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Resumo

Nesta tese, estudaremos existência e multiplicidade de soluções para a seguinte classe de
problemas:

(Pi)

{
∆2u±∆pu+ V (x)u = f(u) + β|u|2∗∗−2u in Ω,
u ∈ H2 ∩H1

0 (Ω),

onde (Pi) (i = 1, 2, 3) correspondem aos três problemas considerados nos capítulos 1-3,
respectivamente, Ω ⊂ RN é um domínio suave, no caso β = 0 obtemos 2 < p < 2∗ = 2N

N−2 ,
para N ≥ 3 e o caso β = 1 consideramos 2∗∗ =

2N
N−4 para N ≥ 5.

O Capítulo 1 é dedicado a provar um resultado de existência de soluções para o problema
(P1) quando V = 0 e β = 0, onde Ω ⊂ R4 é um domínio com fronteira suave, 2 < p < 4
e f é uma função contínua superlinear com crescimento exponencial subcrítico ou crítico.
Aplicamos o método de Nehari para provar o resultado principal.

No Capítulo 2 é dedicado a provar a existência e multiplicidade de soluções para o
problema (P2) quando V = 0 e β ∈ {0, 1}, onde Ω ⊂ RN é um domínio limitado e suave e
f é uma função contínua. Mostramos a existência e multiplicidade de soluções não triviais
usando técnicas de minimização na variedade de Nehari, Teorema de Passo da Montanha e
Teoria do Gênero.

No Capítulo 3 é dedicado a provar a existência de uma solução de estado fundamental
para o problema (P3) quando β ∈ {0, 1}. Aqui V e f são funções contínuas com V sendo
periódica ou assintótica ao infinito. A função f tem crescimento subcrítico ou critico.

Palavras-chave: Operador biharmônico; p-Laplaciano; problemas do tipo Kirchhoff-Boussinesq;
métodos variacionais; crescimento exponencial crítico.



Abstract

In this thesis, we study the existence and multiplicity of solutions for the following class of
problems

(Pi)

{
∆2u±∆pu+ V (x)u = f(u) + β|u|2∗∗−2u in Ω,
u ∈ H2 ∩H1

0 (Ω),

where (Pi) (i = 1, 2, 3) correspond to the three problems we considered in Chapters 1-3,
respectively, Ω ⊂ RN is a smooth domain, in the case β = 0 we get 2 < p < 2∗ = 2N

N−2 , for
N ≥ 3 and the case β = 1 we consider 2∗∗ =

2N
N−4 for N ≥ 5.

The Chapter 1 is devoted to existence result of solutions for the problem (P1) when
V = 0 and β = 0, where Ω ⊂ R4 is a smooth bounded domain, 2 < p < 4 and f is a
superlinear continuous function with exponential subcritical or critical growth. We apply
the Nehari manifold method to prove the main results.

In Chapter 2 we establish an existence and multiplicity of solutions for the problem
(P2) when V = 0 and β ∈ {0, 1}, where Ω ⊂ RN is a bounded and smooth domain and
f is a continuous function. In this chapter, we show the existence and multiplicity of
nontrivial solutions by using minimization technique on the Nehari manifold, the Mountain
Pass Theorem and Genus theory.

In Chapter 3 is concerned with the existence of a ground state solution for the problem
(P3) when β ∈ {0, 1}. Here V and f are continuous functions with V being either periodic
or asymptotic at infinity to a periodic function. The function f has subcritical or critical
growth

Key words: Biharmonic operator; p-Laplacian; Kirchhoff-Boussinesq type problems; vari-
ational methods; critical exponential growth.
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Introduction

Partial differential equations are an important branch of mathematics with a wide range of
applications and a powerful tool to understand certain areas of applied and purely mathe-
matical aspects. For instance, they arise in physics, engineering, thermodynamics, diffusion,
electrodynamics, fluid dynamics, differential geometry, calculus of variations, numerically
approximate, etc. Despite the fundamental utility of the partial differential equations, pi-
oneer research interests have a considerable attention to this area and we encounter many
types of equations. Especially, since their discovery by Boussinesq in 1872 [23], the Boussi-
nesq equations have represented one of the most powerful tools for modelling some physical
phenomena. They are used to describe properties and time evolution of physical systems,
the propagation of water waves, the vibration in a string, waves in a plasma, nonlinear lattice
wave, Bose-Einstein condensates, geotechnical and road engineering: influence of plasticity,
etc (see [21–23,76,89] and the references therein for more details).

Later, the following model

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx)∂2u
∂x2

= 0, (0.0.1)

was used to extend the classical D’Alembert’s wave equation by Kirchhoff [51] due to the
influence of the changing in the length of the string during the vibration. The meaning of
the parameters in (0.0.1) are as follows: L denotes the length of the string, h means the
area of the cross-section, E stands for the Young modulus of the material, ρ is the mass
density and P0 is the initial tension.

The motivation for this thesis comes from evolution partial differential equations, so
we begin with a short introduction of such equations. It is worth mentioning that plate
equations have received much attention over the recent years. The plate equations originated
from engineering mechanics. In the continuous medium mechanics, they are defined as
planar structures with very small thickness. In particular, the following plate equation with
perturbation of p-Laplacian type has been widely investigated:

utt +∆2
xu− βdivx (ax(∇u)) = F (u, ut) in Ω× (τ,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

∆u = u = 0 in ∂Ω× (τ,∞),

(0.0.2)

where ∆2 = ∆(∆) denotes the biharmonic operator, a(s) ≈ |s|p−2s, p ≥ 2, and F (u, ut)
represents additional damping and forcing terms.

In 1D setting, as noticed in Yang [98], this kind of problem models flows of elastoplas-
tic microstructures. The main physical justifications come from a model of elastoplastic
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microstructure flow

utt = εuxxxx + b(u2x)x, b < 0, (0.0.3)

considered by An and Peirce [9].

Also Ma and Pelicer [66] were concerned with a class of weakly damped one-dimensional
beam equations with lower order perturbation of p-Laplacian type

utt + εuxxxx − (σ(ux))x + kut + f(u) = h in (0, L)× R+, (0.0.4)

where σ(z) ≈ |z|p−2z, p ≥ 2, k > 0 and f(u) and h(x) are forcing terms. The study
of the model (0.0.4), including the well-posedness, exponential stability and existence of a
finite-dimensional attractor, was carried out.

Qu and Zhou in [73] used the potential well method to obtain global existence and finite
time blow-up threshold results for weak solutions of the following equations with a non-local
source term: 

ut + uxxxx = |u|p−1u− 1

|Ω|

∫
Ω
|u|p−1u dx in Ω× (0, T ),

ux = uxxx = 0 in ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(0.0.5)

where Ω = (0, a), p > 1 and u0 ∈ H2(Ω) with
∫
Ω
u0dx = 0 and u0 ̸= 0. The model (0.0.5)

is a fourth-order reaction–diffusion equation, which arises in many physical applications,
such as thin film theory, lubrication theory, phase transition, etc. They also studied the
extinction of the solutions for the problem under some suitable conditions.

The authors Li, Gao and Han [58] investigated the following thin-film equation with the
same initial and boundary conditions

ut + uxxxx − (|ux|p−2ux)x = |u|q−1u− 1

|Ω|

∫
Ω
|u|q−1udx (x, t) ∈ (0, a)× (0, T ), (0.0.6)

where p > 1, q > max{1, p−1} and obtained similar results to those in [73] via the potential
well method.

Concerning a nonlinear 2D plate equation, also known as a Kirchhoff-Boussinesq model,
the analysis was discussed by Chueshov and Lasiecka in [29–31]. They focused on the
well-posedness and long-time behavior of the following problem by only considering a weak
damping 

utt + kut +∆2u = div [f0(∇u)] + ∆[f1(u)]− f2(u),

u(x, 0) = u0(x) ut(x, 0) = u1(x), x ∈ Ω
(0.0.7)

defined on a bounded domain Ω ⊂ R2 with a sufficiently smooth boundary ∂Ω. Here k ≥ 0
is the damping parameter, the mapping f0 : R2 → R2 and the scalar, sufficiently smooth
functions f1 and f2 represent (nonlinear) feedback forces acting upon the plate. Their
main goal is to study the well-posedness and asymptotic behavior of finite energy solutions
associated with (0.0.7).

In order to motivate the structure of nonlinear terms appearing in (0.0.7), we would like
to point out that model (0.0.7) arises naturally as the limit in Midlin-Timoshenko (MT)
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equations which describe the dynamics of a plate that accounts for transverse shear effects
(see, e.g., [54], [55, Chap.1] and the references therein). More specifically, the (MT) system
is given in the following canonical form:

α[vtt + kvt]−Av + k(v +∆u) + h0(v) + vh1(u) = 0, (0.0.8)

utt + k0ut − kdiv(v +∆u) + h2(u), (0.0.9)

where v(x, t) = (v1(x, t), v2(x, t))
T is a vector function and u(x, t) is a scalar function on Ω×

R+. The functions v1(x, t) and v2(x, t) represent the angles of deflection of a filament (they
are measures of transverse shear effects) and u(x, t) is the bending component (transverse
displacement). The parameter α > 0 describes rotational inertia of filaments. The terms
αkvt and k0ut represent resistance forces (with the strengths k > 0 and k0 > 0). The factor
k > 0 is the so-called shear modulus. The second order elliptic differential operator A in
(0.0.8) is defined by:

A =

∂2x1 + 1− µ

2
∂2x2

1 + µ

2
∂2x1x2

1− µ

2
∂2x1x2

1− µ

2
∂2x1 + ∂2x2

 ,
where 0 < µ < 1 is the Poisson ratio. The mapping h0 : R2 → R2 and the scalar functions
h1 and h2 represent feedback forces. Here we note that the presence of the term vh1(u)
destroys the conservative character of these forces and, as we will see later, the energy of the
associated dynamical system will be no longer decreasing along trajectories. As we know,
the dynamics of Mindlin-Timoshenko plates has been widely investigated in [54, 55] and
also in [29] they proved the existence of a compact global attractor and studied its limiting
properties when the shear modulus tends to infinity. This limit corresponds to absence of
transverse shear which is one of the Kirchhoff hypotheses in the plate theory. Notice that
the Mindlin-Timoshenko system (0.0.8)-(0.0.9) subjected to nonlinear damping has been
discussed in [31, Chap.7].

In an interesting article, Chueshov and Lasiecka [32] considered the following nonlinear
plate equation referred to as Kirchhoff–Boussinesq (K–B) model:

wtt + kwt +∆2w = div
(
|∇w|p−2∇w

)
+ σ∆(w2)− f(w) (0.0.10)

defined on a bounded domain Ω ⊂ R2 with a sufficiently smooth boundary and a suitable
initial data. Here k ≥ 0 is the damping parameter, the right-hand side of (0.0.10) represents
a feedback force acting upon the plate and the parameter σ is nonnegative.

Another high-impact model is the Schrödinger-Kirchhoff-Boussinesq equation with bound-
ary damping

Mαwtt +∆2w + a(x)

[
g(wt)− αdivG(∇wt)

]
= div(|∇w|2∇w) +R(w). (0.0.11)

The damping functions g : R → R+ and G : R2 → R2
+ have the following form

g(s) = g1s+ |s|m−1s and G(s, σ) = G1(s;σ)(s;σ) + (|s|m−1s;σm−1σ),

where g1 and G1 are nonnegative constants. The boundary damping is the same as the
previous case, i.e., g0(s) = g2s + |s|q−1s, q ≥ 1. The source term R is assumed locally
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Lipschitz operator acting from H2(Ω) into L2(Ω) when α = 0 and from H2(Ω) into H−1(Ω)
when α > 0. The associated energy function has the form

E(t) =
1

2
(∥wt(t)∥2 + α∥∇wt(t)∥2) +

1

2
∥∆w(t)∥2 + 1

4

∫
Ω
|∇wt(t)|4dx.

The well-posedness of (0.0.11) in the case of α > 0 is standard. This is due to the fact
that div(|∇w|2∇w) ∈ H−1(Ω) for finite energy solutions w. The case α = 0 is subtle. Its
analysis requires special consideration and depends on linearity of the damping. Let us now
pay attention to the qualitative behavior of the system consisting of coupled Boussinesq and
Schrödinger equations in a smooth bounded domain Ω ⊂ RN . The resulting system takes
the form:

wtt + γ1wt∆
2w −∆(f(w) + |E|2) = g1(x) in Ω, (0.0.12)

iEt +∆E + iγ2E = g2(x) in x ∈ Ω, t > 0, (0.0.13)

where E(x, t) and w(x, t) are unknown functions, E(x, t) is complex and w(x, t) is real. Here
the above γ1 and γ2 are nonnegative parameters and g1(x) and g2(x) are given (real and
complex) L2-functions. Equipping equations (0.0.12)-(0.0.13) with the boundary conditions

w = ∆w = 0, E = 0, x ∈ ∂Ω (0.0.14)

and the initial data

w(x, 0) = w0(x), wt(x, 0) = w1(x), E(x, 0) = E0(x) x ∈ Ω. (0.0.15)

The dynamics of this system was studied in [33] by the previous methods under the following
hypotheses when the (nonlinear) function f ∈ C(R,R), f(0) = 0 and

∃ C1, C2 ≥ 0 : F (r) =

∫ r

0
f(ξ)dξ ≥ −C1r

2 − C2, ∀ |r| ≥ r0, (0.0.16)

∃ M ≥ 0, p ≥ 1 : |f ′(s)| =M(1 + |s|p−1), ∀ s ∈ R. (0.0.17)

The method used in [33] is the same as in the study of the (K-B) system (see (0.0.11) with
α = 0), and can also be applied to the following Schrödinger-Boussinesq-Kirchfoff model:

wtt −∆wt +∆2w − div(|∇w|3∇w)−∆(w2 + |E|2) = g1(x) in Ω, (0.0.18)

iEt +∆E − wE + iγ2E = g2(x) in x ∈ Ω, t > 0 (0.0.19)

equipped with the boundary conditions (0.0.14) and initial data (0.0.15).

For N -dimensional setting, Yang et al. in [98, 99, 101] considered the strongly damped
equation as follows:

utt +∆2u− div
(
σ(|∇u|2∇u)

)
−∆ut = h(t, u, ut) (0.0.20)

with both clamped and simply supported boundary conditions. Their results were mainly
concerned with the global existence and long-time behavior of weak and strong solutions.
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In addition, Yang in [99, 100] investigated the regularity and Hausdorff dimensions of
global attractors, also the existence of the finite dimensional global and exponential attrac-
tors for the dynamical system associated with the Kirchhoff models arising in elastoplastic
flow

utt +∆2u− div
(
|∇u|m−1∇u)

)
−∆ut + h(ut) + g(u) = f(x) in Ω× (τ,∞),

u(x, 0) = u0(x) in Ω,

ut(x, 0) = u1(x) in Ω,

∆u = u = 0 in ∂Ω× (τ,∞),

(0.0.21)

where 1 ≤ m < N+2
N−2 and Ω is a bounded domain in RN with smooth boundary ∂Ω, and the

assumptions on nonlinear terms h(ut), g(u) and external force term f are suitable.

Yang and Nascimento in [97] focused on the long-time behavior for a class of non-
autonomous plate equations with perturbation and strong damping of p-Laplacian type

utt +∆2u+ aε(t)ut −∆pu−∆ut + f(u) = g(x, t) (0.0.22)

in a bounded domain Ω ⊂ RN with smooth boundary and critical nonlinear terms. The
global existence of weak solution which generates a continuous process was proved firstly,
then the existence of strong and weak uniform attractors with non-compact external forces
was also derived. Moreover, the authors established the upper-semicontinuity of uniform
attractors under small perturbations by delicate estimate and contradiction argument.

Andrade D, J Silva and T. F. Ma in [65] studied the energy drop for a class of memory
plate equations and lower order perturbation of p−Laplacian type

utt +∆2u−∆pu+

∫ t

0
g(t− s)∆u(s)ds−∆ut + f(u) = 0 in Ω× R+,

∆u = u = 0 on ∂Ω× R+,

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω,

(0.0.23)

They obtained the existence of global solutions and energy decay to the mixed problem

Sun, Liu and Wu in [79] considered the initial boundary value problem for a class of
thin-film equations in RN with a p-Laplacian term and a nonlocal source term

ut +∆2u−∆pu = |u|q−2u+
1

|Ω|

∫
Ω
|u|q−2udx in Ω× (τ,∞),

∂∆u

∂η
=
∂u

∂η
= 0 on ∂Ω

u(x, 0) = u0(x) in Ω.

(0.0.24)

They obtained the upper bounds for the blow-up time, proved the existence and blow-up in
finite time of solutions for the problem with arbitrarily initial energy.

From now on, we are going to introduce the stationary equations associated with the
problems mentioned above of the perturbation of the biharmonic operator by the p-Laplacian
operator.
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Fourth-order Schrödinger equations have been widely considered due to the role of small
fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium
with Kerr nonlinearity, see [48,49]. Such equations have been studied from the mathematical
view point finding existence, multiplicity, nonexistence results focusing in the nonlinear
problems driven by the biharmonic operator. In the same way, biharmonic equations or even
their higher version of polyharmonic equations hove received great attention due to their
wide application in physic and geometry. In fact, as mathematical modeling, biharmonic
equations can be used to describe some physics phenomena, which have many applications
such as engineering applications in the deformation of thin plates, the motion of fluids,
free boundary problems and nonlinear elasticity. Here we refer interested readers to the
historical details in [1,16,17,40]. The difference between these applications lies in the choice
of nonlinearities, where types could be considered: polynomial, exponential, logarithmic,
singular, etc. On the other hand, there are in some particular aspects of operators and
potentials. The latter include positive potential, potential changing sign, singular potential,
etc. The fourth order operator has been studied extensively by many authors in recent
times.

Let us now pay attention to the following biharmonic nonlinear Schrödinger (NLS) equa-
tion 

i
∂Ψ

∂t
− α∆2Ψ− γ∆Ψ+W (x)∆Ψ = f̃(x,Ψ) + β|Ψ|2∗∗−2u in RN ,

Ψ(0, x) = u for each x ∈ RN where u ∈ H2(RN ),

(0.0.25)

where α > 0, γ ∈ R, β ∈ {0, 1} and W : RN → R is a continuous potential. Assume also
that f̃ : R × C → C is a continuous nonlinearity. Hence the standing waves to the (NLS)
equation given in (0.0.25) are solutions Ψ : [0,∞)× RN → R in the following form

Ψ(x, t) = e−iktu(x), t ≥ 0, x ∈ RN , (0.0.26)

where k ∈ R. Then the standing wave Ψ given in (0.0.26) is a solution for the (NLS) equation
when u : RN → R is a solution for problem (0.0.25) assuming that f̃(x, exp(−ikt)u) =
e−iktu(x)f(x, u) and V (x) =W (x) + k, x ∈ RN , t ∈ R. Here for the dynamic of the (NLS)
equation we refer the interested readers to [12,19,20] for more details.

For the case where Ω is a bounded domain of RN , the problems involving the biharmonic
operator with the Navier boundary condition are modeled in the spaceH = H2(Ω)

⋂
H1

0 (Ω),
in which certain difficulties arise that we will mention below. In general, the principle of
the strong maximum is not fulfilled. This fact is one of the difficulties in working with
this operator, because given a function u ∈ H, we do not necessarily have the positive and
negative parts of this function, respectively u+ = max{0, u} and u− = min{0, u}, are in
H (see [41]). This is a very common method when working with the Laplacian operator,
as the space in question is H1

0 (Ω) and, in this case, for any u ∈ H1
0 (Ω), we have that u+

and u− also belong to the space H1
0 (Ω). We also do not have Harnack-type inequalities and

the non-positivity, in general, of the Green function of the biharmonic operator. Finding a
solution to problem (0.0.25) when Ω is an unbounded domain becomes more difficult due to
the lack of compact embedding from H1

0 (Ω)∩H2(Ω) into Lp(Ω). In general, the nolinearity
of the function f helps overcome this difficulty.

Also elliptic problems involving fourth order operators have been extensively studied.
In 1987, Mckenna and Walter [68] modeled nonlinear oscillations occurring in suspension
bridges, describing the behavior of each of these oscillations. More precisely, the study
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involved analyzing an operator of the type Lu = utt+uxxxx. Furthermore, the study of the
existence of solutions to the following linear system is still an open problem.{

∆2u+ bu = f(x), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(0.0.27)

where 0 ≤ b ≤ |Ω|.
Another prominent work in the theory is that of Lazer and Mckenna from 1990 [56], in

which the authors modeled nonlinear oscillations that occurred specifically on the Golden
Gate and Tacoma Narrows bridges. In this paper, the authors described the behavior and
type of each of these oscillations, classifying them as vertical, horizontal or even torsional
oscillations.

In the case where Ω is a bounded domain on RN with smooth ∂Ω and Navier boundary
conditions, Lazer and McKenna in [57] studied the following problem{

∆2u+ c∆u = f(x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(0.0.28)

where f(x, t) = b[(t + 1)+ − 1], b is a constant. They used Rabinowitz’s global bifurca-
tion method to prove the trivial existence of solutions for b < λ1(λ1 − c) and some showed
that there is a positive solution if only if b = λ1(λ1 − c), where λ1 the principal eigen-
value of (−∆, H1

0 (Ω). In recent times, several authors have studied this type of operator
with different boundary conditions and in unbounded domains, for which we can see some
works [42, 63,90,93,103] and the references therein. We can also see such an operator with
logarithmic or exponential nonlinearity in [7, 62,75,85].

The study for Ω ⊂ R4 in this thesis is motivated by Adams (see [7]) who studied the
generalized version of Trudinger result to the Sobolev space Wm,p

0 (Ω). The hypothesis (f1)
established in Chapter 1 of this thesis, implies that f in has exponential growth which
is called critical when α0 > 0. This kind of growth is driven by a Trudinger-Moser type
inequalities [26,37]. The concept of criticality in R2 was introduced by Yadava [95] motivated
by the classical Trudinger-Moser inequality (see [69, 88]). By using this notion, perturbed
problems involving critical exponential growth were explored in bounded domains (see [71,
72, 85, 87]) and in the whole space (see [26, 75] and references therein). There are many
recent works involving a nonlinearity with critical exponential growth, where the existence
and concentration of solutions have been considered (e.g., see [6, 36,38]).

For more detail let us leave the following two theorems as inspiration for Chapter 1 of
this thesis.

Theorem 0.0.1. (Adams, 1988) If m is a positive integer less than N , then there is a
constant β0 = β0(m,N) such that for all u ∈ Cm(RN ) with support contained in Ω and
p = N

m

sup
u∈Wm,p(Ω):∥∇mu∥pp≤1

∫
Ω
exp (β|u|p

′
)dx ≤ β0, (0.0.29)
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for all β ≤ β0 = β0(m,N) where

β0 = β0(m,N) =



N

wN−1

π
N
2 2mΓ

(
m+ 1

2

)
Γ

(
N −m+ 1

2

)

p
′

, if m is odd ,

N

wN−1

π
N
2 2mΓ

(
m

2

)
Γ

(
N −m

2

)

p
′

, if m is even ,

(0.0.30)

and ∇m stands for the m order gradient of u:

∇mu =

{
∆m/2u, m = 2, 4, 6, · · · ,
∇∆(m−1)/2u, m = 1, 3, 5, · · · ,

(0.0.31)

here wN−1 denotes the N − 1 dimensional surface measure of the unit ball in RN and
p
′
= p/(p − 1) is the conjugate exponent of p. Furthermore, if β > β0, then there exists a

smooth u supported in Ω with ∥∇mu∥p ≤ 1, for the integral in (0.0.29) can be made as large
as desired (see [7, Theorem 1]).

We now consider a space that is of high importance in the proof of Theorems 1.0.1 and

1.0.2 of Chapter 1, which properly contain the space Wm,N
m

0 (Ω), 1 < m < N , which we
define by

W
m,N

m
N (Ω) :=

{
u ∈Wm,N

m (Ω) : ∆ju = 0 = u on ∂Ω for 0 ≤ j ≤ m− 1

2

}
. (0.0.32)

An Adams-type inequality was also proved by C. Tarsi in [86, Theorem 4] on this space,
which is as follows:

Theorem 0.0.2. Let Ω ⊂ RN be a smooth and bounded domain and 1 < m < N be a
positive integer. Then

sup

u∈Wm,Nm
N (Ω):∥∇mu∥N

m
≤1

∫
Ω
exp (β|u|

N
N−m )dx ≤ β0,

moreover, the constant appearing in (0.0.31) is sharp.

The authors Wang and Mao in [91] studied the existence and non-existence of solutions
that change sign the following problem

∆2u− α∇(f(∇u))− γ∆pu = g(x, u) in Ω,

∂(∆u)

∂η
=
∂u

∂η
= 0 on ∂Ω,

(0.0.33)

where p > 2, α, γ ∈ R, Ω is a bounded smooth domain in RN , N ≥ 1. By using a special func-

tion space with the constraint
∫
Ω
udx = 0, under suitable assumptions on f ∈ C1(RN ,RN )

satisfying f(0) = 0 and g(x, u) ∈ C(Ω × R,R), they showed the existence and multiplicity
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of sign-changing solutions of the above problem via the Mountain Pass Theorem and the
Fountain Theorem.

More recently, some authors have investigated stationary Kirchhoff-Boussinesq problems,
that is, those in which there is only a single space variable x ∈ Ω unlike in evolution
problems, where the unknown also depends on the time variable t ≥ 0. For example, Sun,
Liu and Wu [78] were concerned with the following biharmonic equation with p-Laplacian
and Neumann boundary condition given by

∆2u− γ∆pu = f(x, u)− µ

|Ω|

∫
Ω
f(y, u(y))dy in Ω,

∂∆u

∂η
=
∂u

∂η
= 0 on ∂Ω.

(0.0.34)

Using the fountain theorem, the authors obtained the existence of infinitely many sign-
changing high energy solutions. . In that paper was crucial the inequalit

F (t) ≤ tf(t) + d(x)tσ, (0.0.35)

where d ∈ L
2

2−σ (Ω) for 0 < σ ≤ 2.

Now we present some results when Ω = RN . Recently, biharmonic equations on un-
bounded domain RN have attracted a lot of attention. Especially, the researchers mainly
investigated the following problems with the steep potential:{

∆2u− γ∆u+ λV (x)u = f(x, u) x ∈ RN ,
u ∈ H2(RN ).

(0.0.36)

With the aid of λ, they proved that the energy functional possesses the property of being
locally compact, see [59, 63, 90, 102] and their references therein. Especially, Ye and Tang
[102] assumed that f(x, u) was superlinear and subcritical at infinity, when λ was large
enough, they obtained the existence and multiplicity of nontrivial solutions. Later, Zhang
et al. in [104] improved their results and obtained the existence of infinite nontrivial solutions
when λ > 0 was large enough. Badiale, Greco and Rolando [10] obtained two nontrivial
solutions for the case f(x, u) = g(x, u) + µξ(x)|u|q−2u when g(x, u), ξ(x) satisfied some
assumptions, λ was large enough and µ was small enough. Mao and Zhao [67] considered
(0.0.36) with Kirchhoff terms and concave-convex nonlinearities, and proved the existence
and multiplicity of solutions by using the variational method.

As for replacing Laplacian with p-Laplacian in (0.0.36), Sun, Chu and Wu in [80] studied
the following problem {

∆2u− γ∆pu+ λV (x)u = f(x, u) ∈ RN ,
u ∈ H2(RN ),

(0.0.37)

where N ≥ 1, γ ∈ R, λ > 0 are parameter and ∆pu = div(|∇u|p−2∇u) with p ≥ 2. Unlike
other papers dealing with this problem, the authors allowed γ to be negative. Under suitable
assumptions on V and f(·, u) which will be presented later, one can obtain the existence
and multiplicity of non-trivial solutions for λ large enough. The proof relies on variational
methods and Gagliardo-Nirenberg inequality. Where f ∈ C(RN × R,R) and the potential
V satisfy the following conditions:

(V1) V ∈ C(RN ) and V (x) ⩾ 0 ∀x ∈ RN ;
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(V2) There exists b > 0 such that the set

{V < b} :=
{
x ∈ RN , V (x) < b

}
, (0.0.38)

has finite positive Lebesgue measure for N ⩾ 4 and

| {V < b} | < S−2
∞

(
1 +

A2
0

2

)−1

para N ≤ 3, (0.0.39)

where | · | is the Lebesgue measure, S∞ is the best Sobolev constant for the embedding
H2(RN ) in L∞(RN ) to N ≤ 3, and A0 is the Gagliardo-Nirenberg inequality constant;

(V3) Ω = {x ∈ RN : V (x) = 0} is non-empty and has smooth boundary with Ω = {x ∈
RN : V (x) = 0}.

(D1) f ∈ C
(
RN × R,R

)
and there is q such that p < q < 2∗ and two functions a, b ∈

L∞ (
RN

)
satisfying |a+|∞ < Θ−1

2 and b(x) > 0 in Ω such that

lim
s→0+

f (x, s)

|s|q−1
= a (x) and lim

s→∞

f (x, s)

|s|q−1
= b(x) uniformly on x ∈ RN .

(D2) There is l such that 1 < l < 2 and a non-negative function d ∈ L2/(2−l) (RN) such
that

pF (x, s)− f (x, s) ⩽ d (x) |s|l ∀x ∈ RN and, s ∈ R,

where F (x, u) =
∫ u
0 f(x, s)ds.

(D
′
1) f ∈ C(RN ×R,R) and there is q such that 2 < q < p and three non-negative functions

g0, g1 ∈ Lp
∗/(p∗−q)(RN ) with g0(x) > 0 in Ω and a ∈ L∞(RN ) such that

g0(x)s
q−1 ⩽ f(x, s) ⩽ a(x)s+ g1(x)s

q−1,

where p∗ := Np
N−p .

(D
′
2) There is a non-negative function g2 ∈ Lp

∗/(p∗−q)(RN ) such that

1

2
f(x, s)s− F (x, s) ⩽ g2(x)|s|q.

(D3) f ∈ C(RN × R,R) with f(x, s) = 0 ∀x ∈ RN and s ⩽ 0, and there is q such that
1 < q < p, and two non-negative functions ã ∈ L2/(2−q)(RN ) for 1 < q < 2, or
ã ∈ L∞(RN ) for 2 ⩽ q < p and b̃ ∈ L∞(RN ) such that

−ã(x)sq−1 ⩽ f(x, s) ⩽ ã(x)sq−1 + b̃(x)sp−1.

Note that these authors proved the following theorems.

Theorem 0.0.3. Suppose that N ⩾ 1, 2 ⩽ p < 2∗ and conditions (V1)-(V3) are satisfied.
Assume that the function f satisfies (D1) and (D2). Then there exists Λ0 > 0 such that the
problem (0.0.37) admits at least one non-trivial solution for all λ ⩾ Λ0 and γ ⩾ 0.

Theorem 0.0.4. Suppose that N ⩾ 3, 2 < p < min{N, 2N
N−2} and conditions (V1)-(V3) are

satisfied. We also assume that the function f satisfies (D
′
1) and (D

′
2). Then:

19



(i) for γ > 0, Λ0 > 0 such that the equation (0.0.37) admits at least one non-trivial
solution for all λ ⩾ Λ0;

(ii) there exists γ0 , Λ0 > 0 such that the equation (0.0.37) admits at least two non-trivial
solutions for all λ ⩾ Λ0 and 0 < γ < γ0.

Theorem 0.0.5. Suppose that N ⩾ 1, 2 < p < 4 and the conditions (V1)-(V3), (D2) and
(D3) are satisfied. Then

(i) if f(x, s) ⩾ 0 for all (x, s) ∈ RN ×R and 1 < q < 2, then there is Λ0,Π0 > 0 such that
for |ã|L2/(2−q) < Π0, then the equation (0.0.37) admits at least one non-trivial solution
for all λ ⩾ Λ0 and γ < 0;

(ii) if f(x, s) ⩾ 0 for all (x, s) ∈ RN ×R and 1 < q < p, then there is Λ0 > 0 such that the
equation (0.0.37) admits at least one non-trivial solution for all λ ⩾ Λ0 and β < 0.

Theorem 0.0.6. Suppose that N ⩾ 1, 2 < p < 4 and the conditions (V1)-(V2) are satisfied.
If f(x, u) = h(x)|u|q−2u with h ∈ L2/(2−q)(RN ) and 1 < q < 2, then there exist Λ∗,Π∗ > 0
such that for 0 < |h+|2/(2−q) < Π∗, the equation (0.0.37) admits at least two non-trivial
solutions for all λ ⩾ Λ∗ and γ < 0.

The authors Jiang, Sun and their collaborators in [45, 46, 83] studied the existence and
multiplicity of solutions when the potential is singular and in the presence of two parameters
and λ for the following problem{

∆2u− γ∆pu+ Vλ(x)u = f(x, u) in RN ,
u ∈ H2(RN ),

(0.0.40)

where N ≥ 1, γ ∈ R, λ > 0. This is different from previous works on biharmonic problems
and ∆pu = div(|∇u|p−2∇u) with p ≥ 2 and suppose that V (x) = λa(x) − b(x) with λ > 0
and b(x) can be singular at the origin, in the particular they allowed γ to be a real number.
Under suitable conditions on Vλ(x) and f(x, u), the multiplicity of solution was obtained
for λ > 0 sufficiently large. The potentials a(x) and b(x) satisfy the following conditions:

(H1) a ∈ C(RN ) and a(x) ⩾ 0 ∀x ∈ RN and there exists a0 > 0 such that the set

{a < a0} :=
{
x ∈ RN , a(x) < a0

}
, (0.0.41)

has finite positive Lebesgue measure for N ⩾ 4 and

| {V < b} | < S−2
∞

(
1 +

A2
0

2

)−1

para N ≤ 3, (0.0.42)

where | · | is the Lebesgue measure, S∞ is the best Sobolev constant for embedding
H2(RN ) in L∞(RN ) for N ≤ 3, and A0 is the Gagliardo-Nirenberg inequality constant;

(H2) Ω = {x ∈ RN : a(x) = 0} is non-empty and has smooth boundary with Ω = {x ∈
RN : a(x) = 0};

(H3) b(x) is a measurable function on RN and there exists 0 < b(x) < θ such that 0 ≤
b(x) ≤ b0

|x|4 for all x ∈ RN , where θ = N2(N−4)2

16 is a critical Hardy–Sobolev constant.

As for f(x, u) = 0, the authors Sun and Wu in [83] studied the existence of nontrivial
solutions for a biharmonic equation with p-Laplacian and singular sign-changing potential.
And they showed the following theorem:
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Theorem 0.0.7. Assume that γ < 0, 2 < p ≤ 2N
N−2 and the conditions (H1), (H2), f(x, u) =

0 and (V3) hold. Then there exists a constant Λ0 > 0 such that the problem (0.0.40) admits
at least one nontrivial solution for each λ > Λ0.

The potential b(x) could be singular at the origin by condition (H3). Furthermore, the
improved Hardy-Sobolev inequality (see [93, Lemma 1.1]) gives

∫
RN

b(x)|u|2dx ≤ b0

∫
RN

|u|2

|x|4
dx ≤ b0

4

∫
RN

|∆u|2dx. (0.0.43)

Under hypotheses (H1) and (H2), λa(x) is called the steep potential well whose depth is
controlled by the parameter λ. Such potential was first suggested by Bartsch and Wang [12]
in the study of scalar Schrödinger equations. So far, steep potential wells have been intro-
duced to the study of some other types of nonlinear differential equations. In addition, they
have also been introduced to the study of some other types of nonlinear differential equa-
tions, such as Kirchhoff type equations [81], Schrödinger–Poisson systems [47], biharmonic
equations [63,82], etc.

The authors Sun and Wu in [84] investigated a class of biharmonic equations with p-
Laplacian and singular potential as follows:{

∆2u+ Vλ(x)u− div(W (x)|∇u|p−2∇u) = 0 in RN ,
u ∈ H2(RN ),

(0.0.44)

where N ≥ 3, 1 < p < 2N
N−2 except p = 2 and Vλ(x) = λa(x)− b(x) with λ > 0. They used

(H1), (H2) and established the following hypothesis:

(H4) W (x) is a sign-changing weight function satisfying W ∈ L
2

2−p (RN ) if 1 < p < 2
and W ∈ L∞(RN ) and {W (x) > 0} ∩ Ω has finite positive Lebesgue measure if
2 < p < 2N

N−2 .

Under suitable hypotheses about the potentials a(x), b(x) and W (x), they used the Nehari
method to establish the existence of non-trivial solutions for sufficiently large λ > 0.

The authors Benhanna and Choutri in [15] studied multiplicity of solutions for fourth-
order elliptic equations with p-Laplacian and mixed nonlinearity{

∆2u−∆pu+ λV (x)u = f(x, u) + µξ(x)|u|q−2u in RN ,
u ∈ H2(RN ).

(0.0.45)

Using the Mountain Pass Theorem and Ekeland’s Variational Principle, they showed the
existence of two non-trivial solutions. To overcome the difficulty of convergence of subse-
quences for the Palais-Smale sequences of the Euler-Lagrange functional, they considered
Cerami Sequences. Later, Jiang and Zhai [46] complemented their results, when γ ∈ R
and they replaced λV (x) with the singular potential Vλ(x), and obtained the multiplicity
of non-trivial solutions.

The authors Silva, Carvalho and Goulart in [77] established the existence of solutions for
critical and subcritical nonlinearities by considering a fourth-order elliptic problem defined
in the entire space RN . They also studied a class of potentials and nonlinearities that can be
periodic or asymptotically periodic. Note that they considered a general fourth-order elliptic
problem where the principal part is given by α∆2u + γ∆u + V (x)u where α > 0, γ ∈ R
and V : RN → R is a continuous potential for the cases γ negative, zero or positive. In this
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work, they used some precise estimates to demonstrate the compactness of the associated
energy functional.

Yang in [96] established a useful embedding inequality in D2,2(RN ,R2). Benefiting from
the previous inequality, the author also obtained a nontrivial weak solution to a critical
biharmonic system involving p-Laplacian and Hardy potential

∆2u+∆pu− θ1
η1u

|x|4
=

η1
4∗(α)

|u|η1−2u|v|η2−2

|x|4
in RN ,

∆2v +∆pv − θ2
η2v

|x|4
=

η2
4∗(α)

|v|η1−2v|u|η2−2

|x|4
in RN ,

u, v ∈ H2(RN ),

(0.0.46)

where ∆pu = div(|∇u|p−2∇u), 0 < α < 4 < N , p = 2∗ := 2N
N−2 , θ1, θ2 < θH = N2(N−4)2

16 ,
η1, η2 > 1 and η1 + η2 = 4∗(α) = 2(N−α)

N−4 . Problems involving biharmonic operator and
Hardy potential are mathematical models for describing the practical phenomena appeared
in physics and engineering (e.g. in static deflection of an elastic plate, clamped plates,
quantum cosmology and so on) via variational methods.

Motivated by all of the above, in this thesis, we study the existence, multiplicity of
solutions for the following class of problems:

(Pi)


∆2u±∆pu+ V (x)u = f(u) + β|u|2∗∗−2u in Ω,

u ∈ H2 ∩H1
0 (Ω),

where i = 1, 2, 3, Ω ⊂ RN is a smooth domain, f is continuous function, in the case β = 0
we get 2 < p < 2∗ = 2N

N−2 for N ≥ 3, case β = 1 we consider 2∗∗ =
2N
N−4 for N ≥ 5 and V is

a continuous function.

In Chapter 1, we deal with a problem of type (P1), where Ω is bounded in R4, β = 0
and V = 0. More precisely, we study the following problem:

(P1)


∆2u±∆pu = f(u) in Ω,

∆u = u = 0 on ∂Ω,

where the hypotheses about nonlinearity f : R → R are given as follows.

(f1) There exists α0 ≥ 0 such that the function f satisfies

lim
t→+∞

f(t)

exp(α|t|2)
=

{
0 for α > α0,
+∞ for α < α0;

(f2) The following limit holds:

lim
t→0+

f(t)

|t|
= 0;

(f3) The function t→ f(t)

|t|p−2t
is decreasing for t ∈ (−∞, 0) and increasing in t ∈ (0,+∞);

(f4) There are r > p and τ > 0 such that

f(t) ≥ τ |t|r−2t, for all t ≥ 0
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The main result of Chapter 1.
First, in this chapter we proof the existence of ground state solution when f has sub-

critical growth.

Theorem 0.0.8. Assume that condition (f1) holds with α0 = 0 and (f2)-(f3) hold with
τ = 1.Then, problem (P1) has a ground state solution.

Secondly,in this chapter we proof the existence of ground state solution when f has
critical growth.

Theorem 0.0.9. Assume that condition (f1) with α0 > 0 and (f2)-(f4) hold with τ suffi-
ciently large. Then, problem (P1) has a ground state solution.

For the convenience of the readers, the hypotheses in the previous theorems will be
stated again in the corresponding chapter.

Notice that all the results obtained in Chapter 1 of this thesis have been published in
the following article:
Carlos, Romulo D and Figueiredo, Giovany M, On an elliptic Kirchhoff–Boussinesq type
problems with exponential growth, Mathematical Methods in the Applied Sciences, (2023).
https://https://doi.org/10.1002/mma.9662.

In Chapter 2, we investigate a problem of type (P2). More presicely, we consider Ω is
bounded in RN , V = 0 and β = 0 or β = 1 for the following problem

(P2)


∆2u±∆pu = f(u) + β|u|2∗∗−2u in Ω,

∆u = u = 0 on ∂Ω,

among other hypotheses, the nonlinear function f satisfies:

(f1)
′ There exists C > 0 such that

|f(t)| ≤ C(1 + |t|q−1).

The main result of Chapter 2.
First, in this chapter we proof the existence of a ground state solution when f has

subcritical growth.

Theorem 0.0.10. Assume that conditions (f1)
′, (f2), (f3), hold with β = 0 and 2 < p ≤

2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗. Then, problem (P2) has a ground state solution.

Secondly, in this chapter we proof the existence of a ground state solution when f has
critical growth.

Theorem 0.0.11. Assume that conditions (f1)
′, (f2), (f3), (f4) hold with β = 1 and

2 < p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗. Then, problem (P2) has a ground state solution.

To find multiplicity of solutions, in the next theorems, we will assume that f is equal to a
prototype, that is,

f(t) = τ |t|q−2t,

and it satisfies the assumptions (f1)
′-(f4).

Thirdly, in this chapter we proof the existence and multiplicity of ground state solution
when f has subcritical growth.
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Theorem 0.0.12. Assume that β = 0, 1 < q < 2 < p ≤ 2∗. Then, there exists τ∗ > 0 such
that problem (P2) has infinitely many weak solutions, for all τ ∈ (0, τ∗).

Fourthly, in this chapter we proof the existence and multiplicity of the ground state
solution when f has critical growth.

Theorem 0.0.13. Assume that β = 1, 1 < q < 2 < p ≤ 2∗. Then, there exists τ∗ > 0 such
that problem (P2) has infinitely many weak solutions, for all τ ∈ (0, τ∗).

In Chapter 3, we are concern with a problem of type (P3), where Ω = RN , V is periodic,
asymptotic periodic and β ∈ {0, 1} as follows:

(P3)


∆2u±∆pu+ V (x)u = f(u) + β|u|2∗∗−2u in RN ,
u(x) ̸= 0 x ∈ RN ,
u ∈ H2(RN ),

with V being a continuous function and satisfying:

(V1) There is a ZN -periodic function Vper : RN → R, that is,

Vper(x+ y) = Vper(x) for all x ∈ RN and for all y ∈ ZN ;

(V2) There is a constant V0 > 0 such that

Vper(x) ≥ V0 ∀x ∈ RN ;

(V3) There is a constant W0 > 0 and a function W ∈ LN/2(RN ) with W (x) ≥ 0 such that

V (x) = Vper(x)−W (x) ≥W0 ∀x ∈ RN ,

where the last inequality is strict on a subset of positive measure in RN .

The main result of Chapter 3.
First, in this chapter we proof the existence of ground state solution when f has sub-

critical growth and V is not periodic.

Theorem 0.0.14. Assume that conditions (V1)-(V2) and (f1), (f̃2), (f3) hold with β = 0.
Then, problem (P3) has a ground state solution.

Secondly in this chapter we proof the existence of ground state solution when f has
critical growth and V is not periodic.

Theorem 0.0.15. Assume that conditions (V1)-(V3) and (f1), (f̃2), (f3), (f4) hold with β =
1. Then, there exist τ∗ > 0 such that problem (P3) has a ground state solution, for all
τ ≥ τ∗.

For the convenience of the readers, the hypotheses in the previous theorems will be
stated again in the corresponding chapter.

Notice that all the results obtained in Chapter 3 of this thesis have been published in
the following article:
Carlos, Romulo D and Figueiredo, Giovany M, Nonlinear perturbations of a periodic Kirch-
hoff–Boussinesq type problems in RN , Zeitschrift für angewandte Mathematik und Physik,
(2024). https://https://doi.org/10.1007/s00033-023-02161-z.

The present thesis is strongly influenced by the articles [46], [77], [78], [80], [83], [84]
and [96]. Below we list the main contributions that we believe this thesis has made.

In Chapter 1, the following novelties have appeared in the study of (P1):
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(1) The argument of Nehari method is sufficient to study the two cases ∆2 ±∆p.

(2) We complement the study that can be found in [78], [80] and [83] because, in our
results, we show existence and concentration solutions for subcritical and critical ex-
ponential growths in a bounded domain Ω in R4.

As for Chapter 2, we point out the novelties that appeared in the study of (P2) as follows:

(1) In the articles [78], [83] and [80], the inequality 0.0.35 and the size of the parameter in
front of the p-Laplacian operator were crucial in their arguments. In our arguments,
the inequality 0.0.35 was not necessary, and there is no parameter in front of the
p-Laplacian operator. Furthermore, we are considering two possibilities ±∆p.

(2) Unlike the results found in [78], [83], [80], [96] , here we are considering subcritical and
critical growths. Moreover, in order to consider different values for q, we use Nehari
method, Mountain Pass Theorem and Genus Theory

(3) Since in the Kirchhoff-Boussinesq type problem appear the term ±∆p, some estimates
are more refined. See for example, Proof of Theorem 0.0.10. Furthermore, in the
critical case, these two possibilities imply the definition of two Sobolev constants that
are used to overcome the difficulty of studying a problem with critical growth. Other
refined estimates can be observed in the proofs of Theorems 0.0.12 and Theorem 0.0.13.

As for Chapter 3, we point out the novelties that appeared in the study of (P3) as follows:

(1) The two cases of ∆2u±∆pu that we are studying that are different from those of [46],
[78], [80], [83], [84] and [96]. Furthermore we are considering critical and subcritical
nonlinear growth without parameters and another kind of potential V .

(2) Furthermore, our results complete the results that can be found in [11], [12], [13], [60]
and [77] because we consider a quasilinear and nonhomogeneous operator which is the
combination of Biharmonic operator and p-Laplacian operator.

(3) Moreover, we study the critical case which has additional difficulties to overcome lack
of compactness produced by the critical exponent.

The major challenge in the study of problems involving this operator lies in estimates
with the L-infinity norm. This is because the presence of the biharmonic operator does not
allow the use of the Moser iteration method. The presence of the p-Laplacian operator does
not permit estimates that can be found in the article [53], for example. The authors of this
article already have partial results in this direction, but they are not sufficient for regularity
results, for example.

It is worth stressing that ground state solutions play an important role in this thesis,
which will be established in most of our theorems. For a better understanding of the readers
we will give the following Remark.

Remark 1. A solution u is a ground state of the equation (Pi) (i = 1, 2, 3) correspond to the
three problems that we have consider in Chapters 1-3, respectively, it is the least among all
nontrivial critical value of the functional I associated to problems (Pi) (i = 1, 2, 3), namely,
u has the least energy among nontrivial solutions. A natural method of searching for the
ground state is to minimize the I on the Nehari manifold of equations defined by

N = {u ∈ H\{0} : I ′(u)u = 0}.

25



The corresponding ground state energy is given by

c = min
u∈N

I(u).

In the following, I will list two other problems that have developed with other collabo-
rators during the doctoral period.

Beyond the scope of this thesis, on the one hand, in my joint work with Figueiredo and
Ruviario in [27], we have studied existence of solutions for the following class of elliptic
Kirchhoff-Boussinesq type problems given by

∆2u−∆pu+ u = h(u) in RN

and
∆2u−∆pu = f(u) in RN ,

where 2 < p ≤ 2N
N−2 if N ≥ 3, 2∗∗ = ∞ if N = 3, 4, 2∗∗ = 2N

N−4 if N ≥ 5, h and f
are continuous functions satisfying hypotheses considered by Berestycki and Lions in [18].
More precisely, the problem with the nonlinearity h is related to Positive mass case and the
problem with the nonlinearity f is related to Zero mass case. The main argument is to find
a Palais-Smale sequence that satisfies a property related to Pohozaev identity, as in [43],
which was used for the first time by [44].

On the other hand, in joint work with Figueiredo and Costa, we have studied existence
of a ground state solution for the following class of elliptic Kirchhoff-Boussinesq type prob-
lems given by

∆2u±∆pu+ (1 + λV (x))u = f(u) + β|u|2∗∗−2u in RN ,

where 2 < p < 2∗ = 2N
N−2 if N ≥ 3, 2∗∗ = ∞ if N = 3, 4 and 2∗∗ = 2N

N−4 if N ≥ 5. Here f
is a continuous function and the term 1 + βV (x) is the steep potential well introduced by
Bartsch and Wang in [12]. The function f has subcritical growth and behaves like |u|q−2u
with p < q < 2∗∗. Using variational methods, we have established the existence of a ground
state solution in the subcritical case, i.e, β = 0 and the critical case, i.e, β = 1.

We remark that the above results give rise to article that was accepted for publication
in the Journal Complex Variables and Elliptic Equations:
R. D. Carlos, G. M. Figueiredo and Gustavo S. A. Costa, Existence and concentration
of solutions for a class of biharmonic and p-Laplacian equations with steep potential well,
Complex Variables and Elliptic Equations, (2023).
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Notation

In this work we use the following notations:

∇u =

(
∂u

∂x1
, · · · ∂u

∂xN

)
gradient of the function u;

∆u =

N∑
i=1

∂2u

∂x2i
= div(∇u) Laplacian of u;

∆pu = div(|∇u|p−2∇u) p-Laplacian operator of u;

∆2u = ∆(∆u) Biharmonic operator of u;

⇀ weak convergence;

→ strong convergence;

a.e. almost everywhere;

supp f support of the function f ;

BR open ball of radius R centered at 0;

Vper periodic potential ;

X ′ dual space of the Banach space X;

Lsloc(RN ) space of all classes of functions which are in Ls on every
compact subset of RN ;

∥ · ∥V norm in the normed space XV ;

∥ · ∥ norm in the space H2(RN );

∥I ′(u)∥∗ norm of the derivative of I restricted to V at the point u;

M0 Nehari manifold of I0;

N Nehari manifold of I.



Chapter 1

On elliptic Kirchhoff-Boussinesq type
problems with exponential growth

In this chapter, we are concerned with existence of nontrivial solutions for the following
class of problems

(P1)


∆2u±∆pu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ R4 is a bounded smooth domain and 2 < p < 4 and f is a continuous function
satisfying the following:

(f1) There exists α0 ≥ 0 such that the function f satisfies

lim
t→+∞

f(t)

exp(α|t|2)
=

{
0 for α > α0,
+∞ for α < α0,

(f2) The following limit holds:

lim
t→0+

f(t)

t
= 0.

(f3) The function t→ f(t)

|t|p−2t
is decreasing in (−∞, 0) and increasing in (0,+∞).

(f4) There are r > p and τ > 0 such that

f(t) ≥ τ |t|r−2t, for all t ≥ 0.

In our first result, we establish the existence of a nontrivial solution for (P1) in the
subcritical case.

Theorem 1.0.1. Assume that conditions (f1) with α0 = 0 and (f2)-(f3) hold with τ = 1.
Then, problem (P1) has a ground state solution.

The next result provides the existence of a nontrivial solution when f has critical growth.

Theorem 1.0.2. Assume that conditions (f1) with α0 > 0 and (f2)-(f4) hold with τ suffi-
cient large. Then, problem (P1) has a ground state solution.
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We remark that our theorems can be applied for the model non-linearity

f(s) = τtr−1exp(α0t
2).

The plan of the chapter is the following: In section 1.1 we describe the variational
framework and we prove some technical lemmas. The subcritical case is studied in section
1.2 and the critical case in section 1.3.

1.1 The variational framework and some technical lemmas

Motivated by the works of Adams in [7, Theorem 1], F. Sani in [75, Theorem 4,1] and C.
Tarsi in [86, Theorem 3], in this first chapter of the thesis, we will consider the following
space H := H2(Ω) ∩H1

0 (Ω). We have a well defined inner product

⟨v, w⟩ =
∫
Ω
∆v∆wdx, ∀u, v ∈ H2(Ω) ∩H1

0 (Ω),

and associated norm given by

∥u∥ :=

(∫
Ω
|∆u|2dx

)1/2

, ∀u ∈ H2(Ω) ∩H1
0 (Ω),

From now on we denote by H = (H2(Ω) ∩H1
0 (Ω), ⟨·, ·⟩) is a Hilbert space.

Let us start with the following important result due to Adams [7, Theorem 1].

Theorem 1.1.1. For every u ∈ H and α > 0,

exp(αu2) ∈ L1(Ω) (1.1.1)

and there is a constant M > 0 such that

sup
∥u∥≤1

∫
Ω
exp(αu2)dx ≤M, (1.1.2)

for every α ≤ 32π2.

Another important result in this chapter is a Gagliardo-Nirenberg interpolation inequal-
ity [39], [70]:

Theorem 1.1.2. Suppose that N, j,m are non-negative integers and that 1 ≤ κ1, κ2, κ3 ≤ ∞
and Υ ∈ [0, 1] are real numbers such that

1

κ1
=

j

N
+

(
1

κ3
− m

N

)
Υ+

(1−Υ)

κ2

and
j

m
≤ Υ ≤ 1.

Then, there exist C1, C2 > 0 independent of u such that

|Dju|κ1 ≤ C1|Dmu|Υκ3 |u|
1−Υ
κ2 ∀ u ∈ Lκ2(RN ) ∩Wm,κ3(RN ).

Under assumptions for Ω be a bounded Lipschitz domain, we have

|Dju|κ1 ≤ C1|Dmu|Υκ3 |u|
1−Υ
κ2 + C2|u|s ∀ u ∈ Lκ2(Ω) ∩Wm,κ3(Ω) for s ≥ 1.
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Consider the functional I : H → R associated to problem (P1) is given by

I(u) =
1

2

∫
Ω
|∆u|2dx± 1

p

∫
Ω
|∇u|pdx−

∫
Ω
F (u)dx.

where F (t) =
∫ t

0
f(s)ds. Since 2 < p < 4, using Theorem 1.1.2 with j = 1, κ1 = p, m = 2,

1
2 ≤ Υ ≤ 1, N = 4 and κ3 = 2, we have that the injection H ↪→ W 1,p

0 (Ω) is continuous for
2 ≤ p ≤ 4 and, as a consequence, I is well-defined and of C1 class. Moreover, we get

I ′(u)ϕ =

∫
Ω
∆u∆ϕdx±

∫
Ω
|∇u|p−2∇u∇ϕdx−

∫
Ω
f(u)ϕdx,

for all ϕ ∈ H. Then, the critical points of I are weak solutions of (P1). The Nehari manifold
associated to the functional I is given by

N = {u ∈ H\{0} : I ′(u)u = 0}.

Note that, from (f2), for any ε > 0, there exists δ > 0 such that

|f(t)| ≤ ε|t| (1.1.3)

and

|F (t)| ≤ 1

2
ε|t|2, (1.1.4)

for all 0 < t ≤ δ.
Moreover, from (f1), there exists K > 0 such that.

|f(t)| ≤ ε exp(αt2),

for all t ≥ K and α > α0. In particular we get

|f(t)| ≤ ε

K
t exp(αt2) (1.1.5)

and

|F (t)| ≤ ε

2αK
exp(αt2), (1.1.6)

for all t ≥ K and α > α0. Consequently, using (1.1.3), (1.1.4), (1.1.5) and (1.1.6), for all
ε > 0 and for all α > α0, there exists Cε > 0 such that∫

Ω
f(u)udx ≤ ε

∫
Ω
|u|2dx+ Cε

∫
Ω
|u|q exp(α|u|2)dx (1.1.7)

and ∫
Ω
F (u)dx ≤ ε

2

∫
Ω
|u|2dx+

Cε
q

∫
Ω
|u|q exp(α|u|2)dx, (1.1.8)

for all u ∈ H and for all q ≥ 0. In particular, in this chapter, we will use q > p.

Lemma 1.1.3. If condition (f3) holds, then the map

s 7→ sf(s)− pF (s) is increasing for s ∈ (0,∞)

and decreasing for s ∈ (−∞, 0). In particular, sf(s)− pF (s) ≥ 0 for all s ∈ R \ {0}.
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Proof. Suppose 0 < s < t. Hence, we obtain

sf(s)− pF (s) =
f(s)

sp−1
sp − pF (t) + p

∫ t

s
f(τ)dτ

<
f(t)

tp−1
sp − pF (t) +

f(t)

tp−1
(tp − sp)

= tf(t)− pF (t)

The proof in the case t < s < 0 is similar and this proves the lemma.

In the next result we prove that N is not empty and that I restricted to N is bounded
from below.

Lemma 1.1.4. For each u ∈ H \ {0} there exists a unique t > 0 such that tu ∈ N .
Moreover, I(u) > 0 for every u ∈ N .

Proof. Given u ∈ H \ {0}, let γu(t) = I(tu) for t > 0. Then tu ∈ N if and only if γ′(t) = 0.
Note that, by ε > 0 sufficiently small in (1.1.8) and Sobolev embedding, there exists C > 0
such that

γu(t) =
t2

2
∥u∥2 ± tp

p

∫
Ω
|∇u|pdx−

∫
Ω
F (tu)dx

≥
(
1

2
− εS−1

2

2

)
t2∥u∥2 ± tp

p

∫
Ω
|∇u|pdx− CεS

−q
2
q

q
tq
∫
Ω
|u|q exp(α|tu|2)dx

Using Cauchy–Schwarz’s inequality, we get

γu(t) ≥
(
1

2
− εS−1

2

2

)
t2∥u∥2 ± tp

p

∫
Ω
|∇u|pdx

−CεS
−q
2
q

q
tq
{∫

Ω
|u|2qdx

}1/2
{∫

Ω
exp

[
2α∥tu∥2

(
u

∥u∥

)2]
dx

}1/2

Choosing α > α0, ε ∈ (0, 1) and t1 > 0 such that 2α∥t1u∥2 ≤ 32π2, using (1.1.2) we get

γu(t) ≥ D1t
2 ±D2t

p −D3t
q,

for all 0 < t < t1 and for some D1, D2, D3 > 0. Thus, since 2 < p < q, we have γu(t) > 0
for 0 < t1 sufficient small.

Now, for all t > 0 anf by τ fixed by (f4), we have

γu(t)

tp
≤ 1

2tp−2
∥u∥2 ±

∫
Ω
|∇u|pdx− τtr−p

∫
Ω
|u|rdx.

Therefore, since 2 < p < r , we conclude lim
t→+∞

γu(t) = −∞. Then, there exists at least one

t(u) > 0 such that γ′u(t(u)) = 0, i.e. t(u)u ∈ N .

Suppose that there exist t(u) and s(u) such that t(u)u, s(u)u ∈ N . Then,

±
∫
Ω
|∇u|pdx =

∫
Ω

f(tu)

tp−1
udx− ∥u∥2

tp−2

and

±
∫
Ω
|∇u|pdx =

∫
Ω

f(su)

sp−1
udx− ∥u∥2

sp−2
.
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Since ∫
Ω

[
f(tu)

(tu)p−1
− f(su)

(su)p−1

]
updx =

∥u∥2

tp−2
− ∥u∥2

sp−2

and using (f3), we conclude that t = s. Moreover, note that

I(u) = I(u)− 1

p
I ′(u)u =

(
1

2
− 1

p

)
∥u∥2 +

∫
Ω

(
1

p
f(u)u− F (u)

)
dx.

From Lemma 1.1.3 we obtain I(u) > 0 for all u ∈ N .

Lemma 1.1.5. There exists a constant C > 0 such that ∥u∥ ≥ C > 0, for every u ∈ N .

Proof. Suppose, by contradiction, that there is (un) ⊂ N such that

un → 0 in H. (1.1.9)

Since that (un) ⊂ N , we get

∥un∥2 ±
∫
Ω
|∇un|pdx =

∫
Ω
f(un)undx.

Then, using (1.1.7), we have

∥un∥2 ±
∫
Ω
|∇un|pdx =

∫
Ω
f(un)undx ≤ ε

∫
Ω
|un|2dx+ Cε

∫
Ω
|un|q exp(α|un|2)dx.

Using Sobolev embedding, there exists C > 0 such that(
1− εS−1

2

2

)
∥u∥2 ±

∫
Ω
|∇u|pdx ≤ Cε

∫
Ω
|un|q exp

[
α∥un∥2

(
|un|
∥un∥

)2]
dx.

Using Cauchy–Schwarz’s inequality, we get(
1− εS−1

2

2

)
∥u∥2 ±

∫
Ω
|∇u|pdx ≤ Cε

{∫
Ω
|un|2qdx

}1/2
{∫

Ω
exp

[
2α∥un∥2

(
|un|
∥un∥

)2]
dx

}1/2

Note that there is n0 ∈ N such that

∥un∥2 ≤
16π2

α0
, for all n ≥ n0.

Then, from (1.1.2) and Sobolev embedding again, we have(
1− εS−1

2

2

)
∥u∥2 ±

∫
Ω
|∇u|pdx ≤ MCε

{∫
Ω
|un|2qdx

}1/2

≤MCε∥un∥q.

In the case that the second term in I is positive, this inequality implies(
1− εS−1

2

2

)
∥un∥2 ≤

(
1− εS−1

2

2

)
∥un∥2 +

∫
Ω
|∇u|pdx ≤MCε∥un∥q.

Consequently

0 <

[
(2− εS−1

2 )

2MCε

]1/(q−2)

≤ ∥un∥. (1.1.10)
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Since q > 2, the above inequality contradicts (1.1.9) and the lemma is proved.

In the case that the second term in I is negative, using the embedding H ↪→ W 1,p
0 (Ω),

we get

(
1− εS−1

2

2

)
∥un∥2 ≤ S

−p
2
p

p
∥u∥p +MCε∥un∥q

≤ max

[
S

−p
2
p

p
,MCε

]
∥un∥q

Since 2 < p < q, this implies that

0 <


2− εS−1

2

2

[
S

−p
2

p

p ,MCε

]


1/(q−2)

≤ ∥un∥

and the above inequality contradicts (1.1.9) and the lemma is proved.

Set c := infN I. In the next result we will prove that the minimizing sequences are
bounded.

Lemma 1.1.6. If (un) ⊂ N is a minimizing sequence, then (un) is bounded in H.

Proof. Suppose, by contradiction, that up to a subsequence, we imply ∥un∥ → +∞ as
n→ +∞. Using Lemma 1.1.3, I(un) → c and I ′(un)un = 0, we have

c+ on(1)∥un∥ = I(un)−
1

p
I ′(un)un

=

(
1

2
− 1

p

)
∥un∥2 +

∫
Ω

(
1

p
f(un)u− F (un)

)
dx

≥
(
1

2
− 1

p

)
∥un∥2

Note that 0 ≥ (p− 2)

2p
when ∥un∥ → +∞. This is a contradiction with

(p− 2)

2p
> 0.

Therefore, we conclude that (un) is bounded on H, the result follows.

To end this section, let us prove that if the minimum of I on N is achieved at some
u ∈ N , then u is a critical point of I. This follows from some arguments used in [64].

Lemma 1.1.7. If u ∈ N is such that

I(u) = min
N

I,

then I ′(u) = 0.

Proof. Suppose, by contradiction, that u is not a weak solution of (P1). Then we find a
function ϕ ∈ C∞

0 (Ω) such that

I ′(u)ϕ ≤ −1.
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Choose ε > 0 small such that

I ′(tu+ σϕ)ϕ ≤ −1

2
, for |t− 1|+ |σ| ≤ ε. (1.1.11)

Let η be a cut-off function that η(t) = 1 for |t− 1| ≤ ε/2 and η(t) = 0 for |t− 1| ≥ ε.
Now we estimate sup

t≥0
I(tu+ εη(t)ϕ). Observe that for all (t, σ) ̸= (1, 0) we have I(tu+

εηϕ) < I(u). In fact, for |t− 1| ≥ ε, we have I(tu+ εηϕ) = I(tu) < I(u) by Lemma 1.1.4.
For 0 < |t− 1| ≤ ε, from (1.1.11) we have

I(tu+ εηϕ) = I(tu) +

∫ 1

0
I ′(tu+ σεη(t)ϕ)εη(t)ϕdσ ≤ I(tu)− 1

2
εη(t) ≤ I(tu) < I(u).

Now for t = 1, I(tu+ εη(t)ϕ) = I(u+ εη(1)ϕ) ≤ I(u)− 1

2
ε < I(u). Hence, we concluded

sup
t≥0

I(tu+ εηϕ) ≤ c = inf
u∈N

I(u). Now it is sufficient to find t̄ > 0 such that t̄u+ εη(t̄)ϕ ∈ N ,

which is a contradiction by definition of c. For this, consider the function Υ : [1−ε, 1+ε] → R
given by Υ(t) = I ′(tu + εη(t)ϕ)(tu + εη(t)ϕ). Note that Υ(t) = P (t) − Q(t) where P is a
polynomial and

Q(t) =

∫
RN

f(tu+ εη(t)ϕ)(tu+ εη(t)ϕ)dx.

Note that Υ is a continuous function. Moreover, one has Υ(1−ε) = I ′((1−ε)u)(1−ε)u > 0
and Υ(1+ε) = I ′((1+ε)u)(1+ε)u < 0, hence we conclude that there exists t̄ ∈ (1−ε, 1+ε)
such that Υ(t̄) = 0.

1.2 Subcritical case

The first result in subcritical case is related to the convergence of functions f and F .

Lemma 1.2.1. If (un) ⊂ N is a minimizing sequence for c, then there exists u ∈ H such
that ∫

Ω
f(un)undx→

∫
Ω
f(u)udx

and ∫
Ω
F (un)dx→

∫
Ω
F (u)dx.

Proof. We prove only the first convergence, because the second follows by the same reason-
ing. By Lemma 1.1.6, we have

∥un∥ ≤ K. (1.2.1)

So, up to a subsequence,

un → u in L2(Ω) and un(x) → u(x) a.e. in Ω

and, by continuity of f ,

f(un(x))un(x) → f(u(x))u(x) a.e in Ω.

It is sufficient to prove that there is g : R → R such that |f(un)un| ≤ g(un) with (g(un))
convergent in L1(Ω), because, in this case, using [24, Theorem 4.9 and Theorem 4.2] we get∫

Ω
f(un)undx→

∫
Ω
f(u)udx.
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Note that by the inequalities (1.1.3) and (1.1.5), for any ε > 0, α > 0 and q > 2, we have

f(un(x))un(x) ≤ ε|un(x)|2 + Cε|un(x)|q exp
(
α|un(x)|2

)
:= g(un(x)).

We now prove that (g(un)) is convergent in L1(Ω). First note that∫
Ω
|un|2dx→

∫
Ω
|u|2dx

and

|un|q → |u|q in L2(Ω), (1.2.2)

since the embedding H ↪→ Lr(Ω is compact for r ≥ 1. Moreover, using (1.2.1) and choosing
α = 16π2

K2 , we conclude by Theorem 1.1.1 that∫
Ω
exp

(
2α|un(x)|2

)
dx ≤

∫
Ω
exp

[
2αK2

(
|un(x)|
∥un∥

)2]
dx

≤
∫
Ω
exp

[
32π2

(
|un(x)|
∥un∥

)2]
dx

≤ M. (1.2.3)

Since
exp

(
α|un(x)|2

)
→ exp

(
α|u(x)|2

)
a.e. in Ω,

we use [50, Lemma 4.8] and conclude that

exp

(
α|un|2

)
⇀ exp

(
α|u|2

)
in L2(Ω). (1.2.4)

Now using (1.2.2), (1.2.4) and [50, Lemma 4.8] again, we conclude∫
Ω
f(un)undx→

∫
Ω
f(u)udx.

Lemma 1.2.2. There exists u0 ∈ N such that I(u0) = c.

Proof. Consider (un) ⊂ N a minimizing sequence. Then, by Lemma 1.1.6, (un) is bounded
in H and, up to a subsequence,

un ⇀ u0 in H.

We claim that u0 ̸≡ 0. Indeed, if u0 ≡ 0 then, from Lemma 1.2.1, we get

∥un∥2 ±
∫
Ω
|∇un|pdx =

∫
Ω
f(un)undx→ 0,

which implies

∥un∥2 ±
∫
Ω
|∇un|pdx→ 0. (1.2.5)
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From Theorem 1.1.2 for j = 1, κ1 = p, m = 2, Υ = 1
2 , κ3 = 2, N = 4 and κ2 = 2p

4−p , there
exist C1, C2 > 0 (∫

Ω
|∇un|p

)1/p

≤ C1

(∫
Ω
|∆un|2

)1/4

|un|1/2κ2 + C2|un|s

for s ≥ 1. Since
un ⇀ 0 in H,

we have that
±
∫
Ω
|∇un|pdx→ 0,

which implies by (1.2.5) that ∥un∥2 → 0, contradicting Lemma 1.1.5. Then un ⇀ u0 ̸= 0 in
H. Note that ∥u0∥2 ≤ lim inf

n→∞
∥un∥2. We are going to prove that

∥u0∥2 = lim
n→∞

∥un∥2. (1.2.6)

Applying Ekeland’s Variational Principle [92, Theorem 8.5], we may suppose that (un)
is a (PS)c sequence for I. Suppose, by contradiction, that (1.2.6) does not hold. Using a
density argument we have that I ′(u0)u0 = 0, which yields u0 ∈ N . From Lemma 1.1.3,
Lemma 1.2.1 and Fatou’s Lemma, we obtain

c = I(u0)−
1

p
I ′(u0)u0

=

(
1

2
− 1

p

)
∥u∥2 −

∫
Ω

(
1

p
f(u)u− F (u)

)
dx

< lim inf
n→+∞

[(
1

2
− 1

p

)
∥un∥2 −

∫
Ω

(
1

p
f(un)un − F (un)

)
dx

]
= lim inf

n→+∞

[
I(un)−

1

p
I ′(un)un

]
= c,

which is a contradiction. Hence, un → u0 in H and consequently I(u0) = c.

1.2.1 Proof of Theorem 1.0.1

Proof. The equality I ′(u0) = 0 is a consequence of Lemma 1.1.7. Thus, u0 is a ground state
solution of (P1).

1.3 Critical case

The critical case differs from the subcritical one mainly due to the more refined estimates
about the minimization level c (Lemma 1.3.1), which permit to state the convergence result
of Lemma 1.3.3. Once this convergence is established, the argument for the existence of a
weak solution is the same as in the subcritical case. In this section, in order to prove the
existence result in the critical case, we consider the auxiliary problem given by

(A)


∆2u±∆pu = |u|r−2u in Ω,

u = ∆u = 0,
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where r is the constant that appears in the hypothesis (f4). Associated to problem (A),
one has the functional

Ir(u) =
1

2

∫
Ω
|∆u|2dx± 1

p

∫
Ω
|∇u|pdx− 1

r

∫
Ω
|u|rdx,

and the Nehari manifold

Nr = {u ∈ H;u ̸= 0 : I ′r(u)u = 0}.

Taking r > 4, we haveH ↪→ Lr(Ω) with compact embedding. Then, considering problem
(A), we can use Theorem 1.0.1 for the case f(t) = |t|r−2t and we conclude that there exists
wr ∈ H such that

Ir(wr) = cr, I ′r(wr) = 0

and

cr ≥
(
r − p

pr

)∫
Ω
|wr|rdx, (1.3.1)

where cr = inf
Nr

Ir. The next result is an estimate to c = inf
N
I.

Lemma 1.3.1. The value c = inf
N
I satisfies

c ≤ p(r − 2)

2(r − p)

cr

τ2/(r−2)
.

Proof. Note that, considering problem (A) and by the hypothesis (f4) with τ ≥ 1, we have

∥wr∥2 ±
∫
Ω
|∇wr|pdx =

∫
Ω
|wr|rdx

≤ τ

∫
Ω
|wr|rdx

≤
∫
Ω
f(wr)wrdx.

This inequality implies that I ′(wr)wr ≤ 0. Then, there exists β ∈ (0, 1) such that βwr ∈ N .
Using (f4) again, we obtain

c ≤ I(βwr) ≤
β2

2
∥wr∥2 ±

βp

p

∫
Ω
|∇wr|pdx− τ

r
βr

∫
Ω
|wr|rdx.

Since β ∈ (0, 1), we get

c ≤ β2

2

[∫
Ω
|∆wr|2dx±

∫
Ω
|∇wr|pdx

]
− τ

r
βr

∫
Ω
|wr|rdx.

Since I ′r(wr) = 0, we conclude that

c ≤ β2

2

∫
Ω
|wr|rdx− τ

r
βr

∫
Ω
|wr|rdx

=

[
β2

2
− τ

βr

r

]∫
Ω
|wr|rdx.
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Using (1.3.1), we have

c ≤
[
β2

2
− τ

βr

r

]
crpr

(r − p)
≤ max

s≥0

[
s2

2
− τ

sr

r

]
crpr

(r − p)
.

By some lementary algebraic manipulations, we get

c ≤ p(r − 2)

2(r − p)

cr

τ2/(r−2)
.

Lemma 1.3.2. If (un) ⊂ N is a minimizing sequence, then

lim sup
n→∞

∥un∥2 ≤
16π2

α0
.

Proof. Using the estimate from Lemma 1.1.6, we have

∥un∥2 ≤
2cp

(p− 2)
+ on(1).

By the estimate on the value c in Lemma 1.3.1, we get

∥un∥2 ≤
p2(r − 2)

(p− 2)(r − p)

cr

τ2/(r−2)
+ on(1).

Taking τ > τ∗ where τ∗ is given by

τ∗ =

 p2(r − 2)

(p− 2)(r − p)

cr(
16π2

α0

)1/2


(r−2)/2

and the result follows.

The next result is the counterpart of Lemma 1.2.1 for the critical case.

Lemma 1.3.3. If (un) ⊂ N is a minimizing sequence, then∫
Ω
f(un)undx→

∫
Ω
f(u)udx

and ∫
Ω
F (un)dx→

∫
Ω
F (u)dx.

Proof. We prove only the first convergence, because the second follows by the same reason-
ing. By the Lemma 1.3.2, we have

lim sup
n→∞

∥un∥2 <
16π2

α0
(1.3.2)

Then, exists n0 ∈ N and α > α0 such that

∥un∥2 ≤
16π2

α0
for all n ≥ n0.
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Up to a subsequence,

un → u in L2(Ω) and un(x) → u(x) a.e. in Ω

and, from continuity of f ,

f(un(x))un(x) → f(u(x))u(x) a.e in Ω.

Arguing as in Lemma 1.2.1, it is sufficient to prove that there is g : R → R such that
|f(un)un| ≤ g(un) with (g(un)) convergent in L1(Ω). Note that by the inequalities (1.1.3)
and (1.1.5), we have

f(un(x))un(x) ≤ ε|un(x)|2 + Cε|un(x)|q exp
(
α|un(x)|2

)
=: g(un(x)).

First note that ∫
Ω
|un|2dx→

∫
Ω
|u|2dx

and

|un|q → |u|q in L2(Ω). (1.3.3)

Moreover, using (2.4.1) and choosing α > α0, we conclude by Theorem 1.1.1 that∫
Ω
exp

(
αs|un(x)|2

)
dx ≤

∫
Ω
exp

[
32π2

(
|un(x)|
∥un∥

)2]
dx ≤M. (1.3.4)

Since
exp

(
α|un(x)|2

)
→ exp

(
α|u(x)|2

)
a.e. in Ω,

we use [50, Lemma 4.8] and conclude that

exp

(
α|un|2

)
⇀ exp

(
α|u|2

)
in L2(Ω). (1.3.5)

Now using (3.2.5), (3.2.6) and [50, Lemma 4.8] again, we conclude∫
Ω
f(un)undx→

∫
Ω
f(u)udx.

1.3.1 Proof of the Theorem 1.0.2

Proof. Considering Lemma 1.2.2, there exists u0 ∈ N such that I(u0) = c. Now, by Lemma
1.1.7, we conclude I ′(u0) = 0. Thus, u0 has a ground state solution of (P1).
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Chapter 2

Existence and multiplicity of
nontrivial solutions to a class of
elliptic Kirchhoff-Boussinesq type
problems

In this chapter we are concerned with the existence and multiplicity of nontrivial solutions
for the following class of problems

(P2)


∆2u±∆pu = f(u) + β|u|2∗∗−2u in Ω,

∆u = u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, 2 < p ≤ 2∗ = 2N
N−2 , for N ≥ 3. In this chapter

we also use 2∗∗ = 2N
N−4 if N ≥ 5. We consider the subcritical case β = 0 and the critical

case β = 1. The hypotheses on the function f are the following:

(f1)
′ There exists C > 0 such that the function f satisfies

|f(t)| ≤ C(1 + |t|q−1).

(f2) The following limit holds:

lim
t→0+

f(t)

t
= 0.

(f3) The function t→ f(t)

|t|p−2t
is decreasing in (−∞, 0) and increasing in (0,+∞).

(f4) There are p < r < 2∗∗ and τ∗ > 0 such that

f(t) ≥ τ |t|r−2t,

for all t ≥ 0 and for all τ > τ∗, where τ∗ will be fixed in Lemma 2.3.2.

Our main results are:

Theorem 2.0.1. Assume that conditions (f1)
′, (f2), (f3), (f4) hold with β = 0 and 2 <

p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗. Then, problem (P2) has a ground state solution.
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Theorem 2.0.2. Assume that conditions (f1)
′, (f2), (f3), (f4) hold with β = 1 and 2 <

p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗. Then, problem (P2) has a ground state solution.

Since now we intend to find a multiplicity of solutions, in the next theorems, we will assume
that f is equal to a prototype that satisfies the assumptions (f1)

′, (f2), (f3), (f4), that is,

f(t) = τ |t|q−2t.

Theorem 2.0.3. Assume β = 0, 1 < q < 2 < p ≤ 2∗. Then, there exists τ∗ > 0 such that
problem (P2) has infinitely many weak solutions, for all τ ∈ (0, τ∗).

Theorem 2.0.4. Assume β = 1, 1 < q < 2 < p ≤ 2∗. Then, there exists τ∗ > 0 such that
problem (P2) has infinitely many weak solutions, for all τ ∈ (0, τ∗).

The plan of the chapter is the following: in Section 2.1 we show the variational framework
and we prove some technical lemmas. Using Nehari technique in Section 2.2 we study the
subcritical with 2 < p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗. In section 2.3, using the
Mountain Pass Theorem, let us consider the critical case with 2 < p ≤ 2∗ < q < 2∗∗ or
2 < p < q ≤ 2∗. In section 2.4 using the Krasnoselskii genus we study of multiplicity with
β = 0 and 1 < q < 2 < p ≤ 2∗. In Section 2.5, we show the existence and multiplicity for
the case β = 1 and 1 < q < 2 < p ≤ 2∗.

2.1 The variational framework and some technical lemmas

Motivated by the work of F. Gazzola, H. C. Grunau and G. Sweers in [41, Theorem 2.30], in
this second chapter of the thesis, we will consider the following space H := H2(Ω)∩H1

0 (Ω).
We have a well defined inner product

⟨v, w⟩ =
∫
Ω
∆v∆wdx, ∀u, v ∈ H2(Ω) ∩H1

0 (Ω),

and associated norm given by

∥u∥ :=

(∫
Ω
|∆u|2dx

)1/2

, ∀u ∈ H2(Ω) ∩H1
0 (Ω),

From now on we denote by H = (H2(Ω) ∩H1
0 (Ω), ⟨·, ·⟩) is a Hilbert space.

Consider the functional I : H → R associated given by

I(u) =
1

2

∫
Ω
|∆u|2dx± 1

p

∫
Ω
|∇u|pdx−

∫
Ω
F (u)dx− β

2∗∗

∫
Ω
|u|2∗∗dx.

Since 2 < p < 2∗, using Theorem 1.1.2 for j = 1, m = 2, 1
2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, s = 2,

we have that H ↪→W 1,p
0 (Ω) is a continuous embedding and as a consequence we obtain that

I is well-defined and of C1 class. Moreover,

I ′(u)ϕ =

∫
Ω
∆u∆ϕdx±

∫
Ω
|∇u|p−2∇u∇ϕ dx−

∫
Ω
f(u)ϕ dx− β

2∗∗

∫
Ω
|u|2∗∗−2uϕdx,

for all ϕ ∈ H. Then, the critical points of I are weak solution of (P2). The Nehari manifold
associated to the functional I is given by

N = {u ∈ H\{0} : J(u) = 0},
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where J(u) = I ′(u)u, for u ∈ H. Note that, from (f1)
′ and (f2), for any ε > 0 there exists

C(ε) > 0 such that

|f(t)| ≤ ε|t|+ Cε|t|q−1. (2.1.1)

and

|F (t)| ≤ ε

2
|t|2 + Cε

q
|t|q. (2.1.2)

Since Ω is bounded and f has subcritical growth, if (un) ⊂ H is such that un ⇀ u in
H, then ∫

Ω
f(un)undx→

∫
Ω
f(u)udx (2.1.3)

and ∫
Ω
F (un)dx→

∫
Ω
F (u)dx. (2.1.4)

In order to use critical point theory, we firstly derive results related to the Palais-Smale
compactness condition. We say that a sequence (un) is a Palais-Smale sequence for the
functional I at level c∗ if

I(un) → c∗

and
I ′(un) → 0 in (H)′,

where
c∗ = inf

η∈Γ
max
t∈[0,1]

I(η(t)) > 0

and
Γ := {η ∈ C([0, 1], H) : η(0) = 0, I(η(1)) < 0}.

If every Palais-Smale sequence of I has a strong convergent subsequence, then one says that
I satisfies the Palais-Smale condition ((PS) for short).

2.2 The case β = 0 and 2 < p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗

In the next result we prove that N is not empty and I restricted to N is bounded from
below.

Lemma 2.2.1. For each u ∈ H, there exists an unique t > 0 such that tu ∈ N . Moreover,
I(u) > 0 for every u ∈ N .

Proof. Given u ∈ H \{0}, let γu(t) = I(tu) for t > 0. Then tu ∈ N if and only if γ′u(t) = 0.
Note that, taking ε > 0 sufficiently small in (2.1.2) and using best Sobolev embedding
H ↪→ L2(Ω) and H ↪→ Lq(Ω), there exists S−1

2 > 0 and S− q
2

q such that

γu(t) =
t2

2
∥u∥2 ± tp

p

∫
Ω
|∇u|pdx−

∫
Ω
F (tu)dx

≥ t2
(
1

2
− εS−1

2

2

)
∥u∥2 ± tp

p

∫
Ω
|∇u|pdx− Cε

q
tq
∫
Ω
|u|qdx

≥ t2
(
1

2
− εS−1

2

2

)
∥u∥2 ± tp

p

∫
Ω
|∇u|pdx− CεS

−q
2
q

q
tq∥u∥q.
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Thus, since 2 < p < q, we have γu(t) > 0 for all 0 < t sufficiently small.

Now, from (f4) and using 2 < p < r, for all τ > 0, we have

γu(t)

tp
≤ 1

2tp−2
∥u∥2 ± 1

p

∫
Ω
|∇u|pdx− τ

tr−p

r

∫
Ω
|u|rdx.

Hence, lim
t→+∞

γu(t) = −∞. Then, there exists at least one t(u) > 0 such that γ′u(t(u)) = 0,

i.e. t(u)u ∈ N . Moreover, in the case 2 < p, we get

γ′u(t) = tp−1

[
1

tp−2
∥u∥2 ±

∫
Ω
|∇u|pdx−

∫
Ω

f(tu)

tp−1
udx

]
.

From (f3) we conclude that γ′u(t)
tp−1 is decreasing. Then, it vanishes exactly once, and conse-

quently there is no other t > 0 such that tu ∈ N . Note, in particular, that t(u) is a global
maximum point of γu and γu(t(u)) > 0, i.e. I(t(u)u) > 0. Since t(u) = 1 if u ∈ N , we
deduce that I(u) > 0 for every u ∈ N .

We set
c := inf

N
I.

In the next result, we prove that minimizing sequences in N does not converge to 0.

Lemma 2.2.2. There exists a constant C > 0 such that 0 < C ≤ ∥u∥ for every u ∈ N .

Proof. Since that u ∈ N, we get∫
Ω
|∆u|2dx±

∫
Ω
|∇u|pdx =

∫
Ω
f(u)udx

By the inequality (2.1.1)∫
Ω
|∆u|2dx±

∫
Ω
|∇u|pdx ≤ ε

2

∫
Ω
|u|2dx+

Cε
q

∫
Ω
|u|qdx

Using Sobolev embedding H ↪→ L2(Ω) and H ↪→ Lq(Ω), there exists S−1
2 > 0 and S− q

2
q , we

get

(
1− εS−1

2

2

)
∥u∥2 ±

∫
Ω
|∇u|pdx ≤ S

−q
2
q

q
Cε∥u∥q.

In the case that the second term in the associated functional I is positive, this inequality
implies

(
1− εS−1

2

2

)
∥u∥2 ≤

(
1− εS−1

2

2

)
∥u∥2 +

∫
Ω
|∇u|pdx ≤ S

−q
2
q

q
Cε∥u∥q.

Consequently

0 <

(2− εS−1
2 )q

2CεS
−q
2
q

1/(q−2)

≤ ∥u∥. (2.2.1)
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Since 2 < q the result follows. In the case that the second term in the associated functional
I is negative, using Theorem 1.1.2 for j = 1, m = 2, 1

2 ≤ Υ ≤ 1, k1 = p, κ3 = 2, s = q and
by continuous embedding, we get

(
1− εS−1

2

2

)
∥u∥2 ≤ S

−p
2
p

p
∥u∥p + S

−q
2
q

q
Cε∥u∥q

≤ max

S −p
2
p

p
,
S

−q
2
q

q
Cε

 ∥u∥q

Since 2 < p < q, this implies that

0 <


2− εS−1

2

2

[
S

−p
2

p

p ,
S

−q
2

q

q Cε

]


1/(q−2)

≤ ∥u∥

the lemma is proved.

In the next lemma, we prove that all minimizing sequences in N are bounded in H.

Lemma 2.2.3. If (un) ⊂ N is a minimizing sequence to I, then (un) is bounded in H.

Proof. Note that I(un) → c and I ′(un)un = 0. Then, from Lemma 1.1.3, we have

c+ on(1)∥un∥ = I(un)−
1

p
I ′(un)un

=

(
1

2
− 1

p

)
∥un∥2 +

∫
Ω

(
1

p
f(un)u− F (un)

)
dx

≥
(
1

2
− 1

p

)
∥un∥2

and the result follows.

To end up this section, let us prove that if the minimum of I on N is achieved in some
u ∈ N , then in fact u is a critical point of I. This follows from some arguments used in [64].

Lemma 2.2.4. If u0 ∈ N is such that

I(u0) = min
N

I,

then I ′(u0) = 0.

Proof. The proof follows in the same spirit as in Lemma 1.1.7.

2.2.1 Proof of the Theorem 2.0.1

Proof. Consider (un) ⊂ N a minimizing sequence for c. Then, by the Lemma 2.2.3, (un) is
bounded in H and, up to a subsequence,

un ⇀ u0 in H.
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We claim that u0 ̸≡ 0. Indeed, if u0 ≡ 0 then, from (2.1.3), we get

∥un∥2 ±
∫
Ω
|∇un|pdx =

∫
Ω
f(un)undx→ 0, (2.2.2)

which implies

∥un∥2 ±
∫
Ω
|∇un|pdx→ 0. (2.2.3)

From Theorem 1.1.2 for j = 1, κ1 = p, m = 2, Υ = 1
2 , κ3 = 2 and k2 = 2p

4−p , we have
that there exist C1, C2 > 0(∫

Ω
|∇un|p

)1/p

≤ C1

(∫
Ω
|∆un|2

)1/4

|un|1/2κ2 + C2|un|s

for s ≥ 1. Since
un ⇀ 0 in H,

we have that
±
∫
Ω
|∇un|pdx→ 0,

which implies by (2.2.2) that ∥un∥2 → 0, contradicting Lemma 2.2.2. Then un ⇀ u0 ̸= 0 in
H.
Note that ∥u0∥2 ≤ lim inf

n→∞
∥un∥2. We are going to prove that

∥u0∥2 = lim
n→∞

∥un∥2. (2.2.4)

Applying Ekeland’s Variational Principle [92, Theorem 8.5], we may suppose that (un) is
a (PS)c for I. Suppose, by contradiction, that (2.2.4) does not hold. Using a density
argument we have that I ′(u0)u0 = 0, where we conclude that u0 ∈ N . From Lemma 1.1.3,
Fatou’s Lemma and (2.1.4) we obtain

c ≤ I(u0)−
1

p
I ′(u0)u0

=

(
1

2
− 1

p

)
∥u0∥2 +

∫
Ω

(
1

p
f(u0)u0 − F (u0)

)
dx

< lim inf
n→+∞

[(
1

2
− 1

p

)
∥un∥2 +

∫
Ω

(
1

p
f(un)un − F (un)

)
dx

]
= lim inf

n→+∞

[
I(un)−

1

p
I ′(un)un

]
= c,

which is a contradiction. Hence, un → u0 in H and consequently, I(u0) = c.

2.3 The case β = 1 and 2 < p ≤ 2∗ < q < 2∗∗ or 2 < p < q ≤ 2∗

In this subsection, we use the Mountain Pass Theorem to show the existence of a solution,
taking into consideration the condition (PS) for the functional I is satisfied under certain
constants that will be constructed.

45



Lemma 2.3.1. The functional I satisfies the following conditions:
(i) There exist ρ1, ρ2 > 0 such that:

I(u) ≥ ρ2 with ∥u∥ = ρ1

(ii) There exists e ∈ Bc
ρ1(0) with I(e) < 0.

Proof. i) Note that, taking ε > 0 sufficiently small in (2.1.2) and using Sobolev embedding,
H ↪→ L2(Ω) and H ↪→ Lq(Ω), there exists S−1

2 > 0 and S− q
2

q > 0, we get

I(u) =
1

2

∫
Ω
|∆u|2dx± 1

p

∫
Ω
|∇u|pdx−

∫
Ω
F (u)dx− 1

2∗∗

∫
Ω
|u|2∗∗dx

≥ 1

2

∫
Ω
|∆u|2dx± 1

p

∫
Ω
|∇u|pdx−

∫
Ω

(
ε

2
|u|2 + Cε

q
|u|q

)
dx− 1

2∗∗

∫
Ω
|u|2∗∗dx

=

(
1

2
− εS−1

2

2

)
∥u∥2 ± 1

p

∫
Ω
|∇u|pdx− Cε

q
S

−q
2
q ∥u∥q − S

−2∗∗
2

2∗∗
∥u∥2∗∗ .

In the case that the second term in the associated functional I is positive

I(u) ≥
(
1

2
− εS−1

2

2

)
∥u∥2 − Cε

q
S

−q
2
q ∥u∥q − S

−2∗∗
2

2∗∗
∥u∥2∗∗ .

Since 2 < q, we have

I(u) ≥ ρ2 > 0, for all ∥u∥ = ρ1,

where

ρ2 =

[(
1

2
− εS−1

2

2

)
− Cε

q
S

−q
2
q ρq−2

1 −−S
−2∗∗

2

2∗∗
ρ2∗∗−2
1

]
ρ21.

This establishes (i).

In the case that the second term in the associated functional I is negative, using Theorem
1.1.2 for j = 1, m = 2, 1

2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, s = q and by continuous embedding, we
get

I(u) ≥
(
1

2
− εS−1

2

2

)
∥u∥2 − 1

p
S

−p
2
p ∥u∥p − Cε

q
S

−q
2
q ∥u∥q − S

−2∗∗
2

2∗∗
∥u∥2∗∗ .

where

ρ2 =

[(
1

2
− εS−1

2

2

)
− 1

p
S

−p
2
p ρp−2

1 − Cε
q
S

−q
2
q ρq−2

1 − S
−2∗∗

2

2∗∗
ρ2∗∗−2
1

]
ρ21.

This establishes (i).

(ii) Fixed ϕ ∈ C∞
0 (Ω). Now, from (f4) and for all τ > 0, we have

I(tϕ)

tp
≤ 1

2tp−2
∥ϕ∥2 ± 1

p

∫
Ω
|∇ϕ|pdx− τ

tr−p

r

∫
Ω
|ϕ|rdx− t2∗∗−p

2∗∗

∫
Ω
|ψ|2∗∗dx.

Since 2 < p < r, there exists t̄ > 0 large such that e = t̄ϕ satisfies I(e) < 0 and
∥e∥ > ρ2.
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We devote the rest of this section to show that c∗ is attained by a positive function. As
in [25], we are able to compare the minimax level c∗ with a suitable number which involves
the constants

S = inf
v∈H,v ̸=0


∫
Ω
|∆u|2dx(∫

Ω
|v|2∗∗dx

)2/2∗∗


and

S = inf
v∈H,v ̸=0


∫
Ω
|∆u|2dx+

∫
Ω
|∇v|pdx(∫

Ω
|v|2∗∗dx

)2/2∗∗


Lemma 2.3.2. If the conditions (f1)

′, (f2), (f3), (f4) hold, then there exists τ∗ > 0 such
that

cτ < min

{(
1

p
− 1

2∗∗

)
S
N/4

,
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
,

(
1

2
− 1

p

)}
for all τ > τ∗.

Proof. If we define η∗(t) = te for t ∈ [0, 1], where e = tϕ is the function given by Lemma
2.3.1. It follows that η∗ ∈ Γ and thus

0 < c∗ ≤ max
t∈[0,1]

I(η∗(t))

≤ max
t≥0

I(η∗(t))

≤ max
t≥0

[
t2

2
∥e∥2 ± tp

p

∫
Ω
|∇e|pdx− τtr

r

∫
Ω
|e|rdx

]
.

In the case that the second term in the associated functional I is negative, we have

0 < c∗ ≤ max
t≥0

[
t2

2
∥e∥2 − τtr

r

∫
Ω
|e|rdx

]
=

t2τ
2
∥e∥2 − τtrτ

r

∫
Ω
|e|rdx,

where

tτ =

 ∥e∥2

τ

∫
Ω
|e|rdx


1/(r−2)

.

Then,

0 < c∗ ≤ 1

2

 ∥e∥2

τ

∫
Ω
|e|rdx


2/(r−2)

∥e∥2 − τ
1

r

 ∥e∥2

τ

∫
Ω
|e|rdx


r/(r−2) ∫

Ω
|e|rdx

=

(
1

2
− 1

r

) [
∥e∥2

]r/(r−2)[∫
Ω
|e|rdx

]2/(r−2)

1

τ2/(r−2)
.
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For

τ∗ =


(
1

2
− 1

r

) [
∥e∥2

]r/(r−2)[∫
Ω
|e|rdx

]2/(r−2)

4p

(p− 2)min

{
1

Cp
, S

}

(r−2)/2

,

we have τ > τ∗ for

cτ <
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
.

In the case that the second term in the associated functional I is positive, we have

0 < c∗ ≤ max
t∈[0,1]

I(η∗(t))

≤ max
t∈[0,1]

[(
p+ 2

p

)
t2

2

(
∥e∥2 +

∫
Ω
|∇e|pdx

)
− τtr

r

∫
Ω
|e|rdx

]
=

(
p+ 2

p

)
t2τ
2

(
∥e∥2 +

∫
Ω
|∇e|pdx

)
− τtrτ

r

∫
Ω
|e|rdx,

where

tτ =

∥e∥2 +
∫
Ω
|∇e|pdx

τ

∫
Ω
|e|rdx


1/(r−2)

.

Then,

0 < c∗ ≤
(
p+ 2

p

)∥e∥2 +
∫
Ω
|∇e|pdx

τ

∫
Ω
|e|rdx


2/(r−2)(

∥e∥2 +
∫
Ω
|∇e|pdx

)

−τ 1
r


(
∥e∥2 +

∫
Ω
|∇e|pdx

)
τ

∫
Ω
|e|rdx


r/(r−2) ∫

Ω
|e|rdx

=

(
p+ 2

p
− 1

r

) [
∥e∥2 +

∫
Ω
|∇e|pdx

]r/(r−2)

[∫
Ω
|e|rdx

]2/(r−2)

1

τ2/(r−2)
.

For

τ∗ =


(
p+ 2

p
− 1

r

) [
∥e∥2 +

∫
Ω
|∇e|pdx

]r/(r−2)

[∫
Ω
|e|rdx

]2/(r−2)

2∗∗p

(2∗∗ − p)S
N/4


(r−2)

2

we have τ > τ∗ for

c∗ <

(
1

p
− 1

2∗∗

)
S
N/4

.
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Lemma 2.3.3. Let (un) be a sequence in H such that I(un) → c∗ and I ′(un) → 0 as
n→ ∞. Then

(i) un ⇀ u in H;

(ii) The weak limit u ∈ H is a critical point of I, that is, I ′(u) = 0;

(iii) un → u in H.

Proof. Now we prove (i). Note that from Lemma 1.1.3, we have

c+ on(1)∥un∥ = I(un)−
1

p
I ′(un)un

=

(
1

2
− 1

p

)
∥un∥2 +

∫
Ω

(
1

p
f(un)u− F (un)

)
dx

+

(
1

p
− 1

2∗∗

)∫
Ω
|un|2∗∗dx

≥
(
1

2
− 1

p

)
∥un∥2, (2.3.1)

which implies that (un) is bounded in H. Then, up to a subsequence, un ⇀ u in H.

Now we prove (ii). As a consequence of weak convergence, for all ϕ ∈ H, we have that∫
Ω
∆un∆ϕdx =

∫
Ω
∆u∆ϕdx+ on(1).

From [50, Lemme 4.8], for all ϕ ∈ H, we get∫
Ω
|∇un|p−2∇un∇ϕdx =

∫
Ω
|∇u|p−2∇u∇ϕdx+ on(1)

and ∫
Ω
| un|2∗∗−2unϕdx =

∫
Ω
|u|2∗∗−2uϕdx+ on(1).

Since Ω is bounded and f has subcritical growth, for all ϕ ∈ H, we obtain,∫
Ω
f(un)ϕdx =

∫
Ω
f(u)ϕdx+ on(1).

Since I ′(un)ϕ = on(1), for all ϕ ∈ H, using these convergence above, I ′(u)ϕ = 0, for all
ϕ ∈ H.

Now we prove iii). Consider vn = un − u. Then, from [50, Lemma 4.6] and arguing
as [5, Lemma 3.1]), we have

I(vn) = I(un)− I(u) + on(1) = c∗ − I(u) = c̃.

We also know that the following expression is true∫
Ω
[F (un)− F (u)− F (un − u)]dx = on(1) (2.3.2)

and

sup
φ∈H,∥φ∥=1

∫
Ω
[f(un)− f(u)− f(un − u)]φdx = on(1). (2.3.3)
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Here, we only show (2.3.2) since the verification of (2.3.3) is similar. Let vn := un − u.
Then, vn ⇀ 0 in H and u(x) → u(x) a.e. in Ω. It follows from (2.1.1) that

|F (vn + u)− F (u)| ≤
∫ 1

0
|f(vn + tu)u|dt

≤
∫ 1

0

(
ε|vn + tu||u|+ C(ε)|vn + tu|q−1|u|

)
dx

≤ C

(
ε|vn||u|+ ε|u|2 + C(ε)|vn|q−1|u|+ C(ε)|u|q

)
.

By Young inequality, we get that

|F (vn + u)− F (u)| ≤ C

(
ε|vn|2 + ε|u|2 + C(ε)|vn|q + C(ε)|u|q

)
.

With combining with (2.1.2) yields that

|F (vn + u)− F (vn)− F (u)| ≤ C

(
ε|vn|2 + ε|u|2 + C(ε)|vn|q + C(ε)|u|q

)
, ∀n ∈ N.

Let

Rn(x) := max
{
|F (vn + u)− F (vn)− F (u)| − C(ε)(|vn|2 + |vn|q), 0

}
.

Then 0 ≤ Rn(x) ≤ C(ε)(|vn|2 + |u|q) ∈ L1(Ω). Thus, the Lebesgue dominated convergence
theorem implies that ∫

Ω
Rn(x)dx→ 0, as n→ ∞. (2.3.4)

Furthermore, by the definition of Rn(x), we have

|F (vn + u)− F (vn)− F (u)| ≤ C(ε)(|vn|2 + |vn|q) +Rn(x), ∀n ∈ N

which together with (2.1.1) and (2.3.4) shows that∫
Ω
|F (vn + u)− F (vn)− F (u)|dx ≤ C(ε)(∥vn∥22 + ∥vn∥qq) + ε

≤ C(ε)(∥vn∥2 + ∥vn∥q) + ε ≤ Cε

for n sufficiently large. Hence, (2.3.2) holds.

By the weak convergence, (2.3.2) and [3, Theorem 1] , it follows that

I(vn)− I(un) + I(u) =
1

2

∫
Ω
(|∆un −∆u|2 − |∆un|2 + |∆u|2)dx

=
1

p

∫
Ω
(|∇un −∇u|p − |∇un|p + |∇u|p)dx

−
∫
Ω
(F (un − u)− F (un) + F (u)) dx

= ⟨u, u⟩ − ⟨un, u⟩+ on(1) (2.3.5)

taking limit,
I(vn) → c∗ − I(u) = c̃., as n→ +∞.
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In order to prove that
I ′(vn) → 0, n→ ∞, in H

′
.

Note that ∫
Ω
[f(un)− f(u)− f(vn)]ϕdx = on(1) (2.3.6)

and ∫
Ω
|∇un|p−2∇un∇ϕdx =

∫
Ω
|∇u|p−2∇u∇ϕdx+ on(1) (2.3.7)

and ∫
Ω
| un|2∗∗−2unϕdx =

∫
Ω
|u|2∗∗−2uϕdx+ on(1). (2.3.8)

From the weak convergence, (2.3.6), (2.3.7) and [3, Theorem 1] , it follows that

I ′(vn)φ− I ′(un)φ =

∫
RN

((∆un −∆u)∆φ−∆un∆φ)dx

±
∫
Ω

(
|∇(un − u)|p−2∇(un − u)− |∇un|p−2∇un)∇ϕdx

−
∫
RN

(f(un − u)φ− f(un)φ)dx

+

∫
Ω
(|(un − u)|2∗∗−2(un − u)− |un|2∗∗−2un)ϕdx

= −⟨u, φ⟩+
∫
Ω
f(u)φdx

= −I ′(u)φ

taking limit,
Note that for (2.3.1), c∗ ≥ c̃. Moreover, for all ϕ ∈ H, we get

I ′(vn)ϕ = I ′(un)ϕ− I ′(u)ϕ = on(1),

which implies that

∥vn∥2 ±
∫
Ω
|∇vn|pdx =

∫
Ω
|vn|2∗∗dx+ on(1). (2.3.9)

In the case that the second term in (2.3.9) is positive, we have

∥vn∥2 +
∫
Ω
|∇vn|pdx→ L and

∫
Ω
|vn|2∗∗dx→ L.

Note that

c̃+ on(1) =
1

2
∥vn∥2 +

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

≥ 1

p
∥vn∥2 +

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

=
1

p

[
∥vn∥2 +

∫
Ω
|∇vn|pdx

]
− 1

2∗∗

∫
Ω
|vn|2∗∗dx.
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In this case, considering L > 0 we obtain

c̃ ≥
(
1

p
− 1

2∗∗

)
L.

Now using the definition of S, we have

S ≤
∥vn∥2 +

∫
Ω
|∇vn|pdx(∫

Ω
|vn|2∗∗

)2/2∗∗
= L

4/N
+ on(1).

Then, SN/4 ≤ L. We conclude

c∗ ≥ c̃ ≥
(
1

p
− 1

2∗∗

)
S
N/4

,

which is a contradiction with Lemma 2.3.2. Then, L = 0 and ∥vn∥2 → 0, which implies that
un → u in H.

In the case that the second term in (2.3.9) is negative, we have

∥un∥2 → L̃ and
∫
Ω
|un|2∗∗dx+

∫
Ω
|∇un|pdx→ L̃. (2.3.10)

with L̃ = L̃1 + L̃2, where∫
Ω
|∇un|pdx→ L̃1 and

∫
Ω
|un|2∗∗dx→ L̃2

Since 2 < p < 2∗∗ and
∫
RN

F (un)dx→ 0, we have

c̃+ on(1) =
1

2
∥vn∥2 −

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

≥ 1

2
∥vn∥2 −

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|pdx

=
1

2
∥vn∥2 −

1

p

[∫
Ω
|vn|2∗∗dx+

∫
Ω
|∇vn|pdx

]
.

Letting n→ ∞ and using (2.3.10) we get

c̃ ≥
(
1

2
− 1

p

)
L̃. (2.3.11)

If L̃ ≥ 1, then,

c̃ ≥
(
1

2
− 1

p

)
, (2.3.12)

which is a contradiction by the hypotheses.
On the other hand, we can use the definition of S to get

S

(∫
Ω
|un|2∗∗dx

)2/2∗∗

≤
∫
Ω
|∆un|2dx (2.3.13)
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Now from Theorem 1.1.2, there exits C > 0 such that(∫
Ω
|∇un|pdx

)1/p

≤ C

(∫
Ω
|∆un|2dx

)1/2

.

Then,

1

Cp

(∫
RN

|∇un|pdx
)2/p

≤
∫
RN

|∆un|2dx (2.3.14)

Using (2.3.13) and (2.3.14) we obtain

∥un∥2 ≥ 1

2
min

{
1

Cp
, S

}{(∫
Ω
|∇un|pdx

)2/p

+

(∫
Ω
|un|2∗∗dx

)2/2∗∗
}
.

Suppose that 0 < L̃ < 1. In this case 0 < L̃1, L̃2 < 1. Then, since 2 < p < 2∗∗, we have

∥un∥2 ≥ 1

2
min

{
1

Cp
, S

}{∫
Ω
|∇un|pdx+

∫
Ω
|un|2∗∗dx

}2/p

.

Taking the limit we conclude that

L̃ ≥ 1

2
min

{
1

Cp
, S

}
L̃2/p

Since L̃ > 0, we obtain

L̃(p−2)/p ≥ 1

2
min

{
1

Cp
, S

}
and from (2.3.11) that

c∗ ≥ c̃ ≥
(
1

2
− 1

p

)
1

2
min

{
1

Cp
, S

}p/(p−2)

,

which is a contradiction with Lemma 2.3.2. Then, L̃ = 0 and ∥vn∥2 → 0, which implies that
un → u in H.

2.3.1 Proof of Theorem 2.0.2

Proof. The proof of Theorem 2.0.2 is a consequence of Lemma 2.3.1 and Lemma 2.3.3.

2.4 The case β = 0 and 1 < q < 2 < p ≤ 2∗

We will start by considering some basic notions on the Krasnoselskii genus which we will
use in the proofs of our main results.

Let E be a real Banach space. Let us denote by A the class of all closed subsets
A ⊂ E \ {0} that are symmetric with respect to the origin, that is, u ∈ A implies −u ∈ A.

Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined as being the least positive
integer k such that there is an odd mapping ϕ ∈ C(A,Rk) such that ϕ(x) ̸= 0 for all x ∈ A.
If k does not exist we set γ(A) = ∞. Furthermore, by definition, γ(∅) = 0.

In the sequel we will establish only the properties of the genus that will be used through
this work. More information on this subject may be found in the references [2], [28], [35]
and [52].
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Proposition 2.4.1. Let A and B be sets in A.
(i) If there exists an odd application φ ∈ C(A,B) then γ(A) ≤ γ(B).
(ii) If there exists an odd homeomorphism φ : A→ B then γ(A) = γ(B). (iii) If A is a

compact set, then there exists a neighborhood K ∈ A of A such that γ(A) = γ(K).
(iv) If γ(B) <∞, then γ(A\B) ≥ γ(A)− γ(B).

Proposition 2.4.2. Let E = RN and ∂Ω be the boundary of an open, symmetric and
bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 2.4.3. γ(SN−1) = N where SN−1 is a unit sphere of RN .

Proposition 2.4.4. If K ∈ A, 0 /∈ K and γ(K) ≥ 2, then K has infinitely many points.

The proofs of these results can be found, for example, in Proposition 7.5, Remark 7.6
and Proposition 7.7 from [74]. We now present a result due to Clark [34].

Theorem 2.4.5. Let J ∈ C1(X,Rl) be a functional satisfying the Palais-Smale condition.
Furthermore, let us suppose that
(A1) J is bounded from below and even;
(A2) there is a compact set K ∈ A such that γ(K) = k and sup

x∈K
J(x) < J(0). Then J

possesses at least k pairs of distinct critical points and their corresponding critical values cj
are less than J(0).

Since we intend to find a multiplicity of solutions, in the next sections, we will assume that
f is equal to a prototype that satisfies the assumptions (f1)

′, (f2), (f3), (f4), that is,

f(t) = τ |t|q−2t.

In this section we study some properties related to the C1functional Iτ given by

Iτ (u) =
1

2
∥u∥2 ± 1

p

∫
Ω
|∇u|pdx− τ

q

∫
Ω
|u|qdx.

2.4.1 The case that the second term in the associated functional Iτ is
positive

Lemma 2.4.6. Iτ is bounded from below.

Proof. From Sobolev embedding, there is a positive contant C > 0 such that

Iτ (u) =
1

2
∥u∥2 + 1

p

∫
Ω
|∇u|pdx− τ

q

∫
Ω
|u|qdx

≥ 1

2
∥u∥2 − C

τ

q
∥u∥q,

showing that Iτ is coercive and, therefore, I is bounded from below.

Lemma 2.4.7. Iτ satisfies the (PS) condition.

Proof. Let (un) be a sequence in H such that

Iτ (un) → c and I ′τ (un) → 0.

Since Iτ is coercive, we conclude that (un) is bounded in H. Thus, passing to a subsequence,
if necessary, we have

un ⇀ u in H
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un → u in Lq(Ω)

and
un(x) → u(x) a.e in Ω.

Thus, from convergence in Lq(Ω) we get∫
Ω
|un|q dx−

∫
Ω
|un|q−2unu dx = on(1), (2.4.1)

and from the weak convergence∫
Ω
∆un∆udx− ∥u∥2 = on(1). (2.4.2)

Hence, from (2.4.1) and (2.4.2) we obtain

0 ≤ ∥un − u∥2 ≤ ∥un − u∥2 + Cp

∫
Ω
|∇(un − u)|pdx

≤ ∥un∥2 −
∫
Ω
∆un∆udx+

∫
Ω
|∇un|pdx−

∫
Ω
|∇un|p−2∇un∇udx

≤ Iτ
′(un)un − Iτ

′(un)u+ on(1)

= on(1),

where Cp is a constant which appears the standard inequality in given by

(|x|p−2x− |y|p−2y)(x− y) ≥ Cp|x− y|p,

if p ≥ 2. Thus, we conclude that un → u in H and the proof is complete.

2.4.2 Proof of Theorem 2.0.3 in the case that the second term in the
associated functional I is positive

Proof. Let Xk = span{e1, e2, ..., ek} be a subspace of H with dimXk = k. Thus, since
that Xk is continuously embedded in Lq(Ω) and using Theorem 1.1.2 for j = 1, m = 2,
1
2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, s = q, we get that the norms of H and Lq(Ω) are equivalent on
Xk and there exists a positive constant C(k) which depends on k, such that

C(k)∥u∥q ≤
∫
Ω
|u|q dx, for all u ∈ Xk.

Thus, we conclude that

Iτ (u) ≤
1

2
∥u∥2 + C̃

1

p
∥u∥p − τC(k)

1

q
∥u∥q,

for some C̃ > 0. Let 0 < R < 1 and u ∈ H be such that ∥u∥ ≤ R. Thus

Iτ (u) ≤ 1

2
∥u∥2 + C̃

1

p
∥u∥p − τC(k)

1

q
∥u∥q

≤ ∥u∥q
[(

1

2
+ C̃

1

p

)
∥u∥2−q − τC(k)

1

q

]
.
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Since 1 < q < 2, choosing 0 < R < min

{
1,

(
τC(k)2p

q(p+2C̃)

) 1
2−q

}
we have

Iτ (u) ≤ Rr
[(

1

2
+ C̃

1

p

)
R2−q − τC(k)

1

q

]
< 0 = Iτ (0),

for all u ∈ K = {u ∈ Xk : ∥u∥ = R} and for all τ > 0. This inequality implies

sup
u∈K

Iτ (u) < 0 = Iτ (0).

Since Xk and Rk are isomorphic and K and Sk−1 are homeomorphic, we conclude that
γ(K) = k. Moreover, Iτ is even. By Clark’s Theorem (Theorem 2.4.5), Iτ has at least k
pairs of different critical points. Since k is arbitrary, we found infinitely many critical points
of Iτ , that is, problem (P2) has infinitely many solutions.

We point out that in order to apply the Clark’s Theorem in the previous proof, we use
Lemmas 2.4.6 and 2.4.7.

2.4.3 The case that the second term in the associated functional Iτ is
negative

Since Iτ is not bounded from below, in this case, to apply genus theory, we will need to
make a truncation in the functional Iτ . In fact, the idea is to get a truncated functional Jτ
such that critical points u of Jτ with Jτ (u) < 0 are also critical points of Iτ .

Using Theorem 1.1.2 for j = 1, m = 2, 1
2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, s = q and by

continuous embedding, there are positive constants C, C̃ > 0 such that

Iτ (u) ≥
1

2
∥u∥2 − C̃

p
∥u∥p − C

τ

q
∥u∥q = g(∥u∥), (2.4.3)

where g(t) = 1
2 t

2 − C̃
p t
p − C τ

q t
q. So, there exists τ∗ > 0 such that, if τ ∈ (0, τ∗), then g

attains its positive maximum. We denote by 0 < R0(τ) < R1(τ) the unique two zeros of g.
The next lemma is essential to construct the truncated functional.

Lemma 2.4.8. R0(τ) → 0 as τ → 0.

Proof. Indeed, from g(R0(τ)) = 0 and g′(R0(τ)) > 0, we have

1

2
R0(τ)

2 = C
τ

q
R0(τ)

q +
C̃

p
R0(τ)

p (2.4.4)

and
R0(τ) > τCR0(τ)

q−1 + C̃R0(τ)
p−1, (2.4.5)

for all τ ∈ (0, τ∗). From (2.4.4), we conclude that R0(τ) is bounded. Suppose that R0(τ) →
R0 > 0 as τ → 0. Then,

1

2
R2

0 =
C̃

p
Rp0 and R0 > C̃R0(τ)

p−1,

a contradiction, because 2 < p. Therefore R0 = 0.
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Now we consider the following truncation in the functional Iτ . From Lemma 2.4.8,
we have R0(τ) < 1 for small τ . So R0(τ) < R1(τ) and we can take ϕ ∈ C∞

0 ([0,+∞)),
0 ≤ ϕ(t) ≤ 1, for all t ∈ [0,+∞), such that

ϕ(t) =

{
1 , t ∈ [0, R0(τ)],
0 , t ∈ [R1(τ),+∞).

We define the functional

Jτ (u) =
1

2
∥u∥2 − τ

1

q

∫
Ω
|u|q dx− ϕ(∥u∥)1

p

∫
Ω
|∇u|p dx.

Note that J ∈ C1(H,R) and, as in (2.4.3), Jτ (u) ≥ g(∥u∥), for all u ∈ H, where

g(t) =
1

2
t2 − τ

q
tq − C̃

p
ϕ(t)tp ≥ 0, ∀ t ∈ (0, R1(τ)]. (2.4.6)

By definition, if ∥u∥ ≤ R0(τ) then Jτ (u) = Iτ (u) and if ∥u∥2 ≥ R1(τ), then

Jτ (u) =
1

2
∥u∥2 − τ

q

∫
Ω
|u|qdx.

Thus, we conclude that the functional Jτ is coercive and, hence, Jτ is bounded below.
Now, we will show that Jτ satisfy the local Palais-Smale condition.

Lemma 2.4.9. If Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (v) = Iτ (v), for all v in a small
enough neighborhood of u. Moreover, Jτ verifies a local Palais-Smale condition for c < 0.

Proof. Since g(∥u∥) ≤ Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (u) = Iτ (u). Moreover, since Jτ
is a functional continuous, we conclude that Jτ (v) = Iτ (v), for all v ∈ BR0/2(0). Moreover,
if (un) is a sequence such that Jτ (un) → c < 0 and J ′(un) → 0, for n sufficiently large,
Iτ (un) = Jτ (un) → c < 0 and Iτ

′(un) = Jτ
′(un) → 0. Since that Jτ is coercive, we get

that (un) is bounded in H. The result follows using the same argument used in Lemma
2.4.7.

Now, we will construct an appropriate mini-max sequence of negative critical values for
the functional J . Thus, for each real number ϵ, we consider the set

J−ε
τ = {u ∈ H : Jτ (u) ≤ −ε} ∈ A.

Lemma 2.4.10. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ε
τ ) ≥ k.

Proof. Given k ∈ N, we can consider a k-dimensional subspace

Xk = span{e1, . . . , ek}

of H, such that ∫
Ω
|u|qdx ≤ C(k)∥u∥q, ∀ u ∈ Xk.

Thus,

Jτ (u) ≤
1

2
∥u∥2 − τ

1

q
C(k)∥u∥q.
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We can argue exactly as proof of Theorem 2.0.3 to conclude there exists R ∈ (0, 1) small
enough, such that defining K = {u ∈ Xk : ∥u∥ = R}, we get

Jτ (u) ≤ sup
u∈K

Jτ (u) = −ε < Jτ (0) = 0, ∀ u ∈ K,

for some ε > 0. Since γ(K) = k and K ⊂ J−ε
τ , it follows from (i) in Proposition 2.4.1, that

γ(J−ε
τ ) ≥ k.

We define now, for each k ∈ N, the sets

Γk = {C ⊂ H : C ∈ A and γ(C) ≥ k},

Kc = {u ∈ H : Jτ
′(u) = 0 and Jτ (u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

Jτ (u).

Lemma 2.4.11. Given k ∈ N, the number ck is negative.

Proof. From Lemma 2.5.7, for each k ∈ N there exists ϵ > 0 such that γ(J−ϵ
τ ) ≥ k. Moreover,

0 /∈ J−ε
τ and J−ϵ

τ ∈ Γk. On the other hand

sup
u∈J−ε

τ

Jτ (u) ≤ −ε.

Hence,
−∞ < ck = inf

C∈Γk

sup
u∈C

Jτ (u) ≤ sup
u∈J−ε

τ

Jτ (u) ≤ −ε < 0.

The next lemma allows us to prove the existence of critical points of Jτ .

Lemma 2.4.12. If c = ck = ck+1 = ... = ck+r for some r ∈ N, then there exists τ∗ > 0
such that

γ(Kc) ≥ r + 1,

for τ ∈ (0, τ∗).

Proof. Since c = ck = ck+1 = ... = ck+r < 0, from Lemma 2.5.6 and Lemma 2.5.4, we get
that Kc is a compact set. Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed and
symmetric set U with Kc ⊂ U such that γ(U) = γ(Kc) ≤ r. Note that we can choose
U ⊂ J0

τ because c < 0. By the deformation lemma [14] we have an odd homeomorphism
η : X → X such that η(Jc+δτ −U) ⊂ Jc−δτ for some δ > 0 with 0 < δ < −c. Thus, Jc+δτ ⊂ J0

τ

and by definition of c = ck+r, there exists A ∈ Γk+r such that sup
u∈A

Jτ (u) < c + δ, that is,

A ⊂ Jc+δτ and

η(A− U) ⊂ η(Jc+δτ − U) ⊂ Jc−δτ . (2.4.7)

But γ(A− U) ≥ γ(A)− γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then η(A− U) ∈ Γk
and this contradicts (2.5.10). Hence, this lemma is proved.
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2.4.4 Proof of Theorem 2.0.3 in the case that the second term in the
associated functional I is negative

Proof. If −∞ < c1 < c2 < ... < ck < ... < 0 with ci ̸= cj , since each ck is critical value of
Jτ , the we obtain infinitely many critical points of Jτ .

On the other hand, if there are two constants ck = ck+r, then c = ck = ck+1 = ... = ck+r
and from Lemma 2.5.9, we have

γ(Kc) ≥ r + 1 ≥ 2

for all for all τ∗ > 0. From Proposition 2.4.4, Kc has infinitely many points, that is, problem
(P2) has infinitely many solutions.

2.5 The case β = 1 and 1 < q < 2 < p ≤ 2∗

In this section we study some properties related to the C1 functional Iτ given by

Iτ (u) =
1

2
∥u∥2 ± 1

p

∫
Ω
|∇u|pdx− τ

q

∫
Ω
|u|qdx− 1

2∗∗

∫
Ω
|u|2∗∗dx.

For this, we need the following technical result. We denote by S the best constant of
the Sobolev embedding H ↪→ L2∗∗(Ω).

Lemma 2.5.1. Let (un) be a sequence in H such that Iτ (un) → c∗ and Iτ
′(un) → 0 as

n→ ∞. Then

(i) un ⇀ u in H;

(ii) The weak limit u ∈ H is a critical point of u, that is, Iτ ′(u) = 0;

(iii) There exists a positive constant M > 0 such that Iτ (u) ≥ −τ2∗∗/(2∗∗−q)M , where M
depends p, q,N and Ω;

(iv) If

c∗ < min {T1, T2, T3} , (2.5.1)

where

T1 =

(
1

p
− 1

2∗∗

)
S
N/4 − τ2∗∗/(2∗∗−q)M,

T2 =
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
− τ2∗∗/(2∗∗−q)M

and

T3 =

(
1

2
− 1

p

)
− τ2∗∗/(2∗∗−q)M.

Then un → u in H.

59



Proof. Now we prove (i). Note that from Lemma 1.1.3, we have

c∗ + on(1)∥un∥ = Iτ (un)−
1

p
I ′τ (un)un

≥
(
1

2
− 1

p

)
∥un∥2 +

(
1

p
− 1

2∗∗

)∫
Ω
|un|2∗∗dx

−τ
(
1

q
− 1

p

)∫
Ω
|un|qdx. (2.5.2)

From Sobelev embedding, there exists C > 0 such that(
1

2
− 1

p

)
∥un∥2 ≤ τC

(
1

q
− 1

p

)
∥un∥q + c+ on(1)∥un∥.

Since 1 < q < 2, we have that (un) is bounded in H. Then, up to a subsequence, un ⇀ u
in H.

Now we prove (ii). As a consequence of weak convergence, for all ϕ ∈ H, we have that∫
Ω
∆un∆ϕdx =

∫
Ω
∆u∆ϕdx+ on(1).

From [50, Lemme 4.8], for all ϕ ∈ H, we get∫
Ω
|∇un|p−2∇un∇ϕdx =

∫
Ω
|∇u|p−2∇u∇ϕdx+ on(1)

and ∫
Ω
| un|2∗∗−2unϕdx =

∫
Ω
|u|2∗∗−2uϕdx+ on(1).

Since Ω is bounded and f has subcritical growth, for all ϕ ∈ H, we obtain,∫
Ω
|un|q−2unϕdx =

∫
Ω
|u|q−2uϕdx+ on(1).

Since Iτ (un)ϕ = on(1), for all ϕ ∈ H, using these convergence above, Iτ ′(u)ϕ = 0, for all
ϕ ∈ H.

In order to prove (iii), note that

Iτ (u) = Iτ (u)−
1

p
Iτ

′(u)u

≥
(
1

p
− 1

2∗∗

)∫
Ω
|u|2∗∗dx− τ

(
1

q
− 1

p

)∫
Ω
|u|qdx.

Using Holder’s inequality we get

Iτ (u) ≥
(
1

p
− 1

2∗∗

)∫
Ω
|u|2∗∗dx− τ

(
1

q
− 1

p

)
|Ω|(2∗∗−q)/2∗∗

(∫
Ω
|u|2∗∗dx

)q/2∗∗
.

Let

Σ(t) =

(
1

p
− 1

2∗∗

)
t2∗∗ − τ

(
1

q
− 1

p

)
|Ω|(2∗∗−q)/2∗∗tq.

This function attains its absolute minimum, for t > 0, at the point

t0 =

[
τ |Ω|

(2∗∗−q)
2∗∗

(p− q)

(2∗∗ − p)

]2∗∗/(2∗∗−q)
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Thus, we conclude that

Iτ (u) ≥ −τ2∗∗/(2∗∗−q)M,

wehere

M =

(
1

q
− 1

p

)[
|Ω|

(2∗∗−q)
2∗∗

(p− q)

(2∗∗ − p)

]q/(2∗∗−q)
|Ω|

2∗−q
2∗ .

Now we prove (iv). Consider vn = un − u. Then, from [50, Lemme 4.6] and arguing
as [5, Lemma 3.1]), we have

Iτ (vn) = Iτ (un)− Iτ (u) + on(1) = c∗ − I(u).

Moreover, for all ϕ ∈ H, we get

I ′τ (vn)ϕ = Iτ
′(un)ϕ− I ′τ (u)ϕ = on(1),

which implies that

∥vn∥2 ±
∫
Ω
|∇vn|pdx =

∫
Ω
|vn|2∗∗dx+ on(1). (2.5.3)

In the case that the second term in (2.5.3) is positive, we have

∥vn∥2 +
∫
Ω
|∇vn|pdx→ L and

∫
Ω
|vn|2∗∗dx→ L.

Note that

c∗ − Iτ (un) + on(1) =
1

2
∥vn∥2 +

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

≥ 1

p
∥vn∥2 +

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

≥ 1

p

[
∥vn∥2 +

∫
Ω
|∇vn|pdx

]
− 1

2∗∗

∫
Ω
|vn|2∗∗dx.

In this case, considering L > 0 we obtain

c∗ − Iτ (u) ≥
(
1

p
− 1

2∗∗

)
L.

Now using the definition of S, we have

S ≤
∥vn∥2 +

∫
Ω
|∇vn|pdx(∫

Ω
|vn|2∗∗

)2/2∗∗
= L

4/N
+ on(1).

Then, SN/4 ≤ L. We conclude

c∗ ≥
(
1

p
− 1

2∗∗

)
S
N/4

+ Iτ (u).

Using the item (iii), we get

c∗ ≥ S
N/4 − τ2∗∗/(2∗∗−q)M,
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which is a contradiction with (2.5.12). Then, L = 0 and ∥vn∥2 → 0, which implies that
un → u in H.

In the case that the second term in (2.5.3) is negative, we have

∥vn∥2 → L̃ and
∫
Ω
|vn|2∗∗dx+

∫
Ω
|∇vn|pdx→ L̃.

with L̃ = L̃1 + L̃2, where∫
Ω
|∇un|pdx→ L̃1 and

∫
Ω
|un|2∗∗dx→ L̃2

Since 2 < p < 2∗∗ and
∫
RN

F (un)dx→ 0, we have

c∗ − Iτ (u) =
1

2
∥vn∥2 −

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|2∗∗dx

≥ 1

2
∥vn∥2 −

1

p

∫
Ω
|∇vn|pdx− 1

2∗∗

∫
Ω
|vn|pdx

=
1

2
∥vn∥2 −

1

p

[∫
Ω
|vn|2∗∗dx+

∫
Ω
|∇vn|pdx

]
.

Letting n→ ∞ and using (2.3.10) we get

c∗ − Iτ (u) ≥
(
1

2
− 1

p

)
L̃. (2.5.4)

If L̃ ≥ 1, then,

c∗ − Iτ (u) ≥
(
1

2
− 1

p

)
, (2.5.5)

which is a contradiction by the hypotheses.
On the other hand, we can use the definition of S to get

S

(∫
Ω
|un|2∗∗dx

)2/2∗∗

≤
∫
Ω
|∆un|2dx (2.5.6)

Now from Theorem 1.1.2, there exits C > 0 such that(∫
Ω
|∇un|pdx

)1/p

≤ C

(∫
Ω
|∆un|2dx

)1/2

.

Then,

1

Cp

(∫
RN

|∇un|pdx
)2/p

≤
∫
RN

|∆un|2dx (2.5.7)

Using (2.5.6) and (2.5.7) we obtain

∥un∥2 ≥ 1

2
min

{
1

Cp
, S

}{(∫
Ω
|∇un|pdx

)2/p

+

(∫
Ω
|un|2∗∗dx

)2/2∗∗
}
.
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Suppose that 0 < L̃ < 1. In this case 0 < L̃1, L̃2 < 1. Then, since 2 < p < 2∗∗, we have

∥un∥2 ≥ 1

2
min

{
1

Cp
, S

}{∫
Ω
|∇un|pdx+

∫
Ω
|un|2∗∗dx

}2/p

.

Taking the limit we conclude that

L̃ ≥ 1

2
min

{
1

Cp
, S

}
L̃2/p

Since L̃ > 0, we obtain

L̃(p−2)/p ≥ 1

2
min

{
1

Cp
, S

}
and from (2.5.4) we get

c∗ − Iτ (u) ≥
(
1

2
− 1

p

)
1

2
min

{
1

Cp
, S

}p/(p−2)

,

Using the item (iii), we get

c∗ ≥
(
1

2
− 1

p

)
1

2
min

{
1

Cp
, S

}p/(p−2)

− τ2∗∗/(2∗∗−q)M,

which is a contradiction with (2.5.1). Then, L̃ = 0 and ∥vn∥2 → 0, which implies that
un → u in H.

Remark 2. Note that there exists τ∗ > 0 such that, for all τ ∈ (0, τ∗), then

S
N/4 − τ2∗∗/(2∗∗−q)M > 0

and

min

{
1

Cp
, S

}p/(p−2)

− τ2∗∗/(2∗∗−q)M − τ2∗∗/(2∗∗−q)M > 0.

2.5.1 The case that the second term in the associated functional Iτ is
positive

Since Iτ is not bounded below, arguing as subsection 5.3, we will make a truncation in the
functional Iτ as follows:

From Sobolev’s embedding, there exists C > 0 such that

Iτ (u) ≥
1

2
∥u∥2 − C

τ

q
∥u∥q − 1

2∗∗S2∗∗/2
∥u∥2∗∗ = g(∥u∥), (2.5.8)

where S is the best constant of the Sobolev embedding H ↪→ L2∗∗(Ω) and

g(t) =
1

2
t2 − C

τ

q
tq − 1

2∗∗S2∗∗/2
t2∗∗ .

Hence, there exists τ∗ > 0 such that, if τ ∈ (0, τ∗), then g attains its positive maximum.

Let us assume τ ∈ (0, τ∗), denoting by R0(τ) < R1(τ) the only roots of g, we make the
following of the truncation I. Take ϕ ∈ C∞

0 ([0,+∞)), 0 ≤ ϕ(t) ≤ 1, for all t ∈ [0,+∞),
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such that ϕ(t) = 1 if t ∈ [0, R0(τ)] and ϕ(t) = 0 if t ∈ [R1(τ),+∞). Now, we consider the
truncated functional

Jτ (u) =
1

2
∥u∥2 + 1

p

∫
Ω
|∇u|p dx− τ

q

∫
Ω
|u|q dx− ϕ(∥u∥2) 1

2∗∗

∫
Ω
|u|2∗∗ dx.

Note that Jτ ∈ C1(H,R) and, as in (2.5.8), Jτ (u) ≥ g(∥u∥), where

g(t) =
1

2
t2 − C

τ

q
tq − ϕ(t)

1

2∗∗S2∗∗/2
t2∗∗ .

Note that, if ∥u∥2 ≤ R0, then Jτ (u) = Iτ (u) and if ∥u∥2 ≥ R1, then

Jτ (u) =
1

2
∥u∥2 + 1

p

∫
Ω
|∇u|p dx− τ

q

∫
Ω
|u|q dx.

Thus, we conclude that the functional Jτ is coercive and, hence, Jτ is bounded below.
Now, we will show that Jτ satisfy the Palais-Smale condition.

Lemma 2.5.2. If Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (v) = Iτ (v), for all v in a small
enough neighborhood of u. Moreover, Jτ verifies a Palais-Smale condition for c < 0.

Proof. Since g(∥u∥) ≤ Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (u) = Iτ (u). Moreover, since Jτ
is a functional continuous, we conclude that Jτ (v) = Iτ (v), for all v ∈ BR0/2(0). Moreover,
if (un) is a sequence such that Jτ (un) → c < 0 and Jτ

′(un) → 0, for n sufficiently large,
Iτ (un) = Jτ (un) → c < 0 and Iτ ′(un) = Jτ

′(un) → 0. Since that Jτ is coercive, we get that
(un) is bounded in H. From Lemma 2.5.1 and Remark 2, for τ sufficiently small,

c < 0 < min {T1, T2, T3} , (2.5.9)

where

T1 =

(
1

p
− 1

2∗∗

)
S
N/4 − τ2∗∗/(2∗∗−q)M,

T2 =
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
− τ2∗∗/(2∗∗−q)M

and

T3 =

(
1

2
− 1

p

)
− τ2∗∗/(2∗∗−q)M.

and, hence, up to a subsequence, (un) is strongly convergent in H.

Now, we will construct an appropriate mini-max sequence of negative critical values for
the functional Jτ .

Lemma 2.5.3. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ε
τ ) ≥ k,

where J−ε
τ = {u ∈ X : Jτ (u) ≤ −ε}.
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Proof. Fix k ∈ N, let Xk be a k-dimensional subspace of H. Thus, there exists C(k) > 0
such that

C(k)∥u∥q ≤
∫
Ω
|u|q dx,

for all u ∈ Xk.
Considering ρ > 0 such that ∥u∥ = ρ < 1 and using Theorem 1.1.2 for j = 1, m = 2,

1
2 ≤ Υ < 1, κ1 = p, κ3 = 2, s = q and by continuous embedding, there are positive constants
C, C̃ > 0 such that , we derive that

Jτ (u) ≤
(
1

2
+
C̃

p

)
ρ2 − τ

q
C(k)ρq

= ρq

[(
1

2
+
C̃

p

)
ρ2−q − τ

q
C(k)

]
.

Choosing

ρ < min

{
1,

[
2pτC(k)

q(p+ C̃)

]1/(2−q)}
,

there exists ε = ε(k) such that
Jτ (u) < −ε,

for all u ∈ Xk and with u ∈ S, where S = {u ∈ Xk : ∥u∥ = ρ}. Hence, we conclude that
S ⊂ J−ε

τ . Since J−ε
τ is symmetric and closed, from Corollary 2.4.3,

γ(J−ε
τ ) ≥ γ(S) = k.

We define now, for each k ∈ N, the sets

Γk = {C ⊂ H : C is closed, C = −C and γ(C) ≥ k},

Kc = {u ∈ H : Jτ
′(u) = 0 and Jτ (u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

Jτ (u).

Lemma 2.5.4. Given k ∈ N, the number ck is negative.

Proof. From Lemma 2.5.7, for each k ∈ N there exists ϵ > 0 such that γ(J−ε
τ ) ≥ k. Moreover,

0 /∈ J−ε
τ and J−ε

τ ∈ Γk. On the other hand

sup
u∈J−ε

τ

Jτ (u) ≤ −ε.

Hence,
−∞ < ck = inf

C∈Γk

sup
u∈C

Jτ (u) ≤ sup
u∈J−ϵ

τ

Jτ (u) ≤ −ε < 0.

The next Lemma allows us to prove the existence of critical points of J .

Lemma 2.5.5. If c = ck = ck+1 = ... = ck+r for some r ∈ N, then there exists τ∗ > 0 such
that

γ(Kc) ≥ r + 1,

for τ ∈ (0, τ∗).
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Proof. Since c = ck = ck+1 = ... = ck+r < 0, from Lemma 2.5.1 and Lemma 2.5.4, we get
that Kc is a compactness set. Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed
and symmetric set U with Kc ⊂ U such that γ(U) = γ(Kc) ≤ r. Note that we can choose
U ⊂ J0

τ because c < 0. By the deformation lemma [14] we have an odd homeomorphism
η : H → H such that η(Jc+δτ −U) ⊂ Jc−δτ for some δ > 0 with 0 < δ < −c. Thus, Jc+δτ ⊂ J0

τ

and by definition of c = ck+r, there exists A ∈ Γk+r such that sup
u∈A

Jτ (u) < c + δ, that is,

A ⊂ Jc+δ and

η(A− U) ⊂ η(Jc+δτ − U) ⊂ Jc−δτ . (2.5.10)

But γ(A− U) ≥ γ(A)− γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then η(A− U) ∈ Γk
and this contradicts (2.5.10). Hence, this lemma is proved.

2.5.2 Proof of Theorem 2.0.4 in the case that the second term in the
associated functional Iτ is positive

Proof. If −∞ < c1 < c2 < ... < ck < ... < 0 with ci ̸= cj , since each ck is critical value of
Jτ , the we obtain infinitely many critical points of J and, hance problem (P2) has infinitely
many solutions.

On the other hand, if there are two constants ck = ck+r, then c = ck = ck+1 = ... = ck+r
and from Lemma 2.5.9, there exists τ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all τ ∈ (0, τ∗). From Proposition 2.4.4, Kc has infinitely many points, that is, problem
(P2) has infinitely many solutions.

2.5.3 The case that the second term in the associated functional Iτ is
negative

Since Iτ is not bounded below, arguing as subsection 5.3, we will make a truncation in the
functional Iτ as follows:

Using Theorem 1.1.2 for j = 1, m = 2, 1
2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, s = q and by

continuous embedding, there are positive constants C, C̃ > 0 such that

Iτ (u) ≥
1

2
∥u∥2 − C̃

p
∥u∥p − C

τ

q
∥u∥q − 1

2∗∗S2∗∗/2
∥u∥2∗∗ = g(∥u∥), (2.5.11)

where

g(t) =
1

2
t2 − C̃

p
tp − C

τ

q
tq − 1

2∗∗S2∗∗/2
t2∗∗ .

Hence, there exists τ∗ > 0 such that, if τ ∈ (0, τ∗), then g attains its positive maximum.

Let us assume τ ∈ (0, τ∗), denoting by R0(τ) < R1(τ) the only roots of g, we make the
following of the truncation Iτ . Take ϕ ∈ C∞

0 ([0,+∞)), 0 ≤ ϕ(t) ≤ 1, for all t ∈ [0,+∞),
such that ϕ(t) = 1 if t ∈ [0, R0(τ)] and ϕ(t) = 0 if t ∈ [R1(τ),+∞). Now, we consider the
truncated functional

Jτ (u) =
1

2
∥u∥2 − τ

q

∫
Ω
|u|qdx− ϕ(∥u∥2)

[
1

p

∫
Ω
|∇u|pdx+

1

2∗∗

∫
Ω
|u|2∗∗dx

]
.
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Note that Jτ ∈ C1(H,R) and, as in (2.5.11), Jτ (u) ≥ g(∥u∥), where

g(t) =
1

2
t2 − C

τ

q
tq − ϕ(t2)

[
C̃

p
tp +

1

2∗∗S2∗∗/2
t2∗∗

]
.

Note that, if ∥u∥2 ≤ R0, then Jτ (u) = Iτ (u) and if ∥u∥2 ≥ R1, then

Jτ (u) =
1

2
∥u∥2 − τ

q

∫
Ω
|u|q dx.

Thus, we conclude that the functional Jτ is coercive and, hence, Jτ is bounded below.
Now, we will show that Jτ satisfy the Palais-Smale condition.

Lemma 2.5.6. If Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (v) = Iτ (v), for all v in a small
enough neighborhood of u. Moreover, Jτ verifies a Palais-Smale condition for c < 0.

Proof. Since g(∥u∥) ≤ Jτ (u) < 0, then ∥u∥2 < R0(τ) and Jτ (u) = Iτ (u). Moreover, since Jτ
is a functional continuous, we conclude that Jτ (v) = Iτ (v), for all v ∈ BR0/2(0). Moreover,
if (un) is a sequence such that Jτ (un) → c < 0 and Jτ

′(un) → 0, for n sufficiently large,
Iτ (un) = Jτ (un) → c < 0 and Iτ ′(un) = Jτ

′(un) → 0. Since that Jτ is coercive, we get that
(un) is bounded in H. From Lemma 2.5.1 and Remark 2, for τ sufficiently small,

c < 0 < min {T1, T2, T3} , (2.5.12)

where

T1 =

(
1

p
− 1

2∗∗

)
S
N/4 − τ2∗∗/(2∗∗−q)M,

T2 =
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
− τ2∗∗/(2∗∗−q)M

and

T3 =

(
1

2
− 1

p

)
− τ2∗∗/(2∗∗−q)M.

and, hence, up to a subsequence, (un) is strongly convergent in H.

Now, we will construct an appropriate mini-max sequence of negative critical values for
the functional Jτ .

Lemma 2.5.7. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ε
τ ) ≥ k,

where J−ε
τ = {u ∈ X : Jτ (u) ≤ −ε}.

Proof. Fix k ∈ N, let Xk be a k-dimensional subspace of H. Thus, there exists C(k) > 0
such that

C(k)∥u∥q ≤
∫
Ω
|u|q dx,

for all u ∈ Xk.
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Considering ρ > 0 such that ∥u∥ = ρ < 1, we derive that

Jτ (u) ≤ 1

2
ρ2 − τ

q
C(k)ρq

= ρq
[
1

2
ρ2−q − τ

q
C(k)

]
.

Choosing

ρ < min

{
1,

[
2τC(k)

q

]1/(2−q)}
,

there exists ε = ε(k) such that
Jτ (u) < −ε,

for all u ∈ Xk and with u ∈ S, where S = {u ∈ Xk : ∥u∥ = ρ}. Hence, we conclude that
S ⊂ J−ϵ

τ . Since J−ϵ
τ is symmetric and closed, from Corollary 2.4.3,

γ(J−ε
τ ) ≥ γ(S) = k.

We define now, for each k ∈ N, the sets

Γk = {C ⊂ H : C is closed, C = −C and γ(C) ≥ k},

Kc = {u ∈ H : Jτ
′(u) = 0 and Jτ (u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

Jτ (u).

Lemma 2.5.8. Given k ∈ N, the number ck is negative.

Proof. From Lemma 2.5.7, for each k ∈ N there exists ε > 0 such that γ(J−ϵ
τ ) ≥ k. Moreover,

0 /∈ J−ε
τ and J−ε

τ ∈ Γk. On the other hand

sup
u∈J−ε

τ

Jτ (u) ≤ −ε.

Hence,
−∞ < ck = inf

C∈Γk

sup
u∈C

Jτ (u) ≤ sup
u∈J−ε

τ

Jτ (u) ≤ −ε < 0.

The next Lemma allows us to prove the existence of critical points of J .

Lemma 2.5.9. If c = ck = ck+1 = ... = ck+r for some r ∈ N, then there exists τ∗ > 0 such
that

γ(Kc) ≥ r + 1,

for τ ∈ (0, τ∗).

Proof. Since c = ck = ck+1 = ... = ck+r < 0, from Lemma 2.5.1 and Lemma 2.5.8, we get
that Kc is a compactness set. Moreover, Kc = −Kc. If γ(Kc) ≤ r, there exists a closed
and symmetric set U with Kc ⊂ U such that γ(U) = γ(Kc) ≤ r. Note that we can choose
U ⊂ J0

τ because c < 0. By the deformation lemma [14] we have an odd homeomorphism
η : H → H such that η(Jc+δτ −U) ⊂ Jc−δτ for some δ > 0 with 0 < δ < −c. Thus, Jc+δτ ⊂ J0

τ

68



and by definition of c = ck+r, there exists A ∈ Γk+r such that sup
u∈A

Jτ (u) < c + δ, that is,

A ⊂ Jc+δ and

η(A− U) ⊂ η(Jc+δτ − U) ⊂ Jc−δτ . (2.5.13)

But γ(A− U) ≥ γ(A)− γ(U) ≥ k and γ(η(A− U)) ≥ γ(A− U) ≥ k. Then η(A− U) ∈ Γk
and this contradicts (2.5.13). Hence, this lemma is proved.

2.5.4 Proof of Theorem 2.0.4 in the case that the second term in the
associated functional Iτ is negative

Proof. If −∞ < c1 < c2 < ... < ck < ... < 0 with ci ̸= cj , since each ck is critical value of
Jτ , the we obtain infinitely many critical points of Jτ and, hance problem (P2) has infinitely
many solutions.

On the other hand, if there are two constants ck = ck+r, then c = ck = ck+1 = ... = ck+r
and from Lemma 2.5.9, there exists τ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all τ ∈ (0, τ∗∗). From Proposition 2.4.4, Kc has infinitely many points, that is, problem
(P2) has infinitely many solutions.
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Chapter 3

Nonlinear perturbations of a periodic
Kirchhoff-Boussinesq type problems
in RN

The purpose of this chapter is to investigate the existence of nontrivial solutions for the
following class of problems given by

(P3)


∆2u±∆pu+ V (x)u = f(u) + β|u|2∗∗−2u in RN ,
u(x) ̸= 0 x ∈ RN ,
u ∈ H2(RN ),

in the case β = 0 we get 2 < p < 2∗ = 2N
N−2 , for N ≥ 3 and the case β = 1 we consider

2∗∗ =
2N
N−4 for N ≥ 5. V is a continuous function satisfying:

(V1) There is a ZN - periodic function Vper : RN → R, that is,

Vper(x+ y) = Vper(x) for all x ∈ RN and for all y ∈ ZN .

(V2) There is a constant V0 > 0 such that

Vper(x) ≥ V0 ∀x ∈ RN .

(V3) There are constant W0 > 0 and a function W ∈ LN/2(RN ) with W (x) ≥ 0 such that

V (x) = Vper(x)−W (x) ≥W0 ∀x ∈ RN ,

where the last inequality is strict on a subset of positive measure in RN .

On the continuous function f , we assume that:

(f1) Moreover, we also suppose that

lim
|t|→0

|f(t)|
|t|

= 0.

(f̃2) There exists q ∈ (p, 2∗∗) such that

lim
|t|→∞

|f(t)|
|t|q−1

= 0.

70



(f3) The function t→ f(t)

|t|p−2t
is decreasing in (−∞, 0) and increasing in (0,+∞).

(f4) There are r > p and τ∗ ≥ 0 such that

f(t) ≥ τ |t|r−2t,

for all t ≥ 0 and for all τ > τ∗, where τ∗ will be fixed in Lemma 3.2.1.

A typical examples

Example 3.0.1. A function satisfying the conditions (f1), (f̃2), (f3), (f4) is

f(t) =

N∑
i=1

Ci|t|qi−2t

with p < qi < 2∗∗, Ci are positive constants for each 2 ≤ i ≤ N .

Example 3.0.2. A function satisfying the conditions (V1)-(V3) is

Vper(x) = 2 + sin[2π(x1, x2, · · · , xN )]. (3.0.1)

It is easy to verify that Vper is a 1-periodic continuous function. Moreover, the function

V (x) =

(
1− 1

2(1 + |x|)

)
Vper(x), for x ∈ RN (3.0.2)

satisfies our hypotheses (V1)− (V3).

Our main results are the following :

Theorem 3.0.3. ( Subcritical case )
Assume that conditions (V1)-(V3) and (f1), (f̃2), (f3), (f4) hold with β = 0. Then, problem
(P3) has a ground state solution.

Theorem 3.0.4. ( Critical case )
Assume that conditions (V1)-(V3) and (f1), (f̃2), (f3), (f4) hold with β = 1. Then, problem
(P3) has a ground state solution, for all τ ≥ τ∗.

This chapter is organized as follows. In section 3.1 we show the existence of a ground
state solution to the problem when V = Vper, that is, V is a periodic potential with sub-
critical nonlinear growth. In section 3.2 we consider the periodic potential with critical
nonlinear growth. In section 3.3 we study the ground state solution for the non-periodic V
potential.

3.1 The periodic problem

In this section, we study the existence of solution for the following periodic problem

(P̂ )


∆2u±∆pu+ Vper(x)u = f(u) + β|u|2∗∗−2u in RN ,
u(x) ̸= 0 in RN
u ∈ H2(RN ).

where β ∈ {0, 1}.Moreover, we assume that the conditions (V1)−(V2) and (f1), (f̃2), (f3), (f4)
hold.
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In this subsection we consider the space H2(RN ) with with the inner product

⟨u, v⟩per :=
∫
RN

(∆u∆v + Vper(x)uv) dx, for all u, v ∈ H2(RN )

and associated norm given by

∥u∥per =
(∫

RN

|∆u|2dx+

∫
RN

Vper(x)|u|2dx
)1/2

Note that H2(RN ) is a Hilbert space.

From now on, we say that u ∈ H2(RN ) is a weak solution of the problem (P̂ ) if∫
RN

∆u∆ϕdx±
∫
RN

|∇u|p−2∇u∇ϕdx+

∫
RN

Vper(x)uϕdx

−
∫
RN

f(u)ϕ dx− β

∫
RN

|u|2∗∗−2uϕ dx = 0

for all ϕ ∈ H2(RN ).

Note that from (f1)− (f̃2), given ε > 0, there exists a positive constant C(ε) such that

|f(t)| ≤ ε|t|+ C(ε)|t|q−1. (3.1.1)

and

|F (t)| ≤ ε

2
|t|2 + C(ε)

q
|t|q. (3.1.2)

Consider the functional Iper : H2(RN ) → R associated given by

Iper(u) =
1

2

∫
RN

|∆u|2dx± 1

p

∫
RN

|∇u|pdx+
1

2

∫
RN

Vper(x)|u|2dx

−
∫
RN

F (u)dx− β

2∗∗

∫
RN

|u|2∗∗dx.

Since 2 < p ≤ 2∗, using Theorem 1.1.2 for j = 1, m = 2, 1
2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2,

we have that H2(RN ) ↪→ W 1,p(RN ). Moreover, from (3.1.2), Iper is well-defined and of C1

class and

I ′per(u)ϕ =

∫
RN

∆u∆ϕdx±
∫
RN

|∇u|p−2∇u∇ϕ dx+

∫
RN

Vper(x)|u|2dx

−
∫
RN

f(u)ϕ dx− β

∫
RN

|u|2∗∗−2uϕdx,

for all ϕ ∈ H2(RN ). Then, the critical points of Iper are weak solution of (P̂ ).

Remark 3. A direct computation shows that ∥·∥ is a norm in H2(RN ), with it is equivalent
to the usual norm of H2(RN ), because Vper is bounded from below and above in whole RN .

The next two lemmas show that functional Iper verifies the mountain pass geometry.

Lemma 3.1.1. Assume that (f1) and (f2) hold. Then, there exist positive numbers ρ and
α such that,

Iper(u) ≥ α > 0, ∀u ∈ H2(RN ) : ∥u∥per = r.
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Proof. Note that, taking ε > 0 sufficiently small in (3.1.1) and using Sobolev embedding,
there exists C1, C2 > 0 such that

Iper(u) =
1

2

∫
RN

(|∆u|2 + Vper(x)|u|2)dx± 1

p

∫
RN

|∇u|pdx

−
∫
RN

F (u)dx− β

2∗∗

∫
RN

|u|2∗∗dx

≥ 1

2
∥u∥2per ±

1

p

∫
RN

|∇u|pdx− ε

2

∫
RN

|u|2dx

−C(ε)
q

∫
RN

|u|qdx− β

2∗∗

∫
RN

|u|2∗∗dx

=

(
1

2
− ε

2

)
∥u∥2per ±

1

p

∫
RN

|∇u|pdx− C1C(ε)

q
∥u∥qper −

C2β

2∗∗
∥u∥2∗∗per

In the case that the second term in the associated functional Iper is positive, since 2 < p <
q < 2∗∗, we have

Iper(u) ≥
(
1

2
− ε

2

)
∥u∥2per −

C1C(ε)

q
∥u∥qper −

C2β

2∗∗
∥u∥2∗∗per

Hence, by choosing ε ∈ (0, 1), there exists a small r > 0 such that

Iper(u) ≥ ρ > 0, for all ∥u∥per = r,

where

ρ =

[(
1

2
− ε

2

)
− C1C(ε)

q
rq−2 − C2β

2∗∗
r2∗∗−2

]
r2

This establishes (i).

In the case that the second term in the associated functional Iper is negative, using
Theorem 1.1.2 for j = 1, m = 2, 1

2 ≤ Υ ≤ 1, κ1 = p, κ3 = 2, and by continuous embedding,
we get

Iper(u) ≥
(
1

2
− ε

2

)
∥u∥2per −

C̃

p
∥u∥p − C1C(ε)

q
∥u∥qper −

C2β

2∗∗
∥u∥2∗∗per

for some C̃ > 0. Hence, by choosing ε ∈ (0, 1) and using 2 < p < q < 2∗∗, there exists a
small r > 0 such that

Iper(u) ≥ ρ > 0, for all ∥u∥per = r,

where

ρ =

[(
1

2
− ε

2

)
− C̃

p
rp−2 − C1C(ε)

q
rq−2 − C2γ

2∗∗
r2∗∗−2

]
r2.

This establishes (i)

Lemma 3.1.2. Assume that (f4) hold. Then, there exists e ∈ H2(RN ) such that Iper(e) < 0
and ∥e∥ > ρ .
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Proof. Fixed ϕ ∈ C∞
0 (RN ), ϕ ̸= 0 and t ∈ R \ 0.

Iper(tϕ) =
t2

2
∥ϕ∥2per ±

tp

p

∫
RN

|∇ϕ|pdx−
∫
RN

F (tϕ)dx− βt2∗∗

2∗∗

∫
RN

|ϕ|2∗∗dx

In the case that the second term in the associated functional Iper is positive, from (f4) and
for all τ > 0, we have

Iper(tϕ)

tp
≤ 1

2tp−2
∥ϕ∥2per +

1

p

∫
suppψ

|∇ϕ|pdx− τ
tr−p

r

∫
suppψ

|ϕ|rdx

−C4|suppψ| − βt2∗∗−p

r

∫
suppψ

|ϕ|2∗∗dx

Since 2 < p < r < 2∗∗, there exists t̄ > 0 large such that e = t̄ϕ satisfies Iper(e) < 0 and
∥e∥per > ρ.

In the case that the second term in the associated functional Iper is negative, from (f4)
and for all τ > 0, we have

Iper(tϕ)

tp
≤ 1

2tp−2
∥ϕ∥2per − τ

tr−p

r

∫
suppψ

|ϕ|rdx− C4|suppψ| − βt2∗∗−p

r

∫
suppψ

|ϕ|2∗∗dx

Since 2 < p < r < 2∗∗, there exists t̄ > 0 large such that ē = t̄ϕ satisfies Iper(ē) < 0 and
∥ē∥per > ρ.

Using a version of the Mountain Pass Theorem without (PS) condition found in [92],
there exists a sequence (un) ⊂ H2(RN ) satisfying

Iper(un) → cper and I ′per(un) → 0,

where
cper = inf

η∈Γ
max
t∈[0,1]

Iper(η(t)) > 0

and
Γper := {η ∈ C([0, 1], H2(RN )) : η(0) = 0, Iper(η(1)) < 0}.

The above sequence is called a (PS)cper sequence for Iper.

The next lemma is a key point in our arguments, because it establishes an important
characterization involving the mountain pass level for elliptic problem. Hereafter, Mper

denotes the Nehari Manifolds, associated with Iper, that is,

Mper = {u ∈ H2(RN ) \ {0} / I ′per(u)u = 0}. (3.1.3)

Lemma 3.1.3. Assume that (V1) and (f1)- (f4) hold. Then, for each u ∈ H2(RN ) with u ̸=
0, there exists a unique t0 = t0(u) > 0 such that t0u ∈ Mper and Iper(t0u) = max

t≥0
Iper(tu).

Moreover cper = cper = ĉper > 0, where

cper = inf
u∈H2(RN )\{0}

max
t≥0

Iper(tu)

and

ĉper = inf
Mper

Iper.

74



Proof. Given u ∈ H2(RN ) with u ̸= 0, let hu : (0,∞) → R as hu(t) = Iper(tu) for t > 0.
Then tu ∈ Mper if and only if h′u(t) = 0. Note that, taking ε > 0 sufficiently small in
(3.1.1) and using Sobolev embedding, there exists C1, C2 > 0 such that

γu(t) =
t2

2
∥u∥2per ±

tp

p

∫
Ω
|∇u|pdx−

∫
Ω
F (tu)dx− t2∗∗

2∗∗

∫
Ω
|u|2∗∗dx

≥ t2
(
1

2
− ε

2

)
∥u∥2per ±

tp

p

∫
Ω
|∇u|pdx− C(ε)

q
tq
∫
Ω
|u|qdx− t2∗∗

2∗∗

∫
Ω
|u|2∗∗dx

≥ t2
(
1

2
− ε

2

)
∥u∥2per ±

tp

p

∫
Ω
|∇u|pdx− C1C(ε)

q
tq∥u∥qper −

βC2

2∗∗
∥u∥2∗∗per

Thus, since 2 < p < q < 2∗∗, we have hu(t) > 0 for all 0 < t sufficiently small.

Now, from (f4) and using 2 < p < r, for all τ > 0, we have

hu(t)

tp
≤ 1

2tp−2
∥u∥2per ±

1

p

∫
RN

|∇u|pdx− τ
tr−p

r

∫
RN

|u|rdx.

Hence, lim
t→+∞

γu(t) = −∞. Then, there exists at least one t0(u) > 0 such that h′u(t0(u)) =

0, i.e. t0(u)u ∈ M. Moreover, in the case 2 < p, we get

h′u(t) = tp−1

[
1

tp−2
∥u∥2 ±

∫
RN

|∇u|pdx−
∫
RN

f(tu)

tp−1
udx− t2∗∗−p

∫
RN

|u|2∗∗dx
]
.

From (f4) we conclude that h′u(t)
tp−1 is decreasing. Then, it vanishes exactly once, and conse-

quently there is no other t > 0 such that tu ∈ M. Note, in particular, that t0(u) is a global
maximum point of hu and hu(t(u)) > 0, i.e. Iper(t0(u)u) > 0. Since t0(u) = 1 if u ∈ Mper,
we deduce that Iper(u) > 0 for every u ∈ Mper. Now, the proof follows by using similar
arguments found in Willem [92].

The following result presents an interesting property involving the (PS)cper sequences
of Iper, for the subcritical case, that is, β = 0.

Lemma 3.1.4. Let (un) ⊂ H2(RN ) be a (PS)cper sequence for Iper with un ⇀ 0 weakly in
H2(RN ). If β = 0, there is a sequence (yn) ⊂ RN and constants R, η > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|2 dx ≥ η > 0.

Proof. Suppose that the lemma does not hold. Then, a result due to Lions [61, Lemma

I.1] gives un → 0 in Lq(RN ). This limit combined with (3.1.1) yields
∫
RN

f(un)undx → 0.

Thus, since I ′per(un)un = on(1), we obtain

∥un∥2per ±
∫
RN

|∇un|pdx = on(1).

From Theorem 1.1.2 for j = 1, κ1 = p, m = 2, Υ = 1
2 , κ3 = 2 and k2 = 2p

4−p , we have that
there exists C1 > 0 such that(∫

RN

|∇un|p
)1/p

≤ C1

(∫
RN

|∆un|2
)1/4

|un|1/2κ2 .
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Since
un ⇀ 0 in H2(RN ),

we have that
±
∫
RN

|∇un|pdx→ 0,

which implies that ∥un∥2per → 0, leading to cper = 0, which is an absurd in view of Lemma
3.1.3.

The next result establishes the existence of solution for problem (P̂ ) for the subcritical
case, that is, β = 0.

Theorem 3.1.5. Assume that conditions (V1)-(V2) and (f1), (f̃2), (f3), (f4) hold. Then,
problem (P̂ ) with β = 0 has a ground state solution, for all τ > 0.

Proof. Using a version of the Mountain Pass Theorem without (PS) condition found in [92],
there exists a sequence (un) ⊂ H2(RN ) satisfying

Iper(un) → cper and I ′per(un) → 0.

Then, from Lemma 1.1.3, we have

cper + on(1)∥un∥per = Iper(un)−
1

p
I ′per(un)un

=

(
1

2
− 1

p

)
∥un∥2per +

∫
Ω

(
1

p
f(un)u− F (un)

)
dx

≥
(
1

2
− 1

p

)
∥un∥2per, (3.1.4)

Hence (un) is bounded in H2(RN ). From boundedness of (un), there are a subsequence of
(un), still denoted by itself, u ∈ H2(RN ) verifying

un ⇀ u in H2(RN ),

un(x) → u(x), a.e RN ,

un → u in Ltloc(RN ) for all t ∈ (2, 2∗∗).

Without loss of generality, we can assume that u ̸= 0, because by Lemma 3.1.4, there exist
η > 0 and (yn) ⊂ RN such that

lim inf
n→∞

∫
BR(yn)

|un|2 dx ≥ η > 0. (3.1.5)

A direct computation shows that we can assume (yn) ⊂ ZN . Considering
vn(x) = un(x+yn), once that Vper is ZN -periodic function, we have that (vn) is also bounded
in H2(RN ) and its weak limit denoted by v is nontrivial, because the last inequality together
Sobolev embedding implies that ∫

BR(0)
|v|2 dx ≥ η > 0.

Furthermore, a routine calculus leads to

Iper(vn) → cper and I ′per(vn) = on(1).
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As a consequence of weak convergence, for all ϕ ∈ H2(RN ), we have that∫
RN

∆vn∆ϕdx+

∫
RN

Vper(x)vnϕdx =

∫
RN

∆v∆ϕdx+

∫
RN

Vper(x)vϕdx+ on(1).

From [50, Lemme 4.8], for all ϕ ∈ H2(RN ), we get∫
RN

|∇vn|p−2∇vn∇ϕdx =

∫
RN

|∇v|p−2∇v∇ϕdx+ on(1)

and by a density argument, for all ϕ ∈ H2(RN ), we obtain,∫
RN

f(vn)ϕdx =

∫
RN

f(v)ϕdx+ on(1).

Since I ′per(vn)ϕ = on(1), for all ϕ ∈ H2(RN ), using these convergence above, I ′per(v)ϕ = 0,
for all ϕ ∈ H2(RN ), and the theorem proved.

3.2 Critical and periodic case

In this section motivated by [25], we study the case where the nonlinearity has a critical
growth, that is, β = 1. To this end, we begin studying the behavior of mountain pass
level cτ related to the parameter τ . We denote that S in the best constant to the Sobolev
embedding D2,2(RN ) ↪→ L2∗∗(RN ), namely

S = inf
0̸=u∈D2,2(RN )


∫
RN

|∆v|2dx(∫
RN

|u|2∗∗dx
) 2

2∗∗


The infimum S > 0 is archived by the functions

Uε,x0(x) := aNε
4−N

2

( 1

ε2 + |x− x0|2
)N−4

2
,

where ε > 0 and aN = ((N + 2)N(N − 2)(N − 4))
N−4

8 for N ≥ 5. Now, we defined the
following constant

S = inf
v∈H2(RN ),v ̸=0


∫
RN

|∆v|2dx+

∫
RN

|∇v|pdx(∫
RN

|v|2∗∗dx
)2/2∗∗

 (3.2.1)

Notice that S > 0. In fact, since that∫
RN

|∆v|2dx(∫
RN

|v|2∗∗dx
)2/2∗∗

<

∫
RN

|∆v|2dx+

∫
RN

|∇v|pdx(∫
RN

|v|2∗∗dx
)2/2∗∗

(3.2.2)
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This implies that

0 < S = inf
0 ̸=u∈D2,2(RN )


∫
RN

|∆v|2dx(∫
RN

|u|2∗∗dx
) 2

2∗∗


≤ inf

v∈H2(RN ),v ̸=0


∫
RN

|∆v|2dx+

∫
RN

|∇v|pdx(∫
RN

|v|2∗∗dx
)2/2∗∗


= S

Consequently, we get 0 < S ≤ S.

Lemma 3.2.1. If the conditions (f1), (f̃2), (f3), (f4) hold with β = 1, then there exists
τ∗ > 0 such that

cτ,per < min

{(
1

p
− 1

2∗∗

)
S
N/4

,
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
,

(
1

2
− 1

p

)}
for all τ > τ∗.

Proof. If we define η∗(t) = te for t ∈ [0, 1], where e = tϕ is the function given by Lemma
3.1.2. It follows that η∗ ∈ Γ and thus

0 < cτ,per ≤ max
t≥0

Iper(η∗(t))

≤ max
t≥0

[
t2

2
∥e∥2per ±

tp

p

∫
RN

|∇e|pdx− τtr

r

∫
RN

|e|rdx
]
.

In the case that the second term in the associated functional Iper is negative, we have

0 < cτ,per ≤ max
t≥0

[
t2

2
∥e∥2per −

τtr

r

∫
RN

|e|rdx
]
=
t2τ
2
∥e∥2per −

τtrτ
r

∫
RN

|e|rdx,

where

tτ =

 ∥e∥2per

τ

∫
RN

|e|rdx


1/(r−2)

Then,

0 < cτ,per ≤ 1

2

 ∥e∥2per

τ

∫
RN

|e|rdx


2/(r−2)

∥e∥2per − τ
1

r

 ∥e∥2per

τ

∫
RN

|e|rdx


r/(r−2) ∫

RN

|e|rdx

=

(
1

2
− 1

r

) [
∥e∥2per

]r/(r−2)[∫
RN

|e|rdx
]2/(r−2)

1

τ2/(r−2)
.
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For

τ∗ =


(
1

2
− 1

r

) [
∥e∥2per

]r/(r−2)[∫
RN

|e|rdx
]2/(r−2)

4p

(p− 2)min

{
1

Cp
, S

}

(r−2)/2

,

for all τ > τ∗, we have that,

cτ,per <
1

2

(
1

2
− 1

p

)
min

{
1

Cp
, S

}
.

In the case that the second term in the associated functional Iper is positive, we have

0 < cτ,per ≤ max
t∈[0,1]

Iper(η∗(t))

≤ max
t∈[0,1]

[(
p+ 2

p

)
t2

2

(
∥e∥2per +

∫
RN

|∇e|pdx
)
− τtr

r

∫
RN

|e|rdx
]

=

(
p+ 2

p

)
t2τ
2

(
∥e∥2per +

∫
RN

|∇e|pdx
)
− τtrτ

r

∫
RN

|e|rdx,

where

tτ =

∥e∥2per +
∫
RN

|∇e|pdx

τ

∫
RN

|e|rdx


1/(r−2)

Then,

0 < cτ,per ≤
(
p+ 2

p

)∥e∥2per +
∫
RN

|∇e|pdx

τ

∫
RN

|e|rdx


2/(r−2)(

∥e∥2per +
∫
RN

|∇e|pdx
)

−τ 1
r


(
∥e∥2per +

∫
RN

|∇e|pdx
)

τ

∫
RN

|e|rdx


r/(r−2) ∫

RN

|e|rdx

=

(
p+ 2

p
− 1

r

) [
∥e∥2per +

∫
RN

|∇e|pdx
]r/(r−2)

[∫
RN

|e|rdx
]2/(r−2)

1

τ2/(r−2)
.

For

τ∗ =


(
p+ 2

p
− 1

r

) [
∥e∥2per +

∫
RN

|∇e|pdx
]r/(r−2)

[∫
RN

|e|rdx
]2/(r−2)

2∗∗p

(2∗∗ − p)S
N/4


(r−2)

r

for all τ > τ∗, we have that,

cτ,per <

(
1

p
− 1

2∗∗

)
S
N/4

.
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Lemma 3.2.2. Let (un) be a sequence in H2(RN ) such that Iper(un) → cτ,per and I ′per(un) →
0 as n→ ∞. Then

(i) un ⇀ u in H2(RN );

(ii) The weak limit u ∈ H2(RN ) is a critical point of u, that is, I ′per(u) = 0.

Proof. Now we prove (i). Note that from Lemma 1.1.3, we have

cper + on(1)∥un∥per = Iper(un)−
1

p
I ′per(un)un

=

(
1

2
− 1

p

)
∥un∥2per +

∫
Ω

(
1

p
f(un)u− F (un)

)
dx

+

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx

≥
(
1

2
− 1

p

)
∥un∥2per (3.2.3)

which implies that (un) is bounded in H2(RN ).

Now we prove (ii). Hence (un) is bounded in H2(RN ). From boundedness of (un), there
are a subsequence of (un), still denoted by itself, u ∈ H2(RN ) and using [8, 94] verifying

un ⇀ u in H2(RN );
∇un(x) → ∇u(x) a.e in RN ;
∆un(x) → ∆u(x) a.e in RN ;
un → u, strongly in Ltloc(RN ), for 2 ≤ t < 2∗∗
un(x) → u(x) a.e in RN .

(3.2.4)

Afirmation 1. The following convergent are valid∫
RN

|∇un|p−2∇unφdx =

∫
RN

|∇|p−2∇uφdx+ on(1)

First let’s show the convergence in C∞
0 (RN )

lim
n→∞

∫
RN

|∇un|p−2∇un∇φdx =

∫
RN

|∇u|p−2∇u∇φdx, ∀φ ∈ C∞
0 (RN ).

Indeed, consider hn(x) = |∇un(x)|p−2∇un(x) and h(x) = |∇u(x)|p−2∇u(x),

|∇un(x)|p−2∇un(x)φ(x) → |∇u(x)|p−2∇u(x)φ(x), a.e. x ∈ suppφ

up to a subsequence
un(x) → u(x), a.e. x ∈ suppφ

hence
h(un(x))φ(x) → h(u(x))φ(x), a.e. x ∈ suppφ.

It is sufficiently to prove that there is g : R → R such that |h(un)φ| ≤ g(un) with (g(un))
convergent in L1(suppφ), because, in this case, using [24, Theorem 4.9 and Theorem 4.2]
we get ∫

suppφ
h(un)φ dx→

∫
suppφ

h(u)φ dx.
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Note that by the inequality (3.1.1) we have

|h(un(x))φ(x)| ≤ |∇un(x)|p−1|φ(x)| := g(un(x)).

Considering s, s′ > 1 such that
1

s
+

1

s′
= 1, we get

φ→ φ in Ls
′
(suppφ), (3.2.5)

we use [50, Lemma 4.8] and conclude that

|∇un(x)|p−1 ⇀ |∇u(x)|p−1 in Ls(suppφ). (3.2.6)

Now using (3.2.5), (3.2.6) and [50, Lemma 4.8] again, we conclude∫
suppφ

h(un)φdx→
∫
suppφ

h(u)φdx.

Therefore∫
RN

|∇un(x)|p−2∇un(x)φ(x) →
∫
RN

|∇u(x)|p−2∇u(x)φ(x), ∀φ ∈ C∞
0 (RN ).

By a density argument, for all ϕ ∈ H2(RN ), we obtain,∫
RN

|∇un|p−2∇unφ =

∫
RN

|∇u|p−2∇uφ+ on(1).

Afirmation 2. The following convergent are valid∫
RN

f(un)ϕdx =

∫
RN

f(u)ϕdx+ on(1).

Let’s also show the convergence in C∞
0 (RN )∫

RN

f(un)ϕdx→
∫
RN

f(u)ϕdx ∀ϕC∞
0 (RN )

Indeed. Since C∞
0 (RN ) is dense in H2(RN ), fixed φ ∈ C∞

0 (RN ), then

f(un(x))φ(x) → f(u(x))φ(x), a.e. x ∈ suppφ

and
|f(un(x))φ(x)| ≤ (|un(x)|+ C(ε)|un(x)|q−1)φ(x), a.e. x ∈ suppφ.

By Lebesgue Dominated Convergence Theorem

lim
n→∞

∫
RN

f(un(x))φ(x)dx→
∫
RN

f(u(x))φ(x)dx, ∀φ ∈ C∞
0 (RN )dx.

By a density argument, for all ϕ ∈ H2(RN ), we obtain,∫
RN

f(un)ϕdx =

∫
RN

f(u)ϕdx+ on(1).

On the other hand gives weak convergence of un ⇀ u in H2(RN ), we have∫
RN

∆un∆ϕdx+

∫
RN

Vper(x)unϕdx→
∫
RN

∆u∆ϕdx+

∫
RN

Vper(x)uϕdx, ∀φ ∈ C∞
0 (RN ).

Also, we get ∫
RN

| un|2∗∗−2unϕdx =

∫
RN

|u|2∗∗−2uϕdx+ on(1).

Since I ′per(un)ϕ = on(1), for all ϕ ∈ H2(RN ), using these convergence above, I ′per(u)ϕ = 0,
for all ϕ ∈ H2(RN ).
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The next lemma is a version of Lemma 3.1.4 for the critical case, that is, β = 1.

Lemma 3.2.3. Let (un) ⊂ H2(RN ) be a (PS)cτ,per sequence for Iper with un ⇀ 0 weakly in
H2(RN ) and τ ≥ τ∗. If β = 1, there exist a sequence (yn) ⊂ RN and constants R, η > 0
such that

lim inf
n→∞

∫
BR(yn)

|un|2 dx ≥ η > 0.

Proof. Suppose that the lemma does not hold. Then, it follows from [61, Lemma I.1] that

un → 0 in Lq(RN ), and thus,
∫
RN

f(un)un = on(1) . Recalling that the limit I ′per(un)un =

on(1) implies that which implies that

∥un∥2per ±
∫
RN

|∇un|pdx =

∫
RN

|un|2∗∗dx+ on(1). (3.2.7)

In the case that the second term in (3.2.7) is positive, we have

∥un∥2per +
∫
RN

|∇un|pdx→ L and
∫
RN

|un|2∗∗dx→ L.

Note that

cτ,per + on(1) ≥ 1

2
∥un∥2per +

1

p

∫
RN

|∇un|pdx− 1

2∗∗

∫
RN

|un|2∗∗dx

≥ 1

p

[
∥un∥2per +

∫
RN

|∇un|pdx
]
− 1

2∗∗

∫
RN

|un|2∗∗dx.

Since cτ,per > 0, we have that L > 0. Then,

cτ,per ≥
(
1

p
− 1

2∗∗

)
L.

Now using the definition of S, we have

S ≤
∥un∥2per +

∫
RN

|∇un|pdx(∫
RN

|un|2∗∗
)2/2∗∗

= L
4/N

+ on(1).

Then, SN/4 ≤ L. We conclude

cτ,per ≥
(
1

p
− 1

2∗∗

)
S
N/4

,

which is a contradiction with Lemma 3.2.1.

In the case that the second term in (3.2.7) is negative, we have

∥un∥2per → L̃ and
∫
RN

|un|2∗∗dx+

∫
RN

|∇un|pdx→ L̃. (3.2.8)

With L̃ = L̃1 + L̃2, where∫
RN

|∇un|pdx→ L̃1 and
∫
RN

|un|2∗∗dx→ L̃2
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Since 2 < p < 2∗∗ and
∫
RN

F (un)dx→ 0, we have

cτ + on(1) =
1

2
∥un∥2 +

1

p

∫
RN

|∇un|pdx− 1

2∗∗

∫
RN

|un|2∗∗dx

≥ 1

2
∥un∥2per −

[
1

p

∫
RN

|un|2∗∗dx+
1

p

∫
RN

|∇un|pdx
]

=
1

2
∥un∥2per −

1

p

[∫
RN

|un|2∗∗dx+

∫
RN

|∇un|pdx
]
.

Letting n→ ∞ and using (3.2.8) we get

cτ,per ≥
(
1

2
− 1

p

)
L̃. (3.2.9)

If L̃ ≥ 1, then,

cτ,per ≥
(
1

2
− 1

p

)
, (3.2.10)

which is a contradition by the hypotheses.
On the other hand, we can use the definition of S to get

S

(∫
RN

|un|2∗∗dx
)2/2∗∗

≤
∫
RN

|∆un|2dx ≤ ∥un∥2per (3.2.11)

Now from Theorem 1.1.2, there exits C > 0 such that(∫
RN

|∇un|pdx
)1/p

≤ C

(∫
RN

|∆un|2dx
)1/2

.

Then,

1

Cp

(∫
RN

|∇un|pdx
)2/p

≤
∫
RN

|∆un|2dx ≤ ∥un∥2per (3.2.12)

Using (3.2.11) and (3.2.12) we obtain

∥un∥2per ≥ 1

2
min

{
1

Cp
, S

}{(∫
RN

|∇un|pdx
)2/p

+

(∫
RN

|un|2∗∗dx
)2/2∗∗

}
.

Suppose that 0 < L̃ < 1. In this case 0 < L̃1, L̃2 < 1. Then, since 2 < p < 2∗∗, we have

∥un∥2per ≥ 1

2
min

{
1

Cp
, S

}{∫
RN

|∇un|pdx+

∫
RN

|un|2∗∗dx
}2/p

.

Taking the limit we conclude that

L̃ ≥ 1

2
min

{
1

Cp
, S

}
L̃2/p

Since L̃ > 0, we obtain

L̃(p−2)/p ≥ 1

2
min

{
1

Cp
, S

}
and from (3.2.9) that

cτ ≥
(
1

2
− 1

p

)
1

2
min

{
1

Cp
, S

}p/(p−2)

,

which is a contradiction. Hence L̃ = 0 and therefore (i) holds.
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Theorem 3.2.4. ( Critical case )
Assume that conditions (V1)-(V3) and (f1), (f̃2), (f3), (f4) hold. Then, there is τ∗ > 0 such
that (P̂ ) with β = 1, has a ground state solution for all τ ≥ τ∗.

Proof. This is a consequence of the Lemma 3.2.3 and minor adaptations of the Theorem
3.1.5.

3.3 Variational framework on nonperiodic problem

The main tool used to prove Theorems 3.0.3 and 3.0.4 is the variational method, in which
solutions to (P3) are critical points of the functional given by

I(u) =
1

2

∫
RN

|∆u|2dx± 1

p

∫
RN

|∇u|pdx+
1

2

∫
RN

V (x)|u|2dx

−
∫
RN

F (u)dx− β

2∗∗

∫
RN

|u|2∗∗dx.

It is well known that I is well defined on the Hilbert space E given by

E =

{
u ∈ H2(RN ) :

∫
RN

V (x)|u|2 dx <∞
}

with the inner product

⟨u, v⟩∗ :=
∫
RN

(∆u∆v + V (x)uv) dx, for all u, v ∈ E

and associated norm given by

∥u∥2∗ =
∫
RN

(|∆u|2 + V (x)|u|2)dx for all u ∈ E

and I belongs to C1(H2(RN ),R) with

I ′(u)ϕ =

∫
RN

∆u∆ϕ+

∫
RN

V (x)uϕ dx±
∫
RN

|∇u|p−2∇u∇ϕdx

−
∫
RN

f(u)ϕ dx− γ

∫
RN

|u|2∗∗−2uϕ dx,

for all ϕ ∈ E. In this section, N denotes the Nehari manifold related to I, that is,

N =
{
u ∈ H2(RN ) \ {0} : I ′(u)u = 0

}
.

Arguing as Lemma 3.1.1 and 3.1.2, it is easy to prove that the functional I has the mountain
pass geometry. Thus, using again a version of the Mountain Pass Theorem without (PS)
condition that can be found in found in [92], there exists a (PS)d sequence (un) ⊂ E, that
is, a sequence satisfying

I(un) → d and I ′(un) → 0,

where
d = inf

η∈Γ
max
t∈[0,1]

I(η(t)) > 0.

Arguing as Lemma 3.1.3, it follows that

d = inf
u∈H2(RN )\{0}

max
t≥0

I(tu) = inf
N
I.

The next lemma shows an important inequality involving the levels d and cper.
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Lemma 3.3.1. The levels d and cper verify the inequality

d < cper,

for all τ > γ τ∗.

Proof. From Theorems 3.1.5 and 3.2.4, there is u ∈ Mper such that Iper(u) = cper and
I ′per(u) = 0 for all τ > γ τ∗. Hence, there is t̂ > 0 such that t̂u ∈ N , and so,

0 < d ≤ sup
t≥0

I(tu) = I(t̂u).

Using (V3), we conclude that

0 < d ≤ I(t̂u) < Iper(t̂u) ≤ sup
t≥0

Iper(tu) = Iper(u) = cper.

Remark 4. If un ⇀ 0 in E and W ∈ LN/2(RN ). Then,∫
RN

W (x)|un|2dx→ 0, n→ +∞.

Proof. Since that un ⇀ 0 in E, then un(x) → 0 a.e. in RN , this implies

|un(x)|2 → 0 a.e. in RN (3.3.1)

For other hand, since that H2(RN ) ↪→ Lr(RN ) for 2 ≤ r ≤ 2∗∗, in particular is valid for
L2∗(RN ), consequently ∥un∥2∗ ≤M for all n in N, this implies

(|un|2)n, is bounded in LN/(N−2)(RN ) (3.3.2)

By (3.3.1) and (3.3.2), we have

|un|2 ⇀ 0, in LN/(N−2)(RN ) (3.3.3)

By definition of weak convergence, it follows that∫
RN

h|un|2dx→ 0, ∀h ∈ Ls(RN ) (3.3.4)

where s = ( N
N−2)

′ = N
2 , in particular considering h =W we have∫

RN

W (x)|un|2dx→ 0 (3.3.5)

and so,

|Iper(un)− I(un)| =
1

2

∣∣∣∣∫
RN

(Vper(x)− V (x))|un|2dx
∣∣∣∣

=
1

2

∣∣∣∣∫
RN

W (x)|un|2dx
∣∣∣∣

= on(1), (3.3.6)
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Lemma 3.3.2. Let (un) ⊂ E be a (PS)d sequence for I in E such that un ⇀ 0 weakly in
E. If un ↛ 0 strongly in E, then

cper ≤ d.

Proof. Affirmation, (tn) is bounded. In fact, since tnun ∈ Mper, we get I ′
per(tnun)(tnun) =

0, this is

0 = t2n∥un∥2per ± tpn

∫
RN

|∇un|pdx−
∫
RN

f(tnun)(tnun)dx− βt2∗∗n

∫
RN

|un|2∗∗dx,

this implies

t2n∥un∥2per ± tpn

∫
RN

|∇un|pdx =

∫
RN

f(tnun)(tnun)dx+ βt2∗∗n

∫
RN

|un|2∗∗dx.

In the case that the first term in the associated equality is positive, we have

t2−pn ∥un∥2per +
∫
RN

|∇un|pdx =

∫
RN

f(tnun)

(tnun)p−1
upndx+ βt2∗∗−pn

∫
RN

|un|2∗∗dx

≥ βt2∗∗−pn

∫
RN

|un|2∗∗dx

Assuming by contradictions that tn → +∞, we get C > +∞, this is contradictions. There-
fore (tn) is bounded.
In the case that the first term in the associated equality is negative, we have

∥un∥2per =

∫
RN

f(tnun)

tnun
undx+ βt2∗∗−2

n

∫
RN

|un|2∗∗dx+ tp−2
n

∫
RN

|∇un|pdx

≥ βt2∗∗−pn

∫
RN

|un|2∗∗dx

Assuming by contradictions that tn → +∞, we get C1 > +∞, this is contradictions.
Therefore (tn) is bounded. Since that (tn) is bounded, there are exist t̄ ≥ 0, such that
tn → t̄.

We start by proving that

lim sup
n→∞

tn ≤ 1. (3.3.7)

In fact, suppose by contradiction that there exist a subsequence (un) and δ > 0 such that

tn ≥ 1 + δ, ∀n ∈ N. (3.3.8)

Using the facts that I ′(un)un = on(1) for all n ∈ N, we have∫
RN

(|∆un|2 + V (x)u2n)dx±
∫
RN

|∇un|pdx =

∫
RN

f(un)undx+

∫
RN

|un|2∗∗dx+ on(1),(3.3.9)

and I ′per(tnun)tnun = on(1) for all n ∈ N, we have

t2n

∫
RN

(|∆un|2 + Vperu
2
n)dx± tpn

∫
RN

|∇un|pdx

=

∫
RN

f(tnun)(tnun)dx+ t2∗∗n

∫
RN

|un|2∗∗dx+ on(1),

86



then

t2−pn

∫
RN

(|∆un|2 + Vperu
2
n)dx±

∫
RN

|∇un|pdx

=

∫
RN

f(tnun)

(tnun)p−1
upndx+ t2∗∗−pn

∫
RN

|un|2∗∗dx+ on(1), (3.3.10)

Hence (3.3.9) and (3.3.10)

(t2−pn − 1)

∫
RN

|∆un|2dx+

∫
RN

(t2−pn Vper(x)− V (x))dx

=

∫
RN

f(tnun)

(tnun)p−1
upndx−

∫
RN

f(un)undx+ (t2∗∗−pn − 1)

∫
RN

|un|2∗∗dx+ on(1)

=

∫
RN

(
f(tnun)

(tnun)p−1
− f(un)

up−1
n

)
upndx+ (t2∗∗−pn − 1)

∫
RN

|un|2∗∗dx+ on(1)

using (3.3.8), we get t2−pn ≤ 1, we get∫
RN

(t2−pn Vper(x)− V (x))|un|2dx ≤
∫
RN

(Vper(x)− V (x))|un|2dx (3.3.11)

and

(t2−pn − 1)

∫
RN

|∆un|2dx ≤ (t2−pn − 1)

∫
RN

|∆un|2dx ≤ 0 (3.3.12)

for other hand, using t2∗∗−pn ≥ (1 + δ)2∗∗−p ≥ 1 + δ, we get t2∗∗−pn − 1 ≥ δ

(t2∗∗−pn − 1)

∫
RN

|un|2∗∗dx ≥ δ

∫
RN

|un|2∗∗dx (3.3.13)

consequently, using (3.3.11), (3.3.12) and (3.3.13), we get∫
RN

(Vper(x)− V (x))|un|2dx ≥
∫
RN

(
f(tnun)

(tnun)p−1
− f(un)

up−1
n

)
upndx+ δ

∫
RN

|un|2∗∗dx

≥
∫
RN

(
f(tnun)

(tnun)p−1
− f(un)

up−1
n

)
upndx (3.3.14)

By (3.3.5), (3.3.6) and (V3)∫
RN

(
f(tnun)

(tnun)p−1
− f(un)

up−1
n

)
upndx ≤

∫
RN

(Vper(x)− V (x))|un|2dx

=

∫
RN

W (x)|un|2dx

= on(1) (3.3.15)

On the other hand, we can use the fact un ↛ 0 to obtain R1, β > 0 and a sequence
(yn) ⊂ RN such that

lim inf
n→∞

∫
BR1

(yn)
|un|2dx ≥ β > 0. (3.3.16)

Let vn(x) = vn(x+ yn) and note that vn) is a bounded sequence in E. Hence vn ⇀ v in
E along a subsequence. By (3.3.16), v ̸= 0 in a positive measure subset Λ ⊂ BR1(0).∫

Λ

(
f((1 + δ)vn)

((1 + δ)vn)p−1
− f(vn)

vp−1
n

)
vpn ≤

∫
RN

(
f(tnun)

(tnun)p−1
− f(un)

up−1
n

)
upndx ≤ on(1)
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Taking the limit as n → +∞ and using Fatou Lemma, (f3), (3.3.8) and (3.3.15) it follows
that

0 <

∫
Λ

(
f((1 + δ)v)

((1 + δ)v)p−1
− f(v)

vp−1

)
vpdx

=

∫
Λ
lim inf
n→+∞

(
f((1 + δ)vn)

((1 + δ)vn)p−1
− f(vn)

vp−1
n

)
vpndx

≤ lim inf
n→+∞

∫
Λ

(
f((1 + δ)vn)

((1 + δ)vn)p−1
− f(vn)

vp−1
n

)
vpndx

= 0,

we obtain a contradictions. Therefore lim
n→∞

tn ≤ 1.

Therefore, we have two cases to consider:

(i) lim
n→∞

tn = t < 1;

(ii) lim
n→∞

tn = t = 1.

If (i) occurs, then there exists a subsequence (un) such that tn → t < 1. We can also
consider that tn < 1 for all n ∈ N, we get

d+ on(1) = I(un)−
1

p
I
′
(un)(un)

=

(
1

2
− 1

p

)∫
RN

(|∆un|2 + V (x)|un|2)dx+

∫
RN

(
1

p
f(un)un − F (u)

)
dx

+β

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx.

Recalling that tnun ∈ Mper, and using (f3) we obtain

cper ≤ Iper(tnun)−
1

p
I ′per(tnun)tnun

=

(
1

2
− 1

p

)
∥tnun∥2per +

∫
RN

(
1

p
f(tnun)tnun − F (snvn)

)
dx

+β

(
1

p
− 1

2∗∗

)∫
RN

|untn|2∗∗dx

≤
(
1

2
− 1

p

)
∥un∥2per +

∫
RN

(
1

p
f(un)un − F (un)

)
dx

+β

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx.
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On the other hand, we can use (3.3.5) in the above inequality to get

cper ≤
(
1

2
− 1

p

)∫
RN

|∆un|2dx+

(
1

2
− 1

p

)∫
RN

Vper(x)|un|2dx

+

∫
RN

(
1

p
f(un)un − F (un)

)
dx+ β

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx

≤
(
1

2
− 1

p

)∫
RN

|∆un|2dx+

(
1

2
− 1

p

)∫
RN

(V (x) +W (x))|un|2dx

+

∫
RN

(
1

p
f(un)un − F (un)

)
dx+ β

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx

≤
(
1

2
− 1

p

)∫
RN

(|∆un|2 + V (x)|un|2)dx+

(
1

2
− 1

p

)∫
RN

W (x)|un|2dx

+

∫
RN

(
1

p
f(un)un − F (un)

)
dx+ β

(
1

p
− 1

2∗∗

)∫
RN

|un|2∗∗dx

= I(un)−
1

p
I ′(un)un +

(
1

2
− 1

p

)∫
RN

W (x)|un|2dx

≤ d+

(
1

2
− 1

p

)∫
RN

W (x)|un|2dx

= d+

(
1

2
− 1

p

)
on(1)

= d+ on(1).

Taking n→ ∞, we obtain thad cper ≤ d as required, Which is the desired conclusion.

Suppose that (ii) holds. Up to a subsequence, we may suppose tha tn → 1. Taking into
account that I(un) → d, we get

d+ on(1) = I(un) = Iper(tnun) + I(un)− Iper(tnun)

which implies that

d+ on(1) = I(un) ≥ cper + I(un)− Iper(tnun) (3.3.17)

Therefore, it remains to prove that I(un)− Iper(tnun) = on(1). Note that

I(un)− Iper(tnun) =
1

2
(1− t2n)

∫
RN

|∆un|2dx+
1

2

∫
RN

(V (x)− t2nVper(x))|un|2dx

±1

p
(1− tpn)

∫
RN

|∇un|pdx+

∫
RN

(F (tnun)− F (un))dx

+β
1

2∗∗
(1− t2∗∗n )

∫
RN

|un|2∗∗dx

Using (V3), we get

I(un)− Iper(tnun) =
1

2
(1− t2n)

∫
RN

|∆un|2dx+
1

2
(1− t2n)

∫
RN

Vper(x)|un|2dx

±1

p
(1− tpn)

∫
RN

|∇un|pdx+

∫
RN

(F (tnun)− F (un))dx

+
β

2∗∗
(1− t2∗∗n )

∫
RN

|un|2∗∗dx− t2n
2

∫
RN

W (x)|un|2dx (3.3.18)
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Since (un) is bounded E and tn → 1, we get

1

2
(1− t2n)

∫
RN

|∆un|2dx = on(1),

1

p
(1− tpn)

∫
RN

|∇un|pdx = on(1),

1

2
(1− t2n)

∫
RN

Vper(x)|un|2dx = on(1)

and

1

2∗∗
(1− t2∗∗n )

∫
RN

|un|2∗∗dx = on(1).

Hence, using that (vn) is bounded and Sobolev embedding, yields

I(un)− Iper(tnun) ≥ on(1) +

∫
RN

(F (tnun)− F (un))dx, (3.3.19)

By the mean value theorem∫
RN

|F (tnun)− F (un)|dx ≤ C1|1− tn|
∫
RN

|un|2dx+ C2|1− tqn|
∫
RN

|un|qdx

Thus, we can use the bounded of sequence (un) and tn → 1∫
RN

|F (tnun)− F (un)|dx = on(1) (3.3.20)

By (3.3.17), (3.3.19) and (3.3.20), we have

cper ≤ d,

and the result follows after passing to the limit n→ ∞.

3.3.1 Proof of Theorems 3.0.3 and 3.0.4

Proof. Let (un) be a (PS)d sequence for I. Arguing as in the proof of Theorem 3.1.5, we
can prove that (un) is bounded in E. Thus, there exists u ∈ E such that

un ⇀ u in E.

Hence, if u ̸= 0, arguing again as in the proof of the Theorem 3.1.5, u is a ground state
solution of the problem (P3) for the cases β = 0 and β = 1.

Now, we will prove that u = 0 can not occur. Indeed, if u = 0, then un ⇀ 0 in E. On
one hand, since W ∈ LN/2(RN ), the Holder’s inequality leads to∫

RN

W (x)|un|2 dx→ 0,

and so,

|Iper(un)− I(un)| =
∣∣∣∣∫

RN

W (x)|un|2 dx
∣∣∣∣ = on(1),
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showing that

Iper(un) → d. (3.3.21)

On the other hand, taking ϕ ∈ E with ∥ϕ∥ ≤ 1, we obtain

|(I ′per(un)− I ′(un))ϕ| ≤ C

(∫
RN

|W ||un|2 dx
)1/2

= on(1).

Thus,

I ′per(un) = on(1). (3.3.22)

Let tn > 0 such that tnun ∈ M. Using Lemma 3.3.2, it follows that tn → 1. Therefore,

cper ≤ Iper(tnun) = Iper(un) + on(1) = d+ on(1).

Letting n→ +∞, we get
cper ≤ d

obtaining a contradiction with Lemma 3.3.1. This completes the proof of the Theorems
3.0.3 and 3.0.4.
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Appendix A

Some Classical Results

This section is devoted to recall some classical results that were used throughout this work.
As this section is just for viewing the results, we will not give any demonstrations.

Theorem A.0.1. (Dominated Convergence Theorem, Lebesgue). Let (fn) be a sequence of
functions in L1(Ω) that satisfy

(a) fn(x) → f(x) a.e. in Ω,

(b) there is a function g ∈ L1(Ω) such that for all n, |fn(x)| ≤ g(x) a.e. on Ω.

Then, f ∈ L1(Ω) and ∥fn − f∥ → 0.

Proof. See [50]

Theorem A.0.2. (Fatou’s lemma). Let (fn) be a sequence of functions in L1(Ω) that satisfy

(a) for all n, fn(x) ≥ 0 a.e. in Ω,

(b) supn
∫
fn < +∞

For almost all x ∈ Ω we set f(x) lim inf
n→+∞

fn(x) ≤ +∞ Then, f ∈ L1(Ω) and∫
f(x)dx ≤ lim inf

n→+∞

∫
fn(x)dx

Proof. See [3]

Theorem A.0.3. Let 1 < p < +∞ and (fn) is bounded in Lp(Ω) and fn(x) → f(x) a.e.
in Ω Then, fn ⇀ f in Lp(Ω).

Proof. See [50]

Theorem A.0.4. Let (fn) be a sequence in Lp(Ω) and let f ∈ Lp(Ω) be such that ∥fp −
f∥p → 0. Then, there exist a subsequence (fnk

) and a function h ∈ Lp(Ω) such that

(a) fnk
(x) → f(x) a.e. in Ω,

(b) |fnk
(x)| ≤ h(x) ∀ n ∈ N a.e. on Ω.

Proof. See [24]

Theorem A.0.5. Assume that f, g ∈ Lp(Ω) with 1 ≤ p ≤ +∞. Then, f + g ∈ Lp(Ω) and(∫
|f + g|pdx

)1/p

≤
(∫

|f |pdx
)1/p

+

(∫
|g|pdx

)1/p
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Proof. See [24]

Theorem A.0.6. Assume that f ∈ Lp(Ω) and g ∈ Lp
′
(Ω) with 1 ≤ p ≤ +∞. Then

f.g ∈ L1(Ω) and

∫
|fg|dx ≤

(∫
|f |pdx

)1/p(∫
|g|p

′
dx

)1/p
′

Proof. See [24]

Theorem A.0.7. Let Ω ⊂ RN with n ∈ N+ be a bounded domain and ∂Ω ∈ C2m,γ. Then
there exist the following embeddings for p ∈ [1,∞) and m ∈ N+:

(i) for (m− 1)p < n < mp: W 2m,p(Ω) ↪→ Cm,µ(Ω) with 0 < µ ≤ m− n
p ,

(ii) for n < (m− 1)p: W 2m,p(Ω) ↪→ Cm,µ(Ω) with 0 < µ < 1,

(iii) for n < 2mp: W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q ≤ p∗n := ∞,

(iii) for n = 2mp: W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q < p∗n := ∞,

(iv) for n > 2mp: W 2m,p(Ω) ↪→ Lq(Ω) with p ≤ q < p∗n = np
n−2mp .

Proof. See [24].

Lemma A.0.8. Let x, y ∈ RN and let ⟨·, ·⟩ be the standard inner product in RN

⟨|x|p−2x− |y|p−2y, x− y⟩ ≥ Cp|x− y|p if p ≥ 2

or

⟨|x|p−2x− |y|p−2y, x− y⟩ ≥ Cp|x− y|p

(|x|+ |y|)2−p
if 2 > p > 1.

Definition A.0.1. Let V and H be Hilbert spaces such that V ⊂ H with injective, dense
and continuous embedding. Let V ′ denote the dual space of V ; a scheme of this type (namely
V ⊂ H ⊂ V ′) is called a Hilbert triple.

Definition A.0.2. We say that a bounded domain Ω ⊂ RN satisfies an outer ball condition
if for each y ∈ ∂Ω there exists a ball B ⊂ RN \ {0} such that y ∈ ∂B. We say that it
satisfies a uniform outer ball condition if the radius of the ball B can be taken independently
of y ∈ ∂Ω.

Theorem A.0.9. Assume that Ω ⊂ RN is a Lipschitz bounded domain which satisfies a
uniform outer ball condition. Then the space H2(Ω) ∩H1

0 (Ω) becomes a Hilbert space when
endowed with the scalar product

⟨v, w⟩ =
∫
Ω
∆v∆wdx, ∀u, v ∈ H2(Ω) ∩H1

0 (Ω),

This scalar product induces a norm equivalent to ∥ · ∥H2.

Proof. See [41, Theorem 2.30].
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Lemma A.0.10. The best constant D2,2(RN ) to L2∗∗(RN )

S = inf
0̸=u∈D2,2(RN )


∫
RN

|∆u|2dx(∫
RN

|u|2∗∗dx
) 2

2∗∗


is a minimum and (up to nontrivial real multiples) it is attained only on the functions

Ux0(x) :=
aN

(1 + |x− x0|2)
N−4

2

,

and it is also reached by dilations and translations of the function,

Uε,x0(x) := aNε
4−N

2

( 1

ε2 + |x− x0|2
)N−4

2
,

where ε > 0 and aN = ((N + 2)N(N − 2)(N − 4))
N−4

8 for N ≥ 5. Also Uε,x0 are the only
positive solutions of the equation satisfies the following problem{

∆2u = u
N+4
N−4 in RN

u ∈ D2,2(RN ).
(A.0.1)

Also note

S
N
4 =

∫
RN

|∆uε|2dx =

∫
RN

|uε|2∗∗dx (A.0.2)

Consider a cutoff ρ(x) ≥ 0 function, smooth, as that, ρ(x) = 1 if x ∈ Br(x0), ρ(x) = 0 if
x ∈ B2r(x0); where we take r > 0. More precisely, define

uε(x) = ρ(x)Uε(x)

We denote by O(εα) a function (which depends on ε) such that there is a constant C > 0
(independent of ε) satisfying |ε−αO(εα)| ≤ C for ε small,∫

Ω
|∆uε|2dx = S

N
4 +O(εN ) (A.0.3)

(∫
Ω
|uε|2

∗∗
dx

) 2
2∗∗

= S
N
4 +O(εN−4) (A.0.4)

and for some C > 0

∫
Ω
|uε|rdx =


Cε

(N−4)r
2 +O(ε

(N−4)r
2 ) if r < N

N−4 ,

CεN− (N−4)r
2 | ln ε|+O(εN− (N−4)r

2 | ln ε|) if r = N
N−4 ,

CεN− (N−4)r
2 +O(εN− (N−4)r

2 ) if r > N
N−4 .

(A.0.5)

Then, we have ∥vε∥2 = ∥uε∥2
∥uε∥22∗∗

, this implies that ∥vε∥2 = S +O(εN−4).

Proof. See ( [4] and [41]).
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