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Resumo

Título: Um estudo detalhado em ACh-unificação com limitantes

Esta dissertação trata do problema de unificação considerando a teoria equacional
ACh, que consiste da teoria com um símbolo de função h que é homomorfismo sobre
um operador associativo-comutativo. O problema de unificação módulo ACh busca em
resolver equações do tipo s ?

=ACh t, para termos de primeira ordem s e t, encontrando uma
substituição θ que faz com que ambos os termos quando instanciados por esta substituição
sejam iguais módulo ACh, i.e., tal que sθ =ACh tθ . Em geral, o problema de unificação
módulo ACh é indecidível. Recentemente, Eeralla e Lynch definiram uma variação do
problema chamada ACh-unificação com limitante que dá como entrada um limite na
quantidade de símbolos de função de homomorfismo que são aplicados repetidamente,
permitindo apenas soluções que não ultrapassem esse limite. Nosso objetivo é fornecer
um estudo detalhado em ACh-unificação com limitantes, examinando cuidadosamente o
algoritmo proposto para resolver o problema e verificando a prova de terminação, correção
e completude.





Abstract

This master’s thesis deals with the unification problem regarding the equational theory
ACh, which consists of the theory with a function symbol h that is an homomorphism over
an associative-commutative operator. The Unification problem modulo ACh seeks to solve
equations of the type s ?

=ACh t, for first-order terms s and t, finding a substitution θ that
makes both terms, when instantiated by this substitution, equal modulo ACh, i.e., such that
sθ =ACh tθ . In general, the problem of ACh Unification is undecidable. Recently, Eeralla
and Lynch defined a variation of the problem called Bounded ACh Unification, which gives
as an input a bound on the number of homomorphism function symbols that are applied
repeatedly, allowing only solutions that do not surpass such bound. Our goal is to provide a
detailed study of Bounded ACh Unification by carefully examining the algorithm designed
to solve the problem and validating the proof of termination, soundness and completeness.





Table of contents

Introduction 1

1 Preliminary Notions 7
1.1 Terms and substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Multisets and Lexicographic orders . . . . . . . . . . . . . . . . . . . . . 10
1.3 Identities, Equational theories and E-unification . . . . . . . . . . . . . . 11
1.4 Notions for Unification modulo ACh-Theory . . . . . . . . . . . . . . . 12

2 IACh: A rule-based algorithm for bounded ACh-unification 19
2.1 The rules for IACh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Flattening rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Update h-depth set rules . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Variable Elimination rules . . . . . . . . . . . . . . . . . . . . . 23
2.1.4 Basic rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 Checking rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.6 Splitting rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.7 AC-Unification rule . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Pseudo Algorithms for Flattening and ACh-Unification . . . . . . . . . . 30

3 Correctness of the Algorithm 39
3.1 Auxiliary Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Termination of Flattening . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Termination of UnifyACh

. . . . . . . . . . . . . . . . . . . . . . 43
3.3 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Conclusion 61

References 63





Introduction

In 1965, Robinson [Rob65] introduced the Unification concept as a fundamental
operation within his resolution principle. Years later, in 1970, Knuth and Bendix [KB83]
reinvented this concept and utilized it as a tool to test confluence in term rewriting systems
through the computation of critical pairs [BN98]. Since then, the study of E-unification
problems has become an expansive field of research.

Unification is a procedure designed to find solutions for a given set of equations
involving terms. For example, consider the terms t = f (a,X) and s = f (Y,b), where f is
a binary function symbol, and a,b are constants, while X and Y are variables. The goal
is to substitute the variables X and Y in t and s with terms in a way that makes the two
resulting terms identical. In this example, it is evident that a sufficient substitution involves
replacing X with b and Y with a, resulting in both terms becoming syntactically equal to
f (a,b).

Equational unification (or simply E-unification), on the other hand, is concerned with
making terms equivalent while taking a congruence induced by an equational theory E
into consideration. For example, let E = { f (X ,Y )≈ f (Y,X)}, that is f has the property
of commutativity, then the problem { f (X ,Y ) ?

= f (a,b)} have two possible solutions: One
of them being X 7→ b, Y 7→ a and the other being X 7→ a, Y 7→ b.

Diophantine equations and Hilbert’s tenth problem. A Diophantine equation is a
polynomial equation with integer coefficients that only allows integer solutions. For
example, the Pythagorean equation

x2 + y2 = z2, x,y,z ∈ Z

is a classic example of Diophantine equation.
A set S is said to be a Diophantine set if:

• S ⊂ Nn := {(a1, . . . ,an) | ai ∈ N}

• there exists a polynomial p with integer coefficients in n+k variables such that x ∈ S
iff there exists y ∈ Nk, such that p(x,y)
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In 1900, Hilbert [Hil00] proposed 23 mathematical problems, the tenth problem of
this list concerns the existence of an algorithm that can determine whether a Diophantine
has integer solutions or not. In 1970, Matiyasevich [Mat70], managed to prove that every
computably enumerable set is Diophantine. This and the fact that there exists a computably
enumerable set that is not decidable is a proof that Hilbert’s tenth problem is undecidable.

AC unification. One of the most important equational theories in mathematical formal-
ism is the Associative-Commutative (AC) theory, since AC operations such as addition
(+) and multiplication (×) are very present in fundamental mathematics. In 1975, Stickel
[Sti75] was the first to develop an algorithm to solve AC-unification problems. The tech-
nique consists in converting the AC-unification problem into a linear Diophantine equation,
then taking a basis of solutions of said equation to obtain the complete set of AC-unifiers
of the given problem.

His proof of termination, however, could not be applied to the general case. It was
later on that Fages [Fag87] was able to fix the proof for this case. Recently, Ayala-Rincón
et al. [AFSS22], using the PVS proof-assistant, provided a formalisation of termination,
soundness and completeness of the Stickel’s AC-unification algorithm.

ACh-unification. The addition of an homomorphism h acting over a binary function sym-
bol that is associative and commutative (ACh) makes the unification problem intractable.
In 1996, Narendran [Nar96] managed to prove that ACh-unification is an undecidable
problem via a reduction from a modified version of Hilbert’s tenth problem. To illustrate
the idea, Narendran associated the polynomial

(x−1)Y = Z −1 (1)

with the unification problem modulo ACh:

h(y)+a ?
=ACh y+ z (2)

Notice that

• {z 7→ a} is not a solution to (2). In fact, we would have h(y)+ a = y+ a which
would require h(y) ?

=ACh y, and this equality has no solution in ACh. Notice that it
has a solution in AC1h, where there exists an extra identity h(0) = 0.

• {z 7→ h(a),y 7→ a} is a solution to (2). In fact, applying the solution, we have

h(a)+a = a+h(a).
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Since we are in ACh theory, the equality holds.

• More generally, the solutions for (2) have the form

{z 7→ hi(a),y 7→ hi−1(a)+hi−2(a)+ . . .+a}.

Narendran proved that the solutions to the polynomial (1) have the form

⟨Z = xk,Y = xk−1 + xk−2 + . . .+1 | k ≥ 1⟩.

Then, he used the similarities between the solutions to establish a reduction from one
problem to the other, proving the undecidability result.

But, since such theory has many applications in cryptographic analysis, Eeralla and
Lynch [EL20] provided an approximation of ACh-unification and investigated its decid-
ability. We define the h-height of a term as the number of h symbols applied repeatedly
on the term. Then, choosing a natural number to be our bound, we search only for the
ACh-unifiers with a bounded h-height. To successfully accomplish that, it is required to
define the h-depth of a variable as the number of h symbols on the top of a variable. With
these concepts, they managed to create a set of inference rules for an ACh-unification
algorithm and prove its correctness.

Goal. The primary objective of this dissertation is to investigate the ACh-unification
algorithm presented in Eeralla and Lynch’s article [EL20]. This involves a thorough
exploration of its functionality through illustrative examples, coupled with a rigorous
validation of its proof of correctness. In light of verifying such proof, our aim is to look
meticulously into crucial moments and provide more details for easier comprehension. In
short, this work proposes an accessible material for studying Bounded ACh-unification,
providing a more complete resource for its study.

Contributions. The contributions on this work consist in the detailed presentation of
the concepts and results regarding Bounded ACh-unification that has been previously
established by [EL20]. Furthermore, we presented some original contributions listed
below:

1. We defined the concept of AC-solved variable (Definition 3.2), to fix an inaccuracy
on the proof of Lemma 3.2 that is used in the proof of termination.

2. We improved the termination measure that was initially given in [EL20], obtaining
Definition 3.3 and Proposition 3.1, which are used to prove the termination of
Algorithm 1 (Corollary 3.1);
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3. We fixed the proof of Lemma 3.3 on the case of application of the rule Variable
Elimination (VE) and provided more details to the other cases;

4. We provided the complete inductive proof of Theorem 3.2 that is required to prove
the soundness of the Algorithm 1 (Corollary 3.2);

5. We provided the complete construction in Theorem 3.3 required to prove the com-
pleteness of the Algorithm 1 (Corollary 3.3);

The proofs in items 4 and 5 were not available in [EL20].

Organisation. This dissertation is organized as follows:

Chapter 1. Preliminary Notions. We presented the main definitions and properties about
ACh-unification that are essential for the comprehension of this work. In Section 1.1,
we presented the syntax of first-order terms, as well as the definitions regarding sub-
stitution. In Section 1.2, we presented the definitions of multisets, order of multisets
and lexicographic orders, concepts that will be fundamental to prove the correctness
of our algorithm. In Section 1.3, we presented the definitions of equational theory
and unification modulo equational theories. Finally, in Section 1.4, we defined the
core concepts of ACh-theory, as well as the h-depth and h-height of a variable, which
will be necessary to solve a bounded ACh-unification problem.

Chapter 2. IACh: A rule-based algorithm for bounded ACh-unification. We presented
a pseudo-algorithm to solve a bounded ACh-unification problem. In Section 2.1,
we presented all the inference rules that will be used in the algorithm with some
illustrative examples. In Section 2.2, we presented the pseudo-algorithm (UnifyACh

)
which uses these rules, in addition to an example.

Chapter 3. Correctness of the Algorithm. We presented some definitions and results
regarding the correctness of the algorithm UnifyACh

. In Section 3.1, we provided the
notation that will be used alongside the chapter. In Section 3.2, we presented the
proof that the algorithm always terminates. In Section 3.3, we presented the proof
that the algorithm is truth-preserving. Finally, in Section 3.4, we studied the proof
of completeness.

Conclusion. We conclude this work by summarizing the main results obtained in its
scope and we also propose some directions for future research.
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Remark. We draw the reader’s attention to our decision not to present the proofs of
already established results, especially those related to AC-unification. Our goal is to
prioritize the proof of results related to bounded ACh-unification or those that have been
reworked in a different manner.





Chapter 1

Preliminary Notions

The purpose of this chapter is to give the definitions required to understand our problem.
It starts by defining the basic syntax, such as terms, substitutions and identities, etc. Then,
it continues by defining equational theories and unification modulo an equational theory
with some examples. Finally, it presents the important definitions to understand the theory
of our interest – the ACh theory.

1.1 Terms and substitutions

In this section we will provide some basic notions regarding of what consists of a
unification problem, these definitions can be found in [BN98] and [BS01].

Definition 1.1 (Signature). A signature F is a set of function symbols, where each f ∈ F
is associated with an non negative integer n, called the arity of f . For n ≥ 0, we denote by
F (n) the set of all n-ary functions. The elements of F (0) are also called constant symbols.

Definition 1.2 (Terms). Let F be a signature and V = {X ,Y,Z, . . .} be a set of variables
such as F ∩V = /0. The set of F -terms over V , denoted by T (F ,V) is inductively defined
as

• V ⊆ T (F ,V), i.e. a variable is always a term;

• For all n ≥ 0, f ∈ F (n) and t1, · · · , tn ∈ T (F ,V), we have f (t1, · · · , tn) ∈ T (F ,V)

Example 1.1. Let F = {i, f ,e}, where f is a binary symbol, i is unary and e is 0-ary. Then
the following are examples of terms with the respective signature:

1. f (i(X),e)

2. f ( f (e,Y ),Z)

3. i( f (X , i(e)))



8 Preliminary Notions

Remark.

(i) Notice that, since e is a constant, we can write it simply as e, instead of e().

(ii) Some binary function symbols, such as + or ·, can be written in infix form, that is,
instead of writing +(X ,Y ) or ·(X ,Y ), we simply write it as X +Y or X ·Y .

Definition 1.3 (Position). Let F be a signature, V be a set of variables disjoint from F
and s, t ∈ T (F ,V).

1. The set of positions of the term s is a set Pos(s) of strings over the alphabet of
positive integers. which is inductively defined as

• If s = X ∈ V , then Pos(s) := {ε}, where ε denotes the empty string;

• If s = f (s1, ...,sn), then

Pos(s) := {ε}∪
n⋃

i=1

{ip | p ∈ Pos(si)}.

Notice that, if we have s = a, where a ∈ F (0), then Pos(s) = {ε}.

2. Let p,q ∈ Pos(t). Then, the prefix order is defined as

p ≤ q iff there exists p′ such that pp′ = q

and is a partial order on position. We say that the positions p,q are parallel (p ∥ q)
iff p and q are incomparable with respect to ≤. The position p is above q iff p ≤ q.

3. For any p ∈ Pos(t), t|p is the subterm of t in the position p and is defined by
induction on the length of p:

t|ε := t

f (t1, . . . , tn)|iq := ti|q

4. For p ∈ Pos(t), t[s]p is the term t in which t|p is replaced by s, i.e.

t[s]ε := s

f (t1, . . . , tn)[s]iq := f (t1, . . . , ti[s]q, . . . , tn).
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Example 1.2. Let f be a binary function symbol and t = f ( f (X ,Y ),Z). Then, we have
t = f (t1,Z), where t1 = f (X ,Y ) and

Pos(t1) = {ε}∪{1p | p ∈ Pos(X)}∪{2p | p ∈ Pos(Y )}
= {ε,1,2}.

Therefore,
Pos(t) = {ε}∪{1p | p ∈ Pos(t1)}∪{2p | p ∈ Pos(Z)}

= {ε}∪{1,11,12}∪{2}
= {ε,1,2,11,12}.

Notice that, for example, 1 ≤ 12. We also have that, t|12 = f (t1,Z)|12 = t1|2 = Y .

Definition 1.4 (Substitution). Let F be a signature and V be a countably infinite set of
variables. A T (F ,V)-substitution (or simply substitution) is a function σ : V → T (F ,V)
such that σ(X) ̸= X for a finite number of X’s.

We can extend the substitution σ to a mapping σ̂ : T (F ,V)→T (F ,V) defined as:

• σ̂(X) := σ(X), if X ∈ V and

• if t = f (t1, . . . , tn), then σ̂(t) := f (σ̂(t1), . . . , σ̂(tn))

Definition 1.5 (Domain, Range and Variable Range). The set of variables which σ does
not map to themselves is called the domain of σ and is denoted by Dom(σ) := {x ∈ V |
σ(X) ̸= X}. If Dom(σ) = {X1, ...,Xn}, then we write σ as

σ = {X1 7→ σ(X1), ...,Xn 7→ σ(Xn)}

The range of σ is Ran(σ) := {σ(X) | X ∈Dom(σ)}, and the variable range of σ consists
of the variables occurring in Ran(σ), i.e.

VRan(σ) =
⋃

X∈Dom(σ)

Var(σ(X))

When we apply a substitution σ to a term, we simultaneously replace all the
occurrences of variables by their respective image.

Remark. To simplify notation, sometimes we will simply write tσ instead of σ(t) to
indicate the application of σ to the term t.

If s, t are terms and there exists a substitution σ such that sσ = t, then t is called an
instance of s.
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Example 1.3. Let F be the same signature as defined in Example 1.1 and let σ := {X1 7→
f (i(Y ),e),X2 7→ Y}. Then, we have

• Dom(σ) = {X1,X2}

• Ran(σ) = { f (i(Y ),e),Y}

• VRan(σ) = {Y}

Notice that, for instance, f (X1,X2)σ = f ( f (i(Y ),e),Y ).

Definition 1.6 (Composition of substitutions). Let θ and σ be substitutions. Then, the
composition θσ of substitutions is defined as Xθσ := σ̂(θ(X))

Definition 1.7 (More general substitution). Let σ and θ be substitutions. We say that σ

is more general than θ if there exists a substitution η such that θ = ση . We denote it by
σ ≲ θ .

Example 1.4. Let f be an unary function symbol and a be a constant. Define σ = {X 7→
f (Y )} and θ = {X 7→ f (a),Y 7→ a}. Then σ ≲ θ . In fact, θ = σσ

′, where σ
′ = {Y 7→ a}

because Xθ = f (a) = Xσσ
′, Y θ = a = Y σσ

′ and Zθ = Z = Zσσ
′.

1.2 Multisets and Lexicographic orders

To prove termination of any reduction system (A,→), it suffices to find another reduc-
tion system (B,>), which we know it terminates, and a mapping φ : A −→ B such that, for
every x,y ∈ A, if x → y, then φ(x)> φ(y). Such mapping is called a measure function. In
this work we will use a measure function that requires some basic knowledge of multiset
and lexicographic orders. The purpose of this section is to define these concepts.

Definition 1.8 (Multiset). A multiset M over a set A is a function M : A −→ N. Intuitively
M(x) is the number of copies of x ∈ A in M.

Example 1.5. Let A = {a,b,c}. Then, a multiset over A would be M = {a 7→ 1,b 7→ 2,c 7→
3}. We can also use a standard set notation to represent M, such as M = {a,b,b,c,c,c}

Definition 1.9 (Multiset order). Let > be a strict order on a set A. Then, the corresponding
multiset order >mul is defined as

M >mul N iff there exists C,D such that

/0 ̸=C ⊂ M and

N = (M−C)∪D and

for all y ∈ D, there exists x ∈C such that x > y.
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Intuitively, what this definition is stating is that M >mul N iff we can get from M to
N by removing elements of M and adding elements that are “smaller” than the greatest
element we removed from M.

Example 1.6. Let M = {6,4,2,2} and N = {5,4,4,2}. Consider > as the usual or-
der in N. Then, if we have X = {6,2} and Y = {5,4}, we obtain that {5,4,4,2}︸ ︷︷ ︸

N

=

({6,4,2,2}︸ ︷︷ ︸
M

−{6,2}︸ ︷︷ ︸
X

)∪{5,4}︸ ︷︷ ︸
Y

. Therefore, M >mul N.

Definition 1.10 (Lexicographic order). Let (A,>A) and (B,>B) be two strict orders. The
lexicographic order >A×B (or >lex) is defined as

(x,y)>A×B (z,w) iff (x >A z)∨ (x = z∧ y >B w)

Notice that, by iteration, we can form lexicographic products of any number of
orders (Ai,>i). In this case, we have

(x1, . . . ,xn)>lex (y1, . . . ,yn) iff ∃k ≤ n.(∀i < k.(xi = yi)∧ xk > yk)

1.3 Identities, Equational theories and E-unification

In this section, we will present the notion of equational theories and define a unification
problem modulo an equational theory.

Definition 1.11 (Identity). Let F be a signature and V a countably infinite set of variables
such that V∩F = /0. An F -identity (or simply identity) is a pair (s, t)∈T (F ,V)×T (F ,V)
and is denoted by s ≈ t.

Identities can be used to transform terms into another ones by replacing instances of
the left side with the corresponding instances of the right side and vice-versa.

Example 1.7. Take F = { f , i,e} the signature defined in Example 1.1 and define the iden-
tity f ( f (X ,Y ),Z)≈ f (X , f (Y,Z)). Then we can transform f ( f (i(e),e),e) into f (i(e),(e,e)).

Definition 1.12 (Equational Theory). Let E be a set of identities. An equational theory
=E is the least equivalence relation that is closed under substitutions and contains E.

Example 1.8. Again, using F = { f , i,e}. We can define G as

G := { f ( f (X ,Y ),Z)≈ f (X , f (Y,Z)), f (e,X)≈ X , f (i(X),X)≈ e}.
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Thus, the equational theory of groups =G is defined as the least equivalence relation
that is closed under substitutions and contains the identities in G.

Definition 1.13 (E-unification). Let F be a signature and =E be an equational theory.
An E-unification problem over F is a finite set of equations Γ = {s1

?
=E t1, . . . ,sn

?
=E tn}

between terms.

Definition 1.14 (E-unifier). Let Γ be an E-unification problem. An E-unifier or E-solution
of Γ is a substitution σ such that siσ =E tiσ for all i ∈ {1, . . . ,n}. The set of all E-unifiers
is denoted by UE(Γ).

Definition 1.15 (Satisfability modulo E).

1. Let θ be a substitution and Γ be an E-unification problem. We say that θ satisfies Γ

in the equational theory E if θ is an E-unifier of Γ and we denote it by θ ⊨E Γ.

2. Let σ = {X1 7→ t1, . . . ,Xn 7→ tn} and θ be substitutions. We say that θ satisfies σ in
the equational theory E, and denote as θ ⊨E σ , if Xiθ =E tiθ for all i ∈ {1, . . . ,n}.

Definition 1.16. Let E be an equational theory and X be a set of variables. The substitution
σ is more general modulo E on X than θ if there exists a substitution σ

′ such that
Xθ =E Xσσ

′ for all X ∈ X . We denote it by σ ≲X
E θ .

Definition 1.17 (Complete Set of E-unifiers). Let Γ be an E-unification problem over F
and Var(Γ) be the set of variables occurring in Γ. A complete set of E-unifiers of Γ is a set
S of substitutions such that each element of S is an E-unifier of Γ, i.e. S ⊆ UE(Γ), and for
each θ ∈ UE(Γ), there exists a σ ∈ S such that σ ≲Var(Γ)

E θ .

Notice that, when E = /0, our Γ = {s1
?
= t1, . . . ,sn

?
= tn} becomes a syntactic unification

problem. In this case, solving this problem would be to simply find a substitution σ such
that siσ = tiσ , that is, siσ and tiσ are syntactically identical.

Example 1.9. Let f be a unary function symbol and t be a term. Then,

• f (X)
?
= f (t) has exactly one unifier, which is {X 7→ t}

• X ?
= f (Y ) has infinitely many unifiers, such as {X 7→Y},{X 7→ f (ti),Y 7→ ti}, where

ti is any term in our substitution. Notice that {X 7→Y} is the most general unifier for
this equation, since {X 7→ f (ti),Y 7→ ti}= {X 7→ f (Y ),Y 7→ Y}{Y 7→ ti}.

1.4 Notions for Unification modulo ACh-Theory

In the previous section, we discussed about unification modulo a given theory E. The
purpose of this section is to present the theory we are interested in this study, which is the
ACh-theory, and give some definitions that will be important over the course of this work.
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What is ACh Theory? Let F = {+,h} be our signature, where + and h are a binary
and unary function symbols, respectively. Then we have the following identities for ACh:

• X +(Y +Z)≈ (X +Y )+Z (associativity)

• X +Y ≈ Y +X (commutativity)

• h(X +Y )≈ h(X)+h(Y ) (homomorphism)

For instance, h((X +Y )+Z) =ACh h(X +Y )+h(Z).

We can also add other uninterpreted function symbols with fixed arity to our signa-
ture, but as it suggests, they do not have any influence in the theory itself.

A brief example for AC-unification. Since we will use the Stickel’s algorithm [Sti75]
to unify the AC part of our problem, we might as well illustrate how such algorithm works.

Let + be our AC function symbol. Let us unify the set {X +Y ?
=W +Z}. First, we

associate problem with a Diophantine equation where each argument on the function is
abstracted by one variable in the equation and the coefficients are the number of occurrences
of the argument. Hence, we obtain:

X1 +X2 = Y1 +Y2

Here, X1 is associated with X , X2 is associated with Y , Y1 is associated with W and Y2

is associated with Z. Now, we search for a base of solutions to the equation and associate a
new variable Vi to each solution, as you can see on table below

X1 X2 Y1 Y2 New Variables
1 0 1 0 V1

1 0 0 1 V2

0 1 0 1 V3

0 1 1 0 V4

Now, we relate the “old” variables with the “new” variables, obtaining

• X1 =V1 +V2

• X2 =V3 +V4

• Y1 =V1 +V4

• Y2 =V2 +V3



14 Preliminary Notions

The next step is to decide if we will include or not the new variables in our unification
problem, with the restriction that all the new variables must be different than zero (for
example, if we exclude V1, then we must include V2, because otherwise X1 would be 0).
For instance, let us include V1,V3,V4 and exclude V2. In this case, we obtain

{X1
?
=V1,X2

?
=V3 +V4,Y1

?
=V1 +V4,Y2

?
=V3}

Finally, we replace the “old” variables by the original terms they were associated in the
beginning, obtaining the following AC-unifiers:

θ1 = {X 7→V1,Y 7→V3 +V4,Z 7→V1 +V4,W 7→V3}

We execute the same procedure to solve the other cases, obtaining:

θ2 = {X 7→V2,Y 7→V3 +V4,V 7→V4,W 7→V2 +V3}

θ3 = {X 7→V1 +V2,Y 7→V3,V 7→V1,Y2 7→V2 +V3}

θ4 = {X 7→V1 +V2,Y 7→V4,V 7→V1 +V4,W 7→V2}

θ5 = {X 7→V,Y 7→W}

θ6 = {X 7→W,Y 7→V}

θ7 = {X 7→V1 +V2,Y 7→V3 +V4,Y 7→V1 +V4,W 7→V2 +V3}

.
We will repeat this example throughout this work.

h-depth set. Now we shall define the h-depth of a variable occurring in our problem.
Intuitively, it is the number of h symbols appearing on the top of said variable. Such
concept would be of great importance to this work, since our main goal is to show that our
problem has always a solution if we introduce a bound on h.

Definition 1.18. Let Γ be an ACh-unification problem, we say that Γ is in flattened form if
every equation in Γ is in one of the following forms:

• X ?
= Y

• X ?
= h(Y )

• X ?
= X1 + . . .+Xm

• X ?
= f (Y1, . . . ,Yn)
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where X and Y are variables, Xis and Yjs are pairwise distinct variables and f is a free
function symbol with arity n ≥ 0. The first kind is called VarVar equations, the second is
called h-equations, the third +-equations and the fourth free equations.

For convenience, through this section, we will assume that our problem is always in
flattened form unless we state the opposite.

Definition 1.19 (Graph of Γ). Let Γ be a unification problem. We define the graph G(Γ)

of Γ as a digraph where each node represents a variable Γ and each edge represents the
function symbol that relates two variables in Γ. To be more precise, if we have f as a
function symbol with arity n ≥ 0 and X ?

= f (X1, · · · ,Xn) ∈ Γ, then the graph contains the

edges X
f−→ X1, . . . ,X

f−→ Xn. If c is a constant symbol, and X ?
= c ∈ Γ, then the graph

contains a vertex X . If X ?
= Y ∈ Γ, where X ,Y are variables, the the graph contains two

disconnected vertices X and Y .

Example 1.10. Let

Γ = {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4 +X2,V3

?
= Y1 +V5,V4

?
= h(X1),V5

?
= h(Y2)}

Then, the graph of Γ is showed in Figure 1.1.

Fig. 1.1 Example of a graph of an ACh-unification Problem

Definition 1.20 (h-depth). Let Γ be a unification problem and let X ∈ Var(Γ). Let h be a
unary symbol and f ̸= h be a n-ary symbol, with n ≥ 1 and occurring in Γ. We define the
h-depth of X, denoted by hd(X ,Γ), as the maximum number of h-symbols along in a path
to X in G(Γ). That is,

hd(X ,Γ) := max{hdh(X ,Γ),hd f (X ,Γ),0},

where
hdh(X ,Γ) := max{1+hd(Y,Γ) | Y h−→ X is an edge in G(Γ)},
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and

hd f (X ,Γ) := max{hd(Y,Γ) | there exists f ̸= h such that Y
f−→ X is in G(Γ)}

Intuitively, what the definitions above are stating is that we can always represent the
problem visually through a graph and count the number of h symbols in a path to the said
variable to verify how "deep" it is into h symbols.

Example 1.11. Let us recall Example 1.10. As we can see by Figure 1.1,

– hd(V1,Γ) = 0

– hd(V2,Γ) = hd(V3,Γ) = hd(V4,Γ) = hd(V5,Γ) = hd(X2,Γ) = hd(Y1,Γ) = 1

– hd(X1,Γ) = hd(Y2,Γ) = 2

Definition 1.21 (h-height). Let Γ be a unification problem and t be a term in Γ. We define
the h-height of t as it follows:

hh(t) =


hh(t ′)+1 if t = h(t ′)

max{hh(t1), . . . ,hh(tn)} if t = f (t1, . . . , tn), f ̸= h

0 if t = X or t = c

where f is a function symbol with arity n ≥ 1.

Example 1.12. Let t = h(h(X1 +h(X2)). Then, we have

hh(t) = hh(h(h(X1 +h(X2))))

= hh(h(X1 +h(X2)))+1

= hh(X1 +h(X2))+2

= hh(h(X2))+2

= 3

Definition 1.22 (h-depth set). Let Γ be a set of equations. The h-depth set of Γ is defined
as ∆ := {(X ,hd(X ,Γ)) | X ∈ Var(Γ)}. That is, the elements of ∆ are pairs on the form
(X ,c), where X is a variable occurring in Γ and c is its respective h-depth. With that, we
can also define the maximum value of ∆ as the maximum value of all c values, that is
MaxVal(∆) := max{c | (X ,c) ∈ ∆}.

Example 1.13. Again, recalling Example 1.10, the h-depth set of Γ would be.

∆ = {(X1,2),(X2,1)(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}
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Definition 1.23 (ACh-unification problem). Let F be a signature. An ACh-unification
problem over F is a finite set of equations Γ = {s1

?
=ACh t1, . . . ,sn

?
=ACh tn}, with si, ti ∈

T (F ,V) and ACh is the theory defined above.

Definition 1.24 (Bounded ACh unifier). Let Γ = {s1
?
=ACh t1, . . . ,sn

?
=ACh tn} be an ACh-

unification problem. A κ bounded ACh unifier/solution of Γ is a substitution σ such that
tiσ =ACh siσ and hh(siσ),hh(tiσ)≤ κ for all i ∈ {1, . . . ,n}.

In the next chapter we will present an algorithm to find bounded ACh-unifiers to
ACh-unification problems.





Chapter 2

IACh: A rule-based algorithm for
bounded ACh-unification

The purpose of this chapter is to present the inference system IACh to solve bounded
ACh-unification problems. We will start this chapter by introducing the Flattening rules,
which are the rules that put a problem in flattened form as we defined in the previous chapter.
Then, we will provide some standard rules that are often used in syntactic unification theory
and, finally, we present the specific rules for bounded ACh-unification.

2.1 The rules for IACh

For our inference system, denoted by IACh, we will use a set triple Γ ∥ ∆ ∥ σ , where
Γ is the unification problem modulo the ACh theory, ∆ is an h-depth set of Γ and σ is a
substitution. We say that a substitution θ satisfies the triple Γ ∥ ∆ ∥ σ when we have that
θ ⊨ Γ, θ ⊨ σ (cf. Definition 1.15) and MaxVal(∆)≤ κ , where κ ∈ N is a bound on the
h-depth set of the variables. We denote it by θ ⊨ Γ ∥ ∆ ∥ σ .

Definition 2.1. Let Γ ∥ ∆ ∥ σ be a set triple and κ ∈ N be a bound on the h-depth set of
variables, then Γ ∥ ∆ ∥ σ is said to be in solved form if Γ = /0 and MaxVal(∆)≤ κ .

2.1.1 Flattening rules

These rules are responsible for putting all the equations s ?
= t in Γ in flattened form.
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(FBS) Flatten Both Sides

(FBS)
{t1

?
= t2}∪Γ ∥ ∆ ∥ σ

{V ?
= t1,V

?
= t2}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t1, t2 /∈ V

(FL) Flatten Left +

(FL)
{t ?

= t1 + t2}∪Γ ∥ ∆ ∥ σ

{t ?
=V + t2,V

?
= t1}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t1 /∈ V

(FR) Flatten Right +

(FR)
{t ?

= t1 + t2}∪Γ ∥ ∆ ∥ σ

{t ?
= t1 +V,V ?

= t2}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t2 /∈ V

(FU) Flatten under h

(FU)
{t ?

= h(t1)}∪Γ ∥ ∆ ∥ σ

{t ?
= h(V ),V ?

= t1}∪Γ ∥ ∆∪{(V,1)} ∥ σ

IF t1 /∈ V

If we have f as an uninterpreted n-ary function symbol in our problem, we also have
the following rule:

(FLFUN) Flatten under f

(FLFUN)
{t ?

= f (t1, . . . , tn)}∪Γ ∥ ∆ ∥ σ

{t ?
= f (V1, . . . ,Vn),V1

?
= t1, . . . ,Vn

?
= tn}∪Γ ∥ ∆∪{(V1,0), . . . ,(Vn,0)} ∥ σ

Intuitively, (FBS) abstracts both sides of the equation with the same variable, (FL/R)
abstracts the left/right argument of + with a fresh variable and (FU) abstracts the argument
of the homomorphism h with a new variable. Such new variables can be any variable in V
that did not occur in the set of equations in the previous step. Let’s see in our example the
applicability of these rules.
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Notice that (FU) has been improved, compared to [EL20], to simultaneously update
the h-depth of the new variable V , since it has a h symbol on top of it. In the original
paper, we had

(FU)
{t ?

= h(t1)}∪Γ ∥ ∆ ∥ σ

{t ?
= h(V ),V ?

= t1}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t1 /∈ V

Example 2.1. Let Γ = {h(t1)+ t2
?
= t3+ t4}, where ti /∈ V , for all i ∈ {1,2,3,4}. Then, we

have

{h(t1)+ t2
?
= t3 + t4} ∥ ∆ ∥ σ

=⇒(FBS)

{X ?
= h(t1)+ t2,X

?
= t3 + t4} ∥ {(X ,0)}∪∆ ∥ /0

=⇒(FL+)

{X ?
= Y1 + t2,X

?
= t3 + t4,Y1

?
= h(t1)} ∥ {(X ,0),(Y1,0)}∪∆ ∥ /0

=⇒(FL+)

{X ?
= Y1 + t2,X

?
= Y3 + t4,Y1

?
= h(t1),Y3

?
= t3} ∥ {(X ,0),(Y1,0),(Y3,0)}∪∆ ∥ /0

=⇒2
(FR+)X ?
= Y1 +Y2,X

?
= Y3 +Y4,Y1

?
= h(t1),

Y3
?
= t3,Y2

?
= t2,Y4

?
= t4

 ∥ {(X ,0),(Y1,0),(Y3,0),(Y2,0),(Y4,0)}∪∆ ∥ /0

=⇒(FU)X ?
= Y1 +Y2,X

?
= Y3 +Y4,Y1

?
= h(V ),

Y3
?
= t3,Y2

?
= t2,Y4

?
= t4,V

?
= t1

 ∥ {(X ,0),(Y1,0),(Y3,0),(Y2,0),(Y4,0),(V,1)}∪∆ ∥ /0

Every equation in {X ?
= Y1 +Y2,X

?
= Y3 +Y4,Y1

?
= h(V ),Y3

?
= t3,Y2

?
= t2,Y4

?
= t4,V

?
= t1}

is in flattened form.

2.1.2 Update h-depth set rules

These rules are defined to update ∆, that is, to compute the h-depths of all the variables
occurring in Γ.
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(Uh) Update h

(Uh)
{X ?

= h(Y )}∪Γ ∥ {(X ,k),(Y, l)}∪∆ ∥ σ

{X ?
= h(Y )}∪Γ ∥ {(X ,k),(Y,k+1)}∪∆ ∥ σ

IF l < k+1

Update +

1. (UL) Update Left +

(UL)
{X ?

= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,m)}∪∆ ∥ σ

{X ?
= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1,k),(Y2,m)}∪∆ ∥ σ

IF l < k

2. (UR) Update Right +

(UR)
{X ?

= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,m)}∪∆ ∥ σ

{X ?
= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,k)}∪∆ ∥ σ

IF m < k

Intuitively, (Uh) is applied when we have an equation of the form X ?
= h(Y )∈ Γ. In this

case, it’s clear that hd(Y,Γ) = hd(X ,Γ)+1, since Y has an h symbol on top of it. Update
+ is applied when we have X ?

= X1 +X2. Notice that in this case, since X1 and X2 do not
have an h symbol on top of them, hd(Xi,Γ) = hd(X ,Γ).

Example 2.2. Let Γ = {X ?
= Y +Z,W ?

= h(h(X))}, where X ,Y,Z,W ∈ V . Then, we have

{X ?
= Y +Z,W ?

= h(h(X))} ∥ {(X ,0),(Y,0),(Z,0),(W,0)} ∥ /0

=⇒(FU)

{X ?
= Y +Z,W ?

= h(V1),V1
?
= h(X)} ∥ {(X ,0),(Y,0),(Z,0),(W,0),(V1,1)} ∥ /0

=⇒(Uh)

{X ?
= Y +Z,W ?

= h(V1),V1
?
= h(X)} ∥ {(X ,2),(Y,0),(Z,0),(W,0),(V1,1)} ∥ /0

=⇒(UL)

{X ?
= Y +Z,W ?

= h(V1),V1
?
= h(X)} ∥ {(X ,2),(Y,2),(Z,0),(W,0),(V1,1)} ∥ /0

=⇒(UR)

{X ?
= Y +Z,W ?

= h(V1),V1
?
= h(X)} ∥ {(X ,2),(Y,2),(Z,2),(W,0),(V1,1)} ∥ /0

Notice that, if we look at the graph of our problem (see Figure 2.1), all the correspond-
ing h-depths match with the ones given by our inference rule.
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Fig. 2.1 Graph of {X ?
= Y +Z,W ?

= h(V1),V1
?
= h(X)}

2.1.3 Variable Elimination rules

These are the rules to find a unifier for the problem. They are responsible to transform
the equations into assignments.

(VE1) Variable Elimination 1

(VE1)
{X ?

= Y}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ Y} ∥ ∆ ∥ σ{X 7→ Y}∪{X 7→ Y}
IF X ̸= Y

(VE2)Variable Elimination 2

(VE2)
{X ?

= t}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ t} ∥ ∆ ∥ σ{X 7→ t}∪{X 7→ t}
IF X /∈ Var(t)

Example 2.3. Let Γ = {X ?
= Y,X ?

=V1 +V2}. Then, we have

{X ?
= Y,X ?

=V1 +V2} ∥ {(X ,0),(Y,0),(V1,0),(V2,0)} ∥ /0

=⇒(VE1)

{Y ?
=V1 +V2} ∥ {(X ,0),(Y,0),(V1,0),(V2,0)} ∥ {X 7→ Y}

=⇒(VE2)

/0 ∥ {(X ,0),(Y,0),(V1,0),(V2,0)} ∥ {X 7→V1 +V2,Y 7→V1 +V2}

2.1.4 Basic rules

The following rules are the standard Martelli-Montanari unification rules found in
[BN98]. The first rule is to remove trivial equations from our problem.
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(TRIV) Trivial

(TRIV)
{t ?

= t}∪Γ ∥ ∆ ∥ σ

Γ ∥ ∆ ∥ σ

This rule swaps the left side of the equation with the right side and is applied when the
left side is not a variable but the right side is.

(OR) Orient

(OR)
{t ?

= X}∪Γ ∥ ∆ ∥ σ

{X ?
= t}∪Γ ∥ ∆ ∥ σ

IF t /∈ V

The following rule decomposes an equation into sub-equations if the function symbols
on both sides of the equation are equal, except if it’s a +. For this case, we apply a different
rule which we shall present later.

(DEC) Decomposition

(DEC)
{X ?

= f (X1, ...,Xn),X
?
= f (Y1, ...,Yn)}∪Γ ∥ ∆ ∥ σ

{X ?
= f (X1, ...,Xn),X1

?
= Y1, ...,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ

IF f ̸=+

Example 2.4. Let Γ = {h(h(X)
?
= h(h(Y ))}, where X ,Y ∈ V . Then, we have

{h(h(X))
?
= h(h(Y ))} ∥ {(X ,0),(Y,0)} ∥ /0

=⇒(FBS)

{V ?
= h(h(X)),V ?

= h(h(Y ))} ∥ {(X ,0),(Y,0),(V,0)} ∥ /0

=⇒2
(FU)

{V ?
= h(V1),V

?
= h(V2),V1

?
= h(X),V2

?
= h(Y )} ∥ {(X ,0),(Y,0),(V,0),(V1,1),(V2,1)} ∥ /0

=⇒2
(Uh)

{V ?
= h(V1),V

?
= h(V2),V1

?
= h(X),V2

?
= h(Y )} ∥ {(X ,2),(Y,2),(V,0),(V1,1),(V2,1)} ∥ /0

=⇒(DEC)

{V ?
= h(V1),V1

?
=V2,V1

?
= h(X),V2

?
= h(Y )} ∥ {(X ,2),(Y,2),(V,0),(V1,1),(V2,1)︸ ︷︷ ︸

∆

} ∥ /0
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=⇒(VE1)

{V ?
= h(V2),V2

?
= h(X),V2

?
= h(Y )} ∥ ∆ ∥ {V1 7→V2}

=⇒(DEC)

{V ?
= h(V2),V2

?
= h(X),X ?

= Y} ∥ ∆ ∥ {V1 7→V2}
=⇒(VE1)

{V ?
= h(V2),V2

?
= h(Y )} ∥ ∆ ∥ {V1 7→V2,X 7→ Y}

=⇒(VE2)

{V2
?
= h(Y )} ∥ ∆ ∥ {V1 7→V2,X 7→ Y,V 7→ h(V2)}

=⇒(VE2)

/0 ∥ ∆ ∥ {V1 7→ h(Y ),X 7→ Y,V 7→ h(h(Y )),V2 7→ h(Y )}

Notice that {X 7→ Y} is the mgu of {h(h(X)
?
= h(h(Y ))}.

2.1.5 Checking rules

These rules are set to identify failure cases for an ACh unification problem.

(OC) Occur Check

(OC)
{X ?

= f (t1, ..., tn)}∪Γ ∥ ∆ ∥ σ

⊥
IF X ∈ Var( f (t1, ..., tn)σ)

(CLASH) Clash

(CLASH)
{X ?

= f (s1, ...sm),X
?
= g(t1, ..., tn)}∪Γ ∥ ∆ ∥ σ

⊥
IF f /∈ {h,+} OR g /∈ {h,+}

Notice that the two above are also the standard (OC) and (CLASH) rules found in
[BN98]. Intuitively, if we have a variable on the left side of an equation occurring also on
the right side, it never terminates. So, to avoid that, we indicate failure.

Also, as we know, it is not possible to solve an equation with different function symbols
on the top of both sides of an equation, unless one of them is + and the other is h – we
will present a rule for this case later. Hence, we indicate failure if this happens as well.
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Example 2.5.

1. Occur Check
Let Γ = {X ?

= Y,Y ?
= h(Z +X)}, where X ,Y,Z ∈ V . Then, we have

{X ?
= Y,Y ?

= h(Z +X)} ∥ {(X ,0),(Y,0),(Z,0)} ∥ /0

=⇒(FU)

{X ?
= Y,Y ?

= h(V ),V ?
= Z +X} ∥ {(X ,0),(Y,0),(Z,0),(V,1)} ∥ /0

=⇒(UL/R)

{X ?
= Y,Y ?

= h(V ),V ?
= Z +X} ∥ {(X ,1),(Y,0),(Z,1),(V,1)} ∥ /0

=⇒(VE1)

{Y ?
= h(V ),V ?

= Z +Y} ∥ {(X ,1),(Y,0),(Z,1),(V,1)} ∥ {X 7→ Y}
=⇒(VE2)

{V ?
= Z +h(V )} ∥ {(X ,1),(Y,0),(Z,1),(V,1)} ∥ {X 7→ h(V ),Y 7→ h(V )}

=⇒(OC)

⊥

2. Clash
Let f be a binary function symbol, g be a unary function symbol and Γ= { f (X ,h(Y )) ?

=

g(Z)}. Then, we have

{ f (X ,Y ) ?
= g(Z)} ∥ {(X ,0)(Y,0)(Z,0)} ∥ /0

=⇒(FBS)

{V ?
= f (X ,Y ),V ?

= g(Z)} ∥ {(X ,0)(Y,0)(Z,0),(V,0)} ∥ /0

=⇒(CLASH)

⊥

The following rule determines if a solution exists within the given bound κ . It is one
of the most important rules for IACh, since our main goal is to show that, putting a bound
in the h-depth, our problem becomes decidable.

(BC) Bound Check

(BC)
Γ ∥ ∆ ∥ σ

⊥
IF MaxVal(∆)> κ
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The intuition behind this rule is straightforward, after computing the h-depths of all
the variables in Γ, if there is at least one variable X such that hd(X ,Γ)> κ . Our problem
cannot be solved. Let’s see how this works in practice.

Example 2.6. Let κ = 2 be our bound and Γ = {Y ?
= h(h(h(X)))}, where X ,Y ∈ V . Then,

we have

{Y ?
= h(h(h(X)))} ∥ {(X ,0),(Y,0)} ∥ /0

=⇒2
(FU)

{Y ?
= h(V1),V1

?
= h(V2),V2

?
= h(X)} ∥ {(X ,0),(Y,0),(V1,0),(V2,0)} ∥ /0

=⇒3
(Uh)

{Y ?
= h(V1),V1

?
= h(V2),V2

?
= h(X)} ∥ {(X ,3),(Y,0),(V1,1)(V2,2)} ∥ /0

=⇒(BC)

⊥

2.1.6 Splitting rule

The following rule takes the homomorphism theory in consideration,

(SPLIT) Splitting

(SPLIT)
{X ?

= h(Y ),X ?
= X1 + ...+Xn}∪Γ ∥ ∆ ∥ σ

{X ?
= h(Y ),Y ?

=V1 + ...+Vn,X1
?
= h(V1), ...,Xn

?
= h(Vn)}∪Γ ∥ ∆

′ ∥ σ

where n > 1, X ̸=Y and X ̸= Xi for all i, ∆
′ = {(V1,1), ...,(Vn,1)}∪∆ and V1, . . . ,Vn

are fresh variables.

Summarizing, we cannot solve an equation h(Y ) ?
= X1 + . . .+Xn unless Y is also a

sum. Hence, we create new variables V1, . . . ,Vn, which did not occur anywhere in the
problem, such that Y is the sum of these new variables and, recalling the definition of
homomorphism, we must have that Xi = h(Vi) for i ∈ {1, . . . ,n}.
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Example 2.7. Let Γ = {h(X) = Y1 +Y2} and κ = 2. Then, we have

{h(X)
?
= Y1 +Y2} ∥ {(X ,0),(Y1,0),(Y2,0)} ∥ /0

=⇒(FBS)

{V ?
= h(X),V ?

= Y1 +Y2} ∥ {(X ,0),(Y1,0),(Y2,0),(V,0)} ∥ /0

=⇒(Uh)

{V ?
= h(X),V ?

= Y1 +Y2} ∥ {(X ,1),(Y1,0),(Y2,0),(V,0)} ∥ /0

=⇒(SPLIT){
V ?
= h(X),X ?

=V1 +V2,Y1
?
= h(V1),Y2

?
= h(V2)

}
∥ {(X ,1),(Y1,0),(Y2,0),(V,0),(V1,1),(V2,1)︸ ︷︷ ︸

∆

} ∥ /0

=⇒(VE2){
X ?
=V1 +V2,Y1

?
= h(V1),Y2

?
= h(V2)

}
∥ ∆ ∥ {V 7→ h(X)}

=⇒(VE2)

{Y1
?
= h(V1),Y2

?
= h(V2)} ∥ ∆ ∥ {V 7→ h(V1 +V2),X 7→V1 +V2}

=⇒2
(VE2)

/0 ∥ ∆ ∥ {V 7→ h(V1 +V2),X 7→V1 +V2,Y1 7→ h(V1),Y2 7→ h(V2)}

2.1.7 AC-Unification rule

This rule uses an established AC-unification algorithm to solve the AC part of the
problem (as we discussed before, we are using the algorithm formalized by Gabriel Silva
in [AFSS22]). Consider Ψ as the set of all the equations with the + symbol on the right
side and Γ as the set containing the other types of equations. Then,

AC-Unification

(AC)
Ψ∪Γ ∥ ∆ ∥ σ

GetEqs(θ1)∪Γ ∥ ∆1 ∥ σ ∨ ...∨GetEqs(θn)∪Γ ∥ ∆n ∥ σ

where Unify(Ψ) = {θ1, ...,θn}

where Unify is a function which returns a complete set of AC-unifiers given by an AC-
unification algorithm and GetEqs is a function that takes a substitution θ = {X1 7→
t1, . . . ,Xn 7→ tn} and returns its equational form, i.e., GetEqs(θ) = {X1

?
= t1, . . . ,Xn

?
= tn}.

Also, notice that, since the AC Unification algorithm introduces new variables to our
problem, we must add such variables to our h-depth set.

For the next example, we will use the method to find solutions presented in [Sti75] and
formalized by [AFSS22].
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Example 2.8. Let Γ = {X1 +X2
?
= Y1 +Y2,X

?
= h(Y )}. Then, we have

{X1 +X2
?
= Y1 +Y2}∪{X ?

= h(Y )} ∥ {(X1,0)(X2,0)(Y1,0)(Y2,0)} ∥ /0

=⇒(FBS)

{V ?
= X1 +X2,V

?
= Y1 +Y2}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

=⇒(AC)

{V ?
=V1 +V2 +V3 +V4,X1

?
=V1 +V2,X2

?
=V3 +V4,Y1

?
=V1 +V4,Y2

?
=V2 +V3}

∪{X ?
= h(Y )} ∥ ∆ ∥ /0∨

∨{V ?
=V1 +V3 +V4,X1

?
=V1,X2

?
=V3 +V4,Y1

?
=V1 +V4,Y2

?
=V3}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

∨{V ?
=V1 +V2 +V4,X1

?
=V1 +V2,X2

?
=V4,Y1

?
=V1 +V4,Y2

?
=V2}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

∨{V ?
=V1 +V2 +V3,X1

?
=V1 +V2,X2

?
=V3,Y1

?
=V1,Y2

?
=V2 +V3}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

∨{V ?
=V2 +V3 +V4,X1

?
=V2,X2

?
=V3 +V4,Y1

?
=V4,Y2

?
=V2 +V3}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

∨{V ?
= X1 +X2,X1

?
= Y1,X2

?
= Y2}∪{X ?

= h(Y )} ∥ ∆ ∥ /0

∨{V ?
= X1 +X2,X1

?
= Y2,X2

?
= Y1}∪{X ?

= h(Y )} ∥ ∆ ∥ /0
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2.2 Pseudo Algorithms for Flattening and ACh-Unification

In this section, we will present the pseudo algorithm to solve a given ACh-Unification
Problem. First, let us recap all the IACh rules:

(FBS)
{t1

?
= t2}∪Γ ∥ ∆ ∥ σ

{V ?
= t1,V

?
= t2}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t1, t2 /∈ V (FL)
{t ?

= t1 + t2}∪Γ ∥ ∆ ∥ σ

{t ?
=V + t2,V

?
= t1}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t1 /∈ V

(FR)
{t ?

= t1 + t2}∪Γ ∥ ∆ ∥ σ

{t ?
= t1 +V,V ?

= t2}∪Γ ∥ ∆∪{(V,0)} ∥ σ

IF t2 /∈ V (FU)
{t ?

= h(t1)}∪Γ ∥ ∆ ∥ σ

{t ?
= h(V ),V ?

= t1}∪Γ ∥ ∆∪{(V,1)} ∥ σ

IF t1 /∈ V

(FLFUN)
{t ?

= f (t1, . . . , tn)}∪Γ ∥ ∆ ∥ σ

{t ?
= f (V1, . . . ,Vn),V1

?
= t1, . . . ,Vn

?
= tn}∪Γ ∥ ∆∪{(V1,0), . . . ,(Vn,0)} ∥ σ

(Uh)
{X ?

= h(Y )}∪Γ ∥ {(X ,k),(Y, l)}∪∆ ∥ σ

{X ?
= h(Y )}∪Γ ∥ {(X ,k),(Y,k+1)}∪∆ ∥ σ

if l < k+1

(UL)
{X ?

= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,m)}∪∆ ∥ σ

{X ?
= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1,k),(Y2,m)}∪∆ ∥ σ

(UR)
{X ?

= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,m)}∪∆ ∥ σ

{X ?
= Y1 +Y2}∪Γ ∥ {(X ,k),(Y1, l),(Y2,k)}∪∆ ∥ σ

if l < k if m < k

(VE1)
{X ?

= Y}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ Y} ∥ ∆ ∥ σ{X 7→ Y}∪{X 7→ Y}
IF X ̸= Y (VE2)

{X ?
= t}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ t} ∥ ∆ ∥ σ{X 7→ t}∪{X 7→ t}
IF X /∈ Var(t)

(DEC)
{X ?

= f (X1, ...,Xn),X
?
= f (Y1, ...,Yn)}∪Γ ∥ ∆ ∥ σ

{X ?
= f (X1, ...,Xn),X1

?
= Y1, ...,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ

IF f ̸=+ (TRIV)
{t ?

= t}∪Γ ∥ ∆ ∥ σ

Γ ∥ ∆ ∥ σ

(SPLIT)
{X ?

= h(Y ),X ?
= X1 + ...+Xn}∪Γ ∥ ∆ ∥ σ

{X ?
= h(Y ),Y ?

=V1 + ...+Vn,X1
?
= h(V1), ...,Xn

?
= h(Vn)}∪Γ ∥ ∆

′ ∥ σ

(OR)
{t ?

= X}∪Γ ∥ ∆ ∥ σ

{X ?
= t}∪Γ ∥ ∆ ∥ σ

IF t /∈ V

(AC)
Ψ∪Γ ∥ ∆ ∥ σ

GetEqs(θ1)∪Γ ∥ ∆1 ∥ σ ∨ ...∨GetEqs(θn)∪Γ ∥ ∆n ∥ σ

(OC)
{X ?

= f (t1, ..., tn)}∪Γ ∥ ∆ ∥ σ

⊥
IF X ∈ Var( f (t1, ..., tn)σ) (BC)

Γ ∥ ∆ ∥ σ

⊥
IF MaxVal(∆)> κ

(CLASH)
{X ?

= f (s1, ...sm),X
?
= g(t1, ..., tn)}∪Γ ∥ ∆ ∥ σ

⊥
IF f /∈ {h,+} OR g /∈ {h,+}

Fig. 2.2 IACh rules.
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Algorithm 1: UnifyACh

Input: An equation set Γ, an empty h-depth set ∆, an empty set σ and a bound
κ ∈ N

Output: A complete set of κ-bounded ACh-unifiers {σ1, ...,σn} or ⊥ indicating
that the problem has no solution.

Begin

0. Compute ∆ by adding all the variables in Var(Γ) with initial h-depth zero;

1. Apply Algorithm 2 (Flattening) on Γ

2. Repeat
(Apply (VE1) exhaustively after each of the following rule applications)

(a) Apply (TRIV) exhaustively to eliminate equations of the form t ?
= t;

(b) Apply the (OC), i.e., If any variable on the left side occurs on the right then
return ⊥;

(c) Apply the (BC), i.e., If MaxVal(∆)> κ then return ⊥;

(d) If at least one of the h-depth update rules ((Uh), (UL) or (UR)) is applicable
then apply the rule and go to (c) else go to next step;

(e) Apply (OR) exhaustively;

(f) If (SPLIT) is applicable then apply the rule and go to (a);

(g) Apply (CLASH), i.e., If the top symbols of the left and right sides of an
equation do not match then return ⊥;

(h) If (DEC) is applicable then apply the rule and go to (a);

(i) If there is at least one variable X occurring left side in at least two equations
of the form X ?

= Y1 + ...Yn and X ?
= Z1 + ...+Zn, then apply the (AC) rule

and go to (d) else go to next step;

(j) Apply (VE2) exhaustively and return the output;

End
We shall explain how the algorithm works. First, we read all the variables X ∈ Var(Γ)

and add them to ∆ initially as (X ,0). Then, we call the Flattening algorithm (which is
presented next) to put all the equations in flattened form. Then, we apply the other rules of
IACh following a specific strategy:

1. We can start by removing all the trivial equations, so we apply (TRIV).

2. Then, we apply (OC) and (BC) to see if it has an immediate failure.
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3. Now, we update the h-depths of all the variables occurring in our problem. Then, we
check if it has a variable with an h-depth greater than the given bound. If not, then
we can move to the next procedure.

4. We orient all the equations. Then, we start looking for rules that might be applicable.

5. If we have X ?
= h(Y ),X ?

= X1 + . . .+Xn in our problem, we apply (SPLIT), since
this rule creates new variables and new equations, we go back to the beginning to
eliminate trivial equations, check failures and update the depths of the new variables.
We repeat that until (SPLIT) is not applicable anymore.

6. Now we check if (CLASH) is applicable to see ultimately if it fails. If not, then we
can apply (AC) to solve all the +-equations, if they exist. Since this rule creates new
variables, we must update their h-depths, check if one of them surpasses the given
bound and apply (OR), (SPLIT) and (CLASH) if necessary. If not, we continue this
procedure until (AC) is not applicable anymore.

7. Finally, we apply (VE2) exhaustively to find a unifier to the problem.

Now, we shall present the Flattening algorithm, the intuition is very straightforward
since a specific strategy to apply the Flattening rules is not required.

Algorithm 2: Flattening
Input: An equation set Γ

Output: An equation set Γ
′ where all of the equations are in flattened form.

1 while any of the flattening rules can be applied do
2 Apply (FBS)
3 Apply (FL)
4 Apply (FR)
5 Apply (FU)
6 Apply (FLFUN)
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Now let’s see how the algorithm works in practice with an example:

Example 2.9. Let Γ = {h(h(X1)+X2)
?
= h(Y1 +h(Y2))}, ∆ = /0, σ = /0 and κ = 3.

0. We add all the variables in Γ, with initial depth equal zero, obtaining ∆= {(X1,0),(X2,0)}.

1. Now, we apply Flattening.

• Applying (FBS), we obtain:

Γ = {V1
?
= h(h(X1)+X2),V1

?
= h(Y1 +h(Y2))}

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0)}

σ = /0

• Applying (FU) on each of the sub-terms highlighted before, we obtain:

Γ = {V1
?
= h(V2),V1

?
= h(V3),V2

?
= h(X1)+X2,V3

?
= Y1 +h(Y2)}

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0),(V2,1),(V3,1)}

σ = /0

• Applying (FL) on the sub-term highlighted before, we obtain

Γ = {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4 +X2,V3

?
= Y1 +h(Y2),V4

?
= h(X1)}

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0),(V2,1),(V3,1),(V4,0)}

σ = /0

• Finally, applying (FR) on the sub-term highlighted before, we obtain

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0),(V2,1),(V3,1),(V4,0),(V5,0)}

σ = /0

Now that Γ is in flattened form, we can move on to the next step:

2. (a) (TRIV) is not applicable;

(b) (OC) is not applicable;
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(c) For now, we have

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0),(V2,1),(V3,1),(V4,0),(V5,0)}.

Hence, MaxVal(∆) = 1 < 3 = κ . Therefore, (BC) is not applicable;

(d) We have

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,0),(X2,0),(Y1,0),(Y2,0),(V1,0),(V2,1),(V3,1),(V4,0),(V5,0)}

σ = /0

• Applying (Uh), we obtain:

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆= {(X1,1),(X2,0),(Y1,0),(Y2,1),(V1,0),(V2,1),(V3,1),(V4,0),(V5,0)}

σ = /0

• Applying (UL) twice, we obtain:

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆= {(X1,1),(X2,0),(Y1,1),(Y2,1),(V1,0),(V2,1),(V3,1),(V4,1),(V5,0)}

σ = /0

• Applying (UR) twice, we obtain:

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆= {(X1,1),(X2,1),(Y1,1),(Y2,1),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = /0

• Applying (Uh) twice, we obtain:

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆= {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = /0
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(c) Now, we have MaxVal(∆) = 2 < 3 = κ . Therefore, (BC) is not applicable;

(d) ∆ is already updated;

(e) All the equations are oriented. Therefore, (OR) is not applicable;

(f) (SPLIT) is not applicable;

(g) (CLASH) is not applicable;

(h) We have

Γ= {V1
?
= h(V2),V1

?
= h(V3),V2

?
=V4+X2,V3

?
=Y1+V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = /0

So, we can apply (DEC) on the highlighted equations in Γ, obtaining

Γ = {V1
?
= h(V2),V2

?
=V3,V2

?
=V4 +X2,V3

?
=Y1 +V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = /0

(VE1) is applicable (V2 7→V3). Hence, we have

Γ = {V1
?
= h(V3),V3

?
=V4 +X2,V3

?
= Y1 +V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = {V2 7→V3}

Notice that no rules invoked by steps (a) to (h) is applicable anymore.
Thus, we can move on to the next step.

(i) We have

Γ = {V1
?
= h(V3),V3

?
=V4 +X2,V3

?
= Y1 +V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = {V2 7→V3}

Applying (AC), we obtain 7 different possibilities for Γ, one of them is:

Γ1 = {V3
?
= Y1 +V5,V4

?
= Y1,X2

?
=V5,V1

?
= h(V3),V4

?
= h(X1),V5

?
= h(Y2)}
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It is important to remind that we chose this specific possibility just for
simplicity of the example. However, the algorithm itself continues to
solve all the other problems in the disjunction simultaneously.

In this case,

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

So, ∆1 is already updated and MaxVal(∆) = 2 < 3 = κ .
Notice that (VE1) is applicable (X2 7→V5). Hence, we obtain

Γ1 = {V3
?
= Y1 +V5,V4

?
= Y1,V1

?
= h(V3),V4

?
= h(X1),V5

?
= h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→V5}

We can apply (VE1) one more time (V4 7→ Y1), obtaining

Γ1 = {V3
?
= Y1 +V5,V1

?
= h(V3),Y1

?
= h(X1),V5

?
= h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→V5,V4 7→ Y1}

(j) Now, we can apply (VE2) exhaustively

• Applying V1 7→ h(V3), we obtain:

Γ1 = {V3
?
= Y1 +V5,Y1

?
= h(X1),V5

?
= h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→V5,V4 7→ Y1,V1 7→ h(V3)}

• Applying Y1 7→ h(X1), we obtain:

Γ1 = {V3
?
= h(X1)+V5,V5

?
= h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→V5,V4 7→ h(X1),V1 7→ h(V3),Y1 7→ h(X1)}
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• Applying V5 7→ h(Y2), we obtain:

Γ1 = {V3
?
= h(X1)+h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→ h(Y2),V4 7→ h(X1),V1 7→ h(V3),Y1 7→ h(X1),V5 7→ h(Y2)}

• Applying V3 7→ h(X1)+h(Y2), we obtain:

Γ1 = /0

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 ={V2 7→ h(X1)+h(Y2),X2 7→ h(Y2),V4 7→ h(X1),V1 7→ h(h(X1)+h(Y2)),

Y1 7→ h(X1),V5 7→ h(Y2)}





Chapter 3

Correctness of the Algorithm

In this chapter, we will prove termination (Corollary 3.1) and correctness of the
Algorithm UnifyACh

given in Chapter 2. Proving correctness consists in proving soundness
(Corollary 3.2) and completeness (Corollary 3.3) of UnifyACh

. These results guarantee that
the algorithm UnifyACh

always terminates, it is truth-preserving and does not leave any
solution behind, respectively.

3.1 Auxiliary Notions

Before presenting those proofs, we shall introduce some notations that will be used
alongside this chapter. For two triples Γ ∥ ∆ ∥ σ and Γ

′ ∥ ∆
′ ∥ σ

′,

– Γ ∥ ∆ ∥ σ ⇒IACh Γ
′ ∥ ∆

′ ∥ σ
′ means that Γ

′ ∥ ∆
′ ∥ σ

′ is obtained from Γ ∥ ∆ ∥ σ after
applying a rule from IACh once. We call it one step.

– Γ ∥ ∆ ∥ σ ⇒Flat Γ
′ ∥ ∆

′ ∥ σ
′ means that Γ

′ ∥ ∆
′ ∥ σ

′ is obtained after applying a
Flattening rule from IACh once

– Γ ∥ ∆ ∥ σ ⇒∗
IACh

Γ
′ ∥ ∆

′ ∥ σ
′ means that Γ

′ ∥ ∆
′ ∥ σ

′ is obtained from Γ ∥ ∆ ∥ σ by
zero or more steps.

– Γ ∥ ∆ ∥ σ ⇒+
IACh

Γ
′ ∥ ∆

′ ∥ σ
′ means that Γ

′ ∥ ∆
′ ∥ σ

′ is obtained from Γ ∥ ∆ ∥ σ by
one or more steps.

Notice that, since the AC unification rule divides our unification problem Γ ∥ ∆ ∥ σ in
Γ1 ∥ ∆1 ∥ σ1, ...,Γn ∥ ∆n ∥ σn, we have that, after applying some inference rules, the result
is a disjunction of set triples

∨
i

(Γi ∥ ∆i ∥ σi). Hence, we present the following notation
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– Γ ∥ ∆ ∥ σ ⇒IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi) means that
∨
i∈I

(Γi ∥ ∆i ∥ σi) is obtained from Γ ∥

∆ ∥ σ after applying a rule from IACh one time.

– Γ ∥ ∆ ∥ σ ⇒∗
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi) means that
∨
i∈I

(Γi ∥ ∆i ∥ σi) is obtained from Γ ∥

∆ ∥ σ after applying a rule from IACh zero or more times.

– Γ ∥ ∆ ∥ σ ⇒+
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi) means that
∨
i∈I

(Γi ∥ ∆i ∥ σi) is obtained from Γ ∥

∆ ∥ σ after applying a rule from IACh one or more times.

3.2 Termination

As we discussed before (Section 1.2), proving termination of IACh consists in finding a
measure function and prove that it decreases after each step ⇒IACh . Since our algorithm is
divided into two parts (Flattening and UnifyACh

), we will also split the termination proof
into two parts as well.

3.2.1 Termination of Flattening

First, consider a multiset M(Γ), whose the elements are the number of function
symbols on each equation in Γ. For example, take

Γ = {X1 +X2
?
= h(Y1 +Y2),X1 +h(Y1)

?
= Z2 +Z3, f (Z1 +h(Z2 +Z3))

?
=W1 +W2}

Notice that X1 +X2
?
= h(Y1 +Y2), X1 + h(Y1)

?
= Z2 + Z3 and f (Z1 + h(Z2 + Z3))

?
=

W1 +W2 have 3, 3 and 5 function symbols, respectively, then M(Γ) = {3,3,5}.
We define a measure on Γ ∥ ∆ ∥ σ as the multiset ordering >mul on M(Γ). Below we

write ⇒Flat to denote one step of application of one of the flattening rules.

Lemma 3.1. Let Γ ∥ ∆ ∥ σ and Γ
′ ∥ ∆

′ ∥ σ
′ be two set triples such that Γ ∥ ∆ ∥ σ ⇒Flat

Γ
′ ∥ ∆

′ ∥ σ
′. Then, M(Γ)>mul M(Γ′).

Proof. We will prove that, in each application of a flattening rule in Γ, >mul decreases,
that is, M(Γ)>mul M(Γ′). We proceed by analysing each rule:

(Flatten Both Sides) In this case, Γ = {t1
?
= t2}∪Γ, with t1, t2 /∈ V .

Applying (FBS), we obtain
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(FBS)
{t1

?
= t2}∪Γ ∥ ∆ ∥ σ

{V ?
= t1,V

?
= t2}∪Γ ∥ ∆∪{(V,0)} ∥ σ

Define Γ
′ = {V ?

= t1,V
?
= t2}∪Γ and let ni be the number of function symbols in ti,

with i = 1,2. Since t1, t2 /∈ V , we have that n1 ̸= 0 and n2 ̸= 0. Then, we have that

M(Γ) = {n1 +n2}∪M(Γ)

>mul {n1,n2}∪M(Γ)

=M(Γ′)

Notice that the result also holds if t1, t2 are constants since constants are
function symbols with arity zero. In this case, we would have

M(Γ) = {2}∪M(Γ)

>mul {1,1}∪M(Γ)

=M(Γ′)

(Flatten Left/Right +) We will prove only for the left case since the argument for the
right case is similar.
Here, Γ = {t ?

= t1 + t2}, with t1 /∈ V . Applying (FL), we obtain

(FL)
{t ?

= t1 + t2}∪Γ ∥ ∆ ∥ σ

{t ?
=V + t2,V

?
= t1}∪Γ ∥ ∆∪{(V,0)} ∥ σ

Define Γ
′ = {t ?

= V + t2,V
?
= t1}∪Γ and let n be the number of function symbols

in t and ni be the number of function symbols in ti, with i = 1,2. We have that
n1 ≥ 1, since t1 /∈ V . Notice that there is an + symbol on top of t1 and t2.Then
M(Γ) = {n+n1 +n2 +1}∪M(Γ)

M(Γ) = {n+n1 +n2 +1}∪M(Γ)

>mul {n+n2 +1,n1}∪M(Γ)

=M(Γ′)
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Flatten Under h: In this case, Γ = {t ?
= h(t1)}, with t1 ̸∈ V . Applying (FU), we obtain

(FU)
{t ?

= h(t1)}∪Γ ∥ ∆ ∥ σ

{t ?
= h(V ),V ?

= t1}∪Γ ∥ ∆∪{(V,1)} ∥ σ if t1 /∈ V

Define Γ
′ = {t ?

= h(V ),V ?
= t1}∪Γ and let n be the number of function symbols in t

and n1 be the number of function symbols in t1. Notice that there is an h symbol on
top of t1, then M(Γ) = {n+n1 +1}∪M(Γ) and

M(Γ) = {n+n1 +1}∪M(Γ)

>mul {n+1,n1}∪M(Γ)

=M(Γ′)

Flatten Under f : In this case, Γ = {t ?
= h(t1)}, with t1 ̸∈ V . Applying (FLFUN), we

obtain

(FLFUN)
{t ?

= f (t1, . . . , tm)}∪Γ ∥ ∆ ∥ σ

{t ?
= f (V1, . . . ,Vm),V1

?
= t1, . . . ,Vm

?
= tm}∪Γ ∥ ∆∪{(V1,0), . . . ,(Vn,0)} ∥ σ

if t1, . . . , tn /∈ V

Define Γ
′ = {t ?

= f (V1, . . . ,Vm),V1
?
= t1, . . . ,Vm

?
= tm}∪Γ and let n be the number

of function symbols in t and ni be the number of function symbols in ti, for all
i = 1, . . . ,m. Notice that there is an f symbol on top all ti’s, then M(Γ) = {n+n1 +

. . .+nm +1}∪M(Γ) and

M(Γ) = {n+n1 + . . .+nm +1}∪M(Γ)

>mul {n+1,n1, . . . ,nm}∪M(Γ)

=M(Γ′)

From this point forward, for convenience, we will assume that our set of equations
Γ is always in flattened form, unless we explicitly say otherwise. That assumption
is possible because UnifyACh

invokes Flattening on its first step.
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3.2.2 Termination of UnifyACh

Now, we prove that UnifyACh
terminates. Before giving the measure for termination,

we will define some necessary concepts.

Definition 3.1 (Isolated Variable). Let Γ be a unification problem and X ∈ Var(Γ). We
say that X is an isolated variable if X ?

= t ∈ Γ, with X /∈ Var(t).

In order to verify statements that will follow, we had to define what is a variable
that is “solved for the AC theory”. Intuitively, it would be a variable that does not
invoke an application of the (AC) rule. Notice that this rule is invoked when we have a
variable that occurs on the left side of +-equations more than once, that is, for example,
X ?
= X1 + . . .+Xn and X ?

= Y1 + . . .+Yn occurs on the same problem. Hence, we obtained
the following definition:

Definition 3.2 (AC-solved variable). Let Γ be a unification problem and X ∈ Var(Γ). We
say that X is AC-solved if X is isolated and, after applying Orient (OR) exhaustively in Γ,
X does not occur in +-equations with X on the left side more than once.

Example 3.1. Let Γ = {X = Y1 +Y2,X =V1 +V2}. Then X is not AC-solved, whereas for
Γ
′ = {X = Y1 +Y2,Y =V1 +V2}, both X and Y are AC-solved.

It is obvious that, after applying the (AC) rule, all the variables that are not AC-solved
in our problem become AC-solved. More than that, since this rule recalls an established
AC-Unification algorithm (which is terminating, sound and complete), it is guaranteed that,
after applying the rule, no AC-solved variable becomes non-solved.

It is also important to notice that, if X is AC-solved, there is no other rule in IACh,
except for (VE) (see example below), that makes X not AC-solved again. It is very simple
to verify this affirmation, it just requires to check rule by rule – except (VE) and (OR) since
we assume that all the equations are already oriented by definition.

Example 3.2. Let Γ = {X ?
= Y1 +Y2,Y

?
= h(X),Y ?

= h(Y3 +Y4)}. We have

{X ?
= Y1 +Y2,Y

?
= h(X),Y ?

= h(Y3 +Y4)}
=⇒(FU)

{X ?
= Y1 +Y2,Y

?
= h(X),Y ?

= h(V ),V ?
= Y3 +Y4}

=⇒(DEC)

{X ?
= Y1 +Y2,Y

?
= h(X),X ?

=V,V ?
= Y3 +Y4} (*)

=⇒(VE1)

{V ?
= Y1 +Y2,V

?
= Y3 +Y4,Y

?
= h(V )}
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Notice that in (∗), both X and V are AC-solved, according to our definition. But, after
applying (VE1), V becomes non-solved.

Proposition 3.1. Let Γ be an ACh-unification problem and X ∈ Var(Γ) an AC-solved
variable. Then, for all Γ

′ ∥ ∆
′ ∥ σ

′ such that Γ ∥ ∆ ∥ σ ⇒IACh−(VE1/OR) Γ
′ ∥ ∆

′ ∥ σ
′, if

X ∈ Var(Γ′) then X is AC-solved.

Proof. The proof follows by analysing the rule applied in Γ ∥ ∆ ∥ σ , with ∆ and σ

arbitrary. For (AC), it is obvious, as we discussed previously. As for the checking rules (cf.
Section 2.1.5), if we have an AC-solved variable, after applying one of these rules, despite
indicating immediate failure, we did not make the variable non-solved, so we will skip
their demonstrations as well.

Let X ∈ V be an AC-solved variable occurring in Γ.

(Trivial) In this case, we have Γ = {X ?
= t}∪{s ?

= s}∪Γ. Then, applying (TRIV), we
obtain

{X ?
= t}∪{s ?

= s}∪Γ ∥ ∆ ∥ σ ⇒IACh {X ?
= t}∪Γ ∥ ∆ ∥ σ .

Notice that X remains isolated and still does not occur in +-equations more than
once. Therefore, X remains AC-solved.

(Splitting) In this case, we have Γ = {X ?
= t}∪{Y ?

= h(Z),Y ?
= X1 + . . .+Xn}∪Γ. After

applying (SPLIT), we obtain

{X ?
= t}∪{Y ?

= h(Z),Y ?
= X1 + . . .+Xn}∪Γ ∥ ∆ ∥ σ

⇓IACh

{X ?
= t}∪{Y ?

= h(Z),Z ?
=V1 + . . .+Vn,X1

?
= h(V1), . . . ,Xn

?
= h(Vn)}∪Γ ∥ ∆

′ ∥ σ ,

where ∆
′ = {(V1,1), . . . ,(Vn,1)}∪∆. Notice that X still does not occur on the left

side of +-equations more than once. Hence, it is still AC-solved.

(Decomposition) In this case, we have

Γ = {X ?
= t}∪{Y ?

= f (Xn, . . . ,Xn),Y
?
= f (Yn, . . . ,Yn)}∪Γ.

After applying (DEC), we obtain
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{X ?
= t}∪{Y ?

= f (Xn, . . . ,Xn),Y
?
= f (Yn, . . . ,Yn)}∪Γ ∥ ∆ ∥ σ

⇓IACh

{X ?
= t}∪{Y ?

= f (Xn, . . . ,Xn),X1
?
= Y1, . . . ,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ ,

Notice that X still does not occur on the left side of +-equations more than once.
Therefore, it remains AC-solved.

Now, we shall define the following lexicographic measure for Γ ∥ ∆ ∥ σ to prove
termination of UnifyACh

.

Definition 3.3 (Measure). Let Γ ∥ ∆ ∥ σ be a triple. Consider the following measure for
Γ ∥ ∆ ∥ σ :

MIACh(Γ,∆,σ ,κ) := (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd(∆)), where

1. Let Sym(Γ) be a multiset of non-variable symbols occurring in Γ. Then |Sym(Γ)| is
the standard ordering on the size of Γ based on the natural numbers.

2. Let κ be a given bound. Define the multiset

hd(∆) := {(κ +1)−hd(X ,Γ) | (X ,hd(X ,Γ)) ∈ ∆}.

Then we use the corresponding multiset order >mul for hd(∆).

3. a is be the number of applications of the (AC) rule.

4. p is the number of isolated variables in Γ.

5. m is be the number of equations on the form t ?
= X ∈ Γ, with t /∈ V .

6. Let X ∈ Var(Γ). Then nX is the number of occurrences of +-equations with the
fixed X on the left side, that is, equations of the form X ?

= X1 + . . .+Xn.

The measure above is different than the the measure in [EL20] in four ways:

i) We introduced the parameter κ in the measure, since it depends on κ as well;

ii) We swapped the positions of m and p in order to guarantee that the measure always
decreases (see );
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iii) We clarified that the entry nX depends on a fixed variable X occurring in the problem;

iv) We changed the notation of the last parameter to hd(∆). In the original work it was
hd(Γ), however, Γ is not altered when we change the depth of the variables.

Considering this measure, we can define a lexicographic order >lex on MIACh(Γ,∆,σ ,κ)

induced by the product of orderings >N over N and >mul .
We have to guarantee that the first entry is always greater than zero, i.e. that the number

of times we apply (AC) does not exceed the given bound.

Example 3.3. Let’s recall Example 2.9. Before applying (AC), our triple consisted of the
following sets

Γ = {V1
?
= h(V3),V3

?
=V4 +X2,V3

?
= Y1 +V5,V4

?
= h(X1),V5

?
= h(Y2)}

∆ = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ = {V2 7→V3}

Notice that V3 is the variable with the lowest depth that is not AC-solved. After applying
(AC), we obtained

Γ1 = {V3
?
= Y1 +V5,V4

?
= Y1,X2

?
=V5,V1

?
= h(V3),V4

?
= h(X1),V5

?
= h(Y2)}

∆1 = {(X1,2),(X2,1),(Y1,1),(Y2,2),(V1,0),(V2,1),(V3,1),(V4,1),(V5,1)}

σ1 = {V2 7→V3,X2 7→V5}

as one of the solutions, notice that now V3 becomes AC-solved. Then, we move to the
variables with greater h-depth.

Hence, we have the following lemma.

Lemma 3.2. Let Γ ∥ ∆ ∥ σ be a set triple and κ ∈ N be a bound given as an input to
UnifyACh

. The maximum number of times that the AC Unification is applied is κ .

Proof. Notice that we only apply (AC) if there is at least one variable that is not AC-solved
in the problem. On each application of (AC), all the variables with the lowest h-depth
becomes AC-solved. By Proposition 3.1, there is no other rule in IACh that makes these
variables not AC-solved again. Therefore, we do not surpass the given bound.

Now, we prove that MIACh(Γ,∆,σ ,κ) is always decreasing. The proof follows by
analysing the rule applied in IACh
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Theorem 3.1. Let Γ ∥ ∆ ∥ σ and Γ
′ ∥ ∆

′ ∥ σ
′ be two set triples that are already in flattened

form and Γ ∥ ∆ ∥ σ ⇒IACh Γ
′ ∥ ∆

′ ∥ σ
′. Then MIACh(Γ,∆,σ ,κ)>MIACh(Γ

′,∆′,σ ′,κ).

Proof. We have to prove that the measure decreases after each application of the inference
rules.

(Trivial) In this case, Γ = {t ?
= t}∪Γ. The reduction is as

{t ?
= t}∪Γ ∥ ∆ ∥ σ ⇒IACh Γ ∥ ∆ ∥ σ .

Notice that |{t ?
= t}∪Γ|> |Γ|= |{t ?

= t}∪Γ|−1. Hence, we have that

MIACh({t ?
= t}∪Γ,∆,σ ,κ) = (κ −a,nX , |Sym({t ?

= t}∪Γ)|,m, p, |{t ?
= t}∪Γ|,hd(∆))

>lex (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd(∆))

=MIACh(Γ,∆,σ ,κ)

(Orient) In this case, Γ = {t ?
= X}∪Γ. The reduction is as

{t ?
= X}∪Γ ∥ ∆ ∥ σ ⇒IACh {X ?

= t}∪Γ ∥ ∆ ∥ σ .

We have that

MIACh({t ?
= X}∪Γ,∆,σ ,κ) = (κ −a,nX , |Sym({t ?

= X}∪Γ)|,m, p, |Γ|,hd(∆))

>lex (κ −a,nX , |Sym({X ?
= t}∪Γ)|,m−1, p, |Γ|,hd(∆))

=MIACh({X ?
= t}∪Γ,∆,σ ,κ)

(Variable Elimination) In both cases of (VE1) and (VE2), Γ = {X ?
= t}∪Γ. The reduc-

tion is as

{X ?
= t}∪Γ ∥ ∆ ∥ σ ⇒IACh Γ{X 7→ t} ∥ ∆ ∥ σ{X 7→ t}.

Hence, we have

MIACh({X ?
= t}∪Γ,∆,σ ,κ) = (κ −a,nX , |Sym({X ?

= t}∪Γ)|,m, p, |{X ?
= t}∪Γ|,hd(∆))

>lex (κ −a,nX , |Sym(Γ{X 7→ t})|,m, p−1, |Γ{X 7→ t}|,hd(∆))

=MIACh(Γ{X 7→ t},∆,σ{X 7→ t},κ)
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(Decomposition) In this case, Γ = {X ?
= f (X1, . . . ,Xn),X

?
= f (Y1, . . . ,Yn)}∪Γ. The re-

duction is as

{X ?
= f (X1, . . . ,Xn),X

?
= f (Y1, . . . ,Yn)}∪Γ ∥ ∆ ∥ σ

⇓IACh

{X ?
= f (X1, . . . ,Xn),X1

?
= Y1, . . . ,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ .

Notice that the number of function symbols is decreased by 1, that is

|Sym(Γ′)|= |Sym({X ?
= f (t1, . . . , tn),s1

?
= t1, . . . ,sn

?
= tn}∪Γ)|

= |{X ?
= f (s1, . . . ,sn),X

?
= f (t1, . . . , tn)}∪Γ|−1

= |Sym(Γ)|−1.

Hence, we have that

MIACh(Γ,∆,σ ,κ) = (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd(∆))

>lex (κ −a,nX , |Sym(Γ)|−1,m, p, |Γ|,hd(∆))

=MIACh(Γ
′,∆,σ ,κ)

(Update h-depth Set) In this case, Γ remains unaltered, but we have ∆ = {(X ,d)}∪∆

and the reduction is as

Γ ∥ {(X ,d)}∪∆ ∥ σ ⇒IACh Γ ∥ {(X ,d′)}∪∆ ∥ σ ,

where d′ > d. Which implies that (κ +1)−d > (κ +1)−d′. Then, it follows that

hd({(X ,d)}∪∆)>mul hd({(X ,d′)}∪∆).

Hence, we have

MIACh(Γ,{(X ,d)}∪∆,σ ,κ) = (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd({(X ,d)}∪∆))

>lex (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd({(X ,d′)}∪∆))

=MIACh(Γ,{(X ,d′)}∪∆,σ ,κ)

(AC Unification) In this case, Γ = Ψ∪Γ. The reduction is as

Ψ∪Γ ∥ ∆ ∥ σ ⇒IACh

∨
i

(GetEqs(θi)∪Γ ∥ ∆i ∥ σ) = Γ
′ ∥ ∆

′ ∥ σ
′
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And, we have that

MIACh(Ψ∪Γ,∆,σ ,κ) =(κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd(∆))

>lex (κ − (a+1),nX , |Sym(Γ′)|,m, p, |Γ′|,hd(∆
′))

=MIACh(Γ
′,∆′,σ ,κ)

(Splitting) In this case, Γ = {X ?
= h(Y ),X ?

= X1 + ...+Xn}∪Γ. The reduction is as

{X ?
= h(Y ),X ?

= X1 + . . .+Xn}∪Γ ∥ ∆ ∥ σ

⇓IACh

{X ?
= h(Y ),Y ?

=V1 + . . .+Nn,X1
?
= h(V1), . . . ,Xn

?
= h(Vn)}∪Γ︸ ︷︷ ︸

Γ′

∥ ∆
′ ∥ σ

Notice that, after reduction nX decreases by 1. Hence, we have that

MIACh(Γ,∆,σ ,κ) = (κ −a,nX , |Sym(Γ)|,m, p, |Γ|,hd(∆))

>lex (κ −a,nX −1, |Sym(Γ′)|,m, p, |Γ′|,hd(∆
′))

=MIACh(Γ
′,∆′,σ ,κ)

Corollary 3.1 (Termination). For any set triple Γ ∥ ∆ ∥ σ , there is a disjunction of triples∨
i∈I

(Γi ∥ ∆i ∥ σi) such that Γ ∥ ∆ ∥ σ ⇒∗
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi) and none of the rules IACh can

be applied.

Proof. The measure MIACh(Γ,∆,σ ,κ) strictly decreases at each step. So, it follows imme-
diately by the definition of termination.

3.3 Soundness

This section is to prove that our inference system is truth preserving. Essentially, we
want to prove that after applying exhaustively the rules from IACh, every solution is indeed
a solution to our initial problem.

For the following results, we recall the definition of satisfiabilty of a triple stated in
Section 2.1, that is, if θ ⊨ Γ ∥ ∆ ∥ σ iff θ ⊨ Γ, θ ⊨ σ and MaxVal(∆)≤ κ , where
κ is the given bound on the h-depth set of variables.
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Lemma 3.3. Let Γ ∥ ∆ ∥ σ and Γ
′ ∥ ∆

′ ∥ σ
′ be two set triples such that Γ ∥ ∆ ∥ σ ⇒IACh

Γ
′ ∥ ∆

′ ∥ σ
′ via all the rules in IACh except for rule (AC). Let θ be a substitution such that

θ ⊨ Γ
′ ∥ ∆

′ ∥ σ
′. Then, θ ⊨ Γ ∥ ∆ ∥ σ .

Proof. The proof is by analysing each application of a rule of IACh on Γ ∥ ∆ ∥ σ .

(Trivial) In this case, Γ = {t ?
= t}∪Γ. Applying the rule, we obtain

(TRIV)
{t ?

= t}∪Γ ∥ ∆ ∥ σ

Γ ∥ ∆ ∥ σ

Let θ be a substitution such that θ ⊨ Γ ∥ ∆ ∥ σ . Since tθ =ACh tθ , we have that
θ ⊨ {t ?

= t}∪Γ ∥ ∆ ∥ σ holds trivially.

(Splitting) In this case, Γ = {X ?
= h(Y ),X ?

= X1+ ...Xn}∪Γ. Applying the rule, we obtain:

(SPLIT)
{X ?

= h(Y ),X ?
= X1 + ...+Xn}∪Γ ∥ ∆ ∥ σ

{X ?
= h(Y ),Y ?

=V1 + ...+Vn,X1
?
= h(V1), ...,Xn

?
= h(Vn)}∪Γ ∥ ∆

′ ∥ σ

Consider a substitution θ such that

θ ⊨ {X ?
= h(Y ),Y ?

=V1 + ...+Vn,X1
?
= h(V1), ...,Xn

?
= h(Vn)}∪Γ ∥ ∆

′ ∥ σ .

Then,

θ ⊨ {X ?
= h(Y ),Y ?

=V1 + ...+Vn,X1
?
= h(V1), ...,Xn

?
= h(Vn)}. (I)

By definition of satisfiabilty (Definition 1.15), this means that

(i) Xθ =ACh h(Y )θ

(ii) Y θ =ACh (V1 + ...+Vn)θ

(iii) X1θ =ACh h(V1θ), ...,Xnθ = h(Vnθ)

We want to prove that θ ⊨ {X ?
= h(Y ),X ?

= X1 + ...+Xn}∪Γ ∥ ∆
′ ∥ σ . For that, we

need to prove that θ ⊨ {X ?
= h(Y ),X ?

=X1+...+Xn}∪Γ, θ ⊨σ and MaxVal(∆)≤ κ .
By hypothesis (I), we have that θ ⊨ σ and, since ∆ ⊆ ∆

′, then

MaxVal(∆)≤MaxVal(∆′)≤ κ.

It remains to show that θ ⊨ {X ?
= h(Y ),X ?

= X1+ ...+Xn}∪Γ. That is, that θ ⊨ X ?
=

h(Y ) and X ?
= X1 + ...+Xn. The first follows by (i). Now we will verify the latter.
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Notice that
(X1 + ...+Xn)θ =ACh X1θ + ...+Xnθ

=ACh h(V1θ)+ ...+h(Vnθ)

=ACh h(V1θ + ...+Vnθ)

=ACh h((V1 + ...+Vn)θ)

(II)

From (i) we have Xθ = h(Y θ), in addition to (II) we obtain

Xθ =ACh h((V1 + ...Vn)θ) =ACh (X1 + ...+Xn)θ

(Variable Elimination) There are two rules to consider:

• VE1: In this case, Γ = {X ?
=Y}∪Γ with X ̸=Y . Applying the rule, we obtain:

(VE1)
{X ?

= Y}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ Y} ∥ ∆ ∥ σ{X 7→ Y}∪{X 7→ Y}

Let θ be a substitution such that θ ⊨ Γ{X 7→ Y} ∥ ∆ ∥ θ ⊨ σ{X 7→ Y}∪{X 7→
Y}. Now we have to prove that θ ⊨ {X ?

= Y}∪Γ ∥ ∆ ∥ σ

Notice that, by definition, θ ⊨ {X 7→ Y}, then Xθ = Y θ (∗), which implies
θ ⊨ {X ?

= Y}.

It remains to prove that θ ⊨ Γ.

Let si
?
= s j[X ]p ∈ Γ. Since θ ⊨ Γ{X 7→ Y}, we have θ ⊨ si

?
= s j[Y ]p. Then,

siθ =ACh s j[Y ]pθ =ACh (s jθ)[Y θ ]p.

Thus, by (∗), siθ =ACh (s jθ)[Xθ ]p =ACh s j[X ]pθ . Hence θ ⊨ Γ.

Now, we are going to prove that θ ⊨ σ . Let W 7→ s[X ]p be an assignment in σ .
Since θ ⊨ σ{X 7→ Y}, we have

Wθ =ACh (sθ)[Y θ ]p.

Then, by (∗),
Wθ =ACh (sθ)[Xθ ]p =ACh s[X ]pθ .

Hence, θ ⊨ {W 7→ s[X ]p}. Therefore, θ ⊨ σ

• VE2: Let Γ = {X ?
= t}∪Γ, with X /∈ Var(t). Applying the rule, we obtain
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(VE2)
{X ?

= t}∪Γ ∥ ∆ ∥ σ

Γ{X 7→ t} ∥ ∆ ∥ σ{X 7→ t}∪{X 7→ t}

Let θ be a substitution such that θ ⊨ Γ{X 7→ t} ∥ ∆ ∥ θ ⊨ σ{X 7→ t}∪{X 7→ t}.
Now we have to prove that θ ⊨ {X ?

= t}∪Γ ∥ ∆ ∥ σ

Notice that, by definition, θ ⊨ {X 7→ t}, then Xθ = tθ (∗∗), which implies
θ ⊨ {X ?

= t}.

It remains to prove that θ ⊨ Γ.

Let si
?
= s j[X ]p ∈ Γ. Since θ ⊨ Γ{X 7→ t}, we have θ ⊨ si

?
= s j[t]p. Then,

siθ =ACh s j[t]pθ =ACh (s jθ)[tθ ]p.

Thus, by (∗∗), siθ =ACh (s jθ)[Xθ ]p =ACh s j[X ]pθ . Hence θ ⊨ Γ.

Now, we are going to prove that θ ⊨ σ . Let W 7→ s[X ]p be an assignment in σ .
Since θ ⊨ σ{X 7→ t}, we have

Wθ =ACh (sθ)[tθ ]p.

Then, by (∗∗),
Wθ =ACh (sθ)[Xθ ]p =ACh s[X ]pθ .

Hence, θ ⊨ {W 7→ s[X ]p}. Therefore, θ ⊨ σ .

(Decomposition) Let Γ = {X ?
= f (X1, ...,Xn),X

?
= f (Y1, ...,Yn)}∪Γ, with f ̸=+. Apply-

ing the rule, we obtain

(DEC)
{X ?

= f (X1, ...,Xn),X
?
= f (Y1, ...,Yn)}∪Γ ∥ ∆ ∥ σ

{X ?
= f (X1, ...,Xn),X1

?
= Y1, ...,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ

Let θ be a substitution such that

θ ⊨ {X ?
= f (X1, . . . ,Xn),X1

?
= Y1, . . . ,Xn

?
= Yn}∪Γ ∥ ∆ ∥ σ .

We want to prove that

θ ⊨ {X ?
= f (X1, . . . ,Xn),X

?
= f (Y1, . . . ,Yn)}∪Γ ∥ ∆ ∥ σ
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Since θ ⊨ X ?
= f (X1, ...,Xn), it suffices to show that θ ⊨ X ?

= f (Y1, ...,Yn). From
Xiθ = Yiθ , for all i = 1, ...,n, we have

Xθ =ACh f (X1, ...Xn)θ

=ACh f (X1θ , ...Xnθ)

=ACh f (Y1θ , ...,Ynθ)

=ACh f (Y1, ...,Yn)θ

(Update h-depth Set) In this case Γ ∥ ∆ ∥ σ = Γ ∥ {(X ,d)}∪∆ ∥ σ . When we apply one
of the update rules, we have

(UPDATE h-DEPTH SET)
Γ ∥ {(X ,d)}∪∆ ∥ σ

Γ ∥ {(X ,d′)}∪∆ ∥ σ

where d′ > d. Let θ be a substitution such that θ ⊨ Γ ∥ {(X ,d′)}∪∆ ∥ σ . Then
MaxVal({(X ,d′)}∪∆)≤ κ , which means that d′ ≤ κ . Since d < d′, we also have
d < κ . Thus, MaxVal({(X ,d)}∪∆)≤ κ . Hence θ ⊨ Γ ∥ ∆ ∥ σ .

Lemma 3.4. Let Γ ∥ ∆ ∥ σ and
∨
i∈I

(Γi ∥ ∆i ∥ σi) be two ACh Unification problems such

that Γ ∥ ∆ ∥ σ ⇒IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi) via an application (AC). Let θ be a substitution such

that θ ⊨ Γi ∥ ∆i ∥ σi for some i ∈ I. Then θ ⊨ Γ ∥ ∆ ∥ σ .

Proof. The rule for AC unification is

(AC)
Ψ∪Γ ∥ ∆ ∥ σ

GetEqs(θ1)∪Γ ∥ ∆ ∥ σ ∨ ...∨GetEqs(θn)∪Γ ∥ ∆ ∥ σ

which each of the θi’s is the unifier given by an AC unification algorithm. For this
work, we are using Stickel’s algorithm [Sti75], which the soundness is already proven (cf.
[AFSS22]). So, given that θ ⊨ GetEqs(θ1)∪Γ ∥ ∆ ∥ σ ∨ ...∨GetEqs(θn)∪Γ ∥ ∆ ∥ σ , we
have that θ ⊨ GetEqs(θi)∪Γ ∥ ∆ ∥ σ for all i = 1, ...,n, which implies that θ ⊨ Ψ.

Combining the two previous Lemmas, we have immediately:

Lemma 3.5. Let Γ ∥ ∆ ∥ σ and Γ
′ ∥ ∆

′ ∥ σ
′ =

∨
i∈I

(Γi ∥ ∆i ∥ σi) be two ACh Unification

problems such that Γ ∥ ∆ ∥ σ ⇒IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi). Let θ be a substitution such that

θ ⊨ Γi ∥ ∆i ∥ σi, for some i ∈ I. Then θ ⊨ Γ ∥ ∆ ∥ σ .
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Theorem 3.2. Let Γ ∥ ∆ ∥ σ and Γ
′ ∥ ∆

′ ∥ σ
′ =

∨
i∈I

(Γi ∥ ∆i ∥ σi) be two ACh Unification

problems such that Γ ∥ ∆ ∥ σ ⇒∗
IACh

Γ
′ ∥ ∆

′ ∥ σ
′. If θ is a substitution such that θ ⊨ Γi ∥

∆i ∥ σi for some i ∈ I, then θ ⊨ Γ ∥ ∆ ∥ σ .

Proof. The proof is by induction on the number n of steps in Γ ∥ ∆ ∥ σ
n

=⇒IACh Γ
′ ∥ ∆

′ ∥ σ
′.

(Base Case) (n = 1) The base case follows by Lemma 3.5.

(Inductive Step) Suppose that for Γ ∥ ∆ ∥ σ ⇒n
IACh

Γ
′ ∥ ∆

′ ∥ σ
′, follows for n, i.e. if θ is

a substitution such that θ ⊨ Γi ∥ ∆i ∥ σi for i ∈ I, then θ ⊨ Γ ∥ ∆ ∥ σ .

Now, will show that the result hold for derivations with n+1 steps.

Let Γ
′′ ∥∆

′′ ∥σ
′′ be a triple such that Γ ∥∆ ∥σ ⇒n

IACh
Γ
′ ∥∆

′ ∥σ
′⇒IACh Γ

′′ ∥∆
′′ ∥σ

′′

and θ be a substitution such that θ ⊨ Γ
′′ ∥ ∆

′′ ∥ σ
′′. Again, by Lemma 3.5, we have

that θ ⊨ Γ
′ ∥ ∆

′ ∥ σ
′. Then, by the induction hypothesis, we have that θ ⊨ Γ ∥ ∆ ∥ σ .

Corollary 3.2 (Soundness). Let Γ be a set of equations. Suppose that we get
∨
i∈I

(Γi ∥

∆i ∥ σi) after exhaustively applying the rules from IACh to Γ ∥ ∆ ∥ σ , that is, Γ ∥ ∆ ∥
σ ⇒∗

IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi), where for each i, there are no applicable rules to Γi ∥ ∆i ∥ σi. Let

S = {σi | Γi = /0}. Then any element of S is an ACh Unifier of Γ.

Proof. Obviously, for all σi ∈ S, we have that σi ⊨ Γi ∥ ∆i ∥ σi. Hence, by Theorem 3.2,
σi ⊨ Γ ∥ ∆ ∥ σ . Therefore, σi is an ACh unifier of Γ.

3.4 Completeness

In this section we shall prove that our system never leaves any solution behind. That
is, after applying all the rules from IACh exhaustively, for every possible solution to our
initial problem, there exists an solution given by our inference system that is more general
modulo ACh.

Lemma 3.6. Let Γ ∥ ∆ ∥ σ be a set triple which is not in solved form (check Definition 2.1),
and θ be a substitution such that θ ⊨ Γ ∥ ∆ ∥ σ . Then, there exists an inference

Γ ∥ ∆ ∥ σ ⇒IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi),

an i and θ0 such that Dom(θ0)⊂ Var(Γi)\Var(Γ) and θθ0 ⊨ Γi ∥ ∆i ∥ σi.
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Proof. We want to consider all the possible forms of Γ and show that there is an inference
rule in IACh that can be applied such that solution θ can be extended.

1. {t ?
= t}∪Γ ∥ ∆ ∥ σ .

In this case, we apply the rule (TRIV), which gives us the inference

{t ?
= t}∪Γ ∥ ∆ ∥ σ ⇒IACh Γ ∥ ∆ ∥ σ .

Notice that Var(Γ) \ Var({t ?
= t} ∪ Γ) = /0. Then, take θ0 = id and we obtain

θ id ⊨ Γ ∥ ∆ ∥ σ trivially.

2. {t ?
= X}∪Γ ∥ ∆ ∥ σ .

In this case, we apply the rule (OR), which gives us the inference

{t ?
= X}∪Γ ∥ ∆ ∥ σ ⇒IACh {X ?

= t}∪Γ ∥ ∆ ∥ σ

Notice that Var({X ?
= t}∪Γ)\Var({t ?

= X}∪Γ) = /0. Then, take θ0 = id and the
result follows.

3. {X ?
= Y}∪Γ ∥ ∆ ∥ σ .

In this case, we apply the rule (VE1), which gives us

{X ?
= Y}∪Γ ∥ ∆ ∥ σ ⇒IACh Γ{X 7→ Y} ∥ ∆ ∥ σ{X 7→ Y}∪{X 7→ Y}.

Again, we have that Var(Γ{X 7→ Y})\Var({X ?
= Y}∪Γ) = /0. Taking θ0 = id, the

result follows.

4. {X ?
= t}∪Γ ∥ ∆ ∥ σ .

In this case, we apply the rule (VE2) which gives us the inference

{X ?
= t}∪Γ ∥ ∆ ∥ σ ⇒IACh Γ{X 7→ t} ∥ ∆ ∥ σ{X 7→ t}∪{X 7→ t}.

Notice that, Var(Γ{X 7→ t}) \ Var({X ?
= t}∪Γ) = /0. Taking θ0 = id, the result

follows.
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5. {X ?
= f (X1, ...,Xn),X

?
= f (Y1, ...,Yn)}∪Γ ∥ ∆ ∥ σ , where f ̸=+.

In this case, we apply the rule (DEC) to get

{X ?
= f (X1, ...,Xn),X

?
= f (Y1, ...,Yn)}∪Γ︸ ︷︷ ︸

Γ

∥ ∆ ∥ σ

⇓IACh

{X ?
= f (X1, ...,Xn),X1

?
= Y1, ...,Xn

?
= Yn}∪Γ︸ ︷︷ ︸

Γ′

∥ ∆ ∥ σ

Notice that Var(Γ) = Var(Γ′). Hence, we can take θ0 = id and the result follows.

6. {X ?
= h(Y ),X ?

= X1 + ...+Xn}∪Γ ∥ ∆ ∥ σ .
For simplicity, suppose n = 2 and Γ = {X ?

= h(Y ),X ?
= X1 +X2}∪Γ, the general

case can be verified similarly.

In this case, we apply the rule (SPLIT)

(SPLIT)
{X ?

= h(Y ),X ?
= X1 +X2}∪Γ ∥ ∆ ∥ σ

{X ?
= h(Y ),Y ?

=V1 +V2,X1
?
= h(V1),X2

?
= h(V2)}∪Γ ∥ ∆

′ ∥ σ

Let θ be a substitution such that θ ⊨ {X ?
= h(Y ),X ?

= X1 +X2}∪Γ ∥ ∆ ∥ σ . Then,
we have that

(i) Xθ =ACh h(Y θ)

(ii) Xθ =ACh X1θ +X2θ , which implies

(iii) h(Y θ) =ACh X1θ +X2θ .

Since we are in ACh theory, we must have

X1θ =ACh h(t1) and X2θ =ACh h(t2) (3.1)

for some terms t1 and t2. Therefore,

h(Y θ)=AChh(t1)+h(t2)=AChh(t1 + t2) which implies Y θ =ACh t1 + t2 (3.2)
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Applying (SPLIT), we obtain

{X ?
= h(Y ),X ?

= X1 +X2}∪Γ ∥ ∆ ∥ σ

⇓IACh

{X ?
= h(Y ),Y ?

=V1 +V2,X1
?
= h(V1),X2

?
= h(V2)}∪Γ ∥ ∆

′ ∥ σ

Where V1,V2 are fresh variables. Define θ0 = {V1 7→ t1,V2 7→ t2}. Now, notice that

(i) Xθθ0 =ACh (X1θ +X2θ)θ0

=ACh (h(t1)+h(t2))θ0 (by 3.1)

=ACh h(t1)+h(t2) (Dom(θ0) = {V1,V2} which are new)

(ii) h(Y θ)θ0 =ACh (X1θ +X2θ)θ0

=ACh (h(t1)+h(t2))θ0 (by 3.1)

=ACh h(t1)+h(t2)

(iii) Y θθ0 =ACh (t1 + t2)θ0 (by 3.2)

=ACh t1 + t2

=ACh V1θ0 +V2θ0 (by definition of θ0)

=ACh (V1 +V2)θθ0 since V1,V2 /∈ Dom(θ)

(iv) Notice that X1θθ0 =ACh h(t1)θ0 =ACh h(t1). But, by definition of θ0, we have

X1θθ0 =ACh h(V1θ0) =ACh h(V1)θθ0.

Similarly, X2θθ0 =ACh h(V2)θθ0.

Combining (i) and (ii), we have Xθθ0 =ACh h(Y )θθ0. Hence,

θθ0 ⊨ {X ?
= h(Y ),Y ?

=V1 +V2,X1
?
= h(V1),X2

?
= h(V2)}∪Γ ∥ ∆ ∥ σ

7. {X ?
= X1 + ...+Xn,X

?
= Y1 + ...+Ym}∪Γ ∥ ∆ ∥ σ .

In this case, we apply the (AC) rule to obtain the inference

{X ?
= X1 + ...+Xn,X

?
= Y1 + ...+Ym}∪Γ ∥ ∆ ∥ σ

⇓IACh

n∨
i=1

(GetEqs(θi)∪Γ︸ ︷︷ ︸
Γi

∥ ∆i ∥ σ)
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As for the existence of the substitution θ0 such that Dom(θ0)⊂ Var(Γi)\Var(Γ)
and θθ0 ⊨ Γi ∥ ∆i ∥ σ , the proof can be found in [AFSS22].

Remark. For the next theorem, we removed the affirmation in [EL20] that Dom(θ0) =

Var(Γi)\Var(Γ). Such affirmation is true for one step, but, for more steps, the domain of
θ0 depends on all the previous steps taken before.

Theorem 3.3. Let Γ ∥ ∆ ∥ σ be a triple which is not in solved form, and θ be a substitution
such that θ ⊨ Γ ∥ ∆ ∥ σ . Then, there exists a sequence of inferences

Γ ∥ ∆ ∥ σ ⇒+
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi),

and an i and θ0 such that θθ0 ⊨ Γi ∥ ∆i ∥ σi.

Proof. The proof is by construction. Let Γ ∥ ∆ ∥ σ be a triple which is not in solved form
and θ be a substitution such that θ ⊨ Γ ∥ ∆ ∥ σ . By Lemma 3.6, there exists an inference

Γ ∥ ∆ ∥ σ ⇒IACh

∨
j

(Γ j ∥ ∆ j ∥ σ j)

and j and θ1 such that θθ1 ⊨ Γ j ∥ ∆ j ∥ σ j) Assuming that Γ j ∥ ∆ j ∥ σ j is not in solved
form, we have, again by Lemma 3.6, an inference

Γ j ∥ ∆ j ∥ σ j ⇒IACh

∨
k

(Γk ∥ ∆k ∥ σk)

an k and θ2 such that θθ1θ2 ⊨ Γk ∥ ∆k ∥ σk By termination (Corollary 3.1), we repeat the
same procedure a finite number of times, say m, to obtain

θθ1θ2 . . .θm ⊨ Γi ∥ ∆i ∥ σi

for some index i. Define θ0 := θ1 . . .θm. Notice that we have the following sequence

Γ ∥ ∆ ∥ σ ⇒IACh Γ j ∥ ∆ j ∥ σ j ⇒+
IACh

Γi ∥ ∆i ∥ σi

Collecting all the branches, we have.

Γ ∥ ∆ ∥ σ ⇒IACh

∨
i

(Γi ∥ ∆i ∥ σi).
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As a consequence, differently from [EL20], we obtain that set of computed solutions S
which contains substitutions that are more general than the extension θθ0 of any solution
θ of a problem Γ ∥ ∆ ∥ σ . Here, θ0 = θ1 . . .θm, where each θi is computed in the proof of
Theorem 3.3.

Corollary 3.3 (Completeness). Let Γ ∥ ∆ ∥ σ be a triple. Suppose that

Γ ∥ ∆ ∥ σ ⇒∗
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi),

where, for each i, there are no rules left to be applied. Let S = {σi | Γi = /0}. Then, for
each ACh Unifier θ of Γ, there exists a σ j ∈ S, and θ0 such that σ j ≲

Var(Γ)
ACh θ .

Proof. Let θ be an ACh Unifier of Γ, then, by Theorem 3.3 we have that there exist
inferences such that

Γ ∥ ∆ ∥ σ ⇒∗
IACh

∨
i∈I

(Γi ∥ ∆i ∥ σi),

and there exists j ∈ I, and θ0 such that θθ0 ⊨ Γ j ∥ ∆ j ∥ σ j and Γ j = /0.
We want to prove that σ j ≲

Var(Γ)
ACh θ , that is, there exists ρ such that Xθ = Xθρ , for all

X ∈ Var(Γ) (Definition 1.16). For any X ∈Dom(σ j)∩Var(Γ), consider that X 7→ tX ∈ σ j,
that is, Xσ j = tX(∗). Since θθ0 ⊨ σ j, by Definition 1.15, we have

Xθθ0 =ACh tX θθ0.

By (∗), we obtain
Xθθ0 =ACh Xσ jθθ0.

But notice that Dom(θ0) consists on the new variables introduced by (SPLIT) or (AC)

and, since they are brand new, θ0 does not affect the variables occurring in Xθ , in other
words, Dom(θ0)∩ Im(θ) = /0. Therefore,

Xθ = Xθθ0 =ACh Xσ j θθ0︸︷︷︸
ρ

which proves that σ j ≲
Var(Γ)
ACh θ .

Therefore, we have verified that the termination and correctness results follow.





Conclusion

In this dissertation, we studied the algorithm for bounded ACh-unification proposed
by Lynch and Eeralla [EL20]. The general problem of ACh-unification was known to be
undecidable, as proven by Narendran [Nar96]. However, Eeralla and Lynch presented a
method to solve a decidable variant of this difficult unification problem by setting a bound
κ to the number of nested occurrences of a homomorphic operator. While our primary
objective was to verify the correctness of the algorithm, we discovered inaccuracies in
some of the proofs and definitions that required more precision, fixes and polishing during
the verification process. The table below summarizes our contribution:

Chapter 3 Results Contribution

Termination
Lemma 3.2

Definition 3.2 for AC-solved variables created in order
to prove the lemma.

Definition 3.3 Positions of m and p swapped and notation of nX fixed.
Theorem 3.1 Detailed and expanded proof.

Soundness
Lemma 3.3 Detailed and expanded proof.

Theorem 3.2 Provided a complete proof; it was omitted in the paper.

Completeness

Lemma 3.6 Detailed and expanded proof.

Theorem 3.3
Provided a complete proof using a finite construction
from the Lemma 3.6; it was omitted in the paper.

Corollary 3.3 Provided a complete proof; it was omitted in the paper.

After conducting this study, we have gained a better understanding of the problem
and the method used to solve it through approximations. Moving forward, it would be
worthwhile to explore what are the implications if we have multiple AC function symbols
on our signature. Is it necessary to have a different homomorphism acting on each AC
function symbol in this case? If so, is it possible solve a problem with multiple ACh
identities?

It is also interesting to investigate whether this method is applicable to other equational
theories or if it functions effectively with a combination of equational theories that possess
the finite variant property [EEMR19]. This property allows for the reduction of an "E-
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unification problem" to syntactic unification by computing a finite number of variants of
the unification problem.

Finally, it would be worth exploring the potential of using bounds in combining
matching algorithms. One method, called the hierarchical combination [EMR22], creates
combined matching algorithms for the union of regular theories that share a common
constructor sub-theory.
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