length correlates to failure occurrence (Moreira and Ralha, 2022b).

Table 3.3 presents an outline of the described works published after 2020 achieving

at least 40% of quality assessment. Two papers were added through snowballing Mart́ın

et al. (2021); Moreira and Ralha (2021a). Note there are two among ten covering MRS

architecture. The architecture of González et al. (2020) focuses on deliberation layers

while Mart́ın et al. (2021) is more similar to our architecture with nodes implementing

problem domain, actions, and applications, but without a coordinator to monitor the

robot’s tasks to form robot teams to replan and recover. Thus, MuRoSA-Plan imple-

ments MRS for different domain missions that can use other planners. Note that our

architecture is the only one that embodies all characteristics with automated planning

and plan recovery directed to dynamic environments.

Table 3.3: The systematic literature review works outline.

Reference Automated

Planning

Plan

Recovery

Dynamic

Environment

MRS

Architecture

Carreno et al. (2022) ✓ ✓ ✓

Lesire et al. (2022) ✓ ✓

Wohlrab et al. (2022) ✓ ✓

Miloradovic et al. (2021) ✓

Bischoff et al. (2021) ✓

Mart́ın et al. (2021) ✓ ✓

Moreira and Ralha (2021a) ✓ ✓ ✓

González et al. (2020) ✓ ✓

Carreno et al. (2020) ✓

MuRoSA-Plan ✓ ✓ ✓ ✓

33



PlanSys2

The planning system framework for ROS2 (PlanSys2) proposed by Mart́ın et al. (2021)

will be presented with more details since our comparative study uses it (Chapter 5).

According to the authors, PlanSys2 contributions to planning systems include the plans

generated by the planning algorithms, which are transformed into behavior trees using an

algorithm presented by the authors in Rico et al. (2021).

PlanSys2 has evolved from an architecture based on the Behavior-based Iterative Com-

ponent Architecture (BICA) presented in Mart́ın et al. (2020) as seen in Figure 3.5.5 The

component-based approach of BICA originates back to a behavior-based project originally

conceived for easy design behaviors for the Aibo Robotic Dog used in the RoboCup Soccer

competition.

Figure 3.5: The BICA architecture.

Figure 3.6 presents the PlanSys2 framework with the Executor, Planner, Domain

Expert, and Problem Expert ROS2 nodes. PlanSys2 works with a Client Application,

defining Actions 1,...,N as ROS2 nodes using the classes defined in the framework. In

this class, a do work function is responsible for the task execution.

5BICA early version, named MBA, where behaviors were the basic blocks of the architecture, available
in https://robotica.unileon.es/vmo/pubs/waf07.pdf.
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Figure 3.6: The PlanSys2 framework.

There are three PlanSys2 client wrappers, Executor Client, Domain Expert Client,

and Problem Expert Client, to define an Application node. A Planner Client was not

represented inside the Client Application but can also be defined. The Domain Expert

Client defines the domain objects and actions in a Planning Domain Definition Language

(PDDL) file that can be read or input via terminal ROS2 node. The Problem Expert

Client is responsible for storing the environment state and can also be input via terminal

or read in a PDDL file. To help with the interpretation of the input, both Domain and

Problem Experts have C++ libs.

With the information inside the Domain Expert Client and the Problem Expert Client,

the Planner Client can create a plan executed by the Executor Client. This execution can

happen via terminal, which most of PlanSys2 documentation depicts, but can also have

a ROS2 node Controller to control the execution.

3.2 Review Extension

The systematic literature review used ‘automated planning’ AND (‘multi-robot sys-

tems’ OR ‘multiple robotic systems’) as keywords and the publication period of 2018 to

2022. Thus, some articles using MAS, MAP, and MRS were left behind. As important

surveys are not included Ingrand and Ghallab (2017b); Rizk et al. (2019); Torreño et al.

(2017).
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Articles referring to ’planning’ or ’robotics’ from the International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2023),6 relevant event in MAS were

read and cited first in this section. Some works from authors well-referred in MAS and

AP were included in the sequence of this section.

Some works, like Zhang (2023), mitigate the gap in task-planning robots by creating a

novel language formation for robust coordination to increase global performance. In Ver-

maelen (2023), the authors extend constraint-based approaches for generating policies

for reaching a system’s goals in uncertain environments by supporting non-determinist

outcomes.

Some MAP works study online task allocation formation to allocate new agents that

arrive in runtime. In Cohen and Agmon (2023) presents the Online Coalitional Skill For-

mation (OCSF), a new framework to handle online task allocation via coalition formation.

It proposes different approaches depending on the knowledge level of the distribution of

the arriving agents during the system execution. When unknown, it uses a greedy and

adaptive solution. While in known distributions, it uses a novel correlation to the Con-

strained Markov Decision Process.

Miyashita et al. (2023) proposes a distributed planning method with asynchronous

execution for multi-agent pickup and delivery problems. This work takes into account

that most agents do not act ideally, considering occasional delays in activities and more

flexible environment endpoints. Their experiments show that the agents can still perform

as expected, even by relaxing some unfeasible conditions. Che et al. (2023) designs a

coordinated Monte-Carlo Tree Search method for MAP.

Lamanna et al. (2021) proposes an algorithm for learning action models online and

incrementally during the execution of plans. Cardoso and Bordini (2017) extends HTN

formalism to include MAS. The work allows the representation of problems and domains

of MAS. In Dix et al. (2003), the authors describe IMPACT, a formalism that integrates

the Simple Hierarchical Ordered Planner (SHOP) (Nau et al., 1999) into a multi-agent

environment.

A recent work presenting a MRS framework (Gil et al., 2023) introduces MutRoSe,

which simplifies and automates the allocating process of concrete tasks to robots. MutRoSe

allows the definition of mission aspects in a high-level specification language with the

Contextual Runtime Goal Model (CRGM). It also decomposes the MRS mission into

task instances that can be allocated to robots. The MutRoSe automatically fulfills parts

of the MRS workflow of Figure 1.2.

The MuRoSA-Plan architecture using concepts from Chapter 2 is presented in Chap-

ter 4 and state-of-the-art approaches related to MRS, MAS, and MAP.

6https://dl.acm.org/conference/aamas
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Chapter 4

Architecture

This chapter presents aspects related to the proposed architecture. In Section 4.1,

the architecture is detailed, and Section 4.2 describes the instantiation of the architecture

using ROS2.

4.1 Detailing

The proposed architecture is inspired by the MissionControl presented in Rodrigues

et al. (2022), which coordinates missions of heterogeneous robots. MissionControl archi-

tecture’s requirements involve the mission’s decomposition into local plans to be executed

by the robots. The coordinator is responsible for receiving the mission request that con-

tains the plans assigned to robot roles. Then, it coordinates the execution by assigning

robots that fit the roles. It focuses on the execution and control of the mission. Our

architecture has similar requirements, but instead, focuses on recovering the mission’s

plan when a problem happens.

The design time components of MissionControl (environment descriptions, skill de-

scriptions, and skill implementation) were changed by the problem domain in our ar-

chitecture. The User’s definition of the mission was removed. The runtime component

Coordinator is the same as in MissionControl but with a planning module. The coali-

tion formation module was removed since an ad hoc process of group formation was used

without the need for a specific module. The Robot component is very similar, but some

simplifications on how the robots execute and actions with skills descriptions and libraries

were made.

This work’s proposed architecture includes design and runtime components as pre-

sented in Figure 4.1. The design time needs a domain expert to define the mission

requirements. The System Integrator is responsible for creating the Problem Domain ap-

plication component as the translation from the goal model (exemplified in Figure 5.11)
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to the planner syntax. This is a key part of the architecture, as the planning capabilities

of the architecture are only as strong as the formal description of the problem and the

domain. Goal reasoning functions could be added afterward to help fix problems that

arise from a poor description in this component.

The runtime Coordinator and Robot components exchange local plan and mission

properties data through messages. The definition of a communication protocol between

them is essential.

Figure 4.1: The high-level architecture.

The Coordinator is responsible for the mission’s control, including planning and plan

recovery. Its component stores Mission Data needed to perform the missions (what are

the mission, available robots, and environment state). Using the automated planner,

the environment state, and the problem domain, the Coordinator Planner module can

create a mission plan with the Planning process. After that, a planning execution cycle

starts with the Coordinator monitoring the environment for unexpected changes using

the Monitor and Sensors modules and receiving feedback messages from the robots. This

process is called Plan Recovery and it is the main focus of this work. This will be more

detailed later on in the Plan Recovery part of Section 4.1.2.

After the Local Mission plan is created, the robots receive the plan from the Coordina-

tor and start the execution by performing actions sequentially as defined in their Action

Sequencing process. The Robot Action module executes the current action using their

Sensors/Actuators devices. The Synchronization Manager module synchronizes actions

performed by multiple robots. We highlight that in the proposed architecture, the plan

is defined in runtime by the Coordinator component. In the presence of a problem, the

Coordinator replans the original plan to redistribute to the robots aiming to mitigate

MRS disruptions.
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It’s important to highlight that, even though we’ve been talking about robots so far,

there is no off-side to see Figure 4.1 with Coordinator and Robot components as intelligent

agents as defined by (Russell and Norvig, 2010; Wooldridge, 2009) in Section 2.2. Thus,

the architecture can be seen as a MAS architecture with goal-oriented agents.

4.1.1 Architectural Aspects

The main aspect of the architecture is the plan recovery process. Because of that,

many other details are not explicitly defined but are still very important. Our solution is

an MRS architecture as described by Rizk et al. (2019), including the main aspects:

Task Decomposition, Coalition Formation, and Task Allocation Since task de-

composition is the process of turning complex tasks into simpler sub-tasks, there’s a

planner module for that. Nevertheless, problem and domain specifications needed by the

planner are still a process made by a human expert.

The automated planner needs to be able to handle HTN or similar hierarchical ap-

proaches that allow the creation of sub-tasks out of complex ones. The planner uses an

ad hoc team formation of heterogeneous agents, and the automated planning process also

includes task allocation. Thus, after the definitions of the domain and problem, all three

steps are encapsulated by our planner module.

Perception Perception is one of the most important aspects of our solution and is

made by the Coordinator or Robot component sensors. It is from the perception that

the architecture can know how the actions and events affect the robots and environment

state. This process will be explained in the Execution Process (Section 4.1.2).

MAS Planning and Control Rizk et al. (2019) creates a distinction between decom-

posing the task and MAS planning. The first is planning at a higher/global level, and

the second is planning at a lower/robot level. MAP doesn’t make that distinction, but it

can apply different planning at different levels to achieve more efficient solutions (Carreno

et al., 2022). Besides being an MRS solution, our architecture uses aspects of MAP, so

it is also important to categorize it by those standards defined in Torreño et al. (2017),

which are explained in Section 2.3.

Agent Distribution Our architecture is designed for MRS, so it has multiple execution

agents. However, the architecture applies a centralized planning policy with only one

planning agent. So this architecture is characterized as planning for multiple agents

based on definitions of agent distribution in Section 2.3 (Figure 2.3).
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Computation Process Most agent-based solutions are designed to run on different

machines. Our architecture doesn’t define if it should run on one or more machines

but encourages it by using an agent-oriented model, which is suitable for decentralized

execution (Wooldridge, 2009).

Plan Synthesis Scheme Related to the MAP solution, our architecture uses an inter-

leaved planning and coordination plan synthesis scheme as defined in Section 2.3. The

Coordinator plans and coordinates the execution process of the agents at the same time.

If the Coordinator perceives a problem through its sensors or if the robot isn’t able to

complete an action and sends a message of error to the Coordinator, the architecture

returns to the planning step.

Communication Mechanisms Communication mechanisms are essential in MAS as

in MAP. In this work, the architecture instantiated with ROS2 4.2 uses a client-server

model, with external communication among robots centralized in the Coordinator, and

decentralized among the robots.

Heuristic Search The use of heuristic functions is related to the chosen planner. The

proposed architecture instantiated with ROS2 (Section 4.2) and using the IPyHOP plan-

ner Bansod et al. (2022), uses the Depth First Search algorithm with pointer manipulation

on already visited nodes in cache to enhance efficiency.

Privacy This work does not deal with agent-sensitive information as presented in Sec-

tion 2.3, but rather plan-sensitive information. Each robot accesses its local plan without

other plan information. The Coordinator has a global plan view of the mission to coor-

dinate the planning process, accessing all information from robots and the environment.

The messages exchanged between the Coordinator and robots, and between two robots

that need to synchronize an action, are only visible to the message sender and receiver,

guaranteeing private plan information exchanged.

4.1.2 Execution Process

Figure 4.2 presents the execution workflow of the proposed architecture. The first

step of the execution is the initial trigger. This is defined by the system integrator and

changes depending on the domain. The Coordinator receives an initial trigger, adapts

the initial state, defines the mission, and starts preparing to create the plan to fulfill it.

Thus, the Coordinator needs to understand, based on the problem domain, the necessary

robot types to form the team. The initial trigger can vary with each implementation.
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With the information inside the Mission Data, the Planner module creates the best

possible plan starting the Planning process. In this work, we used the IPyHOP planner

for this process Bansod et al. (2022). However, other planners can be used, but it is

important to evaluate their capabilities in advance. If the domain requires parallel ac-

tions, a planner able to create partial order plans is recommended, like Nets of Action

Hierarchies (NOAH) (Sacerdoti, 1975), System for Interactive Planning and Execution

(SIPE-2) (Wilkins, 1991), and SHOP (Nau et al., 1999). For a comparison between plan-

ners see Georgievski and Aiello (2015).

If you have temporal or resource constraints, planners that can handle them are needed.

As seen in Chapter 2, ROS uses nodes for each system component. With ROS, it’s easy

to implement different planners as nodes and create an interface. Thus, planners can be

changed depending on the problem domain.

In the sequence, the Coordinator splits the plan between the robots in the team and

sends their local mission. Each robot starts its task sequencing process to complete the

plan. While the robots are executing their tasks, the Coordinator monitors the environ-

ment for changes that can compromise the plan’s feasibility. If a problem happens, the

Coordinator starts the plan recovery process, which fixes the current state of the environ-

ment and then creates a new plan (replan) for the mission. If no problem arises, then the

plan is completed by the robots team.

Figure 4.2: The solution’s execution process.

Plan Recovery

There are some reasons why the architecture would need to execute a plan recovery

process. The first one happens when all actions have the desired result, but something not

expected happens, but in a way that the system can identify. An example is the robot’s

battery. Since most planners don’t use numeric values in their domain modeling, there

is normally a boolean flag indicating the battery level (e.g., low). Most actions will need

that flag to indicate enough battery. If somewhere in the execution, the flag indicates a
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low battery, the system needs to replan to add an activity to recharge the robot. That

case is not exactly an error but something that can happen at any time.

Another way that this kind of plan recovery is needed is when there’s a problem in the

domain modeling. If a car should wait for the crane to load all boxes before unloading,

but the modeling precondition works if there are any boxes, the car can move to unload,

leaving the docking area before it should. So the initial plan that only accounted for one

navigation of the car, will need to replan so the car returns for the other boxes.

The second plan recovery process comes from an external event or agent interacting

with the environment in a way that unpredictably changes its state. One example is a

door that needs to be opened for a robot to pass, but someone closes it.

Regardless of the reason to replan, the first step to pay attention is when the robot

acts in the environment. That’s the first step of the replan cycle, which can be seen as

a reactive replan process in Figure 4.3 using a sequence diagram. The reactive replan

process happens when the Coordinator receives the status of the environment after the

robot tries to act and a problem occurs.

The environment status sent indicates the action is successful and the plan’s execution

can continue. Another result occurs when the robot cannot finish the action, and the

Coordinator needs to find the reason for that. The robot indicates through an execution

status message what was the problem. Then, the coordinator updates the environment

state model and asks the planner for a new plan.

Figure 4.3: The architecture reactive replan sequence diagram.

Sometimes, false action results can happen and are more complicated to fix. False
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action results relate to a problem where the sensors can indicate that an action is success-

ful when it was not or that a problem occurred when it hasn’t. The false action results

can be solved by the Coordinator validating all actions. Also, when the action’s effects

are needed the problem will be noticed, and the Coordinator will backtrack to where the

problem happened. Both solutions impose some complexity. While the first option is

more hardware costly (e.g., using sensors to check all action effects), the second one needs

a sophisticated heuristic (e.g., backtracking algorithm storing execution traces). Cur-

rently, in the proposed architecture, we assume agents cooperate with veracity behavior

in exchanging messages. Thus, determining false action results is left for future work.

Figure 4.4: The architecture proactive replan sequence diagram.

Figure 4.3 shows a reactive replan process, and Figure 4.4 a proactive replan one when

the Coordinator monitors the environment to find problems. The Coordinator maps the

environment states, evaluates them to check problems, if needed, updates the planner

model, asks for another plan, and passes local plans to the agents.

Most solutions described in Chapter 3 focus on plan recovery in the first case, when all

actions are successful, but things like the battery can become a problem. This work also

deals with planning in other situations, like unexpected events occurrence that change

the environmental state.

The problems treated in this work are shown in Section 2.1, including execution fail-

ures, unexpected events, and incorrect and partial information, which are presented in

the sequence. The run-concurrent-lookahead algorithm that acts and replans at the same

time is used to solve these problems as follows:
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• execution failures: when the robot has an execution failure, it reports back to the

Coordinator, who is responsible for finding a solution to ensure the completion of

the plan;

• unexpected events: when an unexpected event happens, either the Coordinator can

perceive it by its sensors or the robot won’t be able to finish its action and will

notify the Coordinator. Either way, the Coordinator will update the environment

state model and replan to find a new plan;

• incorrect or partial information: by continuously monitoring the environment, the

Coordinator can find incorrect or partial information.

The run-concurrent-lookahead algorithm includes simple solutions to complex planning

problems. A more detailed analysis of how uncertainty and the quality of assessment

interfere with the planning solution is necessary. This analysis is not disclosed in this

work but is left for future work.

4.2 MuRoSA-Plan

The detailed architecture instantiated with ROS2 becomes the Multi-Robot System

Architecture With Planning (MuRoSA-Plan) as presented in Figure 4.5. The Coordina-

tor Components of Figure 4.1 is implemented as a Coordinator Agent, composed of two

ROS2 nodes. One node for controlling communication with the robots maintaining the

environment state, the robots execution feedback, and the algorithm for deciding if it’s

necessary to replan proactively. The other node is where the AP will reside. It needs to

communicate with the Controller Node to give the initial plan and the following new plans

if needed. The Robot Component is the Robot Agents, with a controller to communicate

with the Coordinator and other robots and to determine which action node needs to be

executed based on the current action on the local plan. It is also composed of action

nodes responsible for executing the plan’s actions.
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Figure 4.5: MuRoSA-Plan instantiated architecture in ROS2.

Planner-Controller-System Framework

The MuRoSA-Plan implementation follows a Planner-Controller-System framework

that is a basic framework for automated planning systems (Ghallab et al., 2016) using

ROS nodes as presented in Figure 4.6. The framework layers (Planner, Controller, and

System) are in gray lines. The blue rectangles represent ROS nodes. The green rectangles

simplify the collective nodes representing a Robot, as shown in Figure 4.5. The black

arrows present the message exchanged between the layers and the nodes.

The framework includes a planner layer that creates a plan based on the problem

domain and initial state and a controller layer to operate upon the system layer that

responds with observations of the current environment state. Based on the observation

states, the controller sends the planner the execution states of the plan. In response, the

planner can replan if problems occur.

The planner layer is composed of planner nodes that are responsible for planning

and replanning. It’s detached from the coordinator node since planning and monitoring

can happen concurrently to improve performance. In the controller layer, there is the

coordinator and the robots. The coordinator connects to the planner and monitors the

environment for proactive problem perceptions. The robots are responsible for interacting

with the system. The environment node is responsible for simulating the model of the

environment located in the system layer.

Relating the Planner-Controller-System framework in Figure 4.6 to Figure 4.2, we

note. The planner layer is responsible for planning and recovery steps. The controller

layer conducts the plan dispatching, actions execution, and plan completion steps. The

system layer simulates a dynamic environment considering exogenous events and action

problems.

45



Figure 4.6: The MuRoSA-Plan implementation based on a Planner-Controller-System
framework.

In Chapter 5, we detail experiments using the presented architecture defined in this

chapter using MuRoSA-Plan.
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Chapter 5

Experiments

This chapter details how the MuRoSA-Plan was compared to PlanSys2. Section 5.1

overviews the infrastructure used in the experiments. Section 5.2 presents two compar-

ative studies. In both studies, we disclose the modeling requirements, communication,

planning domain, execution, and results. Section 5.3 presents a PlanSys2 and MuRoSA-

Plan comparison discussion to analyze the results.

5.1 Experimental Infrasctructure

Figure 5.1 depicts the experimental infrastructure. A Python program creates the

docker configurations based on the experiment specification. Docker Merkel (2014) uses

that configuration to start the containers for running ROS nodes in them. All logs are

included in a logging file used by a JavaScript program to compile execution information

(execution time and plan compilation data). After, graphs and tables are generated using

the execution information to present the simulation results.

Figure 5.1: Components of the experimental infrastructure.
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5.2 Comparative Studies

Two comparative studies were carried out to illustrate the MuRoSA-Plan. The first

one is the Patrolling example used by the authors of PlanSys2 as presented in the tutorial1

(Section 5.2.1). The second study is the Healthcare Service presented in Rodrigues et al.

(2022), adapted from the RoboMax exemplars (Askarpour et al., 2021) (Section 5.2.2).

5.2.1 Patrolling

The Patrolling is an illustrative example of PlanSys2 with a single-agent robot to

patrol a room with columns, as illustrated by the room layout in Figure 5.2. There’s a

wp control point and four other points: wp 1, wp 2, wp 3, and wp 4. When the robot

arrives at the waypoint, it needs to patrol the point.

Figure 5.2: The room layout for the Patrolling robot study. Source: https://www.

youtube.com/watch?v=fAEGySqefwo

Modeling

This work’s proposed architecture to MRS deals with MAS characterization. Thus,

we performed the steps defined in Chapter 2 to model the system before implementing

the Patrolling study. First, the pre-project of the Patrolling agent task environment using

the PEAS was defined, as described in Section 2.2 (Russell and Norvig, 2010).

1https://plansys2.github.io/tutorials/docs/controller_example.html
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• performance - navigate and patrol correctly the room;

• environment - partially observable, stochastic, sequential, static, discreet, single-

agent;

• actions - navigate and patrol;

• sensors - position and proximity.

The Patrolling goal-oriented model is done using the Tropos (Giunchiglia et al., 2002)

methodology with the piStar tool notations, as presented in the GOM part of Section 2.2.

In the sequence, we detail the functionalities of the Patrolling study based on the objec-

tives through five diagrams: early requirements, late requirements, architectural design,

detailed design, and implementation.

Figure 5.3 presents the early requirements, including the relation between the Coordi-

nator and the Patrolling Robot agent, represented by hatted circles. Lastly, the rectangle

with rounded edges represents the Coordinator’s goal Has enforceable plan to have an

enforceable plan for the Patrolling Robot, no matter what problem may arise.

Figure 5.3: Tropos early requirements diagram of the Patrolling study.

The late requirements diagram, depicted in Figure 5.4, increases the early requirements

detail level, including tasks (hexagons) performed to achieve the Coordinator and the

Patrolling Robot agents’ goals. Just like an HTN, the goals are modeled in a hierarchy.

The rectangles represent the resources used.

The Patrolling Robot is responsible for patrolling all waypoints. That goal is decoupled

into four more tangible goals. Each waypoint patrolling goal is met by doing two actions,

navigating to the waypoint and patroling it. The Coordinator is responsible for ensuring

that there is an enforceable plan to keep the room patrolled (receiving messages to patrol

the room), creating a plan using a planning algorithm and robot resources, and monitoring

the environment to replan when necessary.
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Figure 5.4: Tropos late requirements diagram of the Patrolling study.

The architectural design diagram displayed in Figure 5.5 describes the system com-

ponents that will be developed when interacting with agents. The agents and the envi-

ronment are implemented as ROS2 nodes - ROS Node: Coordinator, Patrolling Robot,

and Env, including the messages they exchange (resources) - Message: Plan, Monitor

status, Action result. The insertion of the ROS Node environment resembles the patrol

and navigate tasks (hexagons) of the ROS Node Patrolling Robot.
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Figure 5.5: Tropos architecture diagram of the Patrolling study.

Communication

To communicate, the agents need to define the messages and the protocol to be used.

As seen in Section 2.5, ROS has some communications services to ease the implementation.

This work uses the ROS2’s Service method working as a client-server model. Figure 5.6

presents the Coordinator, Planner, Patrolling, and Environment ROS Nodes and the

messages between them, illustrating an expected execution flow. The Coordinator begins

sending a NeedPlan message to the Planner and receives the plan as the response. Then,

the Coordinator sends to the Patrolling Robot its local plan in the SendPlan message.

Lastly, the robot sends the Action message to the Environment to execute its actions and

receive an observation as a result of the action.
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Figure 5.6: Agents and robots exchanged messages in the Patrolling study.

ROS allows an interface definition for the messages exchanged between the agents.

Listing 5.1 presents used messages including Need Plan, Action, and Send Plan. The

message structure is first defined by the sending parameters and their types separated by

three dashes (- - -) from the response and its type.

Listing 5.1: The interface messages for the Patrolling study.

Need Plan:

int64 robotId

−−−
Action[] plan

Action:

string action

−−−
string observation

Send Plan:

Action[] plan

−−−
string ok

Planning Domain

Planning allows agents in MRS to reach their goals. Complex cases may have many

requirements configurations to achieve software goals. AP searches for optimal plans for

high-level goals or tasks considering the state space for a specific domain problem. To

use a planner, it is necessary to specify the problem domain (i.e., requirements) and the

current state in the planner’s notation.
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The planning domain definition begins with

B = Robots ∪Waypoints

where Robots = {robot},Waypoints = {wp control, wp1, wp2, wp3, wp4}.

The rigid properties are the connections between the waypoints

R = {connections}

where

connections = (wp control, wp1), (wp control, wp2), (wp control, wp3),

(wp control, wp4), (wp1, wp control), (wp2, wp control),

(wp3, wp control), (wp4, wp control).

For the state varying properties X, as in Definition 2, we’ll have

X = {robot at(robot), patrolled(waypoint)

s.t. robot ∈ Robots, waypoint ∈ Waypoints}

where

robot at(robot) = room represents the robot’s robot current location, which is one

of the Waypoint, s.t. Range(robot at(robot)) = Waypoint;

each of the waypoints can be patrolled or not. To indicate whether waypoint is

patrolled, Range(patrolled(waypoint)) = Booleans.

Using Definition 3, our inital state-variable state space Sinitial would be

Sinitial = {robot at(robot) = wp control, patrolled(wp1) = False,

patrolled(wp2) = False, patrolled(wp3) = False, patrolled(wp4) = False}

where
|Range(patrolled(wp1))| = 2 |Range(patrolled(wp2))| = 2

|Range(patrolled(wp3))| = 2 |Range(patrolled(wp4))| = 2

|Range(robot at(robot))| = 5.

Thus, the number of possible variable-assignment functions is 2ˆ4 * 5ˆ1 = 80. The

first four state variables indicate that all waypoints were not patrolled. The last state
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variable indicates that the robot is in the control waypoint. The methods are available in

Listing 5.2.

Listing 5.2: Patrolling planning domains methods.

patrol all(robot):

pre:

list: [

patrol(robot, wp1),

patrol(robot, wp2),

patrol(robot, wp3),

patrol(robot, wp4)

]

patrol(robot, waypoint):

pre:

list: [

goto(robot, waypoint),

patrol(robot)

]

goto(robot, waypoint):

pre: connected(robot at(robot), waypoint) = True

list: [

move(robot, robot at(robot), waypoint),

]

goto(robot, waypoint):

pre: connected(robot at(robot), waypoint) = False

list: [

move(robot, robot at(robot), wp control),

move(robot, wp control, waypoint),

]

The actions using the Definition 6 are presented in Listing 5.3. There are navigation

actions to navigate from one room to another for the robot (a move) and an action to

patrol a waypoint.

Listing 5.3: Patrolling planning domains actions.

a move(robot, from, to)

pre: robot at(robot) = from, connected(from, to) = True

eff: robot at(robot) = to

a patrol(robot, waypoint)

pre: robot at(robot) = waypoint

eff: patrolled(waypoint) = True

As in Definition 1, with S, A, γ, and ignoring the cost function, it’s possible to define

the planning domain Σ of the patrolling study. So our planning problem (Definition 10) is

P = (Σ, Sinitial, {patrolled(wp1) = patrolled(wp2) = patrolled(wp3) = patrolled(wp4) =

True}).
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Execution

The experiment execution took into account the following aspects:

• objective - to assess the time difference between both solutions in execution time;

• problem types - none;

• patrolling study - a robot needs to move and patrol 4 waypoints in a map;

• validation strategy - we performed the scenario 100 times (statistical significance)

to assess the plan completion ability and time to complete the plan;

• results evaluation metric - the metric used is time to complete the plan.

The executed plan is presented in Listing 5.4 for both MuRoSA-Plan and PlanSys2,

where r2d2 is the patrolling robot, wp control, wp 1, wp 2, wp 3, wp 4 are rooms to be

patrolled, a move and a patrol are actions. The wp control is connected with all rooms,

and the robot to go from one room to another must pass through it.

Listing 5.4: Patrolling plan executions.

(a move,r2d2,wp1)

(a patrol,r2d2)

(a move,r2d2,wp control)

(a move,r2d2,wp2)

(a patrol,r2d2)

(a move,r2d2,wp control)

(a move,r2d2,wp3)

(a patrol,r2d2)

(a move,r2d2,wp control)

(a move,r2d2,wp4)

(a patrol,r2d2)

Results

Figure 5.7 displays the success versus fail chart of the Patrolling study. The PlanSys2

and MuRoSA-Plan have almost 100% of successful executions. PlanSys2 has an execution

failure, most likely from a problem in the docker infrastructure, where the controller states

no plan was created if could not find the planner node.
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Figure 5.7: Success vs fail results of the Patrolling study.

Figure 5.8 shows the execution time of the Patrolling study. PlanSys2 has a lower

execution time due to its simpler action execution protocol and lack of MAS aspects. Even

though MuRoSA-Plan was slower, it has greater scalability for it uses MAS approaches

to include different agents, which can be seen in the Healthcare Service study.

Figure 5.8: Execution time of the Patrolling study.

5.2.2 Healthcare Service

The Healthcare Service comparative study to PlanSys2 is a multi-robot mission in

healthcare service that came from the Lab Samples Logistics, a scenario adapted from

the RoboMax exemplars (Askarpour et al., 2021), presented in Rodrigues et al. (2022).

In the Lab Samples Logistics mission, robots should transport patient samples from

their rooms to the laboratory. A nurse is responsible for collecting the samples and
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requesting delivery to the laboratory, identifying the room where the collection should

take place. Robots have a securely locked drawer to navigate to the collection room,

identify the nurse, approach her, open the drawer, await the deposit, close the drawer,

and then navigate to the laboratory carrying the sample. In the laboratory, the robotic

arm picks up samples, scans the barcode in each sample, sorts them, and loads them into

the entry module of the analysis machines.

Figure 5.9 illustrates the hospital environment with seven patient rooms (PR1 to PR7),

the entrance area (door), one lab room (LAB), and the path segment with intersections

where the robots navigate. This figure is a cutout of Figure 8 - Lab samples logistics,

presented in Rodrigues et al. (2022).

Figure 5.9: Hospital layout. Source: Cutout of Figure 8 (Rodrigues et al., 2022).

Modeling

The MAS modeling includes the pre-project of the four agents in the Healthcare Service

using the PEAS, as described in Setion 2.2 (Russell and Norvig, 2010).

Collector Robot

• performance - transport the sample from the collection room to the laboratory;

• environment - partially observable, stochastic, sequential, dynamic, discreet, multi-

agent;

• actions - open drawer, walk, inform arm;

• sensors - authentication (nurse, mechanical arm), drawer sensor (filled, open, closed),

position perception, the path to arrive and route, movement sensor (right, left,

rotation).

Robotic Arm

• performance - receive, analyze and correctly store samples;
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• environment - partially observable, stochastic, sequential, dynamic, discreet, multi-

agent;

• actions - operates drawer, reads sample code, operates sample grab;

• sensors - message receipt: arrival notice, drawer sensor, claw sensor, code reader.

Coordinator

• performance - ensure there is an achievable plan;

• environment - partially observable, stochastic, sequential, dynamic, discreet, multi-

agent;

• actions - plan, replan, send plan, monitors (battery and route);

• sensors - position robots, there is a sample, robot battery level, environment map.

Health Professional

• performance - collect samples and deliver them to the robot correctly;

• environment - partially observable, stochastic, sequential, dynamic, discreet, multi-

agent;

• actions - check robot, deliver sample;

• sensors - sight.

The Tropos methodology with the piStar tool is used for GOM. Figure 5.10 presents

the early requirements for the Healthcare Service. The model includes one Actor repre-

sented by the circle (Health Professional) and three Agents (Collector, Coordinator, and

Arm). The resource is the sample carried from the Health Professional to the Arm by the

Collector. The Collector’s goal of Receive Sample is accomplished with the help of the

Health Profesional. In the same way, the Arm’s Collect Sample needs the Collector to be

fulfilled. All three help the Coordinator ensure its goal to have an enforceable plan.
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Figure 5.10: Tropos early requirements diagram of the Healthcare Service study.

Figure 5.11 presents the late requirements where the level of details is increased and

the -is a- link is added to represent the agent types (e.g., nurse and doctor are health

professionals).

Figure 5.11: Tropos late requirements diagram of the Healthcare Service study.

Figure 5.12 shows the agents that will be developed as ROS2 nodes and the messages

they can exchange. The agents and the environment are implemented as ROS2 nodes
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- ROS Node: Coordinator, Health Professional, Collector, Arm, and Env, including the

messages they exchange (resources) - Message: HasPlan, Plan, State change, and Navi-

gation status.

Figure 5.12: Tropos architecture diagram of the Healthcare Service study.

Communication

The ACL is defined for the agents’ communication as depicted in Figure 5.13. The

Nurse generates a sample and informs the Coordinator that it has a sample to be collected

through the HasSample message. Then, the Coordinator sends a NeedPlan message to

the planner that returns the created plan. With the initial plan, the Coordinator sends

a SendPlan message to all agents. They interact with the environment with the Action

message that returns an observation of the action’s status. The Coordinator also uses an

Action message to monitor the environment. When a problem occurs, the Error message

is sent to the Coordinator, which in return sends a Replan message to the Planner. After

that, the Coordinator sends a SendPlan message to the agents with the new plan.
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Figure 5.13: Agents and robots exchanged messages in the Healthcare Service study.

As said before, ROS allows an interface definition for the messages exchanged between

the agents. Listing 5.5 presents the interface for newly used messages including Has Sam-

ple, Need Plan, Error, Replan. It also uses the messages in Listing 5.1 (Need Plan, Action,
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Listing 5.5: The interface messages for the Healthcare Service study.
Has Sample:
int64 roomId
int64 nurseId
−−−
string ok

Need Plan:
int64 robotId
int64 roomId
int64 nurseId
−−−
Action[] plan

Error:
string error
−−−
string ok

Replan:
string error
−−−
string ok

and Send Plan). The Need Plan in Listing 5.1 is different from the one in Listing 5.5.

In the Patrolling study, only one robot needs to be informed to the planner while in the

Healthcare Service study the robot, arm, and nurse are needed.

Planning Domain

To define the planning domain it is necessary to define the object names

B = Robots ∪ Arms ∪Nurses ∪Rooms

where

Robots = {robot}, Arms = {arm}, Nurses = {nurse},

Rooms = {room1, room2, room3}.

The rigid property is the arm’s position

R = {arm at}, arm at = {(arm, room2)}.
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For the state varying properties X, as in Defition 2, we’ll have

X = {opened door(room), robot at(robot), nurse at(nurse),

robot near nurse(robot), robot near arm(robot),

nurse auth robot(robot), robot has sample(robot),

nurse has sample(nurse), arm has sample(arm), robot drawer(robot)

s.t. room ∈ Rooms, robot ∈ Robots, nurse ∈ Nurses, arm ∈ Arms}

where

each of the room’s doors can be closed or opened. To indicate whether room’s door

is opened, Range(opened door(room)) = Booleans;

robot at(robot) = room represents the robot’s robot current location, which is one

of the Rooms, so, Range(robot at(robot)) = Rooms;

the same goes for the nurse Location, so, Range(nurse at(nurse)) = Rooms;

nurse near robot(robot) serves to indicate if the robot is near enough of some nurse.

That way, Range(nurse auth robot(robot)) = Nurses ∪ {nil};

the same goes for if the robot is near an arm. Range(robot near arm(robot)) =

Arms ∪ {nil};

to indicate if the nurse is authenticated with the robot, we use nurse auth robot(robot).

Hence, Range(nurse auth robot(robot)) = Nurses ∪ {nil};

to indicate if any of the agents are carrying the sample, we use robot has sample(robot)

nurse has sample(nurse), and arm has sample(arm). SoRange(robot has sample

(robot)) = Range(nurse has sample(nurse)) = Range(arm has sample(arm)) =

Booleans;

robot drawer(robot) indicates if the robots drawer is opened, making

Range(robot drawer(robot)) = Booleans.
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Using Definition 3, our inital state-variable state space Sinitial would be

Sinitial = {opened door(room1) = True, opened door(room2) = True,

opened door(room3) = True, robot at(robot) = room1,

nurse at(nurse) = room2, robot near nurse(robot) = nil,

robot near arm(robot) = nil, nurse auth robot(robot) = nil

robot has sample(robot) = False, nurse has sample(nurse) = True

arm has sample(arm) = False, robot drawer(robot) = False}

where

|Range(opened door(Room1))| = 2 |Range(opened door(Room2))| = 2

|Range(opened door(Room3))| = 2 |Range(nurse at(nurse1))| = 3

|Range(robot at(robot1))| = 3 |Range(robot near nurse(nurse1))| = 2

|Range(robot near arm(robot1))| = 2 |Range(nurse auth robot(robot))| = 2

|Range(robot has sample(robot))| = 2 |Range(nurse has sample(nurse))| = 2

|Range(arm has sample(arm))| = 2 |Range(robot drawer(robot))| = 2.

Thus, the number of possible variable-assignment functions is 3ˆ2 * 2ˆ9 = 4,608. It’s

a small number. However, increasing the number of rooms would impact the final number

of functions. If the number of rooms in the simulation was the same as the image (7 rooms

& 1 lab), we would have 2,097,152 functions. In this example, we only have one of each

agent, but adding one of each robot would increase the function number to 17,179,869,184.

The first three state variables indicate that all doors are opened. The following two

state variables indicate the nurse is in Room2, and the robot1 in Room1. Then, we have

that the robot is not near the nurse or the robot, and the nurse has not authenticated.

The robot’s drawer is closed, and the nurse has a sample.

The methods are available in Listing 5.6. The actions as in Definition 6 are in List-

ing 5.7. We have navigation actions to navigate from one room to another for the robot

and the nurse (nav to, nav to nurse). An action so the nurse can open a closed door.

Two actions for the robot to get near the nurse or the arm with whom they’ll interact

and one to authenticate the nurse. Two actions for the robot to open the drawer for the

right agent and two more to close it. Last, there are actions to deposit the sample in the

robot and one for the arm to collect.

As in Definition 1, with S, A, γ, and ignoring the cost function, it’s possible to

define the planning domain Σ of the Healthcare Service study. So our planning problem

(Definition 10) is P = (Σ, Sinitial, {arm has sample(arm) = True}).
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Listing 5.6: Healthcare Service planning domains methods.
pickup and deliver sample(robot, nurse, arm):

pre: nurse has sample(nurse) = True
list: [

approach nurse(robot, nurse),
pick sample(robot, nurse),
approach arm(robot, arm, nurse),
unload sample(robot, arm)

]

approach arm(robot, arm):
pre: opened door(room) = True
list: [

nav to(robot, robot at(robot ), arm at(arm)),
approach arm(robot, arm, arm at(arm))

]

approach arm(robot, arm, nurse):
pre: opened door(room) = False
list: [

open door(nurse, arm at(arm)),
nav to(robot, robot at(robot ), arm at(arm)),
approach arm(robot, arm, arm at(arm))

]

approach nurse(robot, nurse):
pre: opened door(room) = True
list: [

nav to(robot, robot at(robot ), nurse at(nurse)),
approach nurse(robot, nurse, nurse at(nurse)),
authenticate nurse(robot, nurse, nurse at(nurse))

]

approach nurse(robot, nurse):
pre: opened door(room) = False
list: [

open door(nurse, nurse at(arm)),
nav to(robot, robot at(robot ), nurse at(nurse)),
approach nurse(robot, nurse, nurse at(nurse)),
authenticate nurse(robot, nurse, nurse at(nurse))

]

pick sample:
pre: nurse at(nurse) = robot at(robot), nurse has sample(nurse) = True
list: [

open drawer for nurse(robot, nurse),
deposit(nurse, robot, nurse at(arm)),
close drawer for nurse(robot, nurse)

]

unload sample:
pre: robot at(nurse) = arm at(robot), robot has sample(nurse) = True
list: [

open drawer for arm(robot , arm),
pick up sample(arm, robot, arm at(arm)),
close drawer for arm(robot , arm)

]
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Listing 5.7: Healthcare Service planning domains actions.
nav to(robot, from, to)

pre: robot at(robot)=from, opened door(from)=TRUE, opened door(to)=TRUE
eff: robot at(robot)=to

nav to nurse(nurse, from, to)
pre: nurse at(nurse) = from
eff: nurse at(nurse) = to

open door(nurse, room)
pre: nurse at(nurse) = room
eff: opened door(room) = True

approach nurse(robot, nurse, room)
pre: robot at(robot) = room, nurse at(nurse) = room
eff: robot near nurse(robot) = nurse

authenticate nurse(robot, nurse, room)
pre: robot at(robot) = room, nurse at(nurse) = room, robot near nurse(robot) = nurse
eff: nurse auth robot(robot) = nurse

open drawer for nurse(robot, nurse)
pre: nurse auth robot(robot) = nurse
eff: robot drawer(robot)

open drawer for arm(robot , arm)
pre robot near arm(robot) = arm
eff: robot drawer(robot) = True

close drawer for nurse(robot, nurse)
pre: nurse auth robot(robot) = nurse, robot drawer(robot) = True
eff: robot drawer(robot) = False, robot near nurse(robot) = nurse, nurse auth robot(robot) = nurse

close drawer for arm(robot, arm)
pre: robot near arm(robot) = arm, robot drawer(robot) = True
eff: robot drawer(robot) = False, robot near arm(robot) = nil

deposit(nurse, robot, room)
pre: robot drawer(robot) = True, robot at(robot) = room, nurse at(nurse) = room, nurse has sample(nurse) = True,

nurse auth robot(robot) = nurse
eff: robot has sample(robot) = True, nurse has sample(nurse) = False

approach arm(robot, arm, room)
pre: robot at(robot) = room, arm at(arm) = room
eff: robot near arm(robot) = arm

pick up sample(arm, robot, room)
pre: (obot drawer(robot) = True, robot at(robot) = room, arm at(arm) = room, robot has sample(robot) = True,

robot near arm(robot) = arm
eff: arm has sample(arm) = True, robot has sample(robot) = False, robot near arm(robot) = nil
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Figure 5.14 presents the initial mission for the robots (i.e., robot1, arm1, nurse1) us-

ing the HTN presentation generated by the IPyHOP planner of our study case. The

first node represents a task method to move the sample from the nurse to the lab

(m pickup and deliver sample). The first node splits into four methods (nodes m approach

nurse, m pick sample, m approach arm, and m unload sample). Each method instanti-

ates into actions to be executed by the robots. Since the IPyHOP generates a totally

ordered plan, the plan execution order is a navto, a approach nurse, a authenticate nurse,

a open drawer, a deposit, a close drawer, a navto, a approach arm, a open drawer, a pick

up sample, a close drawer (from left to right).

In runtime, the Coordinator or the robot can perceive a problem. To fix it, the planner

generates a plan with a new action (a open door) as presented in Figure 5.15.

Figure 5.16 shows the state variables that represent the environment and their changes

while the plan is being executed. Figure 5.17 shows the state variables that represent the

environment and their changes while the plan is being executed and a problem happens

in the middle of it. Somewhere while executing, the door in the Room3 is closed, so the

nurse has to move to open it again.

Figure 5.14: IPyHOP planner’s GTN of the mission’s initial plan.
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Figure 5.15: IPyHOP planner’s GTN of the mission’s replan.

Figure 5.16: Temporal modeling without problem.
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Figure 5.17: Temporal modeling with problem.

Implementation

Figure 5.18 illustrates the MuRoSA-Plan prototype of the Healthcare Service study.

The Coordinator Components of Figure 4.1 is implemented as a Coordinator Agent, com-

posed of two ROS2 nodes, one for controlling communication with the robots, maintaining

the environment state, the robots execution feedback, and the algorithm for deciding the

necessity to replan proactively. The other node is where the AP will reside needing to

communicate with the Controller Node to give the initial plan and the following new

plans. The Robot Component is the Robot Agents, with a controller to communicate

with the Coordinator and to determine which action node needs to be executed based on

the current action on the local plan.

The labeled arrows in Figure 5.19 are the messages the nodes exchange with each other.

The first one (1) represents the Nurse node informing a sample needs to be collected.

Then, the Coordinator node asks (2) and receives (3) a Plan from the Planner. The

Coordinator then divides the plan between the agents (4), and each one interacts (5) with

the Environment node to perform their actions while the Coordinator starts to monitor

it at the same time (5). The observations return to the agents and Coordinator (6). If a

problem is perceived, a fault is raised (6). The Coordinator asks (7) and receives another

plan (8), starting the execution process again (4, 5).
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Figure 5.18: MuRoSA-Plan implemented prototype for the Healthcare Service study.

Figure 5.19: Planner-Controller-System framework of MuRoSA-Plan prototype for the
Healthcare Service study.
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The MuRoSA-Plan prototype uses the ROS2 operating system for inter-process com-

munication functionalities since it includes a set of software libraries and tools that help

to build robot applications (Macenski et al., 2022). Listing 5.8 presents the ROS planner

node function responsible for receiving a message from the Coordinator component and

using the IPyHOP planner (Bansod et al., 2022) to create a plan.

Listing 5.8: ROS Planner node function to receive a message from the Coordinator.

def receive sync message(self, request, response):

actionTuple = tuple(request.action.split(’,’))

if actionTuple[0] == ’need plan’:

planner = IPyHOP(methods, actions)

plan = planner.plan(self.state, [(

’m pickup and deliver sample’, actionTuple[1], actionTuple[2], actionTuple[3]

)], verbose=1)

responsePlan = []

for action in plan:

responsePlan.append(’,’.join(action))

response.observation = ’/’.join(responsePlan)

return response

Execution

The experiment execution took into account the following aspects:

• objective - to assess problem mitigation of the proposed architecture when executing

in a simulated dynamic environment;

• problem types - reactive and proactive related to the door-closed problem.

• case study - the Healthcare Service with Lab Samples Logistics using five experi-

mental scenarios related to the door-closed problem.

• validation strategy - we performed five scenarios 30 times (statistical significance)

to assess the coordinators’ ability to complete the plan. Plan results are analyzed at

the end of each execution. We use the percentage of uncompleted missions related

to the door-closed problem. The scenarios present the characteristic of door-closed

varying with 10%, 30%, 50%, and 70%, probability to happen;

• results evaluation metric - the metrics used to assess the door-closed problem are

plan completion and the time to complete the plan. We compared the experimental

results with a baseline case, the Coordinators’ without the ability to replan.

Aiming to test the MuRoSa-Plan with the five scenarios to assess the Coordinators’

ability to complete the plan, we used a simulator to replicate the environment dynamism.

The simulation dynamism comes from the lab room door. No matter its actual state,
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the planner has the information that it is opened. However, the ROS2 environment node

receives in its initialization a probability that represents if the lab room door is closed.

Thus, every time the simulation runs, it dynamically decides if the door is opened.

Results

Table 5.1 presents the plan completion average time in seconds considering the door-

closed problem. As the replan is activated, there is an increase in time in all scenarios.

When the problem happens without the replan, the simulation can already stop, while

with the replan, the system can continue to operate. Also, the time in PlanSys2 is

slower than ours because the healthcare study is a multi-robot example, and even though

PlanSys2 can execute it, it wasn’t made for it.

Table 5.1: Plan completion average time in seconds.

Baseline MuRoSA-Plan PlanSys2

10% 2,09 2,32 4,20
30% 2,03 2,36 4,57
50% 2,05 2,42 4,60
70% 2,03 2,58 4,87

Table 5.2 presents the plan completeness considering the door-closed problem. Note

as the replan is activated, all scenarios are completed. That’s expected since the idea of

the replanning is assuring the plan’s completeness, mitigating problems. In PlanSys2, we

noticed a problem due to the modeling of the environment state. Even when the action

encountered a problem, the system notified the problem but continued working without

replanning.

Table 5.2: Plan success rate (30 executions total).

Baseline MuRoSA-Plan PlanSys2

10% 27 30 28
30% 24 30 19
50% 10 30 8
70% 5 30 9

Figure 5.20 shows the existing relation between the plan results. In blue are the times

the simulation completes the goal (success). In orange are the times a problem happened,

preventing the plan’s completion. In yellow are the PlanSys2 false positives. Last, we

have green, time the system replaned and completed the goal successfully. More details

of each experiment can be seen in Table 5.3, Table 5.4, and Table 5.5.

Table 5.3 shows that when we increase the probability of the problem occurring, the

number of successes decreases, as expected. The 50% and 70% have similar values as

72



Table 5.3: Result of plan execution using Baseline (30 executions total).

Success Failure

10% 27 3
30% 24 6
50% 8 22
70% 9 21

we are using just the problem occurring probability, a difference in the percentage of the

probability and of the relation between success and failures can happen.

Table 5.4: Result of plan execution using MuRoSa-Plan (30 executions total).

Success Failure Replan

10% 26 0 4
30% 20 0 10
50% 16 0 14
70% 10 0 20

Table 5.4 shows that when a problem occurs, the system can achieve success. Table 5.5

shows that when PlanSys2 encounters an error, it notices but fails to replan.

Table 5.5: Result of plan execution using PlanSys2 (30 executions total).

Success Failure False Positive

10% 28 0 2
30% 19 1 10
50% 10 3 17
70% 5 3 22

Figure 5.20: Plan result charts.
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5.3 Discussion

The PlanSys2 presented in Section 3.1 is based on Mart́ın et al. (2021), including

the design and implementation but not execution aspects. This section points out the

differences between PlanSys2 and MuRoSA-Plan architecture considering experimental

execution.

The PlanSys2 uses PDDL for domain files, while MuRoSA-Plan architecture instan-

tiated with ROS2 uses HTN embodying abstraction power when describing goals. In

PlanSys2, we define a final goal like (and(arm has sample a)) while in MuRoSa-Plan the

goal is the abstract method pickup and deliver sample.

The PlanSys2 has a Controller that manipulates the domain. The planning Controller

is a program that initiates, consults, and updates knowledge, sets goals, and makes re-

quests to execute the plan. The user does not have to define the domain manually in the

terminal.

In MuRoSA-Plan architecture a Coordinator is responsible for:

• receive action feedback;

• monitor the environment;

• update the environment state model;

• replan if necessary;

• all else that the Controller in PlanSys2 is responsible for.

The Coordinator in MuRoSa-Plan architecture can have more responsibilities than

the Controller in PlanSys2, resulting in a more robust solution. Since PlanSys2 wasn’t

designed for MAS aspects, it presented a better performance with a single agent. However,

when the plan involved many agents, that wasn’t a bottleneck, and our architecture

was faster even though PlanSys2 had a novel algorithm for parallel execution of action

flows (Mart́ın et al., 2021).

This work’s architecture focuses on plan recovery. When a problem happens, it cor-

rectly updates the model and replans it. PlanSys2, not developed with the same focus,

failed at having a model that accurately represented the environment. In the simulation,

it means a false positive result. However, in real environments, the robot would not com-

plete the plan, and the PlanSys2 Controller would not discover the problem. Thus, a

good model representation and update is essential when plan recovery is needed.

The experimental results to validate the proposed architecture show that it is possible

to generate runtime adaptation plans satisfying the goals in a dynamic environment, with

two comparative studies to PlanSys2, Patrolling, and Healthcare Service scenarios. The
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results with parallel missions present a better execution time in our architecture, while

sequential missions were better in PlanSys2. Even so, only our architecture can replan

the mission when a problem happens.
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Chapter 6

Conclusion

This work presents an architecture to plan recovery that allows the development of

MRS applications for different domains aimed at dynamic environments. The architecture

follows a centralized coordination approach and distribution of action execution through

heterogeneous robots. The architecture was instantiated using ROS2 and the IPyHOP

HTN planner. Comparing our architecture to related work, it is the only architecture that

implements MRS for different domain missions using planners with problem domains,

actions, and applications, where a Coordinator monitors the agents’s tasks, forms teams,

and replans in runtime.

This research achieves the main goal by developing a solution for MRS focusing on

plan recovery at the run-time phase to cope with non-deterministic environments using a

non-specific application approach (Chapter 4). As secondary goals, this work presents the

definition of MRS architecture specific to ROS2, the prototype design, and implementation

of the proposed architecture with code available for open science, and the validation with

the PlanSys2 planning framework with two comparative studies (Chapter 4 and 5). In

conclusion, the hypothesis was positively validated during the development of this work.

This research presents future work in different research areas:

• In MRS, we can highlight the integration with solutions of other steps of the complex

task flow (Gil et al., 2023; Rodrigues et al., 2022). Aspects related to correctness,

comprehensiveness, scalability, and robot fleet specifications are important for MRS

but were not the focus of this work, demanding more robust discussions and problem

definitions to improve the presented architecture.

• In MAS architecture, the specialization to deal with more complex non-deterministic

scenarios, the definition of other aspects of the solution like interaction protocols,

and verifying veracity in agents’ exchanging messages are examples of future work.

• In AP, a planner using Markov chains for probabilistic planning.
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• In MAP, studies to verify the best approach to plan recovery (replan or repair) can

also be included in the architecture (Moreira and Ralha, 2021a).

• Implementation of the architecture in other domains and contexts and with more

complex problems are also in the scope of future work.
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Caldas, R., von Oertzen, T. J., Wimmer, M., Berardinelli, L., Rossi, M., Bersani,
M. M., and Rodrigues, G. S. (2021). RoboMAX: Robotic mission adaptation exemplars.
In Proc. of Int. Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 245–251. vii, 3, 48, 56

Bansod, Y., Patra, S., Nau, D., and Roberts, M. (2022). HTN replanning from the middle.
In Proc. of Int. FLAIRS Conf., volume 35. vi, 5, 14, 40, 41, 71

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing multi-agent systems
with jade. In Castelfranchi, C. and Lespérance, Y., editors, Intelligent Agents VII
Agent Theories Architectures and Languages, pages 89–103, Berlin, Heidelberg. Springer
Berlin Heidelberg. 15

Bischoff, E., Teufel, J., Inga, J., and Hohmann, S. (2021). Towards interactive coordina-
tion of heterogeneous robotic teams – introduction of a reoptimization framework. In
Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), pages 1380–1386.
2, 31, 32, 33

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). Unified Modeling Language User
Guide, The (2nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley
Professional. 17

Brafman, R. I. and Domshlak, C. (2008). From one to many: Planning for loosely cou-
pled multi-agent systems. In Proceedings of the Eighteenth International Conference
on International Conference on Automated Planning and Scheduling, ICAPS’08, page
28–35. AAAI Press. 19

Cardoso, R. C. and Bordini, R. H. (2017). A multi-agent extension of a hierarchical
task network planning formalism. ADCAIJ: Advances in Distributed Computing and
Artificial Intelligence Journal, 6(2):5–17. 36

Carreno, Y., Ng, J. H. A., Petillot, Y., and Petrick, R. (2022). Planning, execution, and
adaptation for multi-robot systems using probabilistic and temporal planning. In Proc.
of 21st Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), page
217–225. 3, 31, 32, 33, 39

Carreno, Y., Pairet, E., Petillot, Y., and Petrick, R. P. A. (2020). Task allocation strategy
for heterogeneous robot teams in offshore missions. In Proc. of 19th Int. Conf. on
Autonomous Agents and MultiAgent Systems (AAMAS), page 222–230. 2, 3, 31, 32, 33

78



Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras,
N., Hurtós, N., and Carrerasa, M. (2015). ROSPlan: Planning in the robot operating
system. In Proc. of 35th Int. Conf. on Automated Planning and Scheduling (ICAPS),
page 333–341. 2, 32

Che, Q., Wang, W., Wang, F., Qiao, T., Liu, X., Jiang, J., An, B., and Jiang, Y. (2023).
Structural credit assignment-guided coordinated mcts: An efficient and scalable method
for online multiagent planning. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS ’23, page 543–551, Richland,
SC. International Foundation for Autonomous Agents and Multiagent Systems. 36

Ciancarini, P., Wooldridge, M., and Goos, G. (2001). Agent-Oriented Software Engi-
neering: First International Workshop, AOSE 2000 Limerick, Ireland, June 10, 2000
Revised Papers, volume 1957 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 1 edition. 15

Cohen, S. and Agmon, N. (2023). Online coalitional skill formation. In Proceedings
of the 2023 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’23, page 494–503, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems. 36

da Silva, C. J. T. and Ralha, C. G. (2023). Multi-robot system architecture focusing on
plan recovery for dynamic environments. In 2023 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 1668–1673. 5

Dignum, V. and Dignum, F. (2001). Modelling agent societies: Co-ordination frameworks
and institutions. In Brazdil, P. and Jorge, A., editors, Progress in Artificial Intelligence,
pages 191–204, Berlin, Heidelberg. Springer Berlin Heidelberg. 15
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