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RESUMO

Título: Array Signal Processing Applications on Biomedical Engineering
Autor: Elena Javidi da Costa
Orientador: José Alfredo Ruiz Vargas, Prof. Dr.
Coorientador: Giovanni Almeida Santos, Prof. Dr.
Programa de Pós-Graduação em Sistemas Mecatrônicos
Brasília, 22 de janeiro de 2024

Nesta tese, soluções de hardware e software para aplicações em engenharia biomédica
são propostas. Em particular, técnicas baseadas em processamento de sinais adquiridos com
arranjos de sensores são consideradas. Primeiro, é proposto um dispositivo de saúde com
vários sensores, do inglês Multi-sensor Wearable Health Device (MWHD), incluindo al-
goritmos de processamento de sinais de alta resolução para medir a freqüência cardíaca e
a quantidade de passos. Em seguida, é apresentada uma modificação dos Critérios Teóri-
cos de Informação, do inglês Information Theoretic Criteria (ITC), tradicionais baseados
em autovalores, a fim de estimar a quantidade de componentes de medições de Magnetoen-
cefalografia, do inglês Magnetoencephalography (MEG), e Eletroencefalografia, do inglês
Electroencephalography (EEG). Finalmente, é desenvolvida uma estrutura não supervisio-
nada para a identificação do Potencial Evocado Visual, do inglês Visual Evoked Potential

(VEP), nas medições de MEG. As técnicas propostas foram validadas através de medições.
Ao longo do desenvolvimento desta pesquisa, contribuições adicionais nas áreas de segu-
rança cibernética, contagem de passos e localização de drones foram proporcionadas, as
quais encontram-se detalhadas nos apêndices.

Palavras-chave: Multi-sensor, MEG, Seleção da Ordem do Modelo, VEP



ABSTRACT

Title: Aplicações de Processamento de Sinais de Arranjos em Engenharia Biomédica
Author: Elena Javidi da Costa
Supervisor: José Alfredo Ruiz Vargas, Prof. Dr.
Co-Supervisor: Giovanni Almeida Santos, Prof. Dr.
Post-Graduate Program in Mechatronic Systems
Brasília, Jan 22nd, 2024

In this thesis, hardware and software solutions for biomedical engineering applications
are proposed. In particular, the development of techniques based on array signal processing
is considered. First, a MWHD, including high-resolution signal processing algorithms to
measure of the Heart Rate (HR) and the steps, is proposed. Next, a novel modification of the
traditional eigenvalue based ITC is presented in order to estimate the amount of components
of MEG and EEG data. Finally, an unsupervised framework for the identification of VEP in
MEG measurements is developed. The proposed approaches are validated using measure-
ments. Throughout the development of this research, additional contributions in the areas of
cybersecurity, step counting, and drone localization have been provided, which are detailed
in the appendices.

Keywords: Multi-sensor, MEG, Model Order Selection, VEP
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INTRODUCTION

Signal processing techniques are crucial for biomedical en-
gineering. The biomedical signals are usually degraded by
artifacts and noise. Moreover, extracting the desirable in-
formation from biomedical signals is very challenging, since
the signals may present a very low Signal-Noise Ratio (SNR)
and may vary according to the health and to several other
internal and external factors. In order to deal with these
aspects, array signal processing plays a major role. By
using an array of sensors, the array gain considerably in-
creases the SNR. Moreover, the signals from the sensor array
can be separated using Blind Source Separation (BSS) tech-
niques allowing us to understand the signal properties, such
as amount of signal sources, the localization and the extrac-
tion of their respective signals. Finally, the blindly separated
signals can be used to observe patterns related to the health
state of the patient. In this introduction, we present the mo-
tivation, the objectives, contributions, and overall organiza-
tion of this work.

1.1 MOTIVATION

Health networked sensors, worn on the body or embedded in living environments, can
gather rich information on our physical and mental health. By acquiring such information on
a continual basis, by aggregating it, and by effectively mining it, a transformative change in
the health care can be achieved allowing prognosis, prevention, and cure of diseases, overall
management of health, personalization of treatments, reduction of the costs of health care and
improvement of outcomes [1]. The state-of-the-art frameworks for remote health monitoring
are composed of an architecture, namely, Wireless Body Area Network (WBAN) consisting
of wearable sensors as the data acquisition unit, communication and networking, and appli-
cation [2]. In the data acquisition layer, wearable sensors measure physiological biomarkers,
such as EEG, skin temperature, respiratory rate, Electromyography (EMG), heart rate, blood
pressure, oxygen saturation, and gait, including both posture and movements [1, 2]. The
communication and networking layers are responsible for the data transmission from the
sensors to a device called data aggregator or concentrator, as exemplified in [3], and also
for the data transmission from the concentrator to an internet provider, such that the medical
data is stored at the Healthcare Organization (HCO). In this work, we propose the develop-
ment of software and hardware for biomedical engineering applications. In particular, we
propose array signal processing techniques in order to further improve the performance of
the algorithms used on the biomedical engineering.

1

1



1.2 OBJECTIVES

In order to achieve the overall objective of developing software and hardware solutions
for biomedical engineering applications, in particular, array signal processing techniques, we
present the following specific objectives:

• OE1: Propose a MWHD, including high-resolution signal processing algorithms to
measure of the HR and the steps;

• OE2: Propose a modification of the traditional eigenvalue based ITC, such that it can
estimate the amount of components of MEG and EEG data;

• OE3: Propose an unsupervised framework for the identification of VEP in MEG mea-
surements;

• OE4: Validate our results using measurements.

1.3 CONTRIBUTIONS OF THIS WORK

The main contribution of this work is the proposal of solutions in the biomedical area.
However, along the PhD research, additional contributions on the area of cybersecurity were
also published. Next, the papers published in journals in the reverse chronological order
during the PhD research are listed.

• [4] Pinheiro, G. P. M.; Miranda, R. K.; Praciano, B. J. G.; Santos, G. A.; Mendonça,
F. L. L.; Javidi, E.; da Costa, J. P. C. L.; de Sousa Jr., R. T. Multi-Sensor Wear-

able Health Device Framework for Real-Time Monitoring of Elderly Patients Using a

Mobile Application and High-Resolution Parameter Estimation. Frontiers in Human
Neuroscience, 2022

• [5] Maranhão, J. P. A.; da Costa, J. P. C. L.; de Freitas, E. P.; Javidi, E.; de Sousa Jr., R.
T. Error-Robust Distributed Denial of Service Attack Detection Based on an Average

Common Feature Extraction Technique. Sensors, v. 20, p. 5845, 2020

• [6] Maranhão, J. P. A.; da Costa, J. P. C. L.; de Freitas, E. P.; Javidi, E.; de Sousa Jr., R.
T. Noise-Robust Multilayer Perceptron Architecture for Distributed Denial of Service

Attack Detection. IEEE Commuications Letters, v. 1, p. 1-1, 2020

• [7] Maranhão, J. P. A.; da Costa, J. P. C. L.; de Freitas, E. P.; Javidi, E.; Borges, C. A.;
de Sousa Jr., R. T. Tensor based framework for Distributed Denial of Service attack

detection. Journal of Network and Computer Applications, v. 1, p. 102894, 2020
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Next, the conference papers published during the PhD research are listed in the reverse
chronological order.

• [8] Maranhão, J. P. A.; da Costa, J. P. C. L. ; Javidi, E. ; Sousa Jr., R. T. ; Milanezi
Jr., J. Multidimensional Antenna Array based Framework for Drone Localization in

Multipath Environments. In: International Conference on Signal Processing and Com-
munication Systems (ICSPCS), 2019, Gold Coast.

• [9] Javidi, E.; da Costa, J. P. C. L.; Miranda, R. K.; Maranhão, J. P. A.; Vargas, J.
A. R. Modified Information Theoretic Criteria for Low Complexity Estimation of the

Amount of Components in MEG Measurements. In: International Conference on Sig-
nal Processing and Communication Systems (ICSPCS), 2019, Gold Coast

• [10] Javidi, E.; da Costa, J. P. C. L.; Miranda, R. K.; Maranhão, J. P. A.; Vargas, J. A.
R. Unsupervised Framework for the Identification of Visual Evoked Potential in MEG

Measurements. In: International Conference on Signal Processing and Communica-
tion Systems (ICSPCS), 2019, Gold Coast

• [11] Rega, D. G. ; Miranda, R. K.; Javidi, E.; Maranhão, J. P. A.; da Costa, J. P. C. L.;
Pinheiro, G. P. M. ESPRIT-Based Step Count for Wearable Devices. In: International
Conference on Signal Processing and Communication Systems (ICSPCS), 2019, Gold
Coast

1.4 OVERALL ORGANIZATION

In addition to this introduction, this PhD thesis contains three more chapters and four ap-
pendices, as described below. Chapter 2 presents a complete framework for health systems
composed of a MWHD, high-resolution parameter estimations, and a real-time monitoring
application. Chapter 3 proposes an unsupervised framework for the identification of VEP in
MEG measurements, including a solution for the Model Order Selection (MOS). In Chap-
ter 4, the conclusions are drawn and future research topics are provided. The contents of
Chapters 2 are published in [4], and Chapter 3 is covered in [9] and [10].

Appendix A summarizes the cybersecurity contributions in [7], while Appendix B has
the signal processing algorithms of the MWHD [4] used in Chapter 2, Appendix C outlines
the application of the algorithms of the Appendix B on the step counter [11] and Appendix D
overviews the application of the Multiple Denoising (MuDe) algorithm for drone localiza-
tion [8].
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MULTI-SENSOR WEARABLE HEALTH
DEVICE FRAMEWORK

Automatized scalable healthcare solutions allow real-time
24/7 health monitoring of patients, prioritizing medical
treatment according to their health conditions, reducing
medical appointments in clinics and hospitals, and easy ex-
change of information between the medical body. State-of-
the-art health wearable device platforms present limitations
in hardware, parameter estimation algorithms, and software
architecture. This chapter proposes a complete framework
for health systems composed of a multi-sensor wearable
health device (MWHD), high-resolution parameter estima-
tions, and a real-time monitoring application. The hardware
includes sensors for monitoring steps, pulse oximetry, heart
rate (HR), and temperature, with data transmission using
low-power wireless communication. In terms of parameter
estimation, the embedded circuit processes high-resolution
signal processing algorithms, allowing an improved measure
of the HR and the steps. The proposed high-resolution signal
processing-based approach outperforms state-of-the-art HR
estimation measurements using measurements of the photo-
plethysmography (PPG) sensor.

2.1 INTRODUCTION

Nowadays, health systems, including hospitals and their Intensive Care Units (ICU), are
challenged by a substantial need to increase critical care capacity due to the Coronavirus
Disease 2019 (COVID-19) pandemic [12]. The importance of streamlining workflows for
rapid diagnosis and isolation, clinical management, and infection prevention essential to car-
ing for COVID-19 patients, to protect healthcare workers and other patients while support-
ing ICU practitioners’ activities, hospital administrators, governments, and policymakers is
highlighted in [12].

As suggested in [13], health systems invest in automatized and scalable digital health
solutions, such as healthcare wearable devices empowered with artificial intelligence infor-
mation systems. Automatized digital health solutions allow real-time 24/7 health monitoring
of patients, prioritizing medical treatment according to the patients’ health conditions, re-
ducing medical appointments in clinics and hospitals, and securing information between the
medical body.

According to [14], the global market for wearable medical devices was valued at USD
13 billion in 2019, with an expected annual growth rate of 27.9% until 2027. Still, according
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to [14], multi-sensor health wearable devices are becoming popular due to the cost reduction
of remote health monitoring technologies, including home healthcare.

In this chapter, we propose a MWHD framework with real-time monitoring application
and high-resolution parameter estimation. The proposed hardware includes sensors for step
counting, pulse oximetry, HR, and temperature measurements. Since wireless communi-
cations require a significant consumption of device battery energy [15, 16], the proposed
MWHD optimizes the battery usage by using Bluetooth Low Energy (BLE). In terms of pa-
rameter estimation, the embedded integrated circuit programmed with high-resolution sig-
nal processing algorithms processes the sensors’ signals, allowing improved analysis of the
steps, pulse oximetry, and HR. Finally, the patient’s medical information is reliably provided
to healthcare workers by the real-time monitoring application.

This chapter is composed of five sections, including this introduction as Section 2.1.
In Section 2.2, related works in health data signal processing and healthcare platforms are
shown. In Section 2.3.1, we propose a wearable device prototype using PPG, an algorithm
for HR estimation, and a software platform architecture for remote healthcare supervision.
Section 2.4 presents the methodology and results of the performance comparison of PPG
processing algorithms for HR estimation. Section 2.5 concludes the chapter.

2.2 STATE OF THE ART

In [17], the feasibility of a compact wearable sensor patch for measurements of different
physiological signals, including PPG and body temperature, is presented. The wearable
sensor system transmits the physiological measurements wirelessly to a gateway using a
BLE module. The health data is encrypted, stored, and analyzed on the Internet cloud.

In [18], a digital filter for PPG signals collected from an MWHD is proposed using an
adaptive neural network, allowing a more accurate estimate of the HR, resulting in a variation
of 3% concerning the ground truth. In [19], a deep learning approach is proposed for the
HR estimation using PPG signals, achieving an absolute error of 1.5 BPM, outperforming
state-of-the-art methods. The authors of [20] present a new deep learning model with the
capability to estimate HR using only a single channel provided by the PPG signal, achieving
an error for HR estimation of 0.046 BPM. Note that the usage of neural networks requires
labeled data and the tuning of the neural network hyperparameters.

In [21], a new ring-shaped sensor is proposed to estimate the heartbeat using reflective
PPG. The measurements are transmitted to a mobile phone via Bluetooth 4.0. In comparison
with the commercial solution, the ring-shaped sensor presented an error of 2% smaller.

In [22], it improves the HR estimation by using a new notch filter, and the noise cancella-
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tion approach is based on the least mean squares. The error of the HR estimation employing
this approach is smaller than 1 BPM using measurements from intensive physical activities.

Reference [23] discusses challenges in HR estimation from a wrist band with PPG col-
lected during intense exercises. First, Principal Component Analysis (PCA) and adaptive
filtering are used for removing noise from the PPG signals. Then, to estimate the HR, a Sup-

port Vector Machine (SVM) based approach is considered. The approach in [23] presents
errors of 1.01 BPM.

A novel health wearable platform for the real-time monitoring of accidents of elderly
people is shown in [24]. In terms of performance, the improved sensors in [24] present a
longer battery lifetime, allowing their usage by elderly people during long periods.

In [25], a new method is proposed to estimate HR using PPG. The method also includes
BSS to improve the results further. The achieved RMSE is 6.1 BPM.

2.2.1 State-of-the-art simplified model for PPG waveforms

The PPG waveform can be modeled as a pulsating quasi-periodic component attributed
to synchronous cardiac changes in the blood volume with each heartbeat. This pulsating
component is superimposed by a slowly varying low-frequency component, with various
lower frequency components attributed to respiration, sympathetic nervous system activity,
and thermoregulation [26]. The PPG signal is sampled with a sampling rate of fs. Such
sampled PPG waveform is modeled by:

xrns “ A cos r2πfn ` θs ` rrns, (2.1)

where A is the PPG signal amplitude, f is the relative frequency of the PPG signal normal-
ized by fs, θ is the phase of the PPG signal, and rrns is a component that comprises the
noise and artifacts present in the PPG signal. Note that, due to the Heart Rate Variability

(HRV) [27] and the Inter-Beat Intervals (IBI), HR is a time variable. However, we assume a
short estimation interval, such that the model in (2.1) can be applied.

HR detection can then be formulated as a frequency estimation problem. Thus, by mea-
suring the frequency parameter f of a periodic heart signal, given in Hz, we convert the HR
to the corresponding value in BPM, given by BPM “ f ¨ 60.

In the literature, common approaches for the HR estimation that are applied in embed-
ded systems include Fast-Fourier Transform (FFT) based [28], autocorrelation [29], zero-
crossing detection [30] and peak detection [31]. These approaches are summarized in Ap-
pendix B.
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2.3 PROPOSED HEALTHCARE PLATFORM COMPOSED OF LOW-
COST HARDWARE, HIGH-RESOLUTION PARAMETER ESTI-
MATION ALGORITHMS AND REAL-TIME MONITORING AP-
PLICATION ARCHITECTURE

This section, as depicted in Figure 2.1, proposes the multi-sensor health wearable device
framework with real-time monitoring application and high-resolution parameter estimation.
According to Figure 2.1, each patient is assigned an MWHD, which gathers and processes
each subject’s health data. The MWHD then transmits the processed data via a wireless
communication protocol based on BLE to a concentrator device. Note that the concentrator
hardware depicted in Figure 2.1 has been proposed in [32]. This concentrator device uploads
data to a cloud server, which interacts with the proposed monitoring application installed on
healthcare workers’ mobile devices. The healthcare workers are thus able to monitor patients
and collaborate in real-time.

This section is divided into three subsections. In Subsection 2.3.1, we detail the proposed
MWHD. In Subsection 2.3.2, we propose the high-resolution processing algorithm for HR
estimation. In Subsection 2.3.3, we propose the healthcare platform for real-time monitoring.

Figure 2.1 – Diagram of the proposed healthcare framework, consisting of a multi-sensor
health wearable device, PPG high resolution parameter estimation and real-time monitoring
application.
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2.3.1 Proposed healthcare wearable device including multiple sensors, processor
and low energy wireless communication

The proposed MWHD prototype showed in Figure 2.2 is battery-operated and contains
sensors to measure health information of the user – namely HR, pulse oximetry, body tem-
perature, and steps. The sensors communicate over an Inter-Integrated Circuit (I2C) bus
with the Microcontroller Unit (MCU). The MCU then transmits data to mobile devices us-
ing BLE, thus minimizing power consumption.

Figure 2.2 – Block diagram showing the functional circuit components of the proposed pro-
totype wristband.

Selected Area A of Figure 2.2 comprises the CC2640R2F Cortex®-M3 MCU circuit
[33] and additional components for operating the MCU and for the BLE communication
interface. Two crystals are positioned to generate clock signals for different modes of the
MCU, one with 24 MHz for regular speed operation and 32 kHz for low-power mode. The
reduced speed during low-power mode saves power during idle operation. The General

Purpose Input/Output (GPIO) pins and Joint Test Action Group (JTAG) Interface are made
available in pin connectors for ease of access during testing of the MWHD prototype. The
Radiofrequency (RF) circuitry is built according to the recommendations on [33] related
to the 4 x 4 External Single-ended configuration, which requires a smaller board space and
saves more power. Two push-buttons are added for user input and interaction with the device.

Selected Area B of Figure 2.2 is the power sourcing part of the circuit from a small
Lithium-Polymer (LiPo) battery. The nominal 3.7 V of the LiPo battery is regulated to 3.3 V
and 1.8 V using low-dropout regulators LP5907MFX-3.3 and LP5907MFX-1.8. The regula-
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tors guarantee a stable voltage of operation for the MCU and sensors during device operation
and battery’s charge and discharge cycles. The LiPo battery is equipped with a generic com-
mercial micro USB recharging module with overcharge, over-discharge, and current protec-
tions.

Selected Area C of Figure 2.2 includes the sensors for health data measurements. The
signals provided by the PPG sensor MAX30102 are used to estimate the HR and pulse
oxymetry using red or Infrared (IR) LEDs. Red and IR LED signals in conjunction en-
able pulse oximetry estimation, based on the different absorption rates of arterial and venous
blood. The prototype device also comprises an accelerometer LIS331DLTR, used for the
step counter, to measure movement artifacts used for interference reduction on the PPG sig-
nal. For keeping track of body temperature variations, such as fever, the prototype utilizes
a MAX30205 sensor. The sensor is positioned on the bottom side of the prototype device
to contact the users’ skin. The values read are calibrated according to the manufacturer’s
specifications in [34].

The proposed Printed Circuit Board (PCB) is designed as a 4-layer board to achieve
routing requirements and reduce Electromagnetic Interference (EMI). Additionally, the pro-
posed PCB is double-sided mounted, with central processor and input buttons on the top and
sensors on the bottom to contact the user’s wrist skin (required by PPG and body temper-
ature measurements). Test points are also positioned for power sourcing, communication
interfaces, and JTAG debugging.

Figure 2.3 shows photos of the MWHD prototype produced according to the block dia-
gram of Figure 2.2. On the left-hand side photo, the complete prototype encapsulated as a
smartband is shown, while on the right-hand side photo, the PCB of the block diagram of
Figure 2.2 is depicted.

The MWHD is projected as a low-cost device, enabling a cheaper complete healthcare
solution to be deployed on a large scale. The cost of the components and PCB was USD
25.00 in a low volume run, indicating that further cost reduction is possible by bulk pro-
duction. The final price of the device is on-par with other low-cost fitness wearable devices
available in the market. This cost compares well with those of clinical health devices, that
can cost more than USD 100.00, by a considerable margin.

As we carried out the hardware prototype development and the proposed algorithm for
HR estimation simultaneously, we gathered HR data from a MAX30100 device for exper-
imental validation. This different PPG sensor module is equivalent to that present in the
projected prototype. The employed pulse oximeter and HR sensor integrated circuit cap-
tured data in peripheral oxygen saturation (SPO2) measuring mode, though pulse oximetry
data is not presently considered. Data from the IR LED from the sensor is considered during
the tests due to reduced interference from ambient background lighting, while the red LED
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Figure 2.3 – Dimensions of the PCB and enclosure produced for the proposed MWHD device
prototype.

data is disregarded for the application.

The MAX30100 PPG sensor module communicates via I2C bus to the main MCU, which
then transmits gathered data to the computer’s serial port via a USB-to-Serial adapter. The
experiment uses wired serial transmission.

2.3.2 Proposed high resolution signal processing algorithm for HR estimation

A novel approach for HR detection applying the Estimation of Signal Parameters by Ro-

tational Invariance Techniques (ESPRIT) [35] algorithm is presented in this subsection. In
[36], the high-resolution signal processing technique named SPHINS is successfully applied
for the frequency estimation in forensic applications. In [37], a high accuracy step counter
algorithm based on ESPRIT has been proposed using the accelerometer signals acquired by
the sensors of our MWHD prototype proposed in Subsection 2.3.1. Inspired by the outstand-
ing results of [36, 37, 38], we propose the usage of the high-resolution signal processing
algorithm ESPRIT to measure the HR.

The algorithm exploits the property of rotational invariance of signal subspaces spanned
by two temporally displaced data sets [35]. A simplified description of the least-squared
version of the ESPRIT algorithm is shown next based on [38] and [39].

By applying the Hilbert transform on the PPG waveform model in (2.1), we obtain the
analytic representation of the signal xrns P R given by:

yrns “ xrns ` jHtxrnsu, (2.2)
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where the operator Htu denotes the Discrete Hilbert Transform (DHT) and j “
?

´1.

We replace (2.1) into (2.2) and rewrite yrns P C by taking into account that Htu is a
linear operator, as:

yrns “ A cos r2πfn ` θs ` jHtA cos r2πfn ` θsu ` rrns ` jHtrrnsu. (2.3)

The signal yrns can then be represented as a sum of the complex exponentials with added
noise component wrns, comprising the real and imaginary parts of the noise component rrns:

yrns “ A exp jr2πfn ` θs ` wrns. (2.4)

By segmenting the samples obtained by yrns in (2.4), we can build a data matrix Y where
N is the amount of data records of the length-P time-window vector signal yrns, thus:

Y “ ryr0s yr1s . . . yrN ´ 1ss
T

P CPˆN , (2.5)

where yrns “ rpyrns pyrn ` 1s . . . pyrn ` P ´ 1ss
T, and T is the transposition operator of

matrices.

Next we compute the sample covariance matrix of (2.5) as follows:

Ry “
YYH

N
. (2.6)

By applying the Eigenvalue Decomposition (EVD) in (2.6), we obtain the following ex-
pression:

Ry “ UΣUH, (2.7)

where U is an P ˆ P matrix of right singular vectors and H denotes the Hermitian operator.
Matrix Σ P RNˆP has dimensions N ˆ P and is composed of singular values.

Matrix U can be decomposed as U “ ruy0 |Uws, where uy0 , the first column of U, is
the vector that generates the signal subspace, of dimensions P ˆ 1, formed by the singular
vector corresponding to the maximum singular value of the data matrix Y. The remaining
singular vectors form a matrix in which its columns correspond to the basis that generate the
noise subspace Uw, of dimensions P ˆ pP ´ 1q, orthogonal to the signal subspace.

By writing vectors uu and ud formed by the first and last P ´ 1 elements of uy0 , respec-
tively, the rotational invariance presented previously, and exploited by ESPRIT, guarantees
that:

uuϕ “ ud, (2.8)

where ϕ P C corresponds to the rotation scalar. By solving (2.8), the phase value estimation
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of ϕ is given by:

ϕ “ =
uH
uud

uH
uuu

, (2.9)

where = is the phase notation that denotes the phase angle value of the corresponding com-
plex number.

We determine the frequency estimator pf with the computed phase angle value of ϕ and
the sampling frequency fs, thus:

pf “
ϕ

2π
¨ fs. (2.10)

To estimate HR, we calculate the time window T of the measurement given by T “

nsamples{fs, that is equivalent to the duration of the measurement in seconds. Finally, the
estimated value is BPM “ pf ¨ 60{T .

Next, we present the summarized steps of the ESPRIT based algorithm for the HR esti-
mation.

Algorithm 1: Proposed ESPRIT-based HR estimation via Hilbert Transform

1 Given signal xrns in (2.1), sampled with frequency fs, during a time window of T :
2 1) Obtain signal yrns according to (2.3) by applying the Discrete Hilbert Transform

to xrns.
3 2) Segment the samples obtained in signal yrns to obtain the data matrix Y in (2.5)
4 3) Compute the sample covariance matrix estimate Ry of the data matrix Y as in

(2.6).
5 4) Decompose Ry in the corresponding EVD matrices to calculate by

eigendecomposition matrix U according to (2.7), whose columns are the
corresponding right eigenvectors of Ry.

6 5) Determine the column uy0 of matrix U, corresponding to the maximum singular
value of data matrix Y.

7 6) Determine uu and ud by taking the first and last P ´ 1 elements of vector uy0 .
8 7) Estimate the rotation scalar ϕ P C from vectors uu and ud based on the rotational

invariance property as in (2.8).
9 8) Extract the estimated angle value of ϕ from (2.9).

10 9) Determine the frequency estimator using phase angle value of ϕ into (2.10).
11 10) Calculate the estimated BPM value equal to pf ¨ 60{T .

2.3.3 Healthcare platform for real-time monitoring and evaluation

The software architecture of the proposed application is divided into five layers, as de-
picted in Figure 2.4.
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Figure 2.4 – Software architecture for the developed real-time monitoring healthcare appli-
cation.

In the Presentation Layer of Figure 2.4, a login screen for authentication and registration
of new users is defined. This feature allows users to register and identify their medical
credentials and securely store their information in the application servers.

The Service Layer of Figure 2.4 exposes the business logic implemented in the software
to potential consumers. One example of an external system is the concentrator responsible
for uploading data from wearable devices.

The Business Layer of Figure 2.4 is the logic behind the platform. We divided this layer
into two blocks, in which the Healthcare Subsystem is used to check the data generated
from the patient, and the other block, called Management Subsystem, provides administra-
tive functions, such as supervise and manage multiple patients, wearables, and healthcare
workers.
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The Data Access Layer of Figure 2.4 contains components to abstract the logic required
to access the data stores. Such components provide common data access functionality, iso-
lating the upper layers from the specific database technology, and making the application
easier to maintain and configure.

The Persistence Layer of Figure 2.4 provides several advantages to the software since it
is more efficient to save, retrieve and provide data for the whole application. In our context,
we have four data sources, namely: Wearable Devices, People, Health Data, and Logging
Data.

One advantage of the proposed online application in the solution framework is its inter-
action with the end-user. Using the platform, healthcare workers can track multiple users’
health conditions in a centralized and reliable manner. Note that the proposed real-time mon-
itoring platform can be integrated into other MWHD, as exemplified in [32], with the usage
of a commercial MWHD.

Although the subject of security is not a focus of this chapter, it is essential to highlight
that a distributed system such as the proposed healthcare application, which involves inter-
actions following the paradigm and includes personal data and requires fully distributed
security measures [40]. This is particularly crucial for lightweight protocols for the authen-
tication of devices, as proposed in [41].

2.4 EXPERIMENTAL VALIDATION

To evaluate the performance of the proposed ESPRIT-based HR estimation approach
in Subsection 2.3.2, measurements using the PPG sensor equivalent to that of Subsection
2.3.1 are considered. The MAX30100 sensor used for this experimental validation [42] has
an ADC with lower resolution than that available in the MAX30102 [43] sensor present in
the MWHD prototype, and also different possible parameter configurations. We believe the
results presented here are extensible to the proposed MWHD due to equivalences in both
sensors’ PPG technology.

Initially, signal pre-processing is performed on the sampled data to eliminate artifacts
and other detrimental factors that would hinder each HR estimator’s performance. Such pro-
cesses are employed to account for signal processing present in PPG systems’ real operation,
maintaining this work’s scope.

Motion artifacts are removed using an outlier detector that removes abruptly varying
artifacts from the signal based on the derivative’s high absolute values between consecutive
samples. A low-frequency blocker filter — as proposed in [44] — is implemented with
R “ 0.95 to filter most of the low frequency noise in the signal. A 6-th order Butterworth
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low-pass filter with a cutoff frequency of 4 Hz is applied to attenuate high-frequency noise.
It leaves an effective bandwidth that can detect an HR of up to 240 BPM.

To establish a referential target value for the real HR value, two commercial MWHD
were simultaneously used as the experiment was carried out. The first is a medical oxime-
ter ELERA SH-K3 that measures HR and pulse oximetry using red and infrared light for
transmissive PPG, worn on the user’s finger. The second device is a fitness smartband Fit-
bit Charge HR that comprises two green light LEDs for reflective PPG, worn on the user’s
wrist. Immediately before and after each measurement, HR values of both devices were
logged. It gives initial and final reference values for each device in the measurement time
frame, allowing for HR variation during the experiment to be taken into account. The values
measured after the experiment are then used as true values for calculating the RMSE of each
estimator. We believe that the sensors’ final readings better reflect the BPM values during
the experiment, as they include the same time window of the sample measurements.

The pre-processed samples are used as input for the algorithms under text, resulting in
estimations of the true HR value. Results are expressed in terms of the RMSE, given by:

RMSEpf, pfq “

g

f

f

e

1

nsamples

nsamples´1
ÿ

i“0

pfi ´ pfiq2, (2.11)

calculated for each estimator pfi, referenced either from the oximeter or smartband true value
fi as read at the end of each measurement.

For experimental validation, PPG sensor configurations are varied to evaluate each al-
gorithm’s capabilities and robustness. Initially, the IR LED current level, which controls its
transmission power, is investigated using the values made available on the sensor. Lower
IR current levels decrease the device energy consumption. However, as the LED power also
decreases, the detected signal is weaker, which may increase the estimation error. Config-
urations above 30.6 A saturated the sensor’s ADC, implying into no meaningful data. The
remaining measurements were processed with a signal time window of 5 seconds and a
sample rate of 100 Hz, amounting to 500 samples. In Figure 2.5, results are presented con-
sidering the oximeter reference, while Figure 2.6 refers to the smartband values read right
after experimental measurements ended.

According to Figures 2.5 and 2.6, the proposed algorithm based on ESPRIT resulted
in lower RMSE values for most of the current values considered. Moreover, the proposed
algorithm could perform more accurately at lower current levels, indicating it can save more
power. Note that the zero crossing approach completely fails, since it is not robust enough to
process the data. Lack of robustness of the zero crossing approach is caused by the usage of
single sample, while the other approaches combine the samples to perform the estimation.
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Figure 2.5 – RMSE of estimated BPM values for each algorithm for different current level
configurations, referenced to values read by the oximeter.

Figure 2.6 – RMSE of estimated BPM values for each algorithm for different current level
configurations, referenced to values read by the smartband.

In Figures 2.7 and 2.8, we varied the IR LED pulse width. Longer pulse widths increase
power consumption and the detected signal’s length, enabling the ADC to settle in a more
precise value. Consequently, the ADC resolution available at the sensor is dependent on
the selected pulse width, whose possible values are shown in Table 2.1. Experimental data
was gathered, fixing the LED current level at 27.1 mA and sample rate at 100 Hz. Data
were processed with 500 samples, corresponding to a 5 seconds time window. The RMSE
of the estimations is presented by the final readings of each reference considered. Figure 2.7
corresponds to the oximeter, while Figure 2.8 corresponds to the smartband.
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Table 2.1 – LED pulse width configurations tested and the correspondent ADC resolution.

Pulse width (µs) ADC Resolution (bits)
1600 16

800 15

400 14

200 13

Figure 2.7 – RMSE of estimated BPM values for different pulse width and corresponding
ADC resolution configurations, referenced to values read by the oximeter.

Figure 2.8 – RMSE of estimated BPM values for each algorithm for different pulse width and
corresponding ADC resolution configurations, referenced to values read by the smartband.

The estimator results are consistent with the previous test case, with the proposed algo-
rithm generally having lower RMSE values. These tests showed significant results regarding
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algorithm performance with reduced pulse width and ADC resolution. Pulse width shorter
than 50% of the maximum value is shown to degrade estimation precision considerably. The
shortest pulse width generated higher error values than other configurations. This may be
due to signal ripple caused in Pulse-Width Modulation (PWM) operation, which is more
substantial the shorter the pulse is. Another factor to take into consideration is the lower
ADC resolution corresponding to lower LED pulse width. Therefore, along with suspected
ripple noise, a lower sampling resolution can further impair the output PPG parameter esti-
mation.

We also validate variations in the sample rate to corroborate with the previous experimen-
tal stages. The experimental results obtained show that higher sample rates have decreased
precision in HR, possibly due to the imposed reduction in ADC resolution in each config-
uration tested, as can be seen in Table 2.2. Hence, a sample rate of 100 Hz is considered
advantageous, since it maintains a larger signal bandwidth and maximum ADC resolution.

Table 2.2 – Maximum available ADC resolution for each sample rate configuration tested.

Sample rate (Hz) ADC Resolution (bits)
50 16

100 16

167 15

200 15

400 14

The proposed algorithm based on ESPRIT showed consistent results throughout the ex-
periments performed. It generally has lower RMSE values for lower IR LED current con-
figurations and lower sampling frequencies, following the general trend in the pulse width
variation. Hence, besides the increased precision, it demonstrates the potential for power-
saving and more resilient performance in challenging scenarios.

An analysis of power consumption of the proposed MWHD was carried out in [45] and
is summarized here for further experimental validation. The current consumption was mea-
sured as 2.032 mA on average. That leads to a total battery autonomy of the MWHD of
approximately 73 hours, about a small-sized 150 mAh LiPo battery. Moreover, that enables
the MWHD to be used for around three days without recharging, adding comfort to patients’
use.

The connection between the MWHD and the real-time monitoring application is possible
due to the Representational State Transfer (REST) protocol. Based on this protocol, we built
an API to perform this connection with the database. We computed the times in different
requests for the different pages of the platform. The results are presented in Table 2.3.
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Table 2.3 – Access times to different test requests performed to the API of the real-time
monitoring application.

Action Access Time (ms)
Retrieve data from feed page 43.87

Access patient’s profile 95.0

Add new patient 97.70

List teams 61.19

Request patients list 213.08

Add new healthcare worker 36.01

As shown in Table 2.3, the low latency of access validates that the proposed online plat-
form can be used for real-time monitoring.

2.5 SUMMARY OF THE CHAPTER

This chapter proposes a multi-sensor wearable health device framework and a real-time
monitoring application with high-resolution parameter estimation. The proposed hardware
includes sensors for step counting, pulse oximetry, HR, and temperature. The proposed
MWHD optimizes battery usage by using BLE. In terms of parameter estimation, the em-
bedded system programmed with high-resolution algorithms processes signals from the mul-
tiple sensors used, allowing an improved estimation of the steps and HR. Finally, the patient’s
medical information is reliably provided to the healthcare workers by the real-time monitor-
ing application.
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IDENTIFICATION OF VISUAL EVOKED
POTENTIAL IN MEASUREMENTS

VEP plays a crucial role in the diagnosis of nerve diseases
and epilepsy. By applying luminous stimulation in different
frequencies, neuronal electrical voltage changes are mea-
sured in the visual cortex area at the rear of the head us-
ing MEG. Such acquired MEG signals are separated into
components using BSS. The MEG measurements are ana-
lyzed by medical experts and, based on their subjective in-
terpretation, the VEP components are identified. Supervised
Machine Learning (ML) methods can be applied to identify
VEP components. However, these methods require labeled
data, which must be generated through the subjective inter-
pretation of medical experts. This can be limiting as med-
ical experts traditionally assume a fixed amount of compo-
nents. This chapter proposes a blind framework to estimate
the model order of the MEG measurements and to extract the
VEP components. In order to estimate the amount of compo-
nents, the framework exploits a low computational complex-
ity modified AIC and does not require human intervention.
In order to overcome the need for labeled data, we propose
three approaches to automatically compare components ex-
tracted from MEG measurements with and without stimula-
tion. Since each proposed unsupervised identification ap-
proach identifies a set of VEP components, we propose their
decision fusion using set operations. The proposed frame-
work does not require any human intervention, and it can be
used as a complementary tool to support experts in identify-
ing VEP components. The results are presented in terms of
average amplitude spectrum and spectral topography. The
proposed framework is validated using real MEG measure-
ments.

3.1 INTRODUCTION

MEG is a non-invasive neurophysiological method in which the magnetic activity of the
brain is measured based on the voltage fluctuations on the skull surface. Evoked potentials
correspond to changes in the electrical activity of neuronal structures of the nervous system
that occur as a result of targeted external stimulation of a sensory organ or peripheral nerve.
Evoked potentials are used to study the conductivity of neural pathways by neurological
methods. In particular, Visual Evoked Potential VEP is a certain form of evoked potential
that allows assessment of the optic nerve and visual pathway [46, 47].

Due to the visual stimulation of the retina, triggered electrical voltage changes in the
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visual cortex at the back of the head can be measured as VEP. MEG derives the VEP over
the primary visual cortex, which allows for diagnosing optic nerve diseases. One crucial step
in the VEP analysis from MEG measurements is selecting the number of components before
applying a BSS scheme [48], such as the Independent Component Analysis (ICA) .

While traditionally, the estimation of the number of components relies on the subjec-
tive visual assessment by experts [49, 50, 51], alternative approaches have been proposed in
the literature. One such approach is ICASSO [52], which is designed specifically for this
purpose. However, ICASSO has limitations with respect to its extensive computational com-
plexity and the need for human intervention to establish appropriate thresholds for identify-
ing resolvable components. Furthermore, conventional eigenvalue-based ITC, such as AIC
[53, 54] and MDL [54], do not possess the capability to estimate the number of components
from MEG measurements directly [10, 55].

In this context, a fully automatic framework is proposed to determine the model order
selection and to identify VEP components. In contrast to traditional supervised machine
learning approaches, which depend on training data, the proposed unsupervised framework
relies on the independent components obtained from measurements with and without stimu-
lation to enable the estimation of VEP components.

The main contributions of this chapter are:

• Proposal of the automatic framework for estimation of the amount of components and
identification of the VEP components by exploiting parts of our contributions in [10],
[55], and [9];

• Proposal of three variations of approaches to compare the components extracted from
the measurements in order to identify the VEP components;

• In order to use the three approaches without human supervision, we propose a cali-
bration approach exploiting the correlation levels of the MEG measurements with and
without stimulation;

• Finally, we validate the results using flashes with different frequencies.

The rest of this chapter is organized as follows. In Section 3.2, the proposed framework
for VEP identification is overviewed using a block diagram with all steps. In Section 3.3,
we show the state of the art for the estimation of the amount of components. In Section
3.4, we show our proposed modified ITC components- As shown in 3.5, the modified AIC
outperforms the other modified ITC approaches. Therefore, we summarize the steps of the
modified AIC in Section 3.6. In Section 3.7, we propose three automatic approaches for the
unsupervised framework to identify the VEP components. In Section 3.8, the experiments
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results including their analysis are presented. Finally, a chapter summary is presented in
Section 3.9.

3.2 OVERVIEW OF THE PROPOSED FRAMEWORK FOR VEP IDEN-
TIFICATION

This section presents the proposed unsupervised framework to determine the VEP com-
ponents from the MEG measurements. In this section, we give an overview of the proposed
unsupervised framework. The incorporation of low complexity modified AIC into the frame-
work is shown in Section 3.6. In Section 3.7, three proposed unsupervised identification ap-
proaches and their respective calibrations are shown. In Subsection 3.7.3, two approaches to
subjective VEP identification by visual inspection are presented, the first applying average
amplitude spectrum and spectral topography, and the second processing the data applying
resolution and overlap parameters. Finally, in Subsection 3.7.4, the proposed approach for
merging the outputs of the previous modules is detailed.
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Figure 3.1 – Proposed framework for model order selection and unsupervised identification
of visually evoked potential components

According to Figure 3.1, the inputs of Step 1 are the variable Imax, which is an upper
limit for the number of components, and two matrices, Xs and Xn, which were obtained
from measurements where M channels of the MEG magnetometer were used. The device
used is the Elekta Neurogam depicted in Fig. 3.2. Note that the device has mesaurements
from MEG, EEG and EOG. However, the scopus of this chapter is the analisys of the MEG
measurements.

The matrix Xs comprises the moments with stimulation blocks, and the matrix Xn rep-
resents the interval without stimulation between stimulation blocks. Note that each row of
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Figure 3.2 – Measurement device Elekta Neuromag with flicker stimulation in the Biomag-
netic Center at the Jena University Hospital
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Figure 3.3 – Data Structure

the matrix Xs has size Nz ¨ Nw ¨ P , where P is the amount of samples in each period of the
flash, Nw is the amount of flashes in a train, and Nz is the amount of trains.

In Step 1 of Figure 3.1, a high-pass filter with a cut-off frequency of fhigh and a low-pass
filter with a cut-off frequency of flow are used. Moreover, a notch filter of fnotch is applied to
remove the interference of the electric grid. These filters are applied to both stimulated and
unstimulated measurement data.

In Step 2 of Figure 3.1, we present the proposed low complexity modified AIC, which,
according to our contribution in [9, 55], provides a performance similar to ICASSO, but
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with a much lower computational complexity. Note that other low-complexity modified ITC
schemes, such as modified Minimum Description Length (MDL), modified Efficient Detec-
tion Criterion (EDC), and modified Bayesian Information Criterion (BIC), are outperformed
by the modified AIC. The outputs of Step 2 are the estimated model orders I s and In of the
measurements with and without stimulation, respectively.

In Step 3 of Figure 3.1, ICA is employed to decompose the matrices Xs and Xn into the
sum of I s independent components.

In Step 4 of Figure 3.1, VEPs are identified by exploiting the mixing matrices As and An

and the source matrices Ss and Sn. In this proposal, three different approaches are introduced
for identifying VEP components, allowing the results of each approach to be evaluated. Ac-
cording to Subsection III-C, three different approaches are used to identify VEP independent
components from the I s independent components with stimulation using different calibration
parameters τ for each approach. Still in Subsection III-C, we propose in Step 4 of Figure 1
a calibration approach in order to find a suitable value of τ by using the independent compo-
nents without stimulation.

In Step 5 of Figure 3.1, each row of each independent component is transformed into a
new matrix by concatenating the segments according to two parameters, namely resolution r

and overlap l. Additional details regarding the parameters r and l can be found in Subsection
3.7.3. In Step 5 of Figure 3.1, it is important to note that only the matrices As and Ss are
utilized as input.

In Step 6 of Figure 3.1, we propose a decision fusion approach of the VEP independent
components by applying the set operation to the VEP components obtained from the ap-
proaches in Step 4 and Step 5. Note that each of the five approaches already provides a set
of VEP components that can be directly used.

3.3 STATE-OF-THE-ART APPROCHES FOR THE ESTIMATION OF
THE AMOUNT OF COMPONENTS

The estimation of the amount of components is a crucial step necessary for any BSS
scheme, such as FastICA. Therefore, in this section, we present the state-of-the-art ap-
proaches for the estimation of the amount of components. In Subsection 3.3.1, an overview
of ICASSO is provided, while, in Subsection 3.3.2, an overview of eigenvalue-based ITC is
presented.
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3.3.1 Estimation of the amount of components by visual inspection via ICASSO

ICASSO is a FastICA based approach that exploits the fact that if the amount of com-
ponents is correctly estimated, then the different realizations of the FastICA may result into
very well distinguished clusters [52]. In general, the following instantaneous mixture data
model is assumed for the derivation of BSS schemes.

X0 “

Ie
ÿ

i“1

X
peq

i “

Ie
ÿ

i“1

a
peq

i s
peq

i “ ApeqSpeq, (3.1)

where X0 P RMˆN is the measured data Xs without noise and X
peq

i are denoted as the
Ie well distinguished components or resolvable components or specular components. The
mixture matrix Apeq

P RMˆIe includes the vectors apeq

i for i “ 1, . . . , Ie. The source signal
matrix Speq

P RIeˆN is composed of the source vectors for each group of neurons s
peq

i P

R1ˆN for i “ 1, . . . , Le.

A more complete model in comparison with (3.1) is given as follows

X “

Ie
ÿ

i“1

X
peq

i `

Id
ÿ

i“1

X
pdq

i ` N , (3.2)

where X P RMˆN is the magnetometer channel matrix, Xpeq

i is the i-th specular component,
X

pdq

i is the i-th dense component and N is the noise. Note that Ie and Id are the amount of
specular components and the amount of dense components, respectively [50].

In order to apply the ICASSO to estimate the amount of components, it is crucial to
provide a maximum amount of components denoted by Imax. By increasing too much Imax,
the computational complexity and necessary memory of ICASSO becomes even more pro-
hibitive. However, a small number of Imax may result into Imax ă Ie implying into a high
risk of not finding the VEP component. The more realizations of FastICA are performed,
the better is the ICASSO performance. The authors in [52] recommend approximately 25
realizations at least for a good accuracy for ICASSO. However, in this case, the computa-
tional burden of ICASSO is extremely high, if the amount of sensors and snapshots of the
measured data are large.

By applying ICASSO, the estimation of the amount of both specular and dense com-
ponents is feasible. In order to exemplify, we consider Figure 3.4. Figure 3.4 depicts the
similarity plot obtained by applying ICASSO in our measurements considering volunteer 1
and the stimulation frequency at 3.84 Hz. Note that there are clusters that are very well sep-
arated from the other ones. These clusters are named the specular components. There are
also clusters with overlaps and we refer to them as dense components. According to [52],
the estimation of the amount of components should be performed taking into account both
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specular and dense components. Therefore, in Figure 3.4, we can estimate that Ie ` 1 “ 9

components, while Ie ` Id “ 26 components. Still according to [52], we should apply a BSS
considering the amount of components as Ie ` Id “ 26. By using the amount of compo-
nents equal to Ie ` Id in the ICA decomposition, the ICA returns components that are not
interpretable. Therefore, the goal is to find an amount of components that is at least between
Ie ` 1 and Ie ` Id such that we guarantee that the VEP component is present, when the
BSS scheme is applied. By using Ie ` 1 as the amount of components, we may be able to
decompose the measured matrix into Ie specular components and one dense component. On
the other hand, by using Ie ` Id as the amount of components, we may be able to decompose
the measured matrix into Ie specular components and Id dense components. Note that, if
the estimated amount of components is even greater than Ie ` Id, the BSS approach requires
an unnecessary increased computational complexity due to the increased amount of compo-
nents. Moreover, noise components can be mistakenly selected as the VEP component.

Figure 3.4 – Estimation of the amount of components using ICASSO similarity plot of block
frequency at fs1 “ 3.84 Hz of the first volunteer.

3.3.2 Estimation of the amount of components via ITC

In contrast to the ICASSO, that can estimate the components as shown in Subsection
III-A, the eigenvalue-based ITC is not suitable to estimate Le and Ld from the preprocessed
measured data matrix X modeled in (3.2). Therefore, by applying it in MEG measurements,
it completely fails in the estimation of Le ` Ld or Le.

The eigenvalue-based ITC schemes rely on the eigenvalues profile of the sample covari-
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ance matrix of X . The sample covariance matrix is computed as

pRxx “
XsXsT

N
P RMˆM . (3.3)

By applying the Eigenvalue decomposition of (3.3), pRxx can be written as

pRxx “ EΣET, (3.4)

where E P RMˆM is the eigenvector matrix and Σ P RMˆM is the eigenvalue matrix. By
applying the operator diagp¨q on Σ, we can extract the vector of the main diagonal only with
the eigenvalues.

By applying diagpΣq on the expression in (3.5), we obtain an estimate of the amount of
components. Note that (3.6) is sum of two terms. The left term is derived as a function of the
maximum log-likelihood function exploiting the eigenvalue decomposition, while the right
term is denoted as the penalty function and maps the amount of the degrees of freedom. By
varying k from 0 to M´1, the value of k that minimizes Jpkq is the estimated of components
as follows

pL “ argmin
k

Jpkq, (3.5)

Jpkq “ ´NpM ´ kqlog

ˆ

gpkq

apkq

˙

` ppk,N,Mq, (3.6)

where pL is the estimated amount of components, k is the candidate value for the amount
of components, gpkq is the geometric mean of the k smallest eigenvalues and apkq is the
arithmetic mean of the k smallest eigenvalues.

In general each ITC has a specific penalty function ppk,N,Mq. For instance, for the
AIC, the penalty function is given by

ppk,N,Mq “ kp2M ´ kq, (3.7)

Another ITC is the MDL [54] and its penalty function is given by

ppk,N,Mq “
1

2
kp2M ´ kq logpNq, (3.8)

Depending on the scenario, for instance, data contaminated with colored noise, the EDC
[56] may result into improved results. Its penalty function is given by
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ppk,N,Mq “
1

2
kp2M ´ kq

?
N lnN, (3.9)

Finally, the BIC penalty function is given by

ppk,N,Mq “ 2kp2M ´ kq logpNq, (3.10)

3.4 PROPOSED MODIFIED APPROACHES FOR THE ESTIMATION
OF THE AMOUNT OF COMPONENTS

Although the ITC schemes in Subsection 3.3.2 have a very low computational complexity
in comparison with ICASSO, they are not suitable to estimate Ie and Id from the MEG data
according to the model in (3.2).

As shown in Subsection 3.3.1, ICASSO requires information about the maximum value
of the amount of components Imax to work with a non-prohibitive complexity and memory
allocation. In Subsection 3.4.1, we modify the ITC schemes by exploiting the information of
Imax. We propose two different approaches. The first approach is based on the estimation of
the amount of components exploiting the sample covariance matrix from the estimated chan-
nel matrix using Imax. In Subsection 3.4.2, a second approach very similar to the approach
in Subsection 3.3.2 is proposed by replacing M and N by Imax.

3.4.1 Estimation of the amount of components combining FastICA with ITC

Inspired by the ICASSO, that is based on multiple realizations of the FastICA, we pro-
pose a scheme based on only one FastICA realization and on the traditional ITC.

By applying the FastICA, we can decompose the data as follows

X « pApS “

Imax
ÿ

i“1

paipsi, (3.11)

where pA P RMˆImax is the estimated mixing matrix and pS P RImaxˆN is the estimated source
matrix.

By computing the sample covariance matrix of the estimated source matrix, we obtain

pRSS “
SST

N
“ σ2

sI P RImaxˆImax , (3.12)

where σ2
s is the variance of the source signal and I is the unitary matrix. Due to the FastICA,
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the vectors psi, for i “ 1, ..., Imax, are orthogonal to each other.

Given that pRXX from (3.3) is a full matrix, i.e. not diagonal, and given that pRSS is
diagonal, then the sample covariance matrix pRAA is full and is given by

pRAA “
AAT

Lmax

P RMˆM . (3.13)

Note that since M ą Imax, then pRAA has rank Imax. Therefore, only the Imax greatest
eigenvalues of pRAA are different from zero and the remaing M ´ Imax smallest eigenvalues
are equal to zero.

By applying the eigenvalue decomposition, pRAA can be represented as

pRAA “ EAAΣAAE
T
AA, (3.14)

where EAA is the eigenvalue matrix and ΣAA is the eigenvector matrix. The vectors with the
eigenvectors are represented by diag(ΣAA) and are used for the estimation of the amount of
components.

Note that the parameters M ˆ N of (3.6) are function of the size of xX P RMˆN . There-
fore, we can modify (3.6) to the size of pA P RMˆImax . Hence, we can rewrite (3.6) in the
following fashion

Jpkq “ ´ImaxpImax ´ kqlog

ˆ

gpkq

apkq

˙

` ppk, Imax, Imaxq, (3.15)

where gpkq and apkq are the geometric and the arithmetic mean of the k smallest elements of
the following vector diagpΣAAqp1 : Imaxq. Note that diagpΣAAqp1 : Imaxq has the non-zero
eigenvalues of pA.

Comparing (3.6) and (3.15), we note that M is replaced by Imax, since M is the maximum
value of the amount of components. Moreover, N is replaced by Imax, since the total amount
of samples of pA is given by Imax.

3.4.2 Estimation of components of the sample covariance matrix using the modi-
fied ITC approaches

Inspired by the approach proposed in Subsection 3.4.1, we can select the Imax greatest
eigenvalues of diagpΣqp1 : Imaxq from (3.4). In this case, we apply diagpΣqp1 : Imaxq

directly into (3.15).

29



3.5 EXPERIMENTAL RESULTS

In this section, we compare the performance of the state-of-the-art approaches in Section
3.3 with the proposed modified scheme in Section 3.4 in terms of accuracy and time pro-
cessing. In Subsection 3.5.1, we compare the schemes in terms of accuracy considering the
ICASSO as a reference due to the visual inspection, while, in Subsection 3.5.2, we compare
the schemes in terms of time processing. For the results of this section, we have selected the
measurements of the first volunteer and only two block frequencies: 3.84 Hz and 21.73 Hz.

3.5.1 Comparing schemes in terms of estimation of the amount of components

By applying the ICASSO according to Subsection 3.3.1, we obtain the results in Table
3.1. Note that pId ą pIe in both scenarios and note that pLe is greater than the traditional values
used the literature [57, 50, 51] , such as 1 to 5 components.

Table 3.1 – Estimated amount of components of measurements with and without stimulation
of the first volunteer.

pIe ` 1 pIe ` pId

fs1 “ 3.84 9 26
fs2 “ 21.73 Hz 9 22

Next we evaluate the performance of the traditional ITC schemes in Subsection 3.3.2.
As shown in Figure 3.5, the eigenvalues profile does not follow the assumptions used in
their derivation. One major assumption is the flat profile for the noise eigenvalues. In total
there are 102 eigenvalues. Therefore, note that the 64 greatest eigenvalues are much higher
than the 38 smallest eigenvalues. The values of the 38 smallest eigenvalues range around
10´8, while the 64 greatest eigenvalues are greater than one. This break in eigenvalue profile
degrades the estimation of Ie ` 1 and Ie ` Id performed by the state-of-the-art ITC reviewed
in Subsection 3.3.2.

As shown in Tables 3.2 and 3.3, by using all 102 eigenvalues of diag(Σxx), all ITC fails
indicating an amount of components equal to 64.

In Figure 3.6, we compute the Lmax eigenvalues of the sample covariance matrix pRAA for
the block frequency 3.84 Hz using the modified expression in (3.15) proposed in Subsection
3.4.1. Note that the estimates of AIC and MDL equal to 23 and 14, respectively, in Table
3.2 are in the range of ICASSO between pIe ` 1 “ 9 and pIe ` pId “ 26 in Table 3.1. In this
case, both techniques are suitable. If the goal is to reduce the computational complexity, the
MDL is more suitable due to its underestimation. If the goal is to estimate more components
considering the case that the VEP may be too weak, then the overestimation of AIC is more
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Figure 3.5 – Estimation amount of components using the state-of-the-art ITC shown in Sub-
section 3.3.2 using the main diagonal of the matrix pΣXq of the measurements of block
frequency at 3.84 Hz of the first volunteer.

suitable.

As shown in Table 3.3, even with the modified expression in (3.15) proposed in Subsec-
tion 3.4.1, the EDC and BIC still fail in the estimation of the amount of components, since
their estimated values 4 and 1, respectively, are much smaller than pIe ` 1 “ 9 in Table 3.1.

Figure 3.6 – Estimation of the amount of components using the state-of-the-art ITC shown in
Subsection 3.3.2 using the main diagonal of the matrix pΣAqp1 : Imaxq of the measurements
of block frequency at 3.84 Hz of the first volunteer.
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In Figure 3.7, we apply the modified scheme using the most simplified expression pro-
posed in Subsection 3.4.2. We observe that for the block frequency at 3.84 Hz, the estimates
of AIC and MDL are the same.

For the second block frequency, we observe that AIC and MDL in Table 3.2 still provide
an estimate according to the ICASSO range in Table 3.1. In case of the EDC and BIC, they
only work for fs2 and for the expression based on the eigenvalues of pΣAqp1 : Imaxq with an
estimate similar to the MDL.

Figure 3.7 – Estimation of the amount of components using the state-of-the-art ITC shown in
Subsection 3.3.2 using the main diagonal of the matrix pΣXqp1 : Imaxq of the measurements
of block frequency at 3.84 Hz of the first volunteer.

Table 3.2 – Estimation of the amount of components of the MEG measurements via AIC and
MDL.

AIC MDL

diagpΣAq diagpΣXq diagpΣAq diagpΣXq

Lmax M Lmax M
fs1 “ 3.84 Hz 23 23 64 14 14 64
fs2 “ 21.73 Hz 27 23 64 25 13 64

Table 3.3 – Estimation of the amount of components of the MEG measurements via EDC
and BIC.

EDC BIC

diagpΣAq diagpΣXq diagpΣAq diagpΣXq

Lmax M Lmax M
fs1 “ 3.84 Hz 4 4 64 1 1 64
fs2 “ 21.73 Hz 25 4 64 25 1 64
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3.5.2 Comparing schemes in terms of procesing time

Using a desktop computer with a processor of 2.6 GHz, the processing time of all algo-
rithms is presented in Table 3.4. The ICASSO has the highest computational complexity due
to the several FastICA realizations. As shown in in Table 3.4, the ICASSO processing time
for a single block frequency is approximately 20 Minutes.

Still in Table 3.4, the traditional ITC present a very low computational complexity, al-
though they completely fail for the estimation of the components as shown in Subsection
3.5.1. Therefore, in Table 3.4, the state-of-the-art ITC have an accuracy comparison with
ICASSO as not OK (NOK).

The first scheme proposed in Section 3.4.1 presents a processing time of approximately
0.5 minute, which is almost 40 times faster than ICASSO. The second scheme proposed
in Section 3.4.2 presents a processing time of approximately 0.18 second. Therefore, the
second proposed scheme is almost seven times faster than ICASSO.

Table 3.4 – Comparison of the time processing for the proposed and state-of-the-art ap-
proaches

Approach Absolute
time processing

Relative
value

Accuracy in
comparison with

ICASSO

ICASSO
1246.9 s

« 20.8 min 6927.2 OK

State-of-the-art ITC
from Subsection 3.3.2

using diagpΣXqp1 : Mq

0.18 s 1 NOK

State-of-the-art ITC
from Subsection 3.3.2

using diagpΣXqp1 : Lmaxq

0.18 s 1 OK

State-of-the-art ITC
from Subsection 3.3.2

using diagpΣAqp1 : Imaxq

31.0831 s
« 0.5 min 172.6 OK

3.6 SUMMARY OF THE LOW COMPLEXITY MODIFIED AIC

In this subsection, we summarize the steps to apply the modified AIC, since it presented
the best performance in comparison to the other modified ITC approaches.

In order to estimate the model order of Xs and Xn in Step 2 of Figure 3.1, we first
decompose the matrices using the ICA into Imax components. Then, we reconstruct them in
order to obtain the low rank approximations Xs1 and Xn1 using the Imax components. Next,
we compute the sample covariance matrices of the low-rank approximations Xs1 and Xn1 as
exemplified in (3.16) and (3.17).
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Rs
“

Xs1

Imax

P RMˆM , (3.16)

Rn
“

Xn1

Imax

P RMˆM . (3.17)

Using the EVD, Rs can be decomposed as Equation (3.18) and Rn can be decomposed
as Equation (3.19).

Rs
“ EsΛsEsT

, (3.18)

Rn
“ EnΛnEnT

, (3.19)

where Es and En are the matrices with eigenvectors, while Λs and Λn are diagonal matrices
with eigenvalues. In order to estimate the model orders of data with and without measure-
ments, we apply the eigenvalue vectors on (3.20) by computing diagpΛsq and diagpΛnq.

Jpkq “ ´ImaxpImax ´ kq log
ˆ

gpkq

apkq

˙

` ppk, Imax, Imaxq, (3.20)

where gpkq is the geometric mean of the k smallest eigenvalues, apkq is the arithmetic mean
of the k smallest eigenvalues and ppk, Imax, Imaxq “ kp2Imax ´ kq.

By using the diag pΛsq in Equation (3.20), we obtain the estimated model order Is, while
by using the diag pΛnq in Equation (3.20), we obtain the estimated model order In.

3.7 PROPOSED UNSUPERVISED FRAMEWORK FOR THE IDEN-
TIFICATION

Inspired by our previous contributions in [10, 9, 55], we propose three approaches in
Subsubsection 3.7.2 to identify the VEP components from the ICA components computed
in Step 3 of Figure 3.1. In order to apply the three unsupervised identification approaches in
an automatic fashion, we propose a calibration scheme in Subsubsection 3.7.1.

The according to Step 4 in Figure 3.1, the inputs of Step 4 in Figure 3.1 are the matrices
As, An, Ss, and Sn. Still according to Step 4 in Figure 3.1, the independent components from
the measurements without stimulation are used to calibrate the unsupervised identification
approaches, finding the parameter τ for each approach.

Note that according to the Step 4 in Figure 3.1, each approach uses different information
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from the independent components in order to identify the VEP components. In the unsu-
pervised identification 1 for unsupervised comparison, the matrices As and An are used to
identify the VEP components. In the unsupervised identification 2, the columns of the matrix
As and An are mapped into the frequency domain by applying the Discrete Fourier Trans-
form (DFT) matrix W. Finally, the unsupervised identification 3 uses the matrices Ss and
Sn for the unsupervised identification of the VEP components.

Since the three calibration schemes have the same principle and without loss of general-
ity, we have the matrices Ψs “ As and Ψn “ An in case of the unsupervised identification
1, the matrices Ψs “ |WAs| and Ψn “ |WAn| in case of the unsupervised identification 2
and the matrices Ψs “

ˇ

ˇ

ˇ
WSsT

ˇ

ˇ

ˇ
and Ψn “

ˇ

ˇ

ˇ
WSnT

ˇ

ˇ

ˇ
in case of the unsupervised identification

3.

3.7.1 Calibration scheme to determine the threshold value τ

In order to find the threshold parameter τ , we compute the angular distance between two
vectors with indices p and q of the matrix Ψn:

ϕn
p,q “

2

π
¨ arccos

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

Ψnp:, pq

}Ψnp:, pq}

˙T
Ψnp:, qq

}Ψnp:, qq}

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.21)

where p “ 1, ¨ ¨ ¨ , In and q “ 1, ¨ ¨ ¨ , In and p ‰ q. The value ϕn
p,q is normalized to define

the angular distance between 0 and 1. Note that each p-th vector is compared to In´1 vectors.

Next, we compute (3.22) for each p-th vector. Note that ϕn
p,min provides minimum angular

distance p-th vector and the other remaining vectors. In case that the vector is related to the
VEP components, we assume that the pattern of the vector is different from all other vectors,
implying into a greater ϕn

p,min.

ϕn
p,min “ minpϕn

p,:q. (3.22)

Since Ψn is obtained from non-stimulated measurements, an average angular distance
value is expected. Finally, the calibration parameter τ is computed in (3.23).

τ “ maxpϕn
minq. (3.23)

3.7.2 Unsupervised identification using the calibration parameter τ

Similar to the calibration approach in Subsubsection 3.7.1, the first step for the identifi-
cation of the VEP components is to compute the angular distance between the vectors of the
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Ψn and the vectors of the matrix Ψn.

ϕs
p,q “

2

π
¨ arccos

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

Ψsp:, pq

}Ψsp:, pq}

˙T
Ψnp:, qq

}Ψnp:, qq}

ˇ

ˇ

ˇ

ˇ

ˇ

, (3.24)

where p “ 1, ¨ ¨ ¨ , Is and q “ 1, ¨ ¨ ¨ , In and p ‰ q. The value ϕs
p,q is normalized to define

the angular distance between 0 and 1.

Similar to Subsubsection 3.7.1, each p-th vector is compared to Is ´ 1 vectors. Next,
we compute (3.25) for each p-th vector. Note that ϕs

p,min provides minimum angular distance
p-th vector and the other remaining vectors.

ϕs
p,min “ minpϕs

p,:q. (3.25)

In contrast to Subsubsection 3.7.1, we compare ϕs
p,min to the calibration parameter τ . If

(3.26) holds true, then it is assumed that the p-th vector belongs to a VEP component. The
procedure is repeated for all Is vectors. The output of the three unsupervised identification
approaches are a set of indices related to VEP-independent components.

ϕs
p,min ą τ. (3.26)

3.7.3 Subjective VEP identification via visual inspection

In order to perform the subject VEP identification via visual inspection, two approaches
are applied, namely, average amplitude spectrum and spectral topography. We depict the
average amplitude spectrum and spectral topography in Subsection 3.8.2.

To improve the performance of the average amplitude spectrum and spectral topography,
we process the data applying the resolution r and overlap l parameters according to Step 5
of Figure 3.1.

The resolution r is the amount of flash periods in each segment. Therefore, if r “ 1, it
means that each segment has only P samples, which is the amount of samples in each flash
period. Since each row has size P ¨Nw ¨Nz, the matricization process by varying r, provides
an output matrix of size: P ¨ r ˆ Nw¨Nz

r
.

The overlap l is the amount of samples that are repeated from each consecutive vector.
For instance, in case that l “ 0.1, it means 10 % overlap between two consecutive vectors.
Therefore, by using the parameters r and l, we obtain a trial matrix of size P ¨ r ˆ Nw¨Nz

rp1´lq
.

Still in Step 5 of Figure 3.1, each segment of size p ¨ r is multiplied by a Hanning window
to avoid the leakage effect.
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3.7.4 Decision fusion based on the outputs of all approaches

In order to fuse the outputs of the approaches, we use set operations, such as unions
and intersections. In the case of union operation, we assume the non-detection, i.e., some
approaches have not been able to identify the VEP components identified by the other ap-
proaches. Therefore, by combining the outputs of the approaches, we include the non-
detected VEP components. In the case of intersection operation, we assume a false alarm,
i.e., some approaches mistakenly identified a non-VEP component as a VEP component.
Therefore, by applying the intersection, we expect that the non-VEP component is removed
from the set of components.

3.8 EXPERIMENTAL RESULTS

This section presents the results obtained using the automatic procedures and subjective
VEP identification by visual inspection. In Subsection 3.8.1, the validation of the τ param-
eter is discussed in detail. Then, in Subsection 3.8.2, an in-depth analysis of the automated
procedure is carried out. The results of the subjective identification of the VEP by visual in-
spection are presented in Subsection 3.8.3. Finally, in Subsection 3.8.4, the decision fusion
of the results of all the approaches is presented.

3.8.1 Calculation and validation of τ parameter

Through the calibration, which is applied to Ψs derived from the measurements with
stimulation, the threshold parameter τ varies within the range of 0.65 to 0.85. Consequently,
τ can be a parameter for identifying the VEP components. In the case of Ψn, τ falls within
the range of approximately 0.55 to 0.65.

In Figures 3.8 and 3.9, we depict the histogram of ϕn
p,min obtained from Equation (3.22).

By applying the histogram and as depicted in Figure 3.8, the maxpϕn
p,minq is a value rang-

ing around 0.6. Therefore, τ can be chosen to a value close to 0.6.

As depicted in Figure 3.9, the maxpϕn
p,minq is a value ranging around 0.5. Therefore, τ

can be chosen to a value close to 0.5 for these measurements. However, in order to consider
a more conservative scenario, τ “ 0.6 is used in the unsupervised identification approaches.

In Figures 3.10 and 3.11, we depict the histogram of ϕs
p,min obtained from Equation (3.25).

Note that the stimulation frequency considered is 3.84 Hz.

As depicted in Figure 3.10, the maxpϕs
p,minq is a value ranging around 0.7. Therefore,

since τ “ 0.6, several components whose ϕs
p,min are greater than 0.6 are identified.
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Figure 3.8 – Histogram of the ϕn
p,min obtained from Equation (3.22). Note that τ « 0.6 for

the data without stimulation
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Figure 3.9 – Histogram of the ϕn
p,min obtained from Equation (3.22). Note that τ « 0.5 for

the data without stimulation

As depicted in Figure 3.11, the maxpϕs
p,minq is a value ranging around 0.8. Therefore,

since τ “ 0.6, several components whose ϕs
p,min are greater than 0.6 are identified.

3.8.2 Automatic unsupervised VEP identification

In Table 3.5, we have the results of the application of the three unsupervised identification
approaches considering three different stimulation frequencies, namely, fs1 “ 3.84 Hz, fs2 “

21.73 Hz, and fs3 “ 19.23 Hz.

In the column ru1 of Table 3.5, we present the indices of the found VEP components
applying the unsupervised identification 1 for three different stimulation frequencies. We
can realize that the amount of VEP components are ranging from one to six given the outputs
of fs1 and fs2.

In the column ru2 of Table 3.5, we present the indices of the found VEP components
applying the unsupervised identification 2 for three different stimulation frequencies. We
can realize that the VEP components are varying from one in case of fs3 and six in the case
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Figure 3.10 – Histogram of the ϕs
p,min obtained from Equation (3.25). Note that τ « 0.7 for

the data with stimulation

of fs2.

In the column ru3 of Table 3.5, we present the indices of the found VEP components
applying the unsupervised identification 3 for three different stimulation frequencies. We
can realize that the VEP components are varying from two in case of fs1 and fs3, and none
in the case of fs2. Note that, in case of no VEP component, the symbol of empty set (H) is
used.

ru1 ru2 ru3

fs1 = 3.84 Hz 5 5, 8, 9 20, 23

fs2 = 21.73 Hz
1, 2, 4, 6,
12, 23

1, 2, 4, 9,
12, 20 H

fs3 = 19.23 Hz
5, 9, 15,
17, 21 3 1, 9

Table 3.5 – Indices of the identified VEP independent components using the three unsuper-
vised approaches considering three stimulation frequencies, namely, fs1, fs2, and fs3
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Figure 3.11 – Histogram of the ϕs
p,min obtained from Equation (3.25). Note that τ « 0.85 for

the data with stimulation

3.8.3 Subjective VEP Identification via Visual Inspection

For Step 5 of Figure 3.1, the obtained recording of the components of each measurement
is visually estimated concerning the component number of AIC. First, the mean values of the
amplitude spectrum of the MEG channels 50 to 102 of each component are estimated, and
the measurement components from the first subject with different stimulation frequencies
are analyzed. For this purpose, a VEP component is considered if a peak is presented at least
at the particular stimulation or harmonic frequencies.

Figure 3.12 exemplifies the visual inspection of the mean value of the amplitude spectrum
for the independent component with index p “ 2 of the measurements with stimulation
frequency fs1 “ 3.84 Hz. Note that there is a peak in the frequency fs1. Therefore, the
independent component with p “ 2 can be identified as VEP using the criterion of average
amplitude spectrum.

In Figure 3.13, the independent component with index p “ 6 presents two peaks on the
frequencies fs1 and fs2. Therefore, the independent component with p “ 6 can be identified
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Figure 3.12 – Mean value of the amplitude spectrum of the independent component with
p “ 2 considering a stimulation fs1 “ 3.84 Hz. Note that the independent component with
p “ 2 can be identified as VEP using this criterion

as VEP using the criterion of average amplitude spectrum.

Figure 3.13 – Mean value of the amplitude spectrum of the independent component with
p “ 6 considering a stimulation fs1 “ 3.84 Hz. Note that the independent component with
p “ 2 can be identified as VEP using this criterion

In Figures 3.14 and 3.15, we exemplify the spectral topography. By the visual topogra-
phy, we marked in red line the area of the sensors related to the visual cortex. Therefore, in
case that this region is more activated than the other regions, the independent component can
be considered as a VEP component.
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In Figure 3.14, we have the spectral topography of the independent component with
p “ 2. Since the region of the visual cortex presents a small power, we cannot consider it as
a VEP component using the criterion of the visual inspection of the spectral topography.

Figure 3.14 – Spectral topography of the independent component with p “ 2 considering
a stimulation fs1 “ 3.84 Hz. Note that the independent component with p “ 2 cannot be
identified as VEP using this criterion

On the other hand, in Figure 3.15, we have the spectral topography of the independent
component with p “ 6. Since the region of the visual cortex is slightly activated, we can
consider it as a VEP component using the criterion of the visual inspection of the spectral
topography.

Figure 3.15 – Spectral topography of the independent component with p “ 6 considering
a stimulation fs1 “ 3.84 Hz. Note that the independent component with p “ 6 can be
identified as VEP using this criterion

Table 3.6 displays the indices p of the identified VEP components through visual inspec-
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tion of the mean values of the amplitude spectrum and spectral topographies. By fusing
the sets of the two visual inspection approaches using intersection, we obtain the indices
displayed in the last column of Table 3.6.

rv1 rv2 rv1 X rv2

fs1 = 3.84 Hz
2, 3, 4, 5, 6, 7, 8,
10, 11, 15, 16,
17, 18, 20, 21

1, 3, 4, 6, 7, 8,
9,10, 15, 16,
17, 18, 20, 23

3, 4, 6, 7, 8,
10 15, 16,
17, 18, 20

fs2 = 21.73 Hz
1, 4, 6, 8, 12,
13, 16

1, 3, 4, 6, 8, 9,
10, 12, 14, 16,
17, 19, 20, 21,
22

1, 4, 6, 8,
12, 16

fs3 = 19.23 Hz
2, 3, 4, 8, 9, 11,
12, 14, 18

1, 2, 3, 4, 6, 7,
8, 9, 10, 13, 14,
16, 17, 21, 22

2, 3, 4, 8,
9, 14

Table 3.6 – Indices of the identified VEP independent components using two visual inspec-
tion approaches considering three stimulation frequencies, namely, fs1, fs2, and fs3. Exam-
ple of the decision fusion applying the intersection operation

3.8.4 Decision fusion based on the outputs of all approaches

According to Section 3.7.4, the decision fusion of the independent components can be
applied using set operations. In this subsection, we present only the usage of the intersection
operator.

In Table 3.7, we present the outputs of the three unsupervised identification approaches,
of the intersection of the two visual inspection approaches, and of the intersection of the
visual inspection intersection and of each unsupervised identification approach. Column 5
shows the intersection operations (called rv) between the visual inspection outputs (rv1Xrv2).
Columns 6, 7 and 8 show the intersection operations between the automated procedures and
the visual inspection. Column 6, unsupervised identification 1 and the intersection with the
subjective identification of the VEP through visual inspection. Similarly, columns 7 and 8,
unsupervised identification 2 and 3, respectively, reflect the intersections with the subjective
identification of the VEP via visual inspection.
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ru1 ru2 ru3 rv1 X rv2 “ rv ru1 X rv ru2 X rv ru3 X rv

fs1 = 3.84 Hz 5 5, 8, 9 20, 23
3, 4, 6, 7, 8,
10 15, 16,
17, 18, 20

H 8 20

fs2 = 21.73 Hz
1, 2, 4, 6,
12, 23

1, 2, 4, 9,
12, 20 H

1, 4, 6, 8,
12, 16

1, 4,
6, 12

1, 4,
12 H

fs3 = 19.23 Hz
5, 9, 15,
17, 21 3 1, 9

2, 3, 4, 8,
9, 14 9 3 9

Table 3.7 – Indices of the identified VEP independent components using the three unsuper-
vised identification approaches and the intersection of the two visual inspection approaches
considering three stimulation frequencies, namely, fs1, fs2, and fs3. Example of the decision
fusion applying the tree different intersection operations

3.9 SUMMARY OF THE CHAPTER

One crucial step in the VEP analysis from EEG or MEG measurements is the selection
of the amount of components before applying BSS schemes, such as the . The state-of-
the-art approach ICASSO has a significant computational complexity and the dependence of
human intervention to define thresholds in order to correctly find the amount of resolvable
components. On the other hand, traditional eigenvalue based information ITC, such as AIC
and MDL completely fail to directly estimate the amount of components from the MEG
measurements.

In this work, we propose a modification of the traditional eigenvalue based ITC, such that
an estimate of the amount of components are similar to the ICASSO can be achieved. More-
over, the modified ITC presents a dramatic reduce in the computational cost in comparison
with ICASSO.

In this chapter, we propose an unsupervised framework for the identification of VEP in
MEG measurements. The proposed framework can be used to replace or to complement the
traditional visual inspection based approaches. Moreover, in contrast to the current super-
vised machine learning schemes, the proposed framework does not require any training data
set. The presented results are validated using measurements from the Jena University Hospi-
tal. By applying the ICASSO in the measurements, a total of 23 components are estimated.
We validate our results using MEG measurements.
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CONCLUSIONS

In this chapter, we draw the conclusions and we provide
next research topics. Four main contributions related to
overall objective of developing software and hardware so-
lutions for biomedical engineering applications, in particu-
lar, array signal processing techniques, are presented. First
a MWHD, including high-resolution signal processing algo-
rithms to measure of the Heart Rate (HR) and the steps is
proposed. Second traditional eigenvalue based ITC are mod-
ified to estimate the amount of components of MEG and EEG
data. Third an unsupervised framework for the identification
of VEP in MEG measurements is proposed. Finally, we vali-
date the results with measurements.

In this thesis, hardware and software solutions for biomedical engineering applications
are proposed.

Chapter 2 presents a complete framework for health systems composed of MWHD, high-
resolution parameter estimation, and real-time monitoring application. The system can be
further improved by using novel sensors and by incorporating a for the fast processing of
the data.

Chapter 3 proposes unsupervised frame- work for the identification of VEP in MEG
measurements, including a solution for the MOS. The proposed framework can be further
improved by exploiting also supervised machine learning algorithms. In this case, labeled
data is necessary. Therefore, a pre-processing of the measurements with the support of an
expert or the usage of a labeled data base is essential.

The contributions in the Appendices A, C and D can also be further developed by incor-
porating more sophisticated array signal processing. With respect to Appendix A, machine
learning algorithms that exploit the natural tensor structure can be proposed. In Appendix C,
additional sensors can be combined in order to increase the accuracy. In this case, multimen-
sional array signal processing schemes can also be exploited. Finally, in Appendix D, the
data of each array is individually processed. In order to further improve the solution, a novel
tensor-based framework with jointly processing of the data of the arrays can be applied.
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CYBERSECURTIY FRAMEWORK

Distributed Denial of Service (DDoS) attacks are one of the
most important security threats, since multiple compromised
systems perform massive attacks over a victim, overwhelm-
ing its bandwidth and/or resources. Such attacks can be
detected, for example, by using supervised machine learn-
ing based solutions previously trained on large DDoS attack
datasets in order to automatically identify malicious pat-
terns present in the incoming traffic. In addition, since large
datasets show inherent multidimensional structures, tensor
based detection techniques can outperform the matrix based
counterparts. In this context, the development of a DDoS at-
tack detection framework which exploits both machine learn-
ing and tensor based approaches is crucial. To face this chal-
lenge, we summarize three journal publications [5, 6, 7] with
contributions on the area of cybersecurity.

Network intrusion detection plays a fundamental role in the process of protecting critical
networks by monitoring and analyzing suspicious activities, incidents, threats and viola-
tions. In this context, since Intrusion Detection Systems (IDS) provide forewarnings about
malicious behaviors, such as intrusion attempts and malware, they are used by security ad-
ministrators in order to detect and countermeasure sophisticated network attacks [58].

DDoS attacks are one of the most important threats to network security. For example,
in 2018 the developer platform GitHub was hit by a huge DDoS attack which reached 1.35
terabits per second during a period of 15 to 20 minutes [59]. Additionally, according to the
Cisco Annual Internet Report (2018–2023), DDoS attacks correspond to 25 % of the total
Internet traffic of a country during their occurrence [60]. Still according to [60], there will
be 14.5 million of DDoS attacks in the world in 2022, implying into major security threats
to governments and corporations.

In order to launch DDoS attacks into target systems, hackers can make use of legitimate
third part components (normally web servers) through the combined effort of thousands of
compromised machines known as “zombies”. Such zombies establish a “zombie network”
that exhausts victim’s bandwidth or resources through a massive traffic attack, while hiding
the attacker’s identity. Moreover, the weaknesses of different network layer protocols are
exploited by an attacker and, consequently, the victim uses huge CPU and memory resources
to process intensive operations [61].

In this sense, it is fundamental that network administrators adopt accurate and efficient
schemes in order to detect and prevent DDoS attacks in their organizations. For instance,
tensor based signal processing techniques have attracted an increasing attention in the last
years since they allow us to better exploit the inherent multidimensional structure of large
datasets [62, 63]. Furthermore, supervised ML based methods can provide an efficient way
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to detect DDoS attacks [64, 65]. As ML algorithms can be trained on benchmark datasets
provided by cybersecurity institutes [66, 67], such schemes can be used to identify, with high
reliability, malicious patterns eventually present in the input network traffic in an automated
fashion.

To face the challenge of DDoS attack detection, schemes based on traditional signal pro-
cessing techniques have attracted a great attention in the last decades. A MOS technique
for blind automatic malicious activity detection in distributed honeypots was proposed by
David et al. in [68], where human intervention or information about attacks were not re-
quired. In line with the ideas of [68], Da Costa et al. proposed a blind automatic scheme
to detect malicious traffic in network data collected at honeypot systems [69] as well as the
R-D Akaike Information Criterion and the R-D Minimum Description Length to automati-
cally identify malicious activities in honeypots [70]. In addition, it is worth to mention the
recent work of Vieira et al., which proposed a framework in order to detect the number of
port scanning and flood attacks by analyzing the largest eigenvalues in time frames after
applying MOS and similarity analysis on the dataset [71]. However, since the approaches
in [68]-[71] are not tensor based solutions and do not consider automatic learning, we fill
those gaps by exploiting the inherent tensor structure present in large datasets as well as by
applying classic machine learning classification algorithms such that the proposed technique
learns to recognize patterns in multidimensional data.

Finally, ML based schemes have also been successfully used for DDoS attack detection.
Osanaiye et al. [72] presented an ensemble based multi-filter feature selection method for
DDoS attack detection in cloud computing where the output of filter methods are combined
to achieve an optimum selection. Furthermore, a model based on artificial neural networks
and black hole optimization algorithm to detect DDoS attacks in cloud computing was pre-
sented in [73]. Moreover, in [64], the authors proposed a hybrid framework based on data
stream approach for DDoS attack detection where the computational load is divided between
the client and proxy side. Finally, Wang et al. proposed to combine feature selection with
multilayer perceptron to select the optimal features as well as designed a feedback mech-
anism to perceive detection errors dynamically [65]. Thus, despite the machine learning
based schemes proposed by [64], [65], [72] and [73] show high performance in terms of
DDoS attack detection, they did not exploit multidimensional techniques. Therefore, we
also fill such research gap by adopting and extending tensor based denoising approaches,
particularly the recent MuDe scheme, such that the inherent tensor structure of large datasets
can be exploited more efficiently.

Since tensor based signal processing techniques as well as machine learning based algo-
rithms have shown high performance when considering large datasets and network intrusion
detection problems, respectively, we propose a novel framework for DDoS attack detec-
tion which exploits both approaches. The proposed architecture is composed by four steps:
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data preprocessing, dataset splitting, dataset denoising and machine learning classification.
Moreover, in the third step we propose an extension of the recent MuDe technique, which
attenuates the noise present in the dataset instances. Experiments show that the proposed
framework achieves satisfactory performance, with outstanding values of accuracy, detection
rate and false alarm rate when compared with traditional low-rank approximation techniques
as well as with related works.

Hence, the major contributions of [5] are summarized as follows:

• a novel architecture that combines the benefits of both multidimensional signal pro-
cessing techniques and supervised machine learning classification algorithms with the
aim of providing accurate and efficient DDoS attack detection.

• a recent multidimensional noise reduction technique known as MuDe in order to at-
tenuate the noise present in the instances of DDoS attack detection datasets. The tradi-
tional MuDe was proposed by Gomes et al. in [63] and originally was intended to re-
duce the noise level in measurement data collected by multidimensional sensor arrays
in radio communication systems. Our proposed extension is based on two main fac-
tors: (i) the application of the traditional MuDe directly on the dataset instances, and
(ii) the inclusion of a second denoising stage performed by Higher Order Orthogonal

Iteration (HOOI) low-rank approximation such that a higher degree of noise reduction
is achieved, with significant gain on the overall DDoS attack detection performance.
We refer to [74] in order to have more details about these contributions.
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ALGORITHMS OF THE MULTI-SENSOR
HEALTH WEARABLE DEVICE
FRAMEWORK

In this Appendix, four algorithms used on the multi-sensor
health wearable device framework are presented. The first
algorithm is a FFT-based HR estimator, while the second al-
gorithm is autocorrelation-based HR estimator. For the step
counting, the third and fourth algorithms for frequency esti-
mation by counting zero crossings and peak detection using
maximum value in a given interval are shown.

Algorithm 2: FFT-based HR estimator

1 Given signal xrns, sampled with frequency fs, during a time window T :
2 Form the zero-padded signal by appending N ´ T ¨ fs zeros at its end, totaling N

points. The achieved frequency resolution is given by fs{N .
3 Calculate the N -point FFT of the signal and its corresponding frequency arguments.
4 Calculate the absolute value of the frequency domain representation:

|Xpfq| “

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

n“0

xrnse´j2πfn{N

ˇ

ˇ

ˇ

ˇ

ˇ

Calculate the vector f of length N corresponding to frequency values from 0 to fs:

f “ r0, fs{N, 2fs{N, . . . , fss

5 Compute the frequency argument corresponding to maximum amplitude of the FFT
from half the spectrum 0 ď k ď N{2:

pf “ argmax
0ďnďN{2

|Xpfq|

Calculate the estimated BPM value form pf :

estimated BPM “ pf ¨ 60
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Algorithm 3: Autocorrelation-based HR estimator

1 Given signal xrns, sampled with frequency fs, during a time window T :
2 Compute the autocorrelation of the signal for l ě 0:

rxxrls “

T ¨fs
ÿ

n“0

xrnsxrn ´ ls, l “ 0, 1, 2, . . . ,

3 For l ‰ 0, compute the lag corresponding to the maximum argument of rxxrls:

lp “ argmax
lě0

prxxrlsq; (B.1)

4 Calculate the frequency estimator pf form lp:

pf “
1

lp
; (B.2)

Calculate the estimated BPM value form pf :

estimated BPM “ pf ¨ 60. (B.3)
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Algorithm 4: Frequency estimation by counting zero crossings

1 Given signal xrns, sampled with frequency fs, during a time window T:
2 Compute the number of zero-crossings in the signal during T according to:

zpxq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1 if xrns ă 0 and xrn ´ 1s ă 0

1 if xrns ą 0 and xrn ´ 1s ă 0

1 if xrns ą 0, xrn ´ 1s “ 0 and xrn ´ 2s ă 0

1 if xrns ă 0, xrn ´ 1s “ 0 and xrn ´ 2s ą 0

0, otherwise.

3

zero-crossings “

T ¨fs
ÿ

n“0

zpxrnsq

Divide the number of zero crossings by during T by 2;
4 Calculate the frequency estimator from half the number of zero crossings during T :

pf “
zero-crossings{2

T
;

5 Calculate the estimated BPM value form pf :

estimated BPM “ pf ¨ 60. (B.4)

Algorithm 5: Peak detection using maximum value in a given interval

1 Given signal xrns, sampled with frequency fs, during a time window T:
2 Find the number of local peaks, in order to detect only the PPG signal’s feet during

interval T ;
3 Calculate the frequency estimator from the sample interval:

pf “
number of peaks

T
;

4 Calculate the estimated BPM value form pf :

estimated BPM “ pf ¨ 60.
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STEP COUNTER

To improve medical follow-up despite limited hospital space
and resources, wearable tech offers remote patient monitor-
ing. A microelectronic system tracks vital health parameters.
This study assesses angular movement in three axes, explor-
ing sensor placement’s impact on step detection. Different
algorithms like FFT analysis and ESPRIT are compared for
accuracy, showing ESPRIT’s enhanced step detection capa-
bility compared to traditional methods.

Advancements in small-scale hardware and the availability of electronic sensors have
fueled the expansion of Internet of Things (IoT), enhancing everyday products like fridges,
lamps, and watches. Wearable tech, using microcontrollers, now measures vital parameters
like temperature, pressure differentials, and heart rate, enabling real-time patient data mon-
itoring. Physical activity significantly affects health, influencing body motion and sports
participation, highlighting its relevance in patient well-being.

This study uses step count as an indicator of physical activity, employing gyroscope or
accelerometer data to detect steps during walking. By analyzing acceleration and angular
velocity, a step-counting method called ESPRIT is proposed and compared to FFT-based
approaches. ESPRIT performs better when sensors are on the user’s wrist and during slower
walking speeds with lower signal amplitude. This finding holds significance for treatments
like home-based physiotherapy for neurological diseases, emphasizing the importance of
patient adherence to low-speed walking exercises. Remote assessment via the proposed
step-counting algorithm could enhance treatment outcomes. Note that the state-of-the-art as
well as the the ESPRIT based approaches are explained in the Appendix B.

In Figure C.1, the performance of the step counter algorithms are compared. The pro-
posed ESPRIT based approach for the estimation of the amount of steps outperforms the
state-of-the-art schemes.
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Figure C.1 – The proposed ESPRIT based approach for the estimation of the amount of steps
outperforms the state-of-the-art schemes.
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DRONE LOCALIZATION IN MULTIPATH
ENVIRONMENTS

The application of drones, or Unmanned Aerial Vehicles
(UAVs), across commercial and public safety domains has
raised pertinent security concerns pertaining to potential ex-
ploitation for espionage and terrorism. Addressing these
concerns, we propose a novel framework employing a multi-
dimensional antenna array system to precisely localize UAVs
within complex multipath environments. Expanding upon an
existing signal emitter localization framework, our approach
introduces two key enhancements. Firstly, we leverage ten-
sor representation to effectively exploit the inherently mul-
tidimensional nature of the data. Secondly, we integrate a
multifaceted denoising preprocessing scheme aimed at aug-
menting the signal-to-noise ratio in received signals. Numer-
ical analyses and simulations demonstrate the efficacy of our
proposed methodology.

Recent studies propose diverse strategies for precise drone localization. These span from
utilizing image sensors for azimuth and elevation angle measurements to the development of
Time Difference of Arrival (TDoA) algorithms and integrated anti-drone systems combining
surveillance and jamming functionalities. Some approaches leverage arrays of directional
antennas to estimate DoA and localize drones by exploiting specific signal characteristics
like NTSC or RSS. However, prevalent high-resolution frameworks exhibit limitations in
multidimensional scenarios. Addressing this, an innovative extension adopts tensor repre-
sentation and a MuDe scheme, showcasing superior performance in drone localization sim-
ulations compared to conventional matrix and tensor-based methods with spatial smoothing.

In Figure D.1, we present the Root Mean Squared Error of the estimated spatial fre-
quency versus number of antennas per dimension. The following parameters are considered
in the scenario signal-to-interference ratio SIR = 20 dB and SNR = 30 dB, number of signal
samples N “ 10, number of drones within the system Q “ 2, number of uniform rectangular
arrays (URA) U “ 4, distance between the URA δ “ 400 m and amount of Line of Sight

(LOS) and Non Line of Sight (NLOS) components D “ 6. According to Figure D.1, the
proposed MuDe based approach for the estimation of the position significantly outperforms
the state-of-the-art schemes.
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Figure D.1 – The proposed MuDe based approach for the estimation of the position outper-
forms the state-of-the-art schemes.
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