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Resumo

Neste trabalho, intitulado Equacao de Schédinger nao-autonoma e nao peridédica com

crescimento assintético no RY , consideramos o problema

{—dz’v(g(x)VU)vLV(f)U:f(x’“)’ em  RY, P)

u(z) — 0, quando |z|— oo,

com N >3, &: RY 5 RY ¢ V:RY — R satisfazendo algumas condigoes e a nao linearidade
f assintoticamente linear no infinito e assumimos ser de classe C1(RY xR, R). Na primeira
parte mostramos a existéncia de solugao positiva com V(x) =1 no primeiro capitulo e
V(z) positiva no segundo capitulo.

Em seguida, estamos em busca de solu¢ao nodal. Para tanto, assumimos algum tipo

de simetria para o problema. Mais especificamente, consideramos o problema

—div(&(x)Vu)+ V(z)u = f(z,u), em RN,
u(rx) = —u(x), (Pr)

u(z) — 0, quando |z|— oo,

com N>3e7:RY > RY uma involucao ortogonal nao trivial que é uma tranformacao
ortogonal em RV tal que T # Id e 72 = Id, sendo Id o operador identidade em RY. Uma
solugdo u do problema (P;) é chama 7— antissimétrica. Assim como na primeira parte,
consideramos V' (x) = 1 no primeiro capitulo e V(x) positiva no segundo capitulo.
Finalmente, buscamos a existéncia de uma solugao nao trivial para o problema (P)
com o potencial V' mudando de sinal. Estabelemos que V' possui um limite positivo no
infinito e que o espectro do operador Lu = —div(&(x)Vu) + V(x)u tem infimo negativo.
Com isso, e com base nas interagoes entre solucoes transladadas do problema no infinito
associado, é possivel mostrar que tal problema satisfaz a geometria do Teorema de Linking

e garantir a existéncia de uma solucao fraca nao trivial.



Abstract

In this work, we consider the nonautonomous and non periodic Schérdinger equation

with asymptotic growth in RN

{—dz’v(g(x)VU)vLV(x)U:f(xv“)’ in - RY, P)

u(z) =0, as |z|]— o0,

where N >3, ¢: RY 3Rt and V:RY R satisfying some conditions and the nonlinearity
f being asymptotically linear at infinity and is assumed to be a C’l(]RN x R,R). In the
first part, we show the existence of a positive solution with V(z) =1 in the first chapter
and V' (z) positive in the second chapter.

In the second part, we look for a nodal solution. In this case, we assume some type

of symmetric for the problem. More specifically, we consider the problem

—div(&(x)Vu)+ V(z)u = f(z,u), em RN,
u(rx) = —u(x), (Pr)

u(z) — 0, quando |z|— oo,

where N >3 and 7: RY — RY is a nontrivial orthogonal involution, in other words, it
is a linear orthogonal in RY such that 7 # Id and 72 = Id, with Id being the identity
operator in RY. As in the first part, we consider V() =1 in the first chapter and V(z)
positive in the second chapter.

Finally, we look the existence of a nontrivial solution to problem (P) with the
potential V' changing sign. We establish that V' has a positive limit at infinity and that
the spectrum of the operator Lu = —div(£(x)Vu)+ V(x)u has a negative infimum. With
this, and based on interactions between translated solutions of the associated infinite
problem, it is possible to show that such problem satisfies the geometry of the Linking

Theorem and ensure the existence of a nontrivial solutions.
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Introduction

This thesis is divided into three chapters that deal with the Schrodinger equation

{ —div(é(z)Vu)+V (2)u= f(z,u), in R, (P)

u(x) >0, as |z|]— o0,

where N >3, ¢: RY 5 RYand V:RY R satisfying some conditions and the nonlinearity
f is asymptotically linear at infinity and is assumed to be a C (]RN x R, R).

About the function ¢ we have that the operator —div(&(z)Vu) is known as the
divergence operator of a tensor field u(x). This operator appears in various areas of
physics and engineering, especially in problems involving diffusion and transport of
physical quantities such as heat, mass, and electric charge.

If —div({(x)Vu) is a symmetric and positive definite matrix, the operator represents
anisotropic diffusion, where the diffusion rate varies according to the direction of the flow.
This is crucial in physical phenomena where conductivity is not uniform in all directions,
such as in porous media or anisotropic materials. The physical motivation for considering
this operator can be found in diffusive processes in heterogeneous media, such as the
transport of substances in non-homogeneous soil or the diffusion of heat in materials
with variable thermal properties. Additionally, in fluid mechanics, this operator appears
in the Navier-Stokes equation to model fluid viscosity.

Understanding this operator is fundamental for solving a variety of physical and
engineering problems, allowing the analysis and prediction of how physical quantities
diffuse and distribute in complex systems. Studying its properties and behaviors is
essential for understanding a wide range of natural and industrial phenomena.

For more information about the operator —div(£(x)Vu) and its applications in physics
and engineering, you can refer to [15]. This book provides a comprehensive introduction

to partial differential equations, including a detailed discussion on differential operators,
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such as the divergence operator, and their applications in various physical contexts.
Another reference is [18], this book is a classic reference in the study of elliptic partial
differential equations, addressing in detail the theory and applications of these equations,
including the divergence operator. We also have the book [22] which is an excellent source
for learning about numerical methods to solve partial differential equations, including
approaches for dealing with differential operators like the divergence operator in physical
problems. These references provide a solid foundation for understanding the theory and
applications of the operator —div(&(x)Vu) in physical and engineering problems.

In [26], Maia and Ruviaro worked with the equation
—Au+V(z)u= f(z,u), zcRY

where V' is bounded and invariant under an orthogonal and converges to a positive
constant as |z|— 400, and f is asymptotic linear at infinity. The structure of the first
two chapters were based to obtain the positive and nodal solutions.

In [9], Chabrowski studied the problem

—div(a(x)Vu) + M= K(z)|u|?%u, in RY (0.0.1)

with N >3, A >0, 2<q<2N/(N—=2) and a € C(RY) N L®(RY) satisfying
0<a(x) < | 1|1£>n a(zx), supposing additionally that a is positive in some exterior ball
Bpr(0). The g;utiloor showed an existence result using the minimization method, assuming
an integrability condition for a and requiring that K € L®°(RY) verifies either a is
periodic or K(z) > | l|11>n K(x). Furthermore, weighted Sobolev’s space is used with the
following assumptiorgis: O{O:E ra(x) =0} C Bg,(0) and 1/a € LY(Bg,(0)).

Another paper in this class of problems was treated by Lazzo in [21]. She studied the
problem (0.0.1) with K =1, and the function a satisfying

0<ap:= inf a(x)<ax :=liminfa(z). (0.0.2)

xeRN |z]—00
Using the minimization method, it was proved that there exists A* > 0 such that the
problem (0.0.1) has a positive solution for A > \*. It was also proved that for A sufficiently
large, the number of solutions of (0.0.1) is bounded below by the Ljusternick-Schrinelmann

category. Furthermore, she studied the asymptotic behavior of such minimizers as A goes
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to infinity and proved that they concentrate around the global minimum point of a using
techniques based on [34].

In [10], Cingolani and Lazzo studied the multiplicity of solutions to the problem
2Au+V (x)u = [ulP~2u, z € RN, where V(z) = u(z) + X. The main result proved the
existence and multiplicity of solutions to the problem under the hypothesis liminf V' (z) >
Vo > 0. e

The next papers we will cite here were written by Figueiredo and Furtado, whose

results also guided this thesis. In [16], they studied the problem
—ePdiv(a(z)|VulP2Vu) +uP~t = f(u), in RY (0.0.3)

with f being a superlinear function and a satisfying (0.0.2). They showed the existence of
a ground state solution using minimax theorems and a result of the existence of multiple
solutions.

In [17], they obtained the multiplicity of positive solutions to quasilinear equation
(0.0.3) with € > 0 as a small parameter, f being supercritical linearity, and a a positive

potential, considering a weaker condition than (0.0.2), namely 0 < ag = inf\ a(zr) <
re

xignaan(x) where A is a bounded domain in RY. The main result is proved using the
Lusternik—Schnirelmann theory. To show the existence of a solution, they considered
a penalized problem, and the solution will belong to the Nehari manifold, using the
minimization theory. In this type of problem, we can not apply the Maximum Principle,
and because of that, it is necessary to use a different technique based on the work of [23]
to show that u € L®(RY)N Cllo’g(RN ), a technique that will also be used by us.

In the first chapter, we study the problem (P) with V =1 with the functions
¢ C(RY,RT) and f € C(RYN xR,R) satisfying;:

(&1) there exists {y > 0 such that {(z) > &p;

(€2) Jim £(2) = Eoo;

x|—00
(&3) &(7) S oo
(f1) lim flz.2)

s—0t S

= 0, uniformly for z € RY;

(f2) there exist a € C(RY,RT) and h € C(R,R") an even function satisfying
h(s) >0 for all s >0, h(0) =0 and
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lim f(,) = lim A(s) = lim a(z) = ac ;
|z|] =00, s—00 S §—00 |z]—o0

(.9 & 1(s), for all 2 € RY and all s € R* and L5
S S

Q of positive Lebesgue measure and all s € R™;

> h(s) for all z in subset

(f3)

(f1) 1<as S a(x), for all z e RV:

(f5) if we set F(x,s) = /Osf(x,t)dt and Q(z,s) = ;f(x,s)s—F(x,s), then

lim Q(x,s)=+o0

§—+400

and there exists D > 1 such that

Q(x,s) < DQ(x,t), forallzeRY and 0<s<t.

The first result of this chapter can be stated as follows.

Theorem 0.0.1. Suppose f satisfies (f1)— (f5) and £ satisfies (§1) — (§3). Then problem
(P) has a positive solution u € H'(RN).

In the second part of this chapter, we look for a nodal solution. In this case, we
assume some type of symmetry for the problem. More specifically, we consider the

problem

—div(&(x)Vu) +u= f(z,u), inRY,
u(rx) = —u(x), (Pr)
u(z) — 0, as |x|— oo,

where N >3 and 7: RY — R" is a nontrivial orthogonal involution, in other words, it is
a linear orthogonal transformation in RY such that 7 # Id and 72 = Id with Id being
the identity operator in RY. A solution u of (Pr) is called a T-antisymmetric solution.
Let x = (x1,x2), an example of function 7 is given by 7(z1,22) = (—x1,—x2).

In this new setting, we need some technical assumptions. So we shall suppose that &

and f satisfies:
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(&4) &(Tz) = &(x), for all z € RY;
(f6) f(rx,s)=—f(x,—s), for all x € RV, seR;

(f7) there exists C1 > 1 such that f(z,s) < Cif(x,t) with 0 <s<t, forall z € RV,

Our result concerning nodal solution is stated next.

Theorem 0.0.2. Assume that £ satisfy the hypotheses (§1) — (&4) and f satisfies (f1) —
(f7). Then problem (P:) has a sign-changing solution provided one of the following

conditions holds:

£(1) < Eoo— Ce™ P for all z e RY (0.0.4)

or
F(x,s)> H(s)+Ce P52 for all z e RN, s € R, (0.0.5)

for constants C >0 and 0 < (1,52 < 3.

In the second chapter we have results similar to those in the first chapter, but with the
potential V' being positive. Thus, we have another norm associated with H 1(]RN ), which

is equivalent to the first one found. For the main results, we will have the conditions on
V' which are:

(V1) there exists Vp > 0 such that V(z) > Vp;
(V2) |$1|11an($) = Voo
(V3) Vi(z) S Voo;
(&4) E(tx) = £(x), for all z € RY;
and the hypothesis (f4) is adapted to
(f1) Voo < @00 S a(z), for all z € RY.

The first result of this chapter can be stated as follows.

Theorem 0.0.3. Suppose f satisfy (f1) — (f3),(f1),(f5) and & satisfies (€1) — (&3). Then
problem (P) has a positive solution u € H'(RY).
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In the second part of this chapter, we look for a nodal solution to the problem (P)

with V positive is given by

—div(&(z)Vu)+V (z)u = f(z,u), inRY,
u(rx) = —u(x), (P)

u(z) =0, as |z|— oo,
In this new setting, in addition to the hypotheses (£4), (fs), (f7) we shall suppose that
V satisfies:
(V4) V(rz) =V (z), for all z € RY.
Our result concerning the nodal solution in the second chapter is stated next.

Theorem 0.0.4. Assume that & and V' satisfy the hypotheses (£1) — (€4) and (V1) — (Va),

respectively, and f satisfy (f1) — (f3),(f1),(f5) — (f7). Then problem (P.) has a sign-
changing solution provided one of the following conditions holds:

£(x) < oo — Ce™ P for all 2 e RN (0.0.6)

or
V(z) < Vao —Ce™ 21 for all z e RN (0.0.7)

or
F(x,s) > H(s)+Ce 31|52 for all z e RN, s eR, (0.0.8)

for constants C' >0 and 0 < B; < 8, with 1 =1,2,3.

To prove the results from this chapter, since f is not homogeneous and f(x,s)/s for
s > 0 is not necessarily, the appropriate minimization process is to use the Pohozaev
manifold. We work with the difference of two solutions u ground state z, = u(z —y) —
u(z — 7x) without making any truncation.

The fact that the functions ¢ and V' are bounded allows us to define a norm in
H 1(RN ) and consider the appropriate space of function to obtain solutions of (P), in the
first chapter only with ¢ and in the second chapter with £ and V. Since the embedded of
HYRY) in LP(RY), 2 < p < 2% is not compact, the main problem consists of the fact
that the associated functional does not satisfy a compactness condition. To overcome

this difficulty, we will present and prove a version of the concentration compactness
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theorem of P.L. Lions [24], as presented by M. Struwe in [30] so-called the Splitting
Lemma. Therefore, we can describe for which energy levels our associated functional,
restricted to the manifold considered, satisfies the compactness condition.

It is important to highlight that our operator does not admit Maximum Principle. To
prove the Theorems 0.0.1 and 0.0.3, we need to adjust a result from Li and Wang [23],
which ensures that the solutions we discover belong to L®(RY)N C’llo’? (RY). Additionally,
we utilize the Harnack inequality to ensure the positivity of the solution obtained the
Mountain Pass Theorem.

The third chapter was inspired on the work of Junior, Maia and Ruviaro in [25]. They

worked on the problem

—Au+V(x)u= f(z,u)

in RY under the condition of non-periodicity in V' e f, where the potential V' changes sign.
In this framework, it is not possible to apply the Mountain Pass Theorem. Therefore,
the authors employed spectral theory. As a consequence, a new norm was introduced,
allowing the application of the Linking Theorem of Rabinowitz [29] with Cerami condition
to obtain a positive solution.

In [33], Stuart and Zhou proved the existence of a radial and positive solution of
the asymptotically linear problem with radially symmetric V. By leveraging the radial
symmetric of the working set, they managed to recover the compactness of the problem
in an unbounded domain.

Another important paper was addressed by Kryszew and Szulkin [20] and Pankov
[27], who demonstrated the existence of a nontrivial solution to the nonautonomous
problem. They considered superquadratic nonlinearity in s, incorporating the periodicity
hypotheses of Jeanjean and Tanaka in [19]. This study established the existence of a
positive solution under the specified condition: V(z) > « > 0 and f asymptotically linear
at infinity, with f(s)/s —a >0 as s — oo where a > info(—A+ V). Here, o(—A+V)
denotes the spectrum of operator —A+ V.

In Chapter 3 we consider & positive and the potential V' with a negative part, on the

other hand, it can change sign and satisfy the following hypotheses:

(&1) there exists £ > 0 such that £(z) > &p;

(&2)  lim £(x) = &oo;

|z| =00

(&3) &(2) = oo
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(V1) there exists Vy > 0 such that V(z) > —Vp;

(V2) lim V(x) = V;

|z]—o0

(Vi) 0 € o(L) and info(L) < 0, where o(L) is the spectrum of the operator
L(-) = =div(§(x)V () + V(2)(-).

Under the nonlinear function f € C(RY x R,R) we have the following hypotheses:

(i) tim 1%

L =0, uniformly in z € RY:
s—0 S

(f2) there exist a € C(RY,R") and h € C(R,R") a even function satisfying h(s) > 0 for
all s >0, h(0) =0 and such that

500 g |z] =00 S
lim f(@,s) = lim h(s) = lim a(z)=ax ,
|z|—00, s—00 S §—00 |z]—o00

|/ (2, 5)|

5]

uniformly in 2 € RY. Moreover, <a(z) and a(z) > ag > Vi, for all s #0

and all z € ]RN;
(f3) h(s) < aco, for all s € R;

(fa) i Flz,s) = /Osf(x,t)dt, H(s) = /Osh(t)tdt, G(s) ::;h(s)s2—H(s) and

1
Q(z,s) := if(x,s)s—F(x,s), then, for all s € R\ {0} and all z € RY,

G(s) >0, F(z,s) >0, Q(x,s) >0and lim Q(z,s) = +o0;

—+00

(f5) the function s f(x,s)/s is increasing in s € (0,4-00) for all z € R,

And the main result of this chapter is the following:
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Theorem 0.0.5. Assume that & and V' satisfy the hypotheses (£1) — (&3) and (Vi) — (Va),
respectively, and the function f satisfies (f1)— (fs). Then problem (P») has a nontrivial

weak solution u € Hl(RN) provided one of the followings conditions holds:
E(z) <€ — Cie "l for all e RN (0.0.9)

or
V(z) < Vo —Coe 2 for all z e RN (0.0.10)

for constants C, C2 >0 and 0 <1, 72 < \/Voo/Exo-

One difficulty encountered in this type of problem is that the associated functional
is strongly undefined. To overcome this challenge, the space H 1(RN ) is decomposed
into a direct sum of two subspaces ET and E~, one of which has finite dimension, and
assumes the condition of non-quadraticity in F', the primitive of f. In this context, it
is not possible to apply the Mountain Pass Theorem. Hence, we employ the Linking
Theorem under the Cerami condition to obtain a non-trivial solution to the problem.

An additional challenge arose with the operator spectral theory L(u) = —V(§u)+
V(z)u. Since the function £ is not constant, we do not immediately have the operator
being self-adjoint to apply the spectral theory. Therefore, we use the Fourier Transform
on the function & to circumvent this obstacle and ensure self-adjointness of the operator.

As previously mentioned, we also cannot apply the Maximum Principle to guarantee
the non-triviality and positivity of the solution found. To address this, we adapt, once
again, the results of Li and Wang [23]. Together with the Harnack inequality, these

results assure us that our solution is non-trivial and positive.



Chapter 1

Problem with ¢ positive and V =1

1.1 Variational Setting
We consider the following problem

{ —div(&(z)Vu)+u= f(z,u), in RY,
u(z) -0, as |z|— oo,

with N > 3, under the following assumptions on £ € C (]RN ,RT):
(&1) there exists {y > 0 such that £(z) > &p;

(&2) |lim (%) = Eoo;

x|—o0
(&) €(7) = Eoo-

The hypotheses on the nonlinearity f € C(RY x R,R) are the following:

(i) lim %)

L =0, uniformly for z € RY:
s—0 S

(f2) there exist a € C(RY,RT) and h € C(R,R") an even function satisfying
h(s) >0 for all s >0, h(0) =0 and

TEAGIL) N St ACIL) S
§=00 g || =00 S
lim (,5) = lim A(s) = lim a(z) =ac ;

|x| =00, s—00 S §—00 |z]—o00



1.1 Variational Setting 11

(f3) f(z5) > h(s), for all z € RY and all s € R and J@s) > h(s) for all z € Q, where
s

() is a subset of positive Lebesgue measure and for all s € R™;
(f1) 1<as S a(x), for all z € RY:

(f5) if we set F(x,s) = /Osf(x,t)dt and Q(z,s) = ;f(x,s)s— F(z,s), then

lim Q(z,s)=+o0

§—+400

and there exists D > 1 such that

Q(x,s) < DQ(x,t), forallzeRY and 0<s<t.

An example that f(s)/s that is non-increasing and satisfies assumptions (f1) — (f5):

B sT—1,55°42s3

flo) = S35

The first result of this chapter can be stated as follows.

Theorem 1.1.1. Suppose f satisfies (f1)— (f5) and & satisfies (£1) — (&3). Then problem
(P1) has a positive solution u € H*(RY).

Remark 1.1.1. Hypothesis (f2) implies that there exists a constant ag > 0 such that
a(z) <ag, forall zeRN, (1.1.1)

Remark 1.1.2. Note that conditions (f1), (f2) and (1.1.1) imply that for a given € >0
and 2 <p < 2%, there exists 0 < C' = C(g,p) such that

|f(x,5)|< es+Cs[P~! (1.1.2)

and
|F(z,s)|< 352+C|5\P. (1.1.3)

Indeed, using (f1), there exists 0 < r < 1 such that |s|<r. Thus, we obtain

f(x,s)

S

lim f(@:s)

s—0t S

:0:»‘ <o = |f(s)< sl
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For |s|> r, applying (f2) and Remark 1.1.1 we have

S
Therefore,
|f(z,8)|< aols].
Note that
1

= oS TP,

|s

1
where C' = C(e,p) = max, {HM} Hence, we obtain
rsss S

|f(x,5)] < e|s|4aols|< |s|+aoC|s[P~ 1= ¢|s|+Cs|P~ L.
It follows from the definition of F'(x,-) that
Fla,s) < [t < [ Ele+Clr)de =S lsPClsl

Remark 1.1.3. By (f1) and (f5) we obtainlthat Q(z,s) >0 foris >0 and z € RY.
Moreover, by (f2) and (fs) it follows that 0 < Qh(s)s2 —H(s)<D (2h(t)t2 - H(t)) for

0<s<t if H(s):/osh(C)CdC and by assumptions (f1) and (fs) we have
;h(s)SQ—H(s) >0 for s> 0.

Let us show the second statement. Using the definition of Q(z,-) and the hypothesis
(f5), we have

D@
lf(x,S)S—F(.T,S) gD(;f )

2
f:r:,C
b
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Applying the limit when |z| goes to infinity on both sides and using Lebesgue’s

dominated convergence theorem, we obtain

)5~ ["nicscac < o (Snioet - [ niorcac)

;h(s)SQ—H(S) <D (;h@)tQ_H(t))

for 0 < s <t as claimed.
In the second part of this chapter, we look for a nodal solution. In this case, we
assume some type of symmetry for the problem. More specifically, we consider the

problem

—div(¢£(x)Vu)+u= f(z,u), inRY,
u(rzr) = —u(x), (Pr)

u(z) — 0, as |zx|— oo,

where N >3 and 7: RY — R" is a nontrivial orthogonal involution, in other words, it is
a linear orthogonal transformation in RY such that 7 + Id and 72 = Id, with Id being
the identity operator in RY. A solution u of (P;) is called a T-antisymmetric solution.

In this new setting, we need some technical assumptions. So we shall suppose that &

and f satisfy:

(&) &(ra) =&(x), for all w € RY;

(f6) f(raz,s)=—f(x,—s), for all z e RN, s e R;

(f7) there exists C1 > 1 such that f(z,s) < C1f(x,t) with 0 <s<t, forall z € RV,

Remark 1.1.4. We do not assume that f(x,s)/s for s >0 is increasing in s.

Consider HY(RY) = {u € L*(RY) : Vu € (L*(RY))™} equipped with the norm
HUH2: /RN(foo\Vu\2+u2)dx and the limit problem

—div(£0oVu) +u = h(u)u, in RY. (1.1.4)
The functional associated with the equation (1.1.4) is given by

Lo (1) = ;/RN@OOWUPMQW—/RN H(u)da. (1.1.5)
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It is well defined and in C*(H*(R™),R) with
IL (u)p = /]RN (o VuVp +up)dr — /RN h(u)updz, for all u, ¢ € HY(RYN).

Critical points of the functional I, are weak solutions of problem (1.1.4). The
functional I is continuous, Io(0) =0 and if w is the positive solution of (1.1.4), the

maximum of [ <w (t)> > (0 holds on ¢t = 1. Furthermore, there exists a real number

L > 0, large sufficiently such that I (w <t)> < 0 for all t > L. Thus, there exists Ly > 1

such that
I <w <L0>> =0 (1.1.6)

Ino (w (t>) <0, if t > Ly. (1.1.7)

Be (o\/g) (1.1.8)

Our result concerning nodal solution is stated next.

and

Therefore, consider

Theorem 1.1.2. Assume that & satisfies the hypotheses (§1) — (§4) and f satisfies
(f1)— (f7). Then problem (Py) has a sign-changing solution provided one of the following
conditions holds:

£(x) < Eoo— Ce P for all 2 e RN (1.1.9)

or
F(z,s) > H(s)+Ce P52, for allz e RN, s € R, (1.1.10)

for constants C >0 and 0 < (1,52 < 3.

We will state and prove some preliminary results essential for the development of this
chapter and for the proof of the main results.

Any solution u of the limit problem (1.1.4) satisfies Pohozaev identity (see [28])

N -2

5 IRN|Vu|2dx:N/RNGOQ(u)alm, (1.1.11)

1 1
where Goo(u) = e (H (u) — 2u2). We define the Pohozaev manifold as
(o.9]
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P ={ue H'(RY)\{0}: J(u) =0}, (1.1.12)
where
Jw) = Y22 [ 1 ude—N [ Gao(u)d 1.1.13
() i= == [ IVulde =N [ Go(u)da (1.1.13)
and denote
Moo = 7jr€17f3[00(u) (1.1.14)
Remark 1.1.5. Note that
1 /<
Goo(C) 7/ (h(s)s — s)ds > 0 (1.1.15)
Eoo /0

implies P # .

Lemma 1.1.1. Let J: HY(RY) = R be the functional (1.1.13). Then

(i) P={ue H ®RY)\{0}: J(u) =0} is closed;
(i) P is a manifold of class C*;

(iti) there exists o >0 such that ||u|| g1 @ny> o for all u € P.

Proof. We first verify items (i) and (i7). By definition of J, we have

N —2
T ="5"k

N|Vu|2dx—N/RN Goo()de,
which is a functional of class C1(H'(RY),R). Thus

PuU{0}=J""({0}).

Then, it follows that P is a closed set since {0} is an isolated point. Furthermore, using

the Remark 1.1.4 and goo(u) := é_—(h(u)u—u), we obtain

J(u)u = 2N/RN Goo(u)dx—N/RNgoo(u)udx

_ Loy 1 2, 1 o
= 2N/RN (H(u)—Qu — —h(uw)u”+ -u )dx

2 2
= 2N/RN (H(u) - ;h(u)u2> dx <0,



1.1 Variational Setting 16

which implies .J'(u) # 0 and hence P is a C manifold. Finally, for the proof of item (iii),
let u € P and 2* =2N/(N —2), then we have

N -2
7/ |Vu|?dr — N/ Goo(u)dz =0
2 JRVN RN

N N
/RNSOO|VU|2dx = N =3 Jen H(u)da:—i u2dx

N -2
/RN ({OO|VU|2 + _2u2)dx:2*/RN H(u)dx.

Then, taking M := min{l, and using (f3), we obtain

N
N -2
M[ull1 ) < 2*/RN H(u)dz < 2° /RN F(z,u)dz.

From (1.1.3) and using Sobolev’s embedding with 2 < p < 2* it follows

. €
Mlull21 vy < 2 /RN <2|u|2_|_0|u|p>

)+2 CHUHHI (RN)*

M
Now, taking ¢ small sufficiently we obtain — HuHH1 RN S 2°Clully RN and hence

there exists o > 0, such that o < ||u||H1 (RN O

Lemma 1.1.2. If f satisfies (f1) — (f3), (un) is a bounded sequence and u, — ug in
HYRN), then

f(@,un) — f(z,un —ug) = fz,up), in HHRY) (1.1.16)
and
/RN|F(x,un) — F(x,up —ug) — F(z,up)|dz — 0. (1.1.17)
Furthermore,
()i, — Aty — o) (tn — ug) — h(ug)ug, in H HRY) (1.1.18)
and
/RN\H(un) — H (up — o) — H(ug)|dz — 0. (1.1.19)

To demonstrate (1.1.17), we will use the following result.

Lemma 1.1.3 (Brezis-Lieb [8]). Consider a continuous function, j : C — C with j(0) = 0.

Furthermore, consider the following hypotheses: for each small enough, € > 0 there exists



1.1 Variational Setting 17

two continuous and non-negative functions . and . such that
|j(a+0) —j(a)|< epe(a) + (D) (1.1.20)

for all a,b € C. Consider f, = [+ gn a sequence of measurable function from ) in C

such that:

(i) gn — 0 a.e.;
(ii) j(f) € LY;
(1i7) /gog(gn(x))d,u(x) < C < oo for some constant C' independent of € and n;

(iv) /wg(f(x))d,u(x) < oo for all e > 0.

Then, if n — o0,
J(F +90) = 3{gn) = 3(F)ldu = 0. (1.1.21)

Proof of Lemma 1.1.2: By the mean value theorem, there exists 0 < 6 < 1 such that
[f (@ un) = f (@, un = uo)|= [ (2, un — uo +Ouo)uo|= | £ (, un — (1 = 0)uo)||ug-

Thus, fixed R > 0 and w € H(RY), we obtain by Hélder inequality and Sobolev’s
embedding, that

|/ |f(:1:,un) - f($,un—uO)|wdx
|x|>R

S /|m|>R|f/(fL’;U/n_(1—6)u0)||u0||w|dx
1/2

/ 2
< (@, un = (1= 0)uo) | g2 [wll g vy /:c|>R|u0‘ dx] |

Again by Hélder inequality, by Sobolev’s embedding, and using (1.1.3),

‘/x|>R f(z,up)wdz §/|x|>R]f(x,u0)]|w|dx

< g/ ]u0]|w|da:+0/ o P~ w|dx
|z|>R |z|>R

1/2 .
clila( [P+ ol P~ )
|z|>R |z|>R

p—
—2

IN
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—

S

p—

1/2
< ellwll @) </|x|>R|U0|2dI> +Clloll e </|x|>R|uo|p‘2dq;)

Since for every € > 0 there exists R > 0 such that

/ lug|%dzx, / lug|P~2dx < e.
|z|>R |z|>R

Then, for all w € H" (RN ), using the above inequalities, we obtain

/I|>R(f(x,un) — (@, un —uo) — f(2,u0))wdz

= /|x>R|f(x’u") = f (@, un —uo)||w]dz + |f (2, uo)|[w]dz

|z|>R
1/2 1/2
SCHw”Hl(RN) [/x|>R|uo‘2d$‘| +EHwHH1(RN) /x|>R|u0‘2d-fE‘|

Ju

S

+Cllll g ey [/xbR‘“O‘pldx] =
< Ce|lwl| g1 (mny-
We claim that
f (@ un) = f(2,un —uo) = f(z,u0), in L"(Bg(0)) := L"(B), (1.1.22)
with r:= pfl Assuming our statement above, we obtain that

/m|<R(f($’“n) — f(z,un —uo) — f(z,u0))wdzx

< Nwllpoer 1 (2 un) — f (2, un —uo) — f (2, u0) || r

< C€||w||H1(RN).

It remains to check (1.1.22). In fact, we have that u, — up in H*(RY), thus
up — ug in L (RM), for 1< q < 2*. Therefore,

up —ug — 0, in LYB) and up(z) — ug(x), a.e. x € Br(0).
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It follows that

wn (%) — (tn — u0)(x) — up(z), ae. € Bp(0). (1.1.23)
Also,
[un ()], [uo(z)|< g(x), g€ L, (RY)
and
|(n —uo)(@)|< b(x), he L (RY).
Thus,

p

F(@um) — £ — o) = F(,u0) [T [elun(@) [+ Clun ()]

(1 = ) ()41t = ) @) ef) o)1 ] 7

IN

95T (5‘un(1‘)’ﬁ—|—0’un($>‘p—FE‘(Un_UO)(x)‘%
+C1(un — o) @)-+luo () 7T +C o ()]
< 251 <€g(x)p%1 +Cg(a)? +eh(x)7 T +Ch(z)P +eg(x) 71 +Cg(x)p)'

If 1 <p<2*—1, then g,h € LP(B). Therefore g%,gp,h%,hp e L'(B). Combining this
conclusion with (1.1.23) and the Lebesgue’s Dominated Convergence Theorem, it follows

that
flx,up) — f(x,un —ug) = f(x,up), in L"(B),

where r =

b . and the proof of (1.1.16) is complete.

Next, the main object is to apply the Brezis-Lieb Lemma with j(s) = F(z,s). Since
F' is continuous and F'(0) =0, we will show that given € > 0, there exist . and 1. such
that, . (a) = C(|a|*+|al?) and e (b) = (Ce +1)(|b]*+]b[P). In fact 0 <t <1, using (1.1.3)

we have

|F(z,a—b)— F(z,a)] =

1dF b)d
/0 pr (x,a—1b) t|

- ‘/Olf(a:,a—tb)(—b)dt‘

IA

/01|f(x,a—tb)||b|dt

1 1
5/0 \a—tb[|b|dt+0/0 la— tb|P~Y|bldt

IN
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IN

1 1 1 1
5/0 |a||b|dt+e/0 t|b|2dt+0/0 |a|p_1|b|dt+0/0 =L plPdt
< ¢la||b+e[b*+ClaP~ b +-C|bP
< eC(|lal+]al’) + (Co +1)([b]*+[b]?).

A

Then
/RN (F(a,f+g0) = F(w,gn) = F(x, f))dx = 0n(1), (1.1.24)

where g, = f, — f — 0 a.e., with F,g, and [ is satisfying the items (i), (i7i) and (iv).

Thus, we can rewrite (1.1.24) as

[ (Plafo) = Fa. )~ Fla. f— ) = 0(2)

Now considering g, = u, — ug, with f,, = u, and f = ug, we have

/RN (F([L’,Un) — F(x,up —ug) — F([E,Uo))dl‘ — 0.
The results (1.1.18) and (1.1.19) follow as an immediate consequence of (1.1.16) and

(1.1.17). O

Let E be the Hilbert space H'(RY) with the inner product (-,-) given by the expression
(u,v)y = /]RN (&(x)VuVv+uv)dx
and the norm by
lull?= [ (€@)IVul*+u?)da, (1.1.25)

which is equivalent to the usual norm because of (£1) and (£3). The functional

I: E — R associated with (Py) is given by

_1
2 JrN

I(u) (5(m)|VU|2—|—u2)dx—/RN F(z,u)dx (1.1.26)

is well defined, belongs to C'(E,R) and

I'(u)p = /RN(g(x)Vquo—i-wp)dx—/RN f(z,u)pdz, for all u,p € E.
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Hypotheses (£3) and (f3) imply
I(u) < Io(u), for all u € E. (1.1.27)

Indeed,

I(u) = ! (&(x)|Vu* +u?)dx — / F(z,u)dz

o o | (/ sds)
< ;/ (ool Va4 u)do— [ (/ sds)

= 2/ (€oo| Vu|* +u?)dx — / H(u)
= Ix(u), forall uekFE.

1 2
< 5 [l VulP+u?)

Now, let zg =0 and fix L > Ly such that z; :=w (L) and I (z1) < 0. Define also

ci= ;ggorgggll(v(t)) (1.1.28)

where I' = {v € C([0,1], E), v(0) = zg and v(1) = 21 }.

Definition 1.1.1. A functional I € C*(E,R) in a Hilbert space E satisfies the Palais-
Smale condition, denoted (PS) condition, if given any sequence (uy) C E such that I(uy,)
is bounded and I'(u,) — 0, has a convergent subsequence. We say that (uy) is a Cerami

sequence at level ¢, denoted by (Ce), if
I(up) — ¢ and (14 ||un ||| (wn)]|— 0. (1.1.29)

Moreover, I satisfies the Cerami sequence condition at level ¢, shortly (Ce)., if any

Cerami sequence (u,) C E at level ¢ has a convergent subsequence.
Lemma 1.1.4. If (uy) is a (Ce). sequence of the functional I, then (uy) is bounded.
Proof. This proof will be postponed to Lemma 1.3.1. O

Remark 1.1.6. If (uy,) is a Cerami sequence (Ce). and is a bounded, then (uy) is
bounded (PS) sequence.



1.1 Variational Setting 22

Lemma 1.1.5 (Splitting). Let (u,) C E be a sequence such that I(u,) — ¢ and
I'(up) — 0 in E*. Then there exists ug € E such that u, — ug, I'(ug) = 0 and ei-
ther

(a) uy — ug strongly in E, or

(b) there exist k €N, (y2) € RN with |yl |— oo and |y%—y%/|—> oo, forj#£75, i=1,..,k,

and nontrivial solutions ul,....,uk of problem (1.1.4), such that
k . k . .
Iup) = I(ug) + Y Io(W) and |up—uo—> v (-—yl)| — 0. (1.1.30)
J=1 j=1

Proof. Step 1) Since (uy,) is bounded, then there exists ug € E such that u, — ug. Let
us prove that I’(ug) = 0. In fact, E < L? (RY) is compactly embedded if 1 < p < 2* 1.
Using the continuity of f, the weak convergence u,, — ug in £ and the Lebesgue dominated
convergence theorem, it follows that  lim I "(up)p = I'(wp)p, for any
¢ € C°(RY). The hypothesis that Jim I'(up)p =0, for all p € C°(RY) and due to the
uniqueness of the limit, we have I’ (ug)p = 0, for all ¢ € CS°(RY).

L, —ug € HYRY). If n — 0o, then:

n -

Step 2) Define now u
(8) Mlunll*= = lluol*+o0n(1);
(1) Too(ul) — ¢—I'(ug);
(i1) I (ul) = 0.
To prove (i), note that u}l +ug = (up — up) + up = uyp. Therefore,
4, -+ 0] [*= g, 10,1y, +110) = [Junl|*+[|uol|*+2(uy, uo)-

Since u}l — 0 and using the Riez Representation theorem [7], it follows that

(ub ug) = g(ul) — 0 for all g € HY(RY). Hence
g 2= Tl * [0 | +2g (un)

implies that

ot [12= Ilean|* = l[o|* +0n (1)
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To prove item (i7), note that the weak convergence of (uy,) for ug implies ul — 0,

/RN (§oo|v(un - u0)|2—§(x)|Vun|2+§(x)\vu0|2)dx
= Jo (G0 = E(@))(|Vun|* = Vug[*)dz + o0n (1) (1.1.31)
and
/RN ((“n_UO)Q—UiJFU(Q)) dz = on(1). (1.1.32)

From (1.1.31) and (1.1.32), it follows that

Too(ul) — I(up)+I(ug) / Eoo| V)| dx—|—2/ /]RN H(ul)dz
—; E(z)|Vup| dx—f/ u dx+/ (x,up)d
2/ (2)|Vug|*dx + = / uddx — /R F(x,up)dz
_ 5/RN (ool Vit — Vg | —€ () |V [+€(2) [ V| )
—I—; . ((un—uo)z—u%+u%)dx+/IRN (F(a:,un)—F(x,uo)—H(u}l))dx
- /RN (Fl,ul) — H(ub))dz+oq(1). (1.1.33)

Since (uy,) is bounded, using the hypothesis (f2) we have
/RN (H(ub) — F(a,ub))dz = 0, (1).
Replacing in (1.1.33) we obtain
Loo(u)) = I(un) + I(up) = on(1). (1.1.34)

To verify (iii), consider ¢ € C§°(RY). Applying (f1), (f2), (1.1.16) and the Cauchy-

Schwarz inequality, it follows that

on(l) =

P

'(un) ) = (I'(uo+uy), )
N(f(x)V(uo—l—u YW+ (ug+ul)e )da:—/R f (2, u0 +ub) (uo +ub ) pda

(f(x)Vrogp%—uogo)da:—/R f(z, uo)uogod.r+/ Vu 2V

I
g5

N
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—u,§<p)dx—/RN h(ul) ngoda:—i—/ flz uo)uoapdﬂc—l—/ Yl pdz
—/RN e, uo+ud) (uo + ub ) pda

= <I’(uo )+ / (ExeVul Vi +ulp)de — /R h(ul)ubde

- o) = [ F@u)pda+on()+ [ hub)ulpds

— (I(uh)) + | / Juhep — F(z,ub)ie)da] + on (1),

since ¢ has compact support, u1 — 0 in the support and then Iéo(u}L) — 0 in E* when
n — oo. And then, (u}) is a (PS), sequence of I.
Step 3) Consider
d ;= limsup sup )|u711(:£)]2d:v.

00 ,erN JBiy
If 6 =0, it follows from Lions’ Lemma [24] that
ul —0, in LP(RY), for any 2 <p<2*. (1.1.35)
On the other hand, since (u.) is bounded, item (iii) implies that
I’ (ub)ul = /RN (ﬁoo\Vu}LIQ—l—(u}L)Q — h(u,ll)(u,{b)Q) der — 0, if n—oo. (1.1.36)

From (1.1.35) and (1.1.3), we obtain

/]RN (500’VUM2+(U711)2)CZ$ = /RNh(uiL)(uiL)zdaﬁton(l)
< e f JubPdrrcC [ e (1137)

Therefore, (1.1.35) and (1.1.37) give us that HU}IH — 0. In other words, u, — ug
strongly in F, and this proof the item (a).
Step 4) Now, if 6 > 0, there is a sequence (y,) C RY such that

0
»(@)|Pd > —. 1.1.38
Jo g b P> (1.138)

Define a new sequence (v)) C E by v} :=u!(-4+4!). Since (u)) is bounded, then (v;)

is also bounded u! € E such that v} — u! in E and v} (z) — u!(z) at almost every point
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in € RY. Making a change of variable, we obtain

> s

1yn

2 _ 1 1|2 _ 1 2
()] dx—/Bl(O)|un(x+yn)| dx—/Bl(o)|vn(x)| dz. (1.1.39)

Applying Fatou’s Lemma [5],

6§/ liminf|v7ll(x)|2dx:/ ut(z)*dz.
2 By (0) 70 By (0)

Thus, ut # 0. Moreover, since u}l

assume that |y.|— co. Now, we will show that I’ (u') = 0. In fact, take ¢ € CS°(RY).

— 0 in E, it follows that up to a subsequence, we can

Since |y} |— oo, then we can find ng such that ¢, := ¢(x—y.) in C(RY) for all n > ng.

Besides that, ||¢,]|= ||¢||. As a consequence of item (i),

|21|1§plﬂ<léo(vi),¢>\ = e (I(uh(z+yh),0)|

= su I' (ul(2),6(x —y)
||¢”1§>1<oo< n(@), 6 —y)) |

u ! ul, =op(l).
< (I (), 0) | = 0a(1)

Therefore, using the fact that . (- +yt) — ul, for all ¢ € C°(RY),

0n(1) = I (un (- +yn))d = Ii (u')§+0n(1) - (1.1.40)

Define u?(z) == ul(z) —ul(z —y), and u2(-+¢2) = v} +u!, then (u2) is a (PS)

sequence of Iy. Indeed, making a change of variables,

Lo(u?) = ;/ [fm]Vu%|2+(u2)2}dx—/RNH(u%)d:p
= 5 | [V @) — ! =g+ ) — ! (- gl da

= [y Hun (@) =l (2 = yy))da
= ;RN[@W n@ ) — ul (@) P u (x4 y) — o ()] da

— [ Hluh(e+yh) = (z))da.
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On the other hand,
n -+ ) = w 1P= llug -+ y) P=2Cun (- +yp),0') + a2, (1.1.41)

Since ul (- +y) ~ul in B, (ul(-+yl), ) = (ul, ), for all p € E. In particular, if o =u!,
we have (ul(-+yb),ub) — (ul,u'), which it follows that (ul(-+yl),ul) = ||ut]|*4+0,(1).

Replacing in (1.1.41), we obtain

et -+ ) = 11P= g, (- ) 112 =2l [P +-0n (1) + [[u 2= [P~ [ [*+0n (1).

(1.1.42)
Therefore,
Foh) = o)~ o) = 5 (Jun | = ok = o)
= |y (H ) = H(u}) = H(u"))do,
and using (f3), (1.1.42) and Lemma 1.1.2, it follows
Ino(u?) = I (ul) = Ino (u) 4 0n(1). (1.1.43)

By (i) and (ii1), (ul) is a (PS) sequence of I, hence Io(u?) converges to a constant.
Finally, using (f2), (f3) and Lemma 1.1.2, from (i4i) and (1.1.40), we obtain

Il (u2)p| = |/RN(fooVu}1Vgo+u}1g0)dx—/ (VU Vo +ulp)dr
—/Nh( Hu ngpdx+/ utpdr — /]RN h(ut —ul)(ul —ul)pdz
—I—/ ngoda:+/ Ju Loda
= On(1)+/RN|h(u}z)u}z—h(urll—ul)(wll—ul)—h(ul)u1\|s0|d:v
= o,(1), (1.1.44)

for all p € C§°(RY). Therefore (u2) is a (PS) sequence of I.
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Step 5) Now we proceed by iteration. Note that if u is a nontrivial critical point of
I and w is the solution (1.1.4), then

Ino(u) > Ing(w) > 0. (1.1.45)
Furthermore, by (1.1.34) and (1.1.43),
Ioo(u2) = ¢ — I'(ug) — Ino(ub) + 0 (1). (1.1.46)

Applying (1.1.45) and (1.1.46) the iteration must be terminated at some index k € N.
Therefore, there exist k solutions to the problem (1.1.4), thus satisfying the second part

of the lemma. O

1.2 Existence of a positive solution

Lemma 1.2.1. The functional I satisfies (Ce)ce for all 0 < ¢ < myo.

Proof. Consider (u,) C F and 0 < ¢ < my such that
I(un) = and (1 [Jun|)) [ 7'(un) | = 0.

By Lemma 1.1.4, (uy,) is bounded in E and taking a subsequence if necessary, u, — ug
in £. Lemma 1.1.5 gives I'(ug) = 0 and by condition (f5)

I(ug) = ; [ (@) VuoPred)dr— [ F(a,uo)da
- /RN (;f(x,uo)uo—F(x,uo)> dx
— /RN Q(z,uo)dz > 0. (1.2.1)

If u,, does not converge to ug in E, applying Lemma 1.1.5 we find £ € N and nontrivial
solutions u!,...,u* of (1.1.4) satisfying
k .
c= lim I(up) = I(up) + Zlfoo(u]) > kMoo > Moo,
]:

thus contradicting the assumption. Therefore u, — ug in E. O
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Remark 1.2.1. For each u € E\{0} such that /RN Goo(u)dzx > 0, there exists a unique

real number t > 0 such that u (t) eP and I (u (t)) is the mazximum of the function

vt (u(3)), =0

In fact, consider the function g defined by

0 () =L (oG ) Lo )
making changes of variable

fRY 5 RY

T —tx,

the determinant of the Jacobian of this change of variable is |J(x1, -+, xN)|= tN. Thus,

by the change of variable theorem

Sl
= ¢N-2 /R V() |2dz,

/RN ‘“(f) = /RNW( ) tNd:v—tN/ r)|*de,
/RNH (“ (f)) dr = /RN H(u(x))tNd:cth/RNH w(z))dz.

It follows from this that the function g can be rewritten as

/ Eoo| Vu|2dz + 2/ lu|dz — tN/

Then ¢'(t) =0 if and only if, t =0 or

1 2 1
de = / ‘Vu(x)’ tNdx:/ —ZtN|Vu(x)|2dx
RN |1 RN ¢

tNQ

N-2 N
T N-3 2 N-1 25 ArN-1
0=g(t) = Tt /RN£OO|VU| dr + —t /RN|U| dr— Nt /RNH(u)dx
1 N 2
N-1 N-3 2
t N/RN (H(u)—2|u| )dx = Tt /RN§OO|VU| dx
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N-— 2/ £OO|Vu|2dx

2N/

Let w € P be a positive, radial, ground state solution of equation (1.1.4) and

2 =

wy(x) == w(z—y), (1.2.2)

for some y € RY fixed.

Remark 1.2.2. The inequality
/RN Goo(wy)dz > 0, (1.2.3)
if ly|> 0 is big enough. Indeed,
Ly Goeliy(@Nda = [ Goolola—y))dz = [ | Goolw(a))de >0,

where we have used the translation invariance of the integrals and that the solution w of
(1.1.4) satisfies Pohozaev identity and so /RN Goo(w(x))dz > 0.

Lemma 1.2.2. Suppose (£3) and (f3), then ¢ defined as in (1.1.28) satisfies
0<c<Mmeo.

Proof. From Remark 1.2.2 / oo (wy)dx > 0, follows from Remark 1.2.1, (1.1.6) and
(1.1.1) that there exists 0 <t, < Lg such that

)l o)
Furthermore, using (£3), (f3), (1.1.27) and the translation invariance of the integral
1(nfi)) < (%)) =+ (52)
2 ' 2
: RNH(W(t;—dew
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s R G)
-t o)) st

In order to conclude, we construct a path v € I' such that

01 ) e

for I' defined in (1.1.28). Since we assumed that L > Lg, then we have

(D)< (al5) e () e <o

K(t) ::w(Lt—i—(l—t) <L y>)

Then £(0) = wy <L> and k( (L) z1 and hence k(t) is a path which connects

2
+

Consider

Wy (L) to z1. Furthermore, using (£3), (f3) and the translation invariance of I, we

obtain

I(k(t)) = ](w
(

Thus, the functional I is negative along the path (t). Consider ¢ the path given by

_ 20=0, if t=0
olt) = wy(;), if 0<t<L,

then ¢ is a path connecting 2o = 0 to Wy (L) trough wy <t > because 0 <, < Lo < L.
y

Take 7(t) the succession of the paths ¢(t) and x(t), then v(¢) € I and by (£3) and (f3) it
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=12 <t e

which yields

follows

< Meo-

Lemma 1.2.3. If F satisfies (1.1.3), then there exists p >0 and « > 0 such that
I(u) > a>0, for all w € E with ||u|| = p.

Proof. From (1.1.3), Sobolev’s embedding for 2 < p < 2%, we have

1w = 5 [ E@IVal+uP)r~ [ )

1 2 € 2 p
> SlulP=5 [ JuPde—C [ Jufda

1
> (5-3) ulP=Cllalp.

For ||u||= p we obtain
1
umz<2—2>2—cw:a>o,

for p = ||u|| small enough. O

Remark 1.2.3. Since I(u) < Io(u) for all uw € E, then there exists z1 € E'\ B,(0) such
that I(z1) < Ino(z1) <O0.

Lemma 1.2.4. Let v, be a solution of the following problem
—div(§(x)Vp) +vp = f(z,0), in RNa

v, € HY(RY), with N >3,
vp(z) >0, forall xeRYN.

Assuming that (£1) — (&), (f1) — (fs) hold and that v, — v in HY(RYN) with v #0, then
vy € L(RY) and there exists C' > 0 such that ||vn| p~< C for all n € N. Furthermore,

lim vy, (z) =0, uniformly in n.
|z|—o00

Proof. For any R>0,0<7r < R/2, let ne C®(RY), 0<n <1 with n(z)=1if |z|> R
and 7n(z) =0 if |z|< R—r and |Vn|< 2/r. Note that, by Remark 1.1.2 and by Sobolev’s
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embedding for 2 < p < 2%, we obtain the following growth condition for f:
flx,s) < els|+Ce|sP 1< el s|+Ce| s> . (1.2.4)

For each n € N and for L > 0, let

IV IA

) wa(z), wa(z) <L,
”L’”(x)_{ L o)L

2Ln = nzvi(g_l)vn and wp, , = nvnvgﬁ with 8> 1 to be determinated later. Taking zr

as a test function, we obtain
L S@ngn VVuafde = —2(8-1) [ e@)i, *n0,Vou Vor uda
+/ f(z vn)n%nvi(nf )dx—/R ,%n%?ﬁ iy

—2/ nvL nf vannVnda:

Note that, —2(5 —1) /RN 5(95)@%5” 3n2vananL,ndx <0, then

/RNS( z)n? an |an| dr < —2/ nvi(’g )vnVUnVndx / 77211%(5 2 v2dx

+/ f(z,on)n vnvi(g_l)dx.

By (1.2.4) and for € sufficiently small, we have the following inequality

/RNg( )nzvig 1|an|2dx < —2/ nan_ UannVndx / n vLﬁ )v%dx
—1—5/ 7721)%5 2 2d:}c+C’/ nan 1)vQ*dx

< —2/ nvL n_ vannVndx—l—C/ 7721)%5 2 v da

< C / n? v B v dm—i—Q/ m)L(g_ )vannVndm.
For each € > 0, using the Young’s inequality we get

/RNﬁ( )7} Ln \an|2dm < C/ 7 an )UQ*dI—i-Qé‘/ E(z)n? an |an| dx

—i—QC/ )2 an |V77| dx.
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Choosing ¢ > 0 sufficiently small,

/RNg( e an |an\ dx<C’/ n? ULn )v dx—i—C/ o2 an |V77\ dr.(1.2.5)
Now, from Sobolev’s embedding, by (1.2.5) and by (£1) we have
2(8—1
Sollwral? < [ ¢ )n%%éi o < [ e@mPll ) Ve
< C’[ n? an v dx—i—/ )’ an |V77]2d:c (1.2.6)

%2
We claim that v, € LQT(MZ R) for R large enough and uniformly in n. In fact,
£ =2%/2, from (1.2.6), we have

£0||wLn||L2*< C’[/ n anf )v dx+/ )2 an \Vn|2d:c

(1.2.7)
or equivalently, using (£3) we obtain
GllwralZe<C| [ c@piel 1Vl [ ntedol o Do),
Using the Holder inequality with exponent 2*/2 and 2* /(2" —2)

2% -2
SollwralZe < € [ o222 |Vnlde

C"-2)
2" \2/2" 2\ (27 -2)/2"
e </ {U"WL " } dm) </|x>R/2 o dm) '

By definition of wy, ,,, we have

2*-2)7 i
(/RN{U”HUL” }de> <C’B2/ van |V|dx

(2¥-2)
2 7 2/2% 2% (2% -2)/2*
+CpB </]RN {vnm@ } da:) (/|x2R/2 vy, da:) )

Since v, — v in HY(RY ), for R sufficiently large, we conclude

/ >R/ v% dx < e, uniformly in n.
x| >R/2
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Hence
2 (2* —2) dr

(2*-2)1_, "
2 2/2 2
] dx) 2 <cp /RanvLyn

2
UnU
</|az>R[ noLn

(2*-2)
| 2* ; \2/2" 2 9
</|$|ZR {vnvan } dm) <Cp /RN v, dr < K < oo.

Using the Fatou’s Lemma in the variable L, we have

or equivalently

2*2

/||>Rvn2dx<oo
z|>

and therefore the claim holds. ,
Next te that if 3 0= it 2 then 3> 1 L 9" and
ext, we note that if = i = _———— then — an
v o " 2(2¢ —2)’ -1
v, € LPD/1(|2|> R— 7). Returning to inequality (1.2.6), using the hypothesis (£3),
we obtain
2 2 2,2(8-1) 2% 2(8-1)
HwL’nHLz*SCﬁ /R>|x|>R—rvnvL’n ot |x|2R—rvn YLin dx]
or equivalently
2*_21}7215(133 .

2 2 23
w I «<Cp [/ v da:+/ v
” L,n“ 7= R>|z|>R—r " |z|>R—r "

Using the Holder’s inequality with exponent ¢/(t —1) and ¢, we get
U%ﬁt/(tl)dx} (t-1)/t { / m] 1/t
R>|z|>R—r

2. < 2{[
lozallze < CF /Rzlm|zR—r
1/t [/ W28t/ (t=1) g, t/(tl)}_
|z|>R—r "

[/ o@Dty
|z|>R—r

Since that (2" —2)t = 2*2, we conclude

U2ﬂt/(t—1)dx) (t=1)/t

2
w « < C’(/
|| L,nHL? > (2|>Rr n
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Note that

28 2°B 5 \2/2* 2* 9% 2%(B-1) 5 \2/2*
otalsgusny < ([, hnde )" < (Lo of V)

= Jwpnl?e< CB? ( /|x 28t/(t-1) dx) (1)t

|>R—r "

28
- CHUnHL2ﬁt/(t—1)(‘w|ZR_,ﬂ)'

Applying Fatou’s Lemma

2B 28
||Un||L2*5(|x|2R)§ C“Un||L2ﬁt/(t—1)(|x|2R_r)‘
2%(t—1 2t
Considering y = (2t ), 5= — and the last inequality, we can prove

lonll s (a1 < CY* lonll L5 1o Rory< CMPlvnll L2 (a5 R0
Let f=x", (m=1,2,---), then we get

ol pmte opo iy < C " Nonll2 oy < CF1Y

|

|00l 2% (2> R—r)-
Letting m — +o00 in the last inequality, we obtain
[on | Lo (1212 R) < Cllvnll 2% (21> Ror)-

Using again the convergence of (vy,) to v in H(R™), for € > 0 fixed there exists R > 0
such that

||Un||Loo(|x‘2R)< g, forall neN. (1.2.8)
Thus,
lim vy (z) =0, uniformly in n
|z| =00
and the proof of lemma is finish. O

Proof of Theorem 1.1.1. By Lemma 1.2.3 and Remark 1.2.3, the functional
satisfies the geometry of the Mountain Pass Theorem [4], then by Ekeland Variational
Principle [13] and considering ¢ defined by (1.1.28) there exists a sequence (u,) C E
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satisfying
I(un) = ¢ and (14 |[un])) | 7' (un)|| = 0.

Using the Lemma 1.2.2, we obtain that ¢ satisfies 0 < ¢ < mo, and, up to a subsequence,
(uy,) converges strongly to u € F, by Lemma 1.2.1. Moreover, since I € C1(E,R), then
I(u) =cand I'(u) = 0. It follows that u is a solution of problem (P).

To show that u is nonnegative we can assume in the beginning that f(x,s) =0 for all
s <0. Thus, I'(u)u” =0, and so

0=TI"(uwu" = /IRN(§<$)VuVu_+uu_)dx_ RNf(UE,U)U_d:U
_ P
_ / sy oy E@NIVUT ™ P)da
= el (1.2.9)

implies that v~ = 0. Hence, v > 0 in RY. Since u is solution of the problem (P;) and
nonnegative, by Lemma 1.2.4 we have that u € L®(RY)NCL*(RN) for some 0 < o < 1.

loc

Then, by Harnack’s inequality [2] we obtain

sup I(u) < C inf I(u). (1.2.10)
uEBR u€BR

Suppose that there exists a point 2o € RY such that u(xg) = 0 in Bg(zg), thus

inf I(u) =0. On other hand, sup I(u)>0. We conclude that v =0 in Bg(zg).
u€BR(zo) u€BpR

However, since RV is path-connected we have © =0 in RN , which is absurd. Therefore,

u(x) > 0 for all € RY. In other words, u is a nontrivial and positive solution of (P).

1.3 Nodal Solution

A nontrivial orthogonal involution 7 : RY — RY induces an involution T} : E — E defined
by
Tr(u(x)) := —u(rz). (1.3.1)

Consider
E" ={ue E:T:(u(z)) =u(z)} (1.3.2)
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the subspace of 7—invariant in £ and consider the following 7— invariant Pohozaev

manifold

PT={ueP:T:(u(zx)) =ulz)} =PNE". (1.3.3)

Lemma 1.3.1. If ¢ >0 and (uy) is a (Ce). sequence of the functional I restricted to

E7, then (uy) is a bounded sequence.

2y/cuy,
||

bounded sequence with ||i,||= 2y/c and consequently @, — @ in E. One of the two

Proof. Suppose by contradiction that |luy|— oo. Define a,, = , then (a,) is a

following cases occurs:

Case 1) limsup sup |, |2dz > 0;
n—00 , RN JBi(y)
Case 2) limsup sup || ?da = 0.

n—00 RN JBi(y)
Consider that C'ase 2 occurs. Without loss of generality, suppose L > 1 and

(ug2vem) = ;(Hﬁ?)4N<£(x>'vu”'2+“3)d$ foe (o v )
- 2L2c—/ ( y n||2\/_un>dx

Given € > 0 and 2 < p < 2%, from (1.1.4) we have

o (o v )

19
QRN

2ecL? 9 -
= = ”2/RN|un| dx—l—ch/RN|un|pdx.
n

p
2/ cun 2\/Eun

d:zc—f—C’/

||un||

By Lions’ Lemma [24], we obtain

|t [Pde — 0, for 2<p<2”
RN

P (o gy

(H || 2\/_un> > 2L20— (CL2 +On(1>> — L2C—On(1),

thus,
dx < 2ecL* + 0, (1).

oo

Taking £ = 1/2 we obtain
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2L
Since ||uy ||— oo, then H \/HE € (0,1) for n > 0 sufficiently large, so
Up,
I(tuy) > 1 L 2v/cuy, | > L (1)
max [ (tu —2/cu c—on(1).
w0l T '

Consider t,, € (0,1) such that I(t,uy) = tm[g}l(} I(tuy). Then
€l0,

I(tpuy) > L?c—o0,(1). (1.3.4)
On other hand, ¢, < 1 because I(uy,) = c+ o0, (1), I'(tnun)u, =0 and by (fs5)

[(taun) — ; [ E@NT i) Pt P~ [ F )

1
= i/RN f(x,tnun)(tnun)dx—/RN F(z,tyuy)dx

_ /R N (; F (2, i) (b)) — F(x,tnun)> dr (1.3.5)
< D/RN <;f(3:,un)un - F(x,un)> dx

= D B/RN(f(x)|Vun|2+u%)da:—/RN F(x,un)dx}

= DI(uy) = Dc+on(1). (1.3.6)

From (1.3.4) and (1.3.6) it follows that
c—op(1) < Ino(tpuy) < Dc+ oy, (1)

and making L > 0 sufficiently large we arrive at a contradiction.

In Case 1, if (yy) is such that |y,|— oo and

5
/ (1| 2dz > 2,
Bi(yn) 2

then

)
~ 2 o
/Bl(o)\un(:wryn)] dx > 5

and knowing that (- 4+ y,) — 0, we have

)
~ 2 v
/Bl(O)|U(x)| do > 2
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thus obtaining that © #Z 0. Therefore there exists 2 C B;1(0) subset of positive Lebesgue

measure such that

lim un(x + yn)Q\/E

S ug|

0<v(x)= T}gnéoﬂn(x+yn) , for all z € Q.

Recalling the assumption that ||uy||— oo, then necessarily
Un (x4 yp) — 00, for all z € Q C By(0)
and so from (f5) and Fatou’s Lemma, we obtain

o 1
lim Inf . <2f(x,un)un - F(z,un)> dx

o 1
= liminf Q<2f(x+yn,un(x—|—yn))un(x+yn)—F(x+yn,un(x+yn))> dx

n—oo

.. 1
> hmlnf<2f(x+yn,un(x+yn))un(:p—l—yn)—F(x+yn,un(x+yn))>dx

- 9] n—oo

~ +o0. (1.3.7)
On other hand, by (1.1.29) we have that

|1 (un ) un | < (1] () [ ]| = O,

and so
1 1 9 9
/RN <2f(x7un)un_F(x7un>) dr = 9 RN(&(INVUM +un>dx_/RN F(:E,Un)dl’
1 1
_5 RN(&(J:”VUTLP'{'U%)CZ"E_? RNf(x7un)undx
1
= [|ET(Un)_§I/’ET(un)un
< C—f-On(l). (1.3.8)

From (1.3.7) and (1.3.8) we obtain a contradiction in C'ase 1, under the assumption

that |y,|— +o0.
Now, if we have |y,|< R with R > 1, then

[e9)

5 < i (2 -+ yn) [Pda < in (2 + yn ) [2d
5 < oo T uPde < [ ity P
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and since @iy, (- 4 y,) — @ strongly in L?(Byr(0)), it follows that

0 <2
— < .
2~ /Bl(())‘v(x)‘ da

Hence, as in the previous case, there exists a 2 C By(0) such that |Q|> 0 and

lim un (4 yp)2+4/c

noee lugl

= lim iy (z+yn) = 0(x) # 0, for all z € Q.
Following the previous arguments, by (1.3.7) and (1.3.8) again a contradiction follows.
We conclude that (u,,) is a bounded sequence. O

Remark 1.3.1. The proof of Lemma 1.1.4 is analogous to that just presented for I,

using Lions’ Lemma, hypothesis (f3), as well Fatou’s Lemma and (f5) for the function h.

Remark 1.3.2. If (uy) a Cerami (Ce). sequence restricted to E”, then (uy) is bounded
(PS) sequence of I restricted to E.

Lemma 1.3.2. Ifu e L>(RY), Vu e (L2 (RV)Y, |y|—= oo and |y —Ty|— oo, then

/IRN“(I—y)U<TfU—y)dx=0y(1) (1.3.9)

and
/RN Vu(z —y).Vu(rz —y)dr = oy(1). (1.3.10)

Proof. Indeed, making a change of variable, we obtain
./]RN u(z —y)u(te —y)dr = /RN u(z)u(rz +1y—y)dz.
Since u € L2(RY), given ¢ > 0 there exists R > 0 independent of y such that

2 €
/R o P < 5

Thus, using Holder’s inequality

w(z)u(rz+Tu—y)dz

) 1/2 5\ /2
/RN\BR(0)|U(Z)| dz) </RN|U(72+Ty—y)| dz)

[l 2.

/RN \Br(0)

IA

VAN
N/
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For e >0 and R > 0 fixed as previously, |y —7y|— oo and u € L*(RY), we obtain

1/2 1/2
— < 2 a2
/BR(O)U(Z>U(TZ+TU y)dz < (/BR(O)|u(z)| dz) (/RN|U(TZ+Ty y)| dz)

< =l
>~ 2 L2

We conclude that
/]RN uw(x —y)u(te —y)dr = oy(1),

as |y|— oo and |y — Ty|— 0.

Using the same arguments,
/]RN Vu(x —y).Vu(re —y)dr = /RN Vu(z).Vu(tz +71y—1y)dz.
Since Vu € (L*(R™))V, given £ > 0 there exists Ry > 0 independent of y such that
€
\Y 2dz < =
/RN\BRl (0)| ulz)dz 2
Thus, using Holder’s inequality
Vu(2)Vu(rz + Ty—y)dz

1/2 1/2
< 2 2
< </JR<N\BRl " Vu(z)| dz) (/]RN Vu(rz+T1y—y)| dz)

< ZlIVall

/RN \Br,(0)

For ¢ > 0 and Ry > 0 fixed as before, |y —7y|— 0o and u € L?(RY), we obtain

Vu(z)Vulrz + 1y—vy)dz
Jon 0 VIV y-)

1/2 1/2
2 2
</BR1(O)]Vu(z)] dz) (/]RN\VU(TZ—l—Ty—y)\ dz)
IVl 2

IN

IN

Therefore,
/RN Vu(x —y)Vu(rte —y)dz = oy(1),
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when |y|— 0o and |y — Ty|— 0o. And we conclude the proof of the lemma. O

Now, we define G(z,u) for u € E™ by
L 9
G(z,u) = — (F(x,u) — U ) .
Consider w the ground state radial positive solution of equation (1.1.4) and define
2y(2) =w(x—y)—w(lx—Ty) € E". (1.3.11)
Remark 1.3.3. If we fiz y € RY, ly|> 0 sufficiently large, from (£3) and (f3) it follows

/]RN G(x,zy)dx > /RN Goo(zy)dx > 0. (1.3.12)

Therefore, there exists t > 0 such that u (t> € P. Moreover, there exists t,, such that

I (Zy <tzy>> = max ] (zy (t>) . (1.3.13)

Indeed,

/RN G2, 2y)du = ; (H (2y) = ;%) dr = /]R + Goo(zy)dz.

RN €

In what follows consider zg =0, and

Z1 ::w([‘/—y> —w(l./—Ty>, in E7
for a fixed L > Ly, |y|> 0 and |y — 7y| large enough, such that I(z;) < 0. This is
possible by (1.1.6), (1.1.7) and by Lemma 1.3.2. Now define

T . 2
= 71é(1rf701£1§u§x1[(7(15)), (1.3.14)

where I'y = {y € C([0,1},E™) : v(0) = zp and (1) =2z }.

Remark 1.3.4. PNE™ #£0).
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Lemma 1.3.3. There exists a sequence (u,) C E7 satisfying
I(un) =™ and (14 un]) | 7’|z (un)|| = 0.

Proof. The existence of (Ce)r sequence will be guaranteed if we can apply the Ghoussoub-
Preiss Theorem. To show the existence of a Cerami sequence converging to ¢’ as defined

in (1.3.14) we need to show that F N I.r separates zg =0 and z; where
Ior={u€eE":I(u)>c"}

is a closed subset of E".
Given the definition of z, in (1.3.11), define also

. 0, t=0,
i — =
y(t) w(x—y)—w<x—7'y>, t>0.
t t
Since I(u) < I (u) for u € E™ we have

I (zy <t>) < I <zy (t» L if ¢ 0. (1.3.15)

F={ucE :I.(u)>0}

Consider

which is a closed subset of E7. Since [ satisfies the Mountain Pass geometry, by Lemma

1.2.3 and Remark 1.2.3, then there exists p > 0 such that
0<I(u), if 0<|ul<p. (1.3.16)

Therefore, from (1.1.27) and (1.3.16), if u € B,(0) then u € F, but u ¢ I.r. Moreover,
we will check that if u € B,(0), then

0<I(u)<c. (1.3.17)
In fact, by Mountain Pass geometry, we have that

1 3 :
I(u) = llull*=ollull®) < S llull®, it [lull<p.
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Therefore, if we consider 3p? /2 < ¢™ we have (1.3.17). This way, if ||u||< p, then u ¢ FNI.r,
such that zg € B,(0) ¢ FNI.r. Furthermore, by (1.3.14) and (1.3.15) we have that

I(21) < Ino(z1) <0

implying that 23 ¢ FN ..

We conclude that the closed subset F NI~ separates zy and z1, and thus we can
apply the Ghoussoub-Preis Theorem with X = E7, ¢ = I|gr and F = F NI, such that
I(un) = ¢ and (14 [[un ) || e (un) | = 0. 0

Lemma 1.3.4. If (u,) C E7 is a (PS) sequence of the functional I restricted to E7,
then (up) is a (PS) sequence of I.

Proof. Using that the action T’ is isometric, we will prove that
T I (up) = I'(uy). (1.3.18)

It follows from the ( fg) hypothesis that F is even and that F'(rx,s) = F(z,—s) = F(z,s)
and using the hypothesis (£4) we have

(T (un)) = I(—un(T))

1
=5 RN(S(TJ:)W( U (7)) [P+ | —up (72) |*)da / F(rz,—uy(rz))de
1
=5 RN(f(x)|Vun(x)|2+]un 2)dx — RNF x,up(7))dz
= I{un). (1.3.19)

In addition, using the hypothesis (fs) and making change of variables, we obtain

I'(Trup(x))o(z) = I'(—u < <x>>>v<x>
= / un (72))Vo(z) + (—un(Tg:))v(x))dx

. flrx, —up(r2))v(x)de

= [ (E@Vun@)V(=0(79)) +un(v) (~v(79)) ) dy
— | F@un()(~v(ry))dy

RN
= [ox (€T T T (0) 40 (T (0)))
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= [ ) (T (0))dy

= I'(uy)(T>(v)), forall veE. (1.3.20)
Since T is isometric, then
(I'(n), Tr (v)) = (Te(I'(un)), Tr (T5(0) ) = (Tr(I'(un)), ). (1.3.21)
It follows from (1.3.20) and (1.3.21) that
I'(Tr(up)) = Tr(I' (un)). (1.3.22)
Since (uy,) C E7, then by (1.3.22) we obtain
T (I (un)) = I'(Tr(un)) = I'(un) (1.3.23)

and hence I'(u,) € E”, implying that I’(u,)v =0 for all v € (E")*. On ther hand,
since (uy) is a (PS) sequence of the functional I restricted to E7, then I'(uy)vy — 0
for all v1 € E7. Denoting v = v1 +v9 with v1 € E” and vy € (ET)L, it follows that
I'(up)v = I'(uy)vy — 0. Therefore I'(uy,)v — 0 for all v € E. O

Next we present a version of the Concentration Compactness Lemma of Lions for [

restricted to E7.

Lemma 1.3.5. Let (up) C E™ be a bounded sequence, such that
I(up) —c and 1I'(uy)—0.

Then, there erists ug € E™ such that, up to a subsequence, u, — ug, I'(ug) =0 and

there exist two integers ki, ko >0, ki + ko sequences (yfl), a T—antisymmetric solution

ug of problem (P;), ki solutions uw, j=1,--- .k and ko T—antisymmetric solutions
W, j=ki+1,---, k1 +ko of the equation (1.1.4), that is, —div(Es V! ) 4+ 1! = h(u!)u’
in RY and o/ (1) = =/ (z), v/ (z) = 0 as |z]— co such that, either:

1. un — ug strongly in E, or the following statement holds;
2.if5=1,....k1, then Tyfl #* yfl, and |y¥1|—> oo when n — o0;

3. if j=ki+1,... k1 +ke, then 7y} =y} and |y)|— oo when n — oo;
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kl . . . . k1+k2 . .
4o un(@) = uo(x) + Y[ (x—yh) + T (x—yf)|+ D v/ (x—y})+ou(1);
j=1 j=ki+1
ky ) k1+ko )
5. I(up) = I(u) +23 " Lo(w) + 3 Lno(ud).
Jj=k1+1

j=1
Proof. Step 1) By Lemma 1.3.3, if (u,) C E7 is a (PS) sequence of the functional [

restricted to E7, I|gr, then (u,) is a (PS) sequence of I.

Step 2) From the hypothesis that (u,) is bounded, then u, — ug in E. We show
now that I’(up) = 0. Using the compact embedding E — LfOC(RN) for 1 <p < 2% then
Uy, —> ug in LY C(RN ), for 1 <p < 2*. The continuity of f, the weak convergence u, — ug

in £/ and Lebesgue dominated convergence theorem imply

Jim I'(un)o = I'"(uo)p, forall pe C°(RY).

Moreover, since (uy) is a (PS) sequence of I, then

for all ¢ € C§°(RM). (1.3.24)

I'(ug)p =0,
Step 3) Now we verify that ug € E”. Since u,(x) — ug(z) a.e. € RY. Furthermore,

up € E7, implies that T (un(x)) = up(x), thus

=~ Jim () = Jim, (7

Tr(up(x)) = —uo(ra)=
= lim Tr(up(2)) = lim un(z) = uo(z).

Therefore, ug € E7.
Step 4) Let ul :=u, —ug. Then, if n — 0o, we have:

(@) Iupll®= lfunl*~lluol*+on(1);
(71) Ioo(u}l) — c—I(up);

(111) I’ (ul) —o0.

Indeed, since u, — ug in H*(RY), then

<Un,U()> — <U0,U0> = ||UOH2
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Thus,
| = llun = uoll*= lun |1 =2(un, uo) + l[uo||*= [lun >~ [[uol*+0n(1),

as claimed. The proof of (i¢) and (i7) is similar to Step 2 in Lemma 1.1.5. By (i7) and
(i17), (ul) is a (PS) sequence of I, and

(I (uh), 0) = (I'(un), ) — (I'(u0), ) = 0n(1).

Furthermore, since wu,, w9 € E"™ and 7T, is linear, it follows that
T (up) () = Tr (un — o) (x) = Ty (un) () = Ty (u0) (%) = up () — uo(x) = uy () and uy, — 0
in H'(RY).

Consider

;= limsup sup ul (z)|?dz.
n—oo RN JBi(y)

Step 5) If § =0, it follows from Lions’ lemma that

ul —0, in LP(RY), for all 2 < p < 2. (1.3.25)

n

On the other hand, since (u)) is a bounded sequence and (iii) holds, then

I (ubyul = /]R (Gel Yk P (ub)? — Bl ) (u))?) d = . (1.3.26)

Using the estimate (1.1.3) we obtain

[ Coel Vi Pl e = [ b (u])2de +0,(1)

<5/ (u,ll)zda%I—C'/ lul |Pdz. (1.3.27)
RN RN

Thus, by (1.3.25) and (1.3.27) we have ||ul|— 0, that is, u, — ug and ug is a
T-antisymmetric solution of problem (1.1.4) which completes the proof of the item 1.

Step 6) Now, if 0 > 0, there exists a sequence (y,,) C RY such that

0
»(@)Pdz >~ 1.3.28
[ IR (1329
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Define a new sequence of functions (v}) C E by vl := 1(- +yn). Since (u.) is bounded
then (v}) is also bounded, and thus we can assume that v> —u!, in F and v} (z) — u!(x)

I(C)

The weak convergence implies that v} — u! strongly in L?*(B1(0)) and hence

1 2
>
/131(0)|u (@) de 2

— 0 in E, we have that |y,| is a unbounded sequence.

o
5
from which u! # 0. Since u),
Therefore, up to a subsequence, we can assume that |y,|— oo. Finally, we obtain as in
(1.1.40) that I’ (u') = 0. Consider now RY =T @ T, where I':= {z € RN : 7(z) = 2},
and consider Pr the projection on the subspace I'. We can distinguish two cases:

Case I: If |y, — Typ| is bounded, we define . := Pp(yy,);

Case II: If |y, — Tyy,| is unbounded, we define 3} :=y,,.

Let us study each of these cases. In Case I, first note that |y |— oo. In fact, the
orthogonal linear transformation 7 : RY 5 RY is diagonalizable and without loss of

generality, we may assume that

T(T1, ooy Thy Tt 15 o, TN ) = (X1 ety Ty —Tpa 1, ooy —TN)- (1.3.30)

Denoting y,, by
Yn = Pf(yn) +wp = y% + Wp,

n) implies T(y) = yp.  Let y, = (af, .., 2,2l q,...,2'%), where

then y) := Pr(y
,x1,0,...,0) and wy, = (0,...,0,2) 1, ..., 2x). We have

yn ('rl?
T(yn) = (27, ..., 2}, =2} 1, o, —ZN),

and

|Yn — TYn|= |(O,...,O,2$Z+1,...,QZL"R[N: 2wy

Thus, in the new basis we have that |y, — 7y,| is bounded, that is, there exists

M > 0 such that |y, — Tyn|< 2M, which gives |wy,|< M. Since y, =y 4+ wp, |yn|— oo
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when n — co and |w,|< M, then |y.|— oo when n — co. Furthermore, we consider the
sequence (u.(-+%)), which is bounded, so up to a subsequence, u (- + 1) = u! in E,

and u' # 0 is a solution of the limit problem (1.1.4). Moreover, since 7(y,,) = y,, then

TT(UI(IL’)) = —ul(rz)=— hm U (T:U—i-yn)

= Jim —u,(7(z+yp))

n—oo

= lim u Mo +yl) =ul(x). (1.3.31)

We continue by considering
2 1 1 1
un<x> = un(x) —u (l’ - yn)

and verify that (u?) is a (PS) sequence of Io. In fact, we have that

() = 5 [ (el VP2 do— [ H()da

—_

= 5 Jan foo|V () — ul(as—y}l))|2+|urll(x)—ul(x—y}L)|2)da:

— [ (@) =z =yl de.

fz=2— y}L, then x =z +y711 and dxr = dz. Renaming z by x when changing variables,

we obtain

1) = 5 [ (6l Tubloth) —u @) Hub (e + )~ () ) do
—/ up (z+yh) —ul(z))de.

Hence we have that
g (- + ) = ul 2= [Jug, (- +yp) 1P =2(up (- +yp) ul) + [Ju']]>. (1.3.32)

Since u ( +yn) — ! in E, by weak convergence and Riez Representation Theorem,

we obtain
(up (- +yp),0) — (ul, @), forall p € E.
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In particular, if o = u', then

<u711( +y711)7u1> — <u17u1>7

it follows that
(un (- +yp),u') = [[u!*+0n(1).
Replacing in (1.3.32) we obtain
lun (- +yp) —u' P = Jup -+ ) [P=2[u! [P+0n(1) + [[u' |2
= Jupl*=llu'[*+on(1). (1.3.33)
On the other hand, we note that

1
Too(ug) = Too i) = o) = 5 (llup I~ [lup, —u" [P~ 1u'|?)

~ fox (H(up) - H(uZ)— H(u')) do.
Now, using (1.3.33) and (1.1.19), we have that
Loo(uzy) = Io(uy) = Too(u') + 0n(1).

1

1) is a (PS) sequence for I, we know that I (u)) converges to a constant,

Since (u

and thus I (u?) also converge. Finally, we show that
I' (u)p —0, for all p e CRY). (1.3.34)
We know that (ul) is a (PS) sequence for I, then

I' () = 0,(1), for all ¢ € C(RM). (1.3.35)

1

Furthermore, u~ is a solution of equation (1.1.4) we have

I' (uh)p =0, forall ¢ € CRM). (1.3.36)
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Thus, with a change of variable, by (1.3.35) and (1.3.36) and by Lemma 1.1.4, we obtain
that

(el = |[ N5oov<u;—u1>w+<u;—u1>w)dx— [tk = )~ ulypds
= |un)o— o+ [ fh(uh)(uh) =h(uh—ut) (wn—u') = b)) oda
< oV [ Ih(ub)(u) —h(u;—ulxun—u1>—h<u1><ul>uso|dx

< Cellell gy

Thus (1.3.34) holds. Therefore, (u2) is a (PS) sequence for I, and Case I is complete.

n

Case II: Here we have that |y, — Ty,| is unbounded and we define y}z = yn. Moreover,

we know that u! # 0 is a weak solution of the equation (1.1.4). Let u2 :=ul —~,, where

() := ul(x — y}]) — ul(Tx — y}l) (1.3.37)

Note that since T’ is an orthogonal linear transformation, it follows that

Tr(n(2)) = —m(r2) = —u' (2 —yp) +u' (2 — y,,)
=ul(z—yp) —u'(ra—yp) = ().

Thus, u? € E™ because

Tr(upy(2)) = Tr (up () = () = Tr (uy () = Tr (7 ()
= up () = () = up (2).

In this case we must show that (u2) is a (PS) sequence of I,. We will show that
Too(u2) = Io(u)) — 2T (ul) 4+ 0, (1) (1.3.38)
using the fact that (ul) is a (PS) sequence of I.. We have that

i 12= et =l *= [l |1* =2, ) + 1%, (1.3.39)
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such that

(tns V) = /RN(SooVurlewr%lﬂn)dx
= [ (6xVurV{ut @ —yp) —u' (r—y}) da
+ [ (b {ut @ —yh) —u! (o =yl Pda
= /RN ooV, Vu (a:—y,lL)d:c—i—/RN oo Vup Vul (tz —yl)da
—i—/RN u,llul(x—y}])dx%—/ﬂw ubul (ro —yl)de.
Firstly, we claim that
(i) = 2l -+0n (1), (1.3.40)

Indeed, let
A = /RN (oo Vup V' (z —yp) +upu' (¢ — yp) ) d

and
A% = AN(meu;Vul(Tx—yn) —l—ulul(Tx—y}L))dx.

We show that

Al — {/RN(£OO]VUI|2+(UI)2)CZ:E}, when n — oo,

and
A2 — {/RN (500|Vu1\2+(u1)2)d1:} , when n — oo. (1.3.41)

Let z =x — yi, thus z = 2 +y,£ and dr = dz. Combining this with the fact
ul (- +yt) —ul(-), we have

[ (G Vub(z+yh) V() + b e yp)u (2)dz = [ (6ol Vul ()22

To evaluate A%, let us consider the following change of variables 7o — y,lb =z, then

z=71(2+y}) and dz = dz. Thus,

A2 = [ (EoVub(r(z+y0)) Vul (2) + up (7 (4 y) ' (2)dz.
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Since u} is T-antisymmetric, we have

2=~ [ (e Vub(z +5) Vel (o) + ub e+ yh)ul(2)) d= .

Therefore, in a similar way to AL, we obtain (1.3.41) and thus prove (1.3.40). Now,

we claim

Iynll= 2|t >0 (1). (1.3.42)

In fact, from (1.3.9) and (1.3.10) we have that

Il = [ (el Vral*+12)do
= [ &IV =y —ul ey Pdut [l (o —yh) =l (=) Pde
= [ el Vul @y Pde—2 [ |Vl (@ —yh) V' (ro - yh)do
4 [ el Vul(ro = yh)Pdut [ u (o = yh)Pdo
—2/ (z —yDul(re —yk dx—i—/ lul (rz — yl)|2da
= 2||u1||2—2/RN§OOVu (z —yh)Vul(re —y}) dx—Q/RNU (z —yh)ul(re —yl)de

= 2||ut||?+on(1).

Thus obtaining (1.3.42).
Finally, replacing (1.3.39) and (1.3.40) in (1.3.38)

e 2= g |12 =2l *+0n (1). (1.3.43)

To conclude (1.3.38) we need to verify the following equality

/RN H(u%)d:c:/R Dyda — 2/ ub)dz 4 0, (1). (1.3.44)
|yn - Tyn| _ moN 1 1 .
Define p := == Sn=RY\ B, (0)UB,,(Ty, — y,) and using the fact that
ul(m: — yn) = u1(7($ — Ty}l)) = —ul(x — Ty}l), we have

up (z+yp) —ut(z) —ul (z+yp — Typ))d2

[ H@R) e = [ Hu=r)de = [ Hul(@) = @ =) = (2= y))de
H(
By, (0)
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ul(2) — ot 11
*ﬁW%WM(”W (2) = =y — 7))

H 1_ 1 _ H 1

(o H (et ym) =!G4y —795))d /. o e

+ Hu,llz—k}l_ulzdz_ Hulz—{— rlz_qude
‘/Bpn(Tyn yn) ( ( 4 ) ( )) /Bpn(Ty}L yrlL) ( ( Yy Y ))

—|—/ L4yl —u (z+y711—7'y711))dz—/s H(u!(2))dz+on(1).

n

Under the assumptions that ul(z +yl) —u'(z) = 0 if |y|— co a.e. z € RY and that
ul(z +y}L +Ty711) —0a.c. zeRY, together with the Brezis-Lieb Lemma, we verify the

following statements:
A / Hul(z+yh) —u(z+yl — 1y} dz—/ H(ul(2))dz = 0,(1);
() [, HOn ) =l Dz [ HO )z = 0u(1)

B H(uk 1y _ .1 B Hiul 1 _o(1)
®) [, o B @)= [ H( ) = )z = 0, (1);

(C) /SnH(u}L(vay,ll)—ul(z—i—y}l—Ty}l))dz—/ H(ul(z))dz:on(l);

n

(D) /Bpn(O)H(ul(z))dz:/RN H(u'(2))dz + 0n(1);

(E) /Bpn(fyn y%)H(ul(Z+y7ll_TyTll>>dZ:/RNH(UI(Z))dz+0n(1);

First, we will verify that condition (A) is true. By (1.1.3) with 0 <p < 2" —2 and by

mean value theorem, there exists 0 <6 <1, such that

/B o H(up(z+yp) —u (2 4y, — 7yp) — H(u) (2 4+ 1)) ) d2
Pn
< (0)h(u;(z+y}1)+9(2)u1(2+yi—wﬁ))(%ﬂ(wyi)

+0(2)u' (2 yp = Tyn)) - (2 4y — Ty ) dz
Jo U+ 0 (b = )+ — 7y )

IA
™

Bl)n
+C [ (O)IU%(Hy}l)+9(2)u1(2+y%,—Tyi)lp_lul(eryi—Tyi)dz
P n
1/2
< Al 112 / 1 112y / 1 112
—5||un||H1(]RN)< Bpn(0)|u (Z+yn Tyn)| < +€B (O)|u (z+yn Tyn)| <

Pn
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+C||u711”%[1(RN)</B " |u1(2+y111_TyylL)|p_2dZ>

*S’ﬁ
._.

) —l—C’/ |u (z+yt -7y |Pdz.
Pn
. . . o . yn =7l
Consider the following change of variables x = z 4+ y,, — 7y,,. Thus, if |z|< p = 5
1 1 1 1 |y — T
we have |z 4+ vy, — 7Y, |> |y, — TYs|— 2> % = pp — 00. Therefore, given ¢ > 0,

there exists ng € N such that, for all n > ng, we have
1 2
~/Bpn(0)|u (Z+yn _Tyn)| dz < RN\Bpn( )|U (Z)l dz < e
/. i G =Pz < /. v, ol Pz <<

Pn

Therefore, we show (A) and in an entirely analogous way we show (B), because using

the mean value theorem again, there exists 0 < # < 1, such that

1 1 1 1 1
S oy () = () = H{w (4 93) ) -
< h(ub(z+yh) +0ut (2)) (ul (2 +yb) +0ul (2)) ' (2)dz
Bon (Tyrlb_y'rln)

<cf (= -+ yh) + 0ul (=) [ (2)]d=
BPn(Ty}z*yrlL

+C |U (2 +yp) +0u' (2) [P~ |u' (2)|d=
By (Tyh—yh
1/2
< dlup |3 (RN (/ ) |u z—i—yn—ryn)]?dz) —l—é?/ lulz 4yt —ryb) %z
yn_yn By, (Tyn_yn
p—1
2, \"°
+Cllup |3 RN (/ i |u 24yt —ryb) [P~ dz) +C/ lul (z 4yt =Ty [Pdz,
BPn BPn(Tyn_yn

and the result (B) follows as made in (A). Next, we will check (C). In fact, we first

consider w'(2) = u!(z+y. —7y}). So, we have to

/Sn (H(up(z+yp) —u' (z+yp —7y0) — H(u'(2)) ) dz

< Js Tl (2 +yn) +0(2)w' (2)) (up (2 + ) + 0(2)w' (2))w' (2)d2

1/2
§€HU711||§11(RN)</S |w1(z)|2dz) +e/S lwl (2)2dz

p—2

-1
+Cllub sty ([, 10" P 2d2)" +C [ w2z,
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We claim that

/Sn|w1(z)|2dz, /Sn|w1(z)|pdz — on(1).

Indeed, making a change of variable z = z — (1y. —y}) together with |z 4y} — 7yl |>

11
[Yn — Tynl— 21> w = pn — 00 when n — oo and that u! € LP(RY), 2 <p < 2%,
we have
[t @z = [yl ) Pdz
1 1 1y12
: RN\Bpn(Ty%—y%)‘w (= +um = rum)d=
= jwh(2)|?dz < e
RN\BIML(O)

and

[ W' @Pdz= [ w4 yh - Toh)Pd
< 1 1 \py
= Ja sy gty O T
< lwt(2)|Pdz < e.
RN\By,, (0)
We check item (C). In an entirely analogous way as done in item (C') and using
the growth of H from (1.1.4), we show (F). Next we will verify (D). In fact, using
ul e LP(RN), 2 <p< 2% we have

H(ul(2))dz = /0<|Z|<an(u1(z))dz+ |Z|>an(ul(z))dz

—/O<|Z<pn H(u(2))dz = on(1).

/RN\BM (0)

Similarly, (E) also holds. Therefore, the proof of all six statements are complete and
(1.3.44) is holds.
From (1.3.43) and (1.3.44) we obtain that Ioo(u2) = Ino(u}) — 21 (u!) 4 0,(1) which

complete the proof of (1.3.38).

1

1) is a (PS) sequence of I, then I (u2) converges to a constant. To

Since (u

complete the prove we will show that if n — oo, then (1.3.34) is hold. Indeed,

(el = | [ 6oV (uh=9) Vit (uh = n)o)da — [ hluh = 70)(wh — 7)o
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‘/ fooVu1Vgo+u}Lg0)dx—/RNh(u}l)u}lgodx —i—/RN(ﬁooV’yano+’yng0)dw
1 1
—/ (Yn)mspdz — /RNh(u =) (tn, — ) pd

—l—/ n(pd:c +/ (Vn)Ynipdx|.

And since (ul) is a (PS) sequence of I, we have that

/]RN (£ Vul Vo +ulp)dr — /RN h(u)utpdr = o,(1). (1.3.45)

From (1.3.45), using the definition of =, and from the triangular inequality we obtain
that
[ Too ()| < Koy + Ky 4 0n (1), (1.3.46)

where
K, = /RN(fooV%V@Jr%@)dfv
- /RN (o V(u' (z—yp) —u' (T2 —y)) Vo + (u! (z —yp) —u! (T2 — ) Jp) dx
and

K2i= [ 1h(n) Pl plda

= Jon [A(u (2 = yn) — ! (ra —yp)[u' (z = y) —u (72— yp)||pl e

We will first show that K} = o0,(1). In fact, let us consider ¢ € Cg°(RY), with
Q = supp(), |yl|— oo, |Vulle L2(RY) and using Hélder’s inequality we have

Lo Vut @ =yl IVeldz = [ |V (@—y3)|[Velda
1 1y(2 1/2
< ([ Ivet@—yhPdz) " llplmany <
when n — oco. Similarly

/]1@|Vu1(7'3:—y711)||V<p|dx<5 and /Q|u1(7x—y711)||g0|dx<5,
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thus implying that K} = 0,(1). The next step is to also show that K2 = 0, (1). Using

the growth of A from (1.1.3) and an argument analogous to the previous one we have
/RNlh(ul(fE—yrlz) —ul(r —yp)) (u' (z = yn) = (T2 = yp)) il dev
<e [ =y —u (e —yleldr+C [ '@ —yh) —u' (re =y ) plda
<G [t @=yhlleldz+Cr [l (re =yl elda
+Co [ty eld +Ca [ Jul (72— ) olda
<E.
Therefore we conclude that K2 = 0,(1). In this way, (1.3.34) holds, and thus we
verify that (u2) is a (PS) sequence of I, also in Case I1.
Now proceeding by iteration, we note that if u is a non-trivial critical point of I, and

w is a minimum energy solution of the equation (1.1.4) given by Berestycki and Lions,

then we have that

Ino(u) > Ino(w) > 0. (1.3.47)
On the other hand, from (1.3.38) and item (ii) we obtain
Ino(u) = Too(uy) — 210 (u') +0n(1)

= I(up) —I(ug) — 2Iso(ut) 4 0,(1)
= c—1I(up) — 2L (ul) +on(1). (1.3.48)

From (1.3.45) and (1.3.46) the iteration must end at some index k& € N and the proof of
lemma is complete. [

In the next result, we verify that the functional I restricted to E7, associated with

the problem (1.1.4), satisfying (Ce). for ¢ below the level 2mq.
Lemma 1.3.6. The functional I restricted to E7 satisfies (Ce)e for any ¢ < 2meo.

Proof. Let (u,) C E” such that

I(un) = ¢ <2mo  and (14 ||unl])||7'] £ (un)|| = 0.
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This imply that I'|gr(u,) — 0 and by Lemma 1.3.4 we have I'(u,) — 0. Moreover,
by Lemma 1.3.1, (u,) is a bounded sequence, up to a subsequence, u, — ug in £ and

I'(up)p =0, for all ¢ € E. In particular,

I'(up)up = /RN (f(m)\Vu()]Q—l—u%) dx—/RN f(x,up)updz = 0. (1.3.49)
It follows from the hypothesis (f5) and (1.3.49) that
(o) = lluollP~ [ | F(z,uo)da
2 RN
=L, (;f(x,u())u() - F(x,u0)> dz > 0. (1.3.50)

If (uy,) does not converge strongly to ug in the norm of E then, by Lemma 1.3.5 there
exists two integers k1 > 1 or ko > 1, k; solutions u? , j=1,...,k1 and ko T-antisymmetric

solutions u/, j = k1 +1,..., k1 + ko of equation (1.1.4), satisfying

k1+ko
C:r}g%ol(u”) = I(up) +22] W)+ Y Io(w) (1.3.51)
j=1 j=k1+1
k1+ko ‘
> I(up)+2kimec+ Y. Io(v!) > 2me,
j=k1+1

since Ioo(u!) > 2meg for all nontrivial T-antisymmetric solution w/ of (1.1.4), which
contradicts our assumption. Therefore, up to a subsequence, u, — ug € E7 and the

lemma is proved. [
Lemma 1.3.7. Let m._ := inf I (u), then
ueP

2Moo <Ml

Proof. Let us show first that if u € P, then u™, v~ € P. Using a change of variables and
that G(s) is an even fuction and defining A” := {z : —u(rz) > 0}, we obtain

+y 27, o
Jut) = /M( | Vuldr =2 /M( )>O}Goo(u)dx
= / IV (—u(rz))|*ds — 2*/ Goo(—u(tz))dx

/zu(z | U| ° /z:u(z)<0} ( U<Z)) :
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_ —12 * —
= /RN|Vu |“dz —2 /RNGOO(U )dz

= Ju).

On the other hand,

0=J(u)

Therefore ut, v~ € P.

Io(u™) =

Finally,

= Vu 2dx — 2% Goo(u)dz

da —2* oo(u)d
+/x:u(:c)<0}|VU| ’ /wiu(m)<0}G (U) )

— +2 * +

- /RNWU 2de—2 /RNGOO(u )do
+/RN|VU_|2d:E—2*/RN Goo(u™)dz

= JuH)+Jw)=2J(u")=2J(u").

Now, since H is even we have

/x x)>0} foo|vu| tu )d&? /x:u(m)ZO} H(U)dﬂi

[ (&l V(—u(re)) P+ —ulra)P)de = [ H(=u(re))da
2

» §oo|VU| +u?)dz /z:u(z)go} H(—u)dz

soom 2w ))de— [ H(w )z

\\

RN
Ioo(u

Ino(u) = /x:u(x)zo}@oowm +u?)da /{x;u(x)z()}m“)df”

ool VUl +u?)dz — H(u)d
+/x:u(m)<0}(§ ‘VUl T ) . /x:u(:c)<0} (u) ‘

_ /RN(goo|vu+|2+|uﬂ2)dm—/RN H(u")de

el v P Pde = [ H ()

= Io(u™) 4+ Io(u™).
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Therefore, for all u € P we have

thus,

]

Remark 1.3.5. If zy(7) =w(x —y) —w(x —Ty), then t,, as in (1.3.13) is bounded when

ly|—= o0 and |y — Ty|— oo.

Lemma 1.3.8. Suppose £ satisfies (£1) — (§4) and either (1.1.9) or (1.1.10). Then
¢’ < 2Meo.

Proof. Denote t =t,,, for simplicity of notation. Since I is translation invariance we

obtain

I<zy (t)> = tNQ_Q £(tx)|Vw(x —y) da:+tN2_2/R £(tz)|Vw(z —y)Pdx

5 E(tx)Vw(z —y)Vw(z —T1y d:ic—l—f/
N N
-I—L Nw2( x—TYy)dr — 152/ w(r —y)w(x—Ty)dz
—tN/ F(tx,w(x—y) —w(z—T1y))dx

_ I (w (t—y>)+foo (‘*’ (ny))

—&o0)|Vw(z — )|2dx

251\722
5 RN(&(t:v)—foo)|VW(x—Ty)\2de’
—tN 2/ E(tr)Vw(z —y)Vw(x — Ty)dx

—tN/ w(xr—Ty)dx

+tN/RN wx—y)—F(M,w(x—y)))dm

+t (H(w(x TY)) — F(tx,w(x—Ty)))d:B

—tN/ F(tr,w(z—y)— (x—Ty))d:EthN/RNF(tx,w(x—y))dx

+
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—l—tN/ F(tx,w(x —Ty))dx

= Lo (w(3)) 1o (w0 (5) ) + RO Eocelul by —uD). (13.52)
where
N-2
R(E&ocslyl ly=79l) = —— [ (6(t2) )| Vol —y) P
N-2

+ i [ () — ) Velw—ry) s 82 [ (k) Vaolw—y) V(o —ry)ds

—tN/ (x —y)w(z — Ty)dx+tN/ (x—y))—F(tx,w(x—y)))dx

+tN/ (x —T1y)) — F(tz, w(a:—Ty)))dx—tN/RNF(tx,w(x—y)—w(ac—Ty))dx

+tN/ F(tr,w(z—vy) dx—i—tN/ F(tr,w(x—T1y))dz. (1.3.53)

In order to evaluate the sum

/]RN F(tr,w(z—y) —w(z—T1y))dx — /RN F(tx,w(x—vy))dx — /RN F(tx,w(z —T1y))dzx,
we use hypothesis (f7). The Theorem A, (1.1.3) with e >0 and 2 < p < 2%, give us

|F(tz,w(e—y) — w(z—7y)) = Fte,w(z—y)) = F(tz,w(@ —Ty))|
< 2|f(tw,w(z —y))| (@ —y)|+ | f (tz,0(z —79)|Jw(z —y)]]
< 2efw(@—y)|w(z—T9))|+ Clo@—y)"" wlz—y)
+2¢ [w(w —7y)| [w(z — )|+ Clw(z —Ty) P~ w(z - ).

It follows from the above estimate and the invariance of translation of the integral
that

/RNiFw,w@—y)—w(w—w»—ﬂm,w(m—y))—F(tw(x—w))idm
< 45/RN we —y)|[wle - y)|dz + C/RN wa—y)[ |wl@—7y)|de
+C/RN‘M(J:—Ty)
- 45/RN ’w(z)Hw(z—l—y—Ty)‘dz—kC/RN o(2)

+C/RN )|

‘p_l‘w(x—y)‘dx
p_l‘w(z +y— Ty)‘dz

w(iZ—(y— Ty)‘dé
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p—1’

:4€/RN ’w(z)Hw(z—i—y—Ty)‘dz—i—QC’/RN ‘w(z)‘ w(z+y—7y)’dz.

Now we estimate the integrals above. Let 0 < < 1/2 to be chosen later, define
Ay = Bly_ry| (0) cRY and R, := [y =]
p

(1-6) (1—0). Since w is solution of (1.1.4), we

have |w(z)|< Ce Pl for all 8 e (O, \/1/500) and

[ =) e =ryldr = [, ()P (e +y = ry)lds

p—1
p

1/p
< p—1y521 > )P
< ([P0 T ([, oty
p=1 1/p
_ p P _ p
(/RN‘W<Z>| dz) (/Ay|w(z+y - dz>
1/p
_ p—1 _ p
lolly! (f, lote-+y- P
! solerv—rol g, )
< p— —Bplzty—Ty
< ol (f, i:)
1/p
< C 6—Bp|y—7y|/ e—Pplzl g
< N

1/p
_ Bl ( / e—ﬁplZIdz> 7 (1.3.54)
Ay

making change of variable f: RY — RY, 2+ —r with determinant of the Jacobian given

by det(J(z1, -+, 2n)) = rN=1 and by change of variable theorem , we have that

- |y—p779\(1_5)
/A e Bplzl g, — / P det(J (21, 2 ))dr
Y

1)
= ? ePerpN=1g,

Replacing in (1.3.54)

ly=ryl (1 _g) 1/p
/A w(x — )P w(z —Ty)|de < Ce vy </0 ' eﬁprrN—ldT)
Yy
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vl gy [ 0-9) i
< CeBly=myl | B (- )/ N1,
0

—Bly—Ty|2 ﬁ\yffyl 1-6 ]y—Ty| N/p
_ e Blv-mulE Bl >< (1_5)>
p
C((g)e—ﬁly—w\p,%le—ﬁly—fylg|y_Ty|N/p

IN

‘ p=1
P

< C(5)e Plv—vI5 (1.3.55)
since 1 <p—1and 0 <9 < 1/2. Moreover,

_ )1 _ _ p—1 _
Joo g o = )P o=l = [ P ey~ )z

p—1

< (Lo Gt 1ae) " ([ utety-mipa)

p—1

_ ( /| N\Ay|w(z)|pdz> ’ ( i N]w(z)|pdz)1/p

p—1

C —Bplzl g ’
ol ( L, )

_ p—1( [ —Bpr. N—1
= Clolly ([ e )

p

IN

p—1

P

Now, using integration by parts, for any k£ > 0 we have

/e*kTerldr = e*kTP(T),

where
PN (N=1) vy (N=1)(N=2) y N (V1)
Thus,
oo
/ e krpN=1gp = e_kTP(T)‘OO — e My p(R,). (1.3.56)
Ry Ry

Therefore, taking k := Bp, we obtain that

Jo s o0z = )P ol = 7yl
Y
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p—1
B ler | 125 1—60\]| »
< Clwl [ solv—ryl’; P(w—rmp)]
—1

Al _syp—1 1—6\ P
= Cfjw|gpe P00 P<|y—ry|p>

p—1
p

— Ojw| grePPlu-TvI0-20) 25 [eﬁpy—rylép (Iy — 1yl 1= 5)]
p

< O) ol e T 02,
Hence, taking § sufficiently small such that 0 < (1—2§) < 1, we obtain
Jo [ =) o =y < Ca)e T (720 (1.3.57)
Y
Thus, from (1.3.55) and (1.3.57) we have
-1
w(z—y) P Yw(z — 1y)|de < CePly—Tyl5~ (1-20) 1.3.58
RN
For p =2 we argue similarly and define A, = B|y,w|(1 6)(0) c RY. Choosing
Tyl (-

_ly—7yl

Ry : 5

(1—0) and using Holder’s inequality we obtain
/ wz)w(z+y—Ty)dz = / w(z)w(z+y—T1Y)dz
Ay Ay

(foeteraz) ([, fote+y—rPac)

1/2
Cllwll 2 ( / e—ﬁzizw—wldz)
Ay

ly—Tyl _5 1/2
< Ce Ply=myl (/ 7 )eﬁ2rrN1dr)
0

1/2

IN

IN

il gy (L0 v
0

N/2
_ e BTyl BT (1-0) (W‘QT?J’(I — 5))

< o) T (1.3.59)
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On the other hand, using Holder’s inequality and (1.3.56), it follows

/RN\Ayw(ac—y)w(a:—Ty)dx: /RN\Ayw(z)w(z—i—y—Ty)dz

< (Lo o) (flotev-rippas)

) 1/2 28 1/2
<C </RN\Ay\w(z)| dz) (/RNe dz)

~ 1/2
< Cllwl ( [— e””r“dr)
ly—Tyl=5>

1/2
< O] o= Plmrul 2 (eﬁlyfyd . Qy o 1;5>>

< C(8)e Bly—yli (1.3.60)
By (1.3.59), (1.3.60) and 0 < (1—20) < 1 it holds that
/]RN w(z—y)w(x—Ty)dr = /RN w(2)w(z+y—T1y)dz
= / wz)w(z+y—Ty)dz
Y
+/RN\Ayw(z)w(z+y—7'y)dz
< 0(5)6—6“’_{“ +C(5)e—ﬁly—7y|7(1_226)
< C(6)e Ply=yll/2(1-20), (1.3.61)
Arguing as in the proof of inequality (1.3.61), we obtain

/]RN Vw(z—y)Vw(z—T1y)dr < CePly=—Tul3(1-20) (1.3.62)

We consider 51 < 5 < \/1/& or B2 < 5 </1/és. By (1.1.9) and a change of variable,
there exists a positive constant C' such that
[ (€@ =)V —y) Pda < =C [ eV —y) da
- C / =Bl (2) 22
RN

S_Cefﬁﬂy\/ e P11 V()| 2d2
RN
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< —Ce Pl (1.3.63)
Similarly, we obtain
/R (@) — &) Ve — ) P < —~Ce 11T = —Ce=Pil, (1.3.64)
Or else by (1.1.10), there exists a positive constant C' such that
Ll —y) = Flte.w(e—y)lde < =C [ el —y)Pde
_ —C/ e~ P22l |y (2) 2 d2
RN

< _Ce*ﬁ2|y|/ e P212l5(2) 2d2
RN

< —Ce P2l (1.3.65)
In an analogous way, we have
/RN|H(w(x — 1)) — F(tz,w(z —7y))|de < —Ce P2 = —Ce=P2ll, (1.3.66)

Now we study the sign of R(,£x,|y|, |y — Ty|). If we consider the inequalities from
(1.3.54) to (1.3.66) in the definition of R(§,&w0, |y, |y —Ty|) in (1.3.53), then

R(€ Lo, [yl ly — Ty|) < —Ce Pl — Ce=Fuly] +C(5)e_my_7y|<1—2726>

(1—26)

+ C’((S)efmy*ﬂ/‘ R 06*52|y| _ Cefﬁz\y\ + C<5)€*ﬁ|y77'y|’)’%1(1726)
_ e Bl 4 e Blu=myl(1-20) 4 crp—Bly—Tyl5(1-20)

Let Zj = (yla"'>yk>"'7yn)7 Tg = (y17"'7yk7_yk+1>---a_yn)7 the projection Pkg =
(y1,--+,Y%,0,...,0) and |g—77|=[(0,...,0,2yx11,---,2yn)|= 2/|(0,...,0,Yx11,---,yn)| be
such that [(0,...,0, k11,5 Yn)|— 00. If we choose

Y= PFL;& = (0,...,0,Yx41,..-,¥n), such that 2|y|= |y —7y|, since t =t,, is bounded

1 -1
and 3 < L, we obtain for |y| sufficiently large
p

R(&, & |yl |y —Ty|) < —Ce™ Pl — ce=Pelul 4 e=B0=20)ul (1.3.67)
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Replacing (1.3.67) in (1.3.52) we obtain that [ <zy <t>> < 2Meo.

2y

To finish the proof of the lemma, let us fix any y € RY, ly|> 0 sufficiently large and
consider n € N, n > 1 and ny, such that

(ol (o)

Thus 0 < t,y < Lo and for n sufficiently large, by (1.3.52) and (1.3.67)

I <zny <tny>> < 2Mso. (1.3.68)

On the other hand, by Remark 1.3.3, ¢, is such that

Zny () eP (1.3.69)

ny

and there exists Ly, > 0 such that

e (2 (1)) <0 (13.70)

Now fix n € N, n > 1, let L = max{Lyy, Ly} and for s € [0,1] define the path

nls) =w (5= (sy+ (L=s)ny) ) (5 = 7(sy+ (1=9)n)).

Yn(s) belongs to E7,

nl0) = (1 =) = (o)) =2 (7).

() =w(z-y) e (3 -m) =5(3).

If we denote X4(n) :=sy+(1—s)ny, 0 <s <1, use the translation invariance of I,

and

then we obtain

Il = Too(i0 (5 = X)) = (5 = 7 X () ))
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=TI (w <L —Xs(n)>) + 1 <w (L —TXS(n)>> +op(1)

= I (w <L>)+I®O (w <['/>>+on(1) <0, (1.3.71)

for0<s<landalln>1

| Xs(n)|= [sy+ (1= s)nyl=|(s —sn+n)y|> |yl
and

[7Xs(n) = Xs(n)| = |sy + (1= s)ny — 7(sy + (1 — s)ny)|
= [s(y—7y)+ (1 —s)n(y —7y)|
> |y —Tyl.
For each n > 1 we consider the paths

20=0, if t=0,
t):= .
70() zny<t), if 0<t<L,

and 7y, (s), which respectively link the pairs of vectors {zo, Zny <E) } and {zny (z) , 2y (E) },

and denote by 1 the path connects the pair {Zy(f)’ zy<L—)} given by
y

Y1 (t) := 2y <tlg,4—(i-—1gl;)

The succession of these paths 7 o7, 07, belongs to set I' and connects zy to

21 = zy(L—y) Furthermore, 1(v1(t)) < Ino(71(t)) <0, and I(7,(s)) < Ino(7n(s)) <0, thus

max I(71 0% 070(t)) = I <zny ()) . (1.3.72)

0<t<1 tng

Finally, if we take n > 1 sufficiently large, from (1.3.68), (1.3.72) and the definition

T <I (zng ()) < 2Meo,
tn'g

of ¢, we obtain
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and the proof of Lemma 1.3.8 is complete. O

Proof of Theorem 1.1.2. Let (u,) C E™ be the sequence given by Ghoussoub-Priess
Theorem in Lemma 1.3.3. By Lemma 1.3.1 this sequence is bounded, by Remark 1.3.2

I(up) =™ and  [I'(uy) —0 in (E7)*

Up to a subsequence, u, — uy weakly in E and I'(ug) = 0. By Lemma 1.3.5 we have
that either u,, — ug strongly in E or there exists two integers ki,ko > 0, k1 solutions
w, j=1,...k and ko T-antisymmetric solutions w’, j = ki +1,....k1 + k2 of equation
(1.1.4), satisfying the conclusions of Lemma 1.3.5. Suppose the second case is holds. It
follows from Lemma 1.3.8 that ¢" < 2m, and hence in Lemma 1.3.5 item 5 we must have

k1,ko = 0. Otherwise, without loss of generality, if k1 > 1 then by Lemma 1.3.7 we get

k1 , k1+ko
CT:I(u0)+2ZIOO(UJ)+ Z Ino(uj)
j=1 j=k1+1

> 2k1mee + (/{51 + k‘z)mgo
> 2k1meg + 2<k71 + kQ)moo > 2Moo,

contrary our assumption that ¢’ < 2meo. Therefore, k1 = ko =0, u,, — ug strongly in E
and ¢” = I(up). Moreover, since I (ug) =c” > 0, it follows that ug #Z 0, ug is T-antisymmetric

and hence it is a sing-changing solution of (). O



Chapter 2

Problem with ¢ and V' positive

In this chapter, we will deal with the problem (P) considering £ and V' as positive

functions, where V will assume some conditions and hypotheses that will be detailed

below. Additionally, within this chapter, our focus will extend to investigating the

nonautonomous and non-periodic Shrodinger equation exhibiting asymptotic growth in

RY.

2.1 Variational Setting
We consider the following problem

{ —div(£(z)Vu) +V (z)u = f(z,u), in RY,
u(r) =0, as |zx|]— oo,

with N > 3, under the following assumptions on &, V € C (RN JRT):

(1) there exists & > 0 such that £(z) > &;
(&2) |x1|igloo€(x) = Coo;

(&3) &(7) = oo

(V1) there exists Vp > 0 such that V(z) > Vp;
(Vo) lim V(z)=Va;

|z]—o0

(V3) V(z) 2 Vo
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The hypotheses on the nonlinearity f € C(RY x R,R) are the following:

(f1) lim fz:5)

s—0t S

=0, uniformly in z € RY:

(f2) there exist a € C(RY,R") and h € C(R,R") an even function satisfying h(s) > 0
for all s >0, h(0) =0 and

s=700 g || =00 S
. fle,s) _ s
|x|%£lor,rg19%oo S N Slggoh(s) N |xl|linooa(x> — foo

f(@:s) > h(s), for all z € RY and all s € RT and flas) > h(s) for all x € Q, where

s
Q) is a subset of positive Lebesgue measure and for all s € R™;

(f3)

(f1) Vio < oo S a(x), for all z € RY ;

(f5) if we set F(z,s) = /Osf(:n,t)dt and Q(x,s) = ;f(x,s)s—F(:v,s), then

lim Q(x,s) =400

s§—400

and there exists D > 1 such that

Q(x,s) < DQ(x,t), forallze RN and 0< s <t.

The first result of this chapter can be stated as follows:

Theorem 2.1.1. Suppose f satisfies (f1)—(f5), & and 'V satisfy (£1) — (&3) and (Vi) —(V3),
respectively. Then problem (Py) has a positive solution u € H'(RY).

The next remarks are the same as those of the first chapter here repeat for completeness,

and their proofs will be omitted.

Remark 2.1.1. Hypothesis (f2) implies that there exists a constant ag >0 such that

a(z) <ag, forall xRN, (2.1.1)
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Remark 2.1.2. Note that conditions (f1), (f2) and (2.1.1) imply that for a given € >0
and 2 <p < 2%, there exists 0 < C' = C(e,p) such that

|f(z,5)|< es+C|sP? (2.1.2)

and

|F(z,s)|< %32+C|3\p. (2.1.3)

Remark 2.1.3. By (f1) and (f5) we obtcmib that Q(z,s) >0 for s >0 and x € RY. More-
1
over, by (f2) and (fs) it follows that 0 < ih(s)s2 —H(s)<D (Qh(t)t2 —H(t)) for0 <

s<t,if H(s) = /OS h(¢)¢d¢ and by assumptions (f1) and (f5) we have ;f(x,s)sz —H(s)>0
for s > 0.

In the second part of this chapter, we look for a nodal solution. In this case, we
assume some type of symmetry for the problem. More specifically, we consider the
problem
—div(€(z)Vu)+V(2)u= f(z,u), in RV,
u(tr) = —u(x), (P7)
u(z) — 0, as |z|— oo,

where N >3 and 7: RY — R is a nontrivial orthogonal involution, in other words, it is

a linear orthogonal transformation in RY such that 7 + Id and 72 = Id, with Id being

the identity operator in RY. A solution u of (P

") is called a T-antisymmetric solution.

In this new setting, we need some technical assumptions. So we shall suppose that
&, Voand f satisfy:

(1) &(rz) =€ (), for all z € RY;

(V4) V(rz) =V (z), for all z e RY;

(fo) f(rz,8)=—f(x,—s), forall z e RN, s € R;

(f7) there exists C' > 1, such that f(z,s) < Cf(x,t), with 0 < s <t, for all z € R

Remark 2.1.4. We do not assume that f(x,s)/s for s >0 is increasing in s.

Consider the space H'(RY) = {u € L*(RY) : Vu € (L*(R™))N} equipped with the

norm ||ul|*= /RN (€oo| Vu|*+Viaou?)dz and the limit problem

—div(€5o V) + Vo = h(u)u, in RY. (2.1.4)
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The functional associated with the equation (2.1.4) is given by
1
Ioolu) = 5 /R (sl VuP 4+ Vagu?)der /R H(u)dr. (2.1.5)
It is well defined and in C1(H(RY),R) with
Il (u)p = /RN (b VUV + Vooup)dr — /RN h(uw)updz, for all u, ¢ € HY(RYN).

Hence, critical points of the functional I, are weak solutions of problem (2.1.4). The
functional I, is continuous, I(0) =0 and if w is a positive solutions of (2.1.4), the

maximum of [ <w <t)> > 0 holds on t = 1. Furthermore, there exists a real number

L > 0, large enough such that I (w (t)) < 0 for all t > L. Thus, there exists Ly > 1

such that
Ino (w <Lo>> =0 (2.1.6)

Ino (w (t>) <0, if t > Lg. (2.1.7)

Be (o@) . (2.1.8)

Our result concerning nodal solution is stated next.

and

Therefore, consider

Theorem 2.1.2. Assume that & and V' satisfy the hypotheses (£1) — (&4) and (V1) — (Vy),
respectively, and f satisfies (f1) — (f7). Then problem (P.) has a sign-changing solution

provided one of the following conditions holds:

£(1) < Eoo— Ce™ P for all e RN (2.1.9)

or
V(z) < Vi — Ce P12 for all z e RN (2.1.10)

or
F(x,s)> H(s)+Ce P52, for all z e RN, s € R, (2.1.11)

for constants C >0 and 0 < 5; < B, with i =1,2,3.
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Less than from equivalences and similarities in Chapter 1 we will use the same

notations. Any solution u of the limit problem (2.1.4) satisfies Pohozaev identity

N-2 )
—5 RN|VU| d:B:N/RN Goo(u)dz, (2.1.12)
1 Voo 9 )
where Goo(u) = e <H (u) — - U > We define the Pohozaev manifold as
0.9]
P ={ueH' RY)\{0}: J(u) =0}, (2.1.13)
where
N-2 )
J(w)i= == [ |[Vulde— N/RN Goo(u)de, (2.1.14)
and denote
Moo 1= ég%]m(u) (2.1.15)

Remark 2.1.5. Note that

1

= SOO/OC(h(S)s— Vios)ds > 0, (2.1.16)

G(€)

implies P # ().

Lemma 2.1.1. Let J: HY(RY) = R be the functional (2.1.14). Then
(i) P={ue H (RN)\ {0} : J(u) =0} is closed;
(ii) P is a manifold of class C;

(iii) there exists o > 0 such that ||u||> o for all u € P.

Proof. Although the proof follows the same way as the previous chapter, we will show
the necessary adaptations. The first follows exactly as the proof of item (i) of Lemma
1.1.1. Using the Remark 2.1.3 and goo(u) := S—(h(u)u — Vou), we obtain

o0

J (u)u = 2N/RN (H(u) — h(z;)u2> dx <0,
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which implies .J'(u) # 0 and hence P is a C! manifold, and we prove item (ii). Finally,
for the proof of item (iii), let u € P and 2* = 2N /(N —2), then we have

N -2
7/ |Vu|2d$—N/ Goo(u)dz =0
2 JRN RN

N
2 2 0%
/RN (€l Va5 Voot ) dr = 2 /RN H(u)dz.

Voo N

Th king M := mi —_—
en, taking mm{foo, N3

} and using (f3), we obtain

Mlu|?< 2*/ H(u)dw§2*/ F(z,u)dz.
RN RN

And we finish the proof the same way as the proof of Lemma 1.1.1. O

The next result is the same as Lemma 1.1.2 which will be stated for completeness.

Lemma 2.1.2. If f satisfies (f1) — (f3), (un) is a bounded sequence and u, — ug in
HYRN), then

f(@un) — f (@, un —uo) — f(x,up), in HHRY) (2.1.17)
and
/RN|F(:1:,un) — F(z,up —ug) — F(x,up)|dz — 0. (2.1.18)
Furthermore,
oty )ty — (1 — o) (un — 1) — h(ug)ug, in HH(RY) (2.1.19)
and
/RN|H(un)—H(un—uo)—H(u0)|dm—>0. (2.1.20)

Let E be the Hilbert space H'(R™) with the inner product (-,-) given by the expression
(u,v) = /RN (&(z)VuVo+V (z)uv)dx

and the norm by
lullP= [ (@) Vul+V ()u)de, (2.1.21)
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which is equivalent to the usual norm and the norm (1.1.25) because of (&1), (&3), (V1)
and (V3). The functional I : E — R associated with (F») is given by

1

I(u) ==

> RN({’(x)|Vu|2+V(x)u2)dx—/RN F(z,u)de, (2.1.22)

is well defined, belongs to C''(E,R) and
') = /RN(g(x)wngV(:c)ugp)dx - /RN f(a,u)pde, for all u,p € E.
The hypotheses (£3), (V3) and (f3) implies
I(u) < Ix(u), forall u e E. (2.1.23)

Indeed,

1 2
5/ )|Vl +V (x)u )dm—/}RN F(z,u)dx
1
5/ (Eoo| Vu|* +Viou?)da — /RN H(u)dx
= I(u), forallueFE.

Let zo =0 and fix L > Lg such that z; :=w <L> and I (z1) < 0. Define also

c= ;relfl;orgggll(w(t)), (2.1.24)

where I' = { € C([0,1], E),v(0) = 29 and (1) = 21 }.
Lemma 2.1.3. If (uy) is a (Ce). sequence of the functional I, then (uy) is bounded.
Proof. This proof will be postponed to Lemma 2.3.1. O]

Lemma 2.1.4 (Splitting). Let (u,) C E be a sequence such that I(u,) — ¢ and
I'(up) — 0 in E*. Then there exists ug € E such that u, — ug, I'(ug) =0 and ei-
ther

(a) uy — ug strongly in E, or

(b) there exist k € N, (y)) € RN with |y} |— oo and |y¥b—y¥:|—> oo, forj#£75, i=1,...,k,
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and nontrivial solutions u, ....,uk of problem (2.1.4), such that

I(up) — I(up) + zk: Too(u?) and |up —ug— Xk: w (- —yl)| — 0. (2.1.25)
=1 =

Proof. Step 1) Since (u,) is bounded, it follows the same way as step 1 of Lemma 1.1.5.
Step 2) Define now ul :=u, —ug € HY(RY). If n — oo, then:

(i) g lI= [lunll®[uol|*+0n(1);
) Ioo(u}l) — c—1(up);
(i11) I’ (ul) —o0.

The proof of item (¢) can be done using the steps of the proof of item (i) of Lemma
1.1.5. To prove item (i), note that the weak convergence of (uy) for uy implies u’ — 0,

with the same calculation to obtain (1.1.31)
[ (€l ¥ 1t = 0) P8 (@) [Tt P4+ (@) Vo)
— RN(goo—§(x))(|Vun|2—|Vu0|2)dx+on(1) (2.1.26)
and

/RN (Voo|un - u0|2—V(£L‘)U721 + V([B)U(%) dx

=[x ((Vae = V(@) (ufs = ug)daz + 0n(1). (2.1.27)

From (2.1.26) and (2.1.27), it follows that

1 1
1 _ 112 N2 1
oo(ub) = I(un) +1u0) =5 [ €cl VPt [ Vic(ud)2da /RN H(ul)da

1 1
=5 J (x)\Vun|2dx—§/R )u da:—i—/ (x,up)d
2/ )| Vuo|*dz + = / uddr — /RNF(x,uo)dx

_ ) ) 2
_ 5/]RN Eocl Vitn — Vg |*—£(2) [Vt |*+6 ()| Vg |2 da
1 ) , 2
—1—5/ Vol tn — o —V(m)un+V(x)u0)dx

+/ F(2,uq) - F(e,ug) — H(ub))dz
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_ /RN (F(a,ub) = H(ub))dz+ 0n(1). (2.1.28)

Since (uy,) is bounded, using the hypothesis (f2) we have /RN (H(u,,ll) - F(Lu%))dx =
on(1). Replacing in (2.1.28) we obtain

Too(ul) = I(up) + I'(ug) = 0, (1). (2.1.29)

To verify (i44), consider ¢ € CS°(R™). Applying (f1), (f2), (2.1.17), (2.1.19) and the
Cauchy-Schwarz inequality, it follows that

on(1) = (I'(un),p) = (I'(uo+up),¢)
= /RN(g(:U)V(uo—l—u WVo+V(x )(uo—l—ué)go)dx—/RNf(x,u0+u1)(uo+u Jpdx

= [ €@V +V (@)uop)da - / f (w0 Juopd

—i—/ 2)\Vul Vo —V(z / ngodx+/ (x,up)uppdr
+/ Juk odx — / f (2, u0 +ub) (uo + ub ) pda

_ _ 14,1

— (I'(uo), ) + /RN@OQW Vi + Vieubp)de /R h(ulubpdz

= (Lelu).o) = [ Fouhubpdaton(1)+ [ h(ub)u)pde

= () + | [ (h<un>un¢—f<x,un>unso)dx} +on(L)

since ¢ has compact support, u,ll — 0 in the support and then I, éo(u}l) — 0 in E* when
n — co. Therefore, (u) is a (PS). sequence of In,.
Consider

d :=limsup sup lul (z) P dz.
n—00 4 RN Bi(y)
Step 3) If 6 =0, it follows from Lions’ Lemma [24] that
ul -0 in LP(RY), forany 2 <p < 2*. (2.1.30)

On the other hand, since (u)) is bounded, item (iii) implies that

I (ulyul = /R (€l Vub P+ Vao(ub)? — hub)(ub)?) dz — 0, if n—so0. (2.1.31)
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From (2.1.14) and (2.1.30), we obtain

/RN (foo|Vu,11]2+Voo(u,11)2)dx = /]RN h(ul)(ul)?dx+0,(1)

< 5/RN(U;L)2dx+C'/RN|uiL|pdx. (2.1.32)

Therefore, (2.1.30) and (2.1.32) give us that HU}LH — 0, that is, u, — ug strongly in
E, and this proof the item (a).

Step 4) If § > 0, we follow the calculations made in Step 4 of Lemma 1.1.5 of the
previous chapter and using the fact that u}l( —|—y,11) — ! forall ¢ e Co° (RY), we obtain

0n(1) = Iy (un (- +yn))d = Ii(u')d+0n(1) . (2.1.33)

Step 5) Define u2(z) == ul (z) —ul(z — 1)), and w2 (- +32) = v} +u!, then (u?) is a
(PS). sequence of I,. Indeed, making a change of variables,
1
Io(u?) = §/RN (ﬁoo\Vu%IQ—l—Voo(u,%)Q)dx—/RN H(u?)dx
1
= §/RN (ool V(@) — ! (= ya)) P+ Vs up () —u (@ — ) [*) da
[ HO ) oyl
1
= 5 o (€l V b+ yh) = u (@) P Vaclup (o ) — ! (2) ) do
R
- /R CH(ul(z+yl) —ul(2))d.
On the other hand,
et (-4 ym) = 1= g () 122 () )+ [ |2 (2.1.34)
Since ul (- +y) = ulin B, (ul(-+yl), o) = (ul,¢), for all g € E. In particular, if o =u!,
we have (u) (- +yb),ul) — (ul,u'), which it follows that (u) (- +yl),ul) = [|ul||*+on(1).

Replacing in (2.1.34), we obtain

et -+ ) = [1P= N [P~ [ [*+0n (1). (2.1.35)
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Therefore,

Too(u2) = To(ul) = Ino (u) 4 0, (1). (2.1.36)

By (ii) and (i), (ul) is a (PS). sequence of I, hence I (u2) converges to a constant.

Finally, using (f2), (f3) and Lemma 2.1.2, from (iii) and (2.1.33), we obtain

I (u2)g| = ‘ [, 6V Vi + Vit o) — /R 6Vl Vot Vagubp)da
—/ ngodx—i—/ ulpds — /RNh(u,ll—ul)(u}L—ul)gpdx
+/ Yl pda — /RN h(uh)ulpda

= on(1)+ / — k= ut)(uh — ') = huyu!plda
= o,(1), (2.1.37)

for all p € C§°(RY). Therefore (u2) is a (PS),. sequence of I..
Step 6) Now we proceed by iteration. Note that if u is a nontrivial critical point of

I, and w is the solution of (2.1.15), then
Ino(u) > Ing(w) > 0. (2.1.38)
Therefore, by (2.1.29) and (2.1.36),
Ino(u2) = ¢ — I(ug) — I (ub) + 0, (1). (2.1.39)

Applying (2.1.38) and (2.1.39) the iteration must be terminated at some index k € N.
Therefore, there exist k solutions to the problem (2.1.4), thus satisfying the second part

of the lemma. O
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2.2 Existence of a positive solution

Lemma 2.2.1. The functional I satisfies (Ce). for all 0 < ¢ < muo.

Proof. Consider (uy) C F and 0 < ¢ < mq, such that
I(up) —c and (14 [[un]) | (un)| — 0.

By Lemma 2.1.3, (u,) is a bounded sequence in E and taking a subsequence if necessary,

up — ug in E. Lemma 2.1.4 give us I'(ug) = 0 and by condition (f5)

I(ug) = ; [ (@) Vuo+V ()~ [ F(auo)da

= /RN (;f(m,uo)uo — F(x,u0)> dx

= /RN Q(z,up)dz > 0. (2.2.1)

If u,, does not converge to ug in E, applying the Lemma 2.1.4 we find £ € N and

nontrivial solutions u',...,u* of (2.1.4) satisfying

k
€= nlgrolo](un) = I(uo) + _21100(“]) > kmoo > M,
J:
which contradicting the assumption. Therefore, u, — ug in E. O

Remark 2.2.1. For each u € E\{0} such that /RN Goo(u)dzx > 0, there exists a unique

real number t > 0 such that u <t) €P and I <u <t>> in the maximum of the function

vt (u(3)). 150

In fact, consider the function g defined by

9(t) = Iw (“ (t)) 2 ,
(O (G ) Lo (o)
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making changes of variable, the function g can be rewritten as

tN2

g(t) / Eoo| VUl dx—i——/ Voou2dx—tN/
Then ¢'(t) =0 if and only if t =0 or

N2
0=g(t)= 2N~ / §00|Vu| dr + tN_l/RN Voouzdx—NtN_l/RN H(u)dz

N—-2 n_
N 1N/ < )dx = TtN 3/RN§OO|Vu]2dx
) N—2/RNgoo|vu|2dx
" = .
2N/RNGOO(u)dx

Let w € P be a positive, radial, ground state solution of equation (2.1.4) and

wy(z) =w(z—y), (2.2.2)
for some y € RV fixed.

Remark 2.2.2. The inequality
/RN Goo(wy)dz > 0, (2.2.3)

if ly|> 0 is large enough. This follows from the translation invariance of the integral and

by Pohozaev identity.

Lemma 2.2.2. Suppose (£3), (V3) and (f3), then ¢ defined as in (2.1.24) satisfies
0<c<Mmeo.

Proof. From Remark 2.2.2, / oo (wy)dx > 0, follows from Remark 2.2.1, from (2.1.6)
and (2.1.1) that there exists 0 <t, < Lo such that

)1 ) ()
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Furthermore, using (£3), (V3), (f3), (2.1.23) and the translation invariance of the

integral
((5) < e (a5) =)
1 A\ P A\ |2 .
= 3 Jow ({oo Vw <ty> + Voo w(ty> )dw—/RNH (w <ty>> dx
= Iy (w( : >> Sfoo(w)—moo
y
The conclusion of the lemma follows the steps of the proof of Lemma 1.2.2. n

Lemma 2.2.3. If F satisfies (2.1.3), then there exists p >0 and a > 0 such that
I(u) >a >0, for allu € E with ||u|| = p.

Proof. Using the norm of space, by (2.1.3), Sobolev’s embedding for 2 < p < 2*, we have

Iw) = ; [ (E@IVuP Y (@p)de— [ F(au)ds

1
f||u\|2—£/ Ude—o/ lufPdz
2 2 JRN RN
1
> (55 ) lulP=Clul?

For ||u||= p we obtain

v

I(u) > (;—;) P CpP=a>0,

for p = ||u|| small enough. O

Remark 2.2.3. Since I(u) < Io(u) for all uw € E, then there exists z1 € E'\ B,(0) such
that I(z1) < Ino(z1) <O0.

The next lemma will be stated by the completeness of the work and the proof is

analogous to the proof of Lemma 1.2.4 using the hypothesis (V7).

Lemma 2.2.4. Let v, be a solution of the following problem

—div(&(z) V) + V(z)v, = f(z,0,), inRY,
v, € HY(RYN), with N >3,
va(z) >0, forall zeRY.
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Assuming that (£1) — (€3), (V1) — (Va), (f1) — (f5) hold and that v, — v in HY(RYN) with
v#0, then v, € L°(RY) and there exists C >0 such that |[v,| =< C for all n € N.
Furthermore,

lim v, (x) =0, uniformly in n.
|z|—00

Proof. For any R>0, 0 <7 < R/2, let ne C®(RY), 0<n <1 with n(z)=1if |z|> R
and n(z) =0 if |z|< R—r and |Vn|< 2/r. Note that, by Remark 2.1.2 and by Sobolev’s
embedding for 2 < p < 2%, we obtain the following growth condition for f:

flx,s) <els|+Ce|s|P 1< e|s|+Cels|> . (2.2.4)
For each n € N and for L > 0, let

IV IA

2L n = 772112(5_1)@” and wr, ,, = nvnvg_nl with 8> 1 to be determinated later. Taking zr

as a test function, we obtain

/RNf( )77 an |an| der = —2(,6—1)/ f(x)v%ﬁn 3772vananL7ndx
1 2 1
—|—/ (x,vn)n vnvL(g )dx—/RNV( ) %WQUL(EL ) d

—2/ nvL n_ vannVndx
Note that, —2(8—1) /RN S(x)viﬁn SnzvananLyndx <0, then
2(8-1) - 2(8-1
/RNS( )nvai Vo, |2dz < —2/ nvL(;Bl )vannVndx—/RNV( )772UL(£ )vidx
+/ (x,vn)n vnv%(ﬁ_l)da:.
By (2.2.4), hypothesis (V1) and for € sufficiently small, we have the following inequality

/RNS( ) an ]an| de < —2/ mJLn_ vannVndx VO/ n UL’g )U%dx
+e nvL(n )Qd:H—C'/ nan )v dx

< —2/ m}Ln_ vannVnd:H—C/ n an_l)vf:dx
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2(6-1) 2+ -
< CE/RNUQUL% )v% dx—i—Z/RNﬁ( )'r]vL(n )vnVUnVndx
For each € > 0, using the Young’s inequality we get

Ly €@mil vlfar < c. [ ol )v2"dx+2e/ S@pPorl, Ve de

+2C; / )02 an |V77| dx.
Choosing ¢ > 0 sufficiently small,

/RNﬁ( )n? an |Vv | dq:<C/ nan )v da‘;—l—C/ van |V77]2dx(225)

Now, from Sobolev’s embedding, by (2.2.5) and by (£;) we have

2(8 2(8-1)
< /RNf< >n2v%m e < [ €@l Ve

< C’[ a v d:r+/ )2 an |V17|2d$ (2.2.6)

To complete the proof, follow the same steps from (1.2.7) to (1.2.8) as in proof in the
proof of Lemma 1.2.4. O

Proof of Theorem 2.1.1. By Lemma 2.2.3 and Remark 2.2.3, the functional I satisfies
of the Mountain Pass Theorem, then by Ekeland Variational and consider ¢ defined by
(2.1.24) there exists a sequence (u,) C E satisfies

I(un) = and (14 [fun|)) [ 7'(un) | = 0.

Using the Lemma 2.2.2, we obtain that ¢ satisfies 0 < ¢ < m and, up to a subsequence,
(up) converge strongly to u € E, by Lemma 2.2.1. Moreover, since I € C*(E,R), then
I(u) =cand I'(u) = 0. It follows that u is a solution of problem (F%).

Consider f(z,s) =0 for all s <0 in the beginning, then I'(u)u~ = 0 and with the
same calculations done in (1.2.9) we obtain u~ = 0. Hence u >0 in RY. By Lemma 2.2.4
we have that u € L®(R™)N Cllo’f(]RN ) for some 0 < o < 1. Then, Harnarck’s inequality
2] guarantees that u > 0 for all u(z) > 0 for all # € RY. Therefore, u is a nontrivial and

positive solution of (1%). O
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2.3 Nodal Solution

A nontrivial orthogonal 7 : RN — RY induce an involution T : E — E defined by
Tr(u(z)) := —u(r(z)). (2.3.1)

Consider
E" ={ue E:T:(u(z)) =u(z)} (2.3.2)

the subspace of 7—invariant in £ and consider the following 7— invariant Pohozaev
manifold

PTi={ueP:Tr(u(x))=u(z)} =PNE". (2.3.3)
Lemma 2.3.1. If ¢ >0 and (uy) is a (Ce). sequence of the functional I restricted to
E7, then (uy) is a bounded sequence.

2\/cuy
[unll

then (@) is a bounded sequence with ||, ||= 2y/c and consequently @, — @ in E. One

Proof. Suppose by contradiction that ||u,|— co. Define a new sequence ,, =

of the two following cases occurs:

Case 1) limsup sup || ?dz > 0,
n—00 4 RN Bi(y

Case 2) limsup sup | |*d = 0.
n—00 , RN JBi(y)

Consider the Case 2 occurs. Without loss of generality, suppose L > 1 and

(H nHM“") - ; (HL;TQ) /RN (6@) [ Vun*+V (2)u, ) da
o ( T nuzf“") e
- ot [ n v e

Given € > 0 and 2 < p < 2%, from (2.1.4) we have

Jor | (o g2 <

Now, by Lions’ Lemma, we obtain

25cL2
= |2

/ ufldﬁch/RNmnwdx.

/RN|ﬁn|pdx—>0, for 2<p<2*
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thus,
L
Fla,—2 dx < 2ecL? 1).
/]RN (m T \/Eun> r < 2ecL®+ o, (1)
Taking € = 1/2 we obtain
L
I <|| || 2\/Eun> > 2L2%c— (cL? 4 0,(1)) = L?c— o, (1).
Un,
2L
Since ||uy||— oo, then || \/|E € (0,1) for n > 0 sufficiently large, so
Unp,
I(tuy) > 1 L 2/cuy | > L (1)
max [ (tu cu c—op(1).
t€[0,1] T Junll " "
Consider t,, € (0,1) such that I(t,u,) = m[gnﬁ I(tuy). Then
telo,
I(tpuy) > L*c—o0,(1). (2.3.4)

On the other hand, ¢, < 1 because I(uy) = c+0,(1), I'(tnun)uy = 0 and by hypothesis

(f5), we obtain

I(thu,) < D/RN (;f(x,un)un - F(x,un)) dx
1

= D {2 /]RN (S(x)|vun|2+V(x)u%>da:—/RN F(x,un)dx}

= DI(uyp) = Dc+op(1).
From (2.3.4) and (2.3.5) it follows that

c—op(1) < Ino(tpuy) < Dc+ oy, (1)

and making L > 0 sufficiently large we arrive at the contradiction in Case 2.

In Case 1, if (yy) is such that |y,|— oo, and /B(
1Yn

/B ( )|ﬂn(x+yn)|2dx > 0/2, and knowing that @y, (- +y,) — 0, we have
1\Yn

)
~ 2 o
/Bl(O)|U(x)| dw > 2

(2.3.5)

)|ﬂn|2dx > §/2, then we get
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thus obtaining that © #Z 0. Therefore there exists 2 C B;1(0) subset of positive Lebesgue

measure such that

2
0<d(z)= T}LIIéoﬂn(x+yn) — lim U (74 Yn)2+/C

, for all x €.
oo [[un|

Recalling the assumption that ||uy||— oo, then necessarily
un(z+yn) — 0o, forall xeQcC Bi(0)
and so from (f5) and Fatou’s Lemma [5], we obtain

1
liminf | = <2f(x,un)un - F(z,un)> dx

n—oo JR

.. 1
> hmlnf<2f(x+yn,un(x+yn))un(:p—l—yn)—F(x—i—yn,un(x+yn)))dx

9] n—oo

~ +o0. (2.3.6)
On other hand, by (1.1.29) we have that
| 7' (tn )| < | T'] o () [ | = O,

and so,

/RN (;f(x,un)un — F(x, un)>dx 2/ |Vun| +V(x)u %)dw—/RN F(z,uy)dx
_ (;/RN(g(x)|Vun|2+V( Ju? d:c——/ f(z,up und:c)

1
= I]gr(un) — ill‘ET(Un)un

< c+ou(1). (2.3.7)

From (2.3.6) and (2.3.7) we obtain a contradiction in Clase 1, under the assumption
that |y,|— +o0.
Now, if we have |y,|< R with R > 1, then
J

~< 7 24 </ i 2q
5 = Bl(o)‘un(ﬁv“‘yn” T > BQR(O)’un(«T"‘yn)’ T
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and since @iy, (- 4 y,) — @ strongly in L?(Byr(0)), it follows that

0 <2
— < .
2~ /Bl(())‘v(x)‘ da

Hence, as in the previous case there exists a € C B1(0) such that [©|> 0 and

lim un (4 yp)2+4/c

noee lugl

= lim iy (z+yn) = 0(x) # 0, for all z € Q.

Following the previous arguments by (2.3.6) and (2.3.7) again a contradiction follows.

We conclude that (u,,) is a bounded sequence. O

Lemma 2.3.2. If u,|Vu|e L*(RY), |y|— oo and |y —1y|— oo, then

/RNu(x—y)u(Tx—y)dx:Oy(l) (2.3.8)

and
/RN Vu(z —y).Vu(re —y)dx = oy(1). (2.3.9)
Proof. See proof of Lemma 1.3.2. m

Now, we define G(z,u) for u € E™ by

Glau) = g(lx) (F(a:,u) _ V?ﬁ) |

Consider w the ground state radial positive solution of equation (2.1.4) and define
2y(2) =w(r—y)—w(l@—Ty) € E". (2.3.10)

Remark 2.3.1. If we fiz y € RN, |y|> 0 sufficiently large, from (&3), (V3) and (f3) it

follows
/]RN G(x,zy)dx > /RN Goo(2y)dz > 0. (2.3.11)

Therefore, there exists t > 0 such that u (t) € P. Moreover, there exists t,, such that

I (zy (t%)) = max ] (zy (t>) . (2.3.12)
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Indeed,

/RNG(z,zy)dx = /]RN )

1 zy f(x, Vo
> /RNfoo <0 (zs)sds>—2z§>dx

> /RN Goo(zy)dx.

In what follows consider zy =0, and

Z1i=w <'L—y> —w <.L—Ty> in £
for a fixed L > Lo, |y|> 0 and |y — 7y| sufficiently large, such that I,(Zz1) < 0. This is
possible by (2.1.6), (2.1.7) and by Lemma 2.3.2. Now, define

= V1é11fT0nS1§aL§x1['(*y(t)), (2.3.13)

where I'; = {7y € C([0,1], E™) : v(0) = zp and 7(1) =Z1 }.
Remark 2.3.2. PNE" # 0.
Lemma 2.3.3. There exists a sequence (uy) C ET satisfying

Iun) =™ and (14 un]) | I'| 2 (un)|| = 0.

Proof. See proof of Lemma 1.3.3. m

Lemma 2.3.4. If (uy) C E7 is a (PS) sequence of the functional I restricted to ET,
then (uy) is a (PS) sequence of I.

Proof. Using the fact that the action 7’ is isometric, we will prove that
T I (uy) = I'(uy). (2.3.14)

It follows from the (fg) and hypothesis that F' is even and that F(rz,s) = F(x,—s) =
F(z,s) and using the hypotheses (£4) and (V}), we have

I(Truy) = I(—up(t2))
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- 2/ (72)|V (= tn (72)) >4V (72) (— un(Tx))2>dm—/RNF(Tx,—un(Tx))dx

= 5 | €@V @P+V @) @)~ [ Fun(x))dr

= I(un). (2.3.15)
In addition, using the hypothesis (fg) and making change of variables, we obtain
I (Trun(@)o(@) = 1'(—un(ro)o(a)
= [ (600 V)V (—0(@) + V ()un (r2)(—o(w)) ) da
= Jaw flrz,up(t2))(—v(2))dx
= [ (€ Vua) V (=0(79) + V(@)un(y)(~0(ry)))dy
= Jon FWun(y))(=o(ry))dy
= I'(up)(Tr(v)), forallveE.
Then we finish as the proof of Lemma 1.3.4. O]

Next, we present a version of the concentration compactness I restricted to E7.

Lemma 2.3.5. Let (u,) C E be a bounded sequence such that
I(up) = ¢ and I'(up)— 0.

Then, there exists ug € E™ such that, up to a subsequence, u, — ug, I'(ug) =0 and

there exist two integers ki, ko >0, ki + ko sequences (y%), a T—antisymmetric solution

ug of problem (PL), k1 solutions W, j=1,---.k and ko T— antisymmetric solutions
W, j=ki+1,--- ki+ko of the equation (2.1.4), that is, —div(€éx V! )+ Vet? = h(u! )u!
in RY and v/ (1) = =/ (z), v/ (z) = 0 as |z|— oo such that, either

1. up — ug strongly in E, or the following statements are hold;
2. ifj=1,.... k1, then 7yl # 1, and |yl |— co when n — oo;

Sifj=ki+1,... k1 +ko, then 7yl =y, and |yl |— oo when n — oo;

kl k1+k2
4o un(x) = uo() + Y [w (w2 —yh) + Tr (z —yi) + D0 ! (2 —yh) +ou(1);
j=1 j=k1+1
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k1 ] k1+ko )
5. I(un) = I(u) +23 " Lo(w) + 3 Loo(ud).
j=1 j=ki+1

Proof. Step 1) By Lemma 2.3.3, if (u,) C E7 is a (PS) sequence of the functional [
restricted to E7, I|gr, then (u,) is a (PS) sequence of I.

Step 2) It follows exactly the same way as Step 2 of Lemma 1.3.5. As (uy,) is bounded,
then u, — uo in E and I'(ug) = 0.

Step 3) Now we verify that ug € E”. Since u,(z) — ug(z) a.e. € RY. Furthermore,

up € E7, implies that T (u,(x)) = uy(x), thus

Tr(up(x)) = —ug(re)=— lim un(r2) = lim —up,(72)

= lim Tr(un(@)) = Jim () = uo(a).

Therefore, ug € E7.
Step 4) Let ul :=u, —ug. Then, if n — oo, we have:

(8) Nugll*= llunll*=lluoll*+0n(1);
) IOO(U}L) — c—1(up);
(i17) I (ul) = 0.

The proof of (i), (ii) and (iii) is similar to Step 2 in Lemma 1.1.5. By (i7) and (iii), (u))

is a (PS) sequence of I, and

<I</>o(u*}1>790> - <I/(un)790> - <I/(U’0)7S0> - On(l)

Furthermore, since wu,,up € E™ and the operator T, is linear, it follows that

Ty (uh) (&) = T (un — o) (&) = T (un) () = T (utg) () = () — o) = wh () and u}, =0

n
in HY(RM).
Consider

d :=limsup sup lul (z)Pd.
n—00 yecRN By (y)

Step 5) If 6 =0, it follows from Lions’ Lemma that

ul —0 in LP(RY), forall 2 <p< 2*. (2.3.16)
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On the other hand, since (u.) is a bounded sequence and (iii) holds, then
I' (ub)ul = /RN (§OO|VU}L|2+VOO(U}L)2 — h(u,}l)(u}l)2> dr — 0. (2.3.17)
Using the estimate (2.1.3) we obtain

Lo el Vul P Vac(un)?)de = [ ) (ul)2de + 0 (1)

< ¢ /R J(ub)de+C /R kP (23.18)

Thus, by (2.3.16) and (2.3.18) we have |ju}|[— 0, that is, u, — up and ug is a 7-
antisymmetric solution of problem (2.1.4) which completes the proof of item 1.
Step 6) Just as in Step 6 of proof of Lemma 1.3.5 of Chapter 1, if § > 0, define a new

sequence v, := u, (- +y,) bounded because (u;;

) is bounded, we have the same result in
a previous chapter. Consider now RY = '@ T, where I := {z ¢ RY : 7(2) = 2}, and
consider Pr the projection on the subspace I'. We can distinguish two cases:

Case I: If |y, — Tyn| is bounded, we define 4} := Pr(yy,);

Case II: If |y, — Tyy,| is unbounded, we define 3} :=y,,.

Let us study each of these cases. In Case I, first note that |y}|— co. In fact, the
orthogonal linear transformation 7: RY — RY is diagonalizable and without loss of

generality, we may assume that
T(T1, ooy They Tt 15+, TN ) = (X1, Ty —Tpa 1, ooy —TN ). (2.3.19)

Denoting by v, by yn = Pr(yn) +wy, = y,ll +wy,, then y,ll := Pr(y,) implies T(y}l) = y,ll. Let
Yn = (27, ...,2}, 2 1, ..., 2 ), where %11 =(27,...,2%,0,...,0) and wy, = (0,...,0, 2} 1, ..., TN ).
We have

T(yn) = (27, ..., 2}, =2} 1, o, —ZN),

and

[Yn —Tyn|=[(0,...,0,22) 1, ..., 227y ) |= 2|wy]|.

Thus, is the new basis we have that |y, — 7y, | is bounded, that is, there exists M > 0
such that |y, — 7y,|< 2M, which gives |w,|< M. Since y,, =y} +wn, |[yn|— 0o when
n — oo and |wy|< M, then |y} |— oo when n — co. Futhermore, we consider the sequence

{ul(-+y)}, which is bounded, so up to a subsequence, ul(-+yl) — u! in E, and u' # 0
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is a solution of the limit problem (2.1.4). Moreover, since 7(y.) = 4! then

T, (ul(z)) = —ul(rz)=— Jim up (T 4y5) = lim_ —uk (T(z+y)))

= lim Lz +yl) _ul(:c) (2.3.20)

We continue by considering

up (@) 1= up () = (@~ yp,)

and verify that (u?) is a (PS) sequence of I.. In fact, we have that

) = 5 [ (6l Vel PVac(ud)?)da— [ ()
= 5 L (el Gh @)~ (= g )P Vol () = ! (2 = ) )

~ [ Hluh (@)=’ (@ —yh)do.

Ifz=0-— y,ll then x = 2 +y,1L and dr = dz. Renaming z by x when changing variables,

we obtain

Lo(uf) = ; (foo|v< n(@ 4 ) — ul () P+ Vao ul (2 4+ y) — u! () da

- / ul (@ +yl) —u (z))da.
Hence we have that
et (- 4 ) = P= [ () P =200 (- ) uh) + [l |12 (2.3.21)
Since u ( —|—yn) — ! in E, by weak convergence and Riez Representation, we obtain
(wl(-+yl),0) = (ul,p), forall peFE.

In particular, if ¢ = u!, then (ul (-4+y}),u') — (ul,ul), it follows that (ul(-+yl),ul) =
|u!||*4-0,(1). Replacing in (2.3.21) we obtain

ot (- + ) — ' [1= [l [P~ [ [P +0n(1). (2.3.22)
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On the other hand, we observe that

Teoluth) ~ Too(t2) ~ Loo(u') = 2 ([lud Pk — ' [2—]1u"?)
- /R (B - H@E) ~H W) de.
Now, using (2.3.22) and (2.1.20), we have that
Loo(up) = Ino(up) = Ioo(u') + 0n(1).

Since (u.)) is a (PS) sequence for I, we know that I (u).) converges to a constant,

and thus I (u2) also converge. Finally, we will show that
I' (u?)p— 0, forall ¢ € CRN); (2.3.23)
We know that (ul) is a (PS) sequence for I, then
I' (ul)p =o0n(1), forall p € C(RM). (2.3.24)

Furthermore, ul!

is a solution of equation (2.1.4) we have
I' (uh)p =0, forall ¢ € C(RM). (2.3.25)

Thus, with a change of variable, by (2.3.24), (2.3.25) and by Lemma 2.1.3, we obtain
that

()l =

Toluh)p = Tttt [ (bl )l — h(uh — Yk = ut) = b yuoda]
0(V)+ [, [PCuh )y = iy — ) (ul, =) = h(u)u! | lda

< Cellollgrmnyy-

IN

Thus (2.3.23) holds. Therefore, (u2) is a (PS) sequence for I, and Case I is complete.
Case II: Here we have that |y, — Ty, | is unbounded and we define y}l = Y. Moreover,

we know that u' # 0 is a weak solution of the equation (2.1.4). Let u2 := u} — 7, where

() := ul(:r;—y,%) —ul(Tx—y,lL). (2.3.26)
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Note that, since T’ is an orthogonal linear transformation, it follows that

Tr(yn(2)) = —ulrz) =—u'(ra—y,) +u'(z—y,)
= ul(z—yp)—u'(re—yp) = ().

Thus, u,% € E7, because

Tr(up(2)) = Trlup(r) = () = Tr(up (@) = Trym())
=ty (@) = (@) = 1up(2).

In this case we must show that (u2) is a (PS) sequence of I,. We will show that

Ioo(u2) = Ino(ul) — 210 (ub) + 0, (1) (2.3.27)
using the fact that (u)) is a (PS) sequence of Io. We have that
i 1= g =l = a2 =2, v) + [, (2.3.28)

such that
/ EooVul Vul (z — b )da + / EaoVul Vul (1o — 5yt )da

+/ Vooupu! (z — 1y} d:E+/ Voo u! (1 — 1y} )da.

<u%wﬁ)/n>

Firstly, we claim that
(tp,Yn) = 2] [[*+on(1). (2.3.29)

Indeed, let
Al

n

= /]RN (f’ooVuTlqul(x—y}l) —|—Voou7llu1(x—y}l)>da:

and
2 _ 1o, 1 1 1,1 1
Az _/RN (ﬁooVunVu (T2 —1yp,) + Voot u (m:—yn))d:c.

We will show that

Al — {./]RN (foo|Vu1|2+Voo(u1)2)dx}, when n — oo,

n
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and
A% — — {/]RN (foo|Vu1|2+Voo(u1)2) dx} , when n — oco. (2.3.30)

Let z =z —1}, thus 2 = z+y. and dz = dz, combining this with ul(-+31) — u!(-),

we have
/RN ({ooVu}L(z—l—y}l)Vul(z) +Voou7ll(z+y,ll)u1(z))dx — /RN (500|Vu1|2+Voo(u1)2)dx

To evaluate ATQL, let us consider the following change of variables 74 — yTlL =z, then

z=7(z+y)) and dr = dz. Thus,

AL = /RN (EaoVun (T (2 +yp)) Vi (2) + Viotty (7(2 + ) )u' (2) ) e

Since u,, is T-antisymmetric, we have
A2 = — {/]RN (fooVu}l(T(z%—y,ll))Vul(z) +Voou,11(7'(z—|—y7ll))u1(z)>dx}.

Therefore, in a similar way to Al we obtain (2.3.30) and thus prove (2.3.29). Now, we

claim
Iynll*= 2| >0 (1). (2.3.31)

In fact, from (2.3.8) and (2.3.9) we have that

Il = [ (el Va4 Vocr2)da
= 2Hu1H2—2/RN500|Vu1(:L’—y%)Vul(Ta:—yrll)dx—Q/RNVooul(x—y}b)ul(Tx—y}l)dx

= 2||ut||?+on(1).

Thus, obtaining (2.3.31).
Finally, replacing (2.3.29) and (2.3.31) in (2.3.27), then

i lP= llug 1?2l [|+o0n(1). (2.3.32)
To conclude (2.3.27) we need to verify the following equality

/R CH()de = /]R | H(ub)dr—2 /]R H(uY)dz+ 0, (1). (2.3.33)
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M, Sp=RN\ B, (0)UB,,(tyl —y!) and using the fact that

ul(Tx _%11) = ul(T(x —Ty}L)) = —ul(x—Ty}l), we have
/ H(u?)de = / H(ul - )dm—/ H(ul(z) —ul(z—yl) —u(rz—yl))dx
RN n ]RN RN n n n
= [ H(ul(z+yh) —ul(2) — ul (2l — Tyh))dz
BPn(O)
+ H z4yl) —ul(z) —ul(z 4yt —1yl))dz
S oty O ) =l () = o =)
+ [ H( ) —u' () — o (= 7y0)dz
_ H 1 1 1 dz — H 1 d
/BM(O) (e oh) — ot e yh e — [ H ! (2))d
+ Hu(z+y,)—u'(2))dz —
/Bpn ok (uh(+yh)—u'(2)

—I—/ L4yl —u (z—l—y}L—Tyrll))dz—/S H(u!(2))dz+on(1).

n

H(u 11y
/Bpn(w%y%) (ul(z+yl—ryl))dz

Under the assumptions that ul(z +yl) —u'(z) = 0 if |y|— co a.e. z € RY and that
u1(2+y}l +7'y7£) — 0 a.e. zeRY, together with the Brezis-Lieb Lemma, we have the
(A) — (F) statements of proof of Lemma 1.3.5. Then using (2.3.32) and (2.3.33) we have

Lo (uzy) = oo (ty) = 2Ioo (') +0n(1).

which completes the proof of (2.3.27).
Since (u)) is a (PS) sequence of I, then I (u2) converges to a constant. To

complete the proof we will show that if n — oo, then (2.3.23) holds. Indeed

I (up)el = ‘ | (6o V (= 10) Vot Voo (7, = ) ) d —/RNh(u}z — ) (U, —7)pd
< ‘/ &)OVU1VQO—I—VOOU711QD) d‘r_/RNh(urlz)u}zgpdﬁ"'/RN(gooVVnV@"_Voo'Yn@) dx
~ [ B e = [ o =) (o, = 7)o

+/ ngpd:v+/ (V) ynpdz| .

And since (u)) is a (PS) sequence of I, we have that

/RN (§MVU}LV¢+ Voou#go)dx — /RN h(ul)ulpdr = o,(1). (2.3.34)
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From (2.3.34), using the definition of 7,, and from the triangular inequality we obtain
that
[ Too ()| < Ky + Ky 4 0n (1), (2.3.35)

where

KrlL = /RN (§OOV’ang0+VOO’Yn90)dSL’

[ (V@ =) =l (ro =y ) Vot Vo (u! (v = yh) = (72 —y3)) Jda

and

K2 = [ bl allelde

= /RN!h(ul(iv —yp) —u (12— yp)) [t (& — ) — ' (2 — )| da.

we have that k! = o0,(1) and k2 = 0,,(1). The proof once again follows as in Lemma 1.3.5
using Hoélder’s inequality and the growth of h, this completes the proof of (2.3.34) and
thus we verify that {u2} is a (PS) sequence of I, also in Case I1.
Now proceeding by iteration, we note that if u is a non-trivial critical point of I, and
w is a minimum energy solution of the equation (2.1.4) given by Berestycki and Lions,
then we have that
Ino(u) > Ino(w) > 0. (2.3.36)

On the other hand, from (2.3.27) and item (ii) we obtain
Ioo(u2) = ¢ — I(ug) — 2Ino (u') + 0, (1). (2.3.37)

From (2.3.34) and (2.3.35) the iteration must end at some index k& € N and the proof of

the lemma is complete. O

In the next result, we verify that the functional I restricted to E7, associated with

the problem (2.1.4), satisfying (Ce). for ¢ below the level 2m.

Lemma 2.3.6. The functional I restricted to E7 satisfies (Ce). condition for any

c<2Mgs.
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Proof. Let (uy) be a sequence in E” such that
I(un) = ¢ <2mo and (14 |un) || e (un) | — 0.

This imply that I’| g (u,) — 0, namely, (u,) is a (PS) sequence of I restricted to E”
and by Lemma 2.3.4 we have I'(u,) — 0. Moreover, by Lemma 2.3.1, (uy,) is bounded

sequence, up to a subsequence, u, — ug in E and I’ (ug)e =0, for all ¢ € E. In particular,

I'(ug)up = /RN (f(:ic)\Vuo]z—l—V(x)u%) dx—/RN f(z,up)updx = 0. (2.3.38)

It follows from the hypothesis (f5), the definition of norm in £ and (2.3.38) that

I(up) = ;HUOHQ_/RN F(z,up)dr = /RN (;f(x,uo)uo —F(x,u0)> dz > 0. (2.3.39)

If (uy,) does not converge strongly to ug in the norm of E then, by Lemma 2.3.5 there
exists two integers k1 > 1 or ko > 1, ky solutions w?, j =1,..., k1 and ko T-antisymmetric

solutions u/, j = ky41,..., k1 + kg of equation (2.1.4), satisfying

k1+4ko )
c= lim I(un) > I(up) +2k1mos + | %: 1Ioo(u3) > 2Mo, (2.3.40)
J=R1+

since Ioo(u!) > 2mq, for all nontrivial T-antisymmetric solution w/ of (2.1.4), which
contradicts our assumption. Therefore, up to a subsequence, u, — uy € E™ and the

lemma is proved. O

Lemma 2.3.7. Let m._ := inf I (u), then
ucP
2Moo <M.

Proof. Let us show first that if u € P then v, u~ € P. Using a change of variable and

that G(s) is an even function and defining A™ := {x : —u(7x) > 0}, we obtain
J(u™) = /RN|VU_|2dz —2* /RN Goo(u™)dz = J(u").
On the other hand,

0=Ju)=Juh)+J(u)=2J(u")=2J(u").
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—+

Therefore u™, u~ € P. Now, taking into account that H is even we have

Lo(ut) = AN(gm|vu—|2+vm(u—)2)dz - /RN H(u )dz = Lo (u).
Finally,
To(u) = Ino(u™) + I (u7).
Therefore, for all u € P we have
To(u) = Ino(u) + Too (u™) = 2100 (u™) > 2me,

thus,
ml :Jgjloo(u) > 2Meo-

]

Remark 2.3.3. If zy(z) = w(z —y) —w(z —7Yy), then t,, as in (2.3.12) is bounded when
ly|—= o0 and |y — Ty|— oo.

Lemma 2.3.8. Suppose &, V satisfies (&1) — (&4), (V1) — (Vi), respectively and either
(2.1.9) or (2.1.10) or (2.1.11). Then

¢’ < 2meo.

Proof. Denote t =t,,, for simplicity of notation. Since I is translation invariance we

obtain
N-2 N-2
I(zy(ﬁ) = tz /RNf(tas)Ww(ﬂs—y)l tQ / ¢(tx)|Vw(z — ry) da
thQ
-2 5 /R ¢(tr)Vw(z —y)Vw(z — Ty dx—i——/ (z—vy))*dx
tN
_,_7 V(taz)( (z —Ty))?de — 2—/ —y)w(z —Ty)dx

tN/ F(tr,w(z —y) —w(z—T1y))dx

= Iy <w (t — y>> + 1 <w <t —Ty>> + tNQ_Z IRN(S(t:zc)—Eoo)|ch(3U—y)|2dzzc
tN—Q
2

+ /RN(E(tx)—éoo) \Vw(x—Ty)\zdx—tN_z/RNf(tx)Vw(a:—y)Vw(x—Ty)dx
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2/ w(x —y))?dx + 2/ — Vo) w( — 7)) %da
—tN/ (tr)w(x—y)w(x— Ty)d:v—l—tN/ w(z—y))—F(tr,w(z—y))dz
+tN/ w(z—Ty))—Ftr,w@—Ty))de—t / (tr,w(r—y)—w@—Ty))dx
+tN/ F(tz,w( da:+tN/ F(tr,w(x —T1y))dz

= I (w(3))+ 1 ( (2))+ Rl&.&s Vi Vocs ol ly = T, (2.3.41)

where

N-2
R<§75007V> VOO7 |y‘7 |y - Ty’) -

[ (€(t2) = 60) [Vl —y) Pda

2
+tN2_2 RN<5< 1) — ) Vil — ) e = 2 [ €(02) Vsl =) Vsl — )
N (6 =)o+ / (tr) = Voo (wlz —7y))*da
—tN/ (@ —y)w(z— Ty)dx—HN/ (2 —y)) — F(tz,w(z —y))de
tN/ (¢ —7y)) - F(tz, w(x—Ty))dx—tN/RNF(tm,w(m—y)—w(x—Ty))dx
+tN/ Flte,w(z —1v)) d:c+tN/ Fltz,w(z —y))dz. (2.3.42)

To evaluate the sum

/]RN F(tr,w(z—y) —w(z—T1y))dx — /]RN F(tx,w(zx—vy))dx — /RN F(tx,w(x —T1y))dx,
we use hypothesis (f7). The Lemma A.2, (2.1.3) with € > 0 and 2 < p < 2%, give us

’F(tm,w(x —y)—w(z—1Yy)) — F(tr,w(r—y)) — F(te,w(z — Ty))’
< eluta —y) oo = )|+ Clotw =) oo =)

+€‘w(x — Ty)Hw(x —y)’ + C’w(m —Ty)‘p_l‘w(:r; - y)‘

It follows from the above estimate and the invariance of translation of the integral
that

/RN‘F(tx,w(x —y)—w(z—T1Yy)) — F(tr,w(x—y)) — F(tr,w(z —Ty))‘dx
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§4€/RN ‘w(z)Hw(z#—y—Ty)’dz%—QC’/RN ‘w(z)’p w(z—i—y—Ty)‘dz.

Now we estimate the integrals above. Let 0 < < 1/2 to be chosen later, define
Ay = Bly_ry| (0) cRY and R, := [y =]
p

(1-6) (1—0). Since w is solution of (2.1.4), we

have |w(z)|< Ce™ 1l for all 5 € (0,1/Vao/€x) and

jw(z - y)|p_1IW($—Ty)|dl“=/Ay|W(Z)|p_1IW(Z+y—Ty)|diU

REEIrS o ( /. y|w(z+y—7-y)|l’dz>l/p

—1
ol (

<C (e—ﬂply—wl

Ay

I

A

1/p
e—ﬁplz+y—7y|dz>

1/p
e—Bp|Z|d2>

1/p
_ Bl ( / e—ﬁmde) | (2.3.43)
Ay

Y

Ay

making change of variable f: RY — R¥, 2+ —r with determinant of the Jacobian given

by det(J(z1,---,zx)) = 71, and by change of variable theorem, we have that

ly—7yl ly—Tyl
(1-9) lv=rul 1)
/A e‘5p|z|dz:/0 3 eﬁprdet(J<Zl7"'7ZN))dr:/0 ’ PNy,
Y

Replacing in (2.3.43)

ly—Ty| (1-6) 1/p
w(z — y) P w(z —y)|de < CePlv=vl (/ : eﬂpTTN_ldr)

Ay 0

C@ﬁ%l%ﬂ/l%gﬁlyﬂy\% ly — 7y|N/p

IN

—1
< O@5)e Pl (2.3.44)
since 1 <p—1and 0 < d < 1/2. Moreover

)1 _ - p—1 _
Jo g W= e =ryldr= [ )P (e by~ ry)lda

p—1
-1 _
< C|wlZ (/RN\A ¢ 5p|z|dz>
Y

p
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p—1
o P
= Cllwll7" ( S e‘ﬂ”rN‘ldr)
\ - vl (1-6)
Now, using integration by parts, for any k£ > 0 we have
/e_kTrN_ldr =e P,
where
N-1
r (N=1) yoo, (N=1)(N=2) y_3 N1 (V=1
P(T) = k — kz T + k3 T ++(—1) T
Thus,
©.9]
/R e Nl = e p(r) [ = e H (R, (2.3.45)
Y Y

Therefore, taking k := p, we obtain

Joa 0@ = )P ol =) lda
Y
p—1

< || ppe-tPlu-ryl(-20)25 [eﬁpy—Tylé s <|y_7y| 1_5>] 7
p

< C(0) Jwl eI 02,
Hence, taking § sufficiently small such that 0 < (1—2§) < 1, we obtain
/]RN\Ay’w(m _y),p—1|w($ —1y)|dz < C(é)e—ﬁ\y—rylpp%l(l—%). (2.3.46)
Thus, from (2.3.44) and (2.3.46) we have
/RN|w(x — )PP w(z —7y)|de < Cre—Blu=Ty| B3+ (1-20) (2.3.47)
For p =2 we argue similarly and define Ay:Bw(l—(S)(O) C RN Choosing

ly —Ty|
9

R, = (1—0) and using Holder’s inequality we obtain

e _ N/2 .
/A w(2)w(z+y—Ty)dz < Ce=PI—mslHEFH0-0) (‘y;y’u - 5)) < o)=Y,
Yy

(2.3.48)
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On the other hand, using Holder’s inequality and (2.3.45), it follows

1-25 1-96 1/2
fon otz == i) < Clul e ol (eﬂy—”f'dp (|y—ry\2 ))
< C(8)e Pl (2.3.49)

By (2.3.48), (2.3.49) and 0 < (1 —26§) < 1 it holds that

ly—7yl (1-24)

[ yete—yte—ryde < C@e T o(@)e i

< O(8)e Ply=ul3(1-29), (2.3.50)
Arguing as in the proof of inequality (2.3.50), we obtain

/]RN Vw(z —y)Vw(z —1y)de < CeBly=Tul3(1-20) (2.3.51)

We consider 51 < < \/Vio/Exo OF 2 < B < \/Voo/Exo OF 03 < < \/Voo/Eoo- By

(2.1.9) and a change of variable, there exists a positive constant C' such that

[+ (@) = &) Vi —y)Pda < ~Ce 1 (2.3.52)

We also have

/RN (§(2) = &oo) [ Vw(w —7y)|Pdw < —Ce™ MW, (2.3.53)

Or else by (2.1.10), there exists a positive constant C' such that
/R V(@) = Vao)lw(a —y)PPde < —Ce 2l /R el (z) 2dz < —Ce PR (2.3.54)
Similarly, we obtain
/R V(@) = Vao) | Vol — 7y) [P < —Ce Il = — =Pl (2.3.55)

Or else by (2.1.11), as well as in (4.0.63) from the previous chapter, there exists a positive
constant C' > 0 such that

/RN|H(w(x —y)) — Ftz,w(z —y))|de < —Ce B, (2.3.56)
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Analogously, we have
/]RN |H (w(z —Ty)) — F(te,w(z —7y))|de < —Ce 5. (2.3.57)

Now we study the sign of R(&,£x0,V, Voo, [y, |y — Ty|). If we consider the inequalities
from (2.3.43) to (2.3.57) in the definition of R(&,£x,V, Voo, Y], |y — Ty|) in (2.3.42), then

(1-26)

R(&,£50, Vi Viou |yl [y — Ty|) < —Ce Pl — ce=Prlvl — ¢ (8)ePly—T1"=

(1-26)
2

—Ce P2l _ oe=Palyl _ (](5)@’5‘7’*7?4| — Ce Pyl — ce=Pslyl
+ C«@)gﬂlyﬁyl%l(k%) — Ce BBl 1 ce=Bly=Tyl(1-28) C«efﬁ|y77'y|%(1f25).

Let 4= (Y1, Uky---Yn)s T = (Y1, Yks —Yktl,---,—Yn), the projection Py =
(Y1, Yk, 0,...,0) and |7 —77|=|(0,...,0,2Uk11,---,2un)|= 2](0,...,0,Yks1,---,Un)| be
such that [0,...,0,Yks1,---,Yn)|— 00. If we choose
Y= PFng =(0,...,0,Yk41,---,¥n), such that 2|y|= |y — 7y, since t =t,, is bounded
and ; < p;l) we obtain for |y| sufficiently large

R(€,650,V, Voo, [yl [y — Ty]) < —Ce Pl _ ce=b2lyl _ ce=Bslyl L 0e=PA=20)lyl (.
(2.3.58)

Replacing (2.3.58) in (2.3.41) we obtain that [ (zy (t)) < 2Meo.
Zn
To finish the proof of the lemma, see Lemma 1.3.8.y n
Proof of Theorem 2.1.2. Let (u,) C E™ be the sequence given by Ghoussou-Priess

Theorem in Lemma 2.3.3. By Lemma 2.3.1 this sequence is bounded, and
I(up) =™ and I'(u,)—0 in (E*)".

Up to a subsequence, u, — ug weakly in £ and I'(ug) = 0. By Lemma 2.3.5 we have either
uy — ug strongly in E or there exists two integers k1, ko > 0, k1 solutions u?, 1=1,....k
and ko T-antisymmetric solution w’, j = ki +1,..., k1 + kg of equation (2.1.4), satisfying
the conclusion of Lemma 2.3.5. Suppose that the second case is holds. It follows from

Lemma 2.3.8 that ¢ < 2mq, and hence by Lemma 2.3.5 item 5 we must have ki, ko = 0.
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Otherwise, without loss of generality, if k&1 > 1 then by Lemma 2.3.7, we get
" > 2kimoo + 2(k1 + k2)moo > 2me,

contrary the assumption that ¢ < 2mqo. Therefore, ky = ko =0, u,, — ug strongly in E
and ¢” = I(up). Moreover, since I (ug) =c” > 0, it follows that ug #Z 0, ug is T-antisymmetric

and hence it is a sing-changing solution ug of (P;). O



Chapter 3

Problem with ¢ positive and V

sign-change

3.1 Spectral Theory

In this section, we present some definitions and results on spectral theory, the proof will
be omitted and can be found in [12] and [31].

Definition 3.1.1. Let H be a Hilbert space and let A: D(A) C H— H be a linear operator
whose domain D(A) is a dense subspace of H. Its adjoint operator A*: D(A*) C H — H
is defined by

ve H and there exists an element w € H,

vE DAY =
such that, (Au,v) = (u,w), for all uwe D(A),

and
Av=w, forall ve D(AY)

so that, by the density of D(A) in H, w is the only element associated with v by definition
of D(A").
The operator A is said symmetric when (Au,v) = (u, Av), for all u,v € D(A), and if,

in addition, D(A) = D(A"), the operator is called self-adjoint.

Definition 3.1.2. An operator B is an extension of the operator A when D(A) C D(B)
and A= B in D(A). When the extension is unique, the operator is said to be essentially

self-adjoint.



3.1 Spectral Theory 110

Lemma 3.1.1. Let A: D(A) C H— H be a self-adjoint in a real Hilbert space. For
A €R, we have that A— Xl : D(A) C H — H is an isomorphism if only if there exists a
positive constant ¢ > 0 such that ||(A— N)u||> c||ul|, for allue D(A).

Definition 3.1.3. Let A: D(A) C H — H be a self-adjoint operator. A resolvent set
p(A) of an operator A is a set

p(A) = {)\ eR: A—X:D(A)— H is an isomorphism}
and the spectrum of A is the set

o(A) =R\ p(A).

The elements of p(A) are called reqular values for A. The point spectrum is given by the
set
op(A) = {N€R: ker(A—\I) #{0}}

and its elements are called eigenvalues of A. The discrete spectrum is the set
oq(A) = {)\ € R:dimker(A—\I) < oo and X is an isolated point of ap(A)}
and its complement in o(A) is called the essential spectrum
0e(A) = 0(A)\aa(A),

and it consists of A € o(A) that not isolate eigenvalues of a finite multiplicity.

3.1.1 The Schrodinger operator
Definition 3.1.4. Given the functions £,V € LOO(RN), we define the Schrédinger operator
L:D(L) c L*(RN) — L3(RY) generated by the potential V and by & given by

D(L) = H*RY) and Lu = —div(&(x)Vu) +V (z)u, for all uwe H*RY).

To show that the operator L is self-adjoint, we will use the Fourier transform. For this
purpose, it will be necessary to hypothesize that the Fourier transformation of the function

& is & itself. Furthermore, we must use a complex-value function. The corresponding
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function spaces will be distinguished from the use of italics. Thus, £ = [? (RN ,C) and
LP = [P(RY R), etc. The Schwartz space of smooth rapidly decreasing functions will be
denoted by

S =SRY,C)

={ve C®: |z D%(z) € L>, for all j € N and multi-indices ov € NV},
For v € § (or more generally v € Cl), its Fourier transform ¢ is defined by
0(¢) = (QW)N/Q/v(x)e_ig'mdm, for all z € RY.

We have the following properties

o 0S8, for all v €S, it holds the Parseval’s identity

/vwdx - /@de, for all v,w € S.

e« ForveS, djveSforall j=1,---,N and

—

d;v(¢) = i¢;0(C), for all ¢ € RV,

More generally,
Dov(¢) = (iQ)*8(¢), for all ¢ € RY. (3.1.1)

Lemma 3.1.2. Let v,w € L*(RY) and € € C(RN,RY) with &(x) = £(x), such that
/RN vdiv(§(x)Vz)dx = /RN wzdz, for all z € C(RY). (3.1.2)

Then v e H>RN), i¢(£(x)iCo(C)) = w(C), for almost all ¢ € RN and div(€(x)Vv) = w.

Proof. Since C5°(RY) is dense in H?(RY) and using the Riesz Representation Theorem

and Divergence Theorem, we have

/RN Udiv(ﬁ(ac)v,z)dx:/RNﬁ(x)VUVzdx:/RNwzdx, for all ze H>(RY). (3.1.3)
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For ¢ € S, the real and imaginary part of ¢ belong to H*(R™) and so
/RN vdiv(§(x)V)dr = /]RN wpdz, for all peS. (3.1.4)

Furthermore, using &(z) = &(z), since £(z) >0 for all z € RY, from equality (3.1.1) and

from Parseval’s identity, we obtain

————

[y vdin€@) Vo) = [ odiv(€(w)Vie)da
= [ 0iCE@)icayc = [ oic(&(@)icE)dc

and
[ wpde = /R .

Replacing (3.1.5) and (3.1.6) in (3.1.4) we have
/R | DiC(E(x)iCB)dC = /R B¢, forall p€S.

Since S = S , this means that

Ly vic(e@yicmac = [ ic(e(@)icomdc = [ imdC, for all e S.

In particular,

[ icte@)icomdd] < il 2z, for all y € S,

and since S is dense in £, it follows that i¢(&(x)i¢(¢)) € £* and

iC(E(x)iCH(C)) = w(C), for almost all ¢ e RY.

Thus v € {v € L2 : |n|*d(n) € £*} = H>. Then, by (3.1.8) and (3.1.7) we obtain

/RN viC(&(x)iCn)d¢ = /R L AC(E(@)iCH)ndC.

Using again the equality (3.1.1) we have from (3.1.9) and (3.1.2) that

/RN vdiv(ﬁ(m)Vz)dx:/

. div(&(x)Vv)zdz,

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)
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for all z € C§°, which it follows that div(¢(z)Vv) =w and we finish the proof. O

An example of a bounded function that the Fourier transformation is the identity of is

|2
§(x):exp< il >—|—VO, with Vp > 0.

2

Theorem 3.1.1. For £,V € L®(RY) with £(x) = £(z), for all € RN, the Schridinger
operator L: D(L) C LQ(RN) — LZ(RN) generated by & and by the potential V is self-
adjoint.

Proof. Note that H?(RY) is dense in L?(RY) so the adjoint Schrédinger operator
L*: D(L*) ¢ LA(RY) — L*(RY) is well defined. Furthermore, for all u,v € H*(RY)
and by Lemma 3.1.2

/RN(Lu)vd:l: = / ( div(&(x )Vu)jtV(q;)u)vdq;
= —/ div(&(x)Vu) vd:c+/ z)uvdr

= —/ div(&(x)Vv) udx—i—/ x)vudx
= /RN (— div(&(x) Vo) + V(x)v)ud:v
where —div(£(z)Vv) 4V (z)v € L*(RY). This shows that H*(RY) ¢ D(L*) and that
L*v = —div(&(z)Vv) + V(z)v = Lo for all v € H*(R™).
On the other hand, if v € D(L*), then v € L*(RY) and there exists an element
w € L*(RY) such that
/ (Lu)vdx :/ wwdz, for all ue D(L)= H*(RY).
RN RN
Thus,
/]RN (—dz’v(f(w)Vu)—i—V(x)u)vdx = /]RN wwdz, for all ue CORY)
and so

/]RN (w—V(z)v)udr = _/RN div(€(z)Vu)vdz, for all ue CF(RY)

where v and (V(z)v—w) € L2(RY). By Lemma 3.1.2, div(¢(z)Vv) = w—V(z)v and
v e H*(RY). This shows that D(L*) ¢ H*(R"), completing the proof. O
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Now, we define the number A that characterizes the smallest value in the spectrum
of L. For any £,V € L>(RY), consider

A= inf{/RN (f(x)|Vu|2+V(a:)u2)dx cue HY(RY) and /]RN wlde = 1}.

The next result shows that the spectrum of the operator L is never empty and

characterizes its infinity related to the number A.
Theorem 3.1.2. Let £,V € L®°(RY). Then,
(i) o(L) C[A,+00);
(i1) Aeo(L).
In particular A =info(L).
The following results will be needed to prove the theorem:
Lemma 3.1.3. Let L: H — H be a self-adjoint and let
m = inf{(Lu,u) :u € H and ||ul|=1},
M = sup{(Lu,u) :u € H and ||u||=1}.
Then,
(i) o(L) C [m,M];
(ii) |IL]|=sup{|A|: A € o(L)} = max{|ml,|M]};
(i) m,M € o(L).
Lemma 3.1.4. Let £,V € L°(RY). Then,
(1) A= =[[V]oo> —00;

(2) A= inf{/RN (€(x)|Vul*+V (z)u?)dz : u e CRY) and /]RN ulder = 1}

and so we also have,

A:inf{/ (Lu)udz : v € H*(RY) and/ uzdle};
RN RN
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(8) If ue HY(RN) with /RN w’dr =1 and /RN(é(a:)\Vu\QJrV(Q:)uz)dx =A, then u €
H2*(R™), u € ker(L—AI) and A € o,(L).

Proof of Theorem 3.1.2. (i) By item (2) of Lemma 3.1.4 we have for all u € H'(RY)

A/ u2dx§/ (Lu)udx
RN RN

and so, for all A € R,
(A=) lull72< /RN[(L—M)U]udxﬁ (L= AD)ul| g2l 2.

Thus,
(L= A)ul| 2> (A=N)||ull g2, for all ue Cg°(RY)

and follows from the Lemma 3.1.1 that A € p(L) if A—X > 0.
(77) From part (i) we know that o(L) C [A,00). Let m > A be such that o(L) C [m,00).
To complete the proof we have to show that m < A. We choose any n € (—oo,m). Since
n € p(L), we set
A=(L—-nI)™

and we have that A: L?(RY) — L?(RY) is linear, bounded and selfadjoint operator.
Furthermore, 0 € o(A) since R(A) = D(L) = H*(RY) # L*(RY). For A #0,

A—AIzA{iI—(L—nI)}AzA{(/l\—77)[—L}A
and so

A= : L*(RY) — L*(RY) is an isomorphism
1
— - (A”) . HX(RY) = L2(RY)
1
= (AH]) € p(L).

Therefore, we see that

o(A) = {o}u{#in:,ﬁeam)}
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and hence o(A) C

1
0, 1 . By Lemma 3.1.1 implies that
m-—n

/RN(Av)vdx >0, forall ve L*RY).
For any u € HX(RY), we consider v = (L —nI)u and we obtain that
/RN[(L —nl)uludx = /RN(AU)de >0

this shows that /RN(Lu)udm > n/RN u?dz for all u € H*(RY) and it follows from this
item (i) of Lemma 3.1.4 that n < A. But 7 is an arbitrary number smaller than m. We
can conclude that m < A, completing the proof. m

Lemma 3.1.5. Let £,V € LOO(RN). Fore >0, let X be a closed subspace of HI(RN)
such that

/RN(g(x)]Vu|2+V(:c)u2)d:c <(l—e¢) /]RN w de, for all ue X, (3.1.10)

with | = lminf V(). Then, dim X < oo.

|z|—o0

Proof. Observe that /RN (&(x)|Vul|*+V (z)u?)dx and /RN u?dz are both continuous func-
tions of u in H'(RY). And so from (3.1.10) it holds for all u in the closure of X.

Therefore, we can assume X that is a closed subspace of H 1(]RN ). Consider a sequence
(un) C X such that [lun| g1gyy=1 for all n € N. We need only show that (u,) has
a subsequence that converges strongly in H 1(RN ). Passing to a subsequence we can
assume that u, — u weakly in H*(R") for some element of H'(RY). If Pu denotes the

orthogonal projection of u onto X in H*(RY) then
= Pull vy= (I = PYuyud s vy = (I = P, u—1un) =0,
thus Pu=wu € X. For definition of [, there exists R > 0 such that

V(z)>1— %, for almost all |z|> R. (3.1.11)
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Then by compact embedding of H!(Bg(0)) in L?*(Bg(0)), it follows that

/|m<R(un —u)?dz — 0. (3.1.12)
From (3.1.12) we have that / (2)|Vul2dx < (1— )/]RN u’dr — /RN V (x)u*dx and using
(3.1.11) we obtain that
° da:—i—/ )|V (up, — u)|*de
2 |x|<R
S% |I|SR(un—u) de+(l—¢) /RN(un—u)de—/RN V(@) (uy —u)?d
= Jiuizn (; +l—e— V(x)) (up —u)?dz + |x|2R(l — e =V (2))(up —u)’dx
= [ (1= 5= V@) o [ (1= =V (@) =)
<+ ||V||Loo)/|x|ZR(un—u)2dx 0.
It follows that [ (un w)2dz — 0 and / )|V (tn — )| 2dz — 0 when n — 0o

that combining with (3.1.12) give us ||uy — ul| g1 ®Vy— 0, which completes the proof. [

Theorem 3.1.3. Let &,V € L°(RY) and consider n < where | = hm ess inf V(z).

R—oo |z|>R

For each p € (0,1/l—n), there exists a constant C, depending on n and u, such that
ju(@)|< Cllul| e

for all z € RN since u € ker(L — XI) for some A <.

Proof. Consider r = |z| we obtain

n N—1 N—-1
Ae ™ =(e™H") + . (e7H) = {,u — Nu}e_’“”, for « #0.

Since 0 < p? < 1 —m, there exists R = R(n, 1) > 0 such that

V(z)>n+u? for |z|>R,
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and then, for all A <7, we also have
V(z) > A

N-—-1
and /\—V($)+M2—T <0, for all |z|> R.

Now, consider C' = e and, for any u € ker(L — XI)\ {0} with X <, consider the
function w defined by

w(z) =u(x)— C|lul e ™™ for all z € RV,
By [Theorem 3.18, [31]] we have that

we CORMNAYRY) and  lim w(z) =0.

|z]—o0

The definition of C°(RY) guarantees us that
w <0, forall |[z|<R.

Therefore, by [Lemma 7.6, [18]], w* € CO(RM)nHY(RY), lim w'(z) =0 and w™ =

|z|—o00

for |z|]< R. Let
Q={zeRY: wt >0}

The set Q is open and Q ¢ R \ BR(0) = E(R). Suppose that Q # 0, w € H*(E(R)) and
w' =0 on OE(R). Then
27 +
/RNg(a:)|Vw | dx—/E(R)ﬁ(x)VwVw dx
<—€oo Aw)wtd
S b [ (Bt
=—{oo /E(R)(Aw)wdx
=t [ 1O V(@) + Ol A s

N-—-1
gfoo/Q{A—V(x)—i-MQ— ,u}C’HuHLooe_“‘x'wdx

r
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since A— V() <0 and u(z) > C||ul e ! onto Q. But w>0in Q C E(R) and R was
N-—-1
chosen so that A —V (z) + u?> — ——p < 0 in E(R). Thus, we saw
r

0</ ) 2dz < 0

if 2 0. Therefore, we must have Q= and w < 0 in RY. Hence u(z) < C|jul|pooe !
for all z € RV. Replacing u by —u we complete the proof. O

Theorem 3.1.4. If a mensurable locally bounded functions V, & such that
liminf V(z) > and liminf&(x) > §, then the operator L = —div(&(x)V )+ V (x) is semi-

|z|—o00 |z| =00
bounded from below and has a discrete spectrum on (—o0,l), so that for any € >0

the spectrum of L in (—oo,l —¢) consists of a finite number of eigenvalues of finite

multiplicities..
To prove this theorem it is necessary to state the following lemma:

Lemma 3.1.6. If liminfV(z) > a, liminf&(x) > b and uw € D(L), then

(Lu,u) = /]RN (&(2)|Vul|* +V (z)u?)dx < co.

Proof. Since V(z) > C and &(x) > D, we can substitute L by —1)I and assume
the following estimates V' (x) > 1 and &(x) > 1 such that / de > / x)dx and

/RN &(z )|Vu]2dx2/RN|Vu (z)|?dz. Let us introduce in D(L) the following norm
1/2
Julle=( [, (e +|Lul®)d) 1t ue CP®RY), then

(Lu,u) = /R E@) VUV (@)u?)da.

The convergence of the sequence (ug) is the graph norm ||-||p implies its convergence
in HY(RY) and in the space L?(RY) with the weight function V and the function &.
Therefore, for the limit function u the integral /]R (S (2)|Vul>4+V (z)u?)dz has a finite

value and is equal to (Lu,u). O

Proof of Theorem 5.1.4. We will prove that, for € > 0, the dimension of the subspace

S ={ueD(L); (Lu,u) < (I—e)|ul*}
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is finite. By Lemma 3.1.6, this inequality is equivalent to the following one

[ DIV @) < (1=2) [ s
[ DIV @dite—(1—2) [ e <0
[ €@V H(V (@)~ ep)da <0, ues.

Let R > 0 be such that V(z) >1—¢/2 for |z|> R and V(X) >m for all z € RV,
Then,

0= [ (€@ITuP V(@)L ) + / ()| T2+ (V () — [ +€)ud)da
Z/|x|<R(()IVu| L NGO Y (R T
= JyepE@ IVl m =L+ )u® d:r+/ (Va4 Se?)da.
Therefore,

/x|<R [Vl dﬂ?—i—/ )| Vul? + u )da:<C |x‘§Ru2da:, ues,

if C>1—m+e>0. Let B be the operator of restriction of functions from S on the ball
Kp:={z:|z|< R}, that is, B: S ¢ L*(RY) — L?(Kg). This operator is continuous in
L?(RY) and injective in virtue of the latter estimate. To prove that S has finite dimension
we will show that the subset B.S, which is the operator B applied to the set S, has finite
dimension. However, by the same estimate we have |[ul| g1 (g ,)< Cllull p2(k ), u € BS.
Furthermore, H'(Ky) cC L?*(KR). Therefore, the unit ball in the space BS N L*(KRg)
is compact. And so, BS has finite-dimensional and, since B is injective, we can conclude
that S is finite-dimensional. O]

3.2 Variational Setting

In this chapter, we consider the following problem

{ —div(E(x)Vu)+ V(z)u = f(z,u), inRY,

u(z) — 0, as |z|— oo,
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with N > 3, under the following assumptions in € € C(R™ ,RT) and V € C(R™,R):
(&1) there exists £ > 0 such that £(z) > &;

(€2) Jim £(2) = Eoo;

x|—o00

(&3) &€(7) S &oo3

(V1) there exists Vy > 0 such that V(z) > —Vj;

(Va) lim V(x)=V;

|| 00
(V3) V() < Vio;
(V4) 0 € o(L) and info(L) < 0, where o(L) is the spectrum of the operator
L(:) = =div(§(x)V(-)) + V(2)(-).
The conditions that we consider on the nonlinearity f € C(RY x R,R) are the follo-

wing:

=0, uniformly in z € RY;

(i) tim %)

s—0t S

(f2) there exist a € C(RY,R") and h € C(R,R") a even function satisfying h(s) > 0 for
all s >0, h(0) =0 and such that

. flxs) :
oo 5 M) = i 0le) = dec,

|f(z,9)] <a(r) and a(z) > ag > Vi, for all s #£0

uniformly in 2 € RY. Moreover, 5|
s

and all z € ]RN;

(f3) h(s) < aco for all s € R;
0 it Fa) = [t )= [[hOn Gl)i=ghis)s —H(s)  and

1
Q(z,s) := if(x,s)s—F(x,s), then, for all s € R\ {0} and all z € RY,

G(s) >0, F(x,s) >0, Q(x,s) >0and lim Q(x,s)=+oc;

§—+400
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(fs) the function s — f(z,s)/s is increasing in s € (0,400) for all z € RY.

3

L for z € RY, where c € C(R™,R) is a positive

1+c(x)s?

function, ¢(x) — oo > 0 when |z|— 0o and 0 < ¢y < ¢(x) < ¢, is an example of a function
2

s

- 14 coos?’

Consider the function f(x,s) =

1
that satisfies the assumptions (f1) — (fs), with a(z) = @) and h(s)
c(x

The main result of this chapter is the following theorem.

Theorem 3.2.1. Assume that & and V' satisfy the hypotheses (£1) — (&3) and (Vi) — (Va),
respectively, and the function f satisfies (f1)— (fs). Then problem (P3) has a nontrivial

weak solution u € Hl(RN) provided one of the followings conditions holds:
E(z) <€ — Cie 2l for all e RN (3.2.1)

or
V(z) < Ve — Coe 21 for all 2 e RV (3.2.2)

for constants Cy, Cy >0 and 0 <1, v2 < \/Voo/Exo-

Remark 3.2.1. The condition (f3) implies that h(s) < ax, for all s € R. However, we
will need the strict inequality (f3) forward.

Consider the space H' (]RN ) equipped with the norm
luliZ= [, (6l Vul+Vicu?)do (3.2.3)
and the limit problem
—div(Eso V) + Voo = h(u)u, in RY, (3.2.4)
The functional associated with the equation (3.2.4) is given by
Lo (1) = ; |l TuP Vi) — [ H(uda, (3.2.5)

forue H I(RN ). Since Vi < @, is proved by Berestick-Lions in [6] that the problem

(3.2.4) has a symmetric and positive classical solution v € H'(RY).
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Let F:= HYR") be the space equipped with the norm established later. The
functional I : £ — R associated with the problem (P3) is given by

_1
2 JrN

I(u) (€(2)| V|24V (2)u2)dx — /R F(z,u)d,

with u € E. From hypotheses (£2),(V2) and (V3), the eigenvalue problem
—div(&(z)Vu) 4+ V(x)u = Iu, u e L*(RY) (3.2.6)

has a sequence of eigenvalues \{ < Ao < A3 < --- <\ <---. Making e =V, >0 in
Theorem 3.1.4 we have the spectrum of —div({(x)V(-))+V (z)(-) in (—00,0) has a finite
number of eigenvalues. In other words, the eigenvalue problem (3.2.6) has a finite
sequence of eigenvalues A\ < A9 < A3 <--- < A\ <0, with finite multiplicity.
Denote by ¢; the eigenfunction corresponding to \;, i = {1,2,---,k}, in HY(R™).
Setting
E~ :=span{¢;,i=1,2,---,k} and ET = (E*)L,

we see that £ = E*@® E~. By Theorem 3.1.4 the essential spectrum of —div(£(x)V(+)) +
V(z)(-) is the interval [V, +00) and this implies that dimFE~ < oo, because for each
Ai <0 it has a finite multiplicity. Having made theses considerations, every function u € £
may be written as u = v +u~ uniquely, where ™ € ET and v~ € E~. By condition
(V3) we have that 0 ¢ o(—div({(x)V(+))+V (x)(+)), thus, using the arguments in Lemma

1.2 of Costa-Tehrani [11], we can introduce the new inner product (-,-) in E, namely

/RN ({(x)VuVo +V(z)uv)dr, if u,v € BT,
{u,v) = —/RN (E(z)VuVv+V(z)uww)de, if u,ve B,

0, ifue Et andve E™,

such that corresponding norm ||-|| is equivalent the usual norm in standard space H'(RY)

by hypotheses (£3) and (V7). In addition, the functional I may be written as

1 1, _
I(w) = 5 lu* 2=l HQ—/RN F(z,u)dz (3.2.7)
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for every function u =u"+u~ € E. We call attention to the fact, since \; # 0 for all
i={1,2,---,k} it follows from (3.2.6) and by definition of ¢; that

/RN ut (z)v” (z)dr =0
for every function ut € ET and v~ € E~. Indeed, for all u™ € E* and v~ € E~ we have
/IRN(VU+VU_ +utuT)dr =0
because ET = (E7)*. If ut € ET and v~ € E~ we get
[l |2 = [~ |[*= /]RN(E(J'J)W(U+ o) P4V(@)ut o P)de
Developing the right side of this equality, we obtain

[ 2= = [ (E@IVat PV (@) D)de+2 (6@ Vit Vo +V (@)t )de

— [ €@V P4V (@) (7))

and this implies that
/R (E@ VUtV 4V (@)utoT)de =0, (3.2.8)
From equation (3.2.6) we have that

—div(&(x)V i) +V(x)d; = Nihi

if and only if
/R (E@)V VUt +V(@)duT)de = Ay /R Cdutdr, forall ut € B
From equality (3.2.8), for A\; # 0 we have /R N diuTdr =0 and thus, by linearity,

/RN u*vfd:c:/RN V(:c)uJ“v*dx:/RNf(x)VquVv*d:c:O,

and this completes our claim.
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3.3 Boundedness of a Cerami Sequence

Lemma 3.3.1. Under the assumptions (f1) and (f2), given € >0, there exists Cz >0
such that, for 2 <p<2*,
|f(,5)|< els|+Cels]P~!

and
€
|F(z,5)|< §!S|2+Cs\8\p

for all s € R and all z € RY.

Proof. From hypotheses (f1) and (f2), given £ > 0, there exist R,d > 0 such that R > ¢
with
| f(x,1)|< e|t|, whenever |t|< §, and for all z € RV (3.3.1)

and
|f(x,t) —a(z)t|< e|t|, whenever |t|> R, and for all z € RY. (3.3.2)

The inequality (3.3.1) and the hypothesis (f2) imply that

| f(x,1)|< e|t|+ao|t|, whenever |t|> R, and for all z € RY (3.3.3)
¢!
where ag = sup |a(x)|. For values of ¢ such that |t|> R holds [t|< =2 Thus (3.3.3)
RN
becomes
|f(z, )< 5]t|—i— — |t|p ! whenever [t|> R and for all z € RY. (3.3.4)

By hypothesis (f2), we have
|f(z,1)|< |a(x)t|< ag|t|, whenever § < |t|< R, and for all z € RY.
Therefore, for values of ¢ so that § < [t|< R, we obtain
f(x, t)|< O [tP71, whenever § < |¢[< R, and for all z € RY. (3.3.5)

It follows from (3.3.1), (3.3.4) and (3.3.5) that

|f(z,t)|< 5|t|—|—< ) t[P~, for all t € R, and all z € RY. (3.3.6)

Rp—2 5;01
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Taking C; := (RC;OQ + 5201> and replacing in (3.3.6) we obtain |f(z,t)|< e|t|+C.|t|P 1,

next integrating this inequality of 0 to s, we obtain
|F(z,5)|< g\s|2+cg|syp, for all z € RV,

and we conclude the proof of lemma. n

We note that, if (v,) is a bounded sequence in F, then (v,,) satisfies one the following

cases:

(1) wvanishing: for all r > 0,

limsup sup v |2da = 0.
n—-+o0o yeRN Bry

(i1) or nonvanishing: there exist r, n >0 and a sequence (y,,) € RY such that

limsup |on | dx > 7.
n—-400 Br(yn)

Lemma 3.3.2. Let (u,) C E be a sequence such that
I(up) = ¢>0 and ||I'(up) || g= (1 + ||unl]) = 0 as n — oc.

Then, (uy) has a bounded subsequence.

Proof. Let us assume ||uy,||— 400 and obtain a contradiction. To this end, we consider

Unp
~un
show that neither (i) or (¢4) is true. First, suppose that (i) holds for the sequence (vy,).
Write f(z,s) = a(x)s+ (f(z,5) —a(z)s) = a(z)s + foo(z,5) and consider ¢ € CF(RY).
By equivalence of the norms in E and the standard in H'(RY), there exist constant
C4, Oy > 0 such that

U and observe that ||v,||= 1. The sequence (vy,) is bounded, however, we will

[w||< Crllwl|p< Caf|wl|, for all w € E. (3.3.7)
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Let (y,) C RY be the sequence given by hypothesis (ii). Since the sequence (u,) is a

Cerami sequence, and considering ¢, (z) = ¢(x —y,) we have from (3.3.7)

|7 (un)pnl < 1 (un) | £+ llonll < CrllI (un) || 2+l n | 2= C1ll I (un) | 2= [l 2l E— O

Therefore,
(1) L)
0 = U
! Jual]” "
1 L

AR S B A G0 B
= (v} —v, ,0n) e T
R R B a(x)uy + foolm,up)
= (v, — v, ,¢n) /RN ™ ond
= (v} —v, >—/ a(x)vppndr — Joolun) dz (3.3.8)

_ T, U
= <U,J{—Un,(pn> —/H%Na(x)vngondx—/RN foo(un)vngond:z:.

n

Consider vy, (z) = vy (z +ypn) and Gy (x) = up(z +y,). Note that (9y,) is bounded in FE.

Thus, up to a subsequence,

Uy — U, in K,
Ty — 7, in L} (RY), (3.3.9)

loc

| ()| < ho(z), a.e. in K,

for some function hy € L'(K), where K = supp(¢). By hypotheses (f1) and (f) we

remember that foo(x,s) = f(x,s) —a(z)s, we have

< Cho(z)p € LYNK). (3.3.10)

‘foo(x‘i‘yn?ﬂn) -
= Un®
Unp

Note that © # 0, from item (i) and estimates in (3.3.9) we get

2 2 2
/T(O)v do = lim 5.(0) vndx_llgolép 5.(0) vi (x4 yp)dx
= limsup v2dz > 1> 0.

n—00 JBy(yn)
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By hypothesis (f2), (3.3.10) and the Lebesgue Dominated Convergence Theorem, it

follow that
Joo(, )

RN Upndr — 0 as n — oo. (3.3.11)

Thus, from (3.3.8), (3.3.11) and the change of variables theorem we get

o)) = [ (E@+n) VT Vot V(a+yn)iso)do
—/ E(x+yn) V0, Vo+ V(e +y,)v, p)de — /IRNa(x+yn)6n<pdx.(3.3.12)
Case 1: |yn|— 0o. In this case, hypotheses (£2), (V) and (f2) ensures that £(z+ yy)

converges to &no, V(x4 yn) converges to Vo and a(x+y,) converges to ao, almost

everywhere in RY, when n — oo. Thus,

on(1) = /K (€00 +0n(1) Vit Vip+ (Voo + 00 (1)) 0 d + /K (oo +0n(1)) Vi, Vi

+(Vio + 0n(1))3; ] d /K(aoo +on(1))5ppda. (3.3.13)
Therefore, for every function ¢ € C§°(RY), taking n — +oo in (3.3.12), we obtain
/RN (ﬁooV(73+ + 07 )V + Voo (07 —i—ff)go) dr — /]RN Ao lpdr =0,
that is, v # 0 is weak solution of problem
—div(Eao V) + VoD = aoo, in RY.

Since Voo < aso and there is no Laplacian eigenvalue in RY . this is absurd. Therefore,
(11) is not valid when |y, |— +o0.
Case 2: (yp) is a bounded sequence. From estimate (3.3.7) and translation invariance

of integration we have

Cq Cq

i 1
lin |2 & lnlle= Z lunllz= Zlfunll,

which goes to infinite as n — oco. It follows from (3.3.9) that

|@n(2)]

, a.ein
17550 [ |

0 [5(a) = lim [5(2)|= i



3.3 Boundedness of a Cerami Sequence 129

for some 2 C B1(0), with x(€2) > 0. Since ||y,||— 0o, we have u,(z) — co a.e. in €.

Thus, Fatou’s lemma and hypothesis (fy) yield

. 1
%@i@g . <2f(x,un)un — F(x,un)> dx

1
> / liminf (2f(x+yn,ﬁn)ﬁn — F(:E—I—yn,ﬂn)> dx = +00.

RN n—+o0

However, this contradicts the fact

/RN (;f(x,un)un — F(x,un)) dr = I(uy) — ;I’(un)un =c+op(1).

Hence, C'ase 2 is not valid when the sequence (y,,) is bounded. This shows that hypothesis
(1) does not hold for the sequence (vy,).
Now, suppose that the hypothesis (i) holds for the sequence (v,). Since (uy) is a

Cerami sequence, we have I'(uy,)u, — 0 and I’ (up)u;” — 0. Thus

_|_
_ 7/ Un _ + 112 f(xaun) +
on(1) = I'(un) 2 = | —/RN (Tvnvn)dx (3.3.14)

and, similarly,

u,, 1

!
on(1) =T un) 1 = T

I'(un)vy = =l |~ [

R

N <f<a;’un>vnv;> dr. (3.3.15)

Subtracting the equation (3.3.14) from (3.3.15), we have

on(t) = et = [, (Z5 0t Yo P [, (220 )

= HUnHQ_/RN (Mvn(vf{—vn)> dx

Un

— 1_/sz (JC(:Z’T:M)U”(U:—U;)> dz.

Thus, necessarily, when n — 400

/]RN (f(x,un)vn(vi —v,?)) dr — 1. (3.3.16)

Unp
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By Sobolev’s embedding, there exists a constant pg > 0 such that
[w]|*> pollwl|? (3.3.17)

for any w € E. Given 0 < & < 119/2, by hypothesis (f1), there exists § > 0 satisfying

|f (2, )|

5]

<e, for 0+#|s|<d and for all z € RY.
For each n € N, consider the set
O = {1 € RN [un(x)|< 6},

Thus, from (3.3.17) and by Holder’s inequality

f(z,up) L L
£ 7 — < —
/n < v (v —v,) |dz E/Qn|vn||vn vy, |dx

Unp

IN

e (Iloall 2 llo I 2+llvall 211z ]2

2e

2e
< 2ellvp[72< = [lonllP= = < L.
Ho

From the convergence given in (3.3.16) we conclude that

liminf 7]0(337 tn)

N < vp (v — v;)) dx > 0. (3.3.18)
n—o0 JRN\Q, Uy,

Since £l

constant C' > 0 such that

f(xaun) —
/]RN\Qn (unvn(v:{ -, )) dx

is bounded, by Holder’s inequality with exponent p > 2, we obtain a

/ [z, un)
RM\Qp, Up,

+_ —
< C/RN\invnHU” v, |dx

2
< C/]RN\invn‘ dx

< CuRV\ Q) P27, | 7P, (3.3.19)

IN

vn (v —v,, )| dx
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Assumption () and Lion’s Lemma ensure that ||vy,||»— 0. Therefore, up to a subsequence,
it follows from (3.3.18) that

n(RY\Q,) = co, as n— oo. (3.3.20)

Now, we consider two disjoint subsets of R / Q,,. Hypothesis (f3) implies there exists
R > 0 such that, if |s|> R, for all x € RN,

;f(x,s)s—F(w,s) > 1.

Without loss of generality, we assume 0 < 0 < R. For each n € N, consider the set
Ay = {z € RY : |u,(z)|> R}. Thus, by hypothesis (f4)

cton(l) = 1I(uy)—

which implies that the sequence (u(A,)) is bounded.  Also consider the set
By = {z € RN : § < |u,(z)|]< R}. Since B, = (RN \Q,)\ A,, we have

n(RY\Q) = u(An) + p(By).

It follows from (3.3.20) and the boundedness of the sequence (u(A;)) that

p(Bp) — +00. (3.3.21)
. —= . 1
We claim that § := sG[é,Pt]r,lfmeRN (2f(x,un)un — F(x,un)) > 0. In fact, let (xy,,sp) €

RY x [5, R] be a sequence satisfying

n—oo

lim (;f(:p,un)un — F(m,un)> =9J.



3.4 A nontrivial solution 132

Since the interval [d, R] is compact, we can assume that s, — so € [§, R]. If =, — x0,
from the continuity of functions f and F, we have by assumption (f4) that 6 > 0. On

the other hand, if |z, |— oo, writing

o = Flasn) = 3 (1

. - h(sn)> 52— (F(wn,sn) — H(sn) ) +G(sn)

1
where G(s,) = §h(sn)8% — H(sp), it follows from the uniform limits in (f2) and (f4) that

0= lim (;f(xnasn)sn - F($n75n>) = G(SO) >0,

as claimed. Thus, from (3.3.21) and hypothesis (fy)

[, (e Pl

vV
S
3
N
D |
=

&

3

<
3

<

3

|
=

&

3

<
3
——

QU

53

> op(By) = +oo.

We have again a contradiction in the fact that

1

[ Gt = F o)) = ) = 1" (1m) = -+ 0n(1).

Therefore, (i) does not hold either for the sequence (v,). We conclude that, up to a

subsequence, (uy) is bounded. O

3.4 A nontrivial solution

In this section we will prove our main result, however, first, let us verify that the functional
I satisfies the geometry of the classical linking theorem in [29] and proved in [23] under

the Cerami condition.

Theorem 3.4.1 (Linking Theorem under the (Ce). condition). Let E=ET®E~ be a
Banach space with dim E~ < co. Let R > p>0 and let u € E1 be a fized element such
that ||u||= p. Define

M ={w=tut+v™ :||w|[<R, t>0, v € B},
My :={w=tut+v™: v~ € £ ,[w||=R, t >0 or ||w[|< R, t =0},



3.4 A nontrivial solution 133

N, ={we B* : ull=p}
Let I € CY(E,R) be such that

b:=inf] > a:=max/.
N, Mo

Then, ¢ > b and there exists a Cerami sequence at level ¢ for the functional I, where

c:= ;Iellfﬂglea]\}}IW(w))

with I' .= {y € C(M,E) : v|p,= 1d}.

To simplify the notation, given w € E and y € RY, we write w™ (- —y) (or w™ (- —y))

referring to the projection in £ (respectively, in E7) of the translated function w(- —y).

Remark 3.4.1. If w and v are function in L*(RY), it holds
/RNw(ac—y)v(x)dx —0, if |y|l— 0.

Indeed, given € > 0 and v, w functions in L*(RY) there exist C, k> 0 such that

lvllz2< C, |Jw||f2< oo which imply /B o w(x)dr < e/2C. We can rewrite the above
k(0)¢
integral as

/RNw(x—y)v(x)dx:/Bk(ﬂ)cw(x—y)v(a:)dw+/Bk(O)w(x—y)v(x)dx.

Analyzing each integral, using the estimates above and Holder’s inequality, we have

/ w(z—y)v(z)de < [lw(@—y)|l2m,. 0 10 2B, 0))
By (0)¢
= |[wllz2(0)0) IVl L2(By (0))
g

<7
2

and

/B w(z —y)v(z)dz < [w(z—y)ll 2,00 1V 228, 0)-
% (0)
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Note that, for y big enough, we obtain |[w(z —y)l|2(B,(0))< 2i. In fact, for y sufficiently

C
large we have that By (y) C Bi(0)¢. It follows that

2 2 2
w(r — = w*(x — dx:/ w?(x)dx
[Jw( y)HLQ(Bk(O)) /Bk(o) (z—y) Biy) (z)
£
< 2(x)dr < —.
- Bk(O)Cw (z)de 2C
Hence, /B (O)w(x—y)v(as)da: < /2. Thus, /RNw(x—y)v(a:)dx < ¢ for |y| big enough
and this p];oof of remark.

For R > 0 and y € R", consider
M={w=tuf(-—y)+v :|w|<R,t>0, v € £~}
and
My={w=tuf(-—y)+v : v €E™, |w|=R, t>0or |w|<R, t=0}.

Lemma 3.4.1. There exist R >0 and y € RN, with R and |y| sufficiently large, such
that
I, < 0.

Proof. The subset M is equal to a disjoint union of M; and M, where

M, :{w:tua“(-—y)—i-v_; vo e BT, ||w||< R, t=0},
MQZ{w:tua_(_y)+v_7 v EE—? ||U}||:R, t>0}

Since M1 C E~, we have that I(w) <0 for each w € M;. Indeed, since w € E™, it follows
that

Iw) = =5 [ (€@)[Vo P4V (@) (o)) de /R Flrw)da

Now, let us show that given R >0 and w € My with ||w||= R we have that I(w) <0.
Writing
= wllu(w) = [lwl|(A(w)ug (- —y) + 07 (w)).
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So, we obtain

F(x,||w|u(w
[ el ey,

u(w)

1 B F(z, Ru(w))
= Sl -l -2 [ s,

To simplify the notation, we write A, u and v~ instead of A(w), u(w) and v~ (w),

1) = P 32l (= P o)

respectively.

Claim 3.4.1.
lim F(z,s) 1 F(z,s)

S§—00 52

for all s 0 and all z € RY.

Indeed, by the L'Hopital rule and the hypothesis (f2) we have

f(z,s) 1

i FES) g Fes) L = ().

1
s—oo g2 s—00 (52)/ T s900  9¢ 0 95900 g

Also from hypothesis (f2) we have that |f(z,s)|/|s|< a(z) and hence |f(x,s)|< a(x)]|s].
Thus,

F(z,s) 1 s 1 s
E
< / 2)[tldt = ——a(z)
s | 2
.
which concludes our claim.
From Claim 3.4.1 and (f2) the following inequality
F(z,Ru) o _1 9 Qoo 19 Lo N
< = < — L (R
Fle) < s S e IEY)

and by Lebesgue Dominated Convergence Theorem

) F(z,Ru) a(x)
ngnoo ]RN< (Ru)? 2 >d$:0 (3.4.1)
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for all u € F such that ||ul|=1. Since M3 is contained in a finite dimensional subspace of
E, w=||lw||Ru € My with ||u||=1, then the limit (3.4.1) is uniform in u, see Lemma A.3
in Appendix A. It follows from the fact a(z) < ax and /RN ug (r —y)v~ (z)dz = 0, that

W) < GolP{R Pl = [ O e =)+ 0 )Pde +on)|
R P T RNA(u(#)?(x—y)dx
—aoo/ 2dw+oR(1)}
o P Ty Oy S ] SR

By hypotheses (£1), £(z) < o and (V1), V() < Vi, for all z € RY | and it follows
that

g =)l = [ (@) IV @ =)V (@) () = y))da
< [ (6l Vi (2 =) P+Voo w20 — )
= i (=l ol =) (3.4

Since [ is translation invariant, then wy and ug(- —y) are critical points of the
functional I,. Therefore, IL (ug(- —y))uo(- —y) = 0, that is,

luo(-=9)IZ= [, hluo(w—y))uf(z —y)da. (3.4.4)

From (3.4.3) and (3.4.4),
|uo(- —v) ||2</ (ug(x —y))u 2(azi—y)dac. (3.4.5)

Replacing (3.4.5) in (3.4.2) and, after, using the term a /RN ud(x —1y)dz, we obtain

1) < gholP{2 [, e - )dto - o, [ (60 - n)te] +or(t)}

= Sl [ Mot = n)idte o —ax [ o
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e (=)~ 2 = )] + on(1)
= Sl [ ra ) o, [ el
e [ [0 ) = (o= ia] o)} (346
We estimate the following integrals

/RN (P(uo(2)) = aso ) ug(2)dz (3.4.7)
and
/RN aso [uf(x —y) + (uf )P (2 —y) | dr. (3.4.8)

Since wg is radial and continuous, the function h(ug(-)) assumes its maximum at zo € R,
It follows by hypothesis (f3) we have h(s) < as for all s € RY | that

/R o (1(u0(2)) — aso Ju(2)dz < /R o (R(uo(x0)) — aso )ud(2)dz
= (h(uo(xo))—aoo) /RN u%(z)dz

= (Aluo(0)) = ace ) luollF 2y < =7,

1
where, 5(%0 — h(uo(ﬂco))) |[uo|[22> 0. In other words, there exists 7 > 0 such that

/RN (Pluo(2)) = ace Ju(2)dz < —7. (3.4.9)

To estimate the integral (3.4.8) some statements will be necessary. Before that, since

/RN ug (x —y)ug (z —y)dz =0 and ug = ug +ugy , we have that

Ly (@@= - Pa—y)do= [ [ (@ =9)+u5@=p) — @)@ —y)|da
= fon (02 = 9) + () (2 = y) = (ud)* (2 — )| da

= RN(ua)Q(a: —y)dx. (3.4.10)

Claim 3.4.2. The integral /RN(ua)Q(x—y)dx — 0 as |y|— oo.
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Indeed, since {¢1, -+, ¢} is a basis of eigenfuctions for the subspace £, Remark
3.4.1 and hypotheses (V1) and (£3) ensure that, given € > 0, for each i € {1,---,k} there
exists M; > 0, then

(o —y).65) = [, (6@) Vol —y) Vou(w) + V(2o = y))ou(x)da < <.
Taking M = max{Mj,---, M} it follows that, for all i € {1,---,k}
(uo(x—y),ds) <e if |y|> M. (3.4.11)

Since ug (- —y) € £ is a linear combination of the vectors ¢1,---, ¢x, we get

k
uy (r—y) = ;m(y)@-(x),

it follows from (3.4.11) that there exists M > 0 such that if |y|> M, then
) k
g (- = )IP= Guo- — ), S mi()i@)) < eh(max{im(y), - Im(@)}).  (3:4.12)

i=1

Claim 3.4.3. There exists a constant C >0, which does not depend on y such that
max{|m (y)],--- ()} <C, forall yeRY. (3.4.13)

To show the claim, we remember that dim £~ < oo, by the equivalence of the norms

in a finite dimensional space, there exists D > 0, which does not depend on y such that

k 2 2
> (1)) zD(max{|m<y>|,---,|nk<y>|}).
Therefore,
k 2 9
luoll2> lug (- — )%= ;mym(az) > D(max{|m ()], Imk@)[}) . (34.14)

This proves Claim 3.4.3, choosing C' = ||ug||%, /v/D > 0.
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Now, replacing (3.4.13) in (3.4.12), we obtain
g (-~ )< 2k, for [yl AT.

Since the norm |[|-||c and |[-|| are equivalent in E, it follows that ||ug (- —y)||co— 0 as

|y|— oo. Thus,
[ )@= y)dz < Cllug (-=y)|%= 0, as |yl oo. (3.4.15)

concluding the proof of Claim 3.4.2.
Substituting (3.4.9), (3.4.10) and (3.4.15) in (3.4.6), we obtain

I(w) sir\wu?{ﬂ L () ud(2)dz —an [ ud(z)d
o [ <) = (o= ] +on() |

<ol 1) +on )| (3.4.16)

for |y| and R sufficiently large.
To conclude the proof of this lemma, we will analyze the following cases for values \:
Case 1: Consider A\* < 1/(C||ug||%), where C' > 0 is a constant that does not depend
on y. Since w = ||w||(Aug (- —y)+v~) and F is a nonnegative function, by hypothesis

(f1), we have

1) = GlwlP(R e (=)~ 2) = [ Flw)ds

1 _
< SlwlP(Vlug (=) IP=lo1). (3.4.17)

It follows from the fact | Aug (- —y) +v ™ ||>= 1 that A\?|lud (- —)||*+|v"||*= 1. The
the equation (3.4.17) becomes

1 _
I(w) < gHwHQ(VHUHO—y)||2+A2l|uO+(~—y)|\2—A2HUJ(-—y)|!2—||v %)

1
= §|!w|!2(2AQI|UJ(~—y)Hz—l)-
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By the equivalence of the norm and the translation invariance of the norm ||-||c, there

exists C' > 0, which does not depend on y, such that
2 2 2
2]lug (- = )II*< Clluo(- = y)[15e= ClluollZ-

Thus, for
1 1

© Clhwllze = 2 (=9l
we have I(w) < 0 and the lemma is proved for such values of \.

Case 2: X2 > 1/(C|luo||%).

Denote by A2 > 1/(C||ug||%,) =: Ko > 0. We choose y € RY with |y| sufficiently large
such that

)\2

=y +opy (1) < —7/2.

Then, we can rewrite the inequality (3.4.16) as

Iw) < gllwlP[~ X2 +op(1)]

1 2 g
< lhwl*[ =Koz +or(1)] <0

thus the lemma is proved for the values A such that \?> > Ky and R sufficiently large.

This concludes the proof of the lemma. n

Lemma 3.4.2. Suppose &, V satisfies (£1) — (&3) and (V1) — (Vi) respectively, and either
(3.2.1) or (3.2.2). Then, it holds that

€< Cooi= inf{]oo(w) - we HY(RM)\ {0}, Il (w) = 0}.

To prove these results, we will need some auxiliary lemmas. The first two may be
found in [1] and [25]. For the sake of completeness, we will present the proof of each of

them.

Lemma 3.4.3. There exists u € (1,2] with the following property: for any p >0 there

ewists a constant C, > 0 such that the inequality
F(l’,u—f—l}) - F(ZL’,U,) —F<J],U) —f(x,u)v—f(x,v)u = _Cp|uv|u

is true for all z € RY and u, v € R with |u|, |v|< p.
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1
Proof. Let p=p; and p:= min{p;—,Z}. By hypothesis (f5), f is increasing, which

yields
u-+v

F(:c,u—l—v)—F(a:,u):/ flz,w)dw > f(x,u)v.

u
Moreover, by hypothesis (f5), for every 1 < u <2 we have f(x,s)=o(|s|"), as |s|— 0

and then ép ‘= sup flz.u)
o<u<p Uk

< 00. Now, for 0 <v <u < p, we deduce

F(z,u+v) — F(z,u)— F(z,v) — f(z,u)v— f(x,0)u > —F(z,v) — f(x,v)u
o fw) o )

0 wH Il
~ U“+1 -
> _Cpﬂ+1 — Cpuv”
u\PtL w\] -~
(o
> —C)y(uv)t.

By the symmetry in u and v, the same estimate holds for 0 < u < wv and the proof is

complete. O

Lemma 3.4.4. If piy > pq > 0 then, there exists C' > 0 such that, for all z1, x5 € RY,
/ e~ tlz—z1|  —pelr—wa| 1, <« Crp—malri—wa|
RN -
Proof. Observe that

p |z — x|+ (p2 — )|z — 2| < pi |z — x|+ polz — 22|

Therefore,
e Hlz—m1] g—pale—wa| 7. < e Hlz1—m2| = (pa—p)le—w2| g,
RN - JRN
- 1

< e H1|T1—T2 dx
- JrN e(p2—p1)|z—x2|
< e halri—aa|

and the lemma follows. ]

We note that the set M defined in the Theorem 3.4.1 is closed, bounded and it is con-

tained in a finite-dimensional space, namely, in the space ]Ruar (+—y)@® E™. Therefore, M is



3.4 A nontrivial solution 142

a compact set, which implies that for all y € RN,  there exists

Wy = v, +tyug (- —y) € M satisfying

— T(0— +
max I(w) = I(vy, +tyug (- —y))

since [ is a continuous functional.
The following results show that the values ¢, are uniformly bounded on y by positive

constants if |y| is sufficiently large.

Lemma 3.4.5. There exist A, B € R which do not depend on y, such that 0 < A<t, < B
for |y| big enough.

Proof. Since wy, = v, +tyud (- —y) € M and the number R given by Lemma 3.4.1 is

positive and does not depend on y, one has

R2

v

oy = llog IP+t5llug (- =)

22 (luo(- — )IP=llug (- = 9)1%).

Vv

As proven previously, in Claim 3.4.2, we can take |y| large enough to ensure that

_ C 9
g (- = w)[*< < oI5
where C' > 0 does not depend on y and satisfies |Jug(- —y)||*> C|jug||%,. Thus,

i C t2
R*> ti(HuoC—y)Hz—HuO ( —y>H2) > ti(CHuoHZo—wallio) = é’HuOHio,

that is, t2 < 2R/ (||ug|%) := B%.
On the other hand, from estimates given by Lemma 3.3.1 with 2 < p < 2%, for £ > 0,
there exists C. > 0 such that, if u € ET with ||u||=p > 0 then

1 1
I(u) = §y\u\|2—/RN Fa,u)dz > 5p* —elJulfa—Ce ull7,. (3.4.18)

By Sobolev embedding and the equivalence of the norms there exist constants Cs, Cg > 0
which make (3.4.18) in

1 1 1
I(u) > o [|ull*~Cs lull*~C||ull"> 5 p* — eCsp” — Cop? = (2 — sc5>p2 — CpP.
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1
Let € > 0 be such that D, := 3~ eC5 > 0. Choosing p > 0 sufficiently small so that
D.p? —CgpP > 0, that is, 0 < p < (D5/06)1/(p_2), we obtain that

I(u) > D.p* — CgpP == po > 0, (3.4.19)

for all u € ET with ||u||= p where py does not depend on y. Thus, we take ¢y > 0, which
does not depend on y so that ||tgugd (- —y)||< p < R to conclude that I(toug (- —y)) > po > 0.
Consequently,

I(vy +tyug (- —y)) = max I (w) > I(toug (- —)) > po,

that is,

12 1 B _
Ll (=pIP =Sl I~ [ Flo—y.vy +tyu (@ —y))dz = 10y +tu5 (=) = po.

Therefore, since F' is nonnegative,

2
Ll (.= 9)I>> po.

This shows that
2p0 _. 42

2> 20
Clluo 1%

2
y >

where C' > 0 does not depend on |y| and satisfies ||Jug (- — y)||>< C|Juo||%. The lemma is
proved. O]

Now let us present the proof of the Lemma 3.4.2.

Proof of Lemma 3.4.2. To simplicity, we will denote g4 (2) = uo(z —y) and C will de-
note a positive constant, not necessarily the same one. By the definition of the functional
I and I, and of the norms ||-|| and |||, we have
_ TN TR I ot
Ty + ty,) = g, =gl 1P [ F o=y, + tyu,

/2

9 _
< §y||u3:y|| - /RN F(r—y,v, —|—tyua"y)dx + /]RN F(z —y,tyu,y)de

_ /]RN H (tyugy)dx + /]RN [H(tyuo’y) — F(x— y,tyuoﬂ)}dx
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t2
- 5y RN<£($>|V“&y|2+v(x)(u({y)2)dx+§y/RN<€oo|Vu3,y|2+Voo(U({y)2)da:

t2

— 2 [ el Vi, P4 Vi ) — [ H tyuo,)de+ [ (H(tyuo,)
—F(x — Y, tyupy))dr + /RN(F<5U — Y, tyuoy) — F(z— Y,0y +tyu({y))dx

since F' is nonnegative. By hypotheses (f2) and (f4) we have that the term satisfies

/RN [H (tyuo,y) — F(x —y,tyugy)|de <0 and thus

2
Iy + tyd,) < Ll I - /RH<yu0y>dx+2 [ (€@) =€)l Vi, [2da

2/ dx—i—/ (z =y, tyuoy) — Fz—y,v, +tyug,))de

2
[ (€ )V, Pt 2 [ (V) Vi) i

+/RN(F(33—y,tyuo,y)—l—F(x—y,vyf—tyu&y)—F(x—y,v; —i—tyuaiy))d:c. (3.4.20)

Now, let us estimate the last integral in the above inequality. Taking w, =v, —tyu ,,

we want to estimate Z, defined by

/RN [F(aj—y,vy_—tyu&y)jLF(a:—y,tyuo,y)—F(a:—y,vy_ +tyu6fy)}dx

. [F($ Y, vy, tyuoy)+F(x Y, tyuoy) — F(z —y,v » tyu()y—l—tyuoy%—tyuoy)}d:v

= Jan [F(x —y,wy )+ F(r—y,tyuoy) — F(r —y,w, +tyuo7y)}d:v =:T7,.

Note that

I, = /RN —{F(:p—y,wy_ +tyuoy) — Fz —y,w,) —F(a:—y,tyuo,y)}dx
= Jox [F(x —y,w, +tyugy) — F(z—y,w, ) — F(r—y,tyuoy)
—flx—y, wy_)tyuohy — flx—vy, tyuo7y)w;} dx — /RN flx—y, w;)(tyw)’y)dx
_/RN f(z —y,tyuo,y)(wy_)dx

< Coluwy (tyuo, )P+ [ 1f @ =y.wy)ityuoylde+ [ 1F(@—y.tyuo, vy |da.
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Since w, = v, —tyuy, € M and, hence |w, |°< R?, we can rewrite w, as a linear
combination of the eigenfuctions ¢1,---, @y because v, ug, € E~. Due to dimE~ < oo,
we may repeat the estimates in (3.4.14) with w, in the place of u;, and using the Lemma

3.4.5 to show that there exists a constant C' > 0 which does not depend on y, such that

k
T) — ly Z Gi(y)9i()

|
=

iy (@)] = oy () =ty ()= |3

M?r

(ni(y) — CGily <Z

77@ CCZ )‘

oi(@)|

@
Il
-

IN
MPT‘

(Ini () [ +C1G () Di(2)]

-.
I
—_

IA
M??‘

(masx{ni(y)} + Cmax{Gi(y)} ) 0 ()|

.
I

IA
Q
nqu

z)|< CZ sup|g;(x)|=: D (3.4.21)
i=1 RN

for all z € RY. Without loss of generality, we may suppose that D > 1, also satisfies
|uo.y(x)|< D for all 2 € RY since ug, € L°(RY). Now, we can apply Lemma 3.4.3 and
the hypothesis (f2) to obtain a constant C' > 0, such that

1, </ Clwy [Mtyuo | dz +t, / |wy|]uoy|dac—|—/ )|ty | wy |

< CtZ/RN|w;|ﬂ|u07y|”dx—|—2tyaoo/RN|w;||u07y|dx (3.4.22)

where p > 1 is given by Lemma 3.4.3. Now, taking n = A; < 0 < V in the Theorem
3.1.3, it holds that any eigenfunctions ¢;, 1 =1,---,k satisfies

|¢i(x)| < Ce 0k,

for all z € R and some y/Vao /€oo < 0 < \/Voo —n. Therefore, from the first inequality
of (3.4.21), for |y| sufficiently large, we have

lw, (z)|< Ce % for all z € RV,
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Since ug is a solution of equation (3.2.4) given by Berestick and Lions in [6] we have
that |ug(z)|< Ce™VVe/éoltl for all z € RN 1t follows from Lemma 3.4.4 that

/RNW;HUOWMJU < /RN Ce 01l Ce™V Voo Soolz=ul gy < ClemV Voo Syl (3.4.23)
Analogously, by Lemma 3.4.4 we have
/H%N|wy_|“|u0,y|“dx < /]RN Ce el gV Voo Soolr=yl gy < Cle™mVVeelSolyl (3.4.24)

because > 1. Estimates (3.4.23) and (3.4.24) applied in (3.4.22) yield

Z, < Ctjje v Voo /ooly] +2t,Casee™ V Voo/Soolyl < 0=V Voo Seclyl (3.4.25)

where the constant C' > 0 does not depend on y since ¢, is uniformly bounded by Lemma
3.4.5.

By (3.2.1) and a change of variable, there exists a positive constant C} such that

t2 _
2 [ E@) = &) Vuoy P < =C1 [ e Vg, Pda

_ —7lz+yl 2

= C’l/RNe ! |Vuo(2)|*dz

< —Cye Ml /]RN e Vg (2)2dz

< —Cre . (3.4.26)
Or else by (3.2.2) and a change of variables, there exists a positive constant Co such

that

t2
Y 2 — 2
2 [ V(@)= Vi) (o) < ~Co [ el o

= —C2/RN e 212 (2)dz

< _026_72‘?/‘7 (3427)
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for |y| sufficiently large. Thus, it follows from (3.4.25), (3.4.26) and (3.4.27) that (3.4.20)

can be rewrite

(v, +tyug,) < Ioo(tyuoy) — Cre~ Wl — Coe2Wl 4 0oV Voo/Seclyl,

Since 0 < 71 < \/ Vo /oo by (3.2.1) or 0 < 72 < 1/Vao/Exo by (3.2.2), we get

—Cre Ml — Chem2lul f CeV Voo /Syl .
And thus,
— +
I(v, +tyug,) < ng{Im(tUO)
for |y| sufficiently large.

Claim 3.4.4. The maximum I?%doo(tuo) is attained at t = 1.

Indeed, since ug is a positive, radial and symmetric solution given by Berestick and
Lions in [6], then

jtf (tu) = dtwg”Q /RNH(tu)dx]

— t]|u|)?, —/RN h(tu) (tu)udz
—t/ 2dx—t/ 2dx

d
By hypotheses (f2),(f1) and (f5) if, £ > 1 we have that %[Oo(tu) <0Oandif 0 <t<1,

d
then %I so(tu) > 0, which give us that the maximum may be attained exactly at ¢ = 1.
It follows this claim that I (u) = max Io(tu). And from the definition of the value

c>0 we get
_ - + _
c< glea]\)}.f(w) = I(v, +tyug,) < Iglg{]oo(tu) = Io(u) < Coo,
and the lemma is proved. O

The next lemma has the same proof of Lemma 2.1.4 and we will be stated for

completeness.
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Lemma 3.4.6. Let (uy,) be a bounded sequence in HY(RY) such that
I(up) — ¢ and ||I'(up)||(1+ ||unl]) — 0.

Then, up to a subsequence, there exists a solution of (P3), a number m € N, m func-
tions uy,..., Uy and m sequences (yi) C RN 1< j <m, satisfying one of the following

alternatives:
(1) w, — ug in H(RY); or
(2) W are nontrivial solutions of problem (3.2.4), such that:

(a) |yl|— oo and |y}, —yl|— oo, i # j;

k .
(b) uy — Zuj( —yi) — ug in Hl(]RN);
j=1
k .
(6 = )+ 3= L)
]:

Lemma 3.4.7. Let v, be a solution of the following problem

—div(E(z)Vup) +V(z)v, = flz,v,), in RY
v, € HY(RY), with N >3,
vn(z) >0,  for all z € RY,

Y

Assuming that (£1) — (&3), (V1) — (Va), (f1)— (fs) hold and that v, — v in H*(R™) with
v#0, then v, € L®(RY™) and there exists C >0 such that ||v,||p~< C for all n € N,

Furthermore,

lim v, (z) =0, uniformly in n.
|| —o00

Proof. For any R>0,0<r <R/2, let ne C®(RY), 0<n <1 with n(z)=1if |z|> R
and n(z) =0 if |x|< R—r and |Vn|< 2/r. Note that, by Lemma 3.3.1 and by Sobolev’s
embedding for 2 < p < 2%, we obtain the following growth condition for f:

flx,s) < els|+Ce|sP 1< el s|+Ce| s> . (3.4.28)
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For each n € N and for L > 0, let

opn(2) = { (@), vn()

L,
L, vp(z) > L,

IV IA

2Ln = 77211%%_1)% and wp, , = nvnvg}l with 8> 1 to be determinated later. Taking zr

as a test function, we obtain

| E@rPui P IVende = =2(8=1) [ e@p, o, Vo, Vop pda
+ Lo FavPoeily Ve [ V@)ool Ve

-2 RN&(x)nviggfl)vannVndx.
Note that, —2(5—1) /RNg(x)viﬂn 3772vananL,ndx <0, then
/RNS( )1 an |an|2dx< 2/ nvL(g )vnVUnVndx—/RN V(x)n%i(ﬁ 2 v2dx
+/ f(z,on)n vnvi(g_l)dx.
Using the estimate in (3.4.28) we obtain

/]RNS( x)n? an |an|2dx < —2/ nvL( ; )vannVndx Vo/ n ng )v?ldx
+€/ n? UL Uy dx+C’/ v Dv?jdm.
Now, by hypothesis (V1) we have
/RNf( )n? an |an| dr < 2/ nvL(’g_ )UannVndx
+(Vo+€)/ %nzvi(n dx+C; / vl “L(g Yz
<C. / n?v? an dx—i—(Vo—l—é?)/ 277211%(2 Yz

+ 2/ nvL nf vannVndq:
For each € > 0, using the Young’s inequality we get

S €@ V0P < Cc [ nPol V0 de (Voke) [ ofno Ve
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+25/RN§( R A d:c+2C’/ )2 |2,

Using the immersion of L2*(RN) — L*(RY), we obtain

/H{Nf(x)nvi(gfl)]anFdx < Cg/ nQUi(gfl)vz*dx+C(Vo+€)/ 112 n*v i(i Yz
/ )’ an \an\2d$+20 / )2 an |V77]2d:v
/R an_ v d9€—|—2€/ £(2)n? an |an] dx

/ T )v2 an |V77|2dx

Choosing ¢ > 0 sufficiently small,
/RNS( n? an |Vv \ da:<C’/ 7721)25 1)1) da:+C'/ )2 an |V77|2d93(3429)
Now, from Sobolev’s embedding, by (3.4.29) and by (£;) we have
ollwp 3o </ 7721121)%5 2 a:</ z)n? an V|V, |2dx
SC[/RNU vy, vz*dx—l—/ z)v? an |V7]| dz|. (3.4.30)

To complete the proof, follow the same steps from (1.2.7) to (1.2.8) as in the proof of
Lemma 1.2.4 in Chapter 1. O

Proof of Theorem 3.2.1. As previously mentioned, for R > 0 and y € RY the following

sets were considered:

M={w=tyuf(-—y)+v": |w|<R, t>0, v" € E~},
Mo ={w=tyuf(-—y)+v": v" €E7, |wl|=R, t>0or |[w]|<R, t=0}.

Moreover, consider the set

N, ={we E": |lw||=p>0}.
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Let us show that ij{flf] > rrj?xl. By Lemma 3.4.1, we have I|M0§ 0 and so rrj%?xl <0.
P 0 0
Therefore, it is enough to verify that i]{}f 1.
P

From (3.4.19) we have I(w) > 0, since w € ET with ||w||=p > 0. It follows that
inf I(w) >0 and thus inf/ > max /.
weN, N, Mo
By Linking Theorem 3.4.1 there exists a Cerami sequence (uy) to the functional I at
level ¢ > 0. By Lemma 3.3.2, up to a subsequence, (uy) is bounded. Therefore, u, — u
for some u € Hl(RN). By Lemma 3.4.2 ¢ < ¢y, and by item (i) of Lemma 3.4.6, up
to a subsequence, u, — u strongly in H'(RY). Indeed, we have that I(u) > 0, from

hypothesis (f4) and due to the fact that u is a solution of (P3), we have that

I(u)=1I(u)— ;I’(u)u: /]RN <;f(x,u)u—F(x,u)> dx > 0.

Therefore, if item (2) is valid for item (¢) we would have

m

c=1(u)+ Y Io(u!) > cxo
j=1

which is a contradiction by Lemma 3.4.2.

Thus, u, — u and I(u) = ¢ > 0 with I'(u) = 0 since I is a functional C'. Hence,
uwe HY(RY) is a weak solution of problem (P3).

To show that u is nonnegative we can assume in the beginning f(z,s) =0 for all
s <0, then I'(u)u™ =0 and with the same calculations done in (1.2.9) we obtain u~ = 0.
Hence u >0 in RY. By Lemma 3.4.7 we have that u € L*(RY) ﬂC’llO’CO‘(RN) for some
0 < a < 1. Then, Harnarck’s inequality [2], as in (1.2.10), guarantees that u > 0 for all

u(x) > 0 for all z € RY. Therefore, u is a nontrivial and positive solution of (P). [



Appendix A

Auxiliary Results

The following lemma, as seen in Stuart [32], deals with the behavior of any solution of
problem (1.1.4).

Lemma A.1. Consider ¢ € C(RY) such that lim ¢(x)=0. If ue C*(RY) is a solution

|z|—o0

of the problem

—Au—u=q(x)u, inRY,
{ ‘xl|1£>nOOU<x) o, (A.0.1)
with A <0, then
lim u(z)e® =0, (A.0.2)

|x|—o00
for all a € (0,4/|A]).

Proof. Consider a € (0,4/|)|) fixed and 6 = |§|—a?. Since | 1|im q(z) =0, then there
T|—00
exists R > 0 such that |¢(z)|< 0 for all |z|> R. Now, for « # 0, consider the function

w(z) = Me#I=R),
where M = max{|u(z)|; |z|= R} and for L > R, let

Q(L)={z eRY: R<|z|< L and u(z) > w(z)}.
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Then, (L) is open. Coupled with the fact that u(z) >0 in Q(L) and x € Q(L), we have
that

Aw—u)e) = (aQ—(M)w@)HHq(x))u(w)

IA

oPw(z) + (—|A\+6)u(x)

= o?(w(z) —u(z)) <O0.
By maximum principle, for all = € ), we have

w(z) —u(z) > min{(w—u)(z): x€ L)} =min{0, min (v —u)(x)}.

l2l=L
Since |xl|1inoou(x) = lxﬁiinmw(x) =0, as L — 0o, we obtain that
w(z) —u(z) >0, (A.0.3)
for all |z|> R. In the same way, taking for —u, we obtain
u(z) —w(z) >0, (A.0.4)

thus, from (A.0.3) and (A.0.4), we have that |u(x)|< w(z), for all |x|> R and the result
follows. O

Remark A.1. For our case, in Chapter 1, we consider A = —\/1/éx, and in Chapter 2

A= —\/Vo/Exc- And in both chaters we have q(x) = M

s
The following definition and theorem are due to Ghoussoub-Preiss. It can be found
n [14], Chapter IV, Definition 5, and Theorem 6.

Definition A.1. A closed subspace F' separates two points zg and z1 in X if zg and =

belong to disjoint connected components in X/F.

Theorem A.1 (Ghoussoub-Preiss). Let X be a Banach space and ® : X — R a continuous,
Gateauz-differentiable function, such that ® : X — X is continuous from the norm topology
of X to weak™ topology of X*. Take we two points (zg,z1) in X and consider the set T’

for all continuous paths from zy to z1:

I:= {CE C°(0,1],X) : ¢(0) = zp, (1) = 21}.
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Define a number v by:

T et )

Assume there is a closed subset F' of X such that:
FN®, separates zg and z;
with @ :={x € X : &(x) > ~v}. Then, there is a sequence x,, in X such that
§(xp, F) =0, ®(xn) =~ and (1+||za])||F (zn)]]+— 0.

Remark A.2. In Chapters 1 and 2, we consider X = E7, ® = IOO‘ET, v=c" and F =P.

The next lemma presents an important inequality given by Alves, Carrio and Medeiros
in [3].

Lemma A.2. Let F € C*(R,R") be a convex function and even such that F(0) =0 and
f(s)=F'(s) >0 for all s € [0,00). Then, for all u,v >0,

|[F(u—v) = F(u) = F(v)| <2(f(u)v+ f(v)u). (A.0.5)

Let 0B; be the boundary of Bi, where Bj is the open ball of radius 1 in a finite
dimensional space spanned by the functions ug (- — %), é1,---, dx.
The lemma to be proved next contributes to the proof of Lemma 3.4.1, which

guarantees us the first geometry of the Linking Theorem.

Lemma A.3. The limit

. (a(x) B F(a:,Ru)) Wde =0,

R—oo JRN

is uniformly for u € OBj.

Proof. For each R = n € R, consider J, : dB; — R the function given by
F
In(u) = /RN (a(x) — (x,nu)) u?dz. The continuity of the function F' shows that .J,, is

2 (nu)?
a continuous functional for each fixed n. Hypothesis (f4) and equivalence of the norms

||| and ||| g show that there exists a constant C' > 0 such that
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for all u € OB;, where ag = supa(x). Hence the continuity of the functional J, in the
N

compact set 0B ensures that, for each fixed n, the functional .J,, assumes its maximum
at u, € 0B1. Consider (u,) the sequence of these maxima. Since |lu,||=1 for each n
and the space spanned by the functions u0+( —vy), ¢1,---, ¢k is finite dimensional, there

exists w € 0By such that, up to a subsequence,
Up —> T as N — 00 (A.0.6)

strongly in the norm ||-||. For all v € 0B; and for each n 0 < Jp(u) < J)n(uy,), that is,

0< [, (a(;) F((;:;;@) w2 dz (A.0.7)

for all u and for each n. Taking the limit n — oo, firstly, note that
un(z) = u(x) a. e in RY.

Thus, if, u(x) # 0, it follows that |nu(x)|— oo if n — co. Hence hypothesis (f1) yields

<a<a:> F(as,nunm)) 2

- A.0.
5 (i (2))2 () =0 (A.0.8)
if n — oco. If w(z) =0, que also have (A.0.8). By the strongly convergence in (A.0.6),

there exist a function h € Ll(]RN ) such that, up to a subsequence,

a(x)  F(z,nu,(x)) _
0< ( > (nun(n)? >u,%(a:) < aplu? (z)|< agh(z) € LYRM). (A.0.9)

Finally, by (A.0.8) and (A.0.9), Lebesgue dominated convergence theorem ensures

that
lim (a(z) — F(x,nun(x))> u? (z)dz = 0.

n=00 JRN \ 2 (nuy())? "

Therefore, taking n — oo in (A.0.7), we have

Jim [ (a(;) = Féi;;”) w2 (x)dx = 0,

uniformly for u € 0B;. ]
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