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Resumo

Neste trabalho estamos interessados em resolver o problema logistico estacionario com termo
superlinear

(P)

—Au = Au — b(x) f(u) em ()
u=0 em OS2

em que Q C RY & dominio aberto limitado com bordo 9 suave, A é um parametro real
positivo, b :  — R é uma funcio continua em L () tal que b(x) é ndo negativa com )y =
{z € Q:b(x) = 0} subconjunto conexo, regular e com medida de Lebesgue Q| > 0. Sob
essas condicoes, juntamente com a variedade de Nehari e o Teorema do Passo da Montanha,
mostramos primeiramente, no caso em que f(s) é superlinear e subcritica quando s tende a
+00, que o problema (P) possui uma solu¢ao positiva e uma solugao que muda de sinal em
u € HLHQ).

Além disso, no segundo caso em que f(s) é assintoticamente linear no infinito o termo
linear A\u em (P) é substituido por um termo mais geral Aa(x)u, com a : Q — R funcdo em
L>(Q) com a(x) > 0 q.t.p. em 2, mostraremos também a existéncia de solugao positiva
dnica e uma solugao que muda de sinal, utilizando os mesmos métodos anteriores e a teoria
espectral com peso.

Palavras - chave: Superlinear, Assintoticamente Linear, Teorema do Passo da Montanha
e Variedade de Nehari.

Titulo da tese: Solugoes estacionarias para uma equagao logistica degenerada com nao-
linearidade superlinear ou assintoticamente linear.



Abstract

In this work we are interested in solving the stationary logistic problem with a superlinear
nonlinearity

(P)

—Au = Au—b(z)f(u) in Q
u=0 on 0N

where Q ¢ RY is bounded open domain with 9Q smooth, A is a positive real parameter, b :
Q — R is a function in L>() such that b(x) is non-negative with Qg = {z € Q : b(z) = 0}
is a connected, regular subset and with Lebesgue measure |€g| > 0. Under these conditions,
along with Nehari’s manifold and the Mountain Pass Theorem, we first show, in the case
where f(s) is superlinear and subcritical as s tends to oo, that the problem (P) has a
positive solution and a solution that changes sign at u € H&(Q)

Furthermore, in the second case where f(s) is asymptotically linear at infinity, the linear
term Au in (P) is replaced by a more general term Aa(x)u, with a : © — R a function in
L>(Q2) with a(x) > 0 a.e. in Q. We will also show the existence of a unique positive solution
and a solution that changes sign, using the same previous methods and spectral theory with
weight.

Keywords: Superlinear, Asymptotically Linear, Mountain Pass Theorem and Nehari Man-
ifold.
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Introduction

The study of elliptic and parabolic partial differential equations has grown significantly due
to applications in various areas, for example, biology, ecology and physics. In this sense,
we were motivated to study the population dynamics that can be modeled by the parabolic
semilinear equation

Ou = Au+ Mu— b(x)|ul""tu, (x,t) € Q x (0, +00)
ulpn =0, te€ (0,00) (0.1)
uli=0 = uo(z), x €

where © is an open smooth bounded domain of RV, N > 2, \ is a real positive parameter,
1<1/<2*—1,2*:+ooifN:20r2*:%ifNZ?)andbisanLoo(ﬁ)function
satisfying b(z) > 0 and b(z) = 0 in a subset of its own Qy de  with positive Lebesgue
measure and smooth boundary.

In [13], Fernandes and Maia studied the parabolic equation mentioned in the previous
paragraph. They also exploited the stationary case and did a variational approach. In the
stationary case, they ensured the existence of positive solution and sign-changing solution.
In [19], the author conducts a detailed study on the parabolic logistic problem.

In this work, we want to solve the stationary logistic problem with a nonlinear term
which may be superlinear or asymptotically linear at infinity in a bounded domain.

In the first chapter, our goal is to investigate the nonexistence of positive solution,
the existence of positive, as well as sign-changing, steady-state solutions of the degenerate
logistic problem with a general superlinear nonlinearity

—Au = Au — b(x) f(u) in P)
u=20 on 0f),

where € is an open smooth bounded domain in RY, N > 2, X is a real positive parameter,
b:Q — Risan L®(Q) function on Q satisfying b(z) > 0 and b(x) = 0 in a connected subset
Qp CC Q with positive Lebesgue measure and smooth boundary, in other words, 99y € C2.

These problems have attracted a lot of interest in the recent years, since the inclusion
of the refuge €}y brought about completely different results from those obtained in the case
where b is a positive function. Basically, in the latter case, the main results related to
existence, uniqueness, stability of the positive solution of (P) and (0.1) are well-understood.
However, less is known with regard to the degenerate case with a non-homogeneous non-
linear term, and even fewer results exist in the literature for sign-changing solutions.

The stationary problem with pure power nonlinearity f(u) = u?, when looking for non-

ﬁ, has been extensively investigated through degree
theory, variational and topological methods, see for example, [9], [10] and [25]. Alama and
Tarantelo [1] studied the problem with nonlinear term b(z)f(u) with b(x) changing sign,

where they showed the existence of positive solution and multiplicity of solution for the

negative solutions u, and 2 < p <



logistic equation in bounded domain using the bifurcation method and some variational
techniques.

Ouyang [25] studied the logistic problem with the nonlinearity f(u) = u? for p > 1
and demonstrated the existence, non-existence, and uniqueness of positive solutions on a
compact Riemannian manifold using the method of sub and super-solutions and bifurcation.

Brown and Zhang [4] investigated the problem (P) with the nonlinear term b(z)|u[P~!
for 1 < p < 2* — 1, and b(x) changing sign. They demonstrated the existence and non-
existence of positive solutions depending on the parameter A using the Nehari manifold and
variational techniques.

Delpino and Felmer [10] proved that the logistic problem with nonlinearity b(x)|u|P~1,
where p > 1 and b(x) is non-negative, has a unique positive solution and multiple sign-
changing solutions. The authors employed a variational approach to prove these results.

Concerning to solutions of problem (P) which change sign, very few studies are found in
the literature for the stationary logistic equation. In the recent years the study of existence
and multiplicity of nodal solutions for the one-dimensional degenerate model (P) has been
extensively investigated in a series of works by Lopez-Gomez and Rabinowitz [20-23] and
also developed in [7].

In population dynamics, problem (P) can be interpreted as the population density of
a single species u(x) at equilibrium in a heterogeneous environment, as discussed in [11]
and [5] and their references. The parameter A can be interpreted as the growth rate of the
species u(z), and the function b(z) as the evolution of the species and its carrying capacity.
Additionally, we can obtain information about the influence of environmental conditions on
the species within the region RV \ 9. There may be more habitable or inhabitable regions,
denoted by the same )y, depending on the possibility of greater availability of resources.
The function b also provides information that exponential growth of the species may occur,
i.e., when b approaches zero. Conversely, when there are constraints on population growth,
we can understand that the function b is large. A detailed and comprehensive study on this
evolutionary dynamics can be found in [17]. The existence of sign-changing solutions to
Problem (P) can be interpreted as two populations in the same environment with diffusion
and significant interaction. For detailed information, see [13].

In this work we focused at using variational methods to tackle the stationary elliptic
problem, particularly finding solutions of the Euler equation via the Nehari manifold [24]
associated to the problem (P), depending on the parameter A\. The main obstacles in order
to apply such tools are dealing with a general non-linearity, not necessarily a pure power of
u, and the difficulties imposed by a degenerate weight b(x), which may be trivial in a subset
of positive measure. We generalize previous important results for positive solutions found
in the literature, such as Ouyang [25|, Alama and Tarantello [1], Brown and Zhang [4],
Del Pino and Felmer [10], and obtain new results on sign-changing solutions for dimensions
higher or equal to 2, by applying the Mountain Pass theorem on the Nehari manifold. To
this end, a Ghoussoub [14] theorem will be used, which is essential to guarantee the validity
of the mountain pass theorem over the Nehari manifold.

Henceforth, the main purpose of this article is to shed some light on the existence of
positive and sign-changing solutions for problems comprehending the nonlinearities already
found in the literature, as well as to new non-homogeneous nonlinear terms as in problem
(P). This type of result may be of interest in applications, in order to consider more realistic
models of populations and their diffusion.

In problem (P), the f function of class C'(R) is odd and satisfies the following conditions:

(7 1m I

s—0 S



(f2) let F(s) = [ f(t)dt,

(f3)

(fa) there are 2 < ¢ < 2% a > 0 and an integer k& € {0,1} such that
FP ()] < ar (1 +[s]7~FHD).

f? < f!(s) for s > 0;

In addition theses hypotheses, let us consider A1(€2) and A\ () the first eigenvalues of
—A, with Dirichlet boundary conditions, in 2 and € respectively.

Henceforth, it is possible to find a range of the parameter A for which the nonexistence
of a positive solution occurs.

Theorem 1. Problem (P) does not admit a positive solution for any X > A1(Qp) or 0 <
A< )\1(9)

Moreover, our result obtained for problem (P) on the existence of a positive solution is
as follows.

Theorem 2. Assume A\1(Q2) < A < A\ (Qo) and (f1)—(f1). There is a non-negative solution
u € H(Q) of problem (P). Moreover, if b € C%*(Q), for some a € (0,1], then u is the
positive unique solution of problem (P).

Furthermore, considering the effect of the spectrum of the Laplacian operator in €2, we
were able to find a sign-changing solution for the problem.

Theorem 3. Assume A\1(Q2) < A2(Q) < XA < A1 (Qo) and f satisfies (f1) — (fa). Then, there
exists u* € HE(Q) a non-trivial solution of problem (P), different from the non-negative
solution. Moreover, if b € C%%(Q), for some a € (0,1], then u* is a sign-changing solution
of problem (P).

In the second chapter, the objective is to study the logistic problem in a bounded domain
and understand what happens when we assume asymptotically linear f(s) as |s| goes to
infinity, that is, we want to show the existence of a non-trivial solution to the problem

—Au = Aa(x)u — b(x) f(u) in ()
u=20 on 0f)

where Q € RY is domain bounded by a boundary 92 smooth, \ is a real positive parameter,
a,b: Q — R are functions in L>°() such that a(x) > 0 a.e. and b(z) is non-negative and
b(x) = 0 in a connected subset Qy CC € with positive Lebesgue measure and smooth
boundary, in other words, 9Qg € C2.

We are going to assume that f satisfies (f1), (f3), (f1),

(f2) lim, o0 22 =10 > 0.

S

and
(f5)" For F(s) = [y f(t)dt,
f(s)s —2F(s) > 0if s #0, and
lim f(s)s —2F(s) = 4oc.

|s|—o00

10



In the investigation of the existence of a solution, we encounter various difficulties, among
them, the major obstacles are to verify that the Nehari manifold is non-empty and bounded.
To achieve this goal, we make an abstract assumption using the eigenvalue problem. The
hypothesis is given by

(b1)
Aa(zx) — )\1(9)‘

loo

where A1 (92) is the first eigenvalue of (—A) in © with Dirichlet boundary condition. We will
comment on hypothesis (b1) in Remark 2.6. Constrained to the Nehari manifold, we are
able to minimize the functional associated with the problem (P) over the manifold. Further,
applying the Mountain Pass Theorem and Spectral Theory [16], it is possible to ensure the
existence of a sign-changing solution.

Our major contribution was to conduct a study of the logistic problem with asymptoti-
cally linear nonlinearity at infinity. This is noteworthy as we performed a literature review
and found few works on this subject under this type of nonlinear growth.

Therefore, the main results of this chapter concern the nonexistence of positive solution,
the existence of positive solutions and sign-changing solutions in this novel case. Before
stating these results, consider the following eigenvalue problems

—Au = Aa(x)u in Q,
u=20 on 0,

b(x) >

(P1)

where \j(a) is the first eigenvalue associated with the problem (P;). We denote by A{(a)
the first eigenvalue associated with the problem (Pj) restricted to .

We also prove that, depending on the parameter A, the problem (P’) does not have a
positive solution, as stated in the following theorem.

Theorem 4. Problem (P’) does not admit a positive solution for any A > X)(a) or 0 < A <
Ai(a).

A positive solution is obtained on the Nehari manifold leading to the following result.
Theorem 5. Assume \1(a) < A < A(a), b satisfies (b1) and f satisfies (f1), (f2), (f3), (f1),

(f5)'. There is a non-negative solution u € H}(Q) of (P’). Moreover, if b € C¥%(Q), for
some « € (0, 1], then w is the positive unique solution of (P’).

Consider the eigenvalue problem

—Au~+ b(x)lou = Aa(z)u in Q,
u=20 on 0f.

By [18], there exists the first eigenvalue )\(f’b =M (—A + blx; a).

Remark 0.1. Assume (b1), then it holds that X in Theorem 5 is in the range A\1(2) < A <
)\Lll’b. This will be shown the proof in Claims 2.1 and 2.2.

Finally, we obtain the theorem that guarantees the existence of a sign-changing solution.
We antecipate that it heavily relies on Spectral Theory and the Hopf’s Lemma.

Theorem 6. Assume A\i(a) < A2(a) < A < A)(a), b satisfies (b1) and f satisfies (f1), (f2)’,
(f3), (f1), (f5). Then, there exists u* € H(Q)) a non-trivial solution of problem (P’), dif-
ferent from the non-negative solution. Moreover, if b € C%*(Q), for some o € (0,1], then

u* is a sign-changing solution of problem (P’).

Finally, in the Appendix, we conducted a brief study on the eigenvalue problem with
weight in a bounded domain, since the properties of this investigation were crucial for the
completion of this study.

11



Chapter 1

The Superlinear Problem

In this chapter, we study problem (P) when the nonlinear term is superlinear. We want to
look for solutions in the space H}(2) and introduce the Nehari manifold N defined as the
union of subsets N'*, N~ and M. We study the spectral theory for the operator —A in €,
study the properties of the subsets of the Nehari manifold, and are able to show that N
is non-empty and bounded. Thus, we minimize the functional I associated to problem (P)
problem and ensure the existence of a positive and unique solution for a given parameter
A. In addition, we check the condition (PS) and and applying the Mountain Pass Theorem
restricted to Nehari and the Spectral Theory, we can guarantee the existence of a solution
that changes sign for the problem (P).
Consider the problem
—Au = Au—b(z)f(u) in Q )
u=0 on 0f)

where Q € RY is an open, bounded smooth, \ is a positive real parameter, b: Q — R is a

function in L>°(2) such that b(z) is non-negative with Qy = {x € Q : b(x) = 0}, a connected
subset 9 CC 2 such that the Lebesgue measure || > 0.

Example 1.1. The function f(s) = |s|P72s for 2 < p < 2* satisfies the hypotheses
(f1), (f2), (f3) and (fa).

Indeed,
(f1) lims o @ = lims0 [s[P72 = 0;
—2
(f2) hms—>oo % = hms—>oo S|; = 0Q;

(fs) L2 = |s]p=2 < (p— 1) |52 = f/(5);

(fa) 1f(s) =1sP~" < ar(1+]sP~") and [ f'(s)] = (p — DIsP~? < ar (1 + [s[P~2).

Other examples of functions which satisfy our hypotheses are the non-homogeneous
functions F(s) = s2In(1 + s2), or f(s) = s7/(1 + s®=(@=1)) with 2 < ¢ < 2*.
Immediate considerations can be stated based on our initial hypotheses.

Remark 1.1. By hypothesis (f3) and integration by parts

f(s)s —2F(s) >0 if s £ 0.

12



Remark 1.2. Let g(s) := FS(QS) for s € R, then

g'(s)zw>0, for s>0

by Remark 1.1. Suppose limsup,_, . f(s)s —2F(s) < M for a positive constant M, then

limsup s°¢/(s) < M,

5§—00

which implies s3¢'(s) < M. Integrating the inequality

/18 g t)dt < /18 %dt,
we obtain
(o) = 9(1) <1 (1- %)
that is,
F(s)

S <g(1)+M(1—822).

Taking the limit as s — oo, by (f2),

giwing an absurd. The same is true for s < 0. Hence

limsup f(s)s — 2F(s) = +o0.

|s| =00
Remark 1.3. Hypothesis (f3) imply that f(s)s > 2F(s) if s # 0, and dividing by s,
f@)>2F§)
S S
Thus, taking the limit when s goes to infinity it results

lim @ > 2 lim is)
s—+oo 8 s—+oo 8

Using also the hypothesis (f2), we conclude that

im 18— o (1.1)

s—+o0 8§

Remark 1.4. Since f is odd, the hypothesis (f3) holds for any s # 0. Indeed, suppose that

—5 <0 and @ is an even function, then

fles)= o) > T g o

—5
Remark 1.5. Hypothesis (f1), implies that given € > 0, there exists § > 0 such that

[f(s)] <els] (1.2)
for all |s| < 4. By (f4), it follows that for |s| > R > 1,

£ ()] < 2ax]s]7 . (1.3)

13



Adding up the inequalities (1.2) and (1.3), we have
()] < els| + M]s|7. (1.4)

Therefore,
€ M
[F(s)] < 5ls* + ?\S\q (1.5)

for all s € R.

We will work in the Hilbert space H}(£2), with the standard norm

Hu||2:/ |Vu]2d:v.
Q

The functional I : H}(Q) — R associated with problem (P) is given by
I(u) = ;/Q(yvuﬁ - )\uz)dx—i—/gb(x)F(u)dx, (1.6)
which is of class C?, and its derivative is
I'(u)v = /Q(VUVU — Auv)dzr + /Qb(ﬂs)f(u)vd:c, u,v € HY(Q).
Another functional J : H}(€2) — R which is related with problem (P) is given by
J(u) == I'(u)u = /ﬂ(]Vu|2 — \u?)dx + /ﬂ b(x) f(u)udz,

J is of class C' and defines the Nehari manifold as the following set
N ={uc H}Q): I'(u)u = 0}.

Note that, v € N if and only if

/(|vu\2 ~ aa?)dz = —/ b(w) f (u)udz. (1.7)
Q Q
There is a fibrering map associated with I defined by
2
Gu(t) == I(tu) = 7;/(|Vu|2 — u?)dzx +/ b(x)F (tu)dz, (1.8)
Q Q
and its derivative in the variable ¢ is given by
o, (t) = t/ (|Vul? — u?)da +/ b(x) f(tu)u duz. (1.9)
Q Q

It follows that if u € H}(2) \ {0} and ¢ > 0. Then tu € N if and only if ¢/, (t) = 0.
The second derivative of ¢, is

") = /Q(Vu|2 — \u?)dx —|—/Qb(x)f'(tu)u2 dx, (1.10)

14



and we consider the subsets
NT = {u eN: /(]Vu|2 — \u?)dz +/ b(z)f (u)u’ds > 0} )
Q Q
N~ = {u eN: /(]Vu|2 — \u?)dx +/ b(x) f'(u)ude < 0} ,
Q Q

N = {u eN: /Q(]Vu|2 — u?)dx —|—/Qb(x)f’(u)u2dx = 0} :

The sets N't, N, N? correspond to local minimum points, local maximum points and
inflection points of ¢, (t) for ¢t = 1, respectively.

The following lemma relates the Nehari manifold to the first and second derivatives of
the fibrering map.

Lemma 1.1. Ifu € N, then ¢!,(1) = 0. In addition, i) if ¢/I(1) > 0, then u € N't; ii) if
#"(1) < 0, then w € N~ ; i) if ¢!'(1) = 0, then u € N°.

Proof. For the first part, consider u € N. By equalities (1.7) and (1.8), we have

¢, (1) = _/Qb(@f(u)udw +/ b(x) f(u)udz = 0.

Q
The second part follows from the definition of the sets above. Indeed, if ¢//(1) > 0, then

/(!Vu\z — u?)dzx —i—/ b(x)f'(uw)udz > 0,
Q

Q

in other words, v € N'T, and this proves item (i). The other items follow in a similar
way. O

Finally, we have the following characterization of the subsets N7, N~ and NV.
Nt = {u eN; / (|Vul? = \u?)dz +/ b(z)f (u)u? dz > 0}
Q Q

ueN;— b(x)f(u)udm+/

Q Q

b(z) f' (u)u? do > O}

u

{
= {u eN; i b(x)(f (w)u® — f(u)u)ds > 0}
{u eN; [ bx) (f’(u) — f(“)> u? dx > o} .

Q
Similarly, the sets

N0 = {u 6/\/’;/Qb(m) (f’(u) - fEZ”) W2 do :0},

N—:{ue/\/;/Qb(:c) (f’(u)—f(;‘)) 2dx<0}.

Moreover, we also define the following sets

Lt = {u € Hi(Q); ||lul| = 1,/(yvu|2 — \?)dz > o} :
Q

20 = {ue my@slul = 1. [ (947 - x?)as = o}
Q

L™ = {u € H(Q); ||lul| = 1,/(]Vu|2 —MP)de < O} ,
Q
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and with respect to the nonlinear term, we define

Bt = {uEH&(Q),HuH = 1,/Qb( ud:v>0}
BY = {uEH&(Q),HuH :1,/Qb( ud:v:O}
B = {u € HY(Q); ||lul| = 1,/Qb(x)f(u)u dx < 0} .

Let us consider the subsets Q1 = {z € Q: b(x) > 0} and Qy = {z € Q : b(xz) = 0}. Note

that if b is continuous, then Qy = Qg is closed in RYV.

Remark 1.6. The hypotheses (f3) and b(xz) > 0 ensure that N~ = (. In addition, if
M (Q) < A\, we have that L~ # (). Indeed, taking ¢1 the first eigenfunction of —A in Q,
associated with the first eigenvalue A (Q), then [(|Vo1[2—=A¢T)dz = [o(M(2)—N)¢idz < 0.

On the other hand, if X < A\1(Q), LT # 0 because taking ¢ as the ezgenfunctzon of —A
in Qq, define

(2) = qb(f(m), x € Q
4 0, ze O\

We have that |¢|| = ||¢5l| = 1. Thus,

/ Vel — Ap)dz = / (Vo — Ag?)de + / (VP — AP)da
Q Qo Q\

Qo

- /Q IV — A(é)?)da
- /Q (A1(R0) — N (6)2dz > 0.

Then, p € L.

Remark 1.7. If0 < A < \(Q), then N =0, as we will see in Section 2, [o(|Vu|*~Iu?)dz

will be a norm, and by hypothesis (f1), @ increases for s > 0 and b(x) > 0, then the
equality (1.7) will not occur. On the other hand, if A\1(2) < X\ < A1(Qo) then Lemma 2.9
will guarantee that N* # ().

Lemma 1.2. If0 < A < A\ (Q) then L— N B = (.

Proof. By contradiction, suppose that there is u € L~ N BY. Then |Ju|| = 1 and
0= / b(x) f(u)udr = / b(x) f(u)udz.
Q o+
Since f(s)s > 0 and b(x) > 0(% 0), then
/ b(z)f(u)udx = 0 implies that b(z)f(u(x))u(z) =0 a.ein Q.
Q
Consider z € Q, in other words, b(z) > 0, then f(u(z))u(z) = 0 a.e. in Q*, and by the

hypotheses (f1) and (f3), we have that u(x) = 0 a.e. 4. Therefore, u has support in Q.
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In addition, since u € L=, and supp{u} C Qq, in case 0 < A < A\1(Qp), then
0< / () — A2z < / (1Vul? = Ma?)da
QQ QO

= /(\Vu|2 — \u?)da
Q

< 0.

Therefore u = 0, which is a contradiction with ||u|| = 1. It follows that L= N B® = ().

Lemma 1.3. Suppose that 0 < XA < A\1(€), then N° = {0}.

Proof. Suppose by contradiction there is ug € N°\{0}, i.e., ug satisfies

/Q b(z) < Flug) — L 51“) W2dz = 0.

[ v (70 = ) | e (7w =22 ) i =0,

Thus

Qo up

/Q e < Flug) — L S{‘)O)) W2dz = 0.

If supp{uo} N Q\Qo # 0, by (f3), we have a contradiction. Thus supp{ug} C Q. It follows
that

which implies that

/Qb(a:)f(uo)uodx = / b(x) f(uo)updx = 0,

Qo

and so, ”Z—g” € BY. In addition, since ug € A, then

0=— /QO b(x) f(uo)updr = /QO(|VUO|2 — \ud)dz,

fﬂo |Vuo|?dx

fﬂo uddz

fﬂo |Vug|2dx

fQO uddz

which implies =X and A\ (Q) < = ), giving is a contradiction. [J

Lemma 1.4. For all u € N, the inequality I(u) < 0 holds.

Proof. Let u € N, then applying (1.7) and Remark 1.1 we have

I(u) = % /Q (1Vul? = Aa(z)u?)dz + /Q b(a) F(u)dz
1
= —2/ﬂb(m)f(u)udx—i—/ﬂb(x)F(u)dm
1
-2 /Q b(@)[2F (1) — f(u)uldz < 0. (1.11)
Moreover, I(u) = 0 if and only if u = 0 or supp{u} C Q. O

Lemma 1.5. Suppose that 0 < A < A\1(Qo) and f satisfies (f1)—(f1). Then N* is bounded.
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Proof. Suppose otherwise, then there exists a sequence (u,,) € N such that |Ju,| — +oo.
Define v,, := HZ—ZH, up to a subsequence, (v,) is bounded in Hg(Q), v, — v in HE(Q), v, — v

in LP(Q) for 2 < p < 2* and v,(z) — v(z) a.e. in Q. Since @ is increasing if s > 0, by
hypothesis (f3), @ is even and applying (f1) we obtain

 F(alen@) .
o) o) ) =0

Initially, we note that as u, € N, then Q, = supp{u,} N (Q\ Qo) # 0 and [, > 0,
and hence, supp{v,} N (Q\ Qo) # 0. Thus, for alln € N

/ b(x) f(un)uyn, de >0 = / M v2dx > 0.
Qn

[|tn |lvn

We claim that v # 0. Since (u,,) € N and H}(2) is compactly embedded in L?(£2), then
dividing J(uy,) by ||un|?, we have

0 = /(|Vun|2 2Vdx +/ b(x) f(un)undx
Q
— /(\anﬁ — \v2)da +/ b(x JUlnlen) v2da
> /(|an\2 — \v2)dz. (1.12)
Q
Taking the limit as n goes to infinity in (1.12) and by the compact embeddeding of Hg ()

in L?(€2), we obtain
0>1- )\/ v2da.
Q

If v = 0, then this yields an absurd, and so v # 0. This way, we have two possibLhties: either
supp{v} C Qo or supp{v} N (Q\ Qy) # 0 with positive measure. If supp{v} C Qp, and since
v, — v in H}H(Q), by (1.12) we have

0> liminf{/ |V |2dz — / )\’Uidl‘}

2/ ]Vv|2da:—/)\02dx
Q Q

2/ )\1((20)112d1:—/\/ v2dx
QO Q0
= (M (Q0) — A)/ vidz > 0,

Q

which is a contradiction. We conclude that supp{v} N (Q\ Qg) # 0 with positive measure.

18



Moreover, due to the fact that u, € N, v, — v # 0 and by Lemma 1.4, we obtain

I(Un) I(Hunan)
0> —  ZAllUnfltn)
|2 |2 (|2, |2
_ IIun\|22/(|wn|2_Mg)dx+ 2/b(x)F(Hun||vn)da:
2[unl?* Jo lunl* Jo
1/ 2 2 / F(|lun||vn)
= = Vou|* = Avy)dz + | b(z)—F7—5—dx
5 Q(| | ) ; (v) lanl2
1/ 2 2 / F(|lun|lvn(z)) v2(z)
= — Vop|* = Avi)dx + | b(z dx
g JoVenl” = Avm)dr bl ) = e )
1

Y SN 7 [ CO) I

We know that v # 0 in €2, so there exists Q C Q such that v(z) # 0, for almost every
z in Q and [Q[ > 0. Since lim, 0 vn(2) = v(z), then uy(x) = [Jup/|vn(z) and hence

lim;, 00 un () = %00, for almost every = in Q. Define r,(z) = ||up||vn(z). As v # 0 and
lun|| — oo, we obtain r,(x) — £oo. Thus, using (f2)
F ~
lim M = 400, for almost every x € §Q,

n—o0 7’72Z (x)

and applying Fatou’s lemma, it follows that

F(ry o F(ry
lim inf/ b(x)Mvi(x)daz > / lim inf b(az)wv%(m)du’c = 400.
n—% Jo ra(x) Q nooo ()
Therefore,
I (un) . {1 / 2 2 / F(ra(2)) 5 }
0> =liminf < — [ (|Vu,|* = Av;)dze + | b(x)—5—=v; (z)dz
a2 ~ R g IVl Aot B gyl
F(ry
>1- / Mlde —{—/ b(x) lim inf mvi(x)daj = +00,
Q a n—oo  173(x)
which is absurd. Thus N is bounded and this concludes the proof. O

Lemma 1.6. Suppose that ug is a critical point of I restricted to N such that ug ¢ N°,
then I'(ug) = 0 in H-1(Q).

Proof. 1f ug is a critical point for I restricted to AV, then ug is a minimizer of I(u) subject to
the constraint J(u) = 0. Hence, by the Theorem of Lagrange Multiplier, there exists u € R
such that I'(ug) = pJ'(ug). Thus,

(I'(ug), uo) = p{J" (uo), uo)- (1.13)

Replacing J(up) = 0 into (1.13), and using (1.7), we have

(J' (uo),up) = 2 /Q(|Vuo|2 — \ud)dx + /Q b(x)f (uo)udde + /Q b(x) f (ug)updz

:/Qb(x) <f’(u0)— fiz)“)%gdx.

Since ug ¢ NV, it follows that (J'(ug), up) # 0 and applying (1.13) we obtain u = 0, that is
I/(Uo) =0. O
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Now, we prove Theorem 1, which shows the non-existence of a solution to the problem
(P) in a range of the parameters.

Proof of Theorem 1. Suppose by contradiction that there exists a positive solution u of
problem (P). Multiplying the first equation of the problem (P) by ¢9, the positive first
eigenfunction of —A in Qg,

—Aud? = Mug? — b(z) f(u)e?,

and integrating by parts in this set with smooth boundary 9y, we obtain

0
0 = [ vuvitr [ wdtars [ uPhas [ st
Qo Qo 390 677 Qo
0 99!
= 0= n@) [ udlde+ [ wPan
Qo 0o 677

where 7 is the exterior unitary normal vector on 9€)y. On the other hand, by Hopf lemma
o 0
/ ua—ldaz <0 andsince (A\— )\1(90))/ ud\dz > 0,
890 77 Q0

and this yields a contradiction. O

Definition 1.1. A sequence (u,) C H}(Q) is called a Palais-Smale sequence for the func-
tional I at ¢ € R, denoted by (PS). sequence, if I(u,) — ¢ and ||I'(u,)|| — 0. The
functional I satisfies the (PS). condition if any (PS) sequence {u,} has a convergent sub-
sequence.

We will now present some consequences of Lebesgue dominated convergence theorem
that will be used throughout this chapter. Consider u,, € N'", by Lemma 1.5, the sequence
(uy,) is bounded and, up to a subsequence, we have u, — ug in H}(Q), u, — ug in LP(Q)
for 2 <p < 2* and up,(z) = uo(x) a.e. x € Q. Using the continuity of F', we have

b(x)F (un(z)) = b(x)F(up(x)) a.e. z € Q.

It follows from the fact that [ju, — ugll, — 0 in LP(Q) that there is ¢ € LP(§2) such
that |u,(x)] < 1. Then, there are ¥y € L*(Q) and o € L9(Q), 2 < ¢ < 2* such that
Jun()|* < 93 (2) and [un ()7 < ¥3(2)

|b(2) F (un(2))] < [[b]]oo| F'(un ()]
< Ibllsoas fun (2)* + [[bllocas fun ()]
< |Ibllscarvf (@) + [[Bllocar3(x) € LH(€).

By Lebesgue Dominated Convergence Theorem,

lim b(x)F(un)dx:/b(x)F(ug)dac. (1.14)

Similarly, we have that

b(z) f (un(@))un(z) — b(z) f(uo(z))uo(x) g.t.p. x € Q
and also
b(2) f (un(2))un ()] < [|blloc] f (un (@) ||un ()]
< ”b”ooa1|un(x)’2 + 16l cc @1 [t (2)[?
< [[bllocarf () + bl ccarts(z) € L'(€).
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By Lebesgue Dominated Convergence Theorem,

lim [ b(x)f(up)uy, de = / b(x) f(uop)ug de. (1.15)

In addition, we have

b() f (un(@))up (x) = bla) f'(uo(2))uf(z) qtp. x € Q,
and also by (f1)

1b(2) /' (un (@) Jup ()] < [Bllscar + [Bllocaryy ™ (z) € L'(Q).

lim [ b(a)f (un)uds / b(@) f (o) ulda (1.16)

The following lemma is analogous to the lemma that is found in [6]. Hereafter C' will
denote a positive constant, not necessarily the same. Let VI(uy) and V.J(u,) be the vectors
in H}(2) which represent, respectively, the linear functionals I'(uy,) and J'(u,) in H=1(Q)
by Riesz theorem. Then there exists p, € R such that Var+ I(uy,) := VI(up) — punVJ (uy),
the orthogonal projection of VI(u,) onto T,, N T, which is the tangent space of N at w,,.

Lemma 1.7. Assume 0 < X < A\1(Q0). Every (PS). sequence (uy,) for I restricted to N,
with ¢ < 0, contains a subsequence which is a (PS). sequence for I in H(SY).

Proof. Let (up) C N be a (PS). sequence for I restricted to N. By Lemma 1.5, (u,) is
bounded in H}(2). We may write

VI(up) = V+I(un) + VI (up). (1.17)

We will proceed with the continuation of the demonstration in two cases: the first case when
¢ < 0 and the second case when ¢ = 0. If ¢ < 0, since N is bounded in H{ (), then, up to
a subsequence, u, — u in H}(Q) and u, — u in LP(Q) for 2 < p < 2*. By Lemma 1.4 we
have I(u,) < 0, then

1 A

/ |Vun|2dx—/ a(x)uidx—l—/ b(x)F(uy)dx < 0.

2 Ja 2 Ja Q
If u, — u =0 in H}(Q), then u, — 0 in LP(Q), 2 < p < 2*. Through weak convergence,
Sobolev embedding, and Lebesgue’s Dominated Convergence Theorem in the inequality
above

0< liminf/ |V, |*dz < 0.
n—oo Q
Thus,

lim ||uy| = 0.
n—oo

Since I is continuous, then

c= lim I(u,)=1(u)=0

n—oo

which is a contradiction. Therefore, u # 0.
By (f4), for any v € H(Q), it holds

/Q[f’(un)un + f(un)Jvdz| < C(1L+ [lual|*"Y)lv]l < Cllv].
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Therefore,
(VI = [2luns) = [ 17+ Fluloda| < O, o € H3(@).

This shows that the sequence (V.J(uy)) is bounded in H}(€2).

Since |J'(up)un| < ||VJ(un)||Jun|| < C, after passing to a subsequence, we have that
|J'(up)upn| = p > 0. Let us show that p > 0. Since lim,, o0 I(uyn) = ¢ < 0, uy, € N, (uy)
bounded, u, — u, and by (1.14) and (1.15)

0>c = lim I(u)= lim | b(a)[F(u,) - % F = / b(a) [ ) - % F(uy] da.

If supp{u} N (Q2\Q) # ) with positive measure, applying (1.16) and (f3),

p o= lim [(VJ(up),un)l
= Jlim [ b(@)(f (an)u = S () un]de
— /Qb(a?) [f'(u) — f(:L)]qu:v > 0.

Taking the inner product of (1.17) with u,, € N, we obtain
0= (I/(un), Un) = (Va+I(un), un) + pn(J (un), un) = 05 (1) + pn(VJ (up), un).

It follows that p, — 0, since (VJ(uy)) is bounded in H}(Q) and |J'(up)u,| — p > 0.
Therefore, by (1.17)
VI(uy) = Va+I(uy) + 0on(1)

and taking the limit it implies that I'(u,) — 0.
If supp{u} C Qp, then

1 A
0> c=liminf I(un) > J|[Vul* = Zllull* = 5 (M (20) = A)Jull?,

1
-2
which is an absurd.

On the other hand, if ¢ = 0, since (u,) C N is bounded, we have that u, — u, by (1.14)
and (1.15)

n—o0 n—oo

1
0=c = lim I(uy) = lim I(uy,)— ill(un)un

= tim [ b(@)(Flun) — = Fun)un)dz

= [ ba) (P~ F)da.
Q

It follows that u = 0 or supp{u} C Qq. If supp{u} C Qo, then by the compact embedding
of H}(Q) in L?*(Q) and by Lebesgue’s Dominated Convergence Theorem

1 A
0 = liminfI(u,) > / ]Vu|2da:—/u2dx
2 Jo 2 Ja

n—oo

N

Qo
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Thus, we have that v = 0, that is, u,, = 0 when n — oco. By the compact embedding and
Lebesgue’s Dominated Convergence Theorem

n—oo

0= lim I(uy) >hm1nf/ |V, dx>/ |Vul|?> >0

implies |luy,| — 0 when n — co. Since I is a functional of class C!, then
I(u,) — I(0) =0 and I'(u,) — I'(0) =0

when n — 00, and the proof of the lemma is complete. O

1.1 Regularity of the solution
In this section, we will assume that b € C%*(Q). Let
—Au = A —b(x) f(u) = k(z)(1 +[u]) = g(z,u)
where

Au—b(zx) f(u) .

k@) = =371

N
We will show that & € L2 (©2). Note that

Au —b(z) f(u)
k(@) = |———F—7 7
1+ |ul
< Al + [[bllo] f(u)]
- 1+ |ul
Aul  [bllocar (1 + |ul?)

14 |ul 1+ |ul
[bllocar | bllooa|u|?™?|ul
1+ |ul 1+ |ul
<A+ ||bllocar + [|bllocar |u|?72 =: ¢1 + ea|ulT72,

<A+

with c¢1, co positive constants. Thus
/ k(2)| 2 dz < c1|Q + cz/ u(T2 % dz < oo,
Q Q
Since 2 < ¢ < 2*, we have

N N
0<qg—2<2"-2 = 0<(q—2)?<(2*—2)5

. N 2N N (2N —2N +4\ N 4 \N _,
(2_2)2<N—2_2>2<N—2)2<N—2>22'

N
Therefore, k € L;2.(€2). Using Brezis-Kato’s theorem [Lemma B.3, [26]], v € L*(£2), for
any 1 <s < 4o00. Then, —Au = \u — b(z) f(u) € L*(Q),
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IN

/|>\u— (u)|*dz

JE R NEDIRE
[ Ol + s 1+ i
Q

251)\5/ ]u\sdaﬁ—i—QS1(|]b\|wa1)s/(l+]uq1)sdaﬁ
Q Q
Cllullé + I + Cflul| V% < oo,

IN

IN

Sinceq—1>1, (¢—1) < (¢—1)s < 400 and u € L*(), taking 5 := (¢ — 1)s, with
1 <5< 400, we have [, [Au— b(z)f(u)[*dz < co.

Therefore, u € W?2%(Q) for all 1 < 3 < oo, and by Sobolev embedding, W2%()) —
Ch(Q), u € CH¥(Q). It follows from this and the hypotheses that f € C1(Q2) and b €
C%(Q) that Au — b(z)f(u) € C%*(2). Finally, by Schauder’s estimates u € C>%(f2), and
this shows, that u € C%%(2) N C(Q) is a classical solution of problem (P).

1.2 The case 0 < A < A\((Q2)

In this case, the norm [lul[y = [,(|Vu|? — Au?)dz is equivalent to the standard norm of

H} (). Indeed,
Jully = [ (VuPde =2 [ juPde < [ [Vudz =P
Q Q Q

therefore, ||ulx < ||u]]. On the other hand, by the Poincare’s inequality, we have

||u|])\—/ Vu|?dz — /|u|2dx>/|Vu| d:n—/ V| 2dz
= (1= 5 J etan = ()

in other words, [|u||3 > C'||u||2 and so |lullx > Cllu||, for C is a positive constant. Therefore,
|| - []x and || - || are equivalent. Furthermore,

i) = ; /Q (IVul? — ?)dz + /Q b Pu)de = [} + /Q b Fu)de > |l = +oc,

as ||ul| — oo, implying that the functional I is coercive and I is bounded from below. In
fact, since 0 < A < A\1(9),

Iw) = 5 [ (Val? =)o + [ ba)Fludo = Sl + [ o) Playds =0

and so, there exists ug € H3(€2) such that I(ug) = inf, e 1) I(u) > 0.

Since I(0) = 0, then ug = 0 is a minimizer for I on H}(£2). Suppose that there exists a
positive solution u; € HE(€2) to problem (P), then u; € N'*. However, by Remark 1.6, it
holds

< /Q(\Vu1]2 —\uf)dr = — /Q b(x) f(u1)urdx <0,

which is an absurd. Therefore, in this case 0 < A < A\;(92) the problem (P) does not have
any positive solution.
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1.3 The case \(Q) < A < A\(Q)

The condition A\1(€2) < A < A1(Qp) implies that L= N B° = ), by the Lemma 1.2. Moreover,
by Lemma 1.3 it follows that A = {0}.

Lemma 1.8. Assume A\ () < XA < A\1(Qo). If u € NT, then supp{u} N (Q2\ Qo) # 0.
Proof. Let u € N'*, that is

/(\Vu]Q — £u?)dx —I—/ b(x) f(u)udz =0,
Q Q

and suppose by contradiction that supp{u} N (2\ Q) = 0, i.e., supp{u} C Qp. Then,

/ b(x) f(u)udz =0, (1.1)
Q
Jo [Vul?dz Jo. [Vul?dz
which implies =F———— = X and A\1(Qg) < =—2———— = )\, giving is a contradiction.
hich impli — Aand Ap(Qo) < ——— A, giving i tradicti
fgou dx fgou dz

O]

Lemma 1.9. Assume A\ (Q) < X < A\1(Q) and (f1) — (f1). Let u € HE(Q)\{0}, then there
exists a real number t = t(u) > 0 such that tu € N if, and only if, ﬁ € L™. Moreover

t(u) is unique.

Proof. As seen in Remark 1.6, we have L~ # (), because Al(ﬁ) < A. Suppose that v =
”“T” € L—, that is, fQ (|Vul? — A 2)ala:<0 If supp{u} C Qp, then supp{v} C Qo, so
fQ v)vdx = 0, which implies v = ” T € L~ N BY leading to an absurd by Lemma, 1.2.

On the other hand, if supp{u} N (2\ Q) # O with positive measure, then we can take

t — 07 and using the hypothesis (f1), given € > 0, there is § such that, if 0 < t < 4,

ftw) o
tu

‘b(m)

< lolloo |29 |2 < efpllocs? € L1,
tu

By Lebesgue Dominated Convergence Theorem it follows that

. f(tu) o _
t1_1>r51+ Qb(:zc) P dx =0, (1.2)
thus,
R K t( ) = lim {/Q(IVu|2 - )\u2)d:c+/gb( )fiiu) ulda } /Q(Vu|2 — \u?)dz < 0.
(1.3)

On the other hand, since f( ) s increasing for s > 0 and f is odd, then b(x) (tu)u > 0.
Applying Fatou’s lemma, Lemma 1.8 and then using Remark 1.3, it follows that,

liminf/b f0) 24, >/b hmmf ) Wldr =

t—o0
Thus,

/ t
lim inf %u(t) = lim inf {/ (|Vu]2 — /\u2)dm +/ b(:):)if( u) uzd:c}

t—o0 t t—o00 Q Q tu
2 2 o) o

> [ (|Vu]* = Au®)dz + | b(z)liminf ——u*dr = +oo. (1.4)
Q Q t—o00 tu
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It follows from (1.3) and (1.4) that there exists ¢ such that t;u € N'T.

Now assume that tju € N'T. By Lemma 1.8 we have supp{tiu} N (Q\ Qo) # 0 and by
(1.7) it holds

2 / (Vul? — u?)de = —/Qb(x)f(tlu)tlu dz <0,

which implies that | eL.

Finally, we will show that the projection on Nehari manifold is unique. Suppose there
are 0 < t; < t; such that tyu, tyu € NT. It follows that

t7 / (|[Vul> = M?)dz = —/ b(x) f(tiu)tiu dx, (1.5)
Q Q
tf/(wu? — £)da = —/ b(x) f(f1u)tu de. (1.6)
Q Q
Dividing equation (1.5) by t and equation (1.6) by t~12 yields
/(|Vu]2 — \u?)dx = —/ b(x)Muzdx, (1.7)
Q Q tiu
/(|Vu]2 —£)dr = —/ b(m)Mqux. (1.8)
Q 9] tiu

Subtracting equation (1.7) from equation (1.8) it follows

fltiu f(tiu
x = — u“dr =0
/Qb( )< Sflu) Sflu)> d

Since tju, tju € N* by Lemma 1.8 we have supp{t;u} N (Q\ Qo) # 0 and supp{tiu} N
(Q2\ Qo) # 0. It follows there exists ¢ > 0 and xg € Q such that B.(x¢) C Q\ Qg and

o= Joo (0 =) ez e (7 T e

because f(s)/(s) is increasing by (f3), b(x) > 0 for x € B:(x¢), leading to an absurd. We
conclude that there exists only one t; such that tyu € N'*. O

Lemma 1.10. The function

A= {uEHO( )\ {0} : || ” _}—>(0,—|—oo)
w— t(u)
18 continuous.
Proof. Let r € L™, we shall prove that T(u) == [o(|Vul* = Au?)dz < 0 is continuous.

We have that T71{(—00,0)} is open in H} () and u > t(u) is defined in an open subset
of H}(2). To prove continuity, we will use the Implicit Function Theorem. Let g : RT x
H}(Q) — R of class C* defined by g(t,u) = t|ul]* — Xt [, u?dz + [, b(x) f(tu)udz. Consider
(to, o) such that g(tg,up) = 0 and ug > 0. For tgug € N, we have that

tolluol? — Mo /Q wddr = /Q () f (oo )uode
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— 2[[luoll? — A /Q udda] = — /Q () f (oo totods

t
<:>t§[W0||2—A/ngdx] = —/Qb(g;)fi(’“(’)tgugdx

ouUo

> ||luol]® — )\/ uddr = / b(x)Mu%dm
Q Q

toug

Differentiating the function g with respect to t and using the hypothesis (f3), we have that

M — ||U0H2—>\/<1( u0d$+/b toug uod:E
Q

ot
_ / () L0040) 25 / b(a) ' (touo ulde
Q Q

toUo
[ (touo)

_ /Qb(:c) [f’(tOUO)“g_ touo

By the Implicit Function Theorem, the function ¥ : A — R™ defined by ¢ = t(u) is of class
C'! in a neighborhood V of ug and g(t,u) = g(t(u),u) =0 in V. O

uo] dx > 0.

Proof of Theorem 2. Since N' = Nt U {0} is bounded by Lemma 1.5, there is C > 0
such that |ju|| < C for all u € . Using equalities (1.7) and Remark 1.5

(u)] = ;/Q(]VuF—)\uQ)dac—l—/Qb(x)F(u)d:L‘
- f% /Q b(a) f(w)udz + / b(w) P (u)dz

Q

1
Nk /Q b(x)[2F (u) — f(u)uldz

1
3 | B@I2F () = fuwyulda

Pl [ @ipw)+ 1wl

< c/ €l + —|u!q F elul + Mlu|?)dz

<o/ lul dm+C’/ lu|9da

< Cllul3 + Cllullf
< C||Vull3 + C|Vull3
<C.

IN

<

Thus, I is bounded in N'. We claim that inf,epn I(u) < 0. Indeed, let ¢1 be the first
eigenfunction of —A in €, associated of the first eigenvalue A1(€2). Then ¢; € L™ and by
Lemma 2.9 there exists t; > 0 such that t;¢; € N\ {0} = M. By Lemma 1.4, I(t1¢1) <0,
on the other hand, using the Remark 1.1 and that t;¢; > 0 in all domain €2,

I(tig1) = I(t1¢1)—%t](t1¢1)

— ;/Qb(x)(QF(thzh)—f(tlﬁbl)tl(bl)dx

1

= 3 /Q+ b(z)(2F (t1¢1) — f(t11)t1¢1)dx < 0.
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Thus,

inf I(u):=—m <0. 1.9
Jof I(u) = —m (1.9)

Let (uy,) be a minimizing sequence in N'*. Since N is bounded by Lemma 1.5, then (u,) is
bounded and, up to a subsequence, we have u, — ug in H}(2). By (1.9) and by equalities
(1.14) and (1.15)

0> —m= inf I(u)= lim I(u,) = lim {; /Q b(@)[2F (1) — f(un)un]dx}

ueN+ n—o0 n—o0

= lim [ b(x)F(uy)dr — lim % b(x) f (up)updx

= [ WPz =5 [ bo) fluopuode

1

=5 [ Mo2F () ~ fluulds,

This implies that supp{ug} N (2\ Qo) # 0, then ug # 0 and
/ 7f(u0) Wdr — 2 | 7f(u0) w2de
e [0~ L0 e = [ ooy | 00) = L2

= [ v |00 = L2 g > 0

Uuo

concluding that ug € N*. It follows that

n—o00 ueN+

1
Iw) = 5 [ ba)2F () = flwo)uwlde = lim I(w,) = inf I(u) <0.
Q
Thus, ug is a non-trivial critical point of I in N and by Lemma 1.6, I'(ug) = 0. Without
loss of generality, we may consider ug positive. Indeed, since F' is an even function, then

inf T = T = I(ug —uy
el () (uo) (ug — ug)

1 _ A _ -
= 2/ ]V(uf{—uo)\Qdm—2/(uaL—u0 )2d:c+/ b(x)F(uf — ug )dx
Q Q Q

] ) A _ )
= 5 [0Vt P 4190 e = 5 [ () + )+ [ )Pl ~ o
Q Q Q
= 1/ (\VU(TQ—)\(uar)z)dx—i—/ b(x)F(ug)dx
2 J{ug>0} {uo>0}
1
s 5] VEwRE A e [ ba)F(-ug)ds
2 J{uo<0y {ug<0}
= 1/ (\VU(TQ—)\(USF)z)dx—i—/ b(x)F(uar)dx
2 J{ug>0} {uo>0}
1
w5 VAP [ )P
2 J{uo<o} {uo<0}
_ 1/ (\vuﬁ—x(ugﬁ)dw/ ba)F(ud)da
2 J{ug>0} {uo>0}
+ 1/ (|Vug |[© = Ay )Z)dx+/ b(z)F (uy )dx
2 {uo<0} {up<0}

Il
~

(luol)-
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Hence, ug > 0. Moreover, assuming b € C%%(€2), it follows by Hopf lemma that ug > 0 (see
the end of the proof of Theorem 3 for details).
Suppose there exist two positive classical solutions u; and ug of (P), with uy # ug then

—Au; — Aug +b(x) f(u1) =01in Q and u; =0 in 09, (1.10)

—Aug — Aug + b(x) f(u2) =0 in Q and uz = 0 in 9. (1.11)
Dividing (1.10) by u; and (1.11) by us we obtain

“AU (L) (1.12)
(75} (75}
and
—AUz o L2) (1.13)
ug u9

Subtracting equation (1.12) of equation (1.13), it follows that

“Auy | Aup (f(uz) _ f(“1)> _ (1.14)

Uy U2 U2 Uy

Multiplying the equation (1.14) by (u? — u3) and integrating over {2

/Q(uf ) <‘A“1 + AW) do = /Qb(x) (f(“z) _ f(“1)> 02— )dz.  (1.15)

Uz ul

From the proof of uniqueness of solution in [3]

—-A A A
/(u% — u3) 2 gy = / —ulAuldaz+/ u%ﬂda:
Q Uy U2 Q Q U1
2Au2
+ [ ui——dx — | u2Ausdx
Q U2 Q
u2
= / Vuy - Vurdr — / Vv <2> -Vuidzr
Q Q u1
u2
—/v<1> -Vqux—i—/ Vug - Vugda
Q U2 Q

2

= [ Vi Pdz — | (28Vuy — 2V, | - Vude
2
Q Q Ui uy

(51 U% )
— / 2—Vu; — —<Vuy | - Vuadz +/ |Vusg|“dx
Q Uy Q

U2
2
}dm > 0.

:/Q{’Vul —Z—;VUQ
/Qb(x) <f(“2) - f(ul)) (u? — u3)dz > 0. (1.16)

Substituting in (1.15), it follows that
u9g (51

2

u
+ ’VUQ — fQVul
3}

As we assume A\ () < A < A (€), by Lemma 1.2 it holds L= N B® = §, and since
ui, ug € N1, then 4, 2. ¢ L~ by Lemma 1.9. Moreover, by Lemma 1.8 it holds

l[url]> fluz]l

supp{ui} N (Q\ Qo) # 0, supp{uz} N (Q\ Qo) # 0. Furthermore, since f(s)/s is increasing,

29



we have the following possibilities:

(i) if ug > ug, then
/ b(x) <f(u2) - f(u1)> (u? — u3)dz < 0,
2\

U2 U1

which is a contradiction with (1.16).
(7) if u; < ug, then, once again

/Q e <f(u2) B f(m)> s <0,

Uz Uy

which is a contradiction with (1.16).
(i4) If there are subsets of AUB = Q\ Qy, A # 0 and B # 0 open in RV such that
up —ug >01in A, ug —up > 0in B, by (1.15), we have

0< /Qb(:c) <f(uull) — fEZQ)> (u? — u3)dx = /Q\QO b(x) (f(;?) — f(uu22)> (u? — ud)dx
_ /Ab(az) (fij‘ll) _ JCS‘?) (W2 — ud)dz + /B b() <f(“1) - f(“”) (2 — 12)dz

Ul u9
<0,

because in A, (f(“z) — f(ul)) <0, (u? —u3) > 0and b(z) >0 and in B, (f(uz) _ f(m)) >

u2 ul u2 uy

0, (u? —u3) <0 and b(x) > 0. Therefore, we conclude that u; = us. O

1.4 Sign-changing solution

In this section we will also assume A1(Q2) < A < A1 (o).

Lemma 1.11. If (uy) is a (PS). sequence for I restricted to N, with ¢ < 0, then, up to
a subsequence, (uy,) converges to u in Hg(Q).

Proof. Let (uy) be a (PS). sequence for I restricted to AN/, which is bounded by Lemma
1.5. Then I'(up) — 0, by Lemma 1.6 and Lemma 1.7, we have, I'(u,)p — I'(ug)p =
0, Ve Ce(Q).

Notice that

(I'(up) — I'(ug)sup —uo) = I'(un)-(un —ug) — I'(up).(un — uo)
= / Vu,V(u, —uo)de — )\/ U (Up, — up)dx
Q Q

+ /Qb(a:)f(un)(un — up)dx — /Q VuoV (up, — ug)dx
0 [ ol — oo — [ bla) flu) s — w)da
= |lup — uOH2 — )\/Q(un — u0)2d1:

- /Q () [ (tn) — F(1t0)) (1t — i)l

Therefore,

i — 0|2 =( () — I' (110, — ) + )\/Q(un ~ wg)2da

+ [ 0@ F ) ~ £ 1~ w0 (1.1)
Q
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and applying the limit as n goes to infinity in (1.1) it results that, up to a subsequence,
Uy, — up in H}(Q), because uy, is bounded and (PS). sequence, using Sobolev embedding
and Lebesgue Dominated Theorem. Thus, the functional I satisfies the (PS). condition. [

The next result is based on Lemma 5.2 in [15], and suits our settings.

Lemma 1.12. Let ug be a positive solution of the problem (P) and v/ : Q@ — R, j € N,
of functions, a sequence satisfying ||v7 — UOH@l(ﬁ) — 0.Then there exists jo € N such that

vi(x) >0, Vo €Q, ¥V j> jo.

Proof. Indeed, we have that 0 is C' and uy = 0 on 052, then every differentiable curve
v [=1,1] = 09, v(0) = zg € 0N, we obtain ug(vy(t)) = 0, therefore

3 tuolr(0)) = Vo 1)/ (1) = 0.

and if ¢ = 0 we have Vuy(7(0))7/(0) = 0. Replacing the value of v(0) = z¢ we have that
Vugo(zg)y'(0) = 0, in other words, Vug(zg) is perpendicular to the zero level at the point
xo. This guarantees that the normal exterior to 02 at the point z( is parallel to Vu(xg)
and since ug(x) > 0 in © so we can write the outer unitary normal at z( as

VUO(wo)
IV o (o) I

Vg =

Given ¢ > 0, there exists dg > 0 such that, if z € N5, := {x € Q : dist(z,00) < do},
then

W‘ < €. Indeed, suppose by contradiction that this is not true. Then there exists

go > 0 such that for any 9, = % > 0, there exists x,, satisfying dist(x,,d0) < §, and
f(u(zn))
Tulen) | 70

Since dist(x,,0Q) — 0, and Q is a compact set, there is g € 9 such that z,, — xo. The

functions f and ug are continuous, hence ug(zy) — u(zo) = 0 and f(uo(zn)) — f(u(zo)) =
0, because zg € 012, but lim,,_ ’%‘ > g0, which contradicts (f1).

It follows from the hypothesis (f1), that f(uo(z)) = o(|uo(z)|)uo(z) for all z € N5, and
as ug is a positive solution to the problem (P), then

—Augp(z) = Aug(z) —b(x)f(uo(z))
= Aug(z) — b(x)o(|uo)uo(x)
) —

> Aug(z) — b(z)eug(x)
> Aug(x) = [|blloccuo(z)
= (A= [[bllscg)uo ().
Taking € < 2||bH , then
—Aug(z) = Aug(x) — of|uo(x)|) > 0, (1.2)

for each z € Ny,. In addition, ug(x) > ug(zo) = 0, for all z € int(Ny,), thus infy, u(z) = 0.
Note that Nj, is regular because the set  is regular and v is continuous in Ns,. Then
by Hopf’s lemma aa;f) (z0) > 0 for all 2y € uy'{0} N ONg,, then it holds 8“0 (mo) >0

for x € ug {0} N Q. Since g—:fg(x) is continuous for all x € 90 and 99 is compact7 then

%(x) > 6> 0 for all z € 99. In fact,

Oug , | (i Vuo(x) T .
8Vx(x) = <v of )’HVuo(:c)||> Vug(z)|| > 6 >0, Vaedf. (1.3)
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If y e Qand y — z¢ = avy, with o > 0, then

Vuo( 0)
[[Vuo (o) |

Let t(zo) be such that if 0 < ¢t < t(z¢) and y = x¢ + tvy,, then by the continuity of the
IVuo()]|, we have

(Vuo(z0),y — o) = <Vu0(x0), > = || Vuo(zo)||a > 0.

1 1
[Vuo(y)l| = 2. n [[Vuo(zo)ll = 50, V0 <t <t(zo). (1.4)
Take y € 2 such that y = = + tv, with = € 0Q and 0 < t < ¢(x), for (1.4) and by the
continuity of the |[Vug(+)|| we have

IVuo(y)ll = 5, V0 <t <t(x).

M\Oﬂ

Consider the open ball By,)(z) such that 9 C U By(y)(7) and by the compact-
€02

ness of 9N it follows 02 C U By(g,)(zk), in other words, 9 has a finite subcover. Let
k=1

n
Y€ U B(zg) NQ, and x € 09 such that y — z is perpendicular to 09X, therefore, we can
k=1

write, y —x = tr,. So, if y € U By (mr) NQ C U By(zo)(z0) N, then uo(y) > 0.
k=1 0 €082

n
Now, let K =Q\ U By(3,)(x1) be closed and bounded, therefore compact, it follows that

=1
exists do > 0 such that

up(y) > 02 >0 Vye K. (1.5)
Moreover, from the compactness of K and using the norm of supremum we have
[v! = woll oo ) — O-

Therefore

; 0 L
[uo(y) =’ (y)| < 5 Yy € K and Vj > jo,

thus, by the triangular inequality ug(y) — %2 < vI(y) and by (1.5) we have
02 .
62—5<v3(y), Vye KandV j> jo.

Then, v/ (y) > 0 for all y € K and for all j > jo. On the other hand, for ally € U By (Tr) N,
k=1
using again Taylor’s formula and the fact that [[v/ — ug|| o, og@ — 0, if j = +oo, with ufsq

and denoting 01(j), where 0;(1) — 0 when j — 0, we have for € 9Q such that y — z is
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perpendicular to 9€,

v (y) = (x) + Vol (2) - (y — @) + o([ly — =])

_ /v, Vo () o)t o (4
= <v I(x), |Wuo(:n)||>+ (t) + 01(j)
= <V1}j(a¢)—vuo( ) + Vug(x),t ngzg §H> o(t) + 01(4)
= <Vuj(x) — Vug(z), HEUOESO + t||Vuo(x)| + o(t) + 01(j)
t . .
= W@ @) — Vo), Vuo(@)) + | Vuo(@)| +o(t) + 1(5)
t j .
I Vuo(@)] Vo = Vug|loo [|Vuo (2) || + [[Vuo ()] + o(t) 4 01(5)

= —HV’UJ — VU,O”oot + ”VU()(x)Ht + O(t) + Ol(j)
= (- e+5> >0, Vj>jo,

because ||Vv’/ — V| Leo(@) < € for all n > ny, e sufficiently small and (1.3). This concludes
that v7(y) > 0 for all y in  and for all j > jo, which completes the proof. O

Let ug be the critical point of I obtained by Theorem 2 and the critical level —m defined
n (1.9).
Lemma 1.13. There exists p > 0 and 0 > 0 such that p < 2Jug|,
I(u) >0 —m
for u € 0B, (ug) NN

Proof. First, let us recall that the Nehari manifold N' = NT UN? = {J71(0)} is a closed
subset in HE(Q). Furthermore, I : N' — R is continuous and bounded from below, by the
proof of Theorem 2 with 0 > I(u) > —m.

Now, suppose by contradiction that for every fixed p with 0 < p < 2||lug|| there is a sequence
(un) C N NOB,(up) such that I(u,) — —m = inf,cp+ I(u), as n — oco. Define |p;| = %,

so the sequence (ul) C N N 0B, (uo) satisfies I(u}) — —m, as n — co. We can apply
Ekeland’s Variational Principle to I|ar, where N is a closed metric space. Therefore, by
Corollary 3 of [12], there is a sequence, for each fixed j > 0, (v) C N'NIB,, (ug) such that,
if n = +o0

a) I|n(vh) = —m;
b) |Jvh — uhl| = pj;
) 1| (vl)| — 0.

This means that (v}) is a (PS) sequence of I|y the functional restricted to N'". Since
—m < 0, by Lemma 1.7 (v},) has a subsequence (PS) for I such that I’(v}) — 0 and by
Lemma 1.11, up to a subsequence, we have that v}, — v7 if n — +oo. It follows from the
continuity of I and the uniqueness of the limit that

I(v') = —m, I'(v7) =0, v/ € N'N By, (ug)

and [[v? — wugl| mi(e) — 0. Taking w’ = v/ — ug and using regularity theory for elliptic
operators, as in Section 1.3, we have that ||v/ — uoHCl,a(ﬁ) — 0.
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Since ||[v9 — ug|| = p; — 0, with 0 < p; < 2||lug| and v/ > 0 for j large enough, by
Lemma 1.12, we have (v7) is a sequence of positive critical points for I that converge to ug
in the norm of HE (), which contradicts the uniqueness of the positive solution of I given
by Theorem 2. O

Note that by the previous Lemma 1.13, we obtained the first geometry of the Mountain
Pass Theorem around the minimum ug. From now on, we will translate the functional I so
that it behaves like the Mountain Pass Theorem on the Nehari manifold.

Consider the translated functional T : H} () — R,

I(u) :==I(u) +m= ;/Q(|Vu|2 — M?)dx + /Q b(x)F(u)dx + m.
Theorem 7. Assume A\ (2) < XA < A\i(Q0) and f satisfies (f1) — (fa). Let up > 0 and
—ug < 0 be local minima of I on N, then
(i) 1(uo) = 0 = I(~uo);
(ii) there exists 0 < p < 2||u|| and § > 0 such that I(u) > & > 0 for any u € OB, (ug) NN .
Moreover, I satisfies (PS). condition with

= inf I(y(t
0<ec inf max (v(t)),

where T' := {y € C([0,1],N) : v(0) = wug,v(1) = —ug}. Then there exists a non-trivial
solution u* of problem (P) satisfying I(u*) = ¢* > —m, where ¢* = ¢ —m.

Proof. (i) I(ug) = I(ug) +m = —m+m =0 and I(—ug) = I(—ug) +m = I(ug) +m = 0.
(77) By Lemma 1.13 there exists p > 0, p < |[ug — (—uo)|| = 2||uo||, and § > 0 such that

I(u) >6—m

for u € B,(up) NN. By the definition of the functional I we have

Iu)y=Iu)+m>0—m+m=09>0

for u € 0B, (up) NN, and item (27) is verified.

Therefore, I satisfies the geometry of the Mountain Pass Theorem, and so the same is
true for I. Let us evoque Ghoussoub’s Theorem | [14], Theorem 3.2]. Note that the Nehari
manifold is a Finsler variety because it is a closed submanifold of class C', with T, N carying
the norm induced by the inclusion T, N C T, Hd () = H}(Q) by | [26], Chapter II, Section
3.7]. We also have that the set F = I' is a homotopically stable family. In fact, making
X = N which is a complete metric space, then B = {—ug, ug} is a closed subset in . Since
~7(0) = up and y(1) = —up, we have that any element ([0, 1]) in I contains B. Furthermore,
for all A = ~([0,1]) € T and 7 : [0,1] x N' = N continuous, satisfying n(t,u) = u for all
(t,u) € ({0} x N)U ([0,1] x B) then yon(1l) = —ug € B. Moreover, by item (ii),

0>c" =c—m>{I((0), I(v(1))},

and thus satisfies the hypothesis (Fp) of Ghoussoub’s Theorem, and hence there is a (P.S)«
sequence (uy,) for I restricted to N'*. By Lemma 1.7, (u,) is a (PS). sequence for the
functional I in H(Q2) and by Lemma 1.11, up to a subsequence, u, — u* € N, giving

I(u*) =c¢* and I'(u*) = 0.

Therefore, u* is a critical point of the functional I on N and —m < ¢* < 0. Since the Nehari
manifold N is a natural constraint, then u* is a solution of problem (P) in H}(€2). O
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Note that u* € AN may be the trivial solution. The next theorem gives a sufficient
condition for solution «* not to be null.

Proof of Theorem 3: First, we want to show that I(u*) = ¢* < 0 which gives u* is not
trivial. Let us consider the first positive eigenfunction, normalized in Hj () and denoted
by ¢1 associated with the first eigenvalue A;(€2) of the problem —A in €, consider also
a normalized eigenfunction ¢ associated with the second eigenvalue Ao(€2), ¢ the first
positive eigenfunction (normalized to H}(€)) associated with the first eigenvalue A1 (o)
and ¢ a normalized eigenfunction associated with the second eigenvalue Ao(€2y) of problem
—A in g, each with Dirichlet boundary condition. Note that the supports of qb?, i1=1,2
are subsets of Q.

We claim that

/Q¢1¢2d96 =0 (1.6)

and

¢pydr = 0. (1.7)
Qo

Indeed, it follows from the spectral theory that, fQ V1-Voadr = 0 and fﬂo V¢ - Veidr = 0.
Since the eigenfunctions are regular functions, then by the Divergence Theorem, we have

ozévmvwmz—éAm@m

which implies

/ AMp1p2dr = 0.
Q

Since A1 # 0, we have

/ p1¢p2dx = 0.
Q
Similarly, using the Divergence Theorem, it holds
Pl dhda = 0.
Qo

In order to construct a convenient path in I' not passing through zero, define w € H}(€2)
by w = t1(¢1 + ed?) + ta(po + £¢9) with constants t1,ts > 0 and for some ¢ > 0, to be
chosen sufficiently small. Using equalities (1.6), (1.7) and also the hypothesis (f4) we obtain
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I(w) = 1/(|Vw|2 — xw?)da —I—/Qb(x)F(w)dx

2 Ja
- % /Q[lv(m@n +e0f) + ta(92 + 209)| = At (1 +ed}) + ta(¢2 + £6))?]d
b(x)F(w)d
+—/£ (x)F(w)dz
2
t2 V(61 + V)V (1 + £60) — A1 + e0) (61 + £0%)]dw
+% V(61 +209) V(92 +£69) — A(b1 + ) (02 + £69)]da
+ 2L [ 00 +26) (01 +208) = M2 + 08 (0n + <o

2
+3 /Q[wz +298)V (02 + 203) — A6 + £63) (62 + 263 ldo

+ /Q b(z)F(w)da

= [ 9o+ Vo1 - 261 +eionlde + 202 (9061 + oty ver

= Ao+ e nldn + L | (V0 -+ o) Ton = Moo+ d)nlda

+ 8 [ 960+ co8)V0s — M6+ esyoulie + 120 [ 19001+ <DV o)

— (61 +ed) (coDlde + | V(@1 +261)V(ed) — Alr + e0) (e0)lde

+ 2L [ 1906+ o) V(o) = Moo + <o) oz + 52 [ V(02 + 0§ Vi)

(e + oY) (ed)]da + /Q b(a)F(w)dx

t2 t3
(901 aot)da + e [ (VoiVor — Aofon)da
Q
- % [ (Voivon = Adhondr + 2k [ (voyven

N WY ﬁ 2 _ 42 é 0 1.0
Ason)da+ 3 | (IVoal* = Agd)da + e | (Vo3V = Adhoo)da
2

2
+ e [ 19601908~ donoflde + Le? [ (Vo7 - Aol

t1ta

12 [ (960963 andlldn + Bl [ (V0,948
Q Q

2

~ Aoaiflde + Ze | (02964 = Aondlda

+ e / [|v¢8\2—x<¢8>21dx+ JRELEE

<

a(@) =) [ e+ Boa@) - [ e+ Betouian) -0 [ e
£2(Aa(Q0) — / 9) de—l—ezzmtj { / (ViVe) — )\qﬁiqb?)dac}

=1 j=1

2
71
2
2
2
toe
/ 36



Note that,

o] = /Q IV (t1(61 + £69) + ta(dn + 69)) 2da

:t%/ \v¢112dx+t%52/ |V¢?2dx+t§/ |v¢2\2dx+t352/ V@S |*da
Q Q [9] Q

2 2
+e) > it / V¢ V§)dz
Q

i=1 j=1
<8+ 6+ 11 + 13 + e(1] + 2t1t2 + 13) Vi3] V513
=12 413+ 3 F 13e? + e(t + gty + 12)
<P tE (83 4+ 13) + 2e(t3 +13) < ] 42 4 3e(tt + t3) (1.8)
=1 2 1 2 1 2) =" 2 1 2/ .

Furthermore, using (1.8) and Remark 1.5, considering the same real number ¢ > 0 in
the definition of the function w, we have

/b(x)F(w)dx < / bx) <6|w]2+ Cﬂwrf) do
Q Q 2 q
g 2 CQ q
< blloogy [ lwl*de +[Ibloc—= [ |w|?dz
Q q Jo
< C [e]|w]* + Cllw]|]
<C [e(t% + 2+ +)+ (B +B+e(td+12)3

Using Holder’s inequality for p = ¢ = 2 and that ¢;, qb? are normalized eigenfunctions
we have

2 2 2 2
e ) ity {/Q(wiwg -~ )\gbigbg)d:r} <e ) ) it {/Q IViVe) — A¢i¢?|dx}

=1 j—1 =1 j=1
2 2
<ed N tit; {/Q(|v¢,-v¢§?| + AIW?Dd:ﬂ}
i=1 j=1
< e(t] + 2t1ta + 13) (Vo1 [12IVA) 12 + Al il lld12)
< 2e(t +13)(1+ CN)
= Ce(t3 +13).

Taking, 0 < e <1 and 0 < t] 4+ 13 < 1, since 4 > 1, its follows
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2 2 2
I(w) < (t—;t)Cma (@)~ 2 20(@) — A+ T 20 max (00) — A, 2ol @0) - 3}
q
+eC( +13) + C[e (t% + 24 e(t3 + t%)) + (t% F 24+ t%)) 2}
2 2 2
< (t;”c max{ A1 (Q) — A, Ao(©) — A} + (tl;—tQ)EQCmax{)\l(Qo) Z M ha(Q0) = A}
+ Ce(t? +13) + Ce(t3 +13) + C2(12 + 1) + C21 183 + 13)2 + €22 (c(£2 + 13)) 2
2 2 2
< (t';t)c max{ A1 () — A\, Ao(Q) — A} + (tl—th)52CmaX{)\1(Qo) — A d(Q0) — A}
+Ce(B 4+ 13) + CE2(B2+12) + C(B3 +12)2 + Ce(t? + 13))%

< (t%;t%)Cmax{)\l(Q) — X A2(Q) = A} 4+ O(e(8 +13)).

Without loss of generality, we can assume max{A;(Q) — X, A2(2) = A} = A (Q) —A <0,
thus

I(w) < (1 ;r t%)C(Al(Q) —\) + Ce(t2 +t3)
= C(t2 +13) [W)’\ + C’E] .

Taking 0 < e < %1(9), then

I(w) < C(t3 +t3) (W) = —6 < 0.

Now, let wy = t1(¢1 + €9Y), wo 1= ta(p2 + £¢Y) and wy := cos(f)w; + sin(f)wz, such that

wz = cos (4)(751((;51 + £¢Y)) + sin (4) (ta(¢2 + )
— \f [t1(f1 +e¢Y) + ta(o +e¢)]
_ V2,
T2
with [[wz || = H@wH = gﬂwH, and for all § € [0, 7],

I(wg) < C’t; cos?(0) (A1 () — \) + Cé sin?(0)(A\2() — \)

2

+ o&f c0s?(8) (A () — A) + C&2 —Sln 2(0) (Mo () — A)
+ Clellwll® + |lwell?)

< C(cos®(6)F2 + sin2(0)2){max{ A1 (Q) — A, Aa(Q) — A}
+ O(e(t] +13))

< Cf(cos®(0)t2 + sin?(0)t2) [max{)\l((l) — A A2(Q) — A}
+

C(e(t] +13))
cos?(0)t2 + sin?(0)t3 |’
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and because (12 + t3)/(cos?(0)t? + sin?(#)t2) is bounded by positive constants from below
and above, uniformly for 6 € [0, 7], then similarly to the calculations for I(w), we obtain
that there exists d9 > 0 such that

I(wg) < —02 <0,
for all # € [0, 7]. Finally, define the following curve in H}({2) given by

[(1—3s)ug + 3s(wy)], s€[0,1/3]
v(s) == S wye), s€[1/3,2/3] and 6O(s) =3(s—1/3)n
301 — 3)(—un) + (5~ 2/3) (o), 5 € [2/3,1].
Now, let us show that for 0 < s < 1 there exists ty(s) such that 3(s) =ty € N*. Note

that [o,(|V~(s)[* — Ay(s)?)dz < 0 when s € [0,1/3], s € [1/3,2/3] and s € [2/3,1]. In fact,
for s € [0,1/3], we have

/Q (|V’y(s)]2 - M(S)Q)d:c - /Q (|V((1 — 38)up + 3s(w))[2 = A((1 = 38)uo + 33(w1))2)dx
= (1- 38)2/Q (|Vu0|2 — Au%)d:v +2(1— 35)(35)/Q (VUOle — )\uow1>daz
+ (33)2/Q(Vw1\2 - )\(wl)2)dx.

Notice that

/Q (]Vw1]2 — Aw%)dw

/Q (‘V(t1(¢1 + €¢(1)>)’2 _ A(t1(¢1 + 5¢?))2>d1‘
= it [ (Vo = x6l) a2z [ (Vorvat - nonst)as
et [ (908 - e(6)ds

Ct2(A(Q) — N) + Ct3e2 (A (Qo) — A) + Ctie
Ct3(A1(Q) — ) + O(et}) < 0. (1.9)

ININ +

On the other hand, since ug is a positive solution to the problem (P), b(z) > 0, f is
continuous and wy > 0, because, ¢1, qb(l) > 0, using the weak formulation, we have

/ (VUOle - )\uow1>d:n = —/ b(x) f(up)widz < 0. (1.10)
Q Q
and finally,
/ <\Vu0]2 — /\ug)dac = —/ b(x) f(uo)uodz < 0. (1.11)
Q Q

Therefore, from inequalities (1.9), (1.10) and (1.11), for s € [0,1/3],

/Q (|Vv(s)|2 - )ry(s)2)dx <0.
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Let s € [1/3,2/3], we have
/Q (\V’y(s)\Q — )\'y(s)2>da: = /Q (\Vw9]2 — A(w9)2>dm
= / (|V(cos(0)w1 + sin(0)ws)[* — A(|V (cos(8)wy + sin(G)wg))daz
Q
= cos?(6) /Q (|Vw1|2 - )\w%) dz + 2 cos(0) Sin(é’)/Q (Vw1Vw2 — )\wlw2>dx
+ 81112(0)/Q (|Vw2]2 — Aw%)daz
Using the Holder inequality
/Q (Vo1 Vs = Awyws ) do = /Q (V161 + 260V (t2(62 + 268)) = At (61 + 269)) (92 + 269)) ) da
= tity / (V1Voo — ¢p1¢2)dx + titae / (Vor1Ve) — A1} de
Q Q

+titee /Q (VIVbs — ASYba)d + 1262 /Q (Vo003 — AP40)du

< titae([[Vor 2 Vehll2 — All g [l2ll6512)
+ titae(|[Vor |2 Vellz — Allor 2]l 65]12) = Ctitae (1.12)

and

| (9wl = xo)ds = [ (19(ta(62 + <o) = Alta(62 + <§)?) o
B [ (I90a =33 )da + 23z [ (V0968 — Aouch)do
e [ IV —<(6)?)da

Ct2(Ma(Q) — \) + Ct3e®Xa () — \) + Ctae
Ct2(A2(Q) — A) + O(et3) < 0. (1.13)

ININ +

Using (1.9), (1.12) and (1.13) we obtain

/Q (IV7()2 = M(5)? ) dz = cos*(O)CE (M (2) = A) + O(etd)

+ 2 cos?(0) sin(0)Cetyty + sin?(0)Ct3(A2(Q) — N) + O(et3)
< C(cos?(0)t2 4 sin(0)t3) max{ A1 (Q) — A, A2() — \}
+ O(e(t3 +13))

< C(cos?(0)t2 + sinQ(G)t%){ max{A;1(Q2) — A\, A2(Q) — A}

cer B\,
cos?(0)t2 + sin?()t3 ’

because (12 + t3)/(cos?(0)t? + sin?(0)t2) is bounded by positive constants from below and
above, uniformly for 6 € [0, 7] and ¢; and ¢y positive, and € > 0 is sufficiently small.
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Let s € [2/3,1], using the equalities in (1.9), (1.10) and (1.11), we have

Lavr@r = A= |

Q
— AB(1— 8)(—wy) + 3(s — 2/3)(—u0))2>da:
- (3(1- 3)2/Q (\Vw1|2 - Aw%)dx +(3(s— 2/3))2/Q <\Vu0]2 - Aug))da;

+6(1— 8)3(s — §>/

Q

(IV3(1 = $)(=wn) + 3(s — 2/3)(~uo))

(V’wl Vug — )\wlu0> dx

< 0.

Recalling Lemma 1.10, we have that ¢ is continuous and then §(s) € N'* for all s €
[0,1]. From Lemma 1.4 we conclude that I(y(s)) < 0 for all s € [0,1]. Thus, I(3(s)) <
maxo<s<1 I(5(s)) <0 for s € [0,1]. By the definition of the min-max level ¢, it follows that
I(u*) = ¢* < maxp<s<1 I(5(s)) <O0.

Finally, suppose by contradiction that «* is non-trivial and non-negative. Then the set
Q C Q in which u* = 0 is bounded, and the set of boundary points dQ C € is bounded. Let
zo € 9Q be such that u*(zg) = 0. Furthermore, since u* € C' (see section 1.1), then 9 is
regular and compact.

Given 0 > 0 sufficiently small, there exists d; > 0 such that, if x € N5, := {z €
O\Q : dist(x,0) < 61}, then |u*(x)| < d. It follows from hypothesis (f1) that f(u*(z)) =
o(Ju*(z)|)u*(x) for all x € Ns,, and since v* > 0 by assumption, then —Au*(z) = Au*(z) —
o([u*(z)|) = 0, for all x € Nj,. Moreover u*(z) > 0 for all int(Ns, ), thus infy, u*(z) =0.

Note that Nj, is regular because the subset 99 is regular and u* is continuous in N, .

Then, by Hopf lemma %(m) > 0, for all x such that u*(z) € 09, and v, is the exterior

normal vector to Q at z, namely Du*(x) # 0, which is impossible in an interior minimum
point of w*. Thus, ©* > 0 which is impossible by the uniqueness of the positive solution. The
same result we obtain when u* is non-positive. Therefore, u* changes sign, which concludes
the proof. O
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Chapter 2

Asymptotically Linear Problem

In this chapter, we are interested in investigating the existence of a positive solution and
a sign-changing solution for the problem (P) with f being asymptotically linear. We know
about few works in the literature on the logistic problem with this nonlinearity behavior. In
this regard, we are able to prove that such a problem has a nontrivial solution and a sign-
changing solution in HE(Q). Following the ideas from the work by Brown and Zhang [4],
the search for a solution began initially as we studied the properties of the Nehari manifold
associated with the functional. We split the Nehari manifold into disjoint subsets and
observed that under certain conditions, it is possible to show that A0 is a null set, N~ is an
empty set, and N7 is a non-empty and bounded set. Having done that, we minimized the
functional I over N and obtained a critical point. Furthermore, we show that the critical
point is nontrivial, meaning that the solution to the problem (P) is positive and classical.
By employing techniques similar to those in the renowned article by Brezis and Oswald [3],
we were able to establish the uniqueness of the solution. Upon obtaining the existence of
a solution, we questioned whether it was possible to demonstrate the existence of a sign-
changing solution for this problem. Faced with this inquiry, we relied primarily on the work
of Fernandes and Maia [13]. Finally, through the Mountain Pass Theorem constrained to
the Nehari manifold, we obtained a nontrivial critical point. By once again employing the
ideas from [13], we showed that the critical point is a sign-changing solution.
Here we consider the problem

(P")

—Au = Aa(x)u — b(x) f (u) in
u=20 on 0f}

where  C RY is bounded open with 92 smooth, ) is a positive real parameter, a,b: Q — R
are functions in L*°(§2) such that a(z) > a > 0 a.e. in Q and b(z) is non-negative and
b(x) = 0 in a connected subset Qy CC Q with positive Lebesgue measure and smooth
boundary, in other words, 9Qg € C2. The f function of class C*(R) is odd and satisfies the
conditions (f1), (f3), (f1), (f2)" and (f5)" mentioned in the introduction.

Example 2.1. The function f(s) = li% for s > 0 and loo = 1 satisfies the hypotheses
above.
Indeed,
(f1) lims o @ = limg 0 ﬁ% =0
(fZ), limg 00 @ = lim, 00 1_7_% =1

42



2

s s g s 52 s2)—s% 352 s
(f3) % - f/(s) = 1+32 - (14:332)22 = (1—214?82)2 3 - (1182)2 < 0 lmphes that f()

f'(s) <0 for s > 0.

(f1) Note that

3s2(1+ s?) — s3(2s)  3s?+3s2 —2s*  3sP4 5!
(14 s2)2 T (14822 (1452)2

f'(s) =
and by L’Hopital theorem

4 1252
lim f/(s) = im63+73 hmuzl

5—00 s—oo 4s + 483 s—o0 4 + 1252
Then, given € > 0, there is R, such that for all s > R., we have
[f'(s)] <1+e.

Note that fixed 0 < ¢ — 2 < 2* — 2, there is Rg such that 1+ ¢ < |s|972. Taking
R = max{R., R2} we have for all s > R

|f/(s)] < [s]772. (2.1)
Since f is C(R), we have for 0 < s < R that for C > 0
If'(s)] < C. (2.2)
By (2.1) and (2.2), we conclude that

[/ (s)] < O+ 5|77

(f5) For F(s ; 1ft2 = 1(s® —In(s® +1)). We set G(s) = f(s)s — 2F(s), that is,

84

G(s) = ek s2 4+ In(1 + s%)
st — 52 +In(1+ s?) — st + s2In(1 + s)
1+ s?
In(1+ s2)(1+ s%) — 52
1+ s?

2
= In(1+4s% —

s
1+s%
We have that G(0) = 0 and for s > 0

G'(s) =

s(1+ s%) — 5225
1+s2 +s2

1—1—32 {1+52 }

1+82{ 1+82:|

- 1—1—32 |:1—|—82:|

:mo-
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Then, G(s) > 0 para s > 0. In addition,

2

. . . 2y S
sll{go G(S) o sliglo ln(l TS ) 14 52
. 2 . s
- shﬁrgoln(l—i_s)_slblgol—l—s2
= lim In(1+s%) -1
5—00
= —4o00.

Example 2.2. Ezample of a function that satisfies condition (b1). Let b: Bo(0) C RN — R
be given by

0, |z <0,5.
Consider A1 (2) < X with A\1(Q2) close to \. We set

M) [1+2]z)?
‘=73 [2+Ix|2]'

1
0, 2_‘1‘2
b(@:{es .l >0.5,

Taking loo > A1(2). Then
Aa(z) — A1(Q)
loo
142z |?
MO () M@ @) (1P
2+ |z|?

g(z) =

loo e

A(Q) [z -1
loo \2+4|z]2)°
The b(x) function is non-negative, the a(x) is positive, the g(z) function changes sign, and
b(z) > g(z).
Remark 2.1. By (f1), we have that given € > 0, there is § > 0 such that
[f(s) < elsl, (2.3)

for all |s| < §. By (fa), it follows that for |s| > R > 1,

()] < /0 e < /0 Can(1+ [t02)dt = ar(Js] + M]saY). (2.4)

Since |s| > 1, then |1| < |s|771, and
[f(s)| < Mils|Tt, ¥ |s| > R> 1.
On the other hand, for 6 < |s| < R, and since f is continuous, entdo

f(s)

1| <Mz, Mz > 0.

Thus, for § < |s| < R,
|f(s)] < Ma|s|"". (2.5)

Adding up the inequalities (2.3), (2.4) and (2.5), we have

£ (s)] < els| + M]s|"™, (2.6)
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which implies that
€ M
|F(s)] < Slsf* + —[s|? (2.7)
2 q
for all s > 0.
Remark 2.2. Note that of the hypothesis (f2)' and L’Hépital’s theorem, we have

lim £08) _ le. (2.8)

s—o00  §2 2

In fact by (f2), we have that f is increasing, then by L’Hépital’s theorem, we have

lim F(s) =

i
s—o00 g2 s—oo 28 2’

Remark 2.3. By (f2) and (f3), we have that if s > 0 and 1) s increasing, then 12 < 1.

S S

We will look for a solution in the space Hg () with the standard standard

Hu||2:/ |Vu|?dz.
Q

We consider the functional I : Hi(Q) — R associated with the problem (P’) is given by

I(u) = % /Q (1Vul? — Ma(z)u2)dz + /Q b)) F(u)da, (2.9)

of class C? with derivative given by
I'(u)v = /Q(Vqu — da(x)uv)dz —i—/ﬂb(w)f(u)vdw,
for all u,v € H}(Q2). In addition, we set
J(u) == I'(u)u = /Q(|Vu\2 — Xa(z)u?)dx + /Q b(x) f(u)udz,
and we set Nehati manifold like set
N ={uec HNQ) : J(u) =I'(u)u =0}

Note that, v € N if and only if

/ (1Vul? - Aa(z)u2)dz = — / b(@) f(w)u da. (2.10)
Q Q
There is a fibrering map associated with I defined by
2
Ou(t) == I(tu) = t2/(|Vu2 — Xa(z)u?)dx —i—/ b(x)F(tu)dz, (2.11)
Q Q

and its derivative in the variable ¢ is given by

o,(t) = 15/9(Vu|2 — da(z)u?)dz + /Q b(x) f(tu)u dz. (2.12)

The following lemma relates the Nehari manifold to the first and second derivatives of the
fibrering map.
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Lemma 2.1. If u € N, then ¢/,(1) = 0. In addition, i) if ¢!/(1) > 0, then uw € N*; i) if
#"(1) <0, then u € N~ ; iis) if ¢/(1) = 0, then u € NO.

Proof. For the first part, consider u € N. By equalities (2.10) and (2.11), we have
¢, (1) = —/Qb(x)f(u)udx —l—/ﬁb(x)f(u)udx = 0.
The second part follows from the definition of the sets above. Indeed, if ¢/ (1) > 0, then
/Q(Nu\2 — Xa(z)u?)dz + /Q b(z) f'(u)uds > 0,

in other words, v € Nt and this proves item (i). The other items follow in a similar
way. O

We define the set in N.
Nt = {u € N;/(]Vu\z — Xa(z)u?)dzx +/ b(z)f (u)u® dr > 0}
Q Q

b(x)f(u)u dx +/ b(z) f (u)u? do > 0}

Q Q

= {u eN;—
= {u eEN; i b(z)(f (u)u? — f(u)u)dz > o}
b(x) (f’(u) — f(“)) u? dx > 0} .

u

:{uEN;

Q

Similarly, the sets

NO = {u e/\/;/Qb(x) (f’(u) - f(u“)) u? dx :o},

N = {ué/\/';/ﬂb(a;) <f’(u) _ I

e =
N————
N
no
QU
S
A\
o
H—/

Moreover, we also define the following sets

LT = {u € H}(Q); |||l =1, /Q(]Vu\Q — da(x)u?)dz > O} ,

L’ = {u € H(Q); ||lul| =1, /Q(|Vu|2 — Xa(z)u?)dx = O} )

L™ = {u € H(Q); ||lul| =1, /Q(|Vu\2 — da(z)u?)dz < O} ,

and with respect to the nonlinear term, we define

Bt = {u € HY(Q); ||lul| = 1,/Qb(x)f(u)u dr > O} )
50 = {u e #3@ull = 1. [ o)y do =0},
B = {u € HY(Q); ||lul| = 1,/Qb(x)f(u)u dzr < O} .
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Remark 2.4. The assumption (f3) and b(x) > 0 ensure that N~ = (. Additionally, if
A(a) < A < Xa), we have L~ # 0. In fact, taking ¢1 as the first positive eigenfunction
associated with the first eigenvalue Ai(a) of the problem (Py). Then

/ (IV6n[? — Na(w)é?)dz = / ((a) — Na(z)é?dz < 0.
Q Q

And also, LT # 0, as taking ¢? as the first positive eigenfunction associated with the first
eigenvalue \)(a) of the problem (Py) restricted to Qq, define

M (x), =€
plw) = { 1) €S

0, xe€ Q\QO
We have that |¢|| = ||¢9]| = 1. Thus,

/ (IVel? - Aa(x)p?)dz = / (IVel? — Na(a)p?)di + / (Ve - Aa(z)¢?)dz
Q Qo Q\Qo

_ / (IVE? — Aa(e) (¢9)?)da

Qo

- /Q (@) — Na(z) (¢)2dz > 0,

and then, ¢ € L.

Remark 2.5. If0 < X < A\i(a), then N = () since, as we will see in Section 2.2, [o(|Vu|>—

Ma(z)u?) dz will be a norm, and by the hypotheses (f1), @ increasing for s > 0, and b(x) >
0, we have that the equality (1.7) will not occur. On the other hand, if \1(a) < A < A(a),
then Lemma 2.9 will ensure that N # ().

We consider the subsets Q. = {x € Q: b(xz) > 0}. Note that if b is continuous, then
Qo = Q is a closed subset of RV,

Lemma 2.2. If0 < XA < \(a) then L= N B = {).

Proof. Suppose the contrary, i.e., that there is u € L= N BY, then [ju|| = 1 and
0= / b(x) f(u)udr = / b(x) f(u)udz.
Q Q4
Note that f(s)s > 0 and b(x) > 0 in Q4 , then
/ b(z)f(u)u = 0 implies that b(x)f(u(z))u(z) =0 q.t.pin Q.
Q
Consider x € Q4, that is, b(z) > 0, then f(u(z))u(x) = 0 a.e. in Q4, and by hypotheses

(f1) and (f3) we have that u(x) = 0 a.e. in 4. Thus, supp{u} C Q. In addition, since
u € L™ and supp{u} C Qo, if 0 < A < X(a), then

0< /Q (A\(a) = Na(z)u’dz < /Q (|IVul? = Xa(z)u?)dz
= /(|Vu]2 — da(z)u?)dx

Q

< 0

Since a(x) > 0, this implies u = 0, which contradicts ||u|| = 1. Tt follows that L~ N B° = (.
O
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Lemma 2.3. Suppose that 0 < X < \)(a), then NV = {0}.

Proof. Suppose by contradiction there is ug € N°\{0}, i.e., ug satisfies

/Q b(z) ( Flug) — £ SZO)> W2dz = 0.

/zm»me—ff“)%+émf@me@—ﬁ?§u@w:a

Q0 0

/Q\QO b(x) (f’(uo) - fEZ)O)> uddr = 0.

If supp{uo} N \Qo # 0, by (f3), we have a contradiction. Thus supp{ug} C Q. It follows
that

Thus

which implies that

/Qb(:c)f(uo)uodx = / b(x) f(uo)updx = 0,

Qo

and so, t2- € BY. In addition,

? luoll

0=— /Q b(x) f(up)updr = /Q(|Vuo|2 — Xa(z)ud)dz,

implies that

fﬂo |Vuo|?dz B
fQO a(z)uddr
Thus,
l(a) = 2 —
fQO a(x)ugdz
which is a contradiction. ]

Lemma 2.4. For all u € N, we have I(u) < 0.

Proof. Let w € N, then by (2.10) and by hypothesis (f5), we have

I(u) = = /Q (1Vul? = Aa(z)u?)dz + / b(a) F(u)dz

2 Q

= —;/Qb(x)f(u)ud:v—i-/gb(x)F(u)dx
1

=5 [ Mo2F@) - fwds <o

Moreover, I(u) = 0 if and only if u = 0 or supp{u} C Q. O

Up to now, we assume (by), which can be seen in more detail through the following
observation:
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Remark 2.6. Let A\(a) < X < A(a), ¥1 > 0 be the first eigenfunction in H}(Q) associated
with the first eigenvalue Ai(a) of the problem (Py), and @1 > 0 be the first eigenfunction
in HE(Q) associated with the first eigenvalue A (Q) of the problem —A in Q, with Dirichlet
boundary conditions denoted by (P3). Since ¥ is a weak solution of the problem (P;) and
1 is a weak solution of the problem (P,), then

/ Vi Vude = Al(a)/ a(x)pvde, Yo € HE(Q) (2.13)
Q Q

and

/ Vi1 Vodr = A\ () / prvde, Yw € HY(Q). (2.14)
Q Q

Taking v = 1 in the equation (2.13) and w = 11 in the equation (2.14), we have that

/V@blVngda::/\l(a)/a(x)wlgoldw
Q Q

and

/V<P1V¢1d96—>\1(9)/ p191d.
Q Q
Thus,
Al(a)/ a(w)wlgold:v:)\l(ﬁ)/ p1Y1dx
Q Q
or equivalently

[ Gat@yote) - (@) = .

Thus, we must have that (Ai(a)a(z) — A\ (2)) changes sign, because P11 > 0. In addition,
since a(x) > 0 a.e in Q and A\ (a) < A, then Xa(z) — A1 () > Ai(a)a(z) — A\ (Q2), from this
it follows that Aa(x) — A\1(R2) can take on negative values, which is in line with (by).

Note that if ; = {x € Q : da(x) — A1 (2) < 0}, then we can have Qp C 1, and a
hypothesis (b1) will be satisfied.

Lemma 2.5. Suppose that 0 < X\ < X(a) and f satisfies (f1),(f2) — (f5)' and b satisfies
(b1). Then N is a bounded.

Proof. Suppose otherwise, then there exists a sequence (u,,) € N such that [Ju,| — +o0.
Consider the sequence v,, := ”Z—Z” Up to a subsequence, (v,,) is bounded in H}(Q), v, — v

in H}(2), v, — v in LP(Q) for 2 < p < 2* e v,(x) — v(x) a.e. in Q. Since 1) g increasing

S

for s > 0, by hypothesis (f3), £5) ig even and satisfies hypothesis (f1), we obtain

fUlunllvn(z)) o

o) o) ) =0

n

Note initially that u, € N7, then Q, := supp{u,} N (Q\Qy) # 0 and |Q,| > 0, then,
supp{v,} N (Q\Qo) # 0. Thus, for all n € N,

b(@) f (1)t () > 0 > /Q ba)? (Hunuvn Wda > 0.

Q’IL
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Thus, dividing J(u,) = 0 por |lu,||?, we have
0 = /Vun2da:—)\/a(m)u%dx+/ b(x) f (un)undzx
Q Q Q
= /an]2(:p)da:—/\/ a(x)v,%dw—l—/ b(x)Mv%dx
Q Q

Q Un
= /anIde—)\/a(a:)vﬁdm—{—/b(a:)f(nmlmvﬁdaz

> /anIde—)\/a(a:)vgdx. (2.15)
Q Q

Thus,
0>1- )\/ a(x)vidz. (2.16)
Q

Taking the limit as n — oo in equation (2.16) and using the compact embedding of Sobolev
H}(Q) — L*(Q), we have

0>1- )\/ a(x)vide.
Q

If v = 0, we obtain a contradiction, therefore, v # 0. Thus, we have two possibilities:
supp{v} C Qo or supp{v} N (Q\Q) # 0 has positive measure. If supp{v} C Q, and since
v, — v in H}(Q), it follows from the inequality (2.15)

n—oo

/QO |Vo|?dz — A /QO a(z)vidx
> (%a) = \) /Q a(apds

> 0,

0 > liminf/ |an|2dac—)\/a(:1:)v2d:r
Q Q

AV

which is an absurd. We conclude that supp{v} N (2\Qo) has positive measure. Let Q :=
{z € Q\Qp : v(z) # 0} and |Q| > 0. Since limy, o0 vn () = v(x) we have up () = ||t ||vn(2)
and lim,, o0 tn () = £00 almost every o € Q. Take 7, (x) = ||uy ||vn(2), then r, (x) — +o0.
Thus, using Remark 2.2

F(ra(x)) _ 1

lim = %O, almost every z € ().

n—o0o r% (m)

Following from this and the Fatou’s lemma,

lim inf/Q b(z) F(Zn(m))vi(x)dac > / lim inf b(x) F(rn(x))vi (z)dz = /Qb(w)%ovz (z)dx >0 (2.17)

oo ri(x) g noee ri(x)
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On the other hand, since u,, € N'" by Lemma 2.4, we have

I(uy) I(||unlon)
0= llunl? [ |2
U |2
= 2"||un”||2 /Q(|an|2 _ )\(I(m')%%)dx + ”uiHQ /Q b(l‘)F(Hunan)dx
- ;/Q(‘an\?—AG(Q?WZ)dCCJr/Qb(x)de
1 F Up || Vn (T 1)721 T
= 2/Q(\an\Q_)\a(x)v,%)dx+/ﬂb($) (HHulHQ( ))U%Exidl‘

= ;/Q(\an\z—)\a(x)v%)dx+/ b(x)mvzm)d:ﬁ

Q

Now, using (2.17), v, — v # 0, by the compact embedding of H}(€2) into L?(12), given the
hypothesis a € L*>®(Q2), Lebesgue’s Dominated Convergence Theorem, Fatou’s lemma and
(b1), we obtain

0> :ligninf{;/Q(|an|2—)\a(:v)v?l)da:jt/Qb(m)Wv%(x)dx}

1 9 A 9 .. F(rn(x)) 2
/QVU] dx—/ﬂa(x)v da:+/ﬂb(a;) lim inf ———~v; (x)dx

2 whoe 13 (x)

> AléQ) /QUQda:—;/Qa(a:)Ude—i-/ﬂb(x)l;OUQ(x)dx

{ /Q () — Aalz) + b(w)loo)Ude}

v

_1
2
>0,
resulting in an absurd. Therefore, N’ is a bounded. O

Lemma 2.6. Suppose that ug is a critical point of I restricted to N such that ug ¢ N°,
then I'(ug) = 0 in H-(Q).

Proof. 1f ug is a critical point for I restricted to N, then wg is a minimizer of I(u) subject
to the constraint J(u) = 0. Hence, by the Theorem Lagrange Multiplier, there exists u € R
such that I'(ug) = uJ’(ug). Thus,

(I'(ug), uo) = p{J' (uo), uo)- (2.18)

Replacing J(up) = 0 into (2.18), and using (1.7), we have

(J (ug),ugp) =2 /Q(|Vuo|2 — \ud)dz + /Q b(x) f (uo)udde + /Q b(x) f(up)updx

:/Qb(x) <f’(u0)— f(?Z)O)>u(2)dm.

Since ug ¢ NV, it follows that (J'(ug), up) # 0 and applying (2.18) we obtain u = 0, that is
I/(UO) =0. O]

Proof of the Theorem 4. Assuming by contradiction that there exists a positive solution
u to problem (P’), then, multiplying the first equation of problem (P’) by ¢9, the first
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positive eigenfunction in Hg () associated with the first eigenvalue A\Y(Q2) of the problem
(Py) restricted to €, we obtain

—Aug] = Aa(z)ue] — b(w) f(u)¢]-
By integrating by parts in this open set with a smooth boundary 92y, we obtain

_ 07 0 04% 0

0 = o, VuV¢idx )\/QO a(x)upidr + /BQO u n dx + /Qo b(x) f(u)pidx
— )\ )\ 0 liat 0
= —(A—=2X{(a)) /QO a(x)upidr + /890 u on dx + /Qo b(x) f(u)pide,

where 7 is the outward unit normal vector on 9. On the other hand, fQo b(z)f(u)d? dr =0
and B0
/ u—2dr <0 and (\— /\1(90))/ a(r)ugldr > 0,
a0, N 2
and this yields a contradiction. ]

Note that, given a sequence (u,) € N, we will now present some convergences that
will be used throughout this chapter. By Lemma 2.5, assuming hypothesis (f2)’, wuy, is
bounded, and then, up to a subsequence, we have u, — ug in H}(Q), u, — ug in LP(),
and uy,(z) — up(z) almost everywhere in €. As in Chapter 1, it holds

nh_)ngo b(x)F(un)dx:/b(x)F(uo)dac, (2.19)
Q Q
Tim [ b)) dr = / b() f (o) uo da, (2.20)
Q Q
and
nh_}rrolo b(:v)f’(un)u%dx:/b(x)f’(uo)ugdx. (2.21)
Q Q

The next lemma is analogous to the one found in [6], here proven with the necessary
adaptations.

Lemma 2.7. Assume 0 < XA < \)(a) and (b1). Every sequence (uy,) of Palais-Smale, (PS).,
with ¢ < 0 of the functional I restricted to N has a subsequence (PS). of I in H}().

Proof. Let (up,) C Nt be a Palais-Smale, (PS)., sequence of the functional I restricted
to N'*. Then, by Lemma 2.5, (uy,) is bounded in HE(Q). Using the Lagrange multipliers
theorem for the derivative of the functional I constrained to A", we can write

VI(up) = Va+I(ug) + pnVJ(up). (2.22)
If ¢ < 0, since N is bounded in Hg(Q), then, up to a subsequence, u,, — u in HZ(Q)

and u, — uw in LP(Q) for 2 < p < 2*. By Lemma 2.4 we have I(uy) < 0, then

1/ ]Vun]2dx—)\/a(x)u%dx+/ b(x)F (up)dz < 0.
2 Jo 2 Ja Q

If u, — u=0in H}(Q), then u,, — 0 in LP(Q), 2 < p < 2*. Through weak convergence,
Sobolev embedding, and Lebesgue’s Dominated Convergence Theorem,

n—oo

0 < lim inf/ |V, |2de < 0.
Q
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Thus,

lim ||uy| = 0.
n—oo

Since I is continuous, then

c¢= lim I(u,)=1(u) =0

n—oo

which is a contradiction. Therefore, u # 0.
By hypothesis (fy), for any v € H}(Q) it holds

' LU i+ fulots| <l

where C' is a positive constant.
Thus,

(VI (un),v)| = |2<un,v>—/Q[f’(Un)uwf(un)}vl
Cllv|l, Yve Hi(Q).

IN

This shows that (V.J(uy,)) is bounded in H{ (). Since |[(VJ (up), un)| < [|VJ (un)||||lun|l < C,
passing to a subsequence, we have that [(VJ(uy),un)| — p > 0. Let us show that p > 0. If
supp{u} N (2\Qo) # 0 and has positive measure, then by (2.21) and by (f3)

po= lim [(VJ(un), un)l

= lim [ b(@)[f (un)up — f(un)un]da

n—o0 9]
- / b(@)[f (w)u? — f(u)uldz > 0.
Q
Taking the inner product of (2.22) com u, € N'*, we have
0= (up),un) = (Vparl(un),un) + (VI (uy), up)
= on(1) + (VI (up),un).

It follows that u, — 0 since (VJ(uy)) is bounded in H}(Q) and |J'(up)u,| — p > 0.
Therefore, taking the limit in (2.22)
VI(up) = Va+I(uy) 4+ on(1),

which implies I'(u,) — 0.
If supp{u} C Qo, then

1
0 > liminf I'(u,) > 2/ \Vul|*dx — ;\/ a(x)u*dr > (\(a) — )\)/ a(z)u*dx > 0,
Q Q

n—oo QO

which is a absurd.
On the other hand, if ¢ = 0, como (u,) C N is bounded, we have that u,, — u, by (2.19)
and (2.20)

1
0=c = lim I(uy) = lim I(uy,)— §I/(un)un

n—o0 n—oo

— im [ b(@) () — * Fun)un)da

= [ )P - fda.
Q
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It follows that u = 0 or supp{u} C Q. If supp{u} C Qq, then by the compact embedding
of H}(Q) in L%(2) and by Lebesgue’s Dominated Convergence Theorem

n—oo

1
0 = liminfI(u,) > / |Vu]2dx—)\/a(m)u2das
2 Ja 2 Ja
> (A(l)(a)—)\)/ a(x)u’de.
Qo

Since a(x) > 0, we have that uw = 0, that is, v, — 0 when n — oo. By the compact
embedding and Lebesgue’s Dominated Convergence Theorem

0= lim I(uy)> liminf/ |V, |*de > / |Vul|*> >0
Q Q

n—o0 n—o0
implies |luy,| — 0 when n — co. Since I is a functional of class C!, then
I(up) = 1(0) =0 and I'(u,) — I'(0) =0

when n — oo. This completes the proof of the lemma. O

2.1 Regularity of the solution
In this section, we will assume that a,b € C%*(Q). Consider the equation

—Au = da(@)u —b(x) f(u) = k(z)(1 + |u]) = g(z,u)

where

N
Let us show that k € L2 (€2). Note that

_ Patu— b s
N 1+ |ul
Allallsolul + [|blloo| £ (w)]
1+ |ul
Mallsolul | [blloo(elul + Mlul*~h)
1+ |u 1+ |ul
7]| S b|| oo M | 1|72
< Alafloe + Ibllsoeful  [1Blloo M ul*™"|ul
1+ |ul L+ |ul
< Mlalloo + [[bllcce + [1blloo M [u]?™2 =: 1 + eaful?™?,

()

with c¢1, co positive constants. We observe that
/ (@) > do < /(01 + calu]t™?) % da
Q Q
=c1|Q| + 02/ |u|(q_2)%dx < 00,
Q
since for 2 < g < 2*, we have to

N
2

N
0<qg—2<2"-2 = 0<(q—2)?<(2*—2)
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N N 2N N 2N —2N +4\ N 4 N .
2 _2)2<N—2_2>2<N—2)2<N—2>22'
N
2

Thus, k € L(ZOC)(Q). Therefore, by the Brezis - Kato Theorem [26], u € L*(2), for any
1 < s < +o0. Thus, —Au = a(z)u — b(z) f(u) € L(2), because,

/ Ma(z)u — b(a)f(w)fdz < / (Allallsolul + [Bllool £ (w)])*de
Q Q

/Q(AHGHOOIU\ + [blloo (elul + Mlul*™1))*da

IN

< 27 INalls /Q b dz + 2571 ([Blloce)® /Q (lul + Jul*)*de
= Clul?+CIQ+ Clul Y < .

Since ¢ —1>1,(g—1) < (¢g—1)s < +o0 and u € L*(Q?), taking 5 := (¢ — 1)s, with
1 <5 < 400, we have that

/ |Aa(z)u — b(z) f(u)’dz < oo.
Q

Therefore, u € W25(Q) for all 1 < s < oo, and by Sobolev’s immersion, W?2*() —
Ch(Q), u € C1(Q). It follows from this and from the assumptions that f € C*(Q)
and a,b € C%%(Q) that \a(x)u — b(z)f(u) € C*(Q). Finally, by Schauder’s theorem
u € C**(Q). And with this we show that u € C*%(Q) N C(Q) is a classic solution of the
problem (P).

2.2 The case 0 < A < A\(a)

Let’s see that in this case, the norm ||ul[y = [, VuVvdz — X [, a(z)uv dz is equivalent to
the norm |ul| = [, [Vu|?dz of H}(Q). In fact, consider the eigenvalue problem (P;) and
define the application H{(Q) x H}(Q) by

By (u,v) = /QVqudx—)\/Qa(x)uvd:z:.

Note that B) is a bilinear form that satisfies

i) Ba(u,v) = Bx(v, u);
i) |Ba(u, v)| < [ull[fv]];

iii) Ba(u,u) > [Jul®.

In fact, (i) it follows

By(u,v) = /QVquda;—)\/Qa(a:)uvd:r
= /VvVud:):— )\/ a(x)vudx
Q Q
= B)\(Uvu)'
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i1) By Holder’s inequality and Sobolev embeddings, we have

/Vqudx—)\/a(:c)uvd:c
Q
/\Vu Vv\da:—i—)\/ )||uv|dz

< ulllvl + Ml Cllufo]
= Cxllullfv]-

[Ba(u,v)| =

IN

AN

iii) Since A\i(a) [, a(z)u?dz < [, |Vu|*dz, then

By(u,u) = /Q|Vu2dx—)\/ga(:r)u2d:r

A
> Vqua;—/ Vulldx
_/Q| e = 57 [ 9
A
= (1- — 2
( W))Huu
> 0.

Thus, By (u,v) defines the norm

i i= [ (VuPde = [ a@lafde < [ [Vuldo = ul?,
that is, |Jul]|x < ||u||. On the other hand,
Jully = [ 1VuPde =2 [ at@)luPda
/|Vu2dx/ \Vu|?dx
B <1 ey ))/'V“' dr
= (24952 Il

that is, if A < Ai(a), then

[ullx = Cllull,
where C' is a positive constant. Therefore, || - || and || - || are equivalent.
In addition,
L2
I = S+ [ b@) P> o
Q

Thus, I is bounded from below by 0. On the other hand,

() = ;/Q(Wu]Q—/\a(x)uz)dx—i-/gb(x)F(u)dx

AV

~ul
—||u

9 A
C

Sl = oo,

Y
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if ||u|| — oo. Therefore, I is coercive, and by the minimization theorem, there exists ug €
HZ(9) such that
I(up) = inf I(u) > 0.
(o) ueHy (Q) (W) 2
Since I(0) = 0 then
1
I(up) = 3 / (|Vuo|* — Na(z)ud)dx —|—/ b(x)F (up)dx =0,
Q

Q

and up = 0 is a minimum point of I in H}(Q). Suppose there exists u; € H}(2) as a
positive solution of (P), then u; € N'*, however, by the Remark 2.4

< /Q(Vu1]2 ~Aa(@)d)dz = —/Qb(ac)f(ul)ul <o,

which is a absurd. Therefore, for the case 0 < A < Ai(a), the problem (P’) has no positive
solution.

2.3 O caso M\ (a) < A < Xa)

The condition Aj(a) < A < A{(a) implies that L= N BY = () by Lemma 2.2. In addition,
Lemma 2.3 ensures that N0 = {0}.

Lemma 2.8. Assume A\1(a) < A < A(a). If u € N'*, then supp{u} N (Q\ Qo) # 0.
Proof. Let u € N, that is,

/(]Vu\z — da(z)u?)dx + / b(x) f(u)udz =0, (2.1)
Q Q
and suppose by contradiction that supp{u} N (Q \ Qo) = (0,  thus
supp{u} C Qo. Then,
/ b(x) f(u)udzr =0 (2.2)
Q
which implies that (2.1)
Ja, ]Vu\de
fQ r)udr
that is,
|Vu|?dz
Ala) < f“O S
fQ r)uidx
which is a contradiction with the hypothesis of the lemma. O

In the setting that f(s) is asymptotically linear, as s goes to infinity, not all functions
u in H}(2)\{0} are projectable on the Nehari manifold. In order to obtain a subset of
functions in H}(2) which are projectable we define the set

£ = {uc H(\{0) /Q(]Vu\z ~a()d)dz +/ b(@)laeuldz > 0}.

Q

Note that £ # (), as taking ¢ positive eigenfunction associated with the first eigenvalue
A{(a) of problem (P;) restricted to o, define
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B M (z), =€ Qo
ple) = {O, r € Q\Qp.

Then
[0Vl = xa@@is + [ bl = | (@) ~ Nala)(@Pdo > 0
Q Q Qo

Thus, ¢ € €.

Remark 2.7. L= NE # 0.
In fact, let iy be the first eigenfunction of the eigenvalue problem (Py), then

[ 090 = ra(e)w1)de = [ (@) = Nala)(@1)?ds <o,
Q Q

On the other hand, since 1y € H} () and using (b1), we have that

/Q!WlIde — / )(eb1) dx+/b

> M@ [ @nPde = [ al)wnPde+ /Q b(2)loo (1)
= [ P = dalo) + bl ()

> 0.
Therefore, 1 € L™ NE.

Lemma 2.9. Assume A\(a) < A < A\(a) and f satisfies (f1), (f2)' — (f1). Then, there is a
unique real number t = t(u) > 0 such that tu € N if and only if H%H eL NE.

Proof. Suppose that II%H € L™ N &, we will show that there is ¢ such that tu € N'*. Let
H%II’ that is, [,(|Vv[* — Aa(z)v 2)dw < 0. If supp{u} C Qq, then supp{v} C Qp, thus
fQ v)vdz = 0, implies that v = H T € L~ N BY, which is an absurd by Lemma 2.2.

v =

Thus, supp{u} N (22\ Q) # 0 and has positive measure, then we can take t — 0% and by
hypothesis (f1), we have that given € > 0, there is ¢ such that if 0 < ¢ < ¢, then

f(tw) f(tu)
tu tu

w? < e|blloou® € LY(Q).

}b(x)

< ||b||oo'

By the Lebesgue Dominated Convergence Theorem, it follows that

im [ o)l 02 ay = o (2.3)

t—0t Jq tu

Since ”u” €L

lim Sut) = lim [ (|Vu> = Xa(z)u?)dz + lim b(w)Mqux

t—0t 1t t—0+ Jq t—0+ Jq tu

— / (|Vu|2 — )\a(az)uQ)dx < 0. (2.4)
Q
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On the other hand, since u € £ an using Fatou’s Lemma, we have

tlggo(b“;t) > lig(i)glf{/Q(|Vu|2—Aa(x)uQ)d:U—l-/Qb(as)f(ttJ)ugdm}
2 al\x ’LL2 XL X U2 X
>/Q(|vuy A())d—k/ﬂb()lood
> 0. (2.5)

From (2.4) and (2.5), it follows that there exists ¢ such that tu € N'F.
Conversely, if there exists ¢ > 0 such that tu € N't, we have by Lemma 2.8 that supp{tu}nN
(2\Qo) # 0 and by equation (2.10),

2 2 2 = — X u u)ax.
¢ /Q(|Vu| “a(@)d)dr = /Qb( ) F () (tu)d

Thus,

2 2 _xa(p)udde = - xMqux
t/Q(\Vu] Na(z)u?)d /Qb() 2424

tu

which implies that ﬁ e L.
Furthermore, it follows from (f2) that

2— CLCL'U2 Xz — I'OOUQJ'
1}%4 Na(z)u?)d >L4Mﬂ d

[ v = xateyiae + [ v >0
Q Q

which shows that u € £.
Finally, we will show that the projection onto the Nehari manifold is unique. Suppose
that there are 0 < t; < t; such that t;u, t;u € NT. From this, it follows that

and, therefore,

t%/g(wu? — Xa(z)u?)dx = —/Qb(x)f(tlu)tludx, (2.6)

. /Q (IVul? = Aa(z)u?)dz = — /Q b(z) f(f1u)Gudz. (2.7)
Dividing the equation (2.6) by 2 and a equation (2.7) by £~ we have that

/Q (Vul? - Aa(z)u2)dz = — / NESPAGL Sfllu“) W2dz, (2.8)

/(IWIQ— /b F0) 20, (2.9)

Subtracting the equation (2.8) from the equation (2.9) results in

/Qb(a:) (fitllu“) - fi'?u”)> wldz = 0.

Since tiu, tju € N, by Lemma 2.8, supp{tju} N (2\Qo) # 0 and supp{t;u} N (Q\Q) # 0
From this, it follows that there exist £ > 0 and xo € Q such that B.(xg) C 2\ Qo and

fon (52 ez oo (57 o

but this is an absurd because f(s)/(s) is increasing by (f3), b(x) > 0 for x € B(xg).
Therefore, we conclude that there exists a unique ¢; such that tyu € N'T. ]
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Lemma 2.10. The function

A= {UGHO( )\ {0} : || || _}—>(0,—i—oo)
u > t(u)
18 CONtINUoOus.
Proof. Let H 7 € L7, that is, T(u) := [o(|Vul* = Xa(z)u®)dz < 0 and T is continuous.

We have that T71{(—00,0)} is open in H}(2) and u ~ t(u) is defined in an open subset
of H}(2). To prove continuity, we will use the Implicit Function Theorem. Let g Rt x
H}(Q) — R of class C! defined for g(t,u) = t|jul|? — At [, a(x)u®dx + [, b(z)f(tv)udz.
Consider (tg,ug) such that g(to,ug) = 0 and ug > 0. For tgug € N we have that

tolluol|? — Mo /Q a(e)udds = — /Q () f (oo )uode

= Blluol? — A /Q a(e)uddz] = — /Q () f (touo)ouoda

— t%[HUOH2 — )\/Qa(ac)u%dx] = _/Qb(x)fitou())to od

ouo

— uol® - )\/Qa(:z:)u%dm = /Qb(x)f(touo)ugdx.

toug

Differentiating the function g with respect to ¢ and using the hypothesis (f3), we have that

0 U
g(g);o) = ||u0H2—)\/Qa(x)u%dx—i—/Qb(a:)f/(tozm)ugdx
_ /Q ba)L Zﬁ%gdw /Q b(a) ' (touo )ulde
= / b(x) [f’(touo)ug — f(touo)uO] dx > 0.
Q touo

By the Implicit Function Theorem, the function ¥ : A — R defined for ¢ = t(u) is of class
C! in a neighborhood V' of ug and g(t,u) = g(t(u),u) = 0 in V. O

Proof of the Theorem 5. Since N’ = N1 U{0} is bounded by Lemma 2.5, there is C > 0
such that ||u|| < C for all w € N. Making calculations analogous to those found in the proof
of Theorem 2, we have I is bounded from below in N'". We observe that inf,cp+ I(u) < 0.
In fact, let ¢1 be the first eigenfunction associated with the first eigenvalue A\j(a) of problem
(Py), then ¢1 € L™ and by Lemma 2.8 existe ¢ > 0 tal que t¢1 € N'\ {0} = NT. By Lemma
2.4, I(tp1) < 0, on the other hand, using the hypothesis (f5) and that t¢1 # 0

Ton) = Iton) = 57001
- / b(x)(2F (tgr) — f(td1)ten)dx
- 2 /Q b(x)(2F (t¢1) — f(t1)tdr)dz < 0.

Thus,

inf I(u) < 0. 2.10
f I(u) (2.10)
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Therefore, there is m > 0 such that

inf I(u) = —m. 2.11
Jof I(u) =-—m (2.11)

Let (u,) be a minimizing sequence in N*. By Lemma 2.5, A" is bounded, then (u,) is
bounded, and up to a subsequence we have u, — ug in H}(2). It follows from 2.11 and
equalities (2.19) and (2.20) that

0> inf I(u)= lim I(u,) = hm { /b )[2F (un —f(un)un]dx}

ueN+ n—oo

= lim [ b(x)F(uy)dx — hm — [ b(z)f(un)updz

n—o0 Q n—oo 2 QO
= [ M) P(uw)dz =5 [ bGw) F(uo)uode
1

= 5 | Ho)2P (o) = F(u)ulde.

This implies that supp{ug} N (Q\ Qo) # 0, thus ug Z 0 and then

AM@p%m—fﬁﬂu@w—émf@ﬂﬁmﬂ—ﬁfq%m
= /Q+ b(x) [f’(uo) — f(uuo)} uddx > 0.

0

Thus, ug € Nt it follows that

Imwzészmew—ﬂwmwm

= lim I(u,) = inf I(u)<0.

n—o00 ueN+

Therefore, ug is a non-trivial critical point of I in N'*. We will now verify that w is positive.
In fact, since f is odd, then F'is an even function. Hence
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inf I = = I(uf —
ug/l\H (u) (ug —uq )

- / V(i —up)Pde = 5 [ alo)u —up o+ [ )P —up)da
= 5 LVaE+ VugPide = 5 [ el + 52+ [ )P - o

Q
= / (|Vu6r\ — )\a(az)(uo ) )dx + / b(ac)F(uar)dx
{uo>0} {uo>0}

2
+ ;/{u0<0}(|v(—uc7)|2—)\a(a:)(—ug)Q)da:+/{u0<o} b(w) F(—ug )dz
- . /{ o I ety + /{WO} ()Pt )z
+ % /{ o) (1V(ug)? = Aa(2)(ug )?)dz + /{ oo b(z) F(ug )dz
= % /{ uozo}(\Vuar\Q—)\a(az)(uar)Q)da:+ /{ - b(x) F(ul)dz
+ ;/{MO}(W%\? —Aa(x)(ua)Q)da:+/{uo<0} b(x) F(uy )da

— / (¥ luoll? = Aa() up|?)d + / b() F (|uo|)dx
Q
= I(Juol),

and then, ug > 0. Moreover assuming a,b € C%%(Q), it follows by Hopf lemma that ug > 0
(see the end of the proof of Theorem 6 for details).

Claim 2.1. If u € H}(Q) is a positive solution of problem (P’) then \ < Xf’b. In fact, let
f(s) :=loos — g(s), with g(s) > 0 a decreasing function. Let 11 > 0 the first eigenfuction
associated with Xf’b. Then,

/(V@bqu + b(2)lsotpru)dx = )\?’b a(x)yYrudz (2.12)
Q Q
and

/(Vuvw1+b(w)loow,l)1)dx:/)\a(:x)uwldzz:—l—/ b(x)g(u)dz.

Q Q Q
Thus,

Xf’b/ﬂa(x)i/}ludw—/Q)\a(a:)uwlda?—i—/ﬂb(x)g(u)dm

implies

()\Lf’b - ) /Q a(x)yrude = /Qb(x)g(u)d$ > 0.

Therefore, Xf’b > A

Claim 2.2. A" < \(a).
Indeed, let @) the first eigenfunction associated with \{(a), taking ¢9 as the test function
in the equation (2.12), we have

/Q (Vi Ve + b(a)laothr ) = A / ol )il

Qo
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Since b = 0 in g, then

Vi Viplde = )\‘f’b/ a(x)1ld. (2.13)
Qo

Qo
Note that ¢ is solution to the problem (Py) restricted to Q, that is, ¢\ satisfies
AgY = N(a)a(z)¢h in Qo

and @ = 0 in 9. Multiplying this equation by 11 and integrating in o, we obtain

— 1 AQYdx = )\?(a)/ a(x)drde. (2.14)

Qo Qo

By the Divergence Theorem for F= 1V

0
/ div(l/JlV@?)dm:/ dx%dS
2 9

0Qo n
implies
0 0 380(1)
Vi1 Vide + viVide = 1 ——dS.
Q0 Qo a0, On
Thus,
0 &P(l) 0
V¢1V(p1dx - ¢17ds = — wlAgpldx
Qo 0o on Qo
Substituting in (2.14), we have
0 &P? 0 0
Vi1 Vpide — wla—dS =\(a) a(x)rpyde.
Q0 EI 1 Qo
By (2.13), we obtain
b &P?
AP / a(x)¢1g0(1)dx — P1——dS = )\(l)(a)/ a(:v)dqgo?dx
Qo Q0 n Qo
and
ab 0 0 9}
(A7 = Al(a)) [ alz)prpide = ¢187d5 <0
Qo Qo n

Therefore, )\Cf’b < X(a).

To obtain the uniqueness, suppose there are two positive classical solutions u; and wuo
of (P’), with u; # g then

—Au; — Aa(z)u; + b(z) f(u1) =0 in Q and u; = 0 on 9N (2.15)

—Aug — Aa(x)ug + b(z) f(uz) = 0 in Q and us = 0 on IN. (2.16)
Dividing the equation (2.15) for u; and (2.16) for ug we have

_iul = Na(z) — b(x)f(u“ll) (2.17)
and A
_u2“2 ~ alz) — bz)?L EL“;). (2.18)



Subtracting equation (2.17) from equation (1.13) results in

“Au | Bur g (f(“” - f(“”) .

(51 u9 u9 (75}

(2.19)

Multiplying the equation (2.19) by (u? — u3) and integrating over

/Q(u2 — u3) ( iul A;f) dr = /Qb(:n) <f$;2) - fEZl)> (u? — ud)dz. (2.20)

By proving the uniqueness of the solution in [3]

A A A
/(uf—uz)( U uz) dx—/ —ulAulda:—i-/uQuld
QO U1 uz 0 0 U1

Q
02
:/vul.vuldx—/v<2> -Vuidz
Q Q 31
w?
—/V( > Vqu:U—i—/VuQ Vusdzx
2
/ |Vu1\ dx —/ <2VuQ — ugVul) -Vuidz
1
/ <2 Vu 1—Vu2> -Vuzdx—i—/ |Vu2|2daz
Q U2 Q
u 2 2
:/{‘Vul—IVug + }dmZO.
Q U2
Hence and from (2.20), it follows that

/Qb(x) (f(uz) - ﬂul)) (u2 — u2)dz > 0. (2.21)

u9 (/5]

U2
VUQ - — VU1
Ul

Since we have L~ N B® = () and uy, us € N1, then H%II’ T

have supp{ui } N (Q\ Qo) # 0, supp{uz}N(Q\ Qo) # 0. In addition, since f( ) is increasing,
we have the following cases
(i) if u; > ug then

/Q e <f(u2) B f(m)) - s <0,

U2 u1

€ L~. By Lemma 2.8 we

which is a contradiction with (2.21).
(i) if u; < ug then, one more time,

[op (P = 2 o -y <,

which is a contradiction with (2.21).
(iii) there are subsets of AUB = Q\ Q, A # () and B # () open in RY, such that
up —ug >01in A, ug —up > 0 in B and by (1.15), we have
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0< /Qb(x) (f(uz) - f(u1)> (u? — ud)dzx

Y <f(u2) _ f(U1)> (u2 _u%)d$+/lgb(x) <f(u2) _ f(Ul)) (2 — u2)dz

Uz a1 U2 Ul

because in A, (fng) - EZI)) <0, (u?—u2) > 0and b(z) > 0 and in B, ( %2) - foll)) >
0, (u? —u3) <0eb(x)>0.
Therefore, by the cases (i) and (ii) the case (ii7) it can’t occur. We conclude that
Uy = us.
O

2.4 Sign-changing solution

In this section, let us also assume Aj(a) < A < A\{(a).

Theorem 8. If (uy) is a (PS). sequence for I restricted to Nt, with ¢ <0, then up to a
subsequence (up) converges to u in HE(Q).

Proof. Let (uy) be a (PS). sequence for I restricted to N'", which is a bounded set by
Lemma 2.5. Then I'(u,) — 0, by Lemma 2.6 and Lemma 2.7, isto &,

I'(up)p — I'(ug)p =0 Vo € CF°(Q).

Note that
(I'(up) — I'(ug)up —uo) = I'(un)-(un —ug) — I'(ug).(un — uo)
= /QVunV(un —up)dxr — A /Q a(x)up(un — up)dx
+ / (x)f(un)( Un — U())d.%' - / VUOV(un — UQ)d:C
+ )\/ x)uo(tn — ug d:v—/b Up — ug)dx
= un — uol* — )\/Qa(x)(un — ug)?dz
[ B@F) = Flu)l = w0)da, (21)
In this way,

[un — uo||* =(I' (un) — I' (ug), un — ug) + )\/ a(z)(un, — uo)*dx
0

_ /Q b(@)[f (un) — f(u0))(un — ug)da,

applying the limit when n goes to infinity in (2.1), we have up to a subsequence u,, — g,
in H}(Q), because, u, be a (PS)., sequence and bounded, by the compact embedding of
Sobolev and the Lebesgue Dominated Convergence Theorem, the functional I satisfies the
Palais-Smale condition at the level c. O
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The next result is based on Lemma 5.2 in [15], and suits our settings.

Lemma 2.11. Let ug be a positive solution of the problem (P’) and v/ : @ — R, j € N,
of functions, a sequence satisfying ||v? — u0||01(§) — 0. Then there are jo € N such that

v/ (x) >0, Vo € Q, Vi > jo.

Proof. In fact, we have that Q é C! and ug = 0 in 9€, then for every differentiable curve
v [=1,1] = 09, ¥(0) = zo € 9, we have ug(y(t)) = 0, thus

i(uO(v(t))) = Vuo(v(t))y (t) = 0,

and if ¢ = 0 we have that Vug(v(0))7/(0) = 0. Replacing the value of (0) we have that
Vug(xo)v'(0) = 0, that is Vug(x) is perpendicular to the zero level at the point xy. This
ensures that the normal exterior to the 9 on point x( is parallel to the Vu(zg) and so we
can write

v VUO( )
" [Vuo(ao)|

Given ¢ > 0, we claim that there exists dyp > 0 such that, if z € N5, := {z € Q :
dist(z,09) < &}, then ‘f“(x
true. Then there exists ¢y > 0 such that for any 4,, =
dist(xzy,00) < 6, and ful@n))

w(Tn)
Since dist(x,,0Q) — 0, and Q is a compact set, there is g € 9 such that z,, — xo. The
functions f and ug are continuous, hence ug(xy) — u(zo) = 0 and f(uo(z,)) — f(u(zo)) =

0, because zg € 012, but lim,, ’M‘ > g0, which contradicts (f1).

u(zn)
It follows from the hypothesis (f1), that f(uo(z)) = o(|uo(z)|)uo(z) for all z € N5, and
as ug being a positive solution to the problem (P’), then

< €. Indeed, suppose by contradiction that this is not

1

= > 0, there exists x, satisfying

> e

—Aug(z) = Aa(x)uo(x) — b(x)f(uo(x))
= Aa(z)uo(z) — b(x)o(|uo|)uo(z)
> Aa(z)ug(z) — b(x)euo(z)
> Aa(z)uo(2) — [[blsocuo(2)
= (Aa(z) — |[bllcce)uo(x)
Taking € < ”b” , then
—Au = Aa(x)u — o(|u]) > 0, (2.2)

since a(z) > a > 0. In addition, ug(x) > ug(zo) = 0, for all z € int(Ns,), thus infy, u(z) =
0. Note that N, is regular because the set () is regular and wug is continuous in Ng,. Then

by Hopf’s lemma aa “o (:Uo) > 0 for all x € uy {0} NON;,, vy, is the exterior normal vector

ONj, in xp, then it holds 8“0 (xo) > 0 for z € ug {0} N IN.

Since %(m) is contmuous for all € 092 and Of) is compact, then %( ) >0 >0 for

all z € 90 In fact,

8u0 o w VUO( ) _ un(z .
81/1,(96)_ <V o(z), Vauolz )H> [Vup(z)]| > >0, V2 ed. (2.3)

If y e Qand y — z¢p = avy, with o > 0, then

Vug(7o)
| Vo (zo)||
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Let t(zo) be such that if 0 < t < t(xg) and y = xg + tvy,, so for continuity of || Vug(-)||, we
have

1 . 1
|Vuo(y)|| > 5 nin IVup(zo)|| = =6, V0 <t<t(xo). (2.4)
20 €0N) 2

Taking y € Q such that y = z + tv, with =z € 9Q and 0 < ¢t < ¢(x), by (2.4) and by the
continuity ||Vug(+)|| we have

b
IVuo()l| > 5, V0 <t <H(x).

Consider the open ball By, () such that 02 C U By(y)(z) and by the compactness of 9
€00

it follows 0§2 C U By(z,,) (1), in other words, 02 has a finite subcover. Let y € U (xr) N9,

k=1 k=1
and x € 0f) such that y—z is perpendicular to 92, therefore, we can write, y — x = tv,. So, if
n n

y € U By (mx) NQ C U By (zo)(z0) N €, then ug(y) > 0. Now, let K = Q'\ U Bz (7k)
k=1 €N k=1
be closed and bounded, therefore compact, it follows there exists d9 > 0 such that

uo(y) > 92 >0 Vye K. (2.5)
Moreover, from the compactness of K and using the norm of supremum we have
[[07 = wol| oo @y — 0

therefore

- ) .
fuo(y)—vj(y)|<§2 Vy € K eVj > jo,

thus, by the triangular inequality ug(y) — %2 < vI(y) e por (2.5) we have

) .
(52—52<v](y), VyeKandV j> jo.

Then, v/ (y) > 0 for ally € K and for all j > jo. On the other hand, for ally € U By (mr) N Q,

k=1
using again Taylor’s formula and the fact that ||v/ — uollgragm — 0, if j = +oo, with ulag

and denoting 01(j), where 0j(1) — 0 when j — 0 we have for x € 9Q such that y — z is
perpendicular to 02

vl (y) = v (x) + Vol (z) - (y — =) + o(|ly — z))

~(V O ) o0
= (V0 (0) = Vuale) + Fua(o) LD o) + o)

= <V’UJ(IL’) — VUO( ) ngogi;” > + tHVUo(l’)H + o(t) + Ol(j)
- ”Vuz(x)‘wvj(l‘) — Vuo(z), Vug()) + t[[Vuo(z) || + o(t) + 01(j)
a7~ Vuolel Fuo(a) |-+ [ Fuo(a) |t + 0(t) + 01(3)

Vol — Vit [F10l1-+oft) 010

::( €<+'5) >>O Vﬁ 2ij07
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because ||Vl — V|| Lee(@) < € for all n > ny, e sufficiently small and (2.3). This concludes
that v7(y) > 0 for all y in © and for all j > jo, which completes the proof. O

Lemma 2.12. Assume that b satisfies (by). There exists p > 0 and 6 > 0 such that p <
2[|uoll,
I(u) >0 —m

forw € 0B,(up) NN.

Proof. First, let us recall that the Nehari manifold N' = NT UN? = {J71(0)} is a closed
subset in H{(Q). Furthermore, I : N' — R is continuous and bounded from below, by the
proof of Theorem 5 with 0 > I(u) > —m.

Now, suppose by contradiction that for every fixed p with 0 < p < 2||ug|| there is a sequence
(un) C N NOB,(up) such that I(u,) = —m = inf,cp+ I(u), as n — oco. Define |p;| = %,

so the sequence (u}) € N N 0By, (uo) satisfies I(ul) — —m, as n — oco. We can apply
Ekeland’s Variational Principle to |y, where N is a closed metric space. Therefore, by
Corollary 3 of [12], there is a sequence, for each fixed j > 0, (v}) C NNOB,,(ug) such that,
if n = +o0

a) Iy (vh) = —m;
b) vk —uhll = pji
o) 1w (wh)]| = 0.

This means that (v}) is a (PS) sequence of Iy the functional restricted to AN, Since

—m < 0, by Lemma 2.7 (v},) has a subsequence (PS) for I such that I’(v},) — 0 and by

Theorem 8, up to a subsequence, we have that v}, — v7 if n — 4o00. It follows from the
continuity of I and the uniqueness of the limit that

I(v') = —m, I'(v7) =0, v/ € N'N By, (uo)

and |[v/ — uol| mi(@) — 0. Taking w/ = v/ — ug and using regularity theory for elliptic
operators, as in Section 2.3, we have that |[v/ — wollcram — 0-

Since |[v7 — upl| = p; — 0, with 0 < p; < 2[jug|| and v/ > 0 for j large enough, by
Lemma 1.12, we have (v7) we have that (v7) is a sequence of positive critical points for I
that converge to ug in the norm of H&(Q), which contradicts the uniqueness of the positive
solution of I given by Theorem 5. O

Consider the translated functional I : H}(Q) — R
I(u) :=I(u) +m

= ;/Q(\VU]Q—/\a(x)uz)dac+/Qb(ac)F(u)dx+m.

Theorem 9. Assume A\i(a) < X < X(a), b satisfies (b1) and f satisfies (f1), (f3), (fs) and
(f2), (f5). Let ugp > 0 and —uy < 0 be local minima of I on N, then

(i) f(u()) =0;
(ii) there exists 0 < p < 2||uo|| and & > 0 such that I(u) > & > 0 for any u € IB,(ug) VN

(ii) I(—ug) = 0.
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Moreover, I satisfies (PS). condition with

= inf T(y(t
0 <c= inf max I{v(t))
where T' := {y € C([0,1],N) : v(0) = wug,v(1) = —up}. Then there exists a non-trivial
solution u* of problem (P) satisfying I(u*) = ¢* > —m, where ¢* = c—m.

Proof. (i) I(ug) = I(up) + m=—m+m =0.
(73) By Lemma 1.13 there are p > 0 and ¢ > 0 such that

I(u) >0 —m

for u € dB,(ug) NN By the definition of the functional I we have

Iu)y=Iu)+m>0—m+m=09>0

for u € 9B,(up) NN, and then we show the item (7).
(i) I(—up) = I(—up) +m = —m +m = 0 and —ug ¢ B,(up), thus p < |lug — (—uo)|| =
2lJuo]l. )

Therefore, I satisfies the geometry of the Mountain Pass Theorem, and so the same is
true for I. Let us use Ghoussoub’s Theorem [ [14], Theorem 3.2]. Note that the Nehari
manifold is a Finsler variety because it is a closed submanifold of class C', with T,V carying
the norm induced by the inclusion T, N C T, H () = H}(Q) by | [26], Chapter II, Section
3.7]. We also have that the set F = I' is a homotopically stable family. In fact, making
X = N which is a complete metric space, then B = {—ug, ug} is a closed subset in . Since
~v(0) = up and y(1) = —up, we have that any element ([0, 1]) in I" contains B. Furthermore,
for all A = ~([0,1]) € T and 5 : [0,1] x N' — N continuous, satisfying 7(¢,u) = u for all
(t,u) € ({0} x N)U ([0,1] x B) implies v on(1) = —ug € B. Moreover, by item (i),

0=c"=c—m>{I(v0)), I(v(1))} = —m,

and thus satisfies hypothesis (Fpy) of Ghoussoub’s Theorem, then there exists a sequence
(un) in N which is (PS)¢ restricted to A/. By Lemma 1.7 the (u,) is a sequence (PS)q+ for
the functional I in HE(Q) eand by Theorem 8 the functional satisfies the condition (PS).x.
Therefore, up to a subsequence, u,, — u* € N such that

I(u*) =c* and I'(u*) =0.

Hence, u* is a critical point of the functional I restricted to A/, and —m < ¢* < 0. As
the Nehari manifold A is a natural constraint, u* is a solution in H}(f2) for the problem
(P). O

Note that u* € N could be the trivial solution. In what follows, we will present a
sufficient condition for u* # 0.

Proof of the Theorem 6. We want to show that I(u*) = ¢* < 0, which implies that
u* is not trivial. Let us consider the first positive eigenfunction, normalized in H}(€),
and denoted by ¢; associated with the first eigenvalue Aj(a) of the problem (P;), the
(normalized) eigenfunction ¢ associated with the second eigenvalue Ao(a) of (P;), ¢} the
first positive (normalized) eigenfunction in H{ () associated with the first eigenvalue A\ (a)
of the problem (Py) restricted to the Qg, and the same for ¢J. Note that the supports of

@Y, i = 1,2 are subsets of (.
/ a(z)prpadr =0 (2.6)
Q
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and
/ a(x)$)¢Ydx = 0. (2.7)
Qo
In fact, it follows from spectral theory that, fQ V@1 -Vpadr =0 and fQO V! - Véidr = 0.

As eigenfunctions are regular functions, and € and €y are regular domains, by the Diver-
gence Theorem, we have that

0= / V1 Voadr = —/ Apipadr = / Ai(a)a(x)p)pade.
Q Q Q
Follows from the fact A\j(a) # 0, that

/ a(x)prpadr = 0.
Q

Similarly, using the divergence theorem, it follows that
| ato)stotas —o.
Qo
In order to construct a convenient path in I' not passing through zero, define w € H, 6 (Q)

by w = t1(¢1 + d?) + ta(po + £¢9) with constants t1,t5 > 0 and for some ¢ > 0, to be
chosen sufficiently small. Using equalities (2.6), (2.7) and also the hypothesis (f4) we obtain
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1

Iw) = ; /Q(|Vw|2 ~a(@)wd)dz + /Qb(ac)F(w)dac

- % /Q[|v<t1<¢1 +e0f) + ta(g2 + ed3)* — Aa(@)(t1 (1 + e0f) + ta(d2 + £6))?]dx
b(x)F(w)d
+ [ ba) Pl
2
_ 1;1/ V(¢ + 5¢(1])V(¢1 + 5g{)(1)) — Aa(x)(¢p1 + €¢(1))(¢1 + 5¢(1))]d$
Q
+ 22 V(61 -+ 6V (6 +265) = Da(w) (91 + =08 (62 + 0)|do
+ 2L [ (962 +£0§)V(0n + 200) — Aafa) (62 + £09) (61 + 0}z
Q

2
i %2 / [V(p2 + 09V (d2 + £¢9) — Aa(z) (¢ + 69) (D + £¢9)]dx
Q

+ /Q b(x)F(w)dx

2
- t2l/ [V(¢1 +£09) V1 — Aa(z) (1 + £69)p1]dx + % Q[V(¢1 +e¢1)Ver
Q
totq

— Xa(z) (1 + ¢ do]da + > Q[V(@ +e¢3)V1 — Aa(z)(¢2 + £¢3)p1]da

+ 8 19060+ 20962~ 200162 + <o)tnbde + D [ (9061 + 29 (e
()6 + (el + 122 [ 9061+ ADTER) — Aale)on + o)l

+ % [V(¢2 +£69)V(e0)) — Aa(x)(¢2 + £69) (e6?)|da + % /Q V(2 +e¢2)V(eda)
Q

i\ /Q a(2)(d2 + ) (edd)dz + /Q () F (w) dz

=4 [ avorl —a@sdir + e [ (Vo ratwotonds

+ 52 | (0¥ = da(@)ron)da + P2z | (T01V6s — Nalw)ofon)ds

+ 28 [ (V62901 = da(a)oaon)de + e | (To4V61 ~ Na(w)on)da

+ 2 [ (96— ratw)ie + Bz [ (Vov6 ~ Nalo)ilon)ie

+ e [ 19698~ ratwron i + et [ (VO — rate) (@) o

+ 12 [ 1V61V6) ~ Na(a)oroflde+ e [ (V965 - Aa(o)ofolida

+ 2 [ V696~ da(o)ondtldes 2162 [ Vo498 - da(e)ootlds

+ 7;%5 /Q V62V — Aa(z)badl)da + %252 /Q V63 — Na(z)(65)?]dz + /Q b(z)F (w)dz.
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Thus, by (2.6) and (2.7),

NOESY /Q o(e)dRdr + 2 <A2<> ) / o(z)dRde

Q

2
rw) <
2
+ 22000 - ) [ ale)(@)ids
2
+B080) ) [ <3 w { w656 - xatwyondihac

i=1 j=1
+/Qb(:c)F(w)d:c.

Note that,
ol = ( [ 9 (eat6n <)+ ta(n + s¢8>>|2d:v> :

— (t%/ \v¢112dx+t§52/ \ng(l)]de—i—t%/ \v¢212dx+t§52/ V@S| da
Q Q

+5ZZtt /V@Vqﬁ?dm)

i=1 j=1
1
< (8 + 15 + tie” + t5e” + (1] + 2tita + 13)[| Vi3]V 15)2
(82 + 12 + 1262 + 1262 + (2 + 2t1t9 + 12)

<E4E+e(E+) + 26 +1)z < \/t% + 13 + 3e2(t3 + 13). (2.8)

Furthermore, using (2.8) and Remark 2.1, considering the same real number ¢ > 0 in
the definition of the function w, we have

[ rtwas < [ o) (S + Cair) o

£ Co
< bl [ fuwPde+ [ [ foftds
Q q Jo
O [elhwl? + Cllu] ]
<C B+ B+ +8) + (6 + 5+ + )%

Using Holder’s inequality for p = ¢ = 2 and that ¢;, qb? are normalized eigenfunctions
we have

s;;tt {/(w,w] Aa(z) i) dx} <a;;tt {/ Vi V) — Xa(z )¢Z¢j|dx}
<e;;tt o 070w el + Nawyoetas

<e(t] + 2t1ta + 83)([Ver 2| VS 2
+ Alalloo [ @:ll2]l¢5112)

< 2e(t3 4+ t3) (14 CA|lal|o)

= Ce(t 4+ t2).
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Taking, 0 < e <1 and 0 < t] 4+ t3 < 1, since £ > 1, its follows

I(w) < @c max{A;(a) — A\, Ap(a) — A} + Wa"‘cmax{w(a) — X\ A9(a) — A}
+ C(t% +83) + Cle(t + 3+ (] + 13)) + (13 + 13 + (£ + 13))2]
< MCmax{Al( ) — X\ da(a) — A} + (t%;t%)EQCmax{)\?(a) — X A9(a) — A}
+ Ce(B 4+ 13) + Ce(t2 +12) + C2(13 +13) + C22 1 (83 +13)2 4+ C22 1 (e(2 + 13))2
<t t2)c max{(a) — A a(a) — A} + U1 ;t%)eS?Cmax{)\(l)(a) ~ A 0(a) — A
+Ce (t% + 1) 4+ CEE +13) + O + 13)2 + C(e(t] + t3))2

( 2 ) Cmax{\(a) — X, Xa(a) — A} + O(e(t} + t2)),

where C' = C(]|a||oo). Without loss of generality, we can assume max{Ai(a)— A, A2(a) —A} =
A1(a) — A <0, thus
(t +t3)
2
A - A
= C(t2 +t3) [1(‘2 + Cs} .

I(w) C(M(a) = \) 4 Ce(t2 +13)

IN

Taking 0 < e < %1('1) then
A - A
I(w) < C(t3+13) <(1(62)> = —d1 < 0.

Now, let wy = t1(¢1 + €9Y), wo 1= ta(p2 + £¢Y) and wy := cos(f)w; + sin(f)wz, such that

wg = cos (T)(ta(or +eaD) +sin (] ) (a2 + =0%))
= Y2 (g1 + 20 + tan + 09
_v2
2
with fJws]| = H wH — 2||w|, and for all § € [0, 7],

I{wy) < C’tj cos?(0) (M1 (a) — \) + C’% sin?(0)(\2(a) — \) + Ctie cos*(0)

2
4+ C'sin(f) cos(0)t1tae + Ctiesin®() + 062% cos?(0)(N(a) — \) +

2
+ 02 s (0)(N(a) = A) + Clelluwgll? + vl
< Cfcos?(0)t2 + sin?(0)t3){max{\; (a) — X\, Aa(a) — A}
+ OB +13))
< C(cos®(9)t] + sin®(0)t3) [max{)q(a) — A A2(a) — A}
N C(e(t2 +13))
cos?(0)t2 + sin?(0)43 |
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where (t2 + t2)/(cos?(0)t? + sin?(9)t2) is bounded by positive constants from below and
above, uniformly for § € [0, 7], then similarly to the calculations for I(w), we obtain that
there exists d9 > 0 such that

I(wg) < —02 <0,

for all € [0, 7]. Finally, define the following curve in H}(2) given by

[(1—3s)up + 3s(wr)], s€[0,1/3]
v(s) == S wye), sE€[1/3,2/3] e 6(s)=3(s—1/3)x
[B(1—s)(—w1) 4+ 3(s —2/3)(—up)], se€[2/3,1].

Now, let us show that for 0 < s < 1 there exists ty(s) such that (s) := t,5y € N. Note
that [,,(|V7(s)[* — Ay(s)?)dz < 0 when s € [0,1/3], s € [1/3,2/3] and s € [2/3,1]. In fact,
for s € [0,1/3], we have

L (99OF = xa@pr o) de = [ 1900~ 35)uo + 3s(w) Pda
- )\/ﬂa(a:)((l—33)u0+35(w1))2da:
= (1—38)2/9(’VU()’Q—)\CL(J})U%)CZSU
+ 2(1—35)(38)/Q (VUOle —)\a(z)uow1>dx
+ (38)2/9(\Vw1|2—)\a(x)(wl)2)dx.
Notice that
| (9P =sataut)ds = [ (196101 + 0 = Nala)(ts(61 + e0D)?) o
& [ (1961 = afa)ot) da

+o2t3 /Q (Vqﬁqub?—)\a(a:)gbqu?)dx (2.9)
bt [ (1967 - Aala)(6)?)do

Q
< Cllallooti(A(a) = A) + Cllalloctie? (X (a) — A)
+ Ctie (2.10)
< Ct(M\(a) =\ +0(et?) < 0. (2.11)

On the other hand, since ug is a positive solution to the problem (P), b(z) > 0, f is
continuous and w; > 0, because, ¢1,#) > 0, using the weak formulation, we have

/ (VUOle - )\a(:z;)uowl)dac = —/ b(x) f (up)widz < 0. (2.12)
Q Q
In addition,

/Q (]Vuo|2 _ Aa(:r)u%)dx = —/ b(z) f(ug)updx < 0. (2.13)

Q
Finally, by (2.9), (2.12) and (2.13), for s € [0,1/3],

/Q (IV'V(S)\2 — )\a(x)y(g)2>dx <o
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Let s € [1/3,2/3], we have
| (199 = xatas(s?) o = [ (1ol = Nafa)wo)?) da
- /Q (19 (cos(8)uwn + sin(8)un)|? — Aal) (cos(@)ws + sin(@)ws) ) dx
= cos(6) /Q (|Vw1]2 - Aa(;p)w%)dx
+2cos(6) sin(6) /

Q

+ sinz(é?)/Q (]ng\Q - Aa(w)w%) dx

(Vw1Vw2 — /\a(x)wlwg) dx

Using the Hélder inequality
/ (Va1 Vs — Aa(w)uwyuws ) do = / V(t1(61 + 260)V (b (2 + £62))dx
Q Q
i\ /Q a(@) (11 (61 + 2602 ((6n + 62)) da
= t1ty / (Vo1Voa — a(z)p1¢2)dx + t1t25/ (V1V} — Aa(z)pr16))dx
Q Q

+ byt /Q (VOV s — Aa(x)ddba)da + trtse? /Q (V6942 — Aa(x)d63)de

< titoe(||Ver 2l VoSl + Allalloc 1 [l2]63]12)
+titae(|[ Vo2 Vob ]z + Mallso |61l 63 ]12) = Ctitae (2.14)

[ (vl = dateyug)de = [ (19ta(0n + D)~ Nala)ta(62 -+ c08)?)da
2 /Q <\V¢2]2—/\a(x)q§§>d:1:—|—2t%€ /Q (ququﬁg—)\a(x)d)gqﬁg)d:c

e [ (IV4F — da(e)(69?) da

Cllafloots(A2(a) = A) + Cllallotie® (A3 (a) = ) + Ctie
Ct2(Na(a) — \) + O(et3) < 0. (2.15)

ININ +

Using (2.9), (2.14) and (2.15) we obtain

/Q (IV¥() = Aa(@)1(s)?)do < cos(B)CE(Ni(a) = A) + O(etd)

+ 2cos(f) sin(8)Cetyty 4 sin?(0)Ct2(Aa(a) — N) + O(et3)
< C(cos?(0)t3 + sin?(0)t3) max{\i(a) — A\, Aa(a) — A}
+ O(et?) + O(et3) + 2 cos?() sin(0)Cetyty < 0,

because (12 + t2)/(cos?(0)t? + sin?()t2) is bounded by positive constants from below and
above, uniformly for 6 € [0, 7] and ¢; and t5 positive, and € > 0 is sufficiently small.
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Let s € [2/3,1], using the equalities in (1.9), (1.10) and (1.11), we have
JAVI6R = al@)(s))de = [ 960 - s)-wr) +3(s — 2/3)(-u)Pdo
Q Q
= 0 [ ale)(31 = s)(—w1) + 35— 2/3)(~up) P
Q
— (31— 5)2/Q (\Vw1|2 - Aa(x)w%)d;c +(3(s — 2/3))2/Q (|vu0|2 - )\a(x)u(z)))d:c

6(1—s)3(s— ;)/ﬂ (Vw1Vu0 - )\a(w)wluo)dx
0.

Recalling Lemma 2.10, we have that ¢, is continuous and then ¥(s) € N for all
s € [0,1]. From Lemma 2.4 and by (2.10) we conclude that I(%(s)) < 0 for all s € [0,1].
Thus, 1(7(s)) < maxo<s<1 I(7(s)) < 0 for s € [0, 1]. By the definition of the min-max level
¢, it follows that I(u*) = ¢* < maxg<s<1 I(3(s)) < 0.
Finally, suppose by contradiction that «* is non-trivial and non-negative. Then the set
Q C Q in which «* = 0 is bounded, and the set of boundary points dQ C € is bounded. Let
zo € 99 be such that u*(zo) = 0. Furthermore, since u* € C'! (see section 2.1), then 9 is
regular and compact.
Given 0 > 0 sufficiently small, there exists d; > 0 such that, if x € N5, := {x €
Q\Q : dist(x,0) < 61}, then |u*(z)| < d. It follows from hypothesis (f1) that f(u*(z)) =
“(z)—

o(lu*(z)]) = 0, for all z € Ns,. Moreover u*(x) > 0 for all int(Ns, ), thus infx, u*(z) =

Note that Nj, is regular because the subset 0 is regular and w* is continuous in N,

Then, by Hopf lemma g—ﬁ:(x) > 0, for all  such that u*(z) € 99, and v, is the exterior

normal vector to 9 at x, namely Du*(z) # 0, which is impossible in an interior minimum
point of w*. Thus, v* > 0 which is impossible by the uniqueness of the positive solution.
The same result we obtain when u* is non-positive. Therefore, u* changes sign and the

proof is complete.
O
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Appendix A

Spectral Theory in Bounded Domains

In this section, we want to develop a study of the eigenvalue problem with indefinite weight

in a limited domain. We see that it is possible to guarantee the existence of a sequence of

positive and negative eigenvalues and other properties. The existence of the first eigenvalue

with its respective first eigenfunction was fundamental in the first chapter, since we used

it to show that some sets were non-empty. In addition, other properties of the eigenvalue

problem with weight were used in Chapter 2. This section is based on [8] and [16].
Consider the following eigenvalue problem

—Au = pm(x)u in (Py)
u=20 on 0N ’
where m(z) € L"(), with r > £, and changes sign.
Let
a(u,v) = / VuVudz
Q
and consider
a(u,v) = p [ m(z)uwvdz Yo € Hg(), (PA)
u € H ().

We know that

i) a(u,v) = a(v,u),
i) la(u, v)| < [ull[lv],

iii) a(u,u) > C|lul?.

Notice that fixed u € H} (), the functional

v—)/muvdx
Q

is linear in H}(£2). By Riesz’s representation theorem, there exists an element in Hg (1),
denoted by T'u, such that

(Tu,v)a:/muvd:r.
Q

7



We have the functional above is symmetrical and bounded. Indeed

1Tl

IA

IN

IN

<

(Tu,Tu)q

/ muT udx
Q
2

([mizac)™ ([ <|u||Tu|>AfV2dx)W

N-2

N
Imll 5 ( / ru|ff“—2|Tu\f¢V—2dx)
L2 0
N—-2
1 i\ v
2 2
oy ([ r#5a)” ([ ruleas)
2 Q Q
L L
Il ( / \u|2*dx) ( / |Tu\2*dx)
2 Q Q

(| [l [ Tl 2

Cllml] x [lull[[Tul]

Let us show that T is compact. Let (u,) be a bounded sequence at H}(£2). Since H}(€2)
is reflexive, then up to a subsequence, we have u,, — u in H& (Q). Therefore,

| T, — TuH2 <

IN

IN

Lemma A.1. If

(Tup, — Tu, Tuy, — Tu)

/Q (i — )Ty — Tu)da

1 1
</ \m]r> ' (/ g — )" | Ty — Tu]’",d:r> '
Q Q

1

1
1 1 bwa
1o o7 , AN
lm|| - </ |t — u|™? d$> (/ |Tuy, — Tul" 9dx>
Q Q

T‘l *2* ; 2*2% r/z ;7
mllar { {f Tun =l | 1 Tun = Tul"" da

2% ' 1
;2% 2% I « 2
e ([ fuo =l #57 ) 7 (] o - T i)
Q Q
1
H . 5
m o ( / !un—u\s) ( [ o - d:c)
Q Q

/ / -7

5
~|

L
=

L
*

1
Crlmlles [ Jun =) T = Tl
Q

Since u, — u in L*(), then Tu, — Tu in H}(Q), so T is compact. Thus, we have the
following characterizations:

A = sup{(Taa) : o] = 1} > 0,

then there is g1 € H(Q), with ||¢1]| = 1, such that

(To1,01) = A1, T = 1.
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Lemma A.2. [f
A = inf{(Tx,z) : ||z]| =1} <0,

then there is p_1 € H}(Q), with ||o—1| = 1, such that

(To_1,0-1) =A1, To_1=A 19 1.
Lemma A.3. For each n positive,

Ap = supinf{(Tz,z) : ||z|| = 1,2 € F,},

n

where the supreme is taken over all subspaces F,, of H with dimension n. Similarly, we
present the description of A_,,

Ay = i}gfsup{(Tx,x) ezl = 1,2 € F}.

Remark A.1. By Lemma A.3, we can write

Ap = supinf{(Tz,z) : ||z|| = 1,2 € F,}
F

n

and
Ap = i}lfsup{(Tx,x) x| = 1,2 € Fp}.

Theorem A.l. Let m,m : Q — R be functions in L"(Q), with r > %, such that m(z) <

m(zx) for x € Q. Suppose that for a given n, n = +1,42, ..., the eigenvalues p,(m) and
pn(m) exist. Then,

pin (1m0) 2 i (10).

Proof. Let u € F,, be such that ||u|| = 1. Since m(z) < m(x), we have

/muzde/MUQdm,
Q Q

which implies that

1 1
= supinf | mu?dx < sup inf/ mulde = —.

O

Let pn(m) be a continuous function of m in the norm of L%(Q) In other words, if
m;j € L"(§2) converges in the norm of L%(Q), tom € L"(R2), then

pin (1) = i ().

Proof. Since mj € L"(Q) converges in the norm of L%(Q), to m € L"(2) we have that

m;j(x) converges to m(x) almost always in € and there exists g € L%(Q) such that

Imj ()| < g(x).

2 converges to m(z)u? almost always in §2. In addition,

Thus, for ||[ul| =1, m;(x)u
()| < g(z)u?,

and by Holder’s Inequality,
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/Q\g(x)UQ\dx < (/Q |g(x)\f§dx>]2v (/Q uQ*d:L‘);* < 00,

because, g € L> (Q) and H{ (Q) is continuously immersed in L2" (). Therefore, by Lebesgue’s
Dominated Convergence Theorem,

/mju2dm%/mu2dx
Q Q

pin () = pin ().

and consequently

]
The eigenvalue problem (PA) has a double sequence of eigenvalues
S < p <0< <pg <
whose variational characterization is
m = supy, inf{ [, mu?dz : ||lul| = 1,u € F,,}
(A.1)
m = supp, inf{fQ mu?dz : |[ul| = 1,u € F,},

where F), varies over all n-dimensional subspaces of Hg(Q) The corresponding eigenfunc-
tions are such that

(a(pn,v) = o [ mepnv, Yo € H(Q)

a(pn,on) =1 (A.2)

1
= Jomeidx

Proof. By the observation 2.1 and by the definition of the T" operator, we obtain the varia-
tional characterization. Since

a(u,v) = u/ m(x)uvdr Vv € H(Q)
Q
take u = ¢,, we have

a(pn,v) = ,u/ m(x)envdr, Yo € HH(Q).
Q

Now taking ¢, = u, we obtain

a(pn, pn) = 'u“/ mgpidx = tn(Ton, pn) = Hn 1.
Q P,

O]

The next result can be seen in detail in [2].
Let H be a separable Hilbert space and let T" be a compact self-adjoint operator. Then
there exists a Hilbert basis composed of eigenvectors of T
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Appendix B

The Classical Min-Max Principle

Now we will enunciate the homotopically stable family definition and a theorem known as
Ghoussoub’s theorem that can be found in the book [14], Theorem 3.2. Let be B a closed
subset of X. A class F of compacts subset of X is a homotopically - stable family with
boundary B provided

(a) any subset in F contains B;

(b) for any set A in F and any n € C([0,1] x X; X) satisfying n(t,z) = x for all (¢, z) in
({0} x X)U ([0,1] x B) we have that n(1 x A) € F.

Theorem B.1. Let ¢ be a C'- functional on a complete connected C*- Finsler manifold
(without boundary) and consider a homotopy stable family F of compact subsets of X with
a closed boundary B. Let ¢ = c(p, F) = Anf]: maxzeA ¢(x) and suppose that

€

(Fy) supp(B) < c.
Then, for any sequence of sets (Ay)n in F such that limsup ¢ = ¢, there is a sequence (Tp)n,
noA

n

in X such that

(i) limp(x,) = ¢

(i) lim [ dip(a,) | = 0
(117) lim dist(xy,, A,) = 0.

Moreover, if dp is uniformly continuous, then x, can be chosen to be in A, for each n. See
the proof in Chapter 3 of [14].
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