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Abstract

In this work we study the dynamics and topology of the action of a semisimple Lie

group G on its maximal subgroup K, first we study hyperbolic actions on K and

then general translations. For this we find the minimal Morse components and stable

and unstable manifolds and prove that the minimal Morse components are normally

hyperbolic. The unstable manifolds correspond to Bruhat cells whose closure are

the Schubert cells. This division of K by Schubert cells creates a cell complex that

permit the calculation of the homology groups of K. We focus on the case of split

real forms. The boundary operator is found in general and the example SO(3) is

calculated geometrically and then algebraically by the formulas we obtain here.

Keywords: Semisimple Lie groups, Morse decomposition, Normal hyperbolicity,

Iwasawa decomposition, Cellular homology.



Dinâmica e Topologia em Subgrupos
Maximais Compactos

Resumo

Neste trabalho estudamos a dinâmica e topologia da ação de um grupo de Lie

semissimples G em seu grupo maximal K, primeiro estudamos as ações hiperbólicas

em K e depois estudamos translações gerais. Para isto achamos as componentes de

Morse minimais e as variedades estáveis e instáveis e provamos que as componentes de

Morse minimais são normalmente hiperbólicas. As variedades instáveis correspondem

as células de Bruhar cujos fechos correspondem às células de Schubert. Esta divisão

de K por células de Schubert gera um complexo celular que permite o cálculo de

grupos de homologia de K. Focamos no caso de formas reais normais. O operador

fronteira é descoberto em geral e o exemplo do SO(3) é calculado geometricamente e

depois algebricamente pelas fórmulas obtidas aqui.
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Chapter 1

General Introduction

The first main results in this work follow similar results in flags manifolds that can be

found in [7], [14], [15] and are also collected in [2]. These results study the dynamics

of hyperbolic and general actions on flags, the fixed points, stable, and unstable

manifolds for the hyperbolic action are all found and a linearization of the stable

sets is possible. For the general action the recurrent set is found and a linearization

is also possible. The general methods were maintained with only slight alterations

to obtain similar results.

In [5] it is considered a continuous-time flow generated by semisimple element

H ∈ g acting on the flag manifolds of g: they show that it is a Morse-Bott gradient

flow, and describe its fixed point set and stable manifolds. In [10] it is analyzed a

continuous-time flow generated by an element which is the sum of two commuting

elements of g, one of which induces a gradient vector field and the other generates a

one-parameter field of isometries.

Then normal hyperbolicity was first established when the matrix is diagonalizable

over the complex numbers [5], [7], [10]. In [15] it is proven that this normal hyper-

bolicity is true in a far more general context of an arbitrary element of a semisimple

Lie group acting on generalized flag manifolds: the so called translations on flag

manifolds.

In [16], the Bruhat and Schubert cells are used in flag manifolds to divide the

them in cell complexes to then calculate the topology of partial and complete flags.

Formulas for the boundary operator are then found. We also followed the results

of this work for complete flags to produce similar results for the maximal compact

subgroup.

The results of [16] were already partially found for flag manifolds by Kocherlakota

[19]. In the realm of Morse homology in Theorem 1.1.4 [19] it is proven that the

boundary operator for the Morse-Witten complexes are intimately related since
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2

Bruhat cells are unstable manifolds of the gradient flow of a Morse function (see

Duistermatt-Kolk-Varadarajan [5]). Nevertheless the cellular point of view of [16]

has the advantage of showing the geometry in a more evident way, in particular, the

choice of minimal decompositions for the elements of W fix certain signs ambiguous

in the Morse-Witten complex.

The construction of cellular decompositions of group manifolds and homogeneous

spaces is an old theme. For the classical compact Lie groups one can use cells using

products of reflections via the product of reflections via the method that goes back

to Whitehead [25] and was later developed by [23], [24]. More recently it can be

found in section 3.D of [8].

The degeneration of Spectral sequences that occurs for unitary and sympletic

groups fails for the orthogonal groups, because in the analogue of the iterated

fiber decomposition of the orthogonal groups one encounters spheres of adjacent

dimensions (see section 3.2 of [4]).

In the second chapter we will define an action of the semisimple group G by left

multiplication on the homogeneous manifold G/AN where A and N come from the

Iwasawa decomposition. From this we can define what is an hyperbolic action in K

and find its fixed points and stable and unstable manifolds. This decomposition is

also called a Bruhat decomposition.

In the hyperbolic case a linearization of the manifolds is possible. To obtain

the main result in the chapter we begin by constructing a height function and an

appropriate metric in K so that we can show that the system is gradient. The first

main result for regular flows is Theorem 2.18 and the main result of the chapter is

Theorem 2.20 Let ht be a hyperbolic flow in K.

(i) The set of fixed points is the disjoint union of connected components

fix(ht) =
∐

{fix(H, u) : u ∈ UH\U}

where fix(H, u) = K0
Hub. The attractors are fix(H, c) for c ∈ CH\C and the

repellers are fix(H, cu−) for c ∈ CH\C.

(ii) The group K decomposes as the disjoint union of stable manifolds,

K =
∐

{st(H, u) : u ∈ UH\U} (1.1)

where each st(H, u) = N−
Hfix(H, u) = N−

HK
0
Hub is diffeomorphic to the stable

fiber over fix(H, u). Also, for c ∈ CH\C the stable manifolds are open in K

and their union is dense.
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In the third chapter we first show that a general action is decomposable in elliptic,

hyperbolic and nilpotent components that commute with each other, the so called

Jordan decomposition. Next we study the example of Sl(2) with K = SO(2) and see

that the system is not gradient. This motivates the study of chain recurrence and

then by working with concrete examples we found Lemma 3.4 where we show that

the system is equivariant by right multiplication by M . This provides a symmetry

necessary to show that chain recurrent components are the fixed points for the

hyperbolic flow fix(ht) that is Theorem 3.10. Later we obtain a result for recurrent

points:

Theorem 3.11 Let gt be the translations flow in G and gt = ethtut is its Jordan

decomposition. The recurrent set of translations gt induced in K is given by

R(gt) = fix(ht) ∩R(ut)

and R(ut) = π−1(fixF(u
t)), where π is the projection of K in K/M = F.

Later we also obtain a linearization of the general flow in the stable manifolds.

In the fourth chapter we use the Bruhat and Schubert cells to calculate the

homology of K for split real forms in particular at the end we calculate the homology

of SO(3). In this we follow [16] to first construct the skeleton and then the boundary

map to find algebraic expressions for the degrees of the maps. The calculations for

the degrees in SO(3) are done in two ways, first geometrically and then algebraically

to better illustrate the results obtained. A general result is:

Theorem 4.14 Let σ(u, v) be as in Equation 4.3. Then if v = v1v2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j

and if v = v1mjv2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j+1+σ(u,v)

where

σ(u, v) =
∑

β∈Πv2

2⟨αj, β⟩
⟨αj, αj⟩

as in Proposition 4.13. Whereas Theorem 4.16 is a result most useful when the

calculations from Theorem 4.14 turn too long.



Chapter 2

Hyperbolic translations of K

2.1 Action and metric in K

In this chapter we will first define an action of the semisimple group G by left

multiplication on the homogeneous manifold G/AN where A and N come from

the Iwasawa decomposition. From this we can define an hyperbolic action in K

and we find its fixed points and its stable and unstable manifolds, and show that a

linearization of the stable manifold is possible. For this we first construct a height

function and an appropriate metric in K so that we can show that the system is

gradient.

Let G be a real connected semisimple Lie group and let K, A, N be Lie subgroups

of G obtained by a fixed Iwasawa decomposition G = KAN (see Theorem 13.3.8 from

[12]). The natural action of G in G/AN is given by left multiplication (as in section

10.1 of [12]). In this section we will study K as the homogeneous manifold G/AN

taking the base of G/AN , or the left coset AN , as b. So the isotropy subalgebra of

the base will be a⊕ n, where a is the Lie algebra of A and n is the Lie algebra of N .

From this point on we will assume the Lie group K is compact. In Theorem 6.31

item (f) of [18] we notice that the Lie group K is compact if and only if the center

of G is finite.

Definition 2.1 Let G be a real connected semisimple Lie group and let K,A, N as in

a fixed Iwasawa decomposition. Define the action of G in G/AN by left multiplication.

From the Iwasawa decomposition and since G is transitive in G/AN for all g ∈ G

there exists a unique k ∈ K such that

gb = kb

and there are also unique a ∈ A and n ∈ N and g = kan.

Define the quotient map ϕ : G→ G/AN as ϕ(g) = gb = kb.

4



Action and metric in K 5

The Iwasawa decomposition is in fact a generalization of the Gram-Schmidt

orthogonalization process on the column vector of the matrices, where the orthogonal

result is in fact the k matrix in the decomposition. One can use this to build some

intuition on the action before. Also, in the Sl(2) example it turns out that just

dividing by the norm after the linear action in G is enough to understand the action

in K. In the examples, we will take a slightly different approach to get k with less

calculations.

Now, note that,

ϕ|K : K → G/AN, ϕ|K : k 7→ kb

is a K-equivariant diffeomorphism of a Lie group into a homogeneous manifold, and

similarly,

ϕ|−1
K : G/AN → K, ϕ|−1

K : kb 7→ k

is also K-equivariant.

Informally, we can identify the Lie group K with the homogeneous manifold

G/AN . When necessary we will use these diffeomorphisms to relate the group K

with the homogeneous manifold.

Example: Let G = Sl(2) and the Iwasawa subgroups are: K := SO(2),

A :=

{(
h 0

0 h−1

)
, h > 0, h ∈ R

}
N :=

{(
1 x

0 1

)
, x ∈ R

}
Now we will study the hyperbolic action on the compact group SO(2)(

et 0

0 e−t

)
.

(
cosα − sinα

sinα cosα

)
b =

(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)
b

so we need to find the α(t) or the compact component for the matrix(
et cosα −et sinα
e−t sinα e−t cosα

)
if we multiply the Iwasawa decomposition taking h(t) to be h and x(t) to be x,(

cosα(t) − sinα(t)

sinα(t) cosα(t)

)(
h 0

0 h−1

)(
1 x

0 1

)
From the elements in the first column et cosα = h cosα(t) and et sinα = h sinα(t)

dividing both terms when sinα ̸= 0 we get e2t cotα = cotα(t). So α(t) can be

determined. Remember that in the trigonometric circle the cotangent “axis” is

tangent to (0, 1). Now we can identify the unstable equilibrium points are when

cosα = 0 and the stable equilibrium points are when sinα = 0. The first column of

the matrices is used to plot the results in matrix form.
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(
1 0

0 1

)(
−1 0

0 −1

)

(
0 −1

1 0

)

(
0 1

−1 0

)

By the action of G in K ≃ G/AN we have that g belongs to the isotropy group

of kb if, and only if,

gkb = kb⇔ gk ∈ kAN ⇔ g ∈ kANk−1

Let gkb be the isotropy subalgebra of kb for k ∈ K then

gkb = k(a⊕ n)

where the action of the group in the algebra is defined as gX := Ad(g)X for X ∈ g.

LetM := Z(K, a) be the centralizer of the algebra a in K. Let k be the subalgebra

of K and let θ be the Cartan involution that fixes the elements in k, Define the

subalgebra s of g by the elements X ∈ g such that θ(X) = −X.

Note that n can be decomposed by the rootspaces of positive roots, so when

fixing a Iwasawa decomposition we have already chosen the set positive roots Σ, the

set of H ∈ a such that α(H) > 0 for all positive roots is the positive chamber a+ of a.

Now we introduce an important immersion of K/M in s. Let Hr ∈ a+ be a

regular element.

Proposition 2.2 If M := Z(K, a), or the centralizer of a in K, and Hr ∈ a+ be a

regular element then the map.

j : K/M → s, kM 7→ kHr, k ∈ K

is a K-equivariant differentiable immersion of K/M in s.

Proof: The map j is well defined, indeed since if k ∈ K and m,m′ ∈M then

kmHr = km′Hr = kHr. To show that the map j is injective let k′ ∈ K and
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kmHr = k′m′Hr then kHr = k′Hr and k
−1k′ ∈ Z(Hr) ∩K the centralizer of Hr in

K. By Theorem 4.21 in [2], since Hr is regular KHr = Z(Hr) ∩ K = M . Then

k−1k′ ∈M and k′M = kM .

The map j is K-equivariant since j(k.k′M) = k.k′Hr = k.j(k′M) and by Corol-

lary C.7 of [2] it is also differentiable. Since K/M is compact and j is differentiable

then j is an immersion.

Now, we will take the application j to be defined with domain K where it fails

to be an immersion.

The Cartan involution θ that fixes the subalgebra k of K also fixes a Cartan inner

product ⟨·, ·⟩. Now, let H be a fixed element of cla+ and define the height function

fH of the application j in the direction H as:

fH : K = G/AN → R, x 7→ ⟨j(x), H⟩

and then fH(kb) = ⟨kHr, H⟩. Define GH as the centralizer of H in G and define

KH := GH ∩K as the centralizer of H in K.

Proposition 2.3 The function fH is KH-invariant and its differential is

f ′
H(kb)k(Z · b) = ⟨[Z,Hr], k

−1H⟩

where k ∈ K and Z ∈ k.

Proof: To show KH-invariance, let k ∈ KH . By K-equivariance of j

fH(kx) = ⟨kj(x), H⟩ = ⟨j(x), k−1H⟩ = ⟨j(x), H⟩

where k is ⟨·, ·⟩-orthogonal (see Proposition 2.40 of [2]). Lets evaluate its differential

at kb in the direction kZ with Z ∈ k,

f ′
H(kb)k(Z · b) = d/dt|t=0 fH(k exp(tZ)b)

= d/dt|t=0 ⟨k exp(tZ)Hr, H⟩

= d/dt|t=0 ⟨etad(Z)Hr, k
−1H⟩

= ⟨[Z,Hr], k
−1H⟩

since k is ⟨·, ·⟩-orthogonal.

Now, our next objective is to define a metric in K such that the field induced

by H in K is the the gradient of the height function fH . Using the Cartan inner

product, we get a corresponding orthogonal decomposition of g.

g = m⊕ a⊕
∑
α∈Π

gα = m⊕ a⊕ n⊕ n−
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by Theorem 2.29 from [2], then

(a⊕ n)⊥ = m⊕ n− (2.1)

Note that by Theorem 4.13 from [2], K∅ = K(∅)M =M . Then, by Proposition

C.13 (iii) from [2], an inner product in m⊕n− is K∅-invariant orM -invariant extends

to K-invariant metric in Bkb for k ∈ K given by

Bkb(k(X · b), k(Y · b)) := B(X, Y ) where X, Y ∈ m⊕ n−

By decomposing n− in M -invariant subspaces we can describe the inner products B

that are M -invariant.

Let λ be a real number, and bλ be the λ-eigenspace of ad(Hr) in g given by

bλ := {X ∈ g : ad(Hr)X = λX}

Note that

bλ =
∑

α(Hr)=λ

gα

and

n− =
∑
λ<0

bλ

Since M normalizes each gα by Proposition 3.25 [2] and M normalizes m since

M0 = exp(m) is a normal subgroup of M we have that M normalizes the inner

product B in m⊕ n−.

For X ∈ g let Xλ be the orthogonal projection of X in bλ and let X0 be the

orthogonal projection of X in m. Note that for m ∈M , (mX)λ = mXλ. Let cλ and

c0 be positive real numbers associated to bλ and m, respectively. Lets define the

inner product in m⊕ n− given by

B(X, Y ) :=
∑
λ≤0

cλ⟨Xλ, Yλ⟩ where X, Y ∈ m⊕ n− (2.2)

Since ⟨·, ·⟩ is M -invariant then B is also M -invariant.

Using the notation H · x = d/dt|t=0(e
tHx) and the notation H· for the induced

field by H in K, so that H· is in the space of tangent fields Γ(TK) of K.

Theorem 2.4 Taking cλ = −2λ for λ < 0 in equation 2.2 then

H· = gradB (fH)

that is, the induced field by H ∈ s in K is the gradient of the height function fH with

respect to the K-invariant metric B. Also,

B(X, Y ) = c0⟨X0, Y0⟩+ 2⟨[X,Hr], Y ⟩ X, Y ∈ m⊕ n−

where X0 and Y0 are the components of X and Y in m. And c0 is arbitrary positive.
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Proof: By the definition of gradB for k ∈ K and X ∈ m⊕ n−,

Bkb(k(X · b), gradB(fH)(kb)) = f ′
H(kb)k(X · b)

So to prove the first statement we need to show that

Bkb (k(X · b), H · kb) = f ′
H(kb)k(X · b) (2.3)

To evaluate the left side, let Y− be the orthogonal projection of k−1H in m⊕ n−,

that is parallel to a⊕ n. Note that since k−1H ∈ s then Y− ∈ n−.

Then Y− · b = k−1H · b, and k(Y− · b) = H · kb. Let X = X0 +X− where X0 ∈ m

and X− ∈ n−. By the K-invariance of the metric the left side is

Bkb (k(X · b), H · kb) = Bkb (k(X · b), k(Y− · b))

= B(X−, Y−)

=
∑
λ<0

cλ⟨Xλ, Yλ⟩ (2.4)

To evaluate the right side, let Z = X0 +X− + θX− ∈ k. Since θX− ∈ n, then

Z · b = (X0 +X−) · b. By Proposition 2.3 then

f ′
H(kb)k((X0 +X−) · b) = ⟨[Z,Hr], k

−1H⟩ (2.5)

To evaluate [Z,Hr], first note that

[Hr, X−] =
∑
λ<0

ad(Hr)Xλ =
∑
λ<0

λXλ

[Hr, θX−] = −[θHr, θX−] = −θ[Hr, X−] = −
∑
λ<0

λθXλ

and that [Hr, X0] = 0. Then

[Z,Hr] =
∑
λ<0

λ(θXλ −Xλ)

Since k−1H ∈ s (see Proposition 2.40 from [2]) then

⟨θXλ, k
−1H⟩ = −⟨θXλ, θk

−1H⟩ = −⟨Xλ, k
−1H⟩

and

⟨[Z,Hr], k
−1H⟩ =

∑
λ<0

−2λ⟨Xλ, k
−1H⟩ =

∑
λ<0

−2λ⟨Xλ, Yλ⟩

since Y− =
∑

λ<0 Yλ is the projection of k−1H at m ⊕ n−. From (2.5) and since

X = X0 +X− then

f ′
H(kb)k (X · b) =

∑
λ<0

−2λ⟨Xλ, Yλ⟩ (2.6)
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Now, to prove equation (2.3) then by (2.4) and (2.6) the metric B has cλ = −2λ

for λ < 0.

To prove the last statement, let X−, Y− ∈ n− then

B(X−, Y−) = −2
∑

λ<0 λ⟨Xλ, Yλ⟩
= −2⟨

∑
λ<0 λXλ, Y−⟩

= −2⟨[Hr, X], Y−⟩
= 2⟨[X,Hr], Y−⟩

Since Y = Y0 + Y− with Y0 ∈ m then

B(X, Y ) = B(X0, Y0) +B(X−, Y−)

The Riemannian metric B constructed on the last Theorem is an extension of

the Borel metric of F.

2.2 Fixed points

Let M∗ := N(K, a) and M := Z(K, a), respectively, the normalizer and centralizer

of a in K. Note that in general M is not connected so that M0 = exp(m) is, in

general, a proper subgroup of M (see sl(n,C)). To study the fixed points in K it is

convenient to define the group

U :=M∗/M0

This group will play a similar role to the Weyl group in the study of fixed

points in flags [2]. Since the Weyl group W is M∗/M (see Corollary 3.24 [2]) then

W = (M∗/M0)/(M/M0) so that W = U/C where we define

C :=M/M0

Note that this implies that U is then a group extension of W by C. Also note that

W is not a subgroup of U and for each element in W there is a corresponding coset

of C in U .

Remember from the Iwasawa decomposition that G has subgroups K, A, N now,

let k, a and n be their respective subalgebras.

The definitions of U and C have some useful consequences. For c ∈ C, cH = H

for all H ∈ a. For u ∈ U , uA = Au. Also, for any α ∈ Π, cgα = gα so cNc−1 = N .

In general, if u ∈ wC, then ugα = gwα.
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In analogy to w−, the principal involution, we fix some u− ∈ U such that

u− ∈ w−C, so that u−n = n− and u−N(u−)−1 = N−.

Let us study the flow ht = exp(tH), t ∈ R and H ∈ cla+ defined in K using the

action of the beginning of the chapter. In this section, we will describe the fixed

points of ht in K as orbits of G0
H , the identity component of the centralizer of H in

G. In this description, the orbit of b by M∗ = N(K, a) has a central role.

From Lemma 3.1 the hyperbolic component H of any action can be assumed to

be in the closure of the positive chamber by changing the Iwasawa decomposition.

Now note that since Iwasawa decompositions are conjugated to one another the

corresponding flows are also conjugated. So we can assume without loss of generality

that H ∈ cla+.

In the case of complete flags, by Proposition 3.25 of [2], since p = m⊕ a⊕ n, then

the action of M∗ in the isotropy subalgebras is the same as the action of W or,

M∗(m⊕ a⊕ n) = W (m⊕ a⊕ n)

For the study of actions in the isotropy algebras of K note that,

M∗(a⊕ n) = U(a⊕ n)

By the Iwasawa decomposition the action of G in K ≃ G/AN corresponds to the

action of Ad in the isotropy algebra of gb = a⊕ n. We will show that the set of fixed

points in K of ht is the union of the orbits G0
Hub for u ∈ U . Define

fix(H, u) := G0
Hub

in Theorem 2.8 we prove that the fixed points of ht are

fix(ht) =
⋃
u∈U

fix(H, u) =
⋃
u∈U

G0
Hub

Proposition 2.5 The flow ht in K ≃ G/AN is the gradient of the height function

in relation to the Borel metric and the following sets coincide:

(i) The zeros of the vector field H· in K.

(ii) The critical points of fH .

(iii) The fixed points of the flow ht, t ∈ R.

(iv) The fixed points of the flow ht, t ∈ Z.
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Proof: By Theorem 2.4 the induced vector field by H is the gradient of fH in

the Borel metric. Since a gradient field is zero precisely in the critic points of its

height function, then the zeros of the induced vector field by H coincide with the

critic points of fH . Since h
t, t ∈ R is the flow induced by the vector field H in K,

then its fixed points are given by the points where the vector field is zero. By the

previous argumentation, these points are the critic points of fH . Note that since h
t is

a gradient flow, then it does not have periodic orbits. Since fH is strictly increasing

along a non-trivial orbit of ht this implies that the fixed points of (iii) and (iv)

coincide.

Let us define then the fixed points of ht in K by the set described in the previous

Proposition.

Proposition 2.6 For any x ∈ K, the following sets of K:

(i) the omega limit of x in the flow ht, t ∈ R,

(ii) the omega limit of x in the flow ht, t ∈ Z,

coincide and are the fixed points of ht in K.

Proof: Let f = fH , then by the Theorem 2.4, then the real function t 7→ f(htx) is

not-decreasing and since K is compact f limited from above. And t 7→ f(htx) is

constant if, and only if, x is a critic point of f . By the Proposition 2.5, this occurs

if, and only if, x is a fixed point of ht.

First let us show that if y is an omega limit of x by ht then y is a fixed point

of ht, t ∈ R. Let ω(x) be the omega limit set of x by ht, t ∈ R. Since the real

function t 7→ f(htx) is non-increasing and limited from above, there exists a limit a =

limt→∞ f(htx). Then, for any real sequence tn → ∞, we have a = limn→∞ f(htnx),

so that from the continuity of f , for all z ∈ ω(x), f(z) = a. Since y ∈ ω(x) and ω(x)

are invariant, then hty ∈ ω(x) for all t. And then, f(hty) = a, for all t, and from the

argument in the beginning, y is a fixed point of ht, t ∈ R.
The omega limit of x by ht, t ∈ Z, is contained in the omega limit of x by ht,

t ∈ R. For the opposite implication let y be the omega limit of x by ht, t ∈ R.
Then there is a sequence ti of real numbers where ti → ∞ and htix → y, when

i→ ∞. From the argument at the beginning, y is a fixed point of ht. Let εi ∈ [0, 1]

be a sequence such that ti + εi = ni ∈ N for all i, since [0, 1] is compact there is

a subsequence of εi (and then ti and ni) and we can assume limi→∞ εi = ε. By

continuity and by the fact that y is a fixed point of the flow, we have

lim
i→∞

hnix = lim
i→∞

hεi(htix) = hεy = y



Fixed points 13

and y is the omega limit of x by ht, t ∈ Z.

Remember that, KH = GH ∩K, now define

a(Θ) := generated by {Hα : α ∈ Θ}

and

a(Θ)+ := {H ∈ a(Θ) : α(H) > 0,∀α ∈ ⟨Θ⟩+}

is a Weyl chamber where,

⟨Θ⟩+ := ⟨Θ⟩ ∩ Π+

We need to find a semisimple algebra such that ⟨Θ⟩ can be seen as a set of roots.

The subalgebra of type Θ is the subalgebra

g(Θ) := a(Θ)⊕
∑
α∈⟨Θ⟩

gα

This subalgebra is in fact a semisimple algebra (see Proposition 4.2 [2]). Define

k(Θ) := g(Θ) ∩ k

For a given H ∈ a consider the annihilator of H in Σ to be

Σ(H) := {α ∈ Σ : α(H) = 0}

and n(H)± are defined as the nilpotent algebras generated by g(H).

The semisimple group G(Θ) of type Θ of G is the connected subgroup generated

by g(Θ). Denote by K(Θ), A(Θ), N(Θ)± the connected subgroups generated,

respectively, by k(Θ), a(Θ), n(Θ)±. Define

G(H) := G(Σ(H))

and its components in the Iwasawa decomposition are given by

K(H) := K(Σ(H)), N(H) := N(Σ(H)).

Since uM0 are lateral classes of M∗/M0 then uM0 = M0u and we have that

K(H)uM0 = K(H)M0u andG(H)uM0 = G(H)M0u. Note also that uGHu
−1 = GwH

if u ∈ wC.

Proposition 2.7 If G0
H and K0

H are the components of identity of GH and KH then

K0
Hub = G0

Hub = G(H)M0ub = K(H)M0ub

is a compact connected submanifold of K.
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Proof: To show the first equality from Proposition 4.19 from [2] we get

Gw−1H = Kw−1HA(Gw−1H ∩N)

Let u ∈ U such that u ∈ wC. By taking the conjugate of the equation above by u

then

GH = KHA(GH ∩ uNu−1)

Now, AuNu−1 fixes ub, in fact, AuNb = uANb = ub and

GHub = KHA(GH ∩ uNu−1)ub ⊂ KHub

Since the action of G in K is continuous then G0
Hub ⊂ K0

Hub and since K0
H ⊂ G0

H

then G0
Hub = K0

Hub.

For the second equality, since GH = GΣ(H) (see Proposition 4.22 [2] ), G(H) =

G(Σ(H)) and GΘ =MAΘG(Θ) (see Proposition 4.14 of [2]), then

GH =MAHG(H)

Note that G(H) ⊂ GH = Z(aH) normalizes AH and M0 normalizes G(H) so

M0AHG(H) =M0G(H)AH = G(H)M0AH

and G(H)M0AH is a subgroup of G0
H . Since the two subgroups are connected and

have the same Lie algebra then, in fact, G0
H = G(H)M0AH .

The term AH ⊂ A fixes ub so Aub = uAb = ub and

G0
Hub = G(H)M0ub

To get the third equality, we show that K0
H = K(H)M0. By Theorem 4.21 of

[2], we have KH = K(H)M . First let us show that M0 normalizes κ(gα), where

κ(X) = (X + θX)/2, for X ∈ g. By Proposition 3.25 of [2], M0 ⊂M normalizes gα

for all α. If m0 ∈M0 there is Z ∈ m such that m0 = exp(Z), let X ∈ gα then

m0κ(X) = exp(Z)κ(X) = eadZκ(X) =
1

2
eadZ(X + θX)

Since [Z, θX] = θ[Z,X] then eadZθX = θeadZX and

m0κ(X) =
1

2
(eadZX + θeadZX) =

1

2
(m0X + θ(m0X)) = κ(m0X)

then m0κ(gα) ∈ κ(gα) and we get that M0 normalizes κ(gα).

Since K(H)M0 = M0K(H) we conclude that K0
H = K(H)M0, since these Lie

groups have the same Lie algebra. Since M0 ⊂ K0
H then K0

HM0u = K0
Hu. Note
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that if uM0 = u′M0 then K0
Hu = K0

Hu
′ so these two subgroups don’t depend on the

choice of the element in the coset class. In a similar form, since M0 ⊂ G0
H we get

G0
Hu = G0

Hu
′.

For the last statement, since K0
H is a compact and connected subgroup of K and

the action of G in K is differentiable then M = K0
Hub is a connected and compact

submanifold of K.

Note that if uM0 = u′M0 since M0 ⊂ K0
H = K(H)M0 then K0

HM0u = K0
Hu and

K0
Hu = K0

Hu
′ In the proof of the previous Proposition we showed that M0 ⊂ K0

H ⊂
G0

H , then we can write K0
Hub in the form K0

HuM0b. Similarly, we can write G0
Hub as

G0
HuM0b.

Theorem 2.8 The fixed points of ht in K are given by the union⋃
u∈U

K0
Hub =

⋃
u∈U

G0
Hub

Proof: By Proposition 2.5, the fixed points of ht in K are the critical points of the

height function fH . By Proposition 2.7, K0
Hub = K(H)M0ub.

To get the critical points of fH we rewrite the derivative at the point kb, k ∈ K,

in the direction Z ∈ k, given by Proposition 2.3, as follows

f ′
H(kb)k(Z · b) = ⟨k[Z,Hr], H⟩

= ⟨[kZ, kHr], H⟩
= −⟨ad(kHr)kZ, H⟩
= −⟨kZ, ad(kHr)H⟩
= −⟨kZ, [kHr, H]⟩

where we used that k is ⟨·, ·⟩-orthogonal, kHr ∈ s (see Proposition 2.40 of [2]) and

ad(kHr) is ⟨·, ·⟩-symmetric (see Proposition 2.23 of [2]). Since kk = k, then kb is a

critical point of fH if, and only if,

⟨Z, [kHr, H]⟩ = 0, for all Z ∈ k

Since kHr and H ∈ s then [kHr, H] ∈ k and, since ⟨·, ·⟩ is an inner product in k,

then the previous equation is true if, and only if, [kHr, H] = 0. Then kb is a critical

point of fH if, and only if, kHr centralizes H.

For k ∈ M∗ we have kHr ∈ a then [kHr, H] = 0. Then the points kb, k ∈ M∗,

are all critical points. Since M∗ = M0U then M0ub for u ∈ U are critical points.

Now since fH is KH-invariant to the left then the orbit KHUb consists of critical

points. In fact, let α(t) be a differentiable curve such that α(0) = kub, where k ∈ KH .
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From the KH invariance of fH , then fH(α(t)) = fH(k
−1α(t)), where k−1α(t) is a

differentiable curve and k−1α(0) = ub. Then

(fH ◦ α)′(0) = (fH ◦ k−1α)′(0) = 0

since ub is a critic point.

In fact, the points KHUb are all the critical points of fH . Indeed, if kb is critical,

k ∈ K, from the previous argument then kHr centralizes H ∈ cla+. By Lemma 4.20

of [2], there is l ∈ K(H) such that lkHr ∈ a. By Proposition 4.28 of [2] and by

Corollary 3.24 of [2], there is m ∈M∗ such that lkHr = mHr. Then m
−1lkHr = Hr,

and

m−1lk ∈ KHr =M

and,

k = l−1m(m−1lk) ∈ K(H)M∗

Since M∗ = M0U then k ∈ K(H)M0U . Now, since K0
H = K(H)M0 (from the

beginning of the proof of Proposition 2.7) then K0
HUb are the only critical points of

fH . The equality in the Theorem is a consequence of Proposition 2.7.

2.3 Linearization

In this section, we will prove in Theorem 2.14, a linearization of the gradient flow ht

around each component of fixed points M = fix(H, u) := K0
Hub.

First let us define a normal linearization of a differentiable flow.

Definition 2.9 Let ϕt be a differentiable flow in a Riemannian manifoldX for t ∈ R.
A invariant manifold M ⊂ X is normally hyperbolic if the tangent bundle of X over

M has orthogonal invariant sub-bundles V −, V + and there are positive constants c

and λ < µ such that

(i) TX|M = TM⊕ V − ⊕ V +.

(ii) |Dϕtv| ≤ ce−λt|v| for all v ∈ V −and t ≥ 0.

(iii) |Dϕ−tv| ≤ ce−λt|v| for all v ∈ V +and t ≥ 0.

(iv) |Dϕtv| ≤ ceµ|t||v| for all v ∈ TM and t ∈ R.
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In the previous definition V − is called the stable fiber of M, V + is the unstable

fiber of M and V − ⊕ V + is the normal bundle

V := V − ⊕ V +

We identify the zero section of the normal bundle with the base M. Let ϕt be a

differentiable flow in X for t ∈ R. Define Nϕt as the restriction to the normal fiber

of the differential

Nϕt := Dϕt|V

A normally hyperbolic linearization around M is a local diffeomorphism f from a

neighbourhood A of the zero section at the normal bundle to a neighbourhood B of

M such that f restricted to the normal bundle is the identity in M and is a local

conjugation

f(Nϕt(v)) = ϕtf(v)

for all v ∈ A such that Nϕtv ∈ A.

Now, define an adequate complement of the isotropy subalgebra gx for x in K to

use it as a model for the tangent bundle TKx. Let us fix in g a Cartan inner product

⟨·, ·⟩, that is K-invariant (Proposition 2.40 of [2]). Consider g⊥x the orthogonal

complement of gx in g with respect to this inner product. From Proposition C.13 (i)

of [2],

g⊥x → TKx X 7→ X · x (2.7)

is a linear isomorphism, and, for k ∈ K,

k(g⊥x ) = g⊥kx (2.8)

Now, since gkb = k(a ⊕ n) and (a ⊕ n)⊥ = m ⊕ n− (equation 2.1). Then, in

particular,

g⊥um0b
= u(m⊕ n−) = m⊕ un− (2.9)

since um0 ∈ uM0 ⊂M∗ and um0m = m. So we can use g⊥x as a model for TKx and

consider the application

TKx → K X · x 7→ exp(X)x X ∈ g⊥x (2.10)

We will show that, for the following Riemannian metric in K, the restriction of this

application to the normal bundle of M is the differentiable linearization needed.

Proposition 2.10 Let

⟨X · x, Y · x⟩x := ⟨X, Y ⟩ for X, Y ∈ g⊥x
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be a K-invariant Riemannian metric in K such that the map defined in (2.7) is an

isometry. Then, for Y ∈ g,

|Y · x|x ≤ |Y |

with equality if, and only if, Y ∈ g⊥x .

Proof: By definition the map in (2.7) is an isometry and the metric is well defined

in each tangent space. To show the K-invariance of the metric, let X ∈ g⊥x , so

k(X · x) = kX · kx, where kX ∈ k(g⊥x ) = g⊥kx and similarly, kY ∈ g⊥kx. Then by, the

K-invariance of the Cartan inner product and the definition of the metric,

⟨k(X · x), k(Y · x)⟩kx = ⟨kX · kx, kY · kx⟩kx
= ⟨kX, kY ⟩

= ⟨X, Y ⟩

= ⟨X · x, Y · x⟩x

Because of the K-invariance by Proposition C.13 (iii) of [2] this defines a Riemannian

metric.

For the last property, let Y = Y1 + Y2 where Y1 ∈ g⊥x and Y2 ⊕ gx. Then

Y · x = Y1 · x, and
|Y · x|x = |Y1| ≤ |Y |

with equality if, and only if, Y2 = 0 or if, and only if, Y = Y1 ∈ g⊥x .

From now on, let us fix the previous metric in K. Note that, in general, this

metric is different from the Borel metric used previously. First we define candidates

for the stable and unstable bundles orthogonal to the tangent bundle of M. By

Proposition C.9 of [2] the tangent space of the orbit

M = G0
Hub

is given by

TM = G0
H(gH · ub) ⊂ TK

Define

N(H) := N(Σ(H)).

The nilpotent algebras of g(Θ) are n(Θ) and n(Θ)− (see Proposition 4.5 of [2])

The subalgebra nH is generated by the positive roots not in Σ(H) so that

n = n(H)⊕ nH . The definition of n−
H is analogous.

Consider the orthogonal decomposition

g = gH ⊕ n−H ⊕ n+H (2.11)
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where gH and n±H are GH-invariant by Proposition 4.23 from [2]. Define

V ± := G0
H(n

±
H · ub) ⊂ TK

for x ∈ M, and subspaces

v±x := n±H ∩ g⊥x

Proposition 2.11 (i) The tangent space of K in M can be decomposed as the

Whitney orthogonal sum,

TK|M = TM⊕ V − ⊕ V +

where V ± are GH-invariant differentiable vector sub-bundles of M. And, in

particular, V − ⊕ V + is a normal fiber of TM.

(ii) For x ∈ M, the map

v±x → V ±
x Y 7→ Y · x

is a linear isomorphism and k(vx) = vkx for k ∈ KH .

Proof: Since n±H are GH-invariant, by Proposition 4.24 of [2], they are G0
H-invariant

and their image in g/gub is invariant by the isotropy of ub in G0
H . From Proposition

C.12 of [2] V ± are sub-bundles G0
H-invariant over M = G0

Hub. From the G0
H-

invariance of n±H it follows that

V ±
x = {(gn±H · gx0) : g ∈ G0

H , gx0 = x} = n±H · x (2.12)

To prove the Whitney sum, by the orthogonal decomposition

g = u(m⊕ n−)⊕ u(a⊕ n)

by the decomposition in root spaces of n±H and by equation (2.9) then

n±H =
(
n±H ∩ u(m⊕ n−)

)
⊕
(
n±H ∩ u(a⊕ n)

)
= (n±H ∩ g⊥ub)⊕ (n±H ∩ gub)

For x ∈ M, then x = kub with k ∈ K0
H . From equation (2.8) then k(g⊥ub) = g⊥x

and kgub = gx. Since K0
H = K ∩ G0

H normalizes n±H , taking k in both sides of the

previous decomposition we get

n±H = (n±H ∩ g⊥x )⊕ (n±H ∩ gx)

= v±x ⊕ (n±H ∩ gx) (2.13)
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From this and from equation (2.12) then

v±x → V ±
x Y 7→ Y · x

is a linear isomorphism. Since gH is also G0
H-invariant, the same argument applies

to TM to get TMx = gH · x and

gH = (gH ∩ g⊥x )⊕ (gH ∩ gx) (2.14)

and,

TMx = (gH ∩ g⊥x ) · x (2.15)

Combining the decompositions (2.11), (2.13), and (2.14), we get the orthogonal sum

g⊥x = (gH ∩ g⊥x )⊕ v−x ⊕ v+x

The image of this decomposition by the isometry (2.7) is the orthogonal sum

TKx = TMx ⊕ V −
x ⊕ V +

x

Since k ∈ K0
H ⊂ KH normalizes n±H , from equation (2.8) then kvx = vkx.

To study the dynamics in the fibers V ±, first we study the dynamics in the

subalgebras n±H .

Lemma 2.12 Let h = expH, where H ̸= 0. Then

|htY | ≤ e−µt|Y | for Y ∈ n−H , t ≥ 0

and

|h−tY | ≤ e−µt|Y | for Y ∈ n+H , t ≥ 0

where

µ = min{α(H) : α(H) > 0, α ∈ Π}

Proof: Let Y ∈ n±H , then htY = etad(H)Y , where etad(H) is ⟨·, ·⟩-symmetric with

eigenvalues in n±H given by

{e±α(H)t : α(H) > 0, α ∈ Π}

since ad(H) is ⟨·, ·⟩-symmetric (see Proposition 2.23 of [2]) with eigenvalues in n±H
given by

{±α(H) : α(H) > 0, α ∈ Π}
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Since Y is an orthogonal sum of eigenvectors Y =
∑

α Yα, with Yα ∈ gα then,∣∣htY ∣∣2 =∑
α

e±2α(H)t|Yα|2

For t > 0 and Y ∈ n−H , then∣∣h−tY
∣∣2 =∑

α

e−2α(H)t|Yα|2 ≤ e−2µt
∑
α

|Yα|2 = e−2µt |Y |2

since e−α(H)t < e−µt, for t > 0 and all α ∈ Π with α(H) > 0, proving the first

statement. For t > 0 and Y ∈ n+H , then∣∣h−tY
∣∣2 =∑

α

e−2α(H)t|Yα|2 ≤ e−2µt
∑
α

|Yα|2 = e−2µt |Y |2

since e−α(H)t < e−µt, for t > 0 and all α ∈ Π with α(H) > 0, proving the second

statement.

The next result shows that the set of fixed points M of ht in K is normally

hyperbolic (see Definition 2.9).

Proposition 2.13 The fibers V ± are ht invariant and

|htv| ≤ e−µt|v| for v ∈ V −, t ≥ 0

|h−tv| ≤ e−µt|v| for v ∈ V +, t ≥ 0

where µ > 0 is obtained by Lemma 2.12. And,

|htv| = |v| for v ∈ TM, t ∈ R

Proof: Since n±H and M are ht-invariant, from the definition of V ± it is ht-invariant.

From Proposition 2.11(ii) then v ∈ V ± is given by

v = Y · x with Y ∈ vx = n±H ∩ g⊥x

where |v| = |Y | and x ∈ M. Since htv = htY · x then

|htv| ≤ |htY |

by Proposition 2.10. The inequalities from the Proposition follow from Lemma 2.12

and from |Y | = |v|. To prove the last statement, by equation (2.15) and the proof of

Proposition 2.11, for v ∈ TM

v = Y · x with Y ∈ gH ∩ g⊥x
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where |v| = |Y | and x ∈ M. Then htv = ht(Y · x) = Y · x, since ht centralizes gH , so

|htv| = |Y | = |v|

Take V to be the normal bundle NM of M in K so that

V := V − ⊕ V +

and define the model of normal bundle Vx of x ∈ M by

vx := v−x ⊕ v+x

and define the restriction of the map (equation 2.10) to the normal bundle by

Ψ : V → K X · x 7→ exp(X)x where x ∈ M, X ∈ vx (2.16)

The next result shows that this is the linearization we wanted to prove so that

the flow by ht in K is normally hyperbolic.

Theorem 2.14 (i) Ψ is a normal linearization of the flow ht in a neighbourhood

of M.

(ii) The restriction of Ψ to V − is a ht-equivariant diffeomorphism between V − and

st(M).

(iii) Ψ is KH-equivariant.

Proof: Since Ψ(0 · x) = x, then Ψ is a bijection from the zero section V0 to M.

First we prove the equivariances of Ψ. From Proposition 2.11(ii), k(vx) = vkx,

for k ∈ KH , so that for X ∈ vx, then

Ψ(k(X · x)) = Ψ(kX · kx) = exp(kX)kx = k exp(X)x = kΨ(X · x)

that proves the KH-equivariance. Next we prove that, ht(vx) = vx. Since h
t leaves

x ∈ M fixed then it normalizes gx and it also normalizes g⊥x , since h
t acts in g as a

self-adjoint transformation with relation to the Cartan inner product. Note that ht

also normalizes n±H , since h
t ∈ GH , so that ht normalizes vx, and

Ψ(ht(X · x)) = Ψ(htX · x) = exp(htX)x = ht exp(X)x = htΨ(X · x)

so that Ψ is ht-equivariant.
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To prove the differentiability let us consider an adjusted map to the sub-bundle

V and use the map from Proposition C.13(ii) of [2]. Taking in the Proposition

K = K0
H and U = M we can consider just the map ψ since it is possible to define

s : M → K0
H in the whole set M, if x = ub then

ψ : vub ×M → V (Y, y) 7→ s(y)(Y · ub)

Remember that there is a diffeomorphism,

φ : G/AN → K, φ : kb 7→ k

Define then the section s(y) = φ(y)u−1 ∈ K0
H and the map px(k) = φ−1(ku), so that,

vub −→ Vub
s(y)−→ Vy Y 7→ s(y)(Y · ub)

is a linear isomorphism, since it is a composition of isomorphisms. Also, since

ψ(Y, y) = s(y)Y · s(y)ub = s(y)Y · y

where s(y)Y ∈ vy, and

Ψ ◦ ψ(Y, y) = exp(s(y)Y )y = s(y) exp(Y )ub (2.17)

is differentiable in (Y, y).

Next, we prove that Ψ is a local diffeomorphism in a neighbourhood of the

zero section V0. From the inverse image Theorem, it is sufficient to prove that the

differential Ψ′(v) is an isomorphism for all v ∈ V0. Let x ∈ M be the base point of

v = 0 · x, so that ψ(0, x) = v. So we must prove that

(Ψ ◦ ψ)′(0, x) : vub × TMx → TKx

is an isomorphism.

Let us consider the coordinate curve (0, α(t)), where α(0) = x and α′(0) = q ∈
TMx. And the coordinate curve (tY, x), where Y ∈ vub, so that the tangent vectors

in t = 0, are respectively (0, q) and (Y, 0). So that,

Ψ ◦ ψ(0, α(t)) = s(α(t))ub = α(t)

since s(y)u = y and

Ψ ◦ ψ(tY, x) = s(x) exp(tY )ub

Then

(Ψ ◦ ψ)′(0, x)(Y, q) = q + s(x)(Y · ub)
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and the image of the differential (Ψ ◦ ψ)′(0, x) is TMx ⊕ Vx that is all TKx, by

Proposition 2.11. This proves that Ψ′(v) is an isomorphism for all v ∈ V0.

Now we show that Ψ is injective in a neighbourhood A of V0. Assume, by

contradiction, that there is no neighbourhood of V0 where Ψ is injective. So that,

there are sequences vk, v
′
k ∈ V such that vk ̸= v′k, Ψ(vk) = Ψ(v′k) and vk, v

′
k → V0,

when k → ∞. Since V0 is compact, we can the assume the neighbourhood is compact

and by taking sub-sequences, vk → 0 · x, v′k → 0 · y, where x, y ∈ fix(H, u). Then

x = Ψ(0 · x) = lim
k

Ψ(vk) = lim
k

Ψ(v′k) = Ψ(0 · y) = y

and since vk ̸= v′k, the map Ψ is not locally injective in 0 · x = 0 · y, contradicting
the fact that Ψ is a local diffeomorphism in neighbourhood of the zero section V0.

To finish the proof, define B := Ψ(A). Item (ii) is then a consequence of Lemma

A.5 (iii) [2], since by uniqueness, Ψ|V − is an extension ht-equivariant of ΨV −∩A for

all V −.

2.4 Bruhat Decomposition

The stable set of the invariant set M, written stM, is the set of points of K such

that the omega limit is in M. Later we will prove that in our case this set is in fact

a manifold. Similarly, the unstable set unM, is the set of points of K that the alpha

limit is in M. In this section we will show that the stable set of each component of

fixed points M = fix(H, u) is an immersed submanifold of K given by the orbit

N−
HM

This will provide a decomposition of K which we regard as a general Bruhat decom-

position.

Since ht ∈ GH , by Proposition 4.24 from [2], ht normalizes the nilpotent subgroups

N−
H , N

−(H), and nilpotent subalgebras n−H , n
−(H). In particular this shows that

N−
HM is ht-invariant.

Note that since the orbit N−
HM in general is not compact, one of the key points

will be to prove that it is still embedded. For this, we study some dynamical

properties of the subgroup N−
H .

Lemma 2.15 (i) N−
H = {n ∈ N− : limt→∞ htnh−t = 1} and

N− = N−
HN

−(H)
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(ii) If y ∈ N−
Hx, for x ∈ M, then

lim
t→∞

hty = x

(iii) If y = Ψ(v) and x ∈ ω(y) ∩M. Then v ∈ V −
x and y ∈ N−

Hx. In particular,

ω(y) = {x}.

Proof: To prove (i), first we use that exp : n− → N− is a homeomorphism, by

(Theorem 2.41 of [2]), and n− = n−H ⊕ n−(H) (Proposition 4.24 of [2]) then for any

n ∈ N−, n = exp(Y1 + Y2) with Y1 ∈ n−H and Y2 ∈ n−(H), from Lemma 2.12 then

htnh−t = exp(htY1 + Y2) → exp(Y2) ∈ N−(H) (2.18)

when t→ ∞, since ht centralizes n−(H). So that htnh−t → 1, if and only if, Y2 = 0,

that is equivalent to Y = Y1 ∈ n−H and n ∈ N−
H .

To prove that N− = N−
HN

−(H) let us prove the inclusion “⊂”since the other

side is immediate. Let n ∈ N− and n = exp(Y1 + Y2) as previously. Consider

n exp(−Y2) ∈ N−, since ht centralizes Y2 then by equation (2.18)

ht(n exp(−Y2))h−t = (htnh−t) exp(−Y2) → exp(Y2) exp(−Y2) = 1

so that from item (i), n exp(−Y2) = n1 ∈ N−
H , and n = n1n2 where n2 = exp(Y2) ∈

N−(H).

For (ii), let y = nx, with n ∈ N−
H and h−tx = x, then from (i)

hty = htnh−tx→ x

To prove (iii) let Ψ be the linearization from Theorem 2.14 and let tn → ∞ so

that

htny → x

From the ht-equivariance of Ψ then

Ψ(htnv) = htnΨ(v) = htny → x = Ψ(0 · x)

Since Ψ is a diffeomorphism in a neighbourhood of V0, then

htnv → 0 · x

and |htnv| → 0. From Proposition 2.13 then v ∈ V −. Now let, v ∈ V −
x′ , where

v = X · x′, X ∈ v−x′ then

y = Ψ(v) = exp(X)x′ ∈ N−
Hx

′
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since v−x′ ⊂ n−H . From item (ii),

htny → x′ = x

and v ∈ V −
x . Also, ω(y) = {x}.

From items (ii) and (iii) of Lemma 2.15 then the map

p : N−
HM → M y 7→ lim

t→∞
hty

is surjective and the fiber over x ∈ M is N−
Hx.

Proposition 2.16 (i) The stable set of M,

stM = N−
HM

is an immersed submanifold of K.

(ii) The restriction of the linearization Ψ to V − is an ht-equivariant diffeomorphism

over N−
HM that is then, diffeomorphic to the stable bundle V − over M.

(iii) The following diagram commutes.

N−
HM V −

M
p π

Ψ

In particular, p is a differentiable submersion.

Proof: Let S = N−
HM. Given A and B as in the proof of Proposition 2.14. First

we prove that

Ψ(V − ∩ A) = S ∩ B (2.19)

By Proposition 2.11, V −
x = v−x · x, where v−x ⊂ n−H and x ∈ M, and by the definition

of Ψ and B,
Ψ(V − ∩ A) ⊂ (exp(n−H)M) ∩ B ⊂ S ∩ B

For the converse, let y ∈ S ∩ B. Since y ∈ B then y = Ψ(v) for v ∈ A. And since

y ∈ S, by Lemma 2.15 then hty → x ∈ M and, by the same Lemma, v ∈ V −
x . So

y = Ψ(v), where v ∈ V −
x ∩ A, and

S ∩ B ⊂ Ψ(V − ∩ A)
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Next, we prove that Ψ(V −) = S. Let y ∈ S, since S is ht-invariant and B is a

neighbourhood of M, by Lemma 2.15 there is t ≥ 0 such that hty ∈ S ∩ B and

y ∈ h−t(S ∩ B). So that

S =
⋃
t≥0

h−t(S ∩ B) (2.20)

A similar argument using that ht invariance of V −, the neighbourhood A of V0 and

Proposition 2.13 shows that

V − =
⋃
t≥0

h−t(V − ∩ A)

Then, by equations (2.19) and (2.20) and by the ht-equivariance of Ψ it follows that

Ψ(V −) = Ψ

(⋃
t≥0

h−t(V − ∩ A)

)
=
⋃
t≥0

h−tΨ
(
V − ∩ A

)
=
⋃
t≥0

h−t(S ∩ B) = S

From Theorem 2.14(ii) it follows that

stM = S = N−
HM

and from the same Theorem 2.14(ii), we prove item (ii).

Now we prove that S is an immersed submanifold of K. Since KH normalizes

N−
H , by Proposition 4.24(ii) of [2], then the product N−

HK
0
H is a Lie subgroup of G.

So S = N−
HK

0
Hub is an orbit in K of the Lie subgroup of G, and S is an almost

regular, submanifold of K, that is, let L be a locally connected topological space and

ϕ : L → K a continuous application. Let ϕ have values in S. Then, ϕ : L → S is

continuous with relation to the intrinsic topology (see Theorem C.6 [2], and appendix

B of [21]).

Since V − is an immersed submanifold of V and Ψ is diffeomorphism of A to B,
then from equation (2.19) S ∩ B is an immersed submanifold of K. Let A ⊂ S be a

neighbourhood of y ∈ S in the intrinsic topology, now we show that A contains a

neighbourhood B in the intrinsic topology of S that is induced by an open set U of

K, that is, such that, B = S ∩ U .
By equation (2.20) there is t > 0 such that hty ∈ S ∩ B. Since ht is a dif-

feomorphism of K that leaves invariant the quasi-regular manifold S, then ht is

a diffeomorphism of S (see Proposition C.3 of [2]). Then htA ∩ B is an intrinsic

neighbourhood of hty in S ∩ B and, since S ∩ B is immersed, there is an open set U

of K such that

htA ∩ B = S ∩ U

So that

B = S ∩ h−tU = h−t(S ∩ U) = h−t(htA ∩ B) ⊂ A
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is a neighbourhood of y in S in the intrinsic topology that is in A and is induced by

the open set h−tU of K, and this proves item (i).

For item (iii), by Proposition 2.11, let v ∈ V − such that v = X · x where X ∈
v−x ⊂ n−H and x ∈ M. Then Ψ(v) = exp(X)x, where exp(X) ∈ N−

H and π(v) = x.

By Lemma 2.15 then

p(Ψ(v)) = x = π(v)

that is, p◦Ψ = π, as needed. Since Ψ|V − is a diffeomorphism and π is a differentiable

submersion, then p also is.

Now using the various results from the chapter we prove:

Corollary 2.17 The stable set of the fixed points fix(H, u) is

st(H, u) = N−
Hfix(H, u) = N−

HK
0
Hub

and

K =
⋃
u∈U

st(H, u)

where each st(H, u) is an immersed submanifold that is diffeomorphic to the stable

vectorial fiber V − over fix(H, u).

Proof: Since y ∈ K then ω(y) is a fixed point of ht by Proposition 2.6. Let u ∈ U

such that x ∈ ω(y) ∩ fix(H, u), by Theorem 2.8. By Lemma 2.15, this implies that

y ∈ N−
Hx, and then y ∈ st(H, u), and this proves the second statement. The first

part is Proposition 2.16(i) and the last statement is Proposition 2.16(ii).

So from now on, in this section the stable set of M will be taken to mean the

stable manifold.

Note that the set of the components of fixed points {uM0 : u ∈ U} is in a set

bijection withW×C sinceW = U/C. First we study the regular case: one hyperbolic

flow ht = exp(Ht) is defined as regular if H ∈ a+.

Theorem 2.18 Let ht be a regular flow in K.

(i) The set of fixed points is the disjoint union

fix(ht) =
∐

{fix(H, u) : u ∈ U}

where fix(H, u) =M0ub. The attractive components are M0cb, for c ∈ C and

the repulsive components are M0cu
−b where c ∈ C and u− ∈ w−C.
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(ii) The manifold K decomposes in the disjoint union of stable manifolds

K =
∐

{st(H, u) : u ∈ U} (2.21)

where each st(H, u) = N−fix(H, u) = N−M0ub is diffeomorphic to a vector

space Cartesian product with M0ub. Also, the union of the attractive stable

manifolds N−M0cb, where c ∈ C, is open and dense in K.

Proof: Since H is regular, then n±H = n± and N±
H = N±.

For item (i), since H is regular KH =M (see Theorem 4.21 of [2]) and K0
H =M0.

By Theorem 2.8 then fix(H, u) = M0ub and the union in item (i) is disjoint since

U =M∗/M0.

For the last statement of item (i), note that, by Theorem 2.14, M0ub is an

attractor if and only if the zero section of the linearization V around M0ub is an

attractor. By Lemma A.5 of [2] then M0ub is an attractor if and only if V − = V .

And this is true if and only if

n− ∩ un− = n− ∩ u(m⊕ n−) = v−ub = vub = un−

that is equivalent to un− ⊂ n−. By the definition of n− and since ugα = gwα, for

u ∈ wC and w ∈ W , this is equivalent to

w(Π−) ⊂ Π−

so that, w = 1 or u ∈ C and the attractors of ht are cM0b for all c ∈ C.

From a similar argument, uM0b is a repeller if and only if un− ⊂ n+, that is

equivalent to

w(Π−) ⊂ Π+

where u ∈ wC, since w = ww−w− (see Proposition 3.10 of [2]), then from item (iv)

of Proposition 3.20 of [2] this occurs if and only if ww− = 1 and w = (w−)−1 = w−

that is equivalent to u ∈ w−C, and from the definition of u− then u ∈ u−C. Then

the repellers of ht are u−cM0 for any c ∈ C or cu−M0 for any c ∈ C since C is

normal in U .

The first statement of item (ii) follows from Corollary 2.17, noting that the stable

manifolds of different components are disjoint.

To show that the union A := ∪c∈Cst(H, c) is open and dense, from Proposition

2.16 st(H, u) is an immersed submanifold with the same dimension as m⊕ (un−∩n−).

Since uM0b is an attractor if and only if u = c ∈ C and the dimension of st(H, u) is

equal to the dimension of m⊕ n−. Since K has also the same dimension then A is

open.
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When u /∈ C then st(H, u) has dimension less than the dimension of N−M0b. A is

a dense manifold then follows from Proposition C.1 of [2], since the complement of A

is the union of finitely many manifolds of dimension strictly less than the dimension

of K.

The last statement follows from the last statement of Corollary 2.17, since in the

regular case each fix(H, u) isM0ub, and the stable fiber is a vector space overM0ub.

Now we study the general case where H ∈ cla+. First note that stable manifolds

are disjoint if and only the corresponding fixed points are disjoint so that to study the

intersection of stable sets we only need to know the intersection of the corresponding

fixed points sets.

To study the general case we need to define the subgroup UH of U ,

UH :=
K0

H ∩M∗

M0

Note that UH is a normal subgroup of WHC since,

WHC =
KH ∩M∗

M
· M
M0

=
KH ∩M∗

M0

and K0
H is normal in KH .

The next result studies the possible intersections of fixed points sets.

Corollary 2.19 If fix(H, u) ∩ fix(H, v) ̸= ∅ then

v ∈ UHuM0

and in this case,

fix(H, u) = fix(H, v)

Proof: If fix(H, u) ∩ fix(H, v) ̸= ∅ then there are k1, k2 ∈ K0
H so that k1vb = k2ub

and vb = kub for k = (k1)
−1k2 ∈ K0

H . Then

fix(H, v) = K0
Hvb = K0

Hub = fix(H, u)

Also, b = v−1kub so v−1ku ∈ K ∩ AN = 1 and v = ku. So that

kuM0 = vM0 ⊂M∗

but since uM0 ⊂M∗ then k ∈M∗ and k ∈M∗ ∩K0
H . Then

k ∈ M∗ ∩K0
H

M0

M0 = UHM0
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and v = ku ∈ UHM0u = UHuM0.

Let us now also define the subgroup CH of C.

CH :=
K0

H ∩M
M0

In the general case then the set of fixed points {fix(H, u) : u ∈ U} are in bijection

with the quotient UH\U . Note that also generally, UH is not normal in U and this

quotient is not a group but only right cosets. These cosets can then be used to

enumerate the components of fixed points.

Theorem 2.20 Let ht be a hyperbolic flow in K.

(i) The set of fixed points is the disjoint union of connected components

fix(ht) =
∐

{fix(H, u) : u ∈ UH\U}

where fix(H, u) = K0
Hub. The attractors are fix(H, c) for c ∈ CH\C and the

repellers are fix(H, cu−) for c ∈ CH\C.

(ii) The group K decomposes as the disjoint union of stable manifolds,

K =
∐

{st(H, u) : u ∈ UH\U} (2.22)

where each st(H, u) = N−
Hfix(H, u) = N−

HK
0
Hub is diffeomorphic to the stable

fiber over fix(H, u). Also, for c ∈ CH\C the stable manifolds are open in K

and their union is dense.

Proof: For the first statement of item (i), that the set of fixed points is given by such

union follows from Theorem 2.8, that this union is disjoint follows from Corollary

2.19.

The first statement of item (ii) follows from Corollary 2.17, noting that stable

manifolds of disjoint sets are disjoint. For the second statement of item (ii), from

Lemma 2.15 it follows that N− = N−
HN(H)−. Since N(H)−M0 ⊂ G(H)M0 ⊂ G0

H ,

then G0
H = G0

HN(H)−M0 and

fix(H, c) = G0
Hcb = G0

HN(H)−M0cb

Since G0
H normalizes N−

H (see Proposition 4.24 of [2]), then

st(H, c) = N−
HG

0
HN(H)−M0cb = G0

HN
−M0cb
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Now note that,

A :=
⋃
c∈C

st(H, c) ⊃
⋃
c∈C

N−M0cb

and the second set, from item (ii) of Theorem 2.18, is open and dense, so that A

is also open and dense. This implies that ∪c∈Cfix(H, c) are the only attractors. To

show that is enough to select c ∈ CH\C, note that

C ∩ UH =
M

M0

∩ K0
H ∩M∗

M0

=
K0

H ∩M
M0

= CH

The argument for the repellers is similar.

Note that item (ii) from the previous Theorem illustrates that the height function

on K with respect to H has |M/M0| = |C| components that assume the maximum

and |C| components that assume the minimum.



Chapter 3

General translations in K

3.1 Preliminaries

In this chapter we study the continuous flow of translations in G that is a linear flow

gt where exp(Xt) = gt in K for t ∈ R, for any X ∈ g.

First we show that every action of G in K is decomposable in elliptic, hyperbolic

and nilpotent components that commute with each other. Next we study the example

of Sl(2) with K = SO(2) and see that the system is not gradient, this motivates

the study of chain recurrence and then in Lemma 3.4 we show that the system is

equivariant by right multiplication by M , this provides a symmetry necessary to

show that chain recurrent components are given by fix(ht).

First, we note that for any a ∈ G, the action a exp(Xt)a−1 = exp(aXt) is the

dynamical conjugate of the action gt. Lemma 3.1 (i) from [7] helps in decomposing

the action in simpler components. Following the proof of this Lemma we can state

in full that:

Lemma 3.1 Let g be a semisimple algebra. Then for every X ∈ g, there is a Jordan

decomposition X = E + H + N , these components commute, are in g, and N is

additive nilpotent. There is a Iwasawa decomposition g = k⊕ a⊕ n such that E ∈ kH

and H ∈ cla+.

This Lemma then helps to conjugate any linear flow to have a more standard

hyperbolic component.

The terms et := exp(Et), ht = exp(Ht), ut = exp(Nt) are called the Jordan

components of gt and are called, respectively, the elliptic, hyperbolic, unipotent

components of gt. Let the H ∈ cla+ obtained in item (i) of the previous Lemma be

the hyperbolic type of the translation flow gt in G.

33
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Note that the term N in this Lemma is a nilpotent component of X ∈ g, so

that adN is a nilpotent action in g. This N ∈ g is not to be confused with the

nilpotent group in the Iwasawa decomposition. Also note that, since all Iwasawa

decompositions are conjugate changing the Iwasawa decomposition is equivalent to a

conjugation by an element in G of X so that also from Lemma 3.1 of [7] we get that:

Proposition 3.2 There is a ∈ G so that aH ∈ cla+.

Then, agta−1 is a translation flow in G of hyperbolic component

ahta−1 = exp(aHt)

where aH ∈ cla+. Note that in K, the homeomorphism induced by a in G gives

a conjugation between the flows gt and agta−1, so that the dynamics of one is

topologically equivalent to the other.

From now on, we can then assume that the hyperbolic type H of gt is so that

H ∈ cla+. Remember now that the gradient dynamics of ht in K has the following

algebraic description given in Theorem 2.20. Let U =M∗/M0. Then the connected

components of the fixed points of ht in K are given by

fix(H, u) = G0
Hub = K0

Hub, u ∈ UH\U

where the respective stable manifolds are given by

st(H, u) = N−
Hfix(H, u) = N−

HK
0
Hub, u ∈ UH\U

so that {fix(H, u) : u ∈ UH\U} is the minimal Morse decomposition ht. The next

results prove first that this is also the minimal Morse decomposition of gt and that

each Morse component is normally hyperbolic.

Example: Let G = Sl(2) where the Iwasawa subgroups are: K := SO(2),

A :=

{(
h 0

0 h−1

)
, h > 0, h ∈ R

}
N :=

{(
1 x

0 1

)
, x ∈ R

}

Now we will study the nilpotent action on the compact group SO(2). First note that

exp (t

(
0 1

0 0

)
) =

(
1 t

0 1

)

so the nilpotent action on K is(
1 t

0 1

)
.

(
cosα − sinα

sinα cosα

)
b =

(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)
b
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so we need to find the α(t) for the matrix(
cosα + t sinα − sinα + t cosα

sinα cosα

)

Multiplying the terms of Iwasawa decomposition where h := h(t) and x := x(t)(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)(
h 0

0 h−1

)(
1 x

0 1

)

and equating both sides, from the elements in the first column cosα + t sinα =

h cosα(t) and sinα = h sinα(t) dividing both terms when sinα ̸= 0 we get t+cotα =

cotα(t). So α(t) can be determined. Remenber that in the trigonometric circle the

cotangent “axis” is tangent to (0, 1). Now we can identify that the equilibrium points

are when sinα = 0 and that they are both stable in one direction and unstable in

the other direction.The first collumn of the matrixes is used to plot the results in

matrix form. Note that in this case the system is not gradient.

(
1 0

0 1

)(
−1 0

0 −1

)

3.2 Recurrence and chain recurrence

Let X be a metric space with distance d, the recurrent set of a flow ϕt in a space X

is the set of points

R(ϕt) := {x ∈ X : x ∈ ω(x)}

An (ϵ, t)-chain from x to y is a sequence of points

{x = x0, . . . , xn = y} ⊂ X

and a sequence of times ti such that ti ≥ t and d(ϕti(xi), xi+1) < ϵ. The chain

recurrent set of a flow ϕt, RC(ϕ
t), is the set of points x such that there is (ϵ, t)-chain

for every ϵ > 0 and t > 0 from x to x.
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Proposition 3.3 Let gt be a flow of translations in G. The unipotent and hyperbolic

components of gt are given by

ut := exp(tN), ht := exp(tH), t ∈ R

where N ∈ g is nilpotent and H ∈ g is additive hyperbolic. The flow gt and all its

Jordan components are flows in the centralizer G0
H .

Proof: The first statement follows from B.24 and the fact that the Jordan compo-

nents of gt are in G follows from Theorem B.19 of [2]. The fact that these components

are in GH comes from the fact that the terms E, H, N from Lemma 2.1 3.1 commute.

For the last statement, note that these components are in G0
H since the action is

continuous.

The hyperbolic element H ∈ g given by the previous Proposition is the hyperbolic

type of the flow gt. In continuous time gt = exp(tX), the terms N and H are,

respectively, the nilpotent and hyperbolic additive parts of X.

The translation flows gt and its Jordan components induce flows in K. In this

section we will study the recurrence, the chain recurrence and the minimal Morse

decomposition of gt in K.

The κ used next will be defined in the group G and is not related to the kappa,

κ, that shows up in Chapter 2 that is based only on the Cartan involution.

Indeed, the following kappa when transposed to the algebra will have kernel a⊕ n

and depends on the Iwasawa decomposition. Whereas the first kappa has kernel s,

the symmetric space.

Lemma 3.4 Given an Iwasawa decomposition G = KAN , define κ : G → K so

that g ∈ κ(g)AN , then

κ(gm) = κ(g)m

for any m ∈M .

Proof: If m ∈M then mAm−1 = A and mNm−1 = N . So

g ∈ κ(g)AN ⇔ gm ∈ κ(g)ANm

⇔ gm ∈ κ(g)mm−1ANm

⇔ gm ∈ κ(g)mAN

and since m ∈ K then κ(gm) = κ(g)m.

Assume the metric in K is such that multiplication by left or right are isometries.
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Proposition 3.5 Let G be a semisimple Lie group with Iwasawa decomposition

G = KAN and K compact and define κ : G→ K so that g ∈ κ(g)AN . Let ut be a

unipotent flow.

(i) If k ∈ K is a fixed point in K of the flow ut then km is also a fixed point for

any m ∈M .

(ii) If k ∈ K is a fixed point in K of the flow ut then kb0 is a fixed point of ut in

the maximal flag F. Equivalently utk ∈ kAN for all t ∈ R then utk ∈ kMAN

for all t ∈ R.

Proof: For item (i), from hypothesis κ(utk) = k for all t ∈ R, then by Lemma 3.4

κ(utkm) = κ(utk)m = km for all t ∈ R

For item (ii), if κ(utk) = k for all t ∈ R then, by definition, utk ∈ kAN ⊂ kMAN

for all t ∈ R so that utkMAN = kMAN .

Lemma 3.6 Let G be a semisimple Lie group with Iwasawa decomposition G =

KAN with K compact and κ : G → K so that g ∈ κ(g)AN . Let ut be a unipotent

flow that commutes with the elliptic flow et ∈ K.

(i) There is sn → ∞ so that esn → 1.

(ii) For all k ∈ K, there is an ∈ N so that kan → 1.

Proof: For item (i), since K is compact there is tn → ∞ and k ∈ K so that

etn → k. Since tn → ∞ it is possible to assume taking a subsequence of tn that

sn = tn+1 − tn → ∞. By the isometry of left multiplication then

d(etn+1e−tn , 1) = d(etn+1 , etn) ≤ d(etn+1 , k) + d(k, etn) → 0

when n→ ∞ and then esn → 1 when n→ ∞.

For item (ii), in a similar form to the previous item, taking the sequence kn ∈ K

where n ∈ N, there is a sequence an ∈ N so that kan → 1.

Lemma 3.7 For all ϵ > 0, k ∈ K and T > 0 exists s > T , k0 ∈ K and m ∈M , so

that, es ∈ B(1, ϵ), κ(u−sk) ∈ B(k0, ϵ) and κ(u
sk) ∈ B(k0m, ϵ).



Recurrence and chain recurrence 38

Proof: From item (i) of Lemma 3.6 there is n0 ∈ N so that esn ∈ B(1, ϵ) for n > n0.

Now, by Lemma 1.8 from [2] applied to the maximal flag for all k ∈ K there is

k′0 ∈ K so that utkMAN → k′0MAN when t→ ±∞. Then

κ(utk)M = κ(utkM) = κ(utkMAN) → κ(k′0MAN) = k′0M

when t → ±∞. Since sn → ∞ then ω(κ(u−snk)) ∈ k′0M , and since M is compact

taking a subsequence of sn we can assume there is m′ ∈M so that κ(u−snk) → k′0m
′.

For the last limit we can again taking a subsequence of sn assume that there also is

m′′ ∈M so that κ(usnk) → k′0m
′′.

We conclude then that there is p integer so that esp ∈ B(1, ϵ), κ(u−spk) ∈
B(k′0m

′, ϵ) and κ(uspk) ∈ B(k′0m
′′, ϵ), now take s = sp, k0 = k′0m

′ and m = (m′)−1m′′

then k′0m
′′ = k′0m

′(m′)−1m′′ = k0m.

Proposition 3.8 Let G be semisimple Lie group with Iwasawa decomposition G =

KAN with K compact. Let κ : G → K such that g ∈ κ(g)AN . Let et, ut be

commuting elliptic and unipotent flows, then RC(e
tut) = K.

Proof: Let x ∈ K and ϵ > 0, to prove the result we will show a (ϵ, T )-chain from x

to x. First, let us form a (ϵ/2, T )-chain from x to xmp.

Take ϵ in Lemma 3.7 to be ϵ/8. Then there are s > T , k0 ∈ K and m ∈ M , so

that, es ∈ B(1, ϵ/8),

κ(u−sk) ∈ B(k0, ϵ/8) and κ(usk) ∈ B(k0m, ϵ/8)

By isometry d(1, e−s) = d(es, ese−s) = d(es, 1), so e−s ∈ B(1, ϵ/8). From the triangle

inequality,

κ(e−su−sk) ∈ B(k0, ϵ/4) and κ(esusk) ∈ B(k0m, ϵ/4)

From Lemma 3.4 for i = 1, . . . , p− 1.

κ(e−su−skmi) ∈ B(k0m
i, ϵ/4) and κ(esuskmi) ∈ B(k0m

i+1, ϵ/4)

Now we prove that the sequence

{k, κ(e−su−skm), km, κ(e−su−skm2), km2, . . . , kmp}

is a (ϵ/2, T )-chain from k to kmp with “times” equal to s. First note that,

d(κ(esusk), κ(e−su−skm)) ≤ d(κ(esusk), k0m) + d(k0m,κ(e
−su−skm))

<
ϵ

4
+
ϵ

4
=
ϵ

2
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And κ(esuse−su−skmi) = kmi. Then from Lemma 3.4 applied to the previous

equation

d(κ(esuskmi), κ(e−su−skmi+1)) <
ϵ

2

Proving that the previous sequence is indeed a (ϵ/2, T )-chain from k to kmp.

Now take p to be an positive integer so that mp ∈ B(1, ϵ/2). Since left multipli-

cation by k is an isometry then kmp ∈ B(k, ϵ/2). Exchanging the last term in the

previous chain by k there is then a (ϵ, T )-chain from k to k.

3.3 Minimal Morse decomposition

Definition 3.9 A Morse decomposition of a flow ϕt in a space X, is a finite collection

{M1, . . . ,Mn} of subsets of X such that

(i) Each Mi is compact and ϕt-invariant.

(ii) For all x ∈ X, ω(x), α(x) ⊂ ∪iMi.

(iii) If ω(x), α(x) ⊂ Mj then x ∈ Mj.

A minimal Morse decomposition is a decomposition that is contained in any other

Morse decomposition. Each element of the decomposition is also called a component

of the decomposition. An important result from dynamical systems (see [6]) is that

if the Morse components are connected and

∪iMi = RC(ϕ
t)

then this decomposition is minimal.

Theorem 3.10 Let gt be a translation flow in G and consider the induced flow of

gt in K ≃ G/AN . Then

(i) The minimal Morse components are the connected components of fix(ht) and

then

RC(g
t) = fix(ht) =

∐{
fix(H, u) = K0

Hub : u ∈ UH\U
}

where the only attractors are fix(H, c) = K0
Hcb where c ∈ CH\C and the only

repellers are fix(H, cu−) = K0
Hcu

−b for c ∈ CH\C.
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(ii) The stable manifolds of gt are st(H, u) = N−
HK

0
Hub and the unstable manifolds

of gt are un(H, u) = N+
HK

0
Hub. Also, K can be decomposed as the disjoint

union of stable manifolds

K =
∐{

N−
HK

0
Hu : u ∈ UH\U

}
(3.1)

or similarly, the disjoint union of unstable manifolds

K =
∐{

N+
HK

0
Hu : u ∈ UH\U

}
(3.2)

And the union of the stable manifolds of the attractors fix(H, c) = K0
Hcb for all

c ∈ CH\C is open and dense.

Proof: Since fix(H, u) = G0
Hub and gt ∈ G0

H , then M = fix(H, u) is gt-invariant.

First we will prove that S = st(H, u) is a stable set from the gt-invariant M. By

the Bruhat decomposition of K (Theorem 2.20 (ii)), it is enough to show that S is

in the stable manifold of M, that is, it is enough to prove that for any y ∈ S then

ω(y) ⊂ M.

Let y ∈ S, so y = exp(Y )lub, where Y ∈ n−H and l ∈ G0
H . Then

gty = gt exp(Y )g−tgtlub = exp(gtY )gtlub

where gtlub ∈ fix(H, u), since gtl ∈ G0
H . First, we prove that gtY → 0. This follows

from Lemma 1.5 of [2], since the spectral radius of the restriction of g to n−H is less

then 1. In fact, from the Jordan decomposition, r(g) is the greatest eigenvalue from

its hyperbolic component, is given by the restriction of h to n−H . These eigenvalues

are e−α(H), where α ∈ Π+ and α(H) > 0, since r(g) < 1. Taking then x ∈ ω(y)

then let tj → ∞ such that gtjy → x. Since exp(gtjY ) → 1, then the limits of the

sequences

gtjy = exp(gtjY )gtj lub and gtj lub

are the same, so

gtj lub→ x

and x is in the closed set fix(H, u), since each gtj lub is in fix(H, u). And ω(y) ⊂
fix(H, u). Similarly, we can prove that N+

HM is the unstable set of the gt-invariant

set M.

Since the stable and unstable of each fix(H, u) with respect to gt or to ht coincide,

then it follows that {fix(H, u) : u ∈ UH\U} is a Morse decomposition for gt, since it

is a Morse decomposition for ht. So that

RC(g
t) ⊂ fix(ht) =

⋃
u∈U

fix(H, u)
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To show that fix(ht) ⊂ RC(g
t) note that the restriction of gt to fix(ht) is given

by etut. So by Proposition 3.8, fix(ht) ⊂ RC(e
tutht) = RC(g

t) and RC(g
t) = fix (ht).

The other statements of items (i) and (ii) follow from Theorem 2.20 noting that

stable manifolds and unstable manifolds from gt are the same as for the flow ht that

is a gradient flow.

Next we obtain a characterization of the recurrent set.

Theorem 3.11 Let gt be the translations flow in G and gt = ethtut is its Jordan

decomposition. The recurrent set of translations gt induced in K is given by

R(gt) = fix(ht) ∩R(ut)

and R(ut) = π−1(fixF(u
t)), where π is the projection of K in K/M = F.

Proof: First we prove that fix(ht)∩R(ut) ⊂ R(gt). If k ∈ R(ut) then kM is a fixed

point of the maximal flag F = K/M , so κ(utk) = kmt with mt ∈ M for all t ∈ R
(see Lemma 1.8 of [2] applied to complete flags) . Now we prove that mt+s = mt.ms.

Indeed, since κ(k−1utk) = mt then k
−1utk ∈ mtAN and

k−1ut+sk = k−1utk.k−1usk ∈ mtAN.msAN

and since M normalizes AN , then

mtAN.msAN = mtmsm
−1
s ANmsAN = mt.msAN

but since, k−1ut+sk ∈ mt+sAN then mt+sAN = mt.msAN and mt+s = mt.ms for all

t,s ∈ R. Since m0 = 1 then m−t = m−1
t . And since M is compact, there is ti and

m̃ ∈M so that utik → km̃, taking a subsequence of ti we can assume that eti → ẽ

and si = ti+1 − ti → ∞. Then

msi = mti+1
.m−ti → m̃m̃−1 = 1

and κ(usik) = kmsi → k. Since esi → ẽ.ẽ−1 = 1 then

κ(gsik) = κ(esiusik) → k

and k ∈ R(gt).

Now let us prove that R(gt) ⊂ fix(ht) ∩R(ut). From item (i) of Theorem 3.10,

k ∈ R(gt) ⊂ RC(g
t) = fix (ht), so next we prove that k ∈ R(ut). Let ti such

that κ(gtik) → k and taking a subsequence we can assume that eti → ẽ and that
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si = ti+1 − ti → ∞. Since κ(gsik) = κ(esiusik) = esiκ(usik) and since esi → 1 then

the sequence κ(usik) converges to k and k ∈ R(ut).

For the last statement, we need to show that k ∈ R(ut) if and only if kM is a

fixed point of the maximal flag K/M . So there is tn → ∞ such that κ(utnk) → k

if and only if κ(utk) = kmt with mt ∈ M for t ∈ R. In fact, if κ(utnk) → k then

utnkMAN → kMAN and utnkb0 → kb0 ∈ F so that kb0 is a fixed point in F.
Now, if b0 is a fixed point in F then κ(utk) = kmt with mt ∈M and since M is

compact there is a subsequence tn such that mtn → m̃ and then κ(k−1utnk) → m̃.

Taking a subsequence we can assume that sn = tn+1 − tn → ∞ so κ(k−1usnk) →
m̃m̃−1 = 1 and κ(usnk) → k, so that k is a recurrent point of the flow ut. If π is the

canonic projection of K to K/M = F then

R(ut) = π−1(fixF(u
t))

3.4 Linearization

The next result shows that each minimal Morse component M = fix(H, u) of gt in K

is normally hyperbolic (see Definition 2.9). Consider the vector bundles V = V −⊕V +

over M as in Section 2.3.

Proposition 3.12 The vector bundles V ± are gt-invariant and there are positive

numbers c and λ < µ such that

(i) |gtv| ≤ c e−λt|v| for v ∈ V −and t ≥ 0.

(ii) |g−tv| ≤ c e−λt|v| for v ∈ V +and t ≥ 0.

(iii) |gtv| ≤ c eµ|t||v| for v ∈ TM and t ∈ R.

Proof: First note that

gt = ethtut

where gt, et, ht, ut ∈ G0
H . We have V ± = n±H · M and G0

H normalizes n±H , from

Proposition 4.23 of [2], and G0
H also leaves M invariant, so that V ± is gt-invariant.

Let v ∈ V ±, then v = Y · x with Y ∈ v±x = n±
H ∩ g⊥x and x ∈ M, from Proposition

2.10, |v| = |Y | and
|gtv| = |gtY · gtx| ≤ |gtY |
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where gtY ∈ n±H . It is enough to show then the inequalities for gt restricted to n±H .

First we consider the case where Y ∈ n−H , the next case is proven similarly. From

Lemma 2.12, there is µ > 0 such that |htZ| ≤ e−µt|Z|, for t ≥ 0 and Z ∈ n−H . Since

et ∈ K0
H and the inner product is K-invariant, then

|gtY | = |htutY | ≤ e−µt|utY |

where we used that ut ∈ G0
H , so u

tY ∈ n−H . From Theorem B. 24 of [2], ut = exp(tN),

for N ∈ g nilpotent and utY = etad(N)Y . From the triangle inequality then

|utY | = |etad(N)Y | ≤
∑
k≥0

|tk|
k!

∥ad(N)k∥|Y | = p(t)|Y |

where ∥ · ∥ is the operator norm associated to the norm | · | in n−H and p(t) is a

polynomial, since ad(N) is nilpotent. Then

|gtY | ≤ e−µtp(t)|Y |

Since |gtv| ≤ |gtY | and |v| = |Y | then for v ∈ V −

|gtv| ≤ e−µtp(t)|v|, t ≥ 0

The case for V + is similar so that for v ∈ V +

|g−tv| ≤ e−µtp(t)|v|, t ≥ 0

For TM, note that x ∈ M and gtx = etutx, and gt acts as etut in TM. From

equation 2.15 from Proposition 2.11 a tangent vector v ∈ TMx is v = Y · x, for
Y ∈ gH ∩ g⊥x . From Proposition 2.10 |v| = |Y | and

|gtv| = |etutY · etutx| ≤ |etutY | = |utY | ≤ p(t)|Y | = p(t)|v|

where we used that et ∈ K0
H and the inequality for |utY | previously obtained.

Since e−
µ
2
tp(t) → 0 when t→ +∞, then e−

µ
2
tp(t) is less then c1 for t ≥ 0 and

e−µtp(t) = e−
µ
2
t
(
e−

µ
2
tp(t)

)
≤ c1e

−µ
2
t, t ≥ 0

For the last case, since e−µ|t|p(t) → 0 when t→ ±∞, then e−µ|t|p(t) is less then

c2 for t ∈ R and

p(t) = eµ|t|
(
e−µ|t|p(t)

)
≤ c3e

µ|t|, t ∈ R

The items (i), (ii) and (iii) of the Proposition follow taking λ = µ
2
and taking c to be

the maximum of c1 and c2.
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Theorem 3.13 Let M ⊂ X compact and normally hyperbolic.

(i) There is a normal linearization in a neighbourhood of M.

(ii) The restriction of this linearization to a neighbourhood of NM0 in V − extends

uniquely to a diffeomorphism from V − to st(M) that is is a global conjugation.

In particular, the stable set st(M) is diffeomorphic to the stable fiber V −.

Proof: The first statement is Theorem 1 from [20] for discrete time and Theorem 2

from [20] for continuous time. The second statement is item (iii) from Lemma A.5

from [2]).

The following result linearizes the flow of translations gt around each Morse

component M = fix(H, u), generalizing for gt the result of linearization of the

hyperbolic flow (Theorem 2.14).

Theorem 3.14 (i) There is a normal linearization of the flow gt around fix(H, u).

(ii) This linearization extends in a unique fashion to gt-equivariant diffeomorphism

from V − to st(H, u).

Proof: Item (i) follows from Theorem 3.13 item (i), after noting that the action of

gt in the normal bundle V is given by the restriction of the action of Dgt in TK to

V , and that the equivariance propriety is equivalent to the property of conjugation

of Theorem 3.13. Since st(M) = N−
HM (Theorem 3.10 (ii)) then item (ii) follows

from Theorem 3.13 (ii).



Chapter 4

Topology of K

4.1 Bruhat and Schubert cells in K

In this chapter we use the Bruhat and Schubert cells to calculate the homology of K

for split real forms, in particular, at the end we calculate the homology of SO(3). In

this we follow [16] to first construct the skeleton, then the boundary map to find

algebraic expressions for the degrees of the maps. The calculations for the degrees

in SO(3) are done in two ways, first geometrically and then algebraically to better

illustrate the results obtained.

First we will study an example:

Example: Let G = Sl(2) and the Iwasawa subgroups are: K := SO(2),

A :=

{(
h 0

0 h−1

)
, h > 0, h ∈ R

}
N :=

{(
1 x

0 1

)
, x ∈ R

}

The Bruhat cells in this case are Nub, where u ∈ U =M∗, since M0 = 1. In this

case

U =

{(
1 0

0 1

)
,

(
0 1

−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1

1 0

)}

Let s =

(
0 1

−1 0

)
then s2 =

(
−1 0

0 −1

)
and s3 =

(
0 −1

1 0

)
= s−1. So that

U = {1, s, s2, s3}.
The 4 Bruhat cells are then Nb, Nsb, Ns2b, Ns3b. Hence Nb = b is a cell of one

point and

Nsb =

(
1 x

0 1

)(
0 1

−1 0

)
b =

(
−x 1

−1 0

)
b

45
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By the Iwasawa decomposition there exists α, h > 0 and y ∈ R depending on x

such that: (
−x 1

−1 0

)
=

(
cosα sinα

− sinα cosα

)(
h 0

0 h−1

)(
1 y

0 1

)
Calculating the product on the right side, from the first column of the matrix

we get: −x = h cosα and −1 = −h sinα, since h > 0 then sinα > 0 and we can

consider α in the interval (0, π). Dividing both equations we get that cotα = −x
so α can be found. Then for each x ∈ R there are unique corresponding α ∈ (0, π),

h > 0, y ∈ R.

Taking F = E1,2 − E2,1 then

(
cosα sinα

− sinα cosα

)
= exp(Fα) and s = exp(F π

2
).

The 4 Bruhat cells are 2 manifolds of dimension 1:

Nsb = exp(Fα)b for 0 < α < π

Ns3b = Nss2b = exp(Fα)s2b for 0 < α < π

And 2 trivial manifolds of one point: Nb = b and Ns2b = s2b, since s2 ∈M .

4.2 Preliminaries

In this section we will be primarily interested in the case that all roots are simple so

that for any root α the eigenspace gα is one dimensional. We will study normal real

forms and will also assume that M0 = 1 or that the algebra m is trivial. Finally we

will also assume that the real Lie group G can be complexified, in that case M can

be explicitly calculated in function of the roots.

Considering each element w = π(u) ∈ W as a product of simple reflections rα,

the length of ℓ(w) of w ∈ W is the number of simple reflections in any reduced

expression of w. Another useful result Theorem 4.15.10 of [22] is that l(w) is equal

to the cardinality of Πw = Π+∩wΠ−, or the set of positive roots sent to the negative

roots by w−1. Let w = r1 · · · rd be a fixed reduced expression of w and αi = αri be

the simple positive roots for each ri, then each root of Πw can be written explicitly

as in Theorem 4.15.10 of [22] as

Πw = {α1, r1α2, . . . , r1 · · · rd−1αd} (4.1)

Since M is normal in M∗ then C =M/M0 is normal in U =M∗/M0. Now note

that since π(sα) = rα then π(s1 · · · sd) = r1 · · · rd = w. So for any element u ∈ U

there is m ∈M/M0 such that u = s1 · · · sdm and π(u) = w.
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Following the Theorems 7.53 and 7.55 from [18], we get that F =M where F is

the cartesian product of cyclic groups of order 2 and is generated by

γα = exp 2πi|α|−2Hα

In fact, there is a bijective homomorphism from sl(2,R) to g(α) := gα⊕RHα⊕g−α

that can be complexified taking sl(2,C) to g(α)C. In the corresponding homomor-

phism between Lie groups then γα is the image of −Id. Since gα are one dimensional

define a normalized Eα such that gα = EαR. Note that γα does not depend on the

choice of Eα from the original homomorphism.

In a similar manner to [16] we define.

Definition 4.1

ψj(tj) := exp(Fjtj) for tj ∈ [0, π]

where Fj = Fαj
and Fα := Eα + θEα ∈ k for a fixed chosen Eα ∈ gα.

Let

sα := exp(Fα(π/2)), mα := exp(Fαπ)

And similarly, sj = sαj
, mj = mαj

, so that mj = s2j = exp(Fjπ).

Now, define the map π : K → F by kb 7→ kb0, note that this map is a differentiable

finite covering of F with |M | sheets, since we can take F the maximal flag to be K/M

so that it is a finite quotient. Then for a sufficiently small open set V ⊂ F there is a

diffeomorphism π−1 : V → B, where B is an open set of K, such that ππ−1 = id|V
and π−1π|B = id|B. Note also that, for any m ∈M and x ∈ V , π(π−1(x).m) = x, so

that, for a given V , π−1 is not uniquely defined and in fact has |M | possible choices.

Note that π(M∗) =M∗/M = W , but since we took M0 to be 1 then

U =M∗/M0 =M∗

and

π(U) = W

Definition 4.2 For ease of notation we define a Bruhat cell in K as

B(u) := Nub

for u ∈ U =M∗.

By the dynamical decomposition of the unstable manifolds when H is regular we

have NH = N and GH =M0 = 1 so from (ii) of 3.10 that

K =
⋃
disj.

Nub =
⋃
disj.

B(u)
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where the unions are taken over all u ∈ U . Let π(u) = w ∈ W and w = r1 . . . rd be a

fixed reduced decomposition.

Note that if one prefers to use instead the stable manifolds decomposition its

possible to obtain similar results by using that N− = u−N(u−)−1 where u− ∈ w−M

and w− is the principal involution.

In an analogous fashion to flags we define in K, the Schubert cells to be the

closure of the Bruhat cells.

Definition 4.3 A Schubert cell in K of u ∈ U is defined as the closure of the Bruhat

cell B(u) = Nub,

S(u) := cl(B(u)) = cl(Nub)

Let clA be the closure of the set A. In the present work we take ∂(A) to mean

the frontier of the set A, that is clA\A. Note that in this case the frontier of the

Bruhat cell is then ∂B(u) = S(u)\B(u). Later, to avoid confusion of notation, we

use δ to be the boundary operator.

Lemma 4.4 The frontier of a Bruhat cell, ∂B(u) := S(u)\B(u) in K is the union

of Bruhat cells B(v) = Nvb for v ∈ V (u), where V (u) is a subset of U . The cells in

∂B(u) have smaller dimension then B(u).

Proof: Let nvb be in the frontier of B(u) = Nub for some n ∈ N then B(v) = Nvb is

also in the frontier of Nub. In fact, since nvb is in the frontier of Nub then there is a

sequence nk in N such that nkub→ nvb. Let y be any point in Nvb then y = n′vb for

some n′ ∈ N and the sequence in Nub, n′n−1nkub, converges to n
′n−1nvb = n′vb = y

and y is also in the frontier of B(u).
Since π is a finite cover it preserves dimension of cells. Let π(u) = w then

π(∂B(u)) ⊂ ∂B(w), now from Proposition 1.9 (2) of [16] the dimension of ∂B(w) is
less then the dimension of B(w).

So for any u ∈ U there is a subset V (u) of U so that the frontier of S(u) is⋃
v∈V (u)

Nvb

so that,

S(u) = cl(Nub) = Nub ∪
⋃

v∈V (u)

Nvb

and since multiplication by right by an element m ∈M takes Bruhat cells to Bruhat

cells

S(um) = cl(Numb) = Numb ∪
⋃

v∈V (u)

Nvmb
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for any m ∈M , so that V (um) = V (u)m.

Now we construct a map Ψu from a closed cube to the Schubert cell S(u). In

this we mainly use Proposition 1.9 from [16]. Let π(u) = w ∈ W and w = r1 . . . rn

be a fixed reduced decomposition. First we prove to Lemmas about the action of M .

Lemma 4.5 The root spaces gβ are invariant by the action of mα and

(mα)|gβ = (−1)ϵ(α,β)id

Proof: If X ∈ gβ and i the imaginary unit then,

mαX = exp(πiH∨
α )X = ead(πiH

∨
α )X

where H∨
α = 2Hα

⟨α,α⟩ . Then since ad(Hα)X = ⟨α, β⟩X,

ead(πiH
∨
α )X = eπiϵ(α,β)X

where ϵ(α, β) = 2⟨α,β⟩
⟨α,α⟩ is the Killing number and so it is an integer from Proposition

2.74 of [18].

Lemma 4.6 Let ti ∈ (0, π) then miψj(tj) = ψj(t
′
j)m

′ for some t′j ∈ (0, π) and

m′ ∈M .

Proof: Let tj ∈ (0, π) and i ̸= j, remember that ψj(tj) = exp(tjFj), where

Fj := Ej+θEj , where θ is the Cartan involution. First, we calculate miψj(tj)mi. For

this, let us calculate Ad(mi)Ej , sincemigαj
= gαj

andm2
i = 1 then Ad(mi)Ej = ±Ej .

Since Ad(mi)θ = θAd(mi) then if Ad(mi)Ej = Ej,

Ad(mi)Fj = Ad(mi)Ej + θAd(mi)Ej = Ej + θEj = Fj

and if Ad(mj)Ei = −Ei then

Ad(mi)Fj = Ad(mi)Ej + θAd(mj)Ej = −Ej + θ(−Ej) = −Fj

So

mi exp(tjFj)m
−1
j = exp(Ad(mi)(tjFj)) = exp(±tjFj)

If Ad(mi)Fj = Fj then miψj(tj) = ψj(tj)mi and if Ad(mi)Fj = −Fj then

miψj(tj) = ψj(−tj)mi = ψj(π − tj)mjmi

and π − ti ∈ (0, π). The case i = j is trivial.
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Definition 4.7 Let π(u) = w = r1 · · · rd be a reduced expression for w and let

u = s1 · · · sdm, for some m ∈M , then define Ψu : Jd → K,

Ψu(t1, . . . , td) := ψ1(t1) · · ·ψd(td)mb

for tj ∈ J = [0, π].

Note that if I = (0, π), then with the definition above,

ub = s1 · · · sdmb = ψ1(π/2) · · ·ψd(π/2)mb = Ψu(π/2, . . . , π/2) ∈ Ψu(I
d)

Proposition 4.8 Let w = π(u) = r1 · · · rd be a reduced decomposition and let

u = s1 · · · sdm, for some m ∈M . Define the intervals I = (0, π) and J = [0, π], so

that ∂Id = Jd\Id, then

S(u) = cl(B(u)) = Ψu(J
d)

The frontier of B(u) is

Ψu

(
∂Id
)
= ∂B(u) = S(u)\B(u)

and Ψu|Id is a diffeomorphism from Id to B(u) = Nub.

Proof: First we prove that π : K → F is injective in each Bruhat cell in K. Let n,

n′ ∈ N and assume that nub ≠ n′ub and π(nub) = π(n′ub). Then there is m ∈ M

such that nub = n′umb, but since the Bruhat cells are disjoint then m = 1, that is a

contradiction and π is injective in each Bruhat cell.

Since π is G-equivariant then π(Nub) = Nwb0, where π(u) = w ∈ W , so that π

is also surjective in Bruhat cells, and then bijective in Bruhat cells.

Now, from Proposition 1.9 items (1),(2),(3) of [16] and using that πΨu = Ψw then

1. π(Ψu(J
d)) ⊂ π(S(u)).

2. π(Ψu(t)) ∈ π(∂B(u)) if and only if t ∈ ∂Id = Jd\Id ∼= Sd−1.

3. πΨu|Id : Id → Nwb0 = π(Nub) = π(B(u)) is a diffeomorphism.

To show the corresponding statements for K we need first to show that there is

a open set containing the Bruhat cell. Take N ′ = u∗N(u∗)−1 where u∗ = u−u−1. In

Proposition 2.7 of [13]

N ′ = (N ′ ∩N−)(N ′ ∩N)

Where in the paper the notation Nu(B) is used for N ′. Now note that

u−u−1Nub = u−u−1Nu(u−)−1u−b = N ′u−b = (N ′ ∩N)(N ′ ∩N−)u−b
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and

(N ′ ∩N)(N ′ ∩N−)u−b = (N ′ ∩N)u−(u−)−1(N ′ ∩N−)u−b = N ′ ∩Nu−b ⊂ Nu−b

then Nub ⊂ u(u−)−1Nu−b but u(u−)−1Nu−b is a translation of an open set so it is

open in K. Taking the translates by right multiplication by M of this open set we

obtain disconnected open sets with the same image in F by π. But since Ψu(I
d) is

connected and contains ub then necessarily Ψu(I
d) = Nub.

So Ψu(J
d) ⊂ S(u) also ψu(t) ∈ ∂S(u) if and only if t ∈ ∂Id = Jd\Id ∼= Sd−1 and

Ψu|Id : Id → Nub = B(u) is a diffeomorphism.

The closed cube Jd can be identified by a homeomorphism preserving orientation

to a closed ball Bd of dimension d so that the frontier of the cube, ∂Id = Jd\Id, is
identified with a sphere Sd−1.

4.3 The skeleton Xd

To construct the skeleton for the CW or cellular decomposition of K obtained here,

we will follow page 5 of [8] and construct inductively the d-skeleton Xd, or the

skeleton of dimension d, from Xd−1 starting by the discrete set X0 and attaching

the open d-cells, edu, via attaching maps φu from Sd−1 → Xd−1.

Remember that the dimension of B(u) is the length of w = π(u). So the dimension

is 0 if and only if l(w) = 0 which happens if and only if w = 1 and u = m ∈M . By

definition B(m) = Nmb = mb, so that B(m) = S(m) = {mb} for m ∈ M are the

only discrete cells.

To construct the next levels of the skeleton Xd, we must identify the maps φu

from Sd−1 → Xd−1. For this first we fix, for every dimension d, a homeomorphism

from Sd to the frontier of the closed cube ∂Id = Jd\Id so that for any x ∈ Sd−1 there

is t(x) ∈ ∂Id. From Proposition 4.8 we define φu(x) = Ψu(t(x)).

By starting with u ∈ U , such that l(π(u)) = 1, to construct X1. By induction

on the length, we can construct all the skeleton of K. Note that Xd′ when d′ has

maximum dimension equals K. Note that there are |M | cells of highest dimension

since these correspond to the u ∈ U , such that π(u) = w−, the principal involution,

and the dimension of these cells is the number of elements in Πw− = Π−.

As a consequence of the second equation in the Proposition 4.8, we have the

following construction. Let d = dimS(u) = dimB(u). The sphere Sd is the quotient

Jd/∂Id, where the boundary ∂Id = Jd\Id is collapsed to a point. We can do the
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same to the Schubert cell S(u). Define

σu := S(u)/∂B(u)

that is, the space obtained by identifying the complement of the Bruhat cell B(u) in
S(u) to a point. As Ψu(∂I

d) ⊂ ∂B(u), it follows that Ψu induces a map Sd → σu

which is a homeomorphism. The inverse of this homeomorphism will be denoted by

Ψ−1
u : σu → Sd (4.2)

note that this is not the same as the inverse of Ψu because of the collapse in the

corresponding borders.

The following is Proposition 1.10 of [16] for Schubert cells in F and it will be

useful later on. Remember that all roots are one dimensional.

Proposition 4.9 Let w, w′ ∈ W . The following statements are equivalent:

1. Sw ⊂ Sw′ and dimSw − dimSw′ = 1.

2. If w = r1 · · · rd is a reduced expression of w ∈ W as a product of simple

reflections and for some i, w′ = r1 · · · r̂i · · · rd is also a reduced expression.

Note that in the previous Proposition π(u) = w.

Let ∂Jd be the frontier of Jd, that is, ∂Jd = Jd\Id. And let ∂S(u) be the frontier
of S(u), that is, ∂S(u) = S(u)\B(u) = ∪v∈V (u)B(v).

Let π(u) = w = r1 · · · rd and let v ∈ U such that π(v) < π(u) in the Bruhat order

and the length of π(v) is equal to d− 1 then by Theorem 5.10 of [11], w′ = π(v) =

r1 · · · r̂i · · · rd for a unique integer i as the next Lemma shows. First, note that this

expression for π(v) is necessarily reduced, since the length of π(v) is d− 1.

Lemma 4.10 If w = r1 · · · rd is a reduced expression, w′ < w, in the Bruhat order

and also, the length of w′ is d− 1, then there is a unique integer i, 1 ≤ i ≤ d, such

that w′ = r1 · · · r̂i · · · rd.

Proof: Since w′ < w then w′ equals a subexpression of r1 · · · rd Theorem 5.10 of

[11]. Since the length of w′ is d− 1 then w′ = r1 · · · r̂i · · · rd for some i. To show that

the integer i is unique, let i < j such that

r1 · · · r̂i · · · rd = r1 · · · r̂j · · · rd

then by cancellation, ri+1 · · · rj = ri · · · rj−1 and by substitution of this on the original

expression for w,

w = r1 · · · (ri · · · rj−1)rj · · · rd = r1 · · · (ri+1 · · · rj)rj · · · rd
= r1 · · · r̂i · · · r̂j · · · rd
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that is a contradiction with original expression for w being reduced.

4.4 The boundary map

Let C be the Z-module freely generated by B(u), u ∈ U . The boundary maps

δ : C → C are defined by

δB(u) :=
∑

v∈V (u)

c(u, v)B(v)

where c(u, v) := 0, if dimB(u)− dimB(v) ̸= 1 and

c(u, v) := deg
(
ϕu,v : S

d−1
u → Sd−1

v

)
if dimB(u)− dimB(v) = 1.

Where the map ϕu,v is the composition of the following maps:

(a) the attaching map Ψu|∂Id : Sd−1
u

∼= ∂Id → ∂B(u) = S(u)\B(u).

(b) the quotient map ∂B(u) → ∂B(u)/(∂B(u)\B(v)), where we take the cell B(v)
and identify its complement in ∂B(u) = S(u)\B(u) to a point.

(c) the identification ∂B(u)/(∂B(u)\B(v)) ∼= S(v)/∂B(v) = σv, where the last

equality comes from the definition of σv.

(d) the map defined by equation (4.2), Ψ−1
v : σv → Sd−1

v .

Remark

To compute the degree

c(u, v) = deg
(
ϕu,v : S

d−1
u → Sd−1

v

)
when u = s1 · · · sdm and π(v) = r1 · · · r̂j · · · rd is a reduced expression for some j

then v is one of two options:

v = v1v2 or v = v1mjv2

where v1 = s1 · · · sj−1 and v2 = sj+1 · · · sdm. These two options will correspond to 0

and π in the next Lemma.

We will determine the degree of the map ϕu,v in three steps.

Step 1: Domain and co-domain spheres.



The boundary map 54

First we identify the spheres Sd−1
u in the domain and Sd−1

v in the co-domain.

Remember that the “closed ball”, Bd
u = Jd, where J = [0, π], as in Theorem 4.8 and

the domain of ϕu,v is the frontier of Jd:

Sd−1
u = {(t1, . . . , td) : ∃j, tj = 0 or π}

or the union of the “faces” of the closed cube Jd.

On the other hand, let Bd−1
v = J × · · · × Ĵ × · · · × J , without the interval in the

jth position. The co-domain is the sphere Sd−1
v obtained by collapsing to a point

the boundary of Bd−1
v = Jd−1. This is seen in the items (c) and (d) in the definition

of ϕu,v.

Step 2: σv in the image Ψu(S
d−1
u ).

The second step is to see how σv sits inside the image Ψu(S
d−1
u ). The following

Lemma says what is the pre-image of Nvb under Ψu.

Lemma 4.11 If u = s1 · · · sdm and v = s1 · · ·m′ · · · sdm with m′ replacing sj where

m′ = 1 or m′ = mj. Then Ψu(t1, . . . , td) ∈ Nvb = B(v) if and only if tk ∈ I = (0, π),

for all k ̸= j and tj = 0 for m′ = 1, and tj = π for m′ = mj.

Proof: If tj = 0 then ψj(0) = 1 and

Ψu(t1, . . . , 0, . . . , td) = ψ1(t1) · · · 1 · · ·ψd(td)mb

Now, since π(v) is reduced then

Ψu(t1, . . . , 0, . . . , td) = Ψv1v2(t1, . . . , t̂j, . . . , td)

and Ψu(t1, . . . , 0, . . . , td) is in S(v1v2), that is the case m′ = 1.

If tj = π then ψj(π) = mj and

Ψu(t1, . . . , π, . . . , td) = ψ1(t1) · · ·mj · · ·ψd(td)mb

First note that taking tk = π/2 for k ̸= j and tj = π we obtain

s1 · · ·mj · · · sdm = v1mjv2

Now remember that by Lemma 4.6 for any k, j : mjψk(I) = ψk(I)m
′′, and

m′′ ∈M . So that, by successive applications of Lemma 4.6,

mj.ψj+1(I) · · ·ψd(I) = ψj+1(I) · · ·ψd(I)m
∗

for some m∗ ∈M . So,

Ψu(t1, . . . , π, . . . , td) = ψ1(t1) · · · 1 · · ·ψd(t
′
d)m

∗mb
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and that is in S(s1 · · · 1 · · · sdm∗m). By Proposition 4.8, we see that

Ψu(t1, . . . , π, . . . , td) ∈ Nvb = B(v)

In other words the pre-image of B(v) is contained in Bd
u and is one of the interior

of the two faces corresponding to the jth coordinate, that is, the faces where tj = 0

and tj = π in the case v = v1v2 and v = v1mjv2, respectively. Note that the

second case can be rewritten by v1mjv2 = v1v2(v
−1
2 mjv2) so the previous m∗ can be

determined .

In the quotient σv = S(v)/∂B(v) the faces of ∂Bd
u corresponding to the kth

coordinates k ̸= j, are all collapsed to a point.

Step 3: Degrees.

The degree of ϕu,v is then the degree of one of the two maps, namely the maps

restricted to the two faces

F0
j = {(t1, . . . , 0, . . . , td)} or Fπ

j = {(t1, . . . , π, . . . , td)}

The values of ϕu,v in these faces are given by

f 0
j (t) = (Ψ′

v)
−1 (ψ1(t1) · · ·ψj(0) · · ·ψd(td)mb)

= (Ψ′
v)

−1 (ψ1(t1) · · · 1 · · ·ψd(td)mb)

fπ
j (t) = (Ψ′

v)
−1 (ψ1(t1) · · ·ψj(π) · · ·ψd(td)mb)

= (Ψ′
v)

−1 (ψ1(t1) · · ·mj · · ·ψd(td)mb)

where t = (t1, . . . , t̂j, . . . , td) and Ψ′
v is given by a choice of reduced expression

v = s′1 · · · s′d−1m
′ which can, in principle, be different from s1 · · · ŝj · · · sdm.

The degree of ϕu,v then is the degree of f 0
j or fπ

j which may be considered as

maps Sd−1 → Sd−1 by collapsing the boundary of the faces to points. Now the degree

of a map ϕ can be computed as the local degree in the inverse image of f−1(ξ) of a

regular value which has a finite number of points (see [8], Proposition 2.30). In the

case of our map ϕu,v, the maps f 0
j and fπ

j are homeomorphisms so that the pre-image

ϕ−1
u,v(ξ) of a point is one point in one of the faces, namely a point x1 in face F0

j if

v = v1v2 or a point x2 in Fπ
j if v = v1mjv2. The local degree at x1 is the degree of

f 0
j and the local degree at x2 is the degree of fπ

j . Finally, the degrees of f 0
j and fπ

j

are ±1 since they are homeomorphisms.
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Summarizing: To get the degree of ϕu,v, in each case, we must restrict (Ψ′
v)

−1 ◦
Ψv to the faces F0

j and Fπ
j and view these faces as spheres (with boundaries collapsed

to points). The degrees of each one of the restrictions is the degree of ϕu,v. The

restrictions of (Ψ′
v)

−1 ◦Ψv to the faces F0
j and Fπ

j are homeomorphisms and hence

have degree ±1.

The term (Ψ′
v)

−1 ◦Ψv can disappear if Ψ′
v = Ψv this happens when in the graph

of the Bruhat order it is possible to make so that every word immediately bellow is a

subword of the word above. When the Bruhat order graph grows more complicated

this is not possible. So we need more to use of more then one expression for a given

term depending on the relation, see [17].

4.5 Algebraic expressions for the degrees

Here we compute the coefficients c(u, v) in terms of the roots by finding the degrees

of the maps involved.

For a diffeomorphism φ of the sphere its degree is the local degree at a point x

which in turn is the sign of the determinant det dφx with respect to a volume form

of Sd. Let us apply this in our context.

We let u = s1 · · · sdm and v = s1 · · · ŝj · · · sdm, with sj = sαj
and mj = mαj

. We

must find the degrees of f 0
j and fπ

j defined respectively by

f 0
j (t1, . . . , 0, . . . , td) := Ψ′

v
−1

(ψ1(t1) · · · 1 · · ·ψd(td)mb)

fπ
j (t1, . . . , π, . . . , td) := Ψ′−1

v (ψ1(t1) · · ·mj · · ·ψd(td)mb)

in these expressions Ψ′−1
v is defined by a previously chosen expression v = s′1 · · · s′d−1m

′

which can, in principle, be different from s1 · · · ŝj · · · sdm. On the other hand

s1 · · · ŝj · · · sdm can be used to define another characteristic map, which will be

denoted by Ψv. This new characteristic map can then be used to define new functions

p0j(t1, . . . , 0, . . . , td) := Ψ−1
v (ψ1(t1) · · · 1 · · ·ψd(td)mb)

pπj (t1, . . . , π, . . . , td) := Ψ−1
v (ψ1(t1) · · ·mj · · ·ψd(td)mb)

The two pairs of functions are then related by

f ϵ
j =

(
Ψ′−1

v ◦Ψv

)
◦ pϵj, ϵ = 0, π

The composition Ψ′
v
−1 ◦Ψv (also understood as a map between spheres in which

the boundary is collapsed to points) is an homeomorphism of spheres and, hence,

has degree ±1.
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Before getting these degrees we make the following discussion on the orientation

of the faces of the cube [−1, 1]d, centered on the origin of Rd, which is given with the

basis {e1, . . . , ed}. Afterwards we will use the cube [0, π]d, since there is a translation

and magnification taking one into the other, we have corresponding orientations.

Starting with the (d− 1)-dimensional sphere Sd−1 we orient the tangent space

at x ∈ Sd−1 by a basis {f2, . . . , fd} such that {x, f2, . . . , fd} is positively oriented.

The faces of [−1, 1]d are oriented accordingly: given a base vector ej, we let F−
j be

the face perpendicular to ej that contains −ej and F+
j be the one that contains ej.

Then F−
j has the same orientation as the basis e1, . . . , êj, . . . , ed if j is even (since

−ej, e1, . . . , êj, . . . , ed is positively oriented if j is even). So that the orientation of

F−
j is (−1)j the orientation of e1, . . . , êj, . . . , ed. And similarly the orientation of F+

j

is (−1)j+1 the orientation of e1, . . . , êj, . . . , ed.

Following this system, in the case of one dimension the point 1 is positive oriented

and −1 is negative oriented, in two dimensions the sides of the squares are oriented

counter-clockwise and in the cube the faces are oriented following the right hand

rule, we will call these orientations the standard orientation.

The following facts about the action of an element m ∈M will be used below in

the computation of the degrees.

Define Πu as Πw where π(u) = w. The following is Lemma 2.4 from [16] with

some changes.

Lemma 4.12 For a root α consider the action on K of m = mα = exp(πFα). Then

1. mub = uu−1mub = um′b, for m′ = u−1mu ∈M , and mNm−1 = N

2. the restriction of m to Nub = B(u) is a diffeomorphism from B(u) to B(um′).

3. the differential dmub identifies to the action of m restricted to the subspace∑
β∈Πu

gβ

where u ∈ wC.

Proof:

From Lemma 4.5 for β ∈ Π then mαgβ = gβ. Since

mNub = mNm−1mub = Nmub = Nuu−1mub = Num′b

where m′ = u−1mu ∈M .

For the third statement we use the notation X ·k = d/dt(exp(tX))|t=0, for k ∈ K

and X ∈ g. Also, for A ⊂ g let A · k = {X · k : X ∈ A }.
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Note that Nub = uu−1Nub and the tangent space to u−1Nub at b is spanned

by gγ · b with γ < 0 such that γ = u−1β and β > 0, that is, uγ > 0. Since

(du)(gγ · b) = guγ · ub, it follows that the tangent space Tub(Nub) is spanned by gβ · b
where β = uγ > 0 such that u−1β = γ < 0. Hence the result.

The following is Proposition 2.5 from [16] only separating the degrees, changing

notation, and since in our case the multiplicities of roots are always 1 then I = j

and dimgβ = 1 for all β in the Proposition.

Proposition 4.13 The degrees are:

1. deg(p0j) = (−1)j.

2. deg(pπj ) = (−1)j+1+σ, where

σ = σ(u, v) =
∑

β∈Πv2

2⟨αj, β⟩
⟨αj, αj⟩

(4.3)

Πv2 = Π+ ∩ v2Π− and v2 = sj+1 · · · sdm.

Proof: The map p0j is the projection of the face of a d-dimensional cube onto the

face of a d− 1-dimensional cube, i.e. in coordinates

(t1, . . . , 0, . . . , td) 7→ (t1, . . . , t̂j, . . . td)

Note that with respect to the basis e1, . . . , ed the tj-coordinate appears in the jth

position. Hence, by the orientation of the cube, if j is even or odd, the orientation is

respectively, positive or negative. Therefore, deg(p0j) = (−1)j.

To get the deg(pπj ) let mj be the element of M appearing in the expression of

pπj . Its left action on K takes any Bruhat cell B(u′) = Nu′b to the cell Nmju
′b =

Nu′(u′)−1mju
′b = B(u′m′), where m′ = (u′)−1mju

′. And hence it takes the Schubert

cell S(u′) to S(u′m′). Moreover the restriction of mj to Nu
′b is a diffeomorphism.

In particular, we restrict the action of mj to the cell S(v2), v2 = sj+1 · · · sdm.

Its action on K takes the Bruhat cell B(v2) = Nv2b to the cell B(v2m′′) where

m′′ = v−1
2 mjv2. Using the parametrization of this cell by the cube Bv2 = Jd−j we get

mjψj+1(tj+1) · · ·ψd(td)mb = ψj+1(t
′
j+1) · · ·ψd(t

′
d)mb

with (t′j+1, . . . , t
′
d) = mj(tj+1, . . . , td) with mj : Bv2 → Bv2 continuous and a diffeo-

morphism of the interior of Bv2 .

Hence, pπj (t1, . . . , π, . . . , td) becomes the projection of the (j− 1) first coordinates

and the composition of mj with the projection of the last kth coordinates, k =



Algebraic expressions for the degrees 59

j+1, . . . , d. From the choice of the orientation of Bu = Jd, the face (t1, . . . , π, . . . , td)

of Bu has orientation (−1)j+1 with respect to the orientation of the coordinates

(t1, . . . , t̂j, . . . , td). Hence after collapsing the boundary to a point, we get the degree

deg pπj = (−1)j+1degmj

The degree of mj equals its degree at one point which in turn is the sign of the

determinant of the differential d(mj)v2b restricted to the tangent space of the Bruhat

cell B(v2) = Nv2b at v2b:

deg pπj = (−1)j+1sgn
[
det

(
d(mj)v2b|Tv2b

(Nv2b)

)]
By the third statement in Lemma 4.12 Tv2b(Nv2b) identifies to

∑
β∈Πv2

gβ.

Once we have the generators gβ · v2b, β ∈ Πv2 for Tv2b(Nv2b) together with the

action of mj over gβ given by Lemma 4.5, mα|gβ = (−1)ϵ(α,β)id, we conclude that the

signal of det
(
d(mj)v2b|Tv2b

(Nv2b)

)
= (−1)σ where

σ =
∑

β∈Πv2

2⟨αj, β⟩
⟨αj, αj⟩

Summarizing, we have the following algebraic expression for the coefficient c(u, v).

Theorem 4.14 Let σ(u, v) be as in Equation 4.3. Then if v = v1v2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j

and if v = v1mjv2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j+1+σ(u,v)

We will now cite another formula for σ(u, v) ,from [16] Proposition 2.7, that does

not depend on the reduced expressions of u and v. This formula is similar to the one

given by Theorem A of [19] when the dimensions of gβ are all 1.

For w ∈ W , let

ϕ(w) :=
∑
β∈Πw

β

be the sum of roots in Πw = Π+ ∩ wΠ−. As before let w = r1 · · · rd, and w′ =

r1 · · · r̂j · · · rd be reduced expressions. And correspondingly u = s1 · · · sdm and

v = s1 · · · ŝj · · · sdm = v1v2.
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Proposition 4.15 Let β′ be the unique root (not necessarily simple) such that

w = rβ′w′ that is, β′ = r1 · · · rj−1αj. Then

ϕ(w)− ϕ(w′) = (1− σ)β′

where σ = σ(w,w′) = σ(u, v) is the sum in Equation 4.3.

Theorem 4.16 Let σ(u, v) be as in Equation 4.3. Then if v = v1v2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j

and if v = v1mjv2 then

c(u, v) = deg
(
Ψ′−1

v ◦Ψv

)
(−1)j+κ(u,v)

where κ(u, v) is the integer defined by ϕ(w)− ϕ(w′) = κ(u, v)β′ and β′ is the unique

root such that w = rβ′w′. Note that by Proposition 4.15, κ(u, v) = 1− σ(u, v).

4.6 Example G = Sl(3), K = SO(3)

Since right multiplication by m ∈M is a diffeomorphism then B(um) = B(u)m for

u ∈ M∗. So δ(B(um)) = δ(B(u))m. So to obtain δ(B(u)) for all u ∈ M∗ we need

only obtain δ(B(u)) for the 5 elements s1, s2, s1s2, s2s1, s1s2s1.

Let Ei,j be the matrix with 1 in the position (i, j) and zero elsewhere. Take

A = E1,2 − E2,1 and B = E2,3 − E3,2 note that ψ1(t) = etA and ψ2(s) = esB then

Ψ1(0) = b

Ψs1(t) = etAb, t ∈ [0, π]

Ψs2(s) = esBb, s ∈ [0, π]

Ψs1s2(t, s) = etAesBb, (t, s) ∈ [0, π]2

Ψs2s1(t, s) = etBesAb, (t, s) ∈ [0, π]2

Ψs1s2s1(t, s, z) = etAesBezAb, (t, s, z) ∈ [0, π]3

The multiples by m to the right are similar. Then we obtain expressions for

c(u, v). The following calculations can be done more geometrically by comparing

orientations of the maps with the standard orientation or more algebraically by

calculating σ(u, v) as in Proposition 4.14. The Bruhat diagram for the Weyl group

can be represented as:
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r1r2r1

r1r2 r2r1

r1 r2

1

Note that in this case there is no need to account for the factor Ψ′−1
v ◦Ψv since

there is only one expression needed for each of the five elements. More complex cases

need more care, see [17].

First calculating geometrically:

1. c(s1,m1) = 1 and c(s1, 1) = −1 since fπ
1 (π) = eπA = m1 and f 0

1 (0) = 1.

Remember the convention we adopted for orientation of the cube [−1, 1]d: at

the final point in the direction of the axis it is +1 and in the initial point

opposite the axis it is −1.

2. c(s2,m2) = 1 and c(s2, 1) = −1 since fπ
1 (π) = eπB = m2 and f 0

1 (0) = 1.

3. c(s1s2, s1m2) = −1, c(s1s2, s1) = 1, c(s1s2,m1s2) = −1,c(s1s2, s2) = −1. We

need to consider the degree of 4 maps: fπ
2 (t, π) = etAeπB = etAm2, f

0
2 (t, 0) =

etA.1 = etA, fπ
1 (π, s) = eπAesB = m1e

sB = e(π−s)Bm2m1 since m1e
sBm1 = e−sB,

f 0
1 (0, s) = 1.esB = esB. These maps are illustrated with orientations in the

next picture. Note that following our convention the positive orientation in

this case is the counter-clockwise orientation.

s1s2

s1

m1s2 = s2m1m2

s1m2

s2

1 x

y

m2 m1m2

m1



Example G = Sl(3), K = SO(3) 62

4. c(s2s1, s2m1) = −1, c(s2s1, s2) = 1, c(s2s1,m2s1) = −1,c(s2s1, s1) = −1. We

need to consider the degree of 4 maps: fπ
2 (t, π) = etBeπA = etBm1, f

0
2 (t, 0) =

etB.1 = etB, fπ
1 (π, s) = eπBesA = m2e

sA = e(π−s)Am2m1 since m2e
sAm2 = e−sA,

f 0
1 (0, s) = 1.esB = esB. These maps are illustrated with orientations in the

next picture.

s2s1

s2

m2s1 = s1m1m2

s2m1

s1

1 x

y

m1 m1m2

m2

5. c(s1s2s1, s1s2m1) = 1, c(s1s2s1, s1s2) = −1, c(s1s2s1,m1s2s1) = 1, c(s1s2s1, s2s1) = −1.

We need to consider 4 maps: fπ
2 (t, s, π) = etAesBm1, f

0
2 (t, s, 0) = etA.esB,

fπ
1 (π, s, z) = m1e

sBezA = e(π−s)Bm1m2e
zA = e(π−s)Be(π−z)Am2, sincem1e

sBm1 =

e−sB and m2e
zAm2 = e−zA , f 0

1 (0, s, z) = esBezA. These 4 maps are illustrated

in the next two pictures with orientations of the faces on the edges.

s1s2

s1s2s1
s1s2m1

x

y

z

m2 m1m2

m1

m1m2 m2

1



Example G = Sl(3), K = SO(3) 63

s2s1 s1s2s1 m1s2s1

x

y

z

m2 m1m2

m1m2

1

Now we obtain the same results using the more general algebraic method:

Remember we need to find Πv2 = Π+ ∩ v2Π− for each case to find the respective

σ(u, v). For this we use equation 4.1 and that Πv2 = Ππ(v2) and that α1 = (1,−1, 0)

and α2 = (0, 1,−1). Here we will use ∗ to represent mj or 1.

1. To calculate c(s1, ∗) we have j = 1 and v2 = 1 so Πv2 = ∅. Then c(s1, 1) = (−1)1

and c(s1,m1) = (−1)1+1

2. For c(s2, ∗) we have j = 1 and v2 = 1 so Πv2 = ∅. Then c(s2, 1) = (−1)1 and

c(s2,m1) = (−1)1+1

3. For c(s1s2, s1∗) we have j = 2 and v2 = 1 so Πv2 = ∅. Then c(s1s2, s1) = (−1)1

and c(s1s2, s1m2) = (−1)1+1. Now for c(s1s2, ∗s2) we have j = 1 and v2 = s2

so Πv2 = {α2} by Equation 4.1 and σ = (2.(−1))/2 = −1. Then c(s1s2, s2) =

(−1)1 and c(s1s2,m1s2) = (−1)1.

4. For c(s2s1, s2∗) we have j = 2 and v2 = 1 so Πv2 = ∅. Then c(s2s1, s2) = (−1)1

and c(s2s1, s2m1) = (−1)1+1. Now for c(s2s1, ∗s1) we have j = 1 and v2 = s1

so Πv2 = {α1} by Equation 4.1 and σ = (2.(−1))/2 = −1. Then c(s2s1, s2) =

(−1)1 and c(s2s1,m1s2) = (−1)1.

5. For c(s1s2s1, s1s2∗) we have j = 3 and v2 = 1 so Πv2 = ∅. Then c(s1s2s1, s1s2) =

(−1)1 and c(s1s2s1, s1s2m1) = (−1)1+1. Now for c(s1s2s1, ∗s2s1) we have j = 1

and v2 = s2s1 so Πv2 = {α2, r2α1} = {α2, α1 + α2} by Equation 4.1 and

σ =
2⟨α1, α2⟩
⟨α1, α1⟩

+
2⟨α1, α1 + α2⟩

⟨α1, α1⟩
=

2.(−1)

2
+

2.(1)

2
= 0

so c(s1s2s1, s2s1) = (−1)1 and c(s1s2s1,m1s2s1) = (−1)1+1 = 1
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Writing B(m) as m, for any m ∈M we get,

δ1B(s1) = m1 − 1

δ1B(s2) = m2 − 1

δ2B(s1s2) = B(s1)(1−m2)− B(s2)(1 +m1m2)

δ2B(s2s1) = B(s2)(1−m1)− B(s1)(1 +m1m2)

δ3B(s1s2s1) = B(s1s2)(m1 − 1) + B(s2s1)(m2 − 1)

Calculating the kernel and image of boundary maps δk we can then calculate the

homology of the compact group K.

Hk =
ker δk
Im δk+1

Since the operators δk are equivariant with relation to right multiplication with

members of M then the kernels and images in the previous expression also are

invariant by right multiplication by M .

Note also that δk are all linear operators so in the matrix format is always possible

to find the kernels and images by linear algebra calculations. The calculations for

the kernels are all done in the appendix. In the following calculations we will write

B(sjsk) and B(sj) as sjsk and sj, respectively.

Im δ1 = ⟨m1 − 1,m2 − 1,m1m2 −m2,m1m2 −m1⟩

Im δ1 = ⟨m1 − 1,m2 − 1,m1m2 − 1⟩

Now, we can calculate the homology group,

H0 =
ker δ0
Im δ1

=
⟨1,m1,m2,m1m2⟩

Im δ1
= ⟨1⟩
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ker δ1 = ⟨s1(m1 + 1), s1m2(m1 + 1), s2(m2 + 1), s2m1(m2 + 1),

s1(m2 − 1)− s2(m1 − 1)⟩

ker δ1 = ⟨s1(m1 + 1), s1m2(m1 + 1), s2(m2 + 1), s2m1(m2 + 1),

s1(m2 − 1)− s2(m1 − 1) + s2m1(m2 + 1)⟩

ker δ1 = ⟨s1(m1 + 1), s1m2(m1 + 1), s2(m2 + 1), s2m1(m2 + 1),

s1(m2 − 1) + s2(m1m2 + 1)⟩

ker δ1 = ⟨s1(m2 + 1)(m1 + 1), s1m2(m1 + 1), s2(m1 + 1)(m2 + 1), s2m1(m2 + 1),

s1(m2 − 1) + s2(m1m2 + 1)⟩

ker δ1 = ⟨s1(m2 + 1)(m1 + 1), s1m2(m1 + 1), s2(m1 + 1)(m2 + 1),

s1m2(m1 + 1) + s2m1(m2 + 1), s1(m2 − 1) + s2(m1m2 + 1)⟩

Let a = δ2(s1s2) = s1(1−m2)− s2(1 +m1m2)

Let b = δ2(s2s1) = s2(1−m1)− s1(1 +m1m2)

Since a.(1 +m2)(1−m1m2) = 0, b.(1 +m1)(1−m1m2) = 0 and am1 + bm2 =

a+ b = −(s1m2(m1 + 1) + s2m1(m2 + 1)) then,

Im δ2 = ⟨a, am1, am2, am1m2, b, bm1, bm2, bm1m2⟩

Im δ2 = ⟨a, am1, am2, b, bm1, bm2⟩

Im δ2 = ⟨a, am1, am2, b, bm1⟩

Im δ2 = ⟨a, am1, a(1 +m2), b, b(1 +m1)⟩

Im δ2 = ⟨a, am1, a(1 +m2), a+ b, b(1 +m1)⟩

Im δ2 = ⟨a, am1, s2(1 +m1m2)(1 +m2), a+ b, s1(1 +m1m2)(1 +m1)⟩

Im δ2 = ⟨a, am1, s2(1 +m1)(1 +m2), a+ b, s1(1 +m2)(1 +m1)⟩

To the 2nd element add the 1st, 3rd, -5th so that

Im δ2 = ⟨a,−2s1m2(1 +m1), s2(1 +m1)(1 +m2), a+ b, s1(1 +m2)(1 +m1)⟩

Comparing Im δ2 and ker δ1, note that they have 4 equal terms and that the 5th

term is double the other, since its easy to check that they are linearly independent.

Then,

H1 =
ker δ1
Im δ2

= Z/2Z
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ker δ2 = ⟨s1s2(m1 − 1)(m2 + 1), s1s2(m1 − 1) + s2s1(m2 − 1),

s1s2(m1 − 1) + s2s1m1(1−m2)⟩

ker δ2 = ⟨s1s2(m1 − 1)(m2 + 1), s1s2(m1 − 1) + s2s1(m2 − 1),

s1s2(m1 − 1) + s2s1m1(1−m2)− (s1s2(m1 − 1) + s2s1(m2 − 1))⟩

ker δ2 = ⟨s1s2(m1 − 1)(m2 + 1), s1s2(m1 − 1) + s2s1(m2 − 1),

s2s1(m1 + 1)(1−m2)⟩

Let c = δ2(s1s2s1) = s1s2(m1 − 1)+ s2s1(m2 − 1), Since c.(m1 +1)(m2 +1) = 0 then,

Im δ3 = ⟨c, cm1, cm2, cm1m2⟩

Im δ3 = ⟨c, cm1, cm2⟩

Im δ3 = ⟨c, c(m1 + 1), c(m2 + 1)⟩

Im δ3 = ⟨s1s2(m1 − 1) + s2s1(m2 − 1), s2s1(m2 − 1)(m1 + 1), s1s2(m1 − 1)(m2 + 1)⟩

Note then that Im δ3 = ker δ2 so that

H2 =
ker δ2
Im δ3

= {0}

ker δ3 = ⟨s1s2s3(m1 + 1)(m2 + 1)⟩

H3 =
ker δ3
Im δ4

= ker δ3 ≃ Z

These results agree with SO(3) being homeomorphic to the projective three

dimensional space.

4.7 Appendix

In the following calculations we will write B(sjsk) and B(sj) as sjsk and sj, respec-

tively. Also, let ai ∈ Z.
Calculating ker δ1:

δ1(s1(a1 + a2m1 + a3m2 + a4m1m2) + s2(a5 + a6m1 + a7m2 + a8m1m2))

= (m1 − 1)(a1 + a2m1 + a3m2 + a4m1m2) + (m2 − 1)(a5 + a6m1 + a7m2 + a8m1m2)
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= (−a1+a2−a5+a7)+m1(a1−a2−a6+a8)+m2(−a3+a4+a5−a7)+m1m2(−a4+a3+a6−a8)

So to get ker δ1 we need 
a1 + a5 = a2 + a7

a1 + a8 = a2 + a6

a3 + a7 = a4 + a5

a3 + a6 = a4 + a8

Subtracting the second line by the first and the fourth line by the third,
a1 + a5 = a2 + a7

a5 + a6 = a7 + a8

a3 + a7 = a4 + a5

a5 + a6 = a7 + a8

So 
a1 = a2 − a5 + a7 = a2 + (a6 − a7 − a8) + a7 = a2 + a6 − a8

a5 = −a6 + a7 + a8

a3 = a4 + a5 − a7 = a4 + (−a6 + a7 + a8)− a7 = a4 − a6 + a8

where the a5 was substituted in the first and third line, so that

s1(a1 + a2m1 + a3m2 + a4m1m2) + s2(a5 + a6m1 + a7m2 + a8m1m2)

= s1((a2 + a6 − a8) + a2m1 + (a4 − a6 + a8)m2 + a4m1m2)

+s2((−a6 + a7 + a8) + a6m1 + a7m2 + a8m1m2)

reorganizing the terms

a2s1(1 +m1) + a4s1(m2 +m1m2) + a6(s1(1−m2) + s2(−1 +m1))

+a7(s2(1 +m2)) + a8(s1(−1 +m2) + s2(1 +m1m2))

In the previous expression the terms multiplying a2, a4, a6, a7, a8 are then

generators of ker δ1. To simplify adding the term from a6 to a8 we get that:

ker δ1 = ⟨s1(1+m1), s1m2(1+m1), s2(1+m2), s2m1(1+m2), s1(1−m2)−s2(1−m1)⟩

Calculating ker δ2:

δ2(s1s2(a1 + a2m1 + a3m2 + a4m1m2) + s2s1(a5 + a6m1 + a7m2 + a8m1m2))

=
(s1(1−m2)− s2(1 +m1m2))(a1 + a2m1 + a3m2 + a4m1m2)

+(s2(1−m1)− s1(1 +m1m2))(a5 + a6m1 + a7m2 + a8m1m2)
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=

s1((a1 − a3 − a5 − a8) +m1(a2 − a4 − a6 − a7) +m2(a3 − a1 − a6 − a7)

+m1m2(a4 − a2 − a5 − a8)) + s2((a5 − a1 − a4 − a6) +m1(a6 − a2 − a3 − a5)

+m2(a7 − a2 − a3 − a8) +m1m2(a8 − a1 − a4 − a7))

So to get ker δ2 we need

a1 = a3 + a5 + a8

a2 = a4 + a6 + a7

a3 = a1 + a6 + a7 = (a3 + a5 + a8) + a6 + a7

a4 = a2 + a5 + a8 = (a4 + a6 + a7) + a5 + a8

a5 = a1 + a4 + a6 = (a3 + a5 + a8) + a4 + a6

a6 = a2 + a3 + a5 = (a4 + a6 + a7) + a3 + a5

a7 = a2 + a3 + a8 = (a4 + a6 + a7) + a3 + a8

a8 = a1 + a4 + a7 = (a3 + a5 + a8) + a4 + a7

where we substituted the the first two lines in the other equations. With some

cancellations we note that the fourth, the seventh and eighth are redundant, then

a1 = a3 + a5 + a8

a2 = a4 + a6 + a7

a5 + a8 + a6 + a7 = 0

a3 + a8 + a4 + a6 = 0

a4 + a7 + a3 + a5 = 0

Summing the last three equations we get a3 + a4 + a6 + a8 + a5 + a7 = 0 and

substituting the third, fourth and fifth equation we get:

a1 = a3 + a5 + a8

a2 = a4 + a6 + a7

a3 + a4 = 0

a5 + a7 = 0

a6 + a8 = 0

With this we can put every term as function of a4,a7,a8 as

a1 = −a4 − a7 + a8

a2 = a4 − a8 + a7

a3 = −a4
a5 = −a7
a6 = −a8

So that

s1s2(a1 + a2m1 + a3m2 + a4m1m2) + s2s1(a5 + a6m1 + a7m2 + a8m1m2)
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=
s1s2((−a4 − a7 + a8) + (a4 − a8 + a7)m1 − a4m2 + a4m1m2)

+s2s1(−a7 − a8m1 + a7m2 + a8m1m2)

reorganizing terms,

=
a4s1s2(−1 +m1 −m2 +m1m2) + a7(s1s2(−1 +m1) + s2s1(−1 +m2))

+a8(s1s2(1−m1) + s2s1(−m1 +m1m2))

In the previous expression the three terms multiplying a4,a7,a8 are then a gener-

ating set for ker δ2 or

ker δ2 =
⟨s1s2(m1 − 1)(m2 + 1), s1s2(m1 − 1) + s2s1(m2 − 1),

s1s2(m1 − 1) + s2s1m1(1−m2)⟩

Calculating ker δ3:

δ3(s1s2s1(a1 + a2m1 + a3m2 + a4m1m2))

= (s1s2(m1 − 1) + s2s1(m2 − 1))(a1 + a2m1 + a3m2 + a4m1m2)

=
s1s2((a2 − a1) + (a1 − a2)m1 + (a4 − a3)m2 + (a3 − a4)m1m2)

+s2s1((a3 − a1) + (a4 − a2)m1 + (a1 − a3)m2 + (a2 − a4)m1m2)

So to get ker δ3 we need a1 = a2, a3 = a4 and a1 = a3, a2 = a4 or a1 = a2 = a3 = a4

so

ker δ3 = ⟨s1s2s1a1(1 +m1 +m2 +m1m2)⟩

ker δ3 = ⟨s1s2s1a1(m1 + 1)(m2 + 1)⟩
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