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ABSTRACT
Olarte Garzon, M.C., (2023). Modelling of the hydromechanical behaviour of

unsaturated swelling soils. Master’s dissertation, University of Brasilia, Faculty of Tech-
nology, Department of Civil and Environmental Engineering, Brasilia DF, 103p.

Expansive soils are materials composed mainly of active minerals, such as montmoril-
lonite, which tend to undergo volumetric changes due to moisture content migration. Di�er-
ent geotechnical engineering practices, such as the design of a dam core or the compaction of
the subgrade, require a thorough analysis and prediction of the expansion phenomenon under
unsaturated transient conditions. The main problem in evaluating the mechanical response
of this type of soil lies in the nonlinear nature of most of the unsaturated properties, which
requires sophisticated tools that include parameters that are di�cult to obtain. This study
performs a mathematical analysis to understand the hydromechanical behaviour of swelling
soils under unsaturated transient flow. The implementation of two mathematical models
based on the Richards (1931) equation with a simplified coupling is applied to evaluate the
approach. Based on experimental results obtained from soil-column tests, the behaviour of
the resulting model under di�erent suction and moisture content conditions is explored. Four
cases of analytical solutions are established to build a model-specific response framework,
each with restrictive assumptions tailored to an initial and two boundary conditions. In
this case, the hydromechanical predictions in unsaturated flow are adjusted considering the
variations of the void ratio along the swelling process to account for the impact of volumet-
ric deformations on the model parameters. Finally, a parametric calibration with literature
results is performed to evaluate the parametric sensitivity and the range of volumetric vari-
ation in which the model is constrained. The results indicate a high statistical proximity
between the numerical estimation and the experimental data, with correlation factors higher
than 97%, both in the wetting and drying paths of the void ratio versus log suction curve.
Likewise, the predictions of the analytical solutions for cases 1 and 3 are consistent for each
parameter analyzed and work for unimodal and bimodal Soil Water Retention Curves.



RESUMO
Olarte Garzon, M.C., (2023). Modelagem do comportamento hidromecânico de

solos expansivos não saturados. Dissertação de Mestrado, Universidade de Brasilia,
Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, Brasilia DF, 103p.

Os solos expansivos são materiais compostos principalmente por minerais ativos, como a
montmorilonita, que tendem a sofrer alterações volumétricas devido à migração do teor de
umidade. Diferentes práticas de engenharia geotécnica, como o projeto de um núcleo de bar-
ragem ou a compactação do solo, requerem uma análise minuciosa e previsão do fenômeno
de expansão sob condições transientes não saturadas. O principal problema na avaliação
da resposta mecânica deste tipo de solo reside na natureza não linear da maioria das pro-
priedades não saturadas, o que requer ferramentas sofisticadas que incluem parâmetros de
difícil obtenção. Este estudo realiza uma análise matemática para entender o comportamento
hidromecânico de solos expansivos sob fluxo transiente não saturado. A implementação de
dois modelos matemáticos baseados na equação Richards (1931) com um acoplamento simpli-
ficado é aplicada para avaliar a abordagem. Com base em resultados experimentais obtidos
em ensaios de grandes colunas, explora-se o comportamento do modelo resultante em difer-
entes condições de sucção e conteudo volumetrico d’água. Quatro casos de soluções analíticas
são estabelecidos para construir uma estrutura de resposta específica do modelo, cada um
com suposições restritivas adaptadas a uma condição inicial e duas condições de contorno.
Neste caso, as previsões hidromecânicas em fluxo não saturado são ajustadas considerando as
variações do índice de vazios ao longo do processo de expansão, para dar conta do impacto das
deformações volumétricas nos parâmetros do modelo. Por fim, uma calibração paramétrica
com resultados da literatura é realizada para avaliar a sensibilidade paramétrica e a faixa
de variação volumétrica na qual o modelo está restrito. Os resultados indicam uma grande
proximidade estatística entre a estimativa numérica e os dados experimentais, com fatores
de correlação superiores a 97%, tanto nas trajetórias de umedecimento quanto de secagem da
curva de índice de vazios versus log de sucção. Da mesma forma, as previsões das soluções
analíticas para os casos 1 e 3 são consistentes para cada parâmetro analisado e funcionam
para Curvas de Retenção de Água unimodais e bimodais.



RESUMEN
Olarte Garzon, M.C., (2023). Modelación del comportamiento hidromecánico de

arcillas expansivas no saturadas. Trabajo de grado de Maestria, Universidad de Brasilia,
Facultad de Tecnología, Departamento de Ingeniería Civil y Ambiental, Brasilia DF, 103p.

Los suelos expansivos son materiales compuestos principalmente por minerales activos
como la montmorillonita, que tienden a sufrir cambios volumétricos debido a cambios en
el contenido de humedad. Diferentes prácticas de ingeniería geotécnica, como el diseño de
núcleos de presas o la compactación de la subrasante en pavimentos, requieren un análisis
y una predicción exhaustivos del fenómeno de expansividad en condiciones transientes no
saturadas. El principal problema para evaluar la respuesta mecánica de este tipo de suelos
radica en la naturaleza no lineal de la mayoría de las propiedades no saturadas, lo que re-
quiere herramientas sofisticadas que incluyen parámetros de difícil obtención. Este estudio
realiza un análisis matemático para comprender el comportamiento hidromecánico de suelos
expansivos bajo flujo transiente no saturado. Es aplicada la implementación de dos modelos
matemáticos basados en la ecuación Richards (1931) con un acoplamiento simplificado para
evaluar el enfoque. Con base en resultados experimentales obtenidos de ensayos de columnas
de suelos, se explora el comportamiento del modelo resultante bajo diferentes condiciones de
succión y contenido volumétrico de agua. Se establecen cuatro casos de soluciones analíticas
para construir un marco de respuesta específico del modelo, cada uno con suposiciones re-
strictivas adaptadas a una condición inicial y dos condiciones de contorno. En este caso, las
predicciones hidromecánicas en flujo no saturado se ajustan considerando las variaciones de
la relación de vacíos a lo largo del proceso de expansión para tener en cuenta el impacto de
las deformaciones volumétricas en los parámetros del modelo. Finalmente, se realiza una cal-
ibración paramétrica con resultados de la literatura para evaluar la sensibilidad paramétrica
y el rango de variación volumétrica a la que se restringe el modelo. Los resultados indican
una alta proximidad estadística entre la estimación numérica y los datos experimentales, con
factores de correlación superiores al 97%, tanto en la trayectoria de humedecimiento como
en la de secado de la curva relación de vacíos versus log de succión. Asimismo, las estima-
ciones de las soluciones analíticas para los Casos 1 y 3 son consistentes para cada parámetro
analizado, y funcionan para curvas de cetención de agua unimodales y bimodales.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION
Expansive soils are materials composed primarily of active minerals such as montmorillonite,
which tend to undergo volumetric variations due to moisture changes. Several geotechnical
engineering practices require a thorough understanding of how water interaction can a�ect
the mechanical response of expansive soils, especially for applications such as dam core com-
paction. However, the deformations produced by these swelling and shrinkage mechanisms
are mainly inelastic, which limits the application of most classical elastoplastic theories to
this type of soil (Al-Yaqoub et al., 2017).

Water flow in soils is highly nonlinear, and most closed analytical solutions are only pos-
sible in cases where the simplified flow uses restrictive assumptions. The equation attributed
to Richards (1931), which describes the flow through unsaturated porous media, combines
three basic conservation principles: i) the Darcy-Buckingham law, ii) the continuity equa-
tion, and iii) the Bernoulli equation (Fredlund & Rahardjo, 1993). Using this equation, the
air pressure is assumed to be a constant variable, and the water motion can be described
using the generalized Darcy’s law (Darcy, 1856). However, the highly nonlinear partial dif-
ferential form (List & Radu, 2016) of the Richards equation limits the operation of numerical
analysis schemes.

Currently, most numerical models of unsaturated flow employ the Richards equation form
based on suction or volumetric water content. In recent years a large number of di�erent
finite element or finite di�erence solution techniques have been proposed with each of these
equation forms (äimnek et al., 2006; Zha et al., 2013). However, just as in some cases, the
numerical solution can easily converge, there are conditions under which some will not for
various reasons.

1



Some exact one-dimensional solutions of the Richards equation for closed cases were
derived in specialized forms from constitutive relations that allow describing the soil water
retention mechanism and the unsaturated hydraulic conductivity functions. The proposal
of Cavalcante & Zornberg (2017) is based on the use of constant parameters with physical
meaning that represent the soil water retention and the unsaturated hydraulic conductivity
functions for transient flows, with analytical solutions of the Richards equation for one-
dimensional closed cases. The constitutive model proposed by Askar & Jin (2000) allows
evaluating the behaviour of expansive soils in unsaturated conditions, assuming a unique
and non-hysteretic dependence of the void ratio, total suction, and unsaturated hydraulic
conductivity, on the volumetric water content. This is a model based on Richards (1931)
equation for one-dimensional flows, in which the equation neglects the influence of volume
variation on unsaturated hydraulic conductivity and on the di�usivity function.

In this work, the behaviour of unsaturated swelling soils under transient conditions was
evaluated using a combination of the models of Askar & Jin (2000) and Cavalcante & Zorn-
berg (2017). The mathematical model obtained allows the evaluation of the hydromechani-
cal behaviour of swelling soils using six parameters that are easy to get experimentally: i) a
fitting hydraulic parameter (”), ii) the saturated volumetric water content (◊s), iii) the resid-
ual volumetric water content (◊r), iv) the saturated hydraulic conductivity (ks), v) and the
maximum and minimum void ratios (emax and emin respectively). Four analytical solutions
are proposed to explore the parametric sensitivity, each with one initial and two boundary
conditions. The predictions obtained after analytical implementation are compared with
laboratory results of soil-column tests to examine the model’s functionality. Finally, to ex-
plore the range of applicability of the model, data available in the literature is used to build
a complete parametric analysis framework.

1.2 OBJECTIVES
The general objective of this research is to perform a analytical and mathematical approach
to simulate the hydromechanical behaviour of swelling soils.

The specific objectives focus on the following aspects:

• Develop a model taking into account the unsaturated flow model under transient con-
dition proposed by Cavalcante & Zornberg (2017), and the assumptions proposed by
Askar & Jin (2000) to readjust Richards equation.

• Validate the proposed model employing the results of soil-column tests in the literature,
the overall behaviour of expansive soils and the parameters that directly influence their
hydromechanical response.
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• Develop a sensitivity analysis of the model using analytical solutions for closed cases
with restrictive assumptions.

• Establish a complete parametric comparison field in order to identify the range of
model functionality for soils with di�erent void ratios.

The analytical scheme will be used to solve the Richards equation implementing a new
mathematical approach that focuses on solving the limitations of this equation when applied
to swelling soils.

1.3 METHODOLOGY
The main problem the research focuses on is the di�culty in mathematically defining the
expansivity phenomenon. The dissertation is divided into seven fundamental parts: i) In-
troduction, ii) Literature review, iii) Methodology, iv) Mathematical model, v) Analytical
solutions, vi) Parametric calibration, and vii) Conclusions. Fig. 1.1 presents a synthesized
scheme of the methodology to be followed for the research development.

Figure 1.1: Methodology of the dissertation.

In the literature review a wide spectrum related to the hydromechanical behaviour of
swelling soils is covered, as well as the evaluation of the swelling mechanism employing soil-
column tests, the implementation of both the model and the analytical solutions in Wolfram
Mathematica 12.3, and the comparison of experimental results to calibrate the model. The
mathematical approach is based on the solution of Richards equation for the unsaturated
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flow in capillary media, and the routing of this work is established to calibrate the proposed
model using of experimental and theoretical results to calibrate the model.

1.4 DISSERTATION OUTLINE
This document is presented as a requirement for obtaining the Master’s degree in Geotech-
nics, and is divided into four chapters. The Chapter 1 consists of this introduction.

In Chapter 2, basic theoretical concepts and state-of-the-art related to the understanding
of swelling from a microstructural perspective will be discussed, as well as the hydromechan-
ical behaviour of soils with volumetric change characteristics. The knowledge of the problem
of expansive soils and the constitutive models developed to estimate their hydromechanical
response are explored. Since the aim is to perform a coupled model, the water movement in
unsaturated porous media and the derivation of the approaches used are presented in this
chapter.

In Chapter 3, the research methodology is presented. Here the results obtained by
Azevedo (2016) in soil-column tests are presented, as well as the physical characteristics
of the tested material. Additionally, the four stages addressed in Chapter 4 are explained at
a theoretical and strictly procedural level.

In Chapter 4, the mathematical derivation of the model is presented, as well as the pa-
rameters used, established from the definition of the advective, dispersive flow, and swelling
components as constants (Appendix A). Four analytical solutions with di�erent initial and
boundary conditions are implemented to explore the hydromechanical behaviour of the
swelling soils in time and space.

The results obtained by introducing the experimental test data into the model formulation
and the analytical solutions are also presented. In this case, the behaviour of the soil is
analyzed in Case 1, where the initial volumetric content is constant, and in Case 3, where
the discharge velocity is invariable. The last phase of this chapter presents the parametric
calibration of the model and its degree of accuracy when compared to literature results
performed on soils with di�erent void ratios.

In Chapter 5, a retrospective analysis is performed to identify the limitations of the
model, as well as the conclusions generated from the research development, recommendations
and suggestions for future mathematical approaches. Finally, the limitations presented by
using the proposed model are addressed. It is necessary to consider that since this is a
simplified analysis based on flow analysis, the mechanical spectrum is established by relating
the volumetric change to the shear strength.
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Chapter 2

STATE OF THE ART

2.1 EXPANSIVE SOILS

2.1.1 Understanding of microscopic mechanisms of swelling
The categorization of expansive soil is given to any material whose volumetric changes are
sensitive to variations in moisture content. These characteristics of swelling or shrinkage
by adsorption and evaporation of water result in a highly problematic soil type (Nelson
& Miller, 1997). Most soils exhibiting this behaviour contain reticulate-type clay minerals
that are part of the smectite family, where montmorillonite is an important member of this
group (Asuri & Keshavamurthy, 2016). The size and shape of clay lamellae within the
microstructure are determined by the arrangement of crystalline fabric and the organization
of other elements, such as hydrogen, sodium, calcium, and magnesium (Jones & Je�erson,
2012). In saturated condition, the behaviour of these clay sheet assemblages, generally called
"tactoids", is dominated by mineralogy.

The nature of expansivity understood on a global scale, is not a completely reversible
process, since both shrinkage and swelling can cause isolated responses, even if they oc-
cur consecutively. To exemplify this phenomenon, during the expansion process, the bonds
between particles are weakened by violent cation exchange and form lumps that become
shrinkage cracks in the dry season. When saturated, these cracks do not return to their
original state, facilitating water access during the new swelling phase and imparting het-
erogeneity to the soil (Holtz & Kovacs, 1981). Therefore, due to the adverse dynamics of
the expansivity phenomenon, when clay layer assemblages become saturated by external
moisture fluctuations, the molecular bonds weaken and alter the shear strength of the soil
(Fredlund & Rahardjo, 1993; Sheng et al., 2008).
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Upon contact with water, the expansivity response spectrum on a microporous scale can
be explained and analyzed using the di�use double layer (DDL) theory. Clay particles are
surface-active materials because of their electronegativity, so the hydromechanical behaviour
depends on the accumulation of ionic countercharge at the soil-water boundary (Olarte et
al., 2021). While the colloidal suspension occurs, an adsorbed water hydrosphere containing
soluble cations of di�erent charges, also called exchangeable cations, is created on the lamellar
surface. These cations balance the clay’s negative charges, and the DDL preserves their
electrical neutrality. Therefore, the greater the thickness of the DDL, the greater the cation
exchange capacity of the material, which translates as a more significant fluctuation in the
structural, hydraulic, volumetric, physicochemical, and mechanical properties of expansive
soils (Fukue et al., 2001).

Since the discovery of the properties of the crystalline structure of fine soils in the early
1930s, knowledge of molecular dynamics in the clay/water system has increased rapidly.
Understanding the phenomenon of expansivity at the nanoscale requires basic applications
of the law of charge since, under induced saturation, expansion processes are generated
by reducing attractive forces relative to repulsive forces. When the soil/water interface is
established, the stresses induced by the water molecules easily dominate the Van der Waals
forces of attraction (Van der Waals, 1873), ultimately leading to swelling. The repulsive or
electrical surface forces depend on the thickness of the DDL, which may increase when the
concentration of exchangeable ions is reduced or when the dielectric constant is increased.
However, Van der Waals forces are independent of these factors (Yong & Warkentin, 1966).

A key aspect in the understanding of expansive soils is the identification of the mecha-
nisms involved in swelling, which, according to Low (1961), can be of two types: i) crystalline
swelling, caused by hydration of cations in the crystalline tissue, and ii) osmotic swelling,
produced by ionic imbalance at the contact interface between clay and aqueous molecules.
The osmotic fraction takes place in DDL and is strongly linked to the ionic concentration, pH,
mineralogy, and type of exchangeable ion (Van Olphen, 1986). Thus, in the face of moisture
variations, the di�erent mechanisms that interfere in the expansion process interact simul-
taneously and depend directly on the charge potential at the surface Â0 [ML2A≠1T ≠3] and
the distance from the clay plate (x) [L]. Fig. 2.1 explains the expansion process using the
DDL theory.
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Figure 2.1: Schematic of swelling process.

In addition to DDL, the specific surface area (SSA) allows for determining many of the
physicochemical properties of materials employing a ratio between the surface area (As) [L2]
and the mass (M ) [M ] of a clay particle. SSA is an essential parameter for understanding
the interaction processes during the state transformations of soil: from semisolid to plastic
and finally to liquid. Unlike coarse-grained soils, where the dominant forces are mainly of
physical origin, in fine-grained soils, the relevance of capillary and electrical forces increases
because grain size decreases and SSA increases (Santamarina et al., 2002).

Because of their microscopic size, clay minerals have a considerable e�ect on the per-
meability, strength, sti�ness, and bearing condition of soil. Their abundant presence allows
them to form stabilizing buttresses on the surface of the main constituent mineral, making
them a critical control point in swelling and shrinkage processes. Like phyllosilicates, clay
minerals are remarkably anisotropic and can develop di�erent types of SSA. Generally, ac-
cording to Macht et al. (2011), there are predominantly two types of surface: i) basal, where
charges are inherited by isomorphic substitution, and ii) lateral, where SSA is dependent on
in-situ pH.

In unsaturated condition, although the response of expansive soils, especially talking
about the swelling mechanism, is still dependent on moisture content variations, suction Â

[ML≠1T ≠2] acquires a significant domain fraction in the hydromechanical spectrum. The
concept of unsaturated behaviour in expansive soils can be defined from the water retention
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curve on a scale where the soil constituents are observable, i.e., on a macroporous scale
(Ikeagwuani & Nwonu, 2019). However, Fityus & Buzzi (2009) pointed out that the field
of unsaturated soil mechanics covering expansive soils does not address the basic aspects
of volume change during constitutive modelling. A synthesized scheme of the expansive
modulus in unsaturated condition is presented in Fig. 2.2. In this new space, the interference
of air pressure (ua) in the process results in a Â-controlled environment. The variable (Vv)
[L3] is the total volume of voids, (Vs) [L3] is the total volume of solid particles, (Vsiv) [L3]
is the volume of saturated interlaminar voids, (VEM) [L3] is the volume of expansive solids,
and (VNM) [L3] is the volume of nonexpansive solids.

Figure 2.2: Schematic of an unsaturated expansive soil.

In the empirical field of soil mechanics, three conditions are established for test spec-
imens: i) undisturbed (with intact internal structure), ii) remodeled (when the soil has
consolidated), and iii) compacted (imposition of degrees of compaction). However, soils pre-
pared under these conditions clearly generate di�erent particle size distributions and pore
networks, so the swelling/shrinkage cycles may occur with di�erent amplitudes and generate
di�erent responses. Therefore, numerous constitutive approaches have been developed in
recent decades to evaluate the behaviour of expansive soils in each of these three conditions
and in saturated and unsaturated states.

2.1.2 Hydromechanical behaviour of swelling soils
The influence of suction (Â) on the hydromechanical behaviour of soils is generally recog-
nized and investigated as a critical factor governing the unsaturated state. The pioneering
study to evaluate the mechanical response of unsaturated soils was carried out by Bishop
et al. (1960) using results from controlled suction triaxial tests. The Â can be measured or
applied experimentally in di�erent ways (e.g., filter paper, axis translation technique, tri-
axial equipment, among others). Theoretically, the Soil Water Retention Curve (SWRC),
or soil characteristic curve according to Fredlund & Rahardjo (1993), establishes that the
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parameters Â and volumetric water content (◊) [L3L≠3] are related to each other in a porous
medium.

For unsaturated mechanics, both Â and ◊ are unique fundamental properties of the
SWRC, although they are related to di�erent mechanisms. In the empirical framework,
Â values are related to piezometric heads and ◊ values to the degree of saturation (Sr)
[L3L≠3]. However, in descriptive processes evaluating water-air interaction, the behaviour of
the SWRC is constantly adjusted using predictive models (Cornelis et al., 2005). A particu-
lar feature of the SWRC is that the ◊ is generally higher in the drying path, which generates
a hysteretic behaviour concerning the wetting path. The mechanisms responsible for the
presence of hysteresis between curves are generally microstructural (e.g., nonuniformity in
interconnected pores, and capillary condensation, among others). The knowledge of hystere-
sis in the drying/wetting history is vital to understanding the hydromechanical behaviour
of soils, both from a stress-strain perspective (Likos & Lu, 2004) and a purely hydraulic one
(Parker & Lenhard, 1987).

The fundamental concept encompassing the SWRC description establishes two main sat-
uration domains. In the pendular regime (Sr < 20 %), water is organized as thin films on
the particle surface, which contributes to retention, capillary condensation (by meniscus for-
mation), and increased Â values. At higher saturation (20% < Sr < 90%), interstitial water
molecules form a fabric of liquid bridges in partially filled pores and bubbles in saturated
pores (Hernández et al., 2022). In this retention system, known as the funicular state, Â is
low and strongly depends on the geometry of the solid network, including the porosimetry
and grain size distribution. Most empirical models or strictly mathematical equations at-
tempt to reproduce part of the SWRC by including some reference parameters such as the
saturated volumetric water content (◊s) [L3L≠3] defined at full saturation (Sr = 100%), the
value of Â at which the first partially saturated voids arise called the air entry value (AEV),
and the residual volumetric water content (◊r) [L3L≠3] where the value of Sr = 0%.

The graphical-mathematical form of the SWRC is generally hyperbolic (Van Genuchten,
1980), and only at the points corresponding to ◊s and ◊r is it possible to apply the e�ective
stress principle of Terzaghi (1923). The data pairs corresponding to Â and ◊ collected from
the laboratory are generally fitted in the SWRC using the constitutive equations proposed
by Brooks & Corey (1964), Van Genuchten (1980), Fredlund & Xing (1994), and Cavalcante
& Zornberg (2017). The mathematical derivation of each model usually includes di�erent
calibration parameters, as well as flow concepts associated with the Richards equation. Fig.
2.3 presents the SWRC in its typical unimodal form for a drying and wetting paths and the
saturation domains.
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Figure 2.3: Unimodal soil-water retention curve.

There is a wide variety of stress and wetting conditions that expansive soils experience in
situ, which can alter their hydromechanical response. Loading and unloading cycles due to
the imposition of external stresses or water table fluctuations, in addition to seasonal varia-
tions, induce changes in Â and, therefore, in shear strength. Most studies investigating the
hydromechanical behaviour of expansive soils start from the stress-strain relationship under
di�erent values of Â. Bendahgane et al. (2017) evaluated the fluctuation in the void ratio (e)
[L3L≠3] of expansive material employing wetting and drying paths obtained by controlled
suction testing. Tang et al. (2011) analyse the hydromechanical response of expansive soils
using one-dimensional compression tests under constant ◊ conditions.

An e�ective way to understand the hydromechanical behaviour of expansive soils is by
using a time-deformation relationship, where the deformation caused by swelling (Ásw) [LL≠1]
is expressed as a percentage increase in height. During the swelling process, three main stages
are established: i) inter-vacuum swelling (ivsw), produced by expansive minerals within voids
created by larger non-expansive particles, ii) primary swelling (psw), where about 80% of
the swelling occurs, and iii) secondary swelling (ssw), reached at the point where swelling
shows a linear relationship with time (t) [T]. The typical t-Ásw relationship is presented in
Fig. 2.4.
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Figure 2.4: Swell evolvement.

In an initially dry clay soil subject to wetting, the swelling process starts with a mainly
structural process, where the pores fill with water without accompanying volumetric changes.
The volume begins to increase when the variation in volume (�V ) is equal to the variation
in water volume (�w). Progressively, when the soil reaches the "residual phase" phase,
�V is more significant than �w. Finally, the swelling process ceases when �V is equal to
�w. However, the swelling characteristics can deviate significantly from the idealized form
presented in Fig. 2.5.

Figure 2.5: Water content-void ratio swell-shrink paths of a clay soil.
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In general, when wetting occurs on a microporous scale, the water movement can consider
several phases. At the beginning of saturation, the water flow follows the path from point
A to point C, where point A is located at the structural swelling (inter-vaccum swelling) at
◊r. When the soil begins to wet from low degrees of saturation, the water flow first enters
the macropores, which are fully saturated in the residual zone.

Unlike micropores, where the water flow is dominated by electrochemical forces, macro-
pores responds to the action of gravity. After short periods, the soil water content in the
swelling stage reaches a residual value for a void ratio equal to es, i.e., a value close to sat-
uration. The inverse path to swelling corresponds to shrinkage, which builds the expansion
phenomenon. As in the SWRC for the drying and wetting paths, the swell-shrink paths
present a slight degree of hysteresis between them, mainly due to the volumetric change
between phases.

2.1.3 The place of swelling clays in soil mechanics
The first studies of expansive soils carried out around the 1950s by Aitchison & Holmes
(1953) and Norrish (1954) were strongly influenced by the need to understand the hydrody-
namic behaviour and hydrostatics of soil-water boundaries. Gradually, considerable scientific
output was reported to broaden the field of swelling and shrinkage processes within classi-
cal soil mechanics (Holtz & Gibbs, 1956; Miller, 1975; Parcher & Liu, 1965; Philip, 1969).
The first international forum devoted to the consideration of expansive soils, significantly
recognized by researchers, was held at Texas AM University in 1965. From then on, a series
of exclusive congresses in this field were held worldwide in di�erent countries (Al-Rawas &
Goosen, 2006).

Initially, what was known about the understanding of this phenomenon borrowed some
concepts from soil science and the e�ects of cations. However, the structure of expansive
clays is extensively complex, so many of the models that were developed to explain this
phenomenon in a timely manner were derived from the DDL theory, attributed to Gouy
(1910) and Chapman (1913) in its basic form (Liu, 2013; Phillips & Tripathy, 2011; Sridharan
& Jayadeva, 1982; Yong et al., 1962; Zhang et al., 1993). Additionally, according to Maöín
& Khalili (2015), the group of constitutive approaches derived from the DDL principle is
exclusively applicable to scenarios where an ensemble of smectite particles is suspended in
monovalent electrolyte solutions at low concentrations.

A fundamental aspect in estimating the behaviour of expansive soils lies in understanding
the functioning of the microstructure and organization of the saturated and unsaturated
pore space. In fully saturated condition, the value of Â is transferred to a "net stress"
state and the degree of saturation (Sr) reaches the value of unity. Therefore, in theory,
expansion problems could be treated using the e�ective stress principle of Terzaghi (1923).
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However, the assumptions made by Terzaghi in the original form of the expression do not
include cation exchange and the influence of electrochemical forces, so this principle is not
fully applicable to the mechanical equilibrium of expansive soils. Some constitutive models
estimating expansivity in saturated condition were proposed by Hueckel (1992), and Maöín
& Khalili (2015).

Some geotechnical applications make special use of compacted expansive soils (e.g. nu-
clear waste storage, dam cores) or as replacements in situations where non-expansive ma-
terials are in short supply (e.g. road subgrade). In these cases, it is of vital importance to
determine the expansive potential of soil in order to evaluate its stabilization methods and
placement requirements. Models that evaluate the expansion of soils under these conditions
are generally complex, requiring sophisticated mathematical implementations (Alonso et al.,
1999; Dormieux et al., 1995). Erguler & Ulusay (2003), employing experimental results,
produced predictive multivariate regressions under any parametric combination.

Currently, there are models with punctual approaches, i.e., focused on the calculation of
a specific variable: i) experimental models to evaluate expansion pressure (Low & Margheim,
1979), ii) swelling deformation produced by constant load tests (Buzzi, 2010; Buzzi et al.,
2007, 2011), iii) continuous thermodynamic models to relate water potential to expansion
pressure (Dueck & Börgesson, 2007; Lempinen, 2011), among others. The models cited
above use constitutive relationships to estimate the isotropic behaviour of expansive soils, in
addition to sophisticated mathematical formulations, resulting in an accommodation of the
concepts of charge and electrochemical equilibrium.

In the case of soils in unsaturated condition, most of the commonly used proposed mod-
els establish an inversely proportional relationship between Â and Sr. This assumption was
originally proposed by Alonso et al. (1990) in the well-known Barcelona Basic Model (BBM)
and subsequently adapted by numerous researchers (Gens & Alonso, 1992; Sheng et al.,
2008; Wheeler et al., 2003). However, the volumetric content incorporated in these models
is significantly lower than the range over which expansive soils, in natural condition, remain
saturated. The models cited above, in specific situations such as compacted bentonite sam-
ples (Loret et al., 2002) are able to estimate the swelling and shrinkage behaviour. This
is because, the compaction process imparts artificially large pore distributions in the soil,
resulting in unsaturated conditions.

2.1.4 Problems of expansive soils
Buildings founded on expansive soils are subject to strong movements due to non-uniform
moisture fronts, which generate cracking related to severe deformations. This damage can
range from cracks in pavements to di�erential settlements that cause irreparable displace-
ments in foundation mechanisms (footings or piles) and superstructure elements (Langroudi
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& Yasrobi, 2009). Damage to lightly loaded buildings has been reported around the globe,
most frequently in countries such as Australia (Li & Cameron, 2002), China (Shi et al., 2002),
India (Ameta et al., 2007), South Africa (Williams et al., 1985), United Kingdom (Eyo et al.,
2017), Colombia (Gongora et al., 2008), Peru (Castro Cuba Valencia, 1992), and the United
States (Houston et al., 2011). The main reference used to understand di�erential settlement
in expansive soils was published by Skempton & MacDonald (1956) and later updated by
Grant et al. (1974). In this study, 98 buildings in United States were evaluated that expe-
rienced damage from light to severe scales under numerous degrees of settlement. Table 2.1
presents a summary of case studies of buildings a�ected by expansive soils in di�erent parts
of the world.

It is easy to infer that the pathology of expansive soils is one of the most studied within
the geotechnical field given that, it is this type of soil that is found in most of the territory
of the United States. The American Society of Civil Engineers estimates that one in four
homes has been or is a�ected by expansive soils today (Snethen et al., 1975). In the United
States alone, the annual cost of recorded damage from expansive soils extends to a value
of $ 15 billion per year, i.e., an amount greater than the damage generated by all weather
events combined. The annual capital investment devoted to solving this problem in countries
such as China and the United Kingdom approaches amounts of $ 15 billion and 446 million,
respectively (Lytton, 1970). In countries such as Australia, where approximately 20 % of the
country is covered by expansive soils, Considine (1984) reports that about 50,000 houses are
a�ected annually by expansive soils. In Latin America, Mexico has the most a�ected area,
since it has a considerable region of expansive soils, with about 12 % of the total territory
(Padilla-Corona, 2008).
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Table 2.1: Cases study of buildings damaged by expansive soils.

Author Country Year Engineering structure Cause Analysis method

Li & Cameron
(2002)

Australia 1990 Single storey, articu-
lated masonry veneer
dwelling

Edge heaving as a result of
water ponding in the court-
yard

3D back analysis
by finite-element
method

Day (1992) USA 1991 Buildings H and J
at the Calavo Woods
Apartments

Foundation displacement
caused by di�erence in
moisture content

Subsurface explo-
ration

Li et al. (2014) Australia 1998 Single storey, articu-
lated masonry veneer
dwelling

Overwatering of the lawn
and leaking sewer pipe
and/or storm water pipe

3D back analysis

Ewing (2011) USA 2002 Residence built (Eu-
dora Welty house)

Di�erential settlement of
foundation

Structural works
such as piers and
beams

Padilla-Corona
(2008)

Mexico 2008 Educative centers hav-
ing one or two levels
buildings

Di�erential settlement
caused by di�erence in
moisture content

Stratigraphic pro-
files and labora-
tory index tests

Lew (2010) Brazil 2010 Residence built High swelling potential
due to the presence of
expansive-clay minerals

Foundation struc-
tural analysis

Anastasopoulos
(2013)

Greece 2011 5-storey RC building Di�erential settlement of
foundation

Numerical analy-
ses taking account
of the construc-
tion sequence

Li & Guo (2017) Australia 2011 Single story, partially
articulated masonry
dwelling

Tree root drying Numerical analy-
sis

Zumrawi (2015) Sudan 2015 Buildings of single or
two storey and light
structures

Uplift forces resulting
from heave caused by the
swelling of soils

Visual inspection

2.2 MOVEMENT OF WATER
In the context of hydrodynamics, one of the most familiar equations in theoretical physics
is the equation of continuity. The general solution of the equation illustrates the balance
of mass entering and leaving a representative volume element (REV). Thus, there can be
no mass increase or loss when an infinitesimal point is filled with water, regardless of the
flow paths. The main axiom applied in this conservation principle states that a quantity of
matter associated with a location in the REV is invariant in time. Employing the divergence
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theorem, it’s possible to isolate the continuity equation in the basic form by applying the
conservation theory of mass in a fluid volume inside the REV. In this way, it is obtained:

d

dt
MR = ≠

⁄

ˆR
flwv̨ • n̨dS = ≠

⁄

R
div(flwv̨)dV = d

dt

⁄

R
flwdVw = 0 (2.1)

where R denotes the region occupied by the REV at a time instant t, flw [ML≠3] is the density
of water, v̨ [LT ≠1] is the velocity vector defining the velocity field within the REV, V [L≠3]
the total volume, and Vw [L≠3] the total water volume. Using the concept of volumetric
moisture content (◊), Eq. 2.1 can be expressed as:

⁄

R

ˆ

ˆt
(flw◊)dV +

⁄

R
div(flwv̨)dV = 0 (2.2)

To fulfill Eq. 2.2, it is necessary to verify that for any fixed region R, the expression
granted there must be zero. The mass balance caused by the outflow and inflow of a fluid
is defined by assuming a REV located at a point (x,y,z) on a cartesian plane as presented
in Fig. 2.6. In this three-dimensional space, the volume di�erential (dV ) is represented as
dxdydz.

(a) (b)

Figure 2.6: Water flow: (a) REV; (b) water flow in and out of the REV.

The conservation law guarantees that the sum of the three mass flow quantities is equal
to the change in water content in the REV. Mass flow can be defined mathematically in two
parts. The first part is the amount of mass entering the REV, ṁin [MT ≠1] at a time t is
defined as:
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ṁin = vxflw(dzdy) + vyflw(dxdz) + vzflw(dxdy) (2.3)

where vx, vy, and vz are the discharge velocities in the x, y, z directions respectively, [LT ≠1].
The second part corresponds to the amount of mass leaving the REV, ṁout [MT ≠1] at a time
t:

ṁout =
A

vxflw + ˆ(flwvx)
ˆx

dx

B

(dzdy) +
A

vyflw + ˆ(flwvy)
ˆy

dy

B

(dxdz)

+
A

vzflw + ˆ(flwvz)
ˆz

dz

B

(dxdy)
(2.4)

Therefore, using the di�erence between Eq. 2.3 and Eq. 2.4 it is possible to define the
mass storage in the REV, [MT ≠1] :

ṁstorage =
C

≠ˆ(flwvx)
ˆx

≠ ˆ(flwvy)
ˆy

≠ ˆ(flwvz)
ˆz

D

dV (2.5)

On the other hand, the mass storage by the voids inside the REV for any time t is equal
to:

ṁstoragedv = ˆ(flw◊)
ˆt

dV (2.6)

Equating Eq. 2.5 with Eq. 2.6 gives:

ˆ(flw◊)
ˆt

= ≠ˆ(flwvx)
ˆx

≠ ˆ(flwvy)
ˆy

≠ ˆ(flwvz)
ˆz

(2.7)

In the case of incompressible fluids in the transient state, flw is constant in time and
space. Using algebraic management, the Eq. 2.7 takes the form of the continuity equation
applied to any fluid under these conditions:

ˆ◊

ˆt
= ≠ˆvx

ˆx
≠ ˆvy

ˆy
≠ ˆvz

ˆz
(2.8)

The previous case is restricted exclusively to homogeneous, incompressible Newtonian
fluids traveling slowly through the voids of rigid porous media in steady state. Following
the first mechanistic approaches by Hubbert (1956) and Hall (1956), it is possible to derive
Darcy’s law for anisotropic porous media from the Navier-Stokes equation. To perform this
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procedure, it is assumed that the flow is laminar, incompressible, predominantly viscous, and
the permeability tensor is symmetric. Furthermore, it is shown that there is a one-to-one
relationship between the viscous forces and the local velocity fields. Thus, he water flow can
be expressed for a saturated medium by:

v = ≠(kxkykz)Ò� (2.9)

where Ò� [L2T ≠2] is the net driving force, expressed here as the gradient of the total
hydraulic potential, and kx(Â), ky(Â), and kz(Â) are the unsaturated hydraulic conduc-
tivity functions in each of the x, y and z directions, respectively, [LT ≠1]. Eq. 2.9 was
initially derived empirically by Darcy (1856) and named after him. Mechanistic theory con-
siders Darcy’s law (Eq. 2.9) as an equation to define the macroscopic momentum since it is
the Navier-Stokes equation that expresses the momentum balance applied to the transport
of Newtonian fluids. Numerous mathematical approaches have been presented in the last
decades to theoretically analyze the flow through porous media, either based on stochas-
tic processes (Scheidegger, 2020), geometric models (Bachmat, 1965) or formal averaging
processes (Neuman, 1977). The principle of conservation of energy applied to fluids is de-
scribed using the relationship between pressure and velocity in a non-viscous incompressible
Newtonian fluid, as:

„ = v̨ · v̨

2g
≠ z + uw

flw
(2.10)

where „ [L] is a variable denoting a measure of specific energy per unit weight of the fluid,
called the hydraulic head, g [LT ≠2] is the gravitational acceleration, and uw [MT ≠2L≠1] is
the pore pressure. However, the fluid energy can be associated either with the „ or with
the fluid potential (i.e., energy per unit mass of fluid), denoted by �, and mathematically
defined by:

� = ≠zg + Â

flw
(2.11)

The Eq. 2.10 is called Bernoulli’s equation and allows to establish the theoretical basis
of hydraulic calculation, which solves the practical engineering problem related to force and
energy. Three individual fragments constitute the energy state of a fluid in Bernoulli’s
equation: i) the velocity head ( v̨·v̨

2g ) that controls the kinetic energy of the fluid, ii) a portion
of the potential energy stored in the form of gravitational energy (z), and iii) a fraction of
the potential energy stored in the form of fluid pressure (uw

“w
). According to Bear (1972), the
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portion representing the kinetic energy can be neglected when the velocity modulus is very
small, which is the case in soils.

The mathematical demonstration of Eqs. 2.8, 2.9, and 2.10 exhibited the principles of
conservation of mass, conservation of linear momentum, and conservation of energy, respec-
tively. Although, there is an additional principle: the equation of conservation of angular
momentum. However, there is no way to write an expression that complies with this principle
due to the definition must include the fundamental assumption that the flow is irrotational
and the tensors that make the water move must be isotropic.

2.2.1 Flow in unsaturated porous medium
The main problem in evaluating unsaturated flow in porous media is that, like any type
of motion, it is governed by the same conservation laws, the axioms of which are usually
expressed using mathematical terms (Liakopoulos, 1964). Flowing water must satisfy the
continuity equation, the equation of state, and the dynamic equations of motion for any
position x, at any time t. However, in porous media, the intervention of capillary forces
generates a highly nonlinear equation of motion, as the variables t and x become dependent
on Â and ◊. In other words, the nature of the equation for unsaturated porous media requires
two functions to determine solutions at t > 0: k(◊) and Â(◊).

Buckingham (1907) was the first to recognize water movement in unsaturated soils, using
a unique relationship between discharge and suction gradients. In his monograph published
in 1907, the concepts of matrix potential, water retention curve, pressure loading, and unsat-
urated hydraulic conductivity were distinguished as soil properties. By defining the concept
of capillary potential, Buckingham provided a new paradigm for soil mechanics that unified
saturated and unsaturated flow mechanisms, including in the mathematical basis an equa-
tion equivalent to the law that Darcy (1856) employed in saturated sands half a century
earlier. In modern notation, Darcy’s law is generally referred to as Darcy-Buckingham law,
due to k is a function of ◊. The Darcy-Buckingham law in one dimension is:

vz = ≠kz(◊)
flwg

C
ˆÂ

ˆz
≠ flwg

D

(2.12)

Eq. 2.12 is applicable to the saturated condition when Â reaches values less than or equal
to 0 and unsaturated at Â > 0. According to the Darcy-Buckingham law, the main di�erence
between a saturated and an unsaturated medium in terms of water movement is that the
pressure is determined by capillary forces and k depends on ◊. A particular approach to Eq.
2.12 was published by Childs & Collis-George (1950) in which the geometry of the porous
medium is related to the unsaturated conductivity using the pore size distribution curve.
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Subsequently, the general behaviour of the k(◊) functions was established by Moore et al.
(1939).

Although in the case of flow in saturated soils, the hydraulic conductivity can be con-
sidered constant, in reality, several extrinsic and intrinsic factors must be analyzed. Airflow
through pores, aggregate dispersion, and even bacterial action can directly a�ect k values in
saturated materials. The complexity in unsaturated media is due to the sum of the above
factors plus the anisotropic variation due to volumetric water content. Presumably, k is
assumed to be a single-valued function of ◊. However, it is now known that both Â and ◊

are not related to each other by univocal functions, so hysteresis e�ects are generated, in-
ducing di�culties in mathematical analysis. Richards (1931) and Gardner (1936) introduced
functional relationships for k in the Darcy-Buckingham law, establishing k(◊) and k(Â).

Experimentally it has been evaluated that the hysteresis loops produced in the k(◊) plane
are much less significant than in k(Â), so many models ignore the hysteresis in k(Â) and
base the mathematical formulation exclusively in terms of k(◊). Some simple mathematical
formulations use adjustment coe�cients to calibrate measurement data for either k(◊) or
k(Â) (Brooks & Corey, 1964; Gardner, 1958; Wind, 1955). These approaches are used with
restrictive assumptions, and the coe�cients vary considerably between models, as no single
relationship is valid for all soil types. Mualem (1986) presents an extensive summary of the
concepts of k(◊) and k(Â), and their application within unsaturated soil mechanics.

2.3 RICHARDS EQUATION (1931)
The Richards equation (Richards, 1931) is a mathematical simplification that describes the
flow of water in an unsaturated condition under the action of gravitational force. The study of
this equation requires the inclusion of the concept of capillarity and a mathematical definition
in porous media. However, due to the complexity of the equations of thermodynamics applied
to flow in capillary media, it is necessary to generate mathematical simplifications adapted
to specific cases. Despite its ease of derivation, the Richards equation is one of the most
challenging equations to solve accurately in hydrosciences since its complex nature is derived
mainly from the high nonlinearity of the moisture retention curves.

The first analytical solution of the Richards equation was developed by Philip (1957,
1969) using a time expansion method, in which infiltration is assumed to be a sorption
process with some degree of gravity-generated perturbation. From this point on, numerous
approaches were developed in order to apply the Richards equation considering simplified
hydraulic conditions (Cavalcante et al., 2013; Hogarth & Parlange, 2000; Parlance et al.,
1992; Sander et al., 1988; Swamee et al., 2014). However, most of these works demand the
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involvement of non-transient flow, and the solutions are presented as integrals that require
the implementation of numerical models (Chen et al., 2003, 2001).

In essence, the Richards equation is a mass conservation principle that employs the
continuity equation (Eq. 2.8) and Bernoulli’s equation (Eqs. 2.10 and 2.11) and is based
on the fact that the Darcy-Buckingham law (Eq. 2.12) is valid for describing the motion
of water. As the Richards equation is applied to unsaturated porous media, its solution
depends on two highly nonlinear soil water constitutive relations: k(◊) and Â(◊). However,
these functions are not readily computable and can have very high slopes and hysteresis,
as well as being discontinuous at low saturation values (Farthing & Ogden, 2017). To be
demonstrated numerically, it is necessary to define the discharge velocity components using
the Darcy-Buckingham law:

vx = ≠kx(Â)
g

ˆ�
ˆx

(2.13)

vy = ≠ky(Â)
g

ˆ�
ˆy

(2.14)

vz = ≠kz(Â)
g

ˆ�
ˆz

(2.15)

Substituting the Bernoulli’s equation in terms of � (Eq. 2.11) into Eqs. (2.13)-(2.15),
the discharge velocity in x, y and z directions can be rewritten as:

vx = ≠kx(Â)
flwg

ˆÂ

ˆx
(2.16)

vy = ≠ky(Â)
flwg

ˆÂ

ˆy
(2.17)

vz = ≠kz(Â)
A

1
flwg

ˆÂ

ˆz
≠ 1

B

(2.18)

The main di�erence between the continuity equation and Darcy-Buckingham law when
evaluating the flow into and out of REV is that, according to Biot (1941), the former is
expressed in absolute velocities (Eq. 2.8), and the latter uses relative velocities [Eqs. (2.16)-
(2.18)]. Now, by substituting Eqs. (2.16)-(2.18) into Eq. 2.8 it is possible to obtain the 3D
version of Richards equation for unsaturated soils under transient flow:
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ˆ◊

ˆt
= ˆ

ˆx

C
kx(Â)
flwg

ˆÂ

ˆx

D

+ ˆ

ˆy

C
ky(Â)
flwg

ˆÂ

ˆy

D

+ ˆ

ˆz

C

kz(Â)
A

1
flwg

ˆÂ

ˆx
≠ 1

BD

(2.19)

In Eq. 2.19 ◊ and Â are dependent variables, so it is possible to rewrite this equation
in terms of either Â = f(◊) or ◊ = f(Â). However, in some cases it is more convenient to
express the Richard’s equation in terms of ◊ rather than Â, because Â = f(◊) is less nonlinear.
In order to use ◊ as an independent variable, it is necessary to replace ˆÂ/ˆx, ˆÂ/ˆy, and
ˆÂ/ˆz with (ˆÂ/ˆ◊)(ˆ◊/ˆx), (ˆÂ/ˆ◊)(ˆ◊/ˆy), and (ˆÂ/ˆ◊)(ˆ◊/ˆz) respectively. Therefore,
the concept of unsaturated water di�usivity must be employed (D(◊)) ([L2T ≠1)], which for
the x, y and z directions is defined as:

Dx(◊) = ≠kx(◊)
flwg

ˆÂ

ˆ◊
(2.20)

Dy(◊) = ≠ky(◊)
flwg

ˆÂ

ˆ◊
(2.21)

Dz(◊) = ≠kz(◊)
flwg

ˆÂ

ˆ◊
(2.22)

When Eqs. (2.20)-(2.22) are substituted into Eq. 2.19, the conventional ◊-form of the
Richards equation is obtained:

ˆ◊

ˆt
= ˆ

ˆx

A

Dx(◊)ˆ◊

ˆx

B

+ ˆ

ˆy

A

Dy(◊)ˆ◊

ˆy

B

+ ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz
≠ kz(◊)

B

(2.23)

In the solution of Eq. 2.19 ◊ is a continuous variable, which is valuable for evaluating
the nature of water flow in homogeneous soil. However, although the ◊-form of the Richards
equation is usually employed, models based on this equation do not adequately simulate
internodal flow in heterogeneous soils because ◊ is discontinuous between layer interfaces
(Assouline, 2013).

2.3.1 Cavalcante and Zornberg (2017) model
The closed analytical solution of the Richards equation proposed by Cavalcante & Zornberg
(2017) is based on the principle that constitutive models are adopted to represent the hy-
draulic conductivity and suction functions in the unsaturated condition for transient flows.
The formulation adopted by the authors considers negligible volumetric changes, so the flow
occurs in an unsaturated porous medium where the porosity is constant. The assumption
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included, although it limits the application of the model in soil mechanics, is perfectly appli-
cable to cemented soils in arid to sub-humid climates. Before finding a solution for Eq. 2.23,
it is necessary to perform a linearization process using the concepts of unsaturated hydraulic
conductivity (kz) and unsaturated advective seepage, as ([LT ≠1]), expressed as follows:

ˆkz(◊)
ˆz

= ˆkz(◊)
ˆ◊

ˆ◊

ˆz
= as(◊)ˆ◊

ˆz
(2.24)

Substituting Eq.2.24 into Eq. 2.23, the Richards equation can be rewritten as:

ˆ◊

ˆt
= ˆ

ˆx

A

Dx(◊)ˆ◊

ˆx

B

+ ˆ

ˆy

A

Dy(◊)ˆ◊

ˆy

B

+ ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ as(◊)ˆ◊

ˆz
(2.25)

To solve Eq. 2.25, it is necessary to define two functions kz(◊) and Â(◊) for which
the nonlinear terms of Dx, Dy, Dz and as are constants. For this, the model proposes a
mathematical relationship for Â(◊):

Â(◊) = 1
”

ln
A

◊ ≠ ◊r

◊s ≠ ◊r

B

(2.26)

where ◊s is the saturated volumetric water content [L3L≠3], ◊r is the residual volumetric
water content [L3L≠3], and ” is a fitting hydraulic parameter of the model [M≠1LT 2]. In the
other hand, the relationship for kz(◊) is defined for the directions x,y and z as:

kx(◊) = ksx
(◊ ≠ ◊r)
(◊s ≠ ◊r)

(2.27)

ky(◊) = ksy
(◊ ≠ ◊r)
(◊s ≠ ◊r)

(2.28)

kz(◊) = ksz
(◊ ≠ ◊r)
(◊s ≠ ◊r)

(2.29)

where ks is the saturated hydraulic conductivity [LT ≠1]. The main advantage of analytically
solving the Richards equation using ◊ as an independent variable is that the function kz(◊)
has less hysteresis than kz(Â), and (Dz) varies less if the independent variable is ◊ and not
Â. Additionally, adopting the definition of Eq. 2.20, 2.26, and 2.27 the term Dx(◊) becomes
constant for the x direction:
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D̄x = ksx

flwg(◊s ≠ ◊r)”
(2.30)

Combining Eq. 2.21, 2.26, and 2.28, the unsaturated di�usivity constant at y-direction
can be expressed as:

D̄y = ksy

flwg(◊s ≠ ◊r)”
(2.31)

Finally, using Eq. 2.22, 2.26, and 2.29, the unsaturated di�usivity constant at z-direction
is equal to:

D̄z = ksz

flwg(◊s ≠ ◊r)”
(2.32)

The physical meaning of the as corresponds to the slope of the unsaturated hydraulic
conductivity function when expressed as a function of ◊ (kz(◊)). However, employing Eq.
2.29 and 2.24, it is possible to convert the parameter as into a constant and define it as:

ās = ksz

(◊s ≠ ◊r)
(2.33)

From the definitions of D̄x, D̄y, D̄z, and ās the Richards equation can be expressed as:

ˆ◊

ˆt
= D̄x

ˆ2◊

ˆx2 + D̄y
ˆ2◊

ˆy2 + D̄z
ˆ2◊

ˆz2 ≠ ās
ˆ◊

ˆz
(2.34)

There are three particularities when globally evaluating the equation proposed by the au-
thors: i) for steady-state conditions, Eq. 2.34 is set to 0, which facilitates the application of
the Richards equation when dv/dt = 0, ii) the parameters have a physical interpretation, and
iii) for the case of a one-dimensional unsaturated flow in the z-direction, the constants D̄z and
ās are analogous to the coe�cient of longitudinal hydrodynamic dispersion (Dh) ([L2T ≠1]),
and the average linear velocity (vs) ([LT ≠1]) respectively in the advection-dispersion con-
taminant transport equation.

Therefore, the pollutant advection-dispersion phenomenon is directly related to the trans-
port of water in an unsaturated porous medium, facilitating the obtaining of solutions for
other types of phenomena in which there is a solution to the dispersion-advection equation.
However, solutions must be used from one case to another, considering di�erent physical
interpretations for each scenario. The model proposes a fitting equation for SWRC as a
function of absolute suction value for soils with a unimodal pore distribution:
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◊(|Â|) = ◊r + (◊s ≠ ◊r)e≠|Â|” (2.35)

The graphical representation of Eq. 2.35 is shown in Fig. 2.7, where the parameter ” is
proportional to the initial slope of the SWRC, i.e., the slope at saturation.

Figure 2.7: Physical representation of parameters ”, ◊s, and ◊r.

2.3.2 Askar and Jin (2000) model
The objective of the model proposed by Askar & Jin (2000) focuses on the application of the
Richards equation (Eq. 2.23) to expansive soils. The model proposes a relationship between
◊ and volumetric variations, expressed through the general flow equation. The mathematical
formulation of the model considers the volumetric changes during the expansion phenomenon
and its e�ect on the void ratio (e). Assuming that a soil element represented by a cube of
side z [L], with initial volume (V0) [L3], and initial volume of water (Vwo) [L3] begins to swell
by the inflow of water from a (◊0) [L3L≠3] at a time t0, the volume change (�Vw) [L3] when
the cube reaches a value of V, Vw and ◊ at a time t is equal to:

�Vw = Vw ≠ Vw0 = ◊V ≠ ◊0V0 (2.36)

To obtain the volume of water per unit area (�wÕ) [L], Eq. 2.36 is divided by z2 [L2]:

�wÕ = �Vw

A
= ◊V ≠ ◊0V0

A
= ◊V

z2 ≠ ◊0V0
z2 (2.37)
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Bronswijk (1990) proposes a mathematical expression to define the changes in the geom-
etry of clay soils when subjected to wetting and drying cycles. The simple general equation
describes the conversion of volumetric changes from a three-dimensional plane to a one-
dimensional plane in swelling soils as:

A

1 + �V

V

B

=
A

1 + �z

z

Brs

(2.38)

where rs is a dimensionless geometry factor, and for 3D conditions, rs takes the value of 3,
and in the 1D case the value of 1. Using Eq. 2.38 for one-dimensional analysis (rs = 1) and
V = z3 [L3]:

�V = V ≠ V0 =
CA

1 + �z

z

B

≠ 1
D

z3 (2.39)

Substituting Eq. 2.39 into Eq. 2.37, and expressing in terms of V0:

�wÕ = V0
z2 (◊ ≠ ◊0) + ◊�z (2.40)

Eq. 2.40 is based on the assumption that vertical soil movement leads to changes in soil
layer thickness. This assumption requires that horizontal cracks remain stable or negligible.
During the swelling process, e changes from e0 to e at t0 to t, and since rs = 1 (one-
dimensional) the �V is restricted exclusively to �z so that �V = �z z2. Therefore, �V

can be expressed in terms of �e as:

z2�z = �eVs (2.41)

where Vs is the volume os solids [L3]. Now, substituting Eq. 2.41 into 2.40, it is possible to
obtain the equation describing the increase in �wÕ due to �e:

�wÕ = V0�◊

z2 + ◊�eVs

z2 (2.42)

According to Eq. 2.37, the Eq. 2.42 can be expressed in terms of Vw as:

�Vw = (V ≠ �V )�◊ + ◊�e
3

V

1 + e

4
(2.43)

The continuity equation in a one-dimensional analysis is restricted exclusively to the
z-direction. Therefore, using the 1D-form of Eq. 2.8 in Eq. 2.36 it is obtained:
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ˆ
1

�Vw
V

2

ˆt
= ≠ˆvz

ˆz
(2.44)

Substituting Eq. 2.44 into Eq. 2.43:

≠ˆvz

ˆz
= ˆ

ˆt

A
(V ≠ �V )�◊

V
+ ◊�e

V

3
V

1 + e

4B

(2.45)

According to Askar & Jin (2000) the term ((V ≠ �V )�◊)/V is too small and can be
neglected, so Eq. 2.45 can be rewritten as follows:

≠ˆvz

ˆz
=

A
ˆ◊

ˆt
+ ◊

1 + e

ˆe

ˆt

B

(2.46)

In the case of non-swelling soils, the term (◊/1 + e)/(ˆe/ˆt) is equal to 0, which returns
the continuity equation, and therefore the Richards equation, to its original form. Employing
Darcy-Buckingham law (Eq. 2.12), and the definitions of Dx, Dy, and Dz (Eqs. (2.20 to
2.22), the swelling-Richards equation is expressed as follows:

1
1 + e

ˆ

ˆt
[(1 + e)◊] = ˆ

ˆx

A

Dx(◊)ˆ◊

ˆx

B

+ ˆ

ˆy

A

Dy(◊)ˆ◊

ˆy

B

+ ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ ˆkz(◊)
ˆz

(2.47)
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Chapter 3

METHODS AND MATERIALS

3.1 METHODS
The methods used can be divided into four stages: i) mathematical formulation of the
model, ii) analytical solutions, iii) validation with experimental results, and iv) parametric
calibration. Fig. 3.1 presents the summary of the steps of the methodology to be executed
during the work. The final model obtained is one-dimensional and allows evaluating the
hydromechanical response of expansive soils, where the swelling path is mainly considered.
The results recorded after the mathematical modelling process are compared with laboratory
test data of soil columns with specific boundary conditions. The parametric calibration
evaluates the model’s field of action in di�erent soil typologies using results reported in the
literature. In this way, the behaviour of the data of the e-Â curve allows establishing of the
model’s limitations and the values of e at which the model presents a numerical limit.

Figure 3.1: Summary of steps of the methodology to be implemented.

3.1.1 Mathematical model formulation
The mathematical development established in this work is based on the lines of research
followed by Askar & Jin (2000); Cavalcante & Zornberg (2017); Richards (1931). The model
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is initially formulated from the theoretical arguments of water movement in unsaturated
porous media, introducing the concepts of swelling and shrinkage of soils due to moisture
changes. The definition of the unsaturated hydraulic conductivity and suction functions in
terms of volumetric water content and water movement in a REV results in a stable and
convenient formulation. This first orientation gives a hydraulic justification to the original
approach. Then, the model is developed from mechanical arguments on expansion behaviour.

It is established that transient flow in unsaturated porous media generates volumetric
changes expressed in variations in the soil void ratio. This first argument takes into consid-
eration the principle of mass conservation. In the classical Richards (1931) equation, it is
assumed that all changes in ◊ are dependent on variations in Sr, which translates into soil
porosity (n) [L3L≠3] remaining conservatively constant for all wetting or drying paths. The
model presented by Cavalcante & Zornberg (2017) is one-dimensional and can be applied to
column test results, where n remains relatively constant during the test.

However, for expansive soils, n (and consequently e) varies as a function of volumetric
changes given by changes in ◊. Although this argument was partially resolved by Askar & Jin
(2000), the model parameters have no physical meaning, and their mathematical resolution
depends on the definition of the functions k(◊) and Â(◊). Thus, since the parameters used
in the Cavalcante & Zornberg (2017) model have definite physical meaning and are constant
variables, in the proposed model, the swelling fraction of the Askar & Jin (2000) approach
will be represented by a constant term with physical meaning. Therefore, by controlling
the mechanical behaviour, the determined parameter will be responsible for regulating the
properties of interest of the mathematical calculation that will be studied throughout the
work. Fig. 3.2 presents an outline of the procedures adopted to formulate the model.

Figure 3.2: Schematic of model formulation for swelling soils in unsaturated porous media.

3.1.2 Analytical solutions
Once the model has been defined, the search for analytical solutions is carried out. Four
analytical solutions are proposed that di�er from each other and require two initial boundary
conditions. In all four cases, the moisture content is kept uniform, and the boundary condi-
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tion that controls the geometry of the column is varied. Thus, the resulting mathematical
equation will be solved using the Laplace transform in the time domain for four cases using
di�erent initial conditions as schematized in Fig. 3.3. Table 3.1 presents the initial, upper
and lower boundary and initial conditions for the four cases. In each case, Mathematica
12.3 software was used to implement the code in all the formulations. On the other hand,
the analytical solutions found will be evaluated in terms of their e�ciency using the experi-
mental results obtained by Azevedo (2016). The mathematical construction starts from the
Richards equation in its classical form (Eq. 2.23) and the simplified equations of Cavalcante
& Zornberg (2017) and Askar & Jin (2000).

Figure 3.3: Formulation of the analytical solution for model of swelling soils.

Table 3.1: Initial and boundary conditions for each case.

Case Initial condition Upper boundary condition Lower boundary condition

1

◊i = const

◊0 = const
L = Œ

2 L = L

3
v0 = const

L = Œ

4 L = L

3.1.3 Validation with experimental results
The soil column device was structured to estimate ◊ values in soil under a wide range of
Â. The column shown in Fig. 3.4 consists of a 197 mm diameter, 1100 mm high acrylic
column cell to contain the soil sample and a suction and water flow monitoring and control
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system. The hydraulic assembly uses a top cap connected low-flow pump to deliver water
at a constant rate of 0.40 ml/min. To guarantee the non-saturated condition throughout
the test, the flow rate chosen was lower than the one at which the ks value was reached.
Additionally, the flow is evenly distributed through the entire compacted soil column by
using filter paper at the top of the system.

Figure 3.4: Schematic diagram of the soil column test.

The water used in the test is drained using a perforated base plate at the bottom of the
column to a tipping bucket connected to the bottom of the container. The value of ◊ at
which steady flow conditions were obtained in this test system was 0.30. Both the outflow
and inflow of water into the soil pile are controlled using manual control valves, where the
outflow valve controls the loading condition of the test. Several circular sections were cut
along the length of the acrylic cell to mount the measuring and control instruments. Finally,
the soil column was lined with a plastic liner to prevent moisture loss by evaporation.

Two di�erent types of control sensors were installed in the monitoring equipment to
evaluate the behaviour of Â and ◊. Fluctuations in ◊ were controlled and measured with
seven CS645 time domain reflectometry (TDR) probes. On the other hand, suction was
recorded using MPS-2 tensiometers. TDR- CS645 and MPS-2 were arranged horizontally, as
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shown in Fig. 3.4, and the TDRs were arranged at 12, 34, 44, 56, 68, and 78 cm from the top
of the soil column. In the case of the TDRs, a calibration process was performed to improve
their accuracy to +/- 1% (Azevedo, 2012). The column tests were initially conceived to
evaluate the e�ect of the capillary barrier on geosynthetics, so the results of ◊ vs t and Â vs
t were limited exclusively to those recorded at positions upstream of the capillary barrier.
Therefore, to avoid this e�ect on the modelling and still have su�cient data to run the fitting
routines, the TDR-7 results will be excluded from the analysis.

The four analytical solutions proposed in the previous item will be fitted to the results
using two distinct and consecutive steps. The first step consists of fitting the RMA soil water
retention curve and soil unsaturated conductivity curve utilising the model of Cavalcante &
Zornberg (2017). With the flux parameters ks, ◊r, ◊s, the model parameter ” is determined
using curve fitting. In the second step, the above parameters are used together with the
developed model parameters derived from the mathematical formulation (emax and emin) in
the functions ks(◊), ◊(Â) and e(◊).

3.1.4 Parametric calibration
It is necessary to show that the model can simulate results from selected experimental tests,
so the model’s performance is analyzed using parametric calibration. To achieve this purpose,
data are used to demonstrate graphically the range in which the model can reproduce the
variation of void ratio with increasing suction. In this way, the suction versus void ratio (e-
log Â curve) is derived from Â values obtained from the SWRC in the drying path. According
to Gallipoli (2012), the e-log Â curve possesses a unique slope called the virgin line governed
by the properties of the micropores.

As the suction increases, the void ratio decreases, which defines a shrinkage path in the
e-log Â curve on the drying path. However, in the curve e-log Â, it is also possible to identify
the wetting path, generated from the increase of e, and the decrease of Â. Since the values
of Â are related to the e data, the inflexion point of the e-log Â curve where the shrinkage
is zero corresponds to the AEV of the SWRC. According to Fig. 3.5, the interval that exists
between the value of Â prior to the onset of shrinkage and the AEV defines both the virgin
drying line of the SWRC and the virgin shrinkage line of the e-log Â space. It is possible
to observe that most shrinkage occurs within the fully saturated state, i.e., in the suction
range before the soil starts desaturation. The e-log Â curve is illustrated in Fig. 3.5 and can
be interpreted in a unified framework.
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Figure 3.5: e - log Â curve.

The experimental results of expansive clays reported by Nowamooz & Masrouri (2010),
Al-Dakheeli & Bulut (2019), Zhao et al. (2021), and Sarker & Wang (2022) are adopted to
verify the proposed model. To illustrate the model’s accuracy, the numerical predictions and
the raw data are given for comparison. The basis of comparison of the results is the e-log
Â curve, and the ” value is estimated from the mathematical fit of the model. Using the
idealized curve presented in Fig. 3.5, the sensitivity of the parameters will be evaluated, as
well as the capacity of the model to recreate both the drying and wetting paths.

3.2 MATERIALS
Experimental results used to evaluate the proposed model were performed by Azevedo (2012,
2016). Soil column tests were conducted using soil obtained from a borrow pit at the Rocky
Mountain Arsenal (RMA) site in Denver, USA. Unaltered samples were collected from field
exploration using invasive Shelby tube borings. Table 3.2 indicates the physical properties
of the tested soil cores: specific gravity (Sg) [ML3M≠1L≠3], dry unit weight (“d) [ML≠3],
optimum moisture content (wopt) [MM≠1], minimum void ratio (emin) [L3L≠3], and max-
imum void ratio (emax)[L3L≠3]. Additionally, the values of liquid limit (LL), plastic limit
(PL), and plasticity index (PI) are presented.

Table 3.2: Physical properties of soil.

Property Sg “d (g/cm3) wopt (%) emin emax LL (%) PL (%) PI (%)

Value 2.71 1.90 15 0.45 0.89 32 12 20
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The grain size distribution curve obtained from the tests is presented in Fig. 3.6. In grain
sizes smaller than 0.075 mm, the soil samples showed silty sand textural mappings when
tested using 4% sodium hexametaphosphate (SHMP), meaning that approximately 50% of
the soil sample passed the No. 200 sieve (Azevedo, 2012, 2016). The separation method for
clay (<2 µm), silt (2-75 µm), and sand (75-2000 µm), as well as the measurement techniques,
were carried out following the international standard ASTM D422 (ASTM, 2007). The
hydrometer used for the dispersed particle concentration controls was of the ASTM-H152-
68°F type. This model is, in particular, a standard and universally approved. The suspension
smaller than 75 µm was dispersed with SHMP at 40 g per liter of solution. To measure the
concentration in suspension, the ASTM procedure requires using a compound correction for
each hydrometer reading. A more detailed description of the material used in this study is
summarized by Thompson (2009).

Figure 3.6: Particle Size Distribution of the soil.

Fig. 3.7 shows the typical bimodal SWRC of this material (Azevedo, 2012, 2016). The
results were obtained using three di�erent techniques at varying ranges: i) for a low suction
range (0 to 10 kPa), the hanging column test method was used; ii) at moderate suction (5 to
500 kPa), the pressure plate testing according was employed, and iii) at high suction (over
500 kPa), thermodynamic methods were applied. The air entry value for the macropores
(AEVmacro) in the curve was 0.30 kPa. Due to the use of various measurement systems, it
was possible to obtain values greater than 10000 kPa of matric suction. According to Otál-
varo Calle (2013), the mobilization of the water stored in the micropores requires increasing
the suction until reaching values of 35 MPa. In this case, due to the joint use of di�erent
methods, it was possible to observe the AEV of the micropores (AVmicro) at 1100 kPa.
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The data received from the experimental cycle were analyzed using a curve-fitting proce-
dure proposed by Van Genuchten (1980). In the predictive process, a parametric comparison
was resorted to using the ◊s data as the point of coincidence between the model and the
laboratory results (Azevedo, 2012, 2016). Fig. 3.7 presents the typical SWRC of the evalu-
ated material and the mathematical fit, and Table 3.3 shows the model fit parameters and
experimental results. The van Genuchten model fits the data by employing a functional
algorithm appropriate for small Â values, which limits the model when there is a transition
between porous systems.

Figure 3.7: Soil Water Retention Curve.

Table 3.3: Summary of hydraulic fitting parameters of soil.

◊s ◊r AEVmicro (kPa) AEVmacro (kPa) n – (cm≠1)

Experimental 0.41 0.04 0.30 1100 - -

Van Genuchten (1980) 0.41 0.05 - - 1.16 0.69

In unsaturated soils, the value of hydraulic conductivity (k) varies with suction so that
at a value of Â of 0 kPa, k is equal to ks. To observe the behaviour of k in di�erent ranges
of Â, it is necessary to find the k-function of the soil. Though, as in the case of SWRC
the k-function can be estimated by employing theoretical and experimental methods, many
empirical techniques are time-consuming and prone to high levels of uncertainty. Therefore,
mathematical models have been developed that allow k-functions to be predicted from SWRC
results (Mualem, 1976).
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The van Genuchten-Maulem model established by Mualem (1976) is the most approved
for estimating the variation of k with respect to Â, as it modifies the equations of Van Genuchten
(1980) in a statistical way to determine the k-function. Fig. 3.8 presents the soil k-function
obtained using the van Genuchten-Maulem model. Since the behaviour of the SWRC and
k-function is theoretically linked, it is possible to establish a relationship between Â, k, and
◊ being inversely proportional between Â and k and directly proportional between k and ◊.
In Fig. 3.8, the value of ks found was 8.2e-5 cm/s which, when employed in the model of
Cavalcante & Zornberg (2017), allows demonstrating that the fitting hydraulic parameter ”

is proportional to the saturation slope.

Figure 3.8: Soil k-function.
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Chapter 4

RESULTS

4.1 MATHEMATICAL MODEL FORMULATION
In this section, the model of water flow in porous media with swelling potential is formulated.
The way to obtain the equation is based on the classical mathematical definitions of the Askar
& Jin (2000) and Cavalcante & Zornberg (2017) models. At the end of the formulation, a
flow equation analogous to the classical one proposed by Richards (1931) is obtained, with
terms of derivatives of the void ratio replacing the initial fraction of the original equation.
Therefore, the resulting equation can be called the water flow equation in unsaturated media
with swelling or the Richards equation for swelling soils.

There are two arguments to be considered to obtain the equation: one from the per-
spective of water movement in unsaturated porous media, where the arguments established
by the law of continuity, the Darcy-Buckingham law and the Bernoulli equation must be
fulfilled, and the other, assuming that any volumetric change experienced during swelling
deforms the soil matrix, which can be expressed using a state variable. The equation pro-
posed by Askar & Jin (2000) (Eq. 2.47) can be rewritten using the rate of change in water
storage in a REV as:

mstorage = 1
1 + e

ˆ

ˆt
[flw(1 + e)◊]dxdydz (4.1)

The principle of continuity implies that for all fluids that are incompressible (i.e., flw is
constant in time) and homogeneous (i.e., flw is constant in space), the di�erence between the
total mass outflow and inflow rates must be equal to the change in water storage. Using the
continuity equation (Eq. 2.8) Eq. 4.1 can represent this principle as:
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1
1 + e

ˆ

ˆt
[◊(1 + e)] = ≠ˆvx

ˆx
≠ ˆvy

ˆy
≠ ˆvz

ˆz
(4.2)

Employing the flow rate per unit of area (discharge velocity) in each direction can be
defined using Darcy-Buckingham’s law (Buckingham, 1907), which is expressed using Eqs.
2.16, 2.17, 2.18, the Eq. 4.2 can be rewrite as follows:

1
1 + e

ˆ

ˆt
[◊(1 + e)] = ˆ

ˆx

C
kx(Â)
flwg

ˆÂ

ˆx

D

+ ˆ

ˆy

C
ky(Â)
flwg

ˆÂ

ˆy

D

+ ˆ

ˆz

C

kz(Â)
A

1
flwg

ˆÂ

ˆz
≠ 1

BD

(4.3)

According to the ◊-form of the Richards equation, the definition of unsaturated water
di�usivity coe�cient (D(◊)) can be used to simplify Eq. 4.3 of the form:

1
1 + e

ˆ

ˆt
[◊(1 + e)] = ˆ

ˆx

A

Dx(◊)ˆ◊

ˆx

B

+ ˆ

ˆy

A

Dy(◊)ˆ◊

ˆy

B

+ ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ ˆkz(◊)
ˆz

(4.4)

Eq. 4.4 can be referred to as an extension of the Fokker-Planck equation for soils with
swelling potential. However, for the case of soil-column tests, it must be assumed that the
flow direction is strictly vertical, following the orientation of the z-axis, so Eq. 4.4 can be
simplified as:

1
1 + e

ˆ

ˆt
[◊(1 + e)] = ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ ˆkz(◊)
ˆz

(4.5)

Joining Eq. 4.5 to the concept of unsaturated advective seepage (as), the following
equation is obtained:

1
1 + e

ˆ

ˆt
[◊(1 + e)] = ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ as(◊)ˆ◊

ˆz
(4.6)

Applying the derivative rules to the first term of Eq. 4.6:

◊

1 + e

ˆe

ˆt
+ ˆ◊

ˆt
= ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ as(◊)ˆ◊

ˆz
(4.7)

Replacing ˆe/ˆt by (ˆe/ˆ◊)(ˆ◊/ˆt), Eq. 4.7 can be rewritten as:
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R(e)ˆ◊

ˆt
= ˆ

ˆz

A

Dz(◊)ˆ◊

ˆz

B

≠ as(◊)ˆ◊

ˆz
(4.8)

with,

R(e) = 1 + ◊

1 + e

ˆe

ˆ◊
(4.9)

The function R(e) allows evaluating the behaviour of expansive soils when exposed to
wetting cycles under unsaturated conditions of transient flow. In terms of the second member
of Eq. 4.8, the di�usive component (Dz(◊)) corresponds to the flow of water advancing under
gravitational action, and the di�usive component (as) defines the di�usively propagated
water movement. The solution of Eq. 4.8 requires the definition of three additional relations
because it involves four unknowns (◊, kz, Â and e). The relations k(◊) and Â(◊) were
mathematically deduced by Cavalcante and Zornberg (2017), and their proof is presented in
Appendix A1 and A2 respectively. Accordingly, kz(◊) and Â(◊) are represented by:

kz(◊) = ks

A
◊ ≠ ◊r

◊s ≠ ◊r

B

(4.10)

Â(◊) = 1
”

ln
A

◊ ≠ ◊r

◊s ≠ ◊r

B

(4.11)

It can be demonstrated (Appendix A3) that the ratio e(◊) keeps its intrinsic meaning in
e, and that its variation depends on the definition of a minimum and a maximum value:

e(◊) = ≠1 + (1 + emin)
31 + emax

1 + emin

4

Q

ccca

ln ◊

◊r

ln ◊s

◊r

R

dddb

(4.12)

An essential consequence of adopting Eqs. 4.10, 4.11 and 4.12 into Eq. 4.8 is that the
hydraulic expressions Dz(◊), as(◊) and R(e) become constants. Specifically, the resulting
parameters can be expressed as:

D̄z = ks

”(◊s ≠ ◊r)flwg
(4.13)

ās = ks

(◊s ≠ ◊r)
(4.14)
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R̄ = 1 +
ln

31 + emax

1 + emin

4

ln
A

◊s

◊r

B (4.15)

where D̄z is the constant unsaturated water di�usivity, ās is the constant unsaturated ad-
vective seepage, and R̄ is the constant swelling potential obtained when kz(◊), Â(◊) and e(◊)
are represented by linear, logarithmic, and linear relationships, respectively. As can be seen,
when the soil is non-swelling, i.e., when there is no variation in e (i.e. emin = emax), R̄ is
equals to 1. In this case, the model is returned to the original version of the model proposed
by Cavalcante & Zornberg (2017).

Therefore, by converting the generalized version of the model (4.8) into an easily appli-
cable form using Eqs. 4.13, 4.14 and 4.15 the required parameters in the model are ◊s, ◊r,
ks, ”, emin and emax. Direct or indirect methods can obtain these parameters. ◊s and ◊r

come from the SWRC, ks can be obtained either experimentally or by using constitutive
estimation models, ” is a fitting parameter that depends on the SWRC, and emin and emax

by using physical characterization tests. Thus, the simplified form of the model corresponds
to:

R̄
ˆ◊

ˆt
= D̄z

ˆ2◊

ˆz2 ≠ ās
ˆ◊

ˆz
(4.16)

For steady-state conditions, Eq. 4.16 becomes:

D̄z

R̄

d2◊

dz2 ≠ ās

R̄

d◊

dz
= 0 (4.17)

In summary, the global framework for unsaturated transient flow in expansive media
evaluated in this study is represented by Eq. 4.8 for the general case, where kz(◊), Â(◊)
and e(◊) are functions of ◊. In contrast, the problem related to swelling soils in unsaturated
flows is easier to evaluate using Eq. 4.16, where D̄z, ās and R̄ are constant values. A
particular feature of Eq. 4.16 is its analogy with the advection-dispersion contaminant
transport equation:

R
ˆc

ˆt
= Dh

ˆ2c

ˆz
≠ vs

ˆc

ˆz
(4.18)
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4.2 ANALYTICAL SOLUTIONS
The development of analytical solutions considers the soil-atmosphere relationship, including
three parameters dependent on these dynamics. To understand this unit, it is necessary to
evaluate the mechanics of water distribution in the atmosphere, soil surface, and interior
matrix. Most of these phenomena are due to the law of mass conservation generated during
the hydrological cycle. For practical purposes, in most problems involving real geotechnical
scenarios, the hydrologic cycle is simplified exclusively to the physical factors of precipitation,
evapotranspiration, surface runo� and infiltration.

Infiltration caused by the external injection of water is the primary variable of analysis
in the hydrological balance due to its influence on the definition of the physical processes of
water distribution within the soil. To evaluate this phenomenon, it is necessary to establish
a control field in which water follows a flow path in a vertically downward direction. On a
global scale, during a rainfall event, the soil is in its maximum infiltration phase in the first
periods, allowing it to absorb all the water on the surface. When passing from time t = 0 to
time t = t, the porous matrix of the soil reduces its capacity due to saturation, initially of
the macropores and subsequently of the micropores. Fig. 4.1a presents a synthesized scheme
of the hydrological cycle and the atmosphere-water interaction on a macro scale. The rate
at which water infiltrates into the soil mass is called the infiltration velocity (v0) [LT ≠1]
and is inversely proportional to the hydraulic conductivity of the material. The relationship
between k(◊) and (v0) is presented in Fig. 4.1b.

(a) (b)

Figure 4.1: Synthesized scheme: (a) hydrological cycle; (b) functions k(◊) and v0 with
respect to time.
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As rainwater accumulates in the upper layer (I), the water-filled pores find a continuous
phase to flow, increasing permeability and reducing infiltration capacity; this relationship
is appreciable in the upper layers. As soon as the moisture front advances and reaches
the transition zone (II), the infiltration capacity of the soil increases due to the decrease in
permeability as a result of running the unsaturated condition. From this point, the water
table is assumed to reach deeper strata, which saturates the lower layers, giving rise to a type
I scenario. The functional dynamics are similar in stages I and II, and the flow mechanism
responds to same phenomena, infiltration in stages I and II.

It is possible to understand the behaviour of the parameter (v0), using the variation of ◊

as a function of time. For a value of (v0) = 0, the value of ◊ remains constant at ◊=◊i, where
◊i is the initial volumetric water content [L3L≠3]. As the flow is in phase I, (v0) = (v0),
which stimulates the variation of ◊, from ◊i to ◊0, where ◊0 is the volumetric water content
measured at any instant t. Increasing the discharge gradient until (v0) = (v0,max) (where
v0,max [LT 1] is maximum discharge), gives ◊i = ◊s. Fig. 4.2 shows the relationship between
(v0), (v0,max), ◊i, ◊0, and ◊s, as well as the behaviour of the curves as a function of time.

Figure 4.2: Graphical representation of the behaviour of ◊0, ◊i, v0 and v0,max with respect
to time.

The unsaturated model defined by Cavalcante & Zornberg (2017) allows modelling mois-
ture fronts at di�erent depths to overcome some conceptual and numerical limitations. Thus,
by adopting at the upper boundary of the domain a second-order boundary condition or Neu-
mann flow condition, it was necessary to impose a constant value of (v0), as well as maximum
(v0,max) and minimum (v0,min) [LT 1] discharge values. Both (v0,max) and (v0,min) are defined
from the unsaturated hydraulic conductivity, the maximum wetting capacity and the initial
state of soil moisture.
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4.2.1 Case 1: Imposed constant moisture to the upper boundary
of a semi-infinite column

For this case, it is established that the initial condition of the formulation considers the
initial volumetric content (◊i) uniform, so for a time t=0, the solution is given by:

◊(z, 0) = ◊i (4.19)

where ◊i is constant. For this solution, a Dirichlet boundary condition is adopted, where the
required value at the domain boundary corresponds to a constant value of ◊ at the upper
boundary:

◊(0, t) = ◊0 (4.20)

where ◊0 is constant. Considering that the domain corresponds to a semi-infinite column,
the flow evaluated in space is described in the Œ-scenario. Therefore, the lower boundary
condition adopted in this case is described by:

ˆ◊

ˆz
(Œ, t) = 0 (4.21)

By adopting this condition, two situations arise simultaneously in the solution: i) upon
reaching a certain depth within the domain, ◊ and Â reach constant values, and ii) the
hydraulic gradient in the z-direction equals 1 in depth. Thus, using the initial condition
(◊i=constant), and the upper (◊=constant) and lower (z=Œ) boundary conditions, the an-
alytical solution of equation Eq. 4.16 for the case 1 is:

◊(z, t) = ◊i + (◊0 ≠ ◊i)A(z, t) (4.22)

where A equals:

A(z, t) = 1
2

C

erfc(Z≠1) + exp
A

āsz

D̄z

B

erfc(Z+1)
D

(4.23)

and the term Z+1 equals:

Z±1 = R̄z ± āst

2
Ò

R̄D̄zt
(4.24)
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The complementary error function, erfc(Z), is defined, for zØ0 as:

erfc(Z) = 1 ≠ 2
fi

⁄ z

0
exp(≠t2)dt (4.25)

In simple words, the function erfc(Z) represents the area under the two tails of a zero-
mean Gaussian probability density function with a variance (‡2) value equal to 1/2. For the
particular case in which ās=0, i.e. ks=0 (a completely impermeable or membrane-covered
soil), the analytical solution reduces to:

◊(z, t) = ◊i + (◊0 ≠ ◊i)erfc

Q

cccca

z

2
Û

D̄z

R̄t

R

ddddb
(4.26)

For the case in which D̄z=0, i.e. ks=0, the analytical solution of Eq. 4.16 reduces to:

◊(z, t) = ◊i + (◊0 ≠ ◊i)H
3

ās

R̄t ≠ z

4
(4.27)

where H is the Heaviside function, whose value is 0 for any negative argument, and 1 for any
positive argument. Therefore, H is given by:

H(x) =

Y
_]

_[

0, if x Æ 0.

1, if x > 0.
(4.28)

By employing the ordinary di�erential equation (4.17), the Richards equation is reduced
to a steady-state condition. In this scenario, it is not necessary to use an initial condition,
since the lower and upper boundary conditions in the domain are su�cient to find the
solution. For this case, the Dirichlet boundary condition imposed on the upper boundary of
the domain corresponds to:

◊(0) = ◊0 (4.29)

where ◊0 is constant. For the semi-infinite column, the lower boundary condition is given
by:

d◊

dz
(Œ) = 0 (4.30)
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Therefore, in the steady-state condition, the analytical solution of the Richards equation
for evaluating swelling in soils is:

◊(Z) = ◊0 (4.31)

4.2.2 Case 2: Imposed constant moisture to the upper boundary
of a column of finite length

As in Case 1, Case 2 employs the same initial condition of ◊i=constant, as described in Eq.
4.19. Similarly, the Dirichelt boundary condition imposed at the upper boundary of the
domain corresponds to the same one used in Case 1, whose mathematical expression is given
by Eq. 4.20. However, being a column of finite length, the lower boundary condition varies
concerning Case 1. For this case, a column of length L is assumed in which the gradient of
◊ is equal to 0, which is expressed as:

ˆ◊

ˆz
(L, t) = 0 (4.32)

By employing this assumption, the same mathematical consequences are obtained: i)
◊=constant, ii) Â=constant and iii) hydraulic gradient equals 1. However, in this case, these
reactions are recorded at a domain depth equal to L. Thus, the analytical solution of Eq.
4.16 under these initial and boundary conditions corresponds to:

◊(z, t) = ◊i + (◊0 ≠ ◊i)B(z, t) (4.33)

where B is given by:

B(z, t) = 1 ≠
Œÿ

m=1

2—m sin
A

—mz

L

B

exp
A

āsz

2D̄z

≠ ā2
st

4R̄D̄z

≠ —2
mD̄zt

R̄L2

B

S

U—2
m + āsL

2D̄z

+
A

āsL

2D̄z

B2T

V
(4.34)

and the term —m corresponds to the eigenvalues at the positive roots of the equation and is
defined by:

—m cot(—m) + āsL

2D̄z

= 0 (4.35)
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To achieve accurate results of the analytical solution, approximately four terms of the
series defined in Eq. 4.34 can be employed. Therefore, using the definitions of Z±1 and the
complementary error function, erfc(Z), Eq. 4.34 reduces to:

B(z, t) = 1
2erfc(Z≠1) + 1

2 exp
A

āsz

D̄z

B

erfc(Z+1)

+ 1
2

C
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+ ā2
st

R̄D̄z

D

exp
A
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D̄z

B

erfc
S
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2
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Û
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fiR̄D̄z

exp
A

āsL

D̄z

≠ R̄

4D̄zt
(2L ≠ z + āst)2

B

(4.36)

In order to simplify the domain of analysis, the same hypotheses used in Case 1 are
applied. Thus, for the scenario in which ās=0, i.e. ks=0, the analytical solution solving Eq.
4.16 under this particular boundary condition reduces to:

◊(z, t) = ◊i + (◊0 ≠ ◊i)
A

1 +
Œÿ

m=1

4
fi

sin
3

fiz

2L

4
exp
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≠fi2D̄zt

4R̄L2

BB

(4.37)

When considering the influence of the eigenvalues on the dynamics of the results, the
two possible roots (—m=±fi/2) were evaluated. However, only the positive —m value gives a
feasible solution in Case 2. Thus, including this argument in the simplification process of
Eq. 4.37, the approximate expression of the analytical solution is given by:

◊(z, t) = ◊i + (◊0 ≠ ◊i)
S

Uerfc
Q

a R̄z

2
Ò

D̄zR̄t

R

b + erfc
Q

aR̄(2L ≠ z)
2

Ò
D̄zR̄t

R

b

T

V (4.38)

For the case in which D̄z=0, i.e. ks=0, the analytical solution of Eq. 4.16 reduces to
Eq. 4.27. Precisely, the Dirichlet condition adopted to the upper boundary of the domain
corresponds to Eq. 4.29. In the case of the lower boundary condition, the assumption of a
column with length L results in a zero volumetric water content gradient, which is expressed
as:

d◊

dz
(L) = 0 (4.39)

Using these conditions, the solution obtained for Case 2 in the steady-state is the same
as in Case 1 (Eq. 4.31).
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4.2.3 Case 3: Imposed constant discharge velocity to the upper
boundary of a semi-infinity column

As in Cases 1 and 2, the initial condition adopted in Case 3 is given by a constant value ◊i.
However, unlike Cases 1 and 2, in this case a second-type boundary condition (also called
the Neumann boundary condition) is used for the upper boundary. This assumes that the
upper boundary will not be dominated by a constant value ◊ but by a constant discharge
velocity (v0) as follows:

A

D̄z
ˆ◊

ˆz
≠ kz

B------
z=0

= v0 (4.40)

where v0 is constant. The mathematical behaviour of v0 is dominated by ks. Thus, the
maximum value that can be reached by v0 corresponds to the value of ks. However, the
fluctuation of ks is dominated by the value of ◊s and ◊r, so the maximum imposed discharge
velocity (v0,max) is:

v0,max = ◊sks

(◊s ≠ ◊r)
(4.41)

Being a semi-infinite column, the lower boudary condition in Case 3 is given by Eq. 4.21.
Some analytical solutions to partial di�erential equations under similar initial and boundary
conditions have been reported in the literature (Gershon & Nir, 1969; Lindstrom et al., 1967).
The analytical solution of Eq. 4.16 for Case 3 is given by:

◊(z, t) = ◊i +
3

v0
ks

(◊s ≠ ◊r) ≠ ◊i

4
C(z, t) (4.42)

where C equals:

C(z, t) = 1
2erfc(Z≠1) +

Û
ā2

st

fiR̄D̄z

exp
A

≠(R̄z ≠ āst)2

4D̄zR̄t

B

≠ 1
2

A

≠1 + āsz

D̄z

+ ā2
st

R̄D̄z

B

exp
A

āsz

D̄z

B

erfc(Z+1)
(4.43)

For the scenario in which ās=0, the analytical solution solving Eq. 4.16 under this
particular boundary condition reduces to:
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◊(z, t) = ◊i +
3

v0
ks

(◊s ≠ ◊r) ≠ ◊i

4
erfc

Q

a R̄z

2
Ò

D̄zR̄t

R

b (4.44)

For the case in which D̄z=0, the analytical solution of Eq. 4.16 reduces to:

◊(z, t) = ◊i +
3

v0
ks

(◊s ≠ ◊r) ≠ ◊i

4
H

3
ās

R̄t ≠ z

4
(4.45)

where H is the Heaviside function and is given by Eq. 4.28. For this case, the steady-state
solution is obtained by solving Eq. 4.17. Unlike Case 1 and 2, Case 3 employs the Neumann
flux boundary condition which includes a constant v0 value at the upper boundary of the
domain:

A

D̄z
d◊

dz
≠ kz

B------
z=0

= v0 (4.46)

For the lower boundary of the domain, Eq. 4.30 is used for the case of a semi-infinite
column. Finally, the analytical solution of Eq. 4.17 for Case 3 corresponds to:

◊(z) = v0
kz

(◊s ≠ ◊r) (4.47)

4.2.4 Case 4: Imposed constant discharge velocity to the upper
boundary of a column of finite length

Case 4 can be categorized as a union of Cases 1, 2 and 3, so the initial condition is given by
Eq. 4.19. As in Case 3, Case 4 employs the Neumann condition in the upper boundary of
the domain, whose main argument assumes v0 as constant, and v0,max is defined using Eq.
4.41. Additionally, being a finite column of length L, the lower boundary condition is the
same as that used in Case 2 (Eq. 4.32). Therefore, the analytical solution of Eq. 4.16 for
these initial and boundary conditions were derived as follows:

◊(z, t) = ◊i +
3

v0
ks

(◊s ≠ ◊r) ≠ ◊i

4
D(z, t) (4.48)

where D equals:
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(4.49)

In this case, only the positive values of the root of the eigenvalues —m were used:

—m cot(—m) ≠ —2
mD̄z

āsL
+ āsL

4D̄z

= 0 (4.50)

As in Case 3, the mathematical simplification process was performed, so that from Eq.
4.50 only four terms are necessary to obtain a certain solution. Therefore, the optimized
form of Eq. 4.50 is given by:
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4 ā2
st

fiR̄D̄z

C

1 + ās

4D̄z

3
2L ≠ z + ās

R̄
t
4D

exp
A

āsL

D̄z

≠ R̄

4D̄zt

3
2L ≠ z + ās

R̄
t
42B

≠ ās

D̄z

C

2L ≠ z + 3āst
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(4.51)

For the scenario in which ās=0, the analytical solution solving Eq. 4.16 under this
particular boundary condition reduces to Eq. 4.44 in Case 3. Also, For the case in which
D̄z=0, the analytical solution of Eq. 4.16 reduces to Eq. 4.45 in Case 3. The derivation
of the steady-state solution in Case 4 applied the Neumann flux boundary condition at the
upper boundary of the domain resulting in Eq. 4.46 of Case 3. Likewise, the lower boundary
condition imposes a null gradient of ◊ for a finite column of length L, resulting in Eq. 4.39
of Case 2. Applying these boundary conditions together yields Eq. 4.47, the same obtained
in Case 3.
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4.3 DECISION JUSTIFICATION ON CASE CHOICE
A comparative analysis of the finite and semi-infinite domain solutions was carried out to
establish the cases to evaluate the experimental results. In this case, the selection was
based on two main criteria. First, a significant agreement between cases was observed when
analysing a small L range. Since a one-dimensional space limited to L = 1.1 m was evaluated,
the results obtained for the finite solutions (Cases 2 and 4) were very similar to those obtained
in the semi-infinite cases (Cases 1 and 3). However, for values of L of considerable magnitude,
the numerical correspondence between values is reduced since it is bound exclusively for the
initial interval. Second, it is much more practical to use the equations of the semi-infinite
solutions (for small L values) because they do not use infinite summations. Therefore, it was
decided to use Cases 1 and 3 to evaluate the proposed model using the experimental results.

Some results obtained using Cases 2 and 4 are shown to exemplify the correspondence
between cases. Fig. 4.3 presents the volumetric water fronts estimated by the model in the
soil column using Case 2. In Fig. 4.3a and 4.3b, the time history of ◊ at di�erent locations
and the profiles of ◊ at increasing times are presented. Additionally, Fig. 4.4 presents the
void ratio estimated by the model in the soil column using Case 2 for time history at di�erent
locations (Fig. 4.4a) and the profiles increasing times (Fig. 4.4b). At values of L greater
than 1.1 m, the model limits the presentation of results due to the lower boundary condition
L = L. As shown below, the results obtained for each z-position in Case 2 are identical to
those obtained for Case 1.
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Figure 4.3: Predicted volumetric water content for Case 2 using ”=0.639 kPa≠1: (a) time
history at di�erent locations; (b) profiles at increasing times.
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Figure 4.4: Predicted void ratio for Case 2 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.

In Fig. 4.5a and 4.5b, the void ratio and per cent swelling were evaluated for di�erent
t and z settings considering Case 4. In this scenario, the dynamics of the results are less
perceptible for a limited space that L = L controls since only the data obtained in the
first layers of the soil column are presented. However, as will be observed later, the results
obtained for Case 4 are identical, for this analysed swath, to those estimated using Case 3.
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Figure 4.5: Predicted swelling for Case 4 using ”=0.639 kPa≠1: (a) time history at di�erent
locations; (b) profiles at increasing times.

4.4 VALIDATION WITH EXPERIMENTAL RESULTS
In the following section, the numerical predictions of the model are grouped into two stages
of test results applying the hydromechanically coupled model for unsaturated swelling soils.
The first group corresponds to the results obtained using the mathematical derivation of
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the model exclusively. The other is the model’s results applying the analytical solutions for
cases 1 and 3. It is important to emphasize that the parameters are the same for the first
and second phases and come from the experimental tests performed by Azevedo (2016). The
coupling between the model and constitutive parameters allows identifying the limitations
of the model, as well as the range in which the results are accurate and in which the model
estimates numerical atypicalities.

The model parameters can be determined by employing a relatively limited number of
easy-to-run laboratory experiments. Therefore, according to the methodology performed by
Azevedo (2016), it was possible to extract the values of the five constitutive parameters of
the model (◊s, ◊r, emax, emin and ks). Table 4.1 summarizes the parameter values used in all
modelling for phases 1 and 2 of the validation section.

Table 4.1: Parameters of the analyzed model.

Parameter ◊s ◊r emax emin ks (m/s)

Value 0.41 0.04 0.89 0.45 8.2e≠5

The hydraulic fitting parameter ”, was calculated from the SWRC results using both the
unimodal model proposed by Cavalcante & Zornberg (2017) and the bimodal model proposed
by Costa & Cavalcante (2021). Since ” is a parameter derived adequately from mathematical
fitting, it was necessary to explore the variation between a unimodal and bimodal framework.
The estimation of ” depends on the SWRC because, although it is a parameter specific to the
proposed model, its derivation was performed by adapting the mathematical and physical
arguments of Cavalcante & Zornberg (2017). Therefore, its intrinsic applicability in both
models makes the functionality equivalent.

The model proposed by Costa & Cavalcante (2021) is based on the superposition of
two unimodal models, so it is possible to find two hydraulic fitting parameters, ” and ”2,
continuous with each other, which allows generating values for two di�erent peaks in the
SWRC. The ” from the Costa & Cavalcante (2021) model is used as a hypothesis for the ”

value used in this study. The adjustment employing ” allows adjusting the SWRC taking
as reference the AEV value of the micropores since this value corresponds to the range of
suction and moisture variation applied during the test. On the other hand, the ”2 value is
defined by the AEV of the macropores, i.e. if this value is utilized to fit SWRC, the suction
range achieved would be less than 1 kPa. Table 4.2 presents the numerical comparison of
the fit performed for SWRC.
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Table 4.2: Sensitivity of the ” parameter for unimodal and bimodal SWRC.

Model Cavalcante & Zornberg (2017) Costa & Cavalcante (2021)

” (kPa≠1) 0.639 1.004

”2 (kPa≠1) - 0.009

⁄ (kPa≠1) - 0.829
Note: hydraulic fitting parameter micropores (”), hydraulic fitting parameter macropores (”2),

additional fitting parameter for bimodal SWRC (⁄).

By implementing Eq. 4.16 in Wolfram Mathematica 12.3 using the parameter values
in Tables 4.1 and 4.2, the following hydromechanical relationships were obtained: i) ◊ -
log Â, ii) ks - log Â and iii) e - log Â. In the case of the ◊ - log Â relationship, the best
fit obtained concerning the experimental results was evaluated. However, since, in the soil
microstructure, macropores and micropores are in equal proportion, the Costa & Cavalcante
(2021) model recreates the SWRC path more accurately. The value of this fit was ” =
1.004 kPa≠1, a numerically higher value than that obtained by implementing Cavalcante &
Zornberg (2017) (” = 0.639 kPa≠1).

Fig. 4.6 and 4.7 show the experimental SWRC and the numerical fits for unimodal and
bimodal schemes. Using the ” value for bimodal curves allows for identifying an accurate
correlation with the laboratory values. In the case ” = 1.004 kPa≠1, the agreement can
be considered as good, but certainly not perfect for the SWRC. It can also be observed
that although ” possesses the same physical meaning for both models, the estimation of
Cavalcante & Zornberg (2017) does not directly a�ect the prediction quality of Costa &
Cavalcante (2021) for the same data set.
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Figure 4.6: Fitting SWRC to obtain the ” value.
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The experimental results of the SWRC presented in Fig. 3.7 indicate a bimodal be-
haviour. Although the proposed model depends on the parameter ” obtained from the
model of Cavalcante & Zornberg (2017), whose formulation was based on unimodal SWRC,
it is possible to establish a fit based on ◊i and ◊0. Fig. 4.7 presents the SWRC fit employing
the model proposed by Costa & Cavalcante (2021) for soils with bimodal porosity. The value
of ◊i limits the fit and defines the maximum Â value the model will reach to generate the
suction front. In contrast, the value of ◊0 represents the minimum Â value the model can
estimate. This range of Â applies exclusively to the estimate generated by the analytical
solutions since, in that case, the suction is strongly dependent on ◊i and ◊0.

Figure 4.7: Fitting of bimodal SWRC to obtain the ” value.

The available measurements and predicted curves for the unsaturated hydraulic con-
ductivity are compared in Fig. 4.8. In this case, only the scenario ” = 0.639 kPa≠1 was
analyzed since the experimental results define an almost idealized unimodal k-function when
increasing Â. While allowing the unimodal graphical path to be determined, the fit varies
significantly concerning the experimental residual Â value (Â value reached the minimum
value of kz) and moderately with respect to ks.
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Experimental results
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Figure 4.8: Comparison of the experimental results of unsaturated hydraulic conductivity
with the k-function fitting model.

Inspection of Fig. 3.5 indicates that the AEV controls the rate at which the minimum
void ratio changes for a given suction value. To corroborate this argument, the e - log Â curve
presented in Fig. 4.9 with di�erent values of ” is considered. The value of AEV obtained
experimentally was 0.5 kPa (Fig. 3.7), and the results in Fig. 4.9 for ” = 0.639 kPa≠1 indicate
that the value of Â at which shrinkage ceases is approximately 0.8 kPa. The estimated emin

value was the same for all ” values evaluated and corresponds to the experimental emin

value. This means that gradually with decreasing suction, the soil abruptly stopped swelling
deformation during the hydration stage.

In the process of coding Eq. 4.16, three values of ” were explored to determine the
sensitivity of the results. It was observed that the path of e with increasing Â changed
significantly with decreasing ”, indicating that the deformation caused by swelling decreases
with decreasing ”. Fig. 4.9 also shows that the curves estimated by the model are of idealized
character, i.e., their typical shape is defined respectively in Fig. 3.5. Table 4.3 shows the
values of the advective (ās), di�usive (D̄z) and swelling (R̄) components obtained by running
the model with the parameters of the experimental results.
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Figure 4.9: Sensitivity of hydraulic parameter (”) in the e - log Â curve.

Table 4.3: R̄, D̄z and ās components obtained from the experimental fitting.

Parameter R̄ D̄z (m2/s) ās (m/s)

Value 1.27 1.90e≠8 1.60e≠4

Exploring the analytical solutions proposed to evaluate the hydromechanical mechanism
of swelling soils in unsaturated flow problems of porous media is particularly beneficial in
determining the behaviour of the parameters involved. Accordingly, this section provides a
detailed analysis of the sensitivity of ◊s, ◊r, emin, emax, ks, and ”. The parametric study was
conducted considering a constant initial volumetric content condition (Case 1) and constant
discharge velocity (Case 3) for semi-infinite columns. The adopted values of each parameter
in the two scenarios are presented in Table 4.4.

Table 4.4: Parametric values used in the analytical solutions for Cases 1 and 3.

Parameter g (m/s2) ” (kPa≠1) flw (N/m3) ◊0 ◊i v0 (m/s) L (m)

Value 9.80 0.639 1000 0.27 0.15 2.18e≠7 1.10
Note: gravitational aceleration (g), hydraulic fitting parameter (”), density of water (flw), volumet-

ric content at time t (◊0), initial volumetric content (◊i), discharge velocity (v0) and soil-column

length (L).

The value of ” = 0.639 kPa≠1 was maintained in all stages of the solution because it
presented a better fit in the SWRC results. For Case 1, an initial and boundary condition
corresponding to ◊i = 0.15, and ◊0 = 0.27, respectively, was adopted. For Case 3, the solution
was based on the criterion of ◊i = 0.15 as initial and v0 = 2.18e≠7 m/s and L = Œ as boundary
conditions. Fig. 4.10 shows the ◊-fronts for Case 1 at di�erent values of z (corresponding to
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the location of each of the tensiometers) and at di�erent times. In Fig. 4.10a and 4.10b, the
advective (ās) and di�usive (D̄z) flow components of Eq. 4.16 are relevant and control the
behaviour of the curves.
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Figure 4.10: Predicted volumetric water content for Case 1 using ”=0.639 kPa≠1: (a) time
history at di�erent locations; (b) profiles at increasing times.

The experimental results obtained to analyze the moisture front in the soil column are
presented in Fig. 4.11. The comparison of the data recorded by each tensiometer with the
model estimation observed in Fig. 4.10a indicates that the model accuracy was approximate,
reaching the maximum rate of moisture change [(ˆ◊/ˆt)max] at 0.27, compared to the exper-
imental value of 0.30. Since Case 1 was used to evaluate these results, in all tensiometers ◊i

= 0.15, corresponding to the value estimated in the modelling. Both experimental results
and model estimation indicate that ◊ propagates with increasing vertical distance in the
column due to the ās component. This means that (ˆ◊/ˆz)max (Fig. 4.10b) decreases with
increasing depth.
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Figure 4.11: Experimental results for time history of volumetric water content.

In the case of the suction front estimation, the solution was implemented to determine the
behaviour of Â along the soil column with L = 1.10 m. Fig. 4.12 shows the Â fronts estimated
by the model for a time t = 8 days in the five depths of the MPS. Also, in Fig. 4.12a and
4.12b the time history of Â at di�erent locations, and the profiles of Â at increasing times,
respectively, are presented. The Fig. 4.12a shows that the maximum Â value calculated in all
the MPS is constant, corresponding to approximately 200 kPa. However, the time required
for the suction to begin to decrease beyond the initial value increases with increasing z.
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Figure 4.12: Predicted suction for Case 1 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.

Fig. 4.13 presents the experimental results to analyse the soil column’s suction front.
Comparison of the data recorded by each MPS with the model estimate observed in Fig.
4.12a indicates that the model accuracy was approximate, reaching a residual value of suction
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equals to 0.075 MPa, compared to the experimental value of 0.0075 MPa. This di�erence,
although significant in terms of tension between soil menisci, in numerical terms, represents
a deviation of less than 15%. The experimental results and the model estimation indicate
that Â propagates decreasingly with increasing vertical distance in the column and with
increasing time. The soil starts the test with a value of Â corresponding to Âmax due to at
values of ◊ close to 0, Â tends to Œ. As ◊ gradually increases, Â decreases, since according to
the SWRC at ◊ = ◊s, Â = 0, which explains the inversely proportional relationship between
◊ and Â as z and t increase.
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Figure 4.13: Experimental results for time history of total suction.

Fig. 4.14 presents the estimates of kz recorded by the model, and Fig. 4.14a and 4.14b
show the change in kz concerning time and depth, respectively. In this case, although the
tensiometers do not record the change in kz, it was considered to use these same locations
to evaluate the behaviour of the results in a homogeneous way. The point of comparison of
the experimental results observed in Fig. 4.8 corresponds to the value of ks = 8.2 e-5 m/s.

The estimate presented for the two cases in Fig. 4.14 fluctuates in velocities from 2.5e≠7

m/s to 5e≠7 m/s. In this case, although the di�erence is in magnitudes of the order of 1e≠2

m/s, which in theory is insubstantial, in the case of swelling soils, this di�erence is significant.
In evaluating the graphical framework of Fig. 4.14a, kz increases with increasing t, which is
physically correct since as Â decreases, the pore diameter expands. Due to the relationship
between Â and kz is inversely proportional, in Fig. 4.14b, kz decreases with increasing depth
because, as ◊ does not propagate rapidly in the bottom of the column, theoretically Â tends
to Œ, which reduces the pore spacing and kz.
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Figure 4.14: Predicted unsaturated hydraulic conductivity for Case 1 using ”=0.639 kPa≠1:
(a) time history at di�erent locations; (b) profiles at increasing times.

Fig. 4.15 presents the saturation fronts estimated by the model in the soil column. Also,
in Fig. 4.15a and 4.15b the time history of Sr at di�erent locations and the profiles of Sr
at increasing times, respectively, are presented. Since the relationship between Sr and ◊ is
directly proportional, as SWRC is often presented in terms of Sr, the relationship with Â

is inversely proportional. Inspection of Fig. 4.15a indicates that the model estimate for the
saturation phase was 65%, which value represents the unsaturated state of the modelling.
This value was achieved for all control points, and the range of Sr fluctuation was 30%.
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Figure 4.15: Predicted saturation degree for Case 1 using ”=0.639 kPa≠1: (a) time history
at di�erent locations; (b) profiles at increasing times.

Fig. 4.16 shows the void ratio profiles at di�erent times for Case 1 (considering ” = 0.639
kPa≠1). Fig. 4.16a and 4.16 correspond to the case in which the swelling (R̄), advective (ās)
and di�usive (D̄z) components within Eq. 4.16 are relevant. Inspection in Fig. 4.16a reveals
that (ˆe/ˆt)max decreases with increasing z values, indicating that e increases with time at
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the first layers of the column due to the R̄ component of the non-saturated flow, i.e., when
swelling occurs. The emax value estimated by the model corresponds to 0.80. Although this
value does not compare to the experimental emax value of 0.87, it is worth noting that the
model did not estimate the results up to the value of ◊s, which explains the variation. In
contrast, Fig. 4.16b indicates that (ˆe/ˆz)max decreases with increasing t, i.e., e decreases
with time because, in the lower layers at the initial stage of the test, Â is high and ◊ is low.
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Figure 4.16: Predicted void ratio for Case 1 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.

Fig. 4.17 shows the percent swelling estimated by the model for: i) time history at di�er-
ent locations (Fig. 4.17a), and ii) profiles at increasing times (Fig. 4.17b). The percentage
swelling, in this case, is understood as a deformation expressed in millimeters over the initial
height of the sample (i.e., the soil column). By comparing Fig. 4.17a with Fig. 4.16a, it
is possible to establish that the order of magnitude of the estimated swelling is 15% for
a change of e = 0.125. This indicates that the adsorption generated by the clay laminae
accumulates water in the interlaminar spaces, producing a volumetric increase.

In contrast, Fig. 4.17b shows that with increasing Â, the tension between the meniscus
increases, which reduces the area in the microstructure and macrostructure, generating a
process of shrinkage of the soil matrix. This indicates that both Fig. 4.16b and 4.17b estimate
the volumetric reduction, which suggests that the model can also predict the shrinkage paths.
The explanation for this estimate is due to the fact that the di�erence between emax and
emin controls the swelling component (R̄) in Eq. 4.16. Therefore, upon an increase in Â, the
model reproduces the inverse path to that observed in Fig. 4.16b and 4.17b, since in Case
1, the flow is dominated by the D̄z and ās components.
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Figure 4.17: Predicted swelling for Case 1 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.

The last scenario explored using Case 1 is presented in Fig. 4.18. The results in Fig.
4.18a illustrate the time history of void ratio (ˆe/ˆt) for Case 1 (” = 0.639 kPa≠1) for a
problem with R̄, D̄z and ās components. For a given position z, the rate of void ratio change
is zero for an initial period where ◊ = ◊i. The rate of void ratio change begins to increase
until it reaches a peak value equal to (ˆe/ˆt)max at a specific time t. Beyond the time
corresponding to the peak rate, the rate of void ratio change reaches the zero value. The
results of Fig. 4.18a also indicate that the peak rate of void ratio change decreases with
increasing t.
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Figure 4.18: Predicted results for Case 1 using ”=0.639 kPa≠1: (a) time history of void
ratio rates (b) void ratio gradient profiles.

From the visual and numerical exploration of Fig. 4.18a, it was possible to observe two
important pieces of evidence: i) that the distance between tails for each curve increases with
increasing z, and ii) the area under the curves is the same for each z value. In addition, the
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ās component controls both the increase in the distance between tails and the decrease in
the peak value (ˆe/ˆt)max. In contrast, Fig. 4.18b presents the void ratio gradient profiles
for the case where R̄, D̄z and ās components are relevant. In Fig. 4.18b, upon reaching
a specific time t, the void ratio gradients are equal to 0. Subsequently, they increase (in
absolute value), getting a peak value (ˆe/ˆz)max at a particular time t. The observation of
this graph is similar to that observed in Fig. 4.18a. However, the analysis must be performed
under absolute value.

Fig. 4.19, 4.20 and 4.21 present the results obtained when the boundary condition corre-
sponding to Case 3 was used. Specifically, a constant discharge velocity value corresponding
to v0 = 2.8 e≠7 m/s to the upper boundary of a semi-infinite column was imposed. In this
case, because the relationship between v0 and kz is appreciable considerably in the first 40
cm of depth, given that the soil behaves like a sponge, the estimates were restricted to this
range to assess the behaviour of the results.

In the case of Fig. 4.19 and 4.20, the void ratio and percent swelling were evaluated for
di�erent t and z settings. As shown in Case 3, Fig. 4.19a presents that (ˆe/ˆt)max decreases
with increasing z, and Fig. 4.19b shows that (ˆe/ˆz)max decreases with increasing t. Indeed,
the value of v0 = 2.82 e≠7 m/s adopted in the analysis presented in Fig 4.19a corresponds
to an imposed swelling that could generate eŒ = 0.79, i.e., a value close to the e adopted in
Case 1. A similar behaviour is observable in Fig. 4.20a and 4.20b, delivering consistent and
comparable results with those obtained in Fig. 4.17a and 4.17b. Case 3 was considered within
the analytical solutions since, during the soil-column test, a constant discharge velocity of
0.40 mL/min was imposed. The two estimated responses can be attributed to the R̄, D̄z

and ās components within Eq. 4.43.

z = 0.010 m

z = 0.020 m

z = 0.030 m

z = 0.040 m

z = 0.050 m

0 2 4 6 8 10

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Time, t (hours)

V
oi
d
R
at
io
,e

(a)

t = 1 hour

t = 2 hours

t = 3 hours

t = 4 hours

t = 5 hours

t = 6 hours

0.00 0.02 0.04 0.06 0.08

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Location at the Column, (m)

V
oi
d
R
at
io
,e

(b)

Figure 4.19: Predicted void ratio for Case 3 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.
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Figure 4.20: Predicted swelling for Case 3 using ”=0.639 kPa≠1: (a) time history at
di�erent locations; (b) profiles at increasing times.

The estimated results in Fig. 4.21 correspond to the time history of void ratio rates
(Fig. 4.21a) and void ratio gradient profiles (Fig. 4.21b) for Case 3 considering ” = 0.639
kPa≠1. However, three relevant things can be evaluated when implementing Case 3: i) when
decreasing the evaluation depth, the peak (ˆe/ˆt)max and (ˆe/ˆz)max values reached in Fig.
4.21a and 4.21b, respectively, are more significant than those obtained in Fig. 4.18a and
4.18b, ii) the width between the initial and final tails of all curves increases with increasing
t, and iii) the total area under all curves is greater than the one observed applying Case 1.
These di�erences may be mainly due to two reasons: i) the fluctuation of ◊ depends on the
value of v0, or ii) as L < Lexp, both the flow and the swelling process occur faster, which
increases the numerical value of (ˆe/ˆt)max and (ˆe/ˆz)max.
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Figure 4.21: Predicted results for Case 3 using ”=0.639 kPa≠1: (a) time history of void
ratio rates (b) void ratio gradient profiles.
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4.5 PARAMETRIC CALIBRATION

4.5.1 Wetting path
Parametric calibration of the model is performed using the experimental results obtained by
Nowamooz & Masrouri (2010). The model is calibrated using the initial parameters (◊s, ◊r,
emax, emin, ”) to get the value of ” that generates the best fit to the curve e - log Â. In this
case, the ability of the model to reproduce the results during the wetting phase, i.e., when
the soil increases its void ratio and enters the swelling process, will be evaluated. Table 4.5
presents the initial values used to compare the model and the literature results. Also, Table
4.5 shows the adjustment obtained considering ” = 0.6937 kPa≠1.

Table 4.5: Calibration parameters for the wetting path.

Model ◊s ◊r emax emin ” (kPa≠1)

Nowamooz & Masrouri (2010) 0.43 0.08 1.16 0.44 0.6937

The study performed by Nowamooz & Masrouri (2010) focuses on the swelling activity
of two expansive clays obtained from the Mignaloux-Beauvoir region near Le De�end in
France. The e -log Â curves were obtained from laboratory tests with wetting and drying
paths varying the suction from 1000 to 0 MPa. The soil shows significant swelling since the
di�erence between emax and emin is 0.72. Fig. 4.22 presents the model fit for the swelling
curve considering the value of ” = 0.6937 kPa≠1, i.e., the value estimated by the proposed
model.

Figure 4.22: e - log Â curve (wetting path) comparison between model simulation and
experiment data (Nowamooz & Masrouri, 2010).
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In this case, the fit was performed by applying a nonlinear regression analysis to the
evaluated data set, which allowed for recreating the swelling path. However, the estimated
results were defined in the framework of an idealized curve, which explains that, although
the wetting path is recreated, the regression fit does not pass through all the experimental
points. In this case, the di�erence between the fit and the experimental data is because the
authors used wetting and drying paths for the same soil sample. Therefore, it is not possible
to reproduce the hysteresis phenomenon between experimental curves, which explains the fit
obtained.

The comparative process was performed using a simple regression analysis between the
estimated and experimental data. To understand the behaviour of the results, the coe�cient
of determination (R2) was calculated, which is interpreted on a scale from 0 to 1, where values
close to 1 indicate an excellent numerical fit. Table 4.6 presents the R2 values obtained for
the case studied by Nowamooz & Masrouri (2010) in the parametric calibration. Likewise,
Table 4.6 also shows the values of the R̄ component obtained for the wetting path. In the
scenario explored, the value of R2 was higher than 0.95, indicating that the model correctly
reproduces the swelling process for any configuration of emax and emin. Also, from the values
of R̄, it is possible to interpret that the numerical fluctuation of this parameter depends
significantly on the di�erence between emax and emin, so it increases when the di�erence is
more significant. By comparing the values of Table 4.6 with the value of R̄ obtained from
the fit with the data of RMA soil (Table 4.3), it is possible to conclude that the RMA soil
correspond to a material of expansivity similar to that observed by Nowamooz & Masrouri
(2010).

Table 4.6: Statistical fit and estimated R̄ component for the wetting path.

Model R̄ R2

Nowamooz & Masrouri (2010) 1.27 0.96

4.5.2 Drying path
The parametric calibration of the model is performed using the experimental results obtained
by Al-Dakheeli & Bulut (2019), Zhao et al. (2021) and Sarker & Wang (2022). From the
initial model parameters (◊s, ◊r, emax, emin, ”), the model is calibrated to obtain the value
of ” that generates the best fit to the e - log Â curve. On the other hand, ” belongs to
the value obtained using the proposed model. The selection of the results to construct the
comparative analysis was based on the di�erence between emin and emax to determine the
capacity of the model to estimate the results when the di�erence is very high or not very
significant. Table 4.7 presents the initial values used to compare the model and the literature
results. Also, Table 4.7 presents the fit recorded for ” for each set analyzed.
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Table 4.7: Calibration parameters for the drying path.

Model ◊s ◊r emax emin ” (kPa≠1)

Al-Dakheeli & Bulut (2019) 0.19 0.06 1.80 0.05 0.0889

Zhao et al. (2021) 0.28 0.03 0.74 0.32 0.0005

Sarker & Wang (2022) 0.34 0.10 0.94 0.77 0.0480

The study by Al-Dakheeli & Bulut (2019) focuses on the swelling activity of expansive
soils obtained from the Lake Hefner and Ardmore sites in Oklahoma. The e -log Â curves
were obtained from laboratory tests of MP4 and UMS-T5 for the SWRC, and the volume
change and the basic volume-mass relationships were used to determine the void ratio. The
soil exhibits a drying path since the di�erence between emax and emin is 1.30. Fig. 4.23
presents the model fit for the e - log Â curve considering the value of ” = 0.0889 kPa≠1. In
this case, the fit was performed by applying a nonlinear regression analysis to the evaluated
data set, which allowed recreating of the drying path.

Al-Dakheeli & Bulut (2019)

Model fitting (δ = 0.0889 kPa-1)
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Figure 4.23: e - log Â curve (drying path) comparison between model simulation and
experiment data (Al-Dakheeli & Bulut, 2019).

Fig. 4.24 presents the fit between the model and the experimental results obtained by
Zhao et al. (2021). In this study, the hydromechanical behaviour of compacted clays that
were subjected to wetting and drying cycles was explored. Thus, the experimental e - log Â

curve was structured from a value emax = 0.74 to emin= 0.32.
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Zhao et al. (2021)

Model fitting (δ = 0.0005 kPa-1)
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Figure 4.24: e - log Â curve (drying path) comparison between model simulation and
experiment data (Zhao et al., 2021).

The use of the results shown by Zhao et al. (2021) allows for exploring whether the model
can reproduce data from soils in which the di�erence between emax and emin could be more
representative. This means that if the di�erence between emax and emin is not significant,
the parameter R̄ = 1, which would return Eq. 4.16 to its original form, i.e. the Cavalcante
& Zornberg (2017) equation. The parametric estimation executed in this case considered ”

= 0.0005 kPa≠1, so the obtained fit recreates the drying path and accurately estimates the
experimental emax and emin values.

The last study used to determine the sensitivity of the model corresponds to that carried
out by Sarker & Wang (2022). The material used corresponds to compacted Moreland clay,
a highly expansive soil which can reach LL values higher than 80%. The e - log Â curve
for the drying path was determined to interrelate the elastic deformation and the SWRC of
Moreland clay. Although this fit presents the same argument as the previous case, i.e., the
di�erence between emax and emin is not significant, it was considered since the soil is highly
expansive. Fig. 4.25 shows the fit between the estimated and experimentally obtained data.
The parametric estimation, in this case, considered ” = 0.0480 kPa≠1, the mean value of ”

in all the analyses performed.
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Sarker & Wang (2022)

Model fitting (δ = 0.0480 kPa-1)
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Figure 4.25: e - log Â curve (drying path) comparison between model simulation and
experiment data (Sarker & Wang, 2022).

Table 4.8 presents the R2 values for each case evaluated in the parametric calibration.
Likewise, Table 4.8 also shows the R̄ component values obtained for each data set. In each
of the scenarios explored, the value of R2 was more significant than 0.97, indicating that
the model correctly reproduces the drying path for any configuration of emax and emin, i.e.,
compacted soils, with low or high expansivity, among others. Also, from the values of R̄, it
is possible to interpret that the numerical fluctuation of this parameter depends significantly
on the di�erence between emax and emin, so it increases when the di�erence is significant.
By comparing the values of Table 4.8 with the value of R̄ obtained from the fit with the
experimental data (Table 4.3), it is possible to conclude that the RMA soil corresponds to a
material of medium-low expansivity.

Table 4.8: Statistical fit and estimated R̄ component for the drying path.

Model R̄ R2

Al-Dakheeli & Bulut (2019) 1.59 0.98

Zhao et al. (2021) 1.14 0.99

Sarker & Wang (2022) 1.32 0.99
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Chapter 5

CONCLUDING REMARKS

5.1 CONCLUSIONS
Numerically simulating the behaviour of expansive soils is still a challenge for geotechnical
researchers due to the high complexity of the mechanical-hydraulic phenomena involved.
Nevertheless, this work generates new knowledge by trying to reproduce the response of
these soils in terms of suction potential when di�erent variables are modified. A numerical-
mathematical approach that solves and extends the application of the Richards equation
for soils with expansive potential is presented. Analytical solutions were constructed to
determine the parametric sensitivity and the behaviour of the variables involved for di�erent
positions and times. On the other hand, experimental results were used to assess the ability
of the model to reproduce the swell-shrink paths. During the parametric calibration, it
was explored whether the model could estimate the wetting and drying paths of soils with
di�erent emin and emax settings.

The evaluation of the model in unimodal SWRC was performed using theoretical results
in bimodal SWRC employing experimental data from soil-column tests. Using the graphical
fit given by ◊0 and ◊i, it was possible to corroborate that the dynamics of the results fluctuate
according to the range o�ered by these two parameters in the SWRC. This intrinsic behaviour
of the model responds mainly to the fact that in bimodal SWRC, the model is limited in
determining the AEV of the micropores. For this reason, it is necessary to include at least
two di�erent ” values that respond to these suction peaks, macroporous and microporous.

When comparing the values of ” in the drying path with those obtained for the wetting
path, it is possible to infer that: i) ” depends on the di�erence between emax and emin, and
ii) in the wetting path, the estimated value of ” is significantly higher, i.e. ” depends on the
type of process to be evaluated. Although it could have been expected that the model would
present some di�culty in compacted soils because the di�erence between emax and emin is
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not significant, it was possible to evaluate that the model managed to reproduce the data
with a correlation factor higher than 0.96.

The parametric calibration allowed to determine the sensitivity of the variables involved
and the conditions under which the model can be applied. By recovering high correlation
values from the statistical analysis, it is possible to conclude that the model can satisfactorily
reproduce the hydromechanical behaviour of expansive soils with di�erent suction potentials.
However, it is necessary to explore the cases in which the expansivity is null and in the
circumstances in which it is extreme.

5.2 LIMITATIONS OF THE MODEL
• The main limitation of the model centres on the fact that the mechanical part ad-

dressed in the mathematical formulation comprises exclusively the change in the void
ratio, which in theory, relates the volumetric variation directly to the shear strength.
However, although it was possible to estimate the wetting and drying paths on the e -
log Â curve with high statistical closeness, it is necessary to clarify that this model is
based on a simplified procedure, which considers a limited number of parameters.

• Regarding the parametric definition, the limitation is that estimating the value of ”

is necessary using the model of Cavalcante & Zornberg (2017). Although it facilitates
the numerical calculation, this process implies that before using the model proposed
here, it is required to adjust the unimodal SWRC with the equation of Cavalcante &
Zornberg (2017) and determine the best value of ”.

• As a last limitation, it is presented that, as in this case, when having bimodal SWRC,
the suction range estimated by the model using the analytical solutions is restricted
to a spectrum of values delimited by ◊i and ◊0. This restriction of the model is due to
the use of the Cavalcante & Zornberg (2017) model, which is formulated for unimodal
SWRCs.

5.3 RECOMMENDATIONS
Based on the results and discussions generated from this work, it is possible to develop the
following recommendations for improving the approach and continue studying expansive soils
from a hydromechanical perspective.

• Optimize the model in the field of soils with bimodal SWRC by proposing a new
solution that includes the Costa & Cavalcante (2021) model in the mathematical for-
mulation or adapting the existing one for soils with this behaviour.
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• Extend the methodology developed here by including the change in volumetric defor-
mation and strength properties generated by moisture variation.

• Extend the mathematical formulation of the analytical solutions to include cases con-
trolled exclusively by the initial conditions of the void ratio.

• Evaluate the model with experimental results of soils with extreme expansivity, e.g.,
clays with high montmorillonite and illite content.
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Appendix A

MATHEMATICAL DERIVATION

The following appendix presents the derivation of each of the three relationships used in the
derivation of the model: kz(◊), Â(◊) and e(◊). These functions’ definitions allow finding the
constants D̄z, ās and R̄.

A.1 DEFINITION OF kz(◊)
The impact of the saturated conductivity (ks) on the mathematical formulation of the model
is demonstrated below. The physical meaning of ks controls the advective part of Eq. 4.16,
so it is necessary to equal ās to ks using the definition of ās as a constant c1:

as(◊) = c1 = ˆkz(◊)
ˆ◊

(A.1)

For the sake of integrating both parts, it is necessary to make a restrictive assumption
based on the definition of the limits. For any value of ks = 0 at the lower boundary, the
function ās(◊) is at the residual value ◊r. Thus, when ks reaches a specific value, the integral
of ◊ = ◊, as follows:

⁄ kz

0
dkz(◊) =

⁄ ◊

◊r

c1d◊ (A.2)

By integrating the left-hand term of Eq. A.2, kz(◊) is obtained, and since c1 is constant,
it is possible to extract it from the integral:

kz(◊) = c1

⁄ ◊

◊r

d(◊) (A.3)
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Evaluating the integral of ◊ between ◊ and ◊r yields:

kz(◊) = c1(◊ ≠ ◊r) (A.4)

In the function kz(◊), when ◊ = ◊s, kz = ks. Therefore:

ks = c1(◊s ≠ ◊r) (A.5)

Solving c1 from Eq. A.5:

c1 = ks

◊s ≠ ◊r
(A.6)

Although according to Eq. A.1, c1 represents the definition of the function ās(◊), in Eq.
A.6 c1 = ās. Therefore, substituting Eq. A.6 in Eq. A.4 gives the solution for the function
kz(◊):

kz(◊) = ks
(◊ ≠ ◊r)
(◊s ≠ ◊r)

(A.7)

A.2 DEFINITION OF Â(◊)
In order to define the advective part of Eq. 4.16, it is necessary to determine the function
Â(◊), whose deduction, together with the function kz(◊), represents the term D̄z(◊). To
obtain both the solution of Â(◊) and of D̄z as a constant, it is necessary to establish that:

Dz(◊) = kz(◊)
flwg

ˆÂ

ˆ◊
= c2 (A.8)

Using the definition of kz(◊) obtained in Eq. A.7, Eq. A.8 can be rewritten as:

ks

flwg

(◊ ≠ ◊r)
(◊s ≠ ◊r)

ˆÂ

ˆ◊
= c2 (A.9)

where c2 = D̄z(◊). To integrate both parts, it is necessary to make a restrictive assumption
based on the definition of the limits. In this case, the integral is divided into two sections,
one dependent on the suction and the other on the volumetric water content. Now, when
Â = 0, ◊ = ◊s, since when ◊ = ◊r, Â tends to Œ. Thus, when the suction reaches a certain
value Â, ◊ = ◊:
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ks

flwg(◊s ≠ ◊r)

⁄ Â

0
dÂ = c2

⁄ ◊

◊s

d◊

◊ ≠ ◊r
(A.10)

The algebraic handling performed to solve Eq. A.10 is found in the following set of
equations:

v = ◊ ≠ ◊r

dv = d◊

ks

flwg(◊s ≠ ◊r)

⁄ Â

0
dÂ = c2

⁄ ◊

◊s

dv

v

ks

flwg(◊s ≠ ◊r)
Â

------

Â

0

= c2 ln(◊ ≠ ◊r)

------

◊

◊s

(A.11)

When solving the integral of each term of the equation, taking into consideration the
upper and lower limit, one obtains:

ks

flwg(◊s ≠ ◊r)
Â(◊) = c2(ln(◊ ≠ ◊r) ≠ ln(◊s ≠ ◊r)) (A.12)

Solving Â(◊):

Â(◊) = c2
flwg(◊s ≠ ◊r)

ks
ln

A
◊ ≠ ◊r

◊s ≠ ◊r

B

(A.13)

At this point, it is possible to find the definition of ” into the Eq. A.13 as:

” = ks

c2flwg(◊s ≠ ◊r)
(A.14)

where:

c2 = ks

”flwg(◊s ≠ ◊r)
= D̄z (A.15)

Substituting Eq. A.14 into Eq. A.13, the mathematical definition of Â(◊) is obtained:

Â(◊) = 1
”

ln
A

◊ ≠ ◊r

◊s ≠ ◊r

B

(A.16)
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It is possible to represent Eq. A.16 in terms of ◊(Â) as follows:

◊(Â) = ◊r + (◊s ≠ ◊r) exp(≠”|Â(◊)|) (A.17)

A.3 DEFINITION OF e(◊)
The function e(◊) controls the swelling process in Eq. 4.16 using the emin and emax values
obtained from simple laboratory tests. To get the solution of e(◊), it is necessary to establish
that the ratio of R(e) is equal to a constant c3:

R(e) = 1 + ◊

1 + e

de

d◊
= c3 (A.18)

However, to facilitate the mathematical derivation, it was assumed that c3 - 1 = c4.
Therefore, by rearranging Eq. A.18:

c4
d◊

◊
= de

1 + e
(A.19)

For the sake of integrating both parts, it is necessary to make a restrictive assumption
based on the definition of the limits. In this case, the integral is divided into two sections,
one dependent on the volumetric water content and the other on the void ratio. To establish
the range in which the integral of Eq. A.19 is going to be evaluated, it is assumed that when
◊ = ◊r, e = emin, which is correct in the first phase of the swelling process. As ◊ gradually
increases, the deformation produced by the increase in volume causes e to increase. This
can be expressed mathematically by assuming that when ◊ = ◊, e = e, i.e., any value greater
than emin:

c4

⁄ ◊

◊r

d◊

◊
=

⁄ e

emin

de

1 + e
(A.20)

To solve Eq. A.20 the following mathematical property was used:

v = 1 + e

dv = de
(A.21)

When evaluating the Eq. A.20 in the proposed limits was obtained:
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c4

A

ln ◊

◊r

B

= ln 1 + e

1 + emin
(A.22)

In order to determine the constant R̄, it is necessary to assume that, during the swelling
process, the soil reaches a value of ◊ = ◊ at e = emax. Therefore, Eq. A.22 can be rewritten
as:

c4

A

ln ◊s

◊r

B

= ln 1 + emax

1 + emin
(A.23)

Solving c4:

c4 =

Q

ccca

ln 1 + emax

1 + emin

ln ◊s

◊r

R

dddb (A.24)

Since 1 + c4 = c3, the constant R̄ is defined as:

1 + c4 = 1 +

Q

ccca

ln 1 + emax

1 + emin

ln ◊s

◊r

R

dddb = R̄ (A.25)

Substituting Eq. A.25 into Eq. A.22:

Q

ccca

ln ◊

◊r

ln ◊s

◊r

R

dddb

3
ln 1 + emax

1 + emin

4
= ln 1 + e

1 + emin
(A.26)

By applying the power rule of logarithms to Eq. A.26:

3
ln 1 + emax

1 + emin

4

Q

ccca

ln ◊

◊r

ln ◊s

◊r

R

dddb

= ln 1 + e

1 + emin
(A.27)

By applying the natural logarithm rule of exp to both sides of Eq. 2.22:
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31 + emax

1 + emin

4

Q

ccca

ln ◊

◊r

ln ◊s

◊r

R

dddb

= 1 + e

1 + emin
(A.28)

Solving (◊) from Eq. A.28 gives the mathematical solution for the function e(◊):

e(◊) = ≠1 + (1 + emin)
31 + emax

1 + emin

4

Q

ccca

ln ◊

◊r

ln ◊s

◊r

R

dddb

(A.29)
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