
Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Decomposição tensorial aninhada acoplada
aplicada a sistemas de comunicação MIMO

duplamente polarizado

Maria de Fátima Kallynna Bezerra Couras

TESE DE DOUTORADO

PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS MECATRÔNICOS

Brasília

2023



Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Coupled Nested Tensor Decomposition
applied to Dual-Polarized MIMO

Communication Systems

Maria de Fátima Kallynna Bezerra Couras

Tese de Doutorado submetida ao Departa-
mento de Engenharia Mecânica da Faculdade
de Tecnologia da Universidade Brasília como
parte dos requisitos necessários para a obten-
ção do grau de Doutor.

Orientador: Prof. Dr.-Ing. João Paulo Javidi da Costa

Brasília

2023



Bezerra Couras, Maria de Fátima Kallynna.
B769d Decomposição tensorial aninhada acoplada aplicada a sis-

temas de comunicaçãoMIMO duplamente polarizado /Maria de
Fátima Kallynna Bezerra Couras; orientador João Paulo Javidi
da Costa . -- Brasília, 2023.

140 p.

Tese de Doutorado (Programa de Pós-Graduação em Sistemas
Mecatrônicos) -- Universidade de Brasília, 2023.

1. Decomposição Tensorial. 2. Produto de Kronecker. 3. Mod-
elagem do canal. 4. Receptores semi-cegos. I. , João Paulo Javidi
da Costa, orient. II. Título



Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Decomposição tensorial aninhada acoplada
aplicada a sistemas de comunicação MIMO

duplamente polarizado

Maria de Fátima Kallynna Bezerra Couras

Tese de Doutorado submetida ao Departa-
mento de Engenharia Mecânica da Faculdade
de Tecnologia da Universidade Brasília como
parte dos requisitos necessários para a obten-
ção do grau de Doutor.

Trabalho aprovado. Brasília, 27 de junho de 2023:

Prof. Dr-Ing. João Paulo Javidi da Costa
Orientador

Prof. Dr. Ricardo Zelenovsky
Examinador interno

Prof. Dr. José Alfredo Ruiz Vargas
Examinador interno

Prof. Dr. Walter da Cruz Freitas Júnior,
UFC/PPGETI

Examinador externo

Prof. Dr. Tarcisio F. Maciel, UFC/PPGETI
Examinador externo



Brasília
2023



To my husband Pablo and my parents Pastoura and Francisco (in memorian).



Acknowledgements

I would like to thank all the people who contributed to the development of this
Thesis, especially:

To my Advisors Prof. Dr. Gérard Favier, Prof. Dr. Vicente Zarzoso, Prof. Dr. André
Lima Ferrer de Almeida and Prof. Dr. João Paulo Javidi da Costa.

Especially my thanks to prof. Gérard Favier, for his mentorship and never-ending
supply of fascinating tasks. His humble approach to research and love to tensors is an
inspiration. This approach is evident in his simple but obvious writing style, which I aspire
to emulate throughout my career. Thank you so much for everything that taught me about
tensors, because everything I learned I owe to you.

My dear husband Pablo Henrique Ursulino de Pinho all my thanks and gratitude. For
staying with me in this dream of becoming PhDs and for all the support at crucial moments
in our personal and academic life.

To my parents Francisco Bezerra Couras (in memorian) and Pastoura Gomes Bezerra
for granting me the gift of life together with God. To my brothers Vicente Bezerra Couras
and Carlos Alberto Bezerra Couras for their support at different times.

My dear University of Brasilia - UnB and Université Côte D’Azur and in particular to
the I3S laboratory for the technical support given to the development of this work.

Tomy friends from Brasilia especially Jacinto Bezerra Gomes, SílviaMartins, Gustavo
Martins, João Batista Martins, Gileno Santos, Italene Aparecida, Pedro Lucas and João Paulo
for a beautiful and true friendship.

To my friends in Brazil, Layne Leal, Luciano Monteiro, Evandson Dantas, Alisson
Calvante, Ellen Castro, Valmir Silvino, and Aldenir Sudario, for the true feeling of friendship.

To a great friend and one of the greatest supporters of my doctorate andmy husband’s
at the University of Brasília-UnB, Dr.-Ing. Ricardo Kehrle Miranda.

I am also grateful to the LASP laboratories, the University of Brasília-UnB and GTEL,
Federal University of Ceará-UFC for their technical support and to my graduating program
in Mechatronic systems - PPMEC / UnB.

To the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES and
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for the scholarship
granted.

To my Parents-in-law, Edilson Ursulino de Morais (in memorian) Leny Campelo de
Pinho. And to my brother-in-law Edilson Ursulino de Morais Filho and my sisters-in-law



Fernanda Brígida Ursulino de Pinho. To my nephews and nieces, Ianca Lavigne, Carlos
Daniel, Karla Vitorya, Davi Pinho, Igo Alexandre and Sophia Morais.

To my grandparents (in memorian) Vicente Gomes da Silva, Raimunda Bezerra
Feitosa, Ricarte Bezerra Couras and Expedita Bezerra Pereira.

To my dear professors Dr. João César Mota and Dr. Walter Freitas for having been the
main collaborators of this doctorate in a thesis cotutela regime with Université Côte D’Azur,
in Nice, France.



“Logic will get you from A to Z.
Imagination will get you anywhere.”

(Albert Einstein)



Abstract

In recent years, massive Multiple-Input-Multiple-Output (MIMO) systems have been the
subject of intense research due to their great potential to provide energy efficiency, data
rate gains and diversity. Semi-blind receivers based on tensor decompositions for MIMO
massive systems have been extensively studied in this context. These receivers allow us a
better estimate of the channel and symbols without any information about the channel. This
thesis presents a received signal model based on tensor decompositions that combine an
extension of the multiple Kronecker space-time (MKronST) coding and fifth-order channel
tensor to transmit the symbols. The coding extension is based on combining the tensor
space-time (TST) coding and the multiple symbol matrices Kronecker product (MSMKron),
called TST-MSMKron coding. The channel assumes a uniform rectangular array (URA) at
both transmitter and receiver, allowing us to model the channel as a tensor. More specifically,
the theoretical contributions of this thesis are the proposal of new semi-blind receivers
to jointly estimate the symbol matrices, channel and channel parameters without prior
knowledge. In the first part of this thesis, a decomposition based on column selection, called
multidimensional CX decomposition, for tensors is proposed and one algorithm is presented
to estimate and reconstruct the data tensor. In the second part, the TST-MSMKron coding is
presented for massive MIMO systems, where a model of the received signal is proposed that
combines a fifth-order channel with the TST-MSMKron coding. This system allows us to
model the received signal as a coupled-nested-Tucker-PARAFAC (parallel factor analysis).
In addition, two-step semi-blind receivers are proposed to jointly estimate the symbols, the
channel and the channel parameters. In each part of the thesis, Monte Carlo simulations
are provided to evaluate the performance of the proposed algorithms. The results show the
efficiency of algorithms in the reconstruction of the data and joint estimation of the symbols,
channel and channel parameters of the proposed system, respectively.

Keywords: Tensor Decomposition. Kronecker product. Channel modeling. Semi-blind
receivers.



Resumo

Nos últimos anos, os sistemas MIMO (do inglês,Multiple-Input-Multiple-Output) massivos
têm sido objeto de intensa pesquisa devido a seu grande potencial para fornecer eficiência
energética, ganhos de taxa de dados e diversidade. Neste contexto, receptores semi-cegos
baseados em tensores têm sido extensivamente estudados para sistemas MIMO. Esses recep-
tores nos permitem uma estimativamelhor do canal e dos símbolos sem qualquer informação
a respeito do canal. Esta tese apresenta um modelo de sinais recebidos com base em de-
composições tensoriais que combinam uma extensão da codificação MKronST (do inglês,
multiple Kronecker space-time) e um tensor do canal de ordem 5 para transmitir os símbolos.
A extensão da codificação é baseada na combinação da codificação TST e codificação baseada
nos múltiplos produtos de Kronecker das matrizes de símbolos (MSMKron), chamada de
codificação TST-MSMKron. O canal é modelado com um arranjo uniforme retangular (do
inglês, uniform rectangular array, URA) no transmissor e no receptor o que permite modelar
o canal como um tensor. Mais especificamente, as contribuições teóricas desta tese estão
em torno da proposição de novos receptores semi-cegos para estimar conjuntamente as
matrizes de símbolo, os parâmetros de canal e o canal sem conhecimento a priori sobre eles.
Na primeira parte desta tese é proposta uma decomposição baseada na seleção de colunas,
chamada multidimensional CX, para tensores e um algoritmo é apresentado para estimar e
reconstruir o tensor de dados. Na segunda parte desta tese, a codificação TST-MSMKron é
apresentada para sistemas MIMOmassivos, onde é proposto um modelo do sinal recebido
que combina um canal de ordem 5 com a codificação TST-MSMKron. Este sistema nos
permite modelar o sinal recebido como uma decomposição Nested-Tucker-PARAFAC (do
ingês, parallel factor analysis). Além disso, os receptores semi-cegos em duas etapas são
propostos para estimar em conjunto os símbolos, o canal e os parâmetros do canal. Em cada
parte são fornecidas simulações de Monte Carlo para avaliar o desempenho dos algoritmos
propostos. Os resultados mostram a eficiência dos algoritmos na reconstrução dos conjuntos
de dados e estimativa conjunta dos símbolos, do canal e parâmetros do canal do sistema
proposto, respectivamente.

Palavras-chave: Decomposição Tensorial. Produto de Kronecker. Modelagem do canal.
Receptores semi-cegos.
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1 Introduction

1.1 Thesis scope and motivation

The number of devices connected to the internet is exponentially increasing, and
emerging technologies such as smart cities smart homes and internet of everything (IoE)
are already a reality. Emerging applications such as streaming TV, extended reality services,
telemedicine, wireless brain-computer interface (BCI) services, autonomous vehicles and sys-
tems, holographic and tactile communications, videoconferencing, intelligent transportation
systems, among many others applications demand high throughput and broader coverage
services. To withstand the challenges of new technologies, a sixth-generation (6G) wireless
system needs to be developed with new attractive features such as high performance in
terms of data rate, latency, reliability, coverage, massive and mobile connectivity, and energy
efficiency [1, 2, 3].

6G wireless systems and networks must be smart and open to adapt to constantly
changing services, which requires collaborative cognitive communication services, defined
as the 3Cs [4]. 6G networks will be seen as a distributed, cell-less multiple input multiple
output (MIMO) system, where each smart device will be served by more than one access
point or a base station usingmultiplexing or transmission coordination that will be connected
to the cloud to access cloud services. They will be able to use frequencies higher than in
5G networks, on the order of terahertz (THz), providing substantially higher capacity and
speed with much lower latency, in addition to the combination of sub-millimeter-wave
(mmWave) frequencies and the possibility of frequency selectivity in network deployment,
leading to significant advances in user experience [4, 5]. The low latency of 6G networks
will allow everything to be faster and more accessible, also enabling large data transmission,
augmented reality, and autonomous operation of various equipment including cars. See [1,
4, 5] for more details about 6G networks. For the development of 6G wireless systems, many
challenges must be faced.

In the case of wireless communication systems, satisfying these requirements greatly
depends on an accurate channel state information (CSI) to compensate for the perturbations
caused by wireless propagation on the transmitted signals. These perturbations include
multipath propagation, reflections and diffractions from large obstacles, and fading effects.
Therefore, the study of channel behavior is fundamental, where mathematical models that
aim to describe the behavior of the communication channels and, consequently, their influ-
ence on the transmitted information are constantly exploited by the scientific community
for designing precoders, directional and adaptive beamformers, and receivers adapted to
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each situation. In general, the receivers can be divided into two classes: supervised (or pilot-
assisted) and unsupervised (or semi-blind) receivers. In the first case, training sequences
known by the receiver are used to estimate the channel, which generally implies a significant
training overhead due to pilots’ transmission. Statistical models with time-varying random
variables are used to characterize the channels. Besides the study of channel behavior, the
development of techniques that avoid the deep fading of the signal before reaching its desti-
nation is needed. An alternative to deal with these effects is to exploit signal diversity, such
as space, time, frequency, coding, and cooperation diversity [6].

During the last decades, tensor decompositions have been used to model received
signals as well as to derive receivers to estimate the channel and symbols exploiting various
forms of diversity. The use of tensor decompositions combined with new codings to transmit
signals has been extensively proposed to introduce extra diversities for both point-to-point
and multi-hop MIMO systems. Some examples are double Khatri-Rao space-time-frequency
(STF) , tensor space-time (TST), tensor space-time-frequency (TSTF) codings [7, 8, 9], and
coding based on multiple Khatri-Rao and Kronecker products of symbol matrices [10, 11,
12]. The use of these codings with tensor approaches for the design of the MIMO wireless
communication systems has led to the development of new tensor models [8, 9, 13, 12, 14],
and allows the proposition of semi-blind receivers for jointly estimating the transmitted
symbols and channel parameters, in addition, to providing an increase in the transmission
rate compared to the others codings [11]. In Chapter 4 a review of codings and MIMO
communication system can be found, respectively.

Massive MIMO systems are part of current wireless systems [15]. They are very
important in the development of the 6G wireless networks because they need to deal with
massive volumes of data and very high data rate connectivity per device [2, 1]. In the last
years, massive MIMO systems combined with mmWave communication systems have been
the subject of intense research due to their great potential to improve system capacity and
spectral efficiency. Such systems operate in the 30-300 gigahertz (GHz) spectrum with large
antennas arrays at both the transmitter and receiver, and can achieve gigabit-per-second data
rates [16, 17, 18]. Note that the sparsity of mmWave channels can be exploited in formulating
the channel estimation as a sparse signal recovery problem which can be solved using
compressed sensing methods, resulting in a significant reduction of the training overhead
[19, 20, 21]. Someworks have recently proposed supervised solutions for channel parameters’
estimation based on a low-rank PARAFAC decomposition [22], as briefly reviewed hereafter
[23, 24, 25].

3D channel modeling has been the subject of intensive research works [26], because
it allows exploring the channel’s degrees of freedom in the elevation direction, particularly
useful for massive MIMO systems characterized by a large number of antennas. 3D channels
models are in effect double directional (DD) MIMO channels [27], in sense that they include
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consideration of directions-of-arrival (DoAs) of the multipath components at both the base
and mobile stations [28]. 3D MIMO channels also can consider using a double polarization
leads to double polarizarized (DP) MIMO channels. DP antenna arrays, using horizontal and
vertical polarizations, may offer large multiplexing (i.e. capacity) gains to MIMO systems
by combining space and polarization diversities, as showed in [29]. However, estimating
the key parameters of a DD-DP channel is a challenge due to the great number of channel
parameters. The application of standard array processing algorithms (e.g., multiple signal
classification (MUSIC) [30] and estimation of signal parameters via rotational invariance
thecnique (ESPRIT) [31] algorithms) is a hard task due to restrictive assumptions about the
system configuration in terms of numbers of multipath and transmit/receive antennas [25].
Tensor-based signal processing has shown to be a promising approach for future wireless
communications systems due to the increase in dimensions, including space (antennas), time
(snapshots and periods), code, frequency and polarization. Tensor-based signal processing
techniques can naturally exploit the multidimensional structure of the data and its multiple
forms of diversity, allowing to devise receiver algorithms with good performance-complexity
tradeoffs while operating under more relaxed parameter choices than conventional matrix-
based receivers [32].

Qian et al. [25] proposed a tensor-based approach for DP MIMO channel estimation
by recasting the MIMO channel as a fourth-order tensor. The authors assumed a MIMO
systemwith a uniform rectangular array (URA) at the transmitter and a (ULA) at the receiver.
The identifiability of the channel parameters is discussed and a channel estimation algorithm
based on alternating least squares (ALS) solution for estimating the steering and path-losses
matrices combined with a closed-form method for the direction-of-departure (DoD) and
direction-of-arrival (DoA) estimation is presented taking into account the Vandermonde
structure of the steering matrices. Zniyed et al. [33] extended the fourth-order channel
presented in [25] to a fifth-order channel tensor model. The authors assume a MIMO system
with aURAat both the transmitter and the receiver and it is proposed the joint dimensionality
reduction and factor retrieval (JIRAFE) algorithm for channel estimation by exploiting
an equivalence between a PARAFAC model and a tensor train decomposition [33]. This
methodmakes it possible to reduce the computational complexity and avoids ill-convergence
problems, as highly time consuming and slowly convergence, linked to the application of
the ALS algorithm to a N-order PARAFAC decomposition [34].

In this thesis, we address novel semi-blind receivers to jointly estimate symbols,
channel, and channel parameters in DD-DP MIMO wireless communication systems. In
particular, one of the main contributions of this thesis relies on the proposition of a new
DD-DPMIMO system, equipped with URAs at both ends of the link, and combiningmultiple
Kronecker products of symbol matrices with a TST coding, which wewill call TST-MSMKron
coding. The MSMKron coding is a particular case of the multiple Kronecker space-time
(MKronST) coding presented in [10] for multi-hop MIMO relay systems. The channel tensor
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is represented by a fifth-order PARAFAC decomposition separated into two parts associated
with the vertically (V𝑅) and horizontally (H𝑅) polarized receive antennas, respectively. Then,
it is established that the tensors of received signals satisfy a new coupled nested Tucker-
PARAFAC model, whose core tensor is the coding tensor. The coupling is due to the coding
that is common to the V𝑅- and H𝑅-polarized receive antennas. The nested structure results
from the fact that a matrix unfolding of the channel tensor constitutes one matrix factor of
the Tucker model, the other factors being the steering and path-loss matrices.

Capitalizing on this new tensor model with the tensor coding knowledge, semi-blind
receivers are derived for estimating the transmitted symbols, and channel parameters. These
receivers are composed of two stages. In the first one, the information symbols and the
channel are jointly estimated and in the second stage, from the estimated channel tensor, the
channel parameters’ estimation is performed. Due to the semi-blind nature of the proposed
receivers, this works extends the approach of [25] in the sense that no pilot sequence is used
for channel estimation, which allows to increase the transmission rate. In comparison with
[33] which assumes that the channel is known a priori, the proposed receivers first jointly
and semi-blindly estimate the channel and the information symbols before applying the
JIRAFE method combined with a new rectification method exploiting the Vandermonde
structure of the steering matrices, to estimate the channel parameters.

There is another contribution of this thesis. We propose a multidimensional column-
space decomposition to perform a low-rank approximation of tensors based on the CX
decomposition for matrices. By exploiting this new tensor model, an algorithm based on
the 𝑙2-norm to perform the approximation of the tensor data is proposed. To illustrate the
performance of the CX-tensor algorithm, Monte Carlo simulations are performed.

1.2 Thesis organization

This thesis is divided into six chapters, including this introductory chapter. In the
following, we briefly describe the content of the five remaining chapters.

Chapter 2: Tensor Preliminaries: This chapter presents a theoretical basis for the methods
developed in this thesis. An important review of the definitions and operations of multilinear
algebra is presented, where the notations and main matrix and tensor operations that will
be used throughout the thesis are reviewed. Then, the main tensor decompositions are
summarized, where the new coupled nested Tucker-PARAFAC model will be presented, as
well as, its uniqueness property, thus introducing the first original contributions of the thesis.
In addition to the tensor models, the algorithms used to estimate parameters in matrix and
tensor decompositions are also presented.

Chapter 3: CX decomposition for tensors: This chapter presents the second contribution of
this thesis. First, a multidimensional column-space decomposition to perform a low-rank
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approximation of tensors based on the CX decomposition for matrices is presented. Then
in the second part, an algorithm based on probabilities of the columns of each 𝑛-mode
matrix unfolding is presented to reconstruct the data tensor. The parameter identifiability
conditions and computational complexity are analyzed. Finally, Monte Carlo simulation
results are provided to illustrate the effectiveness of the proposed algorithm compared with
the state of the art.

Chapter 4: Dual-polarized MIMO communication systems using combined TST-MSMKron
coding: This chapter presents a bibliography review of existing MIMO communication sys-
tems based on tensor decompositions, as well as coding schemes and receivers. Furthermore,
in the second part, the new coding scheme based on multiple Kronecker products of sym-
bol matrices combined with TST coding is proposed to transmit the symbols and for this
combined coding, a new system is provided based on the new tensor model. We extend
the DD-DP channel model presented in [33] and combine it with TST-MSMKron coding to
propose a new communication system.

Chapter 5: Tensor-based semi-blind receivers for MIMO communication system using a com-
bined TST-MSMKron coding: In this chapter, the proposed DP MIMO system presented in
Chapter 4 is explored to derive semi-blind receivers in two stages that jointly estimate the
transmitted symbols and channel parameters (DoD and DoA angles, path-loss coefficients).
In the first stage, the information symbols and the channel are jointly estimated using either
a bi-alternating least-squares (Bi-ALS) algorithm followed by the Kronecker factorization
(KronF) algorithm to separate the symbol matrices or the truncated higher-order singular
value decomposition (THOSVD) method [35], which allows to directly and jointly estimate
the symbol matrices and the channel in closed-form. In the second stage, from the estimated
channel tensor, the channel parameters’ estimation is performed using the JIRAFE algo-
rithm combined with a new rectification method to take into account the Vandermonde
structure of the steering matrices. Parameter identifiability and computational complexity
of each receiver are analyzed. Monte Carlo simulation results are provided to illustrate the
effectiveness of the proposed coding schemes and semi-blind receivers.

Chapter 6: Conclusions and Perspectives: In this chapter, the main conclusions about the
contributions of this work are provided. Some advantages and limitations of the proposed
systems and receivers are presented. In addition, some perspectives for future research are
outlined.

1.3 Main original contributions

The different contributions of this thesis are distributed among into three chapters.
Briefly, the main contributions of this thesis can be summarized as follows:

Chapter 2
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• Review of basic operations of tensor decomposition and study of algorithms for matrix
and tensor estimation;

• Proposition of the new tensor model named coupled nested Tucker-PARAFAC, which
combines the existing Tucker-(𝑁1, 𝑁), and the PARAFAC model for higher-order
tensors;

• Demonstration of the uniqueness of the new tensor model under certain conditions,
based on the uniqueness of Tucker and PARAFAC models.

Chapter 3

• Proposition of the new tensor model named multidimensional CX decomposition,
which is an extension of the CX decomposition of matrices for higher-order tensors
and demonstration of the uniqueness of the new tensor model;

• The proposition of a new algorithm that performs the approximation of the data tensor
based on the 𝑙2-norm;

• Study of the performance of the proposed CX algorithm and the impact of the design
parameters by means of extensive Monte Carlo simulations.

Chapter 4

• Proposition of the channel tensor model proposed in [33] and the combined TST-
MSMKron (multiple symbol matrices Kronecker) coding used to encode the signals to
be transmitted;

• Proposition of the new DD-DP MIMO communication systems, which uses the com-
bined TST-MSMKron and the DD-DP channel tensor. It is established that the tensors
of received signals satisfy a new coupled nested Tucker-PARAFAC model;

• Study of the uniqueness issues of the new system model.

Chapter 5

• The proposition of new semi-blind receivers composed of two stages to jointly estimate
the symbols and the channel parameters (DoD and DoA angles, path-loss coefficients);

• Study of the identifiability conditions and computational complexity of each proposed
semi-blind receiver;

• Study of the performance of the combined TST-MSMKron coding and the impact of
the design parameters under the assumption of perfect channel knowledge, by means
of extensive Monte Carlo simulations;
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• Study of the proposed semi-blind receivers in terms of symbol error rate (SER) for
symbols estimation, normalized mean square error (NMSE) for channel estimation,
and mean square error (MSE) for channel parameters estimation.

1.4 Scientific production

This thesis has originated two journal papers and three publications at conferences.
In the following, a list of publications is presented:

Journal papers:

• M. F. K. B. Couras, P. H. de Pinho, G. Favier, V. Zarzoso, de A. L. F. Almeida, and
J. P. J. da Costa, Semi-blind receivers based on a coupled nested Tucker-PARAFAC
model for dual-polarized MIMO systems using combined TST and MSMKron codings.
Digital Signal Processing - Elsevier, p. 104043, 2023.

• P. H. de Pinho,M. F. K. B. Couras, G. Favier, de A. L. F. Almeida, J. P. J. da Costa, Semi-
blind receivers for two-hop MIMO relay systems with a combined TSTF-MSMKron
coding. Sensors, 2023, 23(13), 5963.

Conference papers:

• M. F. K. B. Couras, P. H. de Pinho, G. Favier, J. P. J. da Costa, V. Zarzoso, and de A. L.
F. Almeida, Multidimensional CX decomposition of tensors. In: 2019 Workshop on
Communication Networks and Power Systems (WCNPS). IEEE, p. 1-4, 2019.

• P. H. de Pinho,M. F. K. B. Couras, G. Favier, J. P. J. da Costa, de A. L. F. Almeida, J. P.
A. Maranhão, Semi-supervised receivers for MIMO systems with multiple Khatri-Rao
coding. In: 13th International Conference on Signal Processing and Communi-
cation Systems (ICSPCS). IEEE, p. 1-7, 2019.

• F. G. Constancio,M. F. K. B. Couras, D. X. Nogueira, J. P. J. da Costa, M. da R. Zanatta,
R. T. de Sousa, and N. T. da Mota, Extended ADDIE model for improved distance
learning courses. In: 2018 IEEE Frontiers in Education Conference (FIE), p. 1-5,
2018.
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2 Tensor Preliminaries

In this chapter, we present a review of basic definitions and operations of multilinear
algebra applied in this thesis. This chapter is divided into five sections. In Section 2.1, we define
the notations. In Section 2.2 basic operations involving matrices are introduced as Khatri-Rao
and Kronecker products. In Section 2.3, the basic operations involving tensors are defined,
while the main tensor decompositions such as PARAFAC, Tucker, and their generalizations
for𝑁-order tensors, coupled-PARAFAC, HOSVD, and TT are presented in Section 2.4. These
decompositions are frequently explored in the literature. The first contribution of this thesis, the
coupled-nested Tucker-PARAFAC decomposition, is also introduced in Section 2.4, as well as its
uniqueness property. Section 2.5 introduces additional algorithms for matrices and parameter
estimation for matrix and tensor decompositions used throughout this thesis.

2.1 Notation

ℝ and ℂ denote the sets of real and complex numbers, respectively. Scalars, vectors,
matrices and tensors are denoted by lower-case, boldface lower-case, boldface upper-case
and calligraphic letters, e.g., 𝑥, x, X, 𝒳, respectively. The operator diag (⋅) forms a diagonal
matrix from its vector argument, while 𝐷𝑘 (C) forms a diagonal matrix holding the 𝑘-th
row of C ∈ ℂ𝐾×𝐾 on the diagonal. The transpose, complex conjugate, conjugate transpose
and Moore-Penrose pseudo-inverse operators are represented by (⋅)𝑇, (⋅)∗, (⋅)𝐻 and (⋅)†,
respectively.

e(𝑁)𝑛 represents the 𝑛-th canonical basis vector of the Euclidian spaceℝ𝑁. Considering
the matrix A ∈ ℂ𝐼×𝐽, the vec(⋅) and unvec(⋅) operators are defined so that a = vec (A) ∈
ℂ𝐽𝐼 ↔ A = unvec (a) ∈ ℂ𝐼×𝐽.A.𝑗 (respectivelyA𝑖.) denotes the 𝑗-th column (respectively 𝑖-th
row) of thematrixA, while Â denotes an estimate ofA and ̂̂A represents thematrix Â after the
correction of ambiguities. ∥ ⋅ ∥𝐹, ∥ ⋅ ∥∗ and ∥ ⋅ ∥2 are used to represent the Frobenius norm,
nuclear norm and the 𝑙2-norm, respectively. The outer, Kronecker, Khatri-Rao, Hadamard
and 𝑛-mode products are denoted by ◦,⊗, ⋄,⊙ and ×𝑛, respectively.

ℐ𝑅,𝑁, I𝑅, 1𝑇𝑅, and 𝑟A represent the identity tensor of order𝑁 and of size 𝑅 × ... × 𝑅, the
identity matrix of size 𝑅 × 𝑅, the all-ones row vector of dimensions 1 × 𝑅, and the rank of
the matrix A, respectively. The 𝑖-th element of a ∈ ℂ𝐼 is denoted by 𝑎𝑖, the (𝑖,𝑗)-th element
of A is represented by 𝑎𝑖,𝑗, and the (𝑖1,...,𝑖𝑁)-th element of 𝒜 ∈ ℂ𝐼1×...×𝐼𝑁 is given by 𝑎𝑖1,...,𝑖𝑁 .



30

2.2 Matrix products and operations

In this section, the Kronecker and Khatri-Rao products are presented. These opera-
tions are very important in multilinear algebra.

Definition 1. (Kronecker product) The Kronecker product of A ∈ ℂ𝐼×𝑀 and B ∈ ℂ𝐽×𝑁 is
defined as:

A⊗ B =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1,1B 𝑎1,2B ... 𝑎1,𝑀B
𝑎2,1B 𝑎2,2B ... 𝑎2,𝑀B
⋮ ⋮ ⋮ ⋮

𝑎𝐼,1B 𝑎𝐼,2B ... 𝑎𝐼,𝑀B

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℂ𝐼𝐽×𝑀𝑁. (2.1)

Note that the Kronecker product between A and B has all possible combinations of
products of the elements of A and B. To calculate the Kronecker product, the number of
columns of the matrices does not need to be equal.

Definition 2. (Khatri-Rao product) The Khatri-Rao product of A ∈ ℂ𝐼×𝑀 and C ∈ ℂ𝐽×𝑀 is
defined as:

A ⋄ C =
[
A.1 ⊗ C.1 A.2 ⊗ C.2 ... A.𝑀 ⊗ C.𝑀

]
∈ ℂ𝐼𝐽×𝑀. (2.2)

The Khatri-Rao product also can be seen as a column-wise Kronecker product. Note
that the Khatri-Rao product of two matrices exists only if these matrices have the same
number of columns. Another way to compute the Khatri-Rao product is given as:

A ⋄ C =
⎡
⎢
⎢
⎢
⎣

C𝐷1 (A)
⋮

C𝐷𝐼 (A)

⎤
⎥
⎥
⎥
⎦

. (2.3)

Throughout this thesis, we shall make use of the following properties involving the
Kronecker and Khatri-Rao products. For this, we consider the matricesA ∈ ℂ𝐼×𝑀, B ∈ ℂ𝐽×𝑁,
C ∈ ℂ𝐽×𝑀, D ∈ ℂ𝐼×𝑁 and E ∈ ℂ𝑀×𝑁.

Property 1.
(A⊗ B)𝐻 = A𝐻 ⊗ B𝐻, (2.4)

(B ⋄ E)𝐻 =
[
𝐷∗
1 (B)E

𝐻 ... 𝐷∗
𝐽 (B)E

𝐻
]
∈ ℂ𝑁×𝐽𝑀, (2.5)

where 𝐷∗
𝑗 (B) = diag

(
𝑏∗𝑗1 ... 𝑏∗𝑗𝑁

)
.

Property 2.
(A ⋄ C)𝐻 (D ⋄ B) = A𝐻D⊙ C𝐻B, (2.6)

Property 3.
vec

(
AEB𝑇) = (B⊗A) vec (E) , (2.7)

Property 4.
vec

(
a(𝑁)◦...◦a(1)

)
= a(1) ⊗ ... ⊗ a(𝑁). (2.8)
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Property 5. Given C = A⊗ B, C is full column rank if and only if A and B are full column
rank, such that, 𝑟C = 𝑟A𝑟B with 𝑟A, 𝑟B and 𝑟C being ranks of A, B and C, respectively.

2.3 Basics of tensor algebra

This section presents definitions and operations involving tensors. An𝑁-order tensor
𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 with elements 𝑥𝑖1,...,𝑖𝑁 is interpreted as a multidimensional array of numerical
values. For demonstrations and discussions on these definitions and operations, see [36, 37,
38].

Definition 3. (Fiber) Fibers are vectors obtained by fixing every index of the modes of a tensor,
except for one. The third-order tensor 𝒳 ∈ ℂ𝐼1×𝐼2×𝐼3 is formed by column fibers (X.𝑖2𝑖3 ∈ ℂ𝐼1),
row fibers (X𝑖1.𝑖3 ∈ ℂ𝐼2) and tubes fibers (X𝑖1𝑖2. ∈ ℂ𝐼3) as illustrated in Figure 1.

XI 1

I 2

I 3

X X X. i2 i3 i1 .i 3 i1 i2 .

(i) (ii) (iii)

Figure 1 – (i) column fibers; (ii) row fibers; (iii) tube fibers.

Definition 4. (Matrix slice) A matrix slice represents a two-dimensional section of a tensor. It
is obtained by fixing all indices except two. A third-order tensor𝒳 is formed by frontal slices
(X..𝑖3 ∈ ℂ𝐼1×𝐼2), lateral slices (X.𝑖2. ∈ ℂ𝐼1×𝐼3) and horizontal slices (X𝑖1.. ∈ ℂ𝐼2×𝐼3). Figure 2
illustrates the three types of slices of the third-order tensor𝒳.

Definition 5. (Matrix unfoldings) The matrix unfolding is the process of reordering the
elements of an 𝑁-order tensor 𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 into a matrix without loss of information [36].
There are different ways of matricizing the tensor 𝒳 according to the partitioning of the set
{1,...,𝑁} into two ordered subsets 𝕊1 and 𝕊2, constituted of 𝑝 and𝑁 − 𝑝 indices, respectively. A
formula for the matricization for 𝑝 ∈ [1, 𝑁 − 1] is [38]:

X𝕊1×𝕊2 =
𝐼1∑

𝑖1
...

𝐼𝑁∑

𝑖𝑁
𝑦𝑖1,...,𝑖𝑁 ( ⊗𝑛∈𝕊1

e(𝐼𝑛)𝑖𝑛 ) ( ⊗
𝑛∈𝕊2

e(𝐼𝑛)𝑖𝑛 )
𝑇

∈ ℂ𝐽1×𝐽2 , (2.9)
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XI 1

I 2

I 3

X X X..i 3 . i2 . i1 ..

(i) (ii) (iii)

Figure 2 – (i) frontal slice; (ii) lateral slice; (iii) horizontal slice.

with 𝐽𝑛1 =
∏
𝑛∈𝕊𝑛1

𝐼𝑛, for 𝑛1 ∈ [1, 2]. Note that an 𝑛-mode unfolding is a rearrangement of the

elements of 𝒳 obtained by varying the index 𝑖𝑛 and keeping the others indices fixed, in such
a way that the fibers of the 𝑛-mode are placed along the rows (flat unfolding) or columns
(tall unfolding). Considering a third-order tensor 𝒳, the matrix unfolding X𝐼1×𝐼3𝐼2 is defined
as Eq. (2.10). This unfolding is obtained by stacking the slices of a given tensor mode:

X𝐼1×𝐼3𝐼2 =
𝐼1∑

𝑖1=1

𝐼2∑

𝑖2=1

𝐼3∑

𝑖3=1
𝑥𝑖1,𝑖2,𝑖3

(
e(𝐼1)𝑖1

) (
e(𝐼3)𝑖3 ⊗ e(𝐼2)𝑖2

)𝑇
∈ ℂ𝐼1×𝐼3𝐼2 . (2.10)

...XI 1

I 2

I 3

I 1

I 3 I 2

X..1 X..2 X.. I 3

Figure 3 – Matrix unfolding representation X𝐼1×𝐼3𝐼2 of the third-order tensor 𝒳.

Definition 6. (Frobenius norm) Frobenius norm of𝒳 is defined as the square root of the inner
product of the tensor with itself, i.e.:

∥ 𝒳 ∥𝐹=
√
⟨𝒳𝒳⟩ =

⎛
⎜
⎝

𝐼1∑

𝑖1=1
⋯

𝐼𝑁∑

𝑖𝑁=1
|𝑥𝑖1,...,𝑖𝑁 |2

⎞
⎟
⎠

1∕2

. (2.11)
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Definition 7. (Rank-one tensor) A tensor𝒳 is said to be a rank-one tensor if we can write𝒳
as the outer product of𝑁 vectors a(𝑛) ∈ ℂ𝐼𝑛 , with 𝑛 ∈ [1, 𝑁], as follows:

𝒳 = a(1)◦...◦a(𝑁). (2.12)

Parallel factor analysis (PARAFAC) [39] decomposition expresses the tensor as linear
combinations of rank-one tensors. This definition is a generalized concept of the rank-one
matrix, where a matrix X ∈ ℂ𝐼1×𝐼2 has rank one if there are two vectors a(1) ∈ ℂ𝐼1 and
a(2) ∈ ℂ𝐼2 , such that, X = a(1)◦a(2) = a(1)a(2)𝑇.

Definition 8. (Kruskal rank) The Kruskal rank (𝑘-rank) of a matrix A ∈ ℂ𝑀×𝑁 is the largest
integer such that every set of 𝑘A columns of A is linearly independent. Note that the 𝑘-rank is
always 𝑘A ≤ 𝑟A ≤ min (𝑀,𝑁).

Definition 9. (Identity tensor) The identity tensor ℐ𝑁,𝑅 ∈ ℝ𝑅×𝑅×...×𝑅 is a diagonal hypercubic
tensor whose elements 𝛿𝑟1,...,𝑟𝑁 are defined by means of the generalized Kronecker delta, i.e.:

𝛿𝑟1,...,𝑟𝑁 = { 1, if 𝑟1 = ... = 𝑟𝑁
0, otherwise

, (2.13)

and 𝑅𝑛 = 𝑅, ∀𝑛 ∈ [1, 𝑁].

Definition 10. (𝑛-mode product) The 𝑛-mode product consists of multiplying an 𝑁-order
tensor𝒳 by a matrix (or a vector) along its 𝑛-th mode. For the matrix case, the 𝑛-mode product
of a𝑁-order tensor𝒳 with a matrixU ∈ ℂ𝐽×𝐼𝑛 is denoted by𝒳 ×𝑛 U and is of size 𝐼1 × ...𝐼𝑛−1 ×
𝐽 × 𝐼𝑛+1 × ... × 𝐼𝑁 . Elementwise, we have:

𝑏𝑖1,...,𝑖𝑛−1,𝑗,𝑖𝑛+1,...,𝑖𝑁 =
𝐼𝑛∑

𝑖𝑛=1
𝑥𝑖1,...,𝑖𝑛−1,𝑖𝑛 ,𝑖𝑛+1,...,𝑖𝑁𝑢𝑗,𝑖𝑛 . (2.14)

The 𝑛-mode product can be also represented in terms of the 𝑛-mode unfolding
matrices of 𝒳 as follows:

B(𝑛) = UX(𝑛), (2.15)

with X(𝑛) ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 and B(𝑛) ∈ ℂ𝐽×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 . We have the following properties for
the 𝑛-mode product:

Property 6. For any permutation 𝜋 (⋅) of 𝑃 distinct indices𝑚𝑝 ∈ [1, 𝑁] such as 𝑞𝑝 = 𝜋
(
𝑚𝑝

)
,

𝑝 ∈ [1, 𝑃], with 𝑃 ≤ 𝑁, we have [38]:

𝒳 ×𝑞𝑝𝑞=𝑞1 A
(𝑞) = 𝒳 ×𝑚𝑝

𝑚=𝑚1 A
(𝑚), (2.16)

which means that the order of the𝑚𝑝-mode products is irrelevant when the indices𝑚𝑝 are
all distinct.
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Property 7. Consider A ∈ ℂ𝐾×𝐼𝑛 and C ∈ ℂ𝐿×𝐾 . For two products of𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 along the
same 𝑛-mode we have:

𝒳 ×𝑛 A ×𝑛 C = 𝒳 ×𝑛 (CA) , (2.17)

for 𝑛 ∈ [1, 𝑁]. For the same 𝑛-mode, the order of the multiplication is relevant.

Definition 11. (Contraction operation) The contraction between two tensors 𝒵 ∈ ℂ𝐼1×...×𝐼𝑁

and𝒳 ∈ ℂ𝐽1×...×𝐽𝑀 , with 𝐼𝑛 = 𝐽𝑚 is a tensor of order (𝑁 +𝑀 − 2) such that:

𝒵 ×𝑚𝑛 𝒳 =
𝐼𝑛∑

𝑘=1
𝑧𝑖1,...,𝑖𝑛−1,𝑘,𝑖𝑛+1,...,𝑖𝑁𝑥𝑗1,...,𝑗𝑚−1,𝑘,𝑗𝑚+1,...,𝑗𝑀 , (2.18)

where (𝒵 ×𝑚𝑛 𝒳) ∈ ℂ𝐼1×...×𝐼𝑛−1×𝐼𝑛+1×...×𝐼𝑁×𝐽1×...×𝐽𝑚−1×𝐽𝑚+1×...×𝐽𝑀 .

Definition 12. (Multilinear rank) Considering an𝑁-order tensor𝒳 ∈ ℂ𝐼1×...×𝐼𝑁 , the𝑁-tuplet
(𝑅1,...,𝑅𝑁) is called multilinear rank of 𝒳, where the column vectors of the matricized form
X(𝑛) ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 are the 𝑛-mode vectors and 𝑅𝑛 = 𝑟

(
X(𝑛)

)
= 𝑟𝑛 (𝒳) ≤ 𝐼𝑛 is the 𝑛-mode

rank of𝒳 [35].

2.4 Background on tensor decompositions

In the last years, the use of multilinear algebra for communication systems has been
growing. Tensor decompositions were used to model received signals and derive receivers
to estimate the channel and symbol matrices, exploring various forms of diversity. Tensor
decompositions can be seen as extensions of matrix decompositions to higher-order ma-
trices (matrices with more than two dimensions) that allow recovering information from
multivariate datasets decomposing tensors into elementary factors. The two most famous
tensor decompositions are PARAFAC [39] and Tucker [40] models, as well as their varia-
tions. PARAFAC decomposition, also called canonical polyadic decomposition (CPD), was
introduced independently by R. Harshman et al. [39] and J. Carroll & J. Chang [41], both in
1970, for applications in psychometrics and phonetics, respectively. Tucker decomposition
was introduced by L. Tucker [40] in 1966 and was presented as an extension of the singular
value decomposition (SVD) to three-way matrices, which gave rise to generalization as
HOSVD [35]. PARAFAC and Tucker decompositions influenced the development of new
tensor decompositions for specific cases such as nested PARAFAC [7, 42, 43], nested Tucker
[44], generalized nested PARAFAC [12], coupled nested Tucker [14] and tensor train (TT)
[45, 46]. This section provides an overview of the main tensor decompositions used in this
thesis. These models are namely PARAFAC, nested PARAFAC, Tucker, nested coupled
Tucker-PARAFAC and TT.
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2.4.1 PARAFAC decomposition

PARAFAC model decomposes a tensor into a sum of rank-one tensors. Then, let
𝒳 ∈ ℂ𝐼×𝐽×𝐾 be a third-order tensor, the PARAFAC decomposition of 𝒳 can be expressed as:

𝑥𝑖,𝑗,𝑘 =
𝑅∑

𝑟=1
𝑎𝑖,𝑟𝑏𝑗,𝑟𝑐𝑘,𝑟, (2.19)

where 𝑎𝑖,𝑟, 𝑏𝑗,𝑟 and 𝑐𝑘,𝑟 are the elements of A ∈ ℂ𝐼×𝑅, B ∈ ℂ𝐽×𝑅 and C ∈ ℂ𝐾×𝑅, respectively.
PARAFAC decomposition also can be represented as a sum of 𝑅 rank-one component tensors,
i.e.:

𝒳 =
𝑅∑

𝑟=1
A.𝑟◦B.𝑟◦C.𝑟 ∈ ℂ𝐼×𝐽×𝐾, (2.20)

whereA.𝑟 ∈ ℂ𝐼,B.𝑟 ∈ ℂ𝐽 andC.𝑟 ∈ ℂ𝐾 are the 𝑟-th column vectors ofA,B andC, respectively,
with 𝑟 ∈ [1, 𝑅] and 𝑅 known as the rank of the model or tensor rank. The number of factors
is the dimension of the tensor. In this case, there are three factors A, B and C. Therefore,
we have a third-dimensional tensor. Figure 4 illustrates the PARAFAC decomposition of a
third-order tensor 𝒳 into 𝑅 components.

=
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Figure 4 – PARAFAC decomposition of a third-order tensor 𝒳 into 𝑅 components.

Definition 13. (Tensor rank) Tensor rank corresponds to the minimal number of rank-one
tensors needed to write this tensor as a linear combination. It can also be called canonical rank.
The previous definition implies that an arbitrary tensor of rank 𝑅 ≥ 1 can be written as a
sum of 𝑅 rank-one tensors as Eq. (2.20).

PARAFAC decomposition can be also represented as a 𝑛-mode product, such that:

𝒳 = ℐ3,𝑅 ×1 A ×2 B ×3 C ∈ ℂ𝐼×𝐽×𝐾, (2.21)

where ℐ3,𝑅 ∈ ℝ𝑅×𝑅×𝑅 is the third-order identity tensor. The main characteristic of the
PARAFAC model is its intrinsic uniqueness. In fact, PARAFAC decomposition is essen-
tially unique, i.e., the matrices can be estimated up to scaling and permutation ambiguities
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under mild conditions. The 1-mode, 2-mode and 3-mode matrix unfoldings of the PARAFAC
decomposition can be expressed as:

X𝐽𝐾×𝐼 = (B ⋄ C)A𝑇, (2.22)

X𝐾𝐼×𝐽 = (C ⋄A)B𝑇, (2.23)

X𝐼𝐽×𝐾 = (A ⋄ B)C𝑇. (2.24)

Now, let us consider an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 that satisfies the PARAFAC
decomposition with rank 𝑅 expressed as:

𝑦𝑖1,...,𝑖𝑁 =
𝑅∑

𝑟=1

𝑁∏

𝑛=1
𝑎(𝑛)𝑖𝑛 ,𝑟, (2.25)

where 𝑎(𝑛)𝑖𝑛 ,𝑟 are the elements of A
(𝑛) ∈ ℂ𝐼𝑛×𝑅, for 𝑛 ∈ [1, 𝑁]. PARAFAC model is also written

in terms of the 𝑛-mode product:

𝒴 = ℐ𝑁,𝑅 ×1 A(1) ×2 ... ×𝑁 A(𝑁). (2.26)

The generic formulation of a tall 𝑛-mode unfolding of the PARAFAC decomposition
is given by:

Y𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1×𝐼𝑛 =
(
A(𝑛+1) ⋄ ... ⋄A(𝑁) ⋄A(1) ⋄ ... ⋄A(𝑛−1))A(𝑛)𝑇. (2.27)

2.4.1.1 Uniqueness

The uniqueness of the PARAFAC model has been discussed in several works [47, 48,
49, 50, 51, 52, 53]. Kruskal derived sufficient conditions for the uniqueness of third-order
PARAFAC decompositions of real-valued tensors [50]. Around two decades later, Sidiropou-
los et al. [47] extended the Kruskal condition to complex-valued tensors. Sidiropoulos &
Bro [49] further generalized Kruskal’s uniqueness condition to 𝑁-order tensors. Since any
arbitrary tensor can be written as a PARAFAC decomposition, the following theorem holds
for any tensor that satisfies the following condition:

Theorem1.Consider an𝑁-order tensor𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 that satisfies a PARAFACdecomposition.
If the condition

𝑁∑

𝑛=1
𝑘A(𝑛) ≥ 2𝑅 + (𝑁 − 1) , (2.28)

is satisfied, the factor matrices A(𝑛), for 𝑛 ∈ [1, 𝑁], are unique up to permutation and scaling
ambiguities, so that Â

(𝑛) = A(𝑛)𝚷𝚲(𝑛), where𝚷 ∈ ℂ𝑅×𝑅 is the permutation matrix and 𝚲(𝑛) ∈
ℂ𝑅×𝑅 are diagonal scaling matrices, with

∏𝑁
𝑛=1𝚲

(𝑛) = I𝑅.

The condition (2.28) is sufficient but not necessary to guarantee essential uniqueness
[54].
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2.4.2 Coupled PARAFAC

Let us consider the following decomposition for the fourth-order tensor𝒳 ∈ ℂ𝐼1×𝐽1×𝐼2×𝐽2

[55]:

𝑥𝑖1,𝑗1,𝑖2,𝑗2 =
𝑅1∑

𝑟1=1

𝑅2∑

𝑟2=1
𝑎(1)𝑖1,𝑟1𝑏

(1)
𝑗1,𝑟1𝑎

(2)
𝑖2,𝑟2𝑏

(2)
𝑗2,𝑟2𝑔𝑟1,𝑟2 , (2.29)

where 𝑎(1)𝑖1,𝑟1 , 𝑎
(2)
𝑖2,𝑟2 , 𝑏

(1)
𝑖1,𝑟1 , 𝑏

(2)
𝑖2,𝑟2 and 𝑔𝑟1,𝑟2 are the entries of the factor matrices A

(1) ∈ ℂ𝐼1×𝑅1 ,
A(2) ∈ ℂ𝐼2×𝑅2 , B(1) ∈ ℂ𝐽1×𝑅1 , B(2) ∈ ℂ𝐽2×𝑅2 and G ∈ ℂ𝑅1×𝑅2 , respectively. This model can be
interpreted as two coupled third-order PARAFAC models sharing G as a common factor
matrix. Indeed, let us define the third-order tensors 𝒵(1) ∈ ℂ𝐼1×𝐽1×𝑅2 and 𝒵(2) ∈ ℂ𝐼2×𝐽2×𝑅1 as:

𝑧(1)𝑖1,𝑗1,𝑟2 =
𝑅1∑
𝑟1
𝑎(1)𝑖1,𝑟1𝑏

(1)
𝑗1,𝑟1𝑔𝑟1,𝑟2 , (2.30)

𝑧(2)𝑖2,𝑗2,𝑟1 =
𝑅2∑
𝑟2
𝑎(2)𝑖2,𝑟2𝑏

(2)
𝑗2,𝑟2𝑔𝑟1,𝑟2 . (2.31)

Eqs. (2.30)-(2.31) correspond to PARAFAC decompositions of the tensors 𝒵(1) and
𝒵(2), with factor matrices (A(1),B(1),G𝑇) and (A(2),B(2),G), respectively. These tensors admit
the following matrix unfolding forms:

Z(𝑛) =
(
A(𝑛) ⋄ B(𝑛))C(𝑛)𝑇 ∈ ℂ𝐾𝑛×𝑅𝑛1 , (2.32)

with

C(𝑛) = { G
𝑇, for 𝑛 = 1, 𝑛1 = 2,
G, for 𝑛 = 2, 𝑛1 = 1

. (2.33)

and𝐾𝑛 = 𝐼𝑛𝐽𝑛. Thesematrix representations of𝒵(1) and𝒵(2) are associated with a contraction
of the first two modes (𝑘𝑛 = (𝑖𝑛 − 1)𝐽𝑛 + 𝑗𝑛, for 𝑛 ∈ [1,2]). We can rewrite Eq. (2.29) as two
coupled PARAFAC decompositions:

𝑥(1)𝑖1,𝑗1,𝑘2 =
𝑅1∑

𝑟1=1
𝑎(1)𝑖1,𝑟1𝑏

(1)
𝑗1,𝑟1𝑧

(2)
𝑘2,𝑟1 , (2.34)

𝑥(2)𝑖2,𝑗2,𝑘1 =
𝑅2∑

𝑟2=1
𝑎(2)𝑖2,𝑟2𝑏

(2)
𝑗2,𝑟2𝑧

(1)
𝑘1,𝑟2 , (2.35)

with respective factor matrices (A(1),B(1),Z(2)) and (A(2),B(2),Z(1)), where Z(1) and Z(2) are
defined as:

𝑧(1)𝑘1,𝑟2 = 𝑧(1)𝑖1,𝑗1,𝑟2 , and 𝑧(2)𝑘2,𝑟1 = 𝑧(2)𝑖2,𝑗2,𝑟1 . (2.36)

It is worth noting that Eqs. (2.34)-(2.35) are different contracted representations of
the same fourth-order tensor𝒳 defined in Eq. (2.29), corresponding to two different ways of
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coupling the third-order PARAFAC decompositions in Eqs. (2.30)-(2.31) containing the full
information of the original tensor model in Eq. (2.29). In terms of 𝑛-mode unfolding, Eqs.
(2.30)-(2.31) can be represented as:

𝒳(1) = ℐ3,𝑅1 ×1 A
(1) ×2 B(1) ×3 Z(2) ∈ ℂ𝐼1×𝐽1×𝐾2 , (2.37)

𝒳(2) = ℐ3,𝑅2 ×1 A
(2) ×2 B(2) ×3 Z(1) ∈ ℂ𝐼2×𝐽2×𝐾1 . (2.38)

The decomposition in Eqs. (2.37)-(2.38) admits the following matrix unfoldings
representations:

X(1)
𝐽1𝐾2×𝐼1 =

(
B(1) ⋄ Z(2)

)
A(1)𝑇 ∈ ℂ𝐽1𝐾2×𝐼1 , (2.39)

X(2)
𝐽2𝐾1×𝐼2 =

(
B(2) ⋄ Z(1)

)
A(2)𝑇 ∈ ℂ𝐽2𝐾1×𝐼2 . (2.40)

Coupled PARAFAC decompositions (2.37)-(2.38) are essentially unique, i.e., their
factor matrices are unique up to column permutation and scaling ambiguities, if [55]:

𝑘A(𝑛) + 𝑘B(𝑛) + 𝑘Z(𝑛1) ≤ 2𝑅𝑛 + 2, (2.41)

for (𝑛, 𝑛1) ∈ [(1,2),(2,1)].

2.4.3 Tucker decomposition

Given a third-order tensor𝒳 ∈ ℂ𝐼×𝐽×𝐾, Tucker model decomposes it as a multilinear
transformation of a third-order tensor 𝒢 ∈ ℂ𝑃×𝑄×𝑅 by the factor matricesA ∈ ℂ𝐼×𝑃,B ∈ ℂ𝐽×𝑄

and C ∈ ℂ𝐾×𝑅 as illustrated in Figure 5. Tucker decomposition of 𝒳 can be defined as:

𝑥𝑖,𝑗,𝑘 =
𝑃∑

𝑝=1

𝑄∑

𝑞=1

𝑅∑

𝑟=1
𝑔𝑝,𝑞,𝑟𝑎𝑖,𝑝𝑏𝑗,𝑞𝑐𝑘,𝑟, (2.42)

where 𝑎𝑖,𝑝, 𝑏𝑗,𝑞 and 𝑐𝑘,𝑟 are the (𝑖,𝑝)-th, (𝑗,𝑞)-th and (𝑘,𝑟)-th elements ofA ∈ ℂ𝐼×𝑃, B ∈ ℂ𝐽×𝑄

and C ∈ ℂ𝐾×𝑅, respectively, and 𝑔𝑝,𝑞,𝑟 is the (𝑝,𝑞,𝑟)-th element of the core tensor 𝒢 ∈ ℂ𝑃×𝑄×𝑅.
In terms of the outer product, Tucker decomposition is represented by:

𝒳 =
𝑃∑

𝑝=1

𝑄∑

𝑞=1

𝑅∑

𝑟=1
𝑔𝑝,𝑞,𝑟

(
A.𝑝◦B.𝑞◦C.𝑟

)
∈ ℂ𝐼×𝐽×𝐾, (2.43)

where A.𝑝 ∈ ℂ𝐼, B.𝑞 ∈ ℂ𝐽 and C.𝑟 ∈ ℂ𝐾 are the column vectors of A, B and C, respectively.
Using the 𝑛-mode product, the Tucker decomposition of 𝒳 can be written as:

𝒳 = 𝒢 ×1 A ×2 B ×3 C. (2.44)

This decomposition can also be represented in a compact form as (𝒢,A,B,C). The
𝑛-mode matrix unfoldings of 𝒳 are represented by:

X𝐽𝐾×𝐼 = (B⊗ C)G𝑄𝑅×𝑃A
𝑇, (2.45)
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Figure 5 – Tucker decomposition of a third-order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾 .

X𝐾𝐼×𝐽 = (C⊗A)G𝑅𝑃×𝑄B
𝑇, (2.46)

X𝐼𝐽×𝐾 = (A⊗ B)G𝑃𝑄×𝑅C
𝑇, (2.47)

where G𝑄𝑅×𝑃, G𝑅𝑃×𝑄 and G𝑃𝑄×𝑅 denote 1-mode, 2-mode and 3-mode matrix unfoldings of 𝒢,
respectively.

For an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 , its Tucker decomposition is given by:

𝑦𝑖1,...,𝑖𝑁 =
𝑅1∑

𝑟1=1
...

𝑅𝑁∑

𝑟𝑁=1
𝑔𝑟1,...,𝑟𝑁

𝑁∏

𝑛=1
𝑎(𝑛)𝑖𝑛 ,𝑟𝑛 , (2.48)

where 𝑔𝑟1,...,𝑟𝑁 are the elements of 𝒢 ∈ ℂ𝑅1×...×𝑅𝑁 and 𝑎(𝑛)𝑖𝑛 ,𝑟𝑛 are the elements of A
(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 ,

for 𝑛 ∈ [1, 𝑁]. Tucker decomposition can be also expressed as:

𝒴 =
𝑅1∑

𝑟1=1
...

𝑅𝑁∑

𝑟𝑁=1
𝑔𝑟1,...,𝑟𝑁

(
A(1)
.𝑟1◦...◦A

(𝑁)
.𝑟𝑁

)
, (2.49)

where A(𝑛)
.𝑟𝑛 ∈ ℂ𝐼𝑛 are the column vectors of the factor matrices A(𝑛). The 𝑁-order Tucker

decomposition can also be represented by the 𝑛-mode product as:

𝒴 = 𝒢 ×1 A(1) ×2 ... ×𝑁 A(𝑁). (2.50)

The 𝑛-mode generic matrix unfolding of Eq. (2.50) is given by:

Y𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1×𝐼𝑛 =
(
A(𝑛+1) ⊗ ... ⊗A(𝑁) ⊗A(1) ⊗ ... ⊗A(𝑛−1))G𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛A

(𝑛)𝑇, (2.51)

where G𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛 ∈ ℂ𝑅𝑛+1...𝑅𝑁𝑅1...𝑅𝑛−1×𝑅𝑛 is the corresponding 𝑛-mode unfolding of 𝒢.

Special cases of the Tucker decomposition were introduced in [38]. Then, let us
consider the decomposition of an 𝑁-order tensor that has 𝑁1 factor matrices, such that
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𝑁 > 𝑁1 and 𝑁 − 𝑁1 denotes the number of factor matrices equal to the identity matrix.
Tucker-(𝑁1, 𝑁) decomposition can be written to 𝑁-order tensors as [38]:

𝒴 = 𝒢 ×1 A(1) ×2 ... ×𝑁1 A
(𝑁1) ×𝑁1+1 I𝐼𝑁1+1 ×𝑁1+2 ... ×𝑁 I𝐼𝑁 , (2.52)

where A(𝑛) = I𝐼𝑛 for 𝑛 ∈ [𝑁1 + 1, 𝑁], which implies: 𝒢 ∈ ℂ𝑅1×...×𝑅𝑁1×𝐼𝑁1+1×...×𝐼𝑁 and 𝑅𝑛 = 𝐼𝑛.
Or simply:

𝒴 = 𝒢 ×1 A(1) ×2 ... ×𝑁1 A
(𝑁1) = 𝒢 ×𝑁1

𝑛=1 A
(𝑛). (2.53)

For example, considering a third-order tensor𝒳 ∈ ℂ𝐼×𝐽×𝐾 and the third factor matrix
equal to the identity matrix, i.e., C = I𝐾 ∈ ℂ𝐾×𝐾. The Tucker-(2,3) or Tucker-2 is given by:

𝒳 = 𝒢 ×1 A ×2 B ∈ ℂ𝐼×𝐽×𝐾, (2.54)

where 𝒢 ∈ ℂ𝑃×𝑄×𝐾. Similarly, considering the second and the third factor matrices equal to
identitymatrices, i.e.,B = I𝐽 ∈ ℂ𝐽×𝐽 andC = I𝐾. The Tucker-1 or Tucker-(1,3) decomposition
is defined as:

𝒳 = 𝒢 ×1 A ∈ ℂ𝐼×𝐽×𝐾, (2.55)

where 𝒢 ∈ ℂ𝑃×𝐽×𝐾.

2.4.3.1 Uniqueness

Tucker model is not essentially unique, since the factor matrices A, B and C and
the core tensor 𝒢 are not identifiable in a unique way. The singularity can be obtained by
imposing some constraints on 𝒢 or on A, B and C. To demonstrate the non-uniqueness of
the Tucker model, we have the third-order tensor 𝒳 decomposed as:

𝒳 = �̂� ×1 Â ×2 B̂ ×3 Ĉ, (2.56)

where �̂� ∈ ℂ𝑃×𝑄×𝑅, Â ∈ ℂ𝐼×𝑃, B̂ ∈ ℂ𝐽×𝑄 and Ĉ ∈ ℂ𝐾×𝑅. This decomposition is not unique
because it has freedom of rotation. For example, defining:

⎧
⎪
⎨
⎪
⎩

�̂� = 𝒢 ×1 T(1) ×2 T(2) ×3 T(3),
Â = A[T(1)]−1,
B̂ = B[T(2)]−1,
Ĉ = C[T(3)]−1,

(2.57)

with T(1) ∈ ℂ𝑃×𝑃, T(2) ∈ ℂ𝑄×𝑄 and T(3) ∈ ℂ𝑅×𝑅. Substituting (2.57) in (2.56) and applying the
property 7 we have:

𝒳 = 𝒢 ×1 T(1) ×2 T(2) ×3 T(3) ×1 A[T(1)]−1 ×2 B[T(2)]−1 ×3 C[T(3)]−1
= 𝒢 ×1 A[T(1)]−1T(1) ×2 B[T(2)]−1T(2) ×3 C[T(3)]−1T(3)

= 𝒢 ×1 A ×2 B ×3 C,
(2.58)
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where [T(1)]−1T(1) = I𝑃 ∈ ℝ𝑃×𝑃, [T(2)]−1T(2) = I𝑄 ∈ ℝ𝑄×𝑄 and [T(3)]−1T(3) = I𝑅 ∈ ℝ𝑅×𝑅.
From the above deduction, we can conclude that there are alternatives to the factor matrices
and core tensor that satisfy the same Tucker decomposition. The above deduction can be
generalized to an 𝑁-order Tucker model.

2.4.4 Coupled nested Tucker-PARAFAC decomposition

This section addresses one of the main contributions of this thesis, the proposed cou-
pled nested Tucker-PARAFACmodel. This decomposition is a combination of the PARAFAC
and Tucker decompositions. Let us consider a fifth-order tensor 𝒳 ∈ ℂ𝐼𝑛×𝐽×𝐾×𝐿×𝑀 modeled
as a Tucker-(4, 5) decomposition:

𝒳 = 𝒢 ×1 A ×2 B ×3 C ×4 D ×5 I𝑀 ∈ ℂ𝐼𝑛×𝐽×𝐾×𝐿×𝑀, (2.59)

where 𝒢 ∈ ℂ𝑅1×𝑅2×𝑅3×𝑅4×𝑀 is the core tensor and A ∈ ℂ𝐼𝑛×𝑅1 , B ∈ ℂ𝐽×𝑅2 , C ∈ ℂ𝐾×𝑅3 and
D ∈ ℂ𝐿×𝑅4 are the factor matrices and I𝑀 ∈ ℝ𝑀×𝑀 is the identity matrix. The factor matrix
A corresponds to a 𝑛-mode matrix unfolding of the𝑁-order tensor𝒜 ∈ ℂ𝐼1×...×𝐼𝑁 modeled as
a PARAFAC decomposition:

𝒜 = ℐ𝑁,𝑃 ×1 A(1) ×2 ... ×𝑁 A(𝑁) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.60)

where A(𝑛) ∈ ℂ𝐼𝑛×𝑃 are the factor matrices of the PARAFAC model, for 𝑛 ∈ [1, 𝑁]. The
𝑛-mode matrix unfolding A can be expressed as:

A = A(𝑛) (A(𝑛+1) ⋄ ... ⋄A(𝑁) ⋄A(1) ⋄ ... ⋄A(𝑛−1))𝑇 ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 . (2.61)

From Eq. (2.61), note that 𝑅1 = 𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1. For the PARAFAC model (2.60),
consider the factor matrix A(𝑁) formed by the concatenation of two other matrices A(𝑁)′ ∈
ℂ𝐼′𝑁×𝑃 and A(𝑁)′′ ∈ ℂ𝐼′′𝑁×𝑃, with 𝐼𝑁 = 𝐼′𝑁 + 𝐼′′𝑁, such that:

A(𝑁) = [ A(𝑁)′

A(𝑁)′′ ] ∈ ℂ𝐼𝑁×𝑃. (2.62)

Substituting A(𝑁) in Eq. (2.60), we have:

𝒜 = [ 𝒜′

𝒜′′ ] = ℐ𝑁,𝑃 ×1 A(1) ×2 ... ×𝑁 [
A(𝑁)′

A(𝑁)′′ ] , (2.63)

where 𝒜′ ∈ ℂ𝐼1×...×𝐼
′
𝑁 and 𝒜′′ ∈ ℂ𝐼1×...×𝐼

′′
𝑁 . Then, substituting 𝒜 in Eq. (2.59), we have:

𝒳 = [ 𝒳 ′

𝒳 ′′ ] = 𝒢 ×1 [
A

′

A
′′ ] ×2 B ×3 C ×4 D ×5 I𝑀. (2.64)



42

A B C D= x 1 x 2 x 3 x 4 x 5X G IM

Inx J xK xLxM R1xR 2xR 3xR4 xM
I nxR1 J xR 2 K xR3 LxR 4 MxM

=A I
N , P

x 1 x 2 x 3 xN...A(1) A(2)

A(N)'

A(N)' '

P xPx ...x PI1 x I2x ... x IN

I1 xP I 2xP

IN 'xP

IN '' xP

INxP

Figure 6 – Coupled nested Tucker-PARAFAC decomposition of a (4,5)-order 𝒳 ∈ ℂ𝐼𝑛×𝐽×𝐾×𝐿×𝑀 .

From Eqs. (2.59)-(2.64), we can conclude that the tensor 𝒳 satisfies a (4,5)-order
coupled nested Tucker-PARAFAC model, as illustrated in Figure 6. The PARAFAC part of
this model is associated with the tensor𝒜 represented by the PARAFACmodel (2.60), whose
unfolding A is the factor matrix along the first mode of 𝒳. That explains the nested Tucker-
PARAFAC structure. The coupled structure is due to the core tensor 𝒢 that is common to
the two components (𝒳 ′ , 𝒳 ′′) of𝒳. Based on the contracted fifth-order Tucker model (2.59),
it is easy to deduce the following matrix unfoldings of tensor 𝒳:

X𝐽𝐾𝐿𝑀×𝐼𝑛 = (B⊗ C⊗D⊗ I𝑀)G𝑅2𝑅3𝑅4𝑀×𝑅1A
𝑇 ∈ ℂ𝐽𝐾𝐿𝑀×𝐼𝑛 , (2.65)

X𝐾𝐿𝑀𝐼𝑛×𝐽 = (C⊗D⊗ I𝑀 ⊗A)G𝑅3𝑅4𝑀𝑅1×𝑅2B
𝑇 ∈ ℂ𝐾𝐿𝑀𝐼𝑛×𝐽, (2.66)

X𝐿𝑀𝐼𝑛𝐽×𝐾 = (D⊗ I𝑀 ⊗A⊗ B)G𝑅4𝑀𝑅1𝑅2×𝑅3C
𝑇 ∈ ℂ𝐿𝑀𝐼𝑛𝐽×𝐾, (2.67)

X𝑀𝐼𝑛𝐽𝐾×𝐿 = (I𝑀 ⊗A⊗ B⊗ C)G𝑀𝑅1𝑅2𝑅3×𝑅4D
𝑇 ∈ ℂ𝑀𝐼𝑛𝐽𝐾×𝐿, (2.68)

X𝐼𝑛𝐽𝐾𝐿×𝑀 = (A⊗ B⊗ C⊗D)G𝑅1𝑅2𝑅3𝑅4×𝑀 ∈ ℂ𝐼𝑛𝐽𝐾𝐿×𝑀. (2.69)

InMIMO communication systems,𝒜 can be replaced by a channel tensorℋmodeled
by the PARAFAC decomposition, the tensor 𝒢 would represent a coding tensor (e.g. TS,
TST, TSTF, etc.) and B, C and D would represent the transmitted symbol matrices using
the MSMKron coding proposed in this thesis. By exploiting this coupled nested Tucker-
PARAFAC decomposition presented above, a wireless MIMO communication system is
proposed.
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2.4.4.1 Uniqueness

Coupled nestedTucker PARAFACdecomposition uniqueness results from the unique-
ness of the Tucker model (2.59) of 𝒳 combined with the uniqueness of the PARAFAC
decomposition (2.60) of 𝒜.

As it is well known, Tucker models are generally not essentially unique [40]. Unique-
ness can be obtained by imposing some constraints on the core tensor or the factor matrices.
For the Tucker model (2.59), the core tensor will be assumed to be known, which implies
the uniqueness of the factor matrices up to scaling factors such as:

Â = A𝜆(𝐴), B̂ = B𝜆(𝐵), Ĉ = C𝜆(𝐶), D̂ = D𝜆(𝐷), 𝜆(𝐴)𝜆(𝐵)𝜆(𝐶)𝜆(𝐷) = 1 . (2.70)

The tensor𝒜 (2.60) is modeled by a rank-𝑃 PARAFAC decomposition that is essen-
tially unique if the following sufficient condition is satisfied [51]:

𝑁∑

𝑛=1
𝑘A(𝑛) ≥ 2𝑃 + 2, (2.71)

where 𝑘A(𝑛) is the Kruskal rank of A(𝑛), for 𝑛 ∈ [1, 𝑁]. If the condition (2.71) is satisfied, any
set of matrices (Â

(1)
, ..., Â

(𝑁)
) that satisfy Eq. (2.63) are related with the original matrices by:

Â
(𝑛) = A(𝑛)𝚷𝚲(𝑛), ∏𝑁

𝑛=1𝚲(𝑛) = I𝑃, (2.72)

where𝚷 ∈ ℂ𝑃×𝑃 is a permutation matrix and 𝚲(𝑛) are diagonal matrices. The matrices A(𝑛)

are full rank. Then, in the generic case, condition (2.71) becomes:

𝑁∑

𝑛=1
min (𝐼𝑛,𝑃) ≥ 2𝑃 + 2. (2.73)

If the matrices A(𝑛) are full rank, then the condition (2.73) is always satisfied, which
ensures essential uniqueness of the PARAFAC decomposition of the tensor𝒜.

2.4.5 Tensor train (TT) decomposition

The TT decompositionwas introduced in [45, 46] andwas created to solve the curse of
dimensionality, being used to perform approximation and compression of the higher-order
tensor. TT decomposition can be calculated using standard decomposition as SVD [45].
Considering a fourth-order tensor 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 , the TT decomposition in scalar form can
be written as:

𝑦𝑖1,𝑖2,𝑖3,𝑖4 =
𝑅1∑
𝑟1

𝑅2∑
𝑟2

𝑅3∑
𝑟3

𝑅4∑
𝑟4
𝑔(1)𝑖1,𝑟1𝑔

(2)
𝑟1,𝑖2,𝑟2𝑔

(3)
𝑟2,𝑖3,𝑟3𝑔

(4)
𝑟3,𝑖4 , (2.74)
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where 𝑔(1)𝑖1,𝑟1 , 𝑔
(2)
𝑟1,𝑖2,𝑟2 , 𝑔

(3)
𝑟2,𝑖3,𝑟3 and 𝑔

(4)
𝑟3,𝑖4 are the elements of the TT-cores G

(1) ∈ ℂ𝐼1×𝑅1 , 𝒢(2) ∈
ℂ𝑅1×𝐼2×𝑅2 , 𝒢(3) ∈ ℂ𝑅2×𝐼3×𝑅3 and G(4) ∈ ℂ𝑅3×𝐼4 , respectively. In this decomposition, two succes-
sive TT-cores have a common index (𝑟𝑛) that is referred to as auxiliary indices, in contrast
to the indices 𝑖𝑛 which are called spatial indices. The quantities 𝑅𝑛 are the TT ranks. The
TT-cores 𝒢(𝑛) have size 𝑅𝑛−1 × 𝐼𝑛 × 𝑅𝑛 except for 𝑛 = 1 and 𝑛 = 4, where the sizes are 𝐼1 × 𝑅1
and 𝑅3 × 𝐼4 with 𝑅0 = 𝑅4 = 1 respectively [46]. The TT decomposition represented in Figure
7 can be expressed using the contraction operation (Definition 11) as:

𝒴 = G(1) ×12 𝒢(2) ×13 𝒢(3) ×14 G
(4). (2.75)

Y = G(1)

I1

R1
G (2)

R2

I2

R2

G (3)

I3

R3

I4

G(4 )

Figure 7 – TT decomposition of a fourth-order tensor 𝒴.

The matrix unfolding of 𝒴 in MATLAB can be obtained by the reshape function as:

Y(𝑛) = reshape
⎛
⎜
⎝
𝒴,
⎡
⎢
⎣

𝑛∏

𝑠=1
𝐼𝑠,

𝑁∏

𝑘=𝑛+1
𝐼𝑘
⎤
⎥
⎦

⎞
⎟
⎠
, (2.76)

where the reshape function rearranges𝒴 in terms of the dimensions
(∏𝑛

𝑠=1 𝐼𝑠
)
×
(∏𝑁

𝑘=𝑛+1 𝐼𝑘
)
.

From Eq. (2.76), we have the following matrix unfoldings for 𝒴:

Y(1) = reshape (𝒴, [𝐼1,
4∏

𝑘=2
𝐼𝑘]) ∈ ℂ𝐼1×𝐼2𝐼3𝐼4 , (2.77)

Y(2) = reshape (𝒴, [
2∏

𝑠=1
𝐼𝑠,

4∏

𝑘=3
𝐼𝑘]) ∈ ℂ𝐼1𝐼2×𝐼3𝐼4 , (2.78)

Y(3) = reshape (𝒴, [
3∏

𝑠=1
𝐼𝑠, 𝐼4]) ∈ ℂ𝐼1𝐼2𝐼3×𝐼4 . (2.79)

2.5 Algorithms

In this section, some algorithms used in the rest of the thesis are introduced to
estimate the factor matrices in tensor and matrix decompositions. In the case of matrix de-
compositions, in Section 2.5.1, the algorithms are the SVD, Khatri-Rao factorization (KRF),
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Kronecker factorization (KronF) and their generalizations, (GKRF) and (GKronF), respec-
tively. To estimate the factor matrices in tensor decompositions, Section 2.5.2 presents some
algorithms such as the ALS, HOSVD, tensor train hierarchical singular value decomposition
(TT-HSVD) and JIRAFE, among others. These algorithms can be used to estimate factor
matrices in a closed-form or iterative way.

2.5.1 Algorithms for matrix factorizations

2.5.1.1 Singular value decomposition (SVD)

The SVD of a matrix X ∈ ℂ𝑚×𝑛 with rank-𝑅 can be written as:

X = U𝚺V𝐻, (2.80)

whereU ∈ ℂ𝑚×𝑚 and V ∈ ℂ𝑛×𝑛 are unitary matrices and 𝚺 ∈ ℂ𝑚×𝑛 contains the 𝑟 non-zero
singular values [𝜎1, 𝜎2, ..., 𝜎𝑟] on itsmain diagonal and zeros elsewhere, such that the singular
values are ordered by magnitude, i.e., 𝜎1 ≥ 𝜎2 ≥ ... ≥ 𝜎𝑟 > 0, with 𝑟 ≤ min (𝑚,𝑛).

Considering X, the products XX𝐻 and X𝐻X (or XX𝑇 and X𝑇X for real matrix) are
Hermitian matrices (or real symmetric matrices) and they are therefore diagonalizable by
means of their eigendecompositions as [54]:

XX𝐻 = UD1U
𝐻, (2.81)

X𝐻X = VD2V
𝐻, (2.82)

where U is the matrix of eigenvectors of XX𝐻 and V is the matrix of eigenvectors of X𝐻X,
whose columns form two orthonormal bases, which impliesUU𝐻 = U𝐻U = I𝑚 and VV

𝐻 =
V𝐻V = I𝑛. The columns of U ∈ ℂ𝑚×𝑚 represent the left singular vectors of X and the
columns of V ∈ ℂ𝑛×𝑛 are the right singular vectors of X. The non-zero eigenvalues of XX𝐻

and X𝐻X are equal, non-negative and ordered by the magnitude, i.e, 𝜆1 ≥ 𝜆2 ≥ ... ≥ ...𝜆𝑟 > 0.

Now, considering only the first 𝑟 rows and columns of 𝚺 as non-zero, Eq. (2.80) can
alternatively be expressed in more compact form as:

X = U𝑟𝚺𝑟V𝐻
𝑟 , (2.83)

where U𝑟 ∈ ℂ𝑚×𝑟 and V𝑟 ∈ ℂ𝑛×𝑟 contain the first 𝑟 columns of U and V, respectively and
𝚺𝑟 ∈ ℂ𝑟×𝑟 is the upper-left (𝑟 × 𝑟) block of 𝚺.

Let us consider X as a rank-one matrix, its low-rank approximation is calculated by
truncating its SVD to a rank-one approximation as follows:

X = 𝜎1u1v𝐻1 , (2.84)

where u1 ∈ ℂ𝑚 and v1 ∈ ℂ𝑛 are the left and right dominant singular vectors of U and V,
respectively and 𝜎1 is the dominant singular value.
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2.5.1.2 Kronecker factorization (KronF)

In this section, the KronF algorithm is presented [56, 57, 58, 59]. This algorithm
estimates thematrices using a rank-one approximation of the Kronecker product. We assume
a matrix C = A⊗ B ∈ ℂ𝐼𝐽×𝐾𝑄 and the following minimization problem:

min
A,B

∥ C −A⊗ B ∥2𝐹, (2.85)

where A ∈ ℂ𝐼×𝐾 and B ∈ ℂ𝐽×𝑄. The factor matrices of the Kronecker product can be
estimated using a rank-one approximation of the matrix such that:

min
a,b

∥ C̃ − ba𝑇 ∥2𝐹, (2.86)

with C̃ ∈ ℂ𝑄𝐽×𝐾𝐼, a = vec (A) ∈ ℂ𝐾𝐼 andb = vec (B) ∈ ℂ𝑄𝐽. Defining the SVDof C̃ = U𝚺V𝐻,
a and b are calculated as [58]:

â = √𝜎1V∗
.1, b̂ = √𝜎1U.1 , (2.87)

whereU.1 ∈ ℂ𝑄𝐽 is the first column of the left singular vector matrix, V.1 ∈ ℂ𝐾𝐼 is the first
column of the right singular vector matrix and 𝜎1 is the dominant singular value. To find Â
and B̂, we must unvectorize the vectors â and b̂, respectively, as:

Â = unvec
(
â
)
∈ ℂ𝐼×𝐾, B̂ = unvec

(
b̂
)
∈ ℂ𝐽×𝑄. (2.88)

Note that the estimated matrices are affected by non-zero complex scaling ambiguity
[58]. To solve this, we have the following relation:

Â = A𝜆(1), B̂ = B𝜆(2), 𝜆(1)𝜆(2) = 1. (2.89)

Tofind the scaling element, it is necessary to knowone element ofA orB [58, 10]. Considering
the element 𝑎1,1 of A known. We have for 𝜆(1):

𝜆(1) =
�̂�1,1
𝑎1,1

, (2.90)

where �̂�1,1 is the element (1,1) of Â. Now, for the matrix B, we have:

𝜆(2) =
(
𝜆(1)

)−1 . (2.91)

By the relation (2.89), we can find the estimated matrices as:

̂̂A = Â
(
𝜆(1)

)−1 , ̂̂B = B̂𝜆(1) . (2.92)

The KronF algorithm is described in Table 1.
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KronF algorithm for estimation of ̂̂A and ̂̂B
Input:matrix C, 𝐼, 𝐽, 𝐾 and 𝑄
Output: Estimated factor matrices ̂̂A and ̂̂B
1) Reshape C ∈ ℂ𝐼𝐽×𝐾𝑄 as:

C̃ = reshape (C, [𝑄𝐽, 𝐾𝐼]) .
2) Calculate the SVD for C̃:

C̃ = U𝚺V𝐻.

3) Calculate â and b̂ using Eq. (2.87).
4) Unvectorize â and b̂ using Eq. (2.88).
5) Eliminate scaling ambiguities using Eqs. (2.89)-(2.91).
6) Adjust the factor matrices using Eq. (2.92).

Table 1 – Kronecker Factorization algorithm.

2.5.1.3 Generalized Kronecker factorization (GKronF)

In this subsection, the generalized KronF algorithm is summarized according to [59].
Let us consider a Kronecker product of 𝑁 matrices as:

A = ⊗𝑁
𝑛=1A

(𝑛) ∈ ℂ𝐼×𝑅. (2.93)

The minimization problem becomes:

min
A(𝑛),𝑛∈[1,...,𝑁]

∥ A −⊗𝑁
𝑛=1A

(𝑛) ∥2𝐹, (2.94)

whereA(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 are thematrices to be estimated such that, 𝐼 =∏𝑁
𝑛=1 𝐼𝑛 and𝑅 =∏𝑁

𝑛=1 𝑅𝑛.
The problem (2.94) can be solved iteratively by determining the matrices A(𝑛) with a two-by-
two search. To illustrate the GKronF algorithm, consider the case where 𝑁 = 3, such that:
A = A(1) ⊗A(2) ⊗A(3). Then, the minimization problem becomes:

min
A(1),A(2),A(3)

∥ A −A(1) ⊗A(2) ⊗A(3) ∥2𝐹 . (2.95)

The matrices A(1) and A(3) in (2.95) can be estimated using the KronF algorithm
presented in Table 1 to the following two decompositions of A:

A = A(1) ⊗A(2,3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅1𝑅2𝑅3 , (2.96)

A = A(1,2) ⊗A(3) ∈ ℂ𝐼1𝐼2𝐼3×𝑅1𝑅2𝑅3 , (2.97)

where A(2,3) = A(2) ⊗ A(3) and A(1,2) = A(1) ⊗ A(2). To estimate A(2), we use the following
equation obtained by permuting the matrices A(1) and A(2) as:

A(2)
𝜋 =

(
𝚷𝐼2,𝐼1 ⊗ I𝐼3

)
A
(
𝚷𝑅2,𝑅1 ⊗ I𝑅3

)
= A(2) ⊗A(1) ⊗A(3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅2𝑅1𝑅3 , (2.98)
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A(2)
𝜋 = A(2) ⊗A(1,3) ∈ ℂ𝐼2𝐼1𝐼3×𝑅2𝑅1𝑅3 , (2.99)

where A(1,3) = A(1) ⊗A(3), A(2)
𝜋 indicates the permutation between A(1) and A(2) and𝚷𝐼2,𝐼1 ∈

ℂ𝐼2𝐼1×𝐼1𝐼2 ,𝚷𝑅2,𝑅1 ∈ ℂ𝑅2𝑅1×𝑅1𝑅2 are defined as:

𝚷𝐼2,𝐼1 =
∑

𝑖2

∑

𝑖1

(
e(𝐼2)𝑖2 e(𝐼1)𝑇𝑖1

)
⊗
(
e(𝐼1)𝑖1 e(𝐼2)𝑇𝑖2

)
∈ ℂ𝐼2𝐼1×𝐼1𝐼2 , (2.100)

𝚷𝑅2,𝑅1 =
∑
𝑟2

∑
𝑟1

(
e(𝑅2)𝑟2 e(𝑅1)𝑇𝑟1

)
⊗
(
e(𝑅1)𝑟1 e(𝑅2)𝑇𝑟2

)
∈ ℂ𝑅2𝑅1×𝑅1𝑅2 , (2.101)

where e(𝐼1)𝑖1 is the 𝑖1-th canonical basis vector of the Euclidean space ℝ𝐼1 , similarly for e(𝐼2)𝑖2 ,
e(𝑅1)𝑟1 and e(𝑅2)𝑟2 . From Eq. (2.99), we apply the KronF algorithm in Table 1 that allows to
estimate A(2). A disadvantage of this closed-form algorithm is that its performance degrades
when 𝑁 increases [59].

2.5.1.4 Kronecker product approximation to rank-one tensors

In this section, the Kronecker product approximation to estimate 𝑁 matrices is
presented. The Kronecker product of 𝑁 matrices can be reorganized as a tensor and the
matrices can be estimated using the THOSVD algorithm [35]. Then, considering A as:

A = A(1) ⊗ ... ⊗A(𝑁) ∈ ℂ𝐼1...𝐼𝑁×𝑅1...𝑅𝑁 , (2.102)

where A(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 are the matrices to be estimated for 𝑛 ∈ [1,𝑁]. This operation was
defined in [60] for the Kronecker product of multiple matrices. The problem (2.102) becomes:

min
A(𝑛),𝑛∈[1,𝑁]

∥ A −A(1) ⊗ ... ⊗A(𝑁) ∥2𝐹, (2.103)

A can be expressed as a rank-one tensor rearranging the Kronecker product into an outer
product. The problem (2.103) now becomes:

min
A(𝑛)

∥ A −A(1) ⊗ .. ⊗A(𝑁) ∥2𝐹 ⇔ min
a(𝑛)

∥ 𝒜 − a(1)◦...◦a(𝑁) ∥2𝐹, (2.104)

where a(𝑛) =vec(A(𝑛)) ∈ ℂ𝑅𝑛𝐼𝑛 and 𝒜 ∈ ℂ𝑅1𝐼1×...×𝑅𝑁𝐼𝑁 is the rank-one tensor obtained by
reshaping the multiple Kronecker product:

𝒜 = reshape (A, [𝑅1𝐼1, ..., 𝑅𝑁𝐼𝑁]) . (2.105)

The vectors a(𝑛) are estimated using the THOSVD algorithm and the estimated factor
matrix Â

(𝑛)
is deduced using the unvec operator [60, 61, 54]. Each estimate Â

(𝑛)
is subject to

a scalar scaling ambiguity 𝜆(𝑛) such as the corrected estimate is given by:

̂̂A(𝑛) = Â
(𝑛)𝜆(𝑛) with ∏𝑁

𝑛=1 𝜆(𝑛) = 1, (2.106)

𝜆(𝑛) is determined from the knowledge of one element of A(𝑛).
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2.5.1.5 Khatri-Rao factorization (KRF)

In some applications covered in this thesis, we will be interested in approximating a
Khatri-Rao product between two factor matrices. To solve it, we make use of the Khatri-Rao
factorization (KRF) proposed in [62]. This factorization estimates the factormatrices through
a rank-one approximation. We assume a matrix A ∈ ℂ𝐼𝐽×𝐾 given by:

A = B ⋄ C ∈ ℂ𝐼𝐽×𝐾, (2.107)

where B ∈ ℂ𝐼×𝐾 and C ∈ ℂ𝐽×𝐾. The minimization problem becomes:

min
B,C

∥ A − B ⋄ C ∥2𝐹 . (2.108)

The Khatri-Rao product can be seen as a column-wise Kronecker product and we
can calculate a rank-one approximation of the matrix defined for each column (𝑘 ∈ [1,𝐾])
as:

Y𝑘 = unvec (A.𝑘) = C.𝑘B
𝑇
.𝑘, (2.109)

where B.𝑘 ∈ ℂ𝐼 and C.𝑘 ∈ ℂ𝐽 denote the 𝑘-th column of B and C, respectively. Therefore,
since Y𝑘 ∈ ℂ𝐽×𝐼 is a rank-one matrix, the best estimate of B.𝑘 and C.𝑘 is found by solving the
least squares (LS) problem by the SVD of Y𝑘 defined as Y𝑘 = U𝑘𝚺𝑘V𝐻

𝑘 . The 𝑘-th column of
B and C are given by [62]:

B̂.𝑘 =
√𝜎1,𝑘

(
V∗
𝑘
)
.1 , Ĉ.𝑘 =

√𝜎1,𝑘 (U𝑘).1 , (2.110)

where (U𝑘).1 ∈ ℂ𝐽 and (V𝑘).1 ∈ ℂ𝐼 are the dominant left and right singular vectors of U𝑘

and V𝑘, respectively and 𝜎1𝑘 is the dominant singular value of 𝚺𝑘. The estimated vectors are
affected by a non-zero complex scaling ambiguity [62]. For the scaling ambiguities, we have
the following relation:

B̂ = B𝚲(1), Ĉ = C𝚲(2), 𝚲(1)𝚲(2) = I𝐾 . (2.111)

It is necessary to know one row of the original factor matrices B or C to find the scaling
matrices [62]. Let us consider the first row of the matrix B known. We have for each element
of 𝚲(1):

𝜆(1)𝑘 =
�̂�1,𝑘
𝑏1,𝑘

, (2.112)

where �̂�1,𝑘 and 𝑏1,𝑘 are the elements of the first row of B̂ and B, respectively for 𝑘 ∈ [1, 𝐾].
𝚲(1) corresponds to a scaling matrix with the elements 𝜆(1)𝑘 on the main diagonal. By the
relation (2.111), we can find the estimated matrices as:

̂̂B = B̂
(
𝚲(1))−1 , ̂̂C = Ĉ𝚲(1) . (2.113)

The KRF algorithm for matrices estimation is summarized in Table 2.



50

KRF algorithm for estimation of ̂̂B and ̂̂C
Input:matrix A, 𝐼, 𝐽 and 𝐾
Output: Estimated factor matrices ̂̂B and ̂̂C
1) Unvectorize the matrix A ∈ ℂ𝐼𝐽×𝐾:
for 𝑘 = 1 ∶ 𝐾

Y𝑘 = unvec (A.𝑘) ,
2) Calculate the SVD for each column of Y:

Y𝑘 = U𝑘𝚺𝑘V𝐻
𝑘 .

3) Calculate B̂ and Ĉ using Eq. (2.110).
end
4) Store in the matrices as:

B̂ =
[ √𝜎1,1(V1).1 ... √𝜎1,𝐾(V𝐾).1

]∗ ∈ ℂ𝐼×𝐾,

Ĉ =
[ √𝜎1,1(U1).1 ... √𝜎1,𝐾(U𝐾).1

]
∈ ℂ𝐽×𝐾.

5) Eliminate scaling ambiguities using Eqs. (2.111)-(2.112).
6) Adjust the factor matrices using Eq. (2.113).

Table 2 – Khatri-Rao Factorization algorithm.

2.5.2 Higher-order singular value decomposition (HOSVD)

The HOSVD of an 𝑁-order tensor 𝒴 ∈ ℂ𝐼1×...×𝐼𝑁 with multilinear-rank-(𝑅1, ...,𝑅𝑁) is
defined as [35]:

𝒴 = 𝒮 ×1 U(1) ×2 ... ×𝑁 U(𝑁) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.114)

where U(𝑛) ∈ ℂ𝐼𝑛×𝑅𝑛 are the left singular vector matrices of each 𝑛-mode unfolding, with
𝑛 ∈ [1, 𝑁] and 𝒮 ∈ ℂ𝑅1×...×𝑅𝑁 being the core tensor. The matrix U(𝑛) is computed from the
𝑛-th matrix unfolding of 𝒴, i.e.:

Y𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 = U(𝑛)𝚺(𝑛)V(𝑛)𝐻. (2.115)

FromU(𝑛) computed according to Eq. (2.115), the core tensor can be obtained as:

𝒮 = 𝒴 ×1 U(1)𝐻 ×2 ... ×𝑁 U(𝑁)𝐻. (2.116)

Now, considering the third-order Tucker decomposition of 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3 in Eq. (2.44),
the HOSVD algorithm computes a base for each factor matrix via the SVD of each 𝑛-mode
matrix unfolding of 𝒴 as:

Y𝐼1×𝐼2𝐼3 = U(1)𝚺(1)V(1)𝐻, (2.117)

Y𝐼2×𝐼3𝐼1 = U(2)𝚺(2)V(2)𝐻, (2.118)

Y𝐼3×𝐼1𝐼2 = U(3)𝚺(3)V(3)𝐻, (2.119)
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whereU(𝑛) is a matrix that spans the subspace ofA, B and C, for 𝑛 ∈ [1, 3], respectively. The
HOSVD procedure is described in Table 3.

HOSVD algorithm for estimation of Â, B̂, Ĉ and �̂�
Input: tensor 𝒴
Output: Estimated factor matrices Â, B̂, Ĉ and �̂�
1) Compute the SVD for 𝑛-mode unfolding of 𝒴:

Y𝐼1×𝐼2𝐼3 = U(1)𝚺(1)V(1)𝐻,

Y𝐼2×𝐼3𝐼1 = U(2)𝚺(2)V(2)𝐻,

Y𝐼3×𝐼1𝐼2 = U(3)𝚺(3)V(3)𝐻.
2) Compute Â, B̂ and Ĉ as:

Â = U(1),
B̂ = U(2),
Ĉ = U(3).

3) Compute the core tensor �̂�:

�̂� = 𝒴 ×1 Â
𝐻 ×2 B̂

𝐻 ×3 Ĉ
𝐻.

Table 3 – HOSVD algorithm.

2.5.3 Alternating least squares (ALS) algorithm

The ALS algorithm is an iterative algorithm applied to estimate the factor matrices.
Based on Eqs. (2.22)-(2.24) for PARAFAC decomposition, we can formulate the classic ALS
algorithm for iterative estimation of A, B and C from the tensor 𝒳 [39]. The ALS algorithm
results from the following optimization problem deduced from Eq. (2.21):

min
A,B,C

∥ 𝒳 − ℐ3,𝑅 ×1 A ×2 B ×3 C ∥2𝐹 . (2.120)

Fixing one of the matrix factors (A, B, C) with its value estimated at the previous iter-
ation, the ALS method replaces the optimization problem (2.120) by three LS sub-problems
deduced from the matrix unfoldings (2.22)-(2.24), leading to the alternate minimization of
the following LS criteria:

min
A

∥ X𝐽𝐾×𝐼 −
(
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)
A𝑇 ∥2𝐹,→ Â[𝑙], (2.121)

min
B

∥ X𝐾𝐼×𝐽 −
(
Ĉ[𝑙−1] ⋄ Â[𝑙]

)
B𝑇 ∥2𝐹,→ B̂[𝑙], (2.122)

min
C

∥ X𝐼𝐽×𝐾 −
(
Â[𝑙] ⋄ B̂[𝑙]

)
C𝑇 ∥2𝐹,→ Ĉ[𝑙]. (2.123)



52

The matrices (B̂ ⋄ Ĉ), (Ĉ ⋄ Â) and (Â ⋄ B̂)must have full column rank for ensuring
uniqueness of the LS estimates, which implies the following necessary condition: 𝑅 ≤
min(𝐽𝐾, 𝐾𝐼, 𝐼𝐽). The update equations at iteration [𝑙] are given by:

Â[𝑙] = [
(
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)†
X𝐽𝐾×𝐼]

𝑇
, (2.124)

B̂[𝑙] = [
(
Ĉ[𝑙−1] ⋄ Â[𝑙]

)†
X𝐾𝐼×𝐽]

𝑇
, (2.125)

Ĉ[𝑙] = [
(
Â[𝑙] ⋄ B̂[𝑙]

)†
X𝐾×𝐼𝐽]

𝑇
, (2.126)

where
(
B̂ ⋄ Ĉ

)†
,
(
Ĉ ⋄ Â

)†
and

(
Â ⋄ B̂

)†
denote the pseudo-inverses of

(
B̂ ⋄ Ĉ

)
,
(
Ĉ ⋄ Â

)
and(

Â ⋄ B̂
)
, respectively. Taking into account the property 2 of the Khatri-Rao product, the

computation of the pseudo-inverse in the ALS algorithm can be simplified as follows:

(
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)† =
[
(B̂[𝑙−1] ⋄ Ĉ[𝑙−1])𝐻(B̂[𝑙−1] ⋄ Ĉ[𝑙−1])

]−1 (
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)𝐻

= (B̂𝐻
[𝑙−1]B̂[𝑙−1] ⊙ Ĉ

𝐻
[𝑙−1]Ĉ[𝑙−1])

−1 (
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)𝐻 ,
(2.127)

(
Ĉ[𝑙] ⋄ Â[𝑙−1]

)† =
[
(Ĉ[𝑙] ⋄ Â[𝑙−1])𝐻(Ĉ[𝑙] ⋄ Â[𝑙−1])

]−1 (
Ĉ[𝑙] ⋄ Â[𝑙−1]

)𝐻

= (Ĉ𝐻
[𝑙]Ĉ[𝑙] ⊙ Â

𝐻
[𝑙−1]Â[𝑙−1])

−1 (
Ĉ[𝑙] ⋄ Â[𝑙−1]

)𝐻 ,
(2.128)

(
Â[𝑙] ⋄ B̂[𝑙]

)† =
[
(Â[𝑙] ⋄ B̂[𝑙])𝐻(Â[𝑙] ⋄ B̂[𝑙])

]−1 (
Â[𝑙] ⋄ B̂[𝑙]

)𝐻

=
(
Â
𝐻
[𝑙]Â[𝑙] ⊙ B̂

𝐻
[𝑙]B̂[𝑙]

)−1 (
B̂[𝑙] ⋄ Â[𝑙]

)𝐻 .
(2.129)

This amounts to replacing the computation of the pseudo-inverses of matrices of
size 𝐾𝐽 × 𝑅, 𝐼𝐾 × 𝑅 and 𝐽𝐼 × 𝑅 by the computation of the inverses of three matrices of size
𝑅 ×𝑅. For deciding the convergence of the ALS algorithm, we consider the error at the [𝑙]-th
iteration deduced from (2.24) as:

𝜖[𝑙] =∥ X𝐼𝐽×𝐾 −
(
Â[𝑙] ⋄ B̂[𝑙]

)
Ĉ
𝑇
[𝑙] ∥2𝐹 . (2.130)

Convergence at the [𝑙]-th iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝜖[𝑙−1] − 𝜖[𝑙]| ≤ 𝛿, where 𝛿 > 0 is a predefined
threshold assumed to be 10−6 throughout this thesis. ALS algorithm is summarized in Table
4.

2.5.4 Tensor train-singular value decomposition (TT-SVD) algorithm

The TT decomposition of an arbitrary tensor can be calculated using successive SVDs
[46]. Given a fourth-order tensor 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 decomposed in terms of the TT model as
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ALS algorithm for estimation of ̂̂A, ̂̂B and ̂̂C
Input: tensor 𝒳
Output: Estimated matrices Â, B̂ and Ĉ
𝑙 = 0
1) Randomly initialize B[0] and C[0].
2) Update the estimates of A, B and C as:

Â[𝑙] = [
(
B̂[𝑙−1] ⋄ Ĉ[𝑙−1]

)†
X𝐽𝐾×𝐼]

𝑇
,

B̂[𝑙] = [
(
Ĉ[𝑙−1] ⋄ Â[𝑙]

)†
X𝐾𝐼×𝐽]

𝑇
,

Ĉ[𝑙] = [
(
Â[𝑙] ⋄ B̂[𝑙]

)†
X𝐾×𝐼𝐽]

𝑇
.

3) Calculate the error function (2.130) and 𝑒𝑟𝑟 = |𝜖[𝑙−1] − 𝜖[𝑙]|.
- if |𝜖[𝑙−1] − 𝜖[𝑙]| < 𝛿 or 𝑙 =maximum number of iterations
- stop
- else 𝑙 → 𝑙 + 1;
Â, B̂ and Ĉ
end

Table 4 – Alternating least square algorithm.

in Eq. (2.74), with G(1) ∈ ℂ𝐼1×𝑅1 , 𝒢(2) ∈ ℂ𝑅1×𝐼2×𝑅2 , 𝒢(3) ∈ ℂ𝑅2×𝐼3×𝑅3 and G(4) ∈ ℂ𝑅3×𝐼4 . The TT
decomposition can be computed by a sequence of SVD decompositions, in which the SVDs
of each unfolding of 𝒴 are calculated [45, 46]. So, first we compute the unfolding Y𝐼1×𝐼2𝐼3𝐼4 as
in (2.77) such that:

Y(1) = reshape (𝒴, [𝐼1, 𝐼2𝐼3𝐼4]) ∈ ℂ𝐼1×𝐼2𝐼3𝐼4 . (2.131)

Subsequently the SVD of the unfolding Y(1) is calculated as:

Y(1) = U(1)𝚺(1)V(1)𝐻 = U(1)Z(1), (2.132)

where Z(1) = 𝚺(1)V(1)𝐻 ∈ ℂ𝑅1×𝐼2𝐼3𝐼4 andU(1) ∈ ℂ𝐼1×𝑅1 , with 𝑅1 =rank(Y(1)). The matrix G(1) is
given by:

G(1) = U(1) ∈ ℂ𝐼1×𝑅1 . (2.133)

The unfolding Y(2) is calculated as follow:

Y(2) = reshape
(
Z(1), [𝑅1𝐼2, 𝐼3𝐼4]

)
∈ ℂ𝑅1𝐼2×𝐼3𝐼4 . (2.134)

The SVD of the unfolding Y(2) is calculated as:

Y(2) = U(2)𝚺(2)V(2)𝐻 = U(2)Z(2), (2.135)
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where Z(2) = 𝚺(2)V(2)𝐻 ∈ ℂ𝑅2×𝐼3𝐼4 andU(2) ∈ ℂ𝑅1𝐼2×𝑅2 , with 𝑅2 =rank(Y(2)). The tensor 𝒢(2) is
given by:

𝒢(2) = reshape
(
U(2), [𝑅1, 𝐼2, 𝑅2]

)
∈ ℂ𝑅1×𝐼2×𝑅2 . (2.136)

For the unfolding Y(3) we have:

Y(3) = reshape
(
Z(2), [𝑅2𝐼3, 𝐼4]

)
∈ ℂ𝑅2𝐼3×𝐼4 . (2.137)

The SVD of Y(3) is given by:

Y(3) = U(3)𝚺(3)V(3)𝐻 = U(3)Z(3), (2.138)

where Z(3) = 𝚺(3)V(3)𝐻 ∈ ℂ𝑅3×𝐼4 and U(3) ∈ ℂ𝑅2𝐼3×𝑅3 , with 𝑅3 =rank(Y(3)). The tensor 𝒢(3) is
given by:

𝒢(3) = reshape
(
U(3), [𝑅2, 𝐼3, 𝑅3]

)
∈ ℂ𝑅2×𝐼3×𝑅3 . (2.139)

To find the matrix G(4) we have:

G(4) = Z(3) ∈ ℂ𝑅3×𝐼4 . (2.140)

Figure 8 illustrates the TT-SVD algorithm to calculate the TT-cores of the fourth-order
𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 .

2.5.5 Tensor train-hierarchical singular value decomposition (TT-HSVD)
algorithm

The TT-HSVD algorithm was presented by Y. Zniyed et al. [63] and this algorithm
derives the TT-cores in a parallel hierarchical way. The main difference between the tensor
train singular value decomposition (TT-SVD) and TT-HSVD algorithms lies in the initial
matrix unfolding to be processed by the SVD and the reshaping strategy. In Figure 9, TT-
HSVD algorithm is presented to calculate the TT-cores of the fourth-order tensor 𝒴 ∈
ℂ𝐼1×𝐼2×𝐼3×𝐼4 .

For the TT-HSVD algorithm, considering an a priori chosen index 𝑁 ∈ [1, 𝑁], the
first matrix unfolding Y(𝑁) is of size (𝐼1...𝐼𝑁) × (𝐼𝑁+1...𝐼𝑁), which leads to a more rectangular
matrix in relation to the matrix unfolding of TT-SVD. Its 𝑅𝑁-truncated SVD provides two
factors U(𝑛)

𝑁
∈ ℂ𝐼1...𝐼𝑁×𝑅𝑁 and V(𝑛)

𝑁
∈ ℂ𝑅𝑁×𝐼𝑁+1...𝐼𝑁 . These two factors are now reshaped in

parallel, which constitutes the main difference with the TT-SVD algorithm for which only a
single reshaping operation is applied to V(1)

2 [63]. This process is repeated after each SVD
computation.
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Figure 8 – TT-SVD algorithm applied on the fourth-order tensor 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 [34].

2.5.6 PARAFACandTT decompositions equivalence and JIRAFE algorithm

In this section, we present the equivalence between an 𝑁-order PARAFAC decom-
position and an 𝑁-order TT decomposition for dimensionality reduction. The equivalence
between these two models was presented in [34, 64]. Given an 𝑁-order tensor 𝒳 ∈ ℂ𝐼1×...×𝐼𝑁

that admits a rank-𝑅 PARAFAC decomposition with factor matricesA(𝑛) of full column rank
defined as:

𝒳 = ℐ𝑁,𝑅 ×1 A(1) ×2 ... ×𝑁 A(𝑁) ∈ ℂ𝐼1×...×𝐼𝑁 , (2.141)

where ℐ𝑁,𝑅 ∈ ℝ𝑅×...×𝑅 and A(𝑛) ∈ ℂ𝐼𝑛×𝑅 are the factor matrices. Then its TT decomposition
involves a train of twomatrices and (𝑁−2) tensors, eachmodeled as a third-order PARAFAC
decomposition with the same TT-rank 𝑅1 = 𝑅2 = ... = 𝑅𝑁−1 = 𝑅. The factor matrices in Eq.
(2.141) can then be directly derived from the TT-cores up to (𝑁 − 1) basis-change matrices
such as [34]:

G(1) = A(1)M−1
1 ∈ ℂ𝐼1×𝑅, (2.142)
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Figure 9 – TT-HSVD algorithm applied on the fourth-order tensor 𝒴 ∈ ℂ𝐼1×𝐼2×𝐼3×𝐼4 [63].

𝒢(𝑘) = ℐ3,𝑅 ×1 M𝑘−1 ×2 A(𝑘) ×𝑘 M−𝑇
𝑘 ∈ ℂ𝑅×𝐼𝑘×𝑅, 2 ≤ 𝑘 ≤ 𝑁 − 1, (2.143)

G(𝑁) =M𝑁−1[A(𝑁)]𝑇 ∈ ℂ𝑅×𝐼𝑁 , (2.144)

whereM𝑘 ∈ ℂ𝑅×𝑅 for 𝑘 ∈ [1, 𝑁 − 1] are nonsingular basis-change matrices. Note that two
neighboring core tensors 𝒢(𝑘) and 𝒢(𝑘+1) satisfy coupled third-order PARAFACs which share
the common factorM𝑘. To estimate the factor matrices of the PARAFAC decomposition, the
JIRAFE algorithm summarized in Table 5, can be used. This algorithm has been successfully
applied in the context of multidimensional harmonic retrieval [64]. The TT-SVD or TT-
HSVD algorithms, described in Sections 2.5.4 and 2.5.5, respectively, is used to determine the
TT-core estimates (G(1),𝒢(2), ...,𝒢(𝑁−1),G(𝑁)). Second, the factors (M1,A(2),M2) are estimated
by means of the ALS method. Then, the other factor matrices are estimated using the KRF
method, recalled in Subsection 2.5.1.4. Thus, for 3 ≤ 𝑘 ≤ 𝑁 − 1, the KRF algorithm allows
to estimate A(𝑘) andM−𝑇

𝑘 from the LS estimate of their Khatri-Rao product:

ˆA(𝑘) ⋄M−𝑇
𝑘 = (M†

𝑘−1Ĝ
(𝑘)
𝑅×𝐼𝑘−1𝑅)

𝑇
. (2.145)
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The combination of the TTHSVD, ALS and KRF methods to estimate the PARAFAC
factormatrices results in the JIRAFEalgorithm, summarized inTable 5,where [M̂1, Â

(2), M̂−𝑇
2 ]

= ALS(�̂�(2), 𝑅)means that the ALS algorithm is applied to the third-order tensor PARAFAC
decomposition (2.143) for 𝑘 = 2. Then, the other factor matrices are estimated using the KRF
method applied to (2.143) for 3 ≤ 𝑘 ≤ 𝑁−1, with the matrixM𝑘−1 estimated in the previous
step. Thus, the KRF algorithm allows to estimate Â

(2)
andM−𝑇

𝑘 from the LS estimate of their
Khatri-Rao product as:

ˆA(𝑘) ⋄M−𝑇
𝑘 = G(𝑘)

𝐼𝑘𝑅×𝑅M̂
−𝑇
𝑘−1, (2.146)

A(1) andA(𝑁) are estimated using the LS algorithm applied to Eqs. (2.142). JIRAFE algorithm
has been successfully applied in the context of multidimensional harmonic retrieval [64]. It
allows us to reduce the computational complexity while avoiding ill-convergence problems
encountered with the standard ALS algorithms applied to a higher-order PARAFAC, as
slow convergence and possible convergence towards local minima. With JIRAFE, the ALS
algorithm is applied to a third-order PARAFAC instead of an 𝑛-order one.

JIRAFE algorithm for the estimation of Â
(1)
, ..., Â

(𝑁)
.

Input: 𝑁-order tensor 𝒳 of rank-𝑅
Output: Estimated matrices Â

(1)
, ..., Â

(𝑁)

1) Dimensionality reduction: estimate the TT-cores by means of the TT-
SVD/TT-HSVD algorithm applied to 𝒳:

[Ĝ(1), �̂�(2), ..., �̂�(𝑁−1), Ĝ(𝑁)]← TT − SVD∕TT − HSVD (𝒳, 𝑅) .

2) PARAFAC factors retrieval: estimate the factor matrices by means of
the ALS and KRF algorithms:

[M̂1, Â
(2), M̂−𝑇

2 ]← ALS
(
�̂�(2),𝑅

)
.

for 𝑘 ∈ [3, 𝑁 − 1]

[Â(𝑘), M̂−𝑇
𝑘 ]← KRF

(
�̂�(𝑘), M̂𝑘−1,𝑅

)
,

end
Â
(1) = Ĝ

(1)
M̂1, Â

(𝑁) = [Ĝ(𝑁)]𝑇M̂−𝑇
𝑁−1 .

Table 5 – JIRAFE algorithm.

2.5.7 Rectified alternating least squares (RectALS) algorithm

Several variants of the ALS algorithm have been proposed in the literature. Here,
the RectALS is summarized in Table 6. For more information see [65, 64]. The RectALS
algorithm takes into account the Vandermonde structure of the factor matrices, which is
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based on iterative projections and LS criteria. Considering the TT-core 𝒢(2) estimated by
JIRAFE, the RectALS algorithm is applied to the third-order TT-core 𝒢(2) to retrieve the
matricesM1, A

(2) andM2, where one of the matrices of this model has a Vandermonde
structure. The Vandermonde matrix A(2) ∈ ℂ𝐼2×𝑅 of rank 𝑅 is defined as [64]:

A(2) = [ a(2)(𝑧𝐼2,1) ... a(2)(𝑧𝐼2,𝑅)] ∈ ℂ𝐼2×𝑅, (2.147)

where each column a(2)(𝑧𝐼2,𝑟) depends on a single parameter (𝑧𝐼2,𝑟) of unit modulus, 𝑧𝐼2,𝑟 =
𝑒𝑖𝜔𝐼2 ,𝑟 is the pole and 𝜔𝐼2,𝑟 is the 𝑟-th angular frequency along the 𝑖2-th dimension. a(2)(𝑧𝐼2,𝑟) is
defined as:

a(2)(𝑧𝐼2,𝑟) = [ 𝑧0𝐼2,𝑟 𝑧1𝐼2,𝑟 𝑧2𝐼2,𝑟 ... 𝑧𝐼2−1𝐼2,𝑟 ]𝑇. (2.148)

The estimation of the factor matrices is similar to the ALS algorithm presented before,
the main difference is the estimation of the angular frequencies (𝜔𝐼2,𝑟) of the Vandermonde
matrix A(2). We first estimate A(2) from Eq. (2.149) and after estimating the angular fre-
quencies using the rectification strategies presented in the next subsections. And finally, we
updateM2. The RectALS algorithm is summarized in Table 6.

2.5.7.1 Rectification strategy

In this section, we present rectification strategies for estimating a Vandermonde
matrix (2.147), with 𝜔𝐼2,𝑟 replaced by 𝜔𝑟, combined with the RectALS algorithm. The first
one is the shift invariance principle (SIP) introduced in [64] and summarized in Table 7. SIP
strategy is inspired from the notion of pencil matrices. The second strategy is the toeplitz
rank-one approximation (TR1A) method proposed in [65], used in [33] and summarized in
Table 8. And the third strategy is (TR1A𝑖𝑚𝑝) method which is an improved version of the
TR1A method, proposed in [32] and presented in this thesis in Table 9. TR1A𝑖𝑚𝑝 strategy
is proposed to enforce the Vandermonde structure of the steering matrices estimated in
presence of noise, whose elements of the first row are normalized to 1 [32].

TR1A rectification method consists in constructing a rank-one hermitian Toeplitz
matrixT𝑟 = Â

(2)
.𝑟 Â

(2)𝐻
.𝑟 , of size 𝐼2×𝐼2, from each column 𝑟 of an estimated 𝐼2×𝑅 Vandermonde

matrix, and computing its SVD T𝑘 = U𝑟𝚺𝑟V∗
𝑟 to estimate the 𝑟-th angular frequency.

Our proposed rectification method consists in constructing a rank-one hermitian
Toeplitz matrix T𝑟 = Â

(2)
.𝑟 Â

(2)𝐻
.𝑟 , of size 𝐼2 × 𝐼2, from each column 𝑟 of an estimated 𝐼2 × 𝑅

Vandermonde matrix, and computing its eigenvalue decomposition (EVD) T𝑟 = P𝑟D𝑟P
𝐻
𝑟 to

estimate the 𝑟-th angular frequency.

Unlike the original TR1A method which identifies only one element of the Toeplitz
matrix with its corresponding term in the EVD of the constructed rank-one Toeplitz matrix,
our method exploits the identification of 𝐼 − 1 terms as:

𝑒−𝑗𝜔𝑟(𝑖) = 𝑑𝑟(𝑝𝑟)1,1(𝑝𝑟)∗𝑖+1,1 ⇐⇒ �̂�𝑟 =
1
𝑖 ∠

(
(𝑝𝑟)1,1(𝑝𝑟)∗𝑖+1,1

)
, (2.149)
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RectALS algorithm for estimation of M1, A
(2)andM2

Input: tensor 𝒢(2)
Output: EstimatedM1, A

(2),M2 and angular frequencies {𝜔𝐼2,1,...,𝜔𝐼2,𝑅}
𝑙 = 0
1) Randomly initialize A(2)

[0],𝑀−𝑇
2[0] with random inputs

2) Update the estimtes as:

M̂1[𝑙] = G(2)
𝑅×𝐼2𝑅[(Â

(2)
[𝑙−1] ⋄ M̂

−𝑇
2[𝑙−1])𝑇]†,

Â
(2)
[𝑙] = G(2)

𝐼2×𝑅2[(M̂
−𝑇
2[𝑙−1] ⋄ M̂1[𝑙])𝑇]†.

3) Apply the rectification strategy

[Â(2)
[𝑙] ] = rectif ication strategy (Â(2)

[𝑙] ) .

M̂
−𝑇
2[𝑙] = G(2)

𝑅×𝑅𝐼2 [(M̂1[𝑙] ⋄ Â
(2)
[𝑙] )

𝑇
]
†

,

end
3) Calculate the error function as:

𝜖[𝑙] =∥ G(2)
𝐼2×𝑅2 − Â

(2)
[𝑙]
(
M̂

−𝑇
2[𝑙] ⋄ M̂1[𝑙]

)𝑇
∥2𝐹 .

- if |𝜖[𝑙−1] − 𝜖[𝑙]| ≤ 𝛿
- stop
- else 𝑙 → 𝑙 + 1;
M̂1, Â

(2)
and M̂2

end

Table 6 – RectALS algorithm.

for 𝑖 ∈ [1, 𝐼2 − 1], where (𝑝𝑟)𝑖,1 denotes the (𝑖,1) element of the eigenvector matrix P𝑟, and
the operator ∠ stands for the angle of its complex scalar argument. Then, the estimated
angular frequency is calculated as an average of these 𝐼2 − 1 estimates (2.149) as:

�̂�𝑟 =
1

𝐼2 − 1
𝐼2−1∑

𝑖=1

1
𝑖 ∠

(
(𝑝𝑟)1,1(𝑝𝑟)∗𝑖+1,1

)
. (2.150)

2.6 Chapter summary

In this chapter, multilinear algebra operations and definitions, tensor decompositions
and algorithms were provided. These concepts serve as the basis for the next chapters. In the
first part of this chapter, some notations extensively used in this thesis were introduced. In
the second part of this chapter, some operations involving matrices, namely Kronecker and
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SIP strategy to rectify an estimated Vandermonde matrix Â
(2)

Input: Estimated matrix Â
(2)

Output: Rectified Vandermonde matrix Â
(2)
.

for 𝑟 ∈ [1, 𝑅]

𝑦𝑟 = Â
(2)𝐻
.𝑟 Â

(2)
.𝑟 ,

�̂�𝐼2,𝑟 = ∠ ( 1𝑦𝑟
) ,

for 𝑖 ∈ [1,𝐼2]
�̂�(2)𝑖,𝑟 = 𝑒−𝑗�̂�𝑟(𝑖−1),

end

A(2)
.𝑟 = [ �̂�(2)1,𝑟 ... �̂�(2)𝐼2,𝑟 ].

end

Table 7 – SIP strategy.

TR1A strategy to rectify an estimated Vandermonde matrix Â
(2)

Input: Estimated matrix Â
(2)

Output: Rectified Vandermonde matrix Â
(2)
.

for 𝑟 ∈ [1,𝑅]
1) Form a rank-one hermitian Toeplitz matrix T𝑟 from the 𝑟-th column Â(2)

.𝑟
as:

T𝑟 = Â
(2)
.𝑟 Â

(2)𝐻
.𝑟 ,

2) Calculate the SVD of T𝑟 = U𝑟Σ𝑟V∗
𝑟 .

for 𝑖 ∈ [1,𝐼2 − 1]
3) Estimate the angular frequency �̂�𝑟 associated with the 𝑟-th column of the
Vandermonde matrix as:

�̂�𝑟 = ∠
(
(𝑢𝑟)1,1((𝑢𝑟)∗(𝑖+1),1

)
,

�̂�(2)𝑖,𝑟 = 𝑒−𝑗�̂�𝑟(𝑖).
end
4) Build the rectified estimated 𝑟-th column ̂̂A.𝑟 as:

A(2)
.𝑟 = [ �̂�(2)1,𝑟 ... �̂�(2)𝐼2,𝑟 ].

end

Table 8 – TR1A strategy.
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TR1A𝑖𝑚𝑝 strategy to rectify an estimated Vandermonde matrix Â
(2)

Input: Estimated matrix Â
(2)

Output: Rectified Vandermonde matrix ̂̂A(2).
for 𝑟 ∈ [1, 𝑅]
1) Form a rank-one hermitian Toeplitz matrix T𝑟 from the 𝑟-th column Â(2)

.𝑟
as:

T𝑟 = Â
(2)
.𝑟 Â

(2)𝐻
.𝑟 ,

2) Calculate the EVD of T𝑟 = P𝑟D𝑟P
𝐻
𝑟 .

for 𝑖 ∈ [1,𝐼2 − 1]
3) Estimate the angular frequency 𝜔𝑟 associated with the 𝑟-th column of the
Vandermonde matrix as:

�̂�𝑟 =
1

𝐼2 − 1 (
𝐼2−1∑

𝑖=1

1
𝑖 ∠

(
(𝑝𝑟)1,1((𝑝𝑟)∗𝑖+1,1

)
) ,

�̂�(2)𝑖,𝑟 = 𝑒−𝑗�̂�𝑟(𝑖),
end
4) Build the rectified estimated 𝑟-th column ̂̂A.𝑟 as:

A(2)
.𝑟 = [ �̂�(2)1,𝑟 ... �̂�(2)𝐼2,𝑟 ].

end

Table 9 – TR1A𝑖𝑚𝑝 strategy.

Khatri-Rao products were introduced, as well as, their properties. Basic tensor algebra defini-
tions and a background in tensor decompositions were explored in the third and fourth parts
of this chapter, where the new coupled-nested Tucker PARAFAC model and its uniqueness
property were presented. The new tensor decomposition combines Tucker and PARAFAC
models in a unique decomposition where the core tensor must be known, being one of the
main contributions of this thesis. And in the fifth part, some algorithms were presented to
estimate the factor matrices as SVD, KronF, and KRF algorithms. The link between TT and
PARAFAC decomposition was recalled and some algorithms were presented to estimate the
factor matrices in tensor models such as ALS, TTHSVD, JIRAFE, RectALS, and others, as
well as algorithms for estimating angular frequencies in Vandermonde matrices.
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3 Multidimensional CX decomposi-
tion of tensors

In this chapter, the second original contribution of this thesis is presented. First, a
multidimensional column-space decomposition to perform a low-rank approximation of tensors
based on the CX decomposition for matrices is presented. CX decomposition is a low-rank tensor
decomposition that is explicitly expressed in terms of a small number of actual columns of the
data tensor. CX decomposition for tensors is used to reduce complexity and preserve the initial
information contained in the data tensor. For this new tensor model is proposed an algorithm
that performs the approximation of the tensor based on the l2-norm.

The computational complexity of the algorithm is analyzed and compared to the state-
of-the-art THOSVD algorithm. Monte Carlo simulation results are provided to illustrate the
performance of the proposed CX-tensor decomposition and the associated algorithm to tensor
reconstruction and the impact of design parameters on the system performance in terms of
NMSE.

3.1 Introduction

The large-scale data is characterized not only by its huge volume but also by its
heterogeneity, precision and incompleteness. In recent years, tensors have been commonly
used to designate generalized multidimensional data of large matrices, such as big data,
reducing the problem of dimensionality [66]. Various tensor models are applied because
they are well adapted to represent great data, such as Tucker hierarchical models [67], tensor
networks [68] and TT decomposition [69].

As an attractive approach employing sparse representations, the compressed/com-
pressive sensing (CS) technique is proposed to reduce data purchasing costs, allowingNyquist
sub-sampling, to bewidely applied inmany areas [70]. The key idea of theCS is to allow the ex-
act reconstruction of the signal of much less samples than required by the Nyquist–Shannon
sampling theorem since the signal admits a sparse representation in a given domain [70,
71]. Sparsity is the inherent property of those signals for which the whole of the information
contained in the signal can be represented only with the help of a few significant components,
as compared to the total length of the signal [72]. In the CS method, the compressed samples
are acquired by a small set of linear and usually random measures, where the recovery
of the signal is generally formulated as a problem of minimizing the 𝑙0-norm [73]. As the
minimization of 𝑙0-norm is an NP-Hard problem, most existing research solves this problem
by bringing it closer to a convex problem of minimization of 𝑙1-norm [70].
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CS and matrix completion (MC) have some similarities, where the goal is to recover
a low-rank matrix by using a small number of matrix measurements [70, 74, 75, 76]. The
matrix reconstruction methods recover the absent inputs of a matrix T ∈ ℝ𝑀×𝑁 of its
partially known entries given by a random subset Ω of size𝑀 ×𝑁. This problem is known
as a low-rank matrix optimization problem [69]:

minX rank(X) subject to XΩ = TΩ. (3.1)

The missing inputs of X are as small as possible. Due to the nature of the rank esti-
mation, problem (3.1) is considered NP-hard and can be fexibilized to a convex optimization
problem 𝑙1 as:

minX ∥ X ∥∗ subject to XΩ = TΩ, (3.2)

where ∥ X ∥∗ corresponds to the matrix nuclear norm. CS and MC were extended to the
tensor completion (TC). TC is a problem of filling out the missing inputs of partially observed
low-rank tensors [77]. This problem can be written as a generalization of the MC problem as
follows. Let us consider the 𝑁-order tensor 𝒯 ∈ ℝ𝐼1×...×𝐼𝑁 and we must reconstruct it from
its known entries given by a set (Ω) of indexes. The following tensor rank minimization
problem is proposed as [69, 78]:

minX(𝑛)
∑𝑁

𝑛=1 𝛼𝑛rank(X
(𝑛)) subject to 𝒳Ω = 𝒯Ω, (3.3)

where 𝛼𝑛 are the weights that satisfy
∑𝑁

𝑛=1 𝛼𝑛 = 1. Eq. (3.3) is addressed by the following 𝐿1
optimization problem:

minX(𝑛)
∑𝑁

𝑛=1 𝛼𝑛 ∥ X
(𝑛) ∥∗ subject to 𝒳Ω = 𝒯Ω, (3.4)

where ∥ X(𝑛) ∥∗ corresponds to the matrix nuclear norm of X(𝑛) for 𝑛 ∈ [1,𝑁]. In most
cases, the tensor reconstruction is performed by reorganizing tensors as 𝑛-mode matrix
unfoldings and then applying matrix reconstruction techniques [77, 75]. Tensor reconstruc-
tion algorithms and their applications are receiving a lot of attention in some areas, such
as data mining and computational vision [79], collaborative filtering [80], medical images
[78], signal processing [81], neuroscience [82], telecommunications [83] and traffic data
estimation [84].

The CX decomposition is particularly attractive for large-scale [85] matrices because
it provides a representation of data as a linear combination of a few columns of the original
data matrix [86, 87], which does not happen when we consider SVD. SVD provides the best
low-rank approximation of a matrix but, the new “dimensions” (the so-called eigencolumns
and eigenrows) of the matrix are linear combinations of (up to all) the original dimensions,
being difficult to interpret in terms of the underlying data and processes generating that
data [88].
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Few works addressed the CX decompositions for data tensors [87, 89]. In [87], two
different generalizations of the CUR matrix decomposition are presented to tensors. These
generalizations are based only on some selected entries of the original tensor. The authors
also developed an adaptive algorithm for selecting the 𝑛-mode fibers from the data tensor.
In addition to providing a low-rank approximation, such CX tensor decompositions have
the property of preserving the initial information contained in the tensor, while keeping
the sparsity of the initial data tensor, which is not the case of the HOSVD [89]. In [89],
an algorithm for the selection of fibers of the tensor is introduced. The authors applied
the approximation for rows and columns to a particular matrix unfolding providing an
approximation based on a few fibers extracted from the frontal slices of a third-order tensor.

Based on related works, we propose a low-rank tensor decomposition obtained by
applying the matrix CX decomposition to each 𝑛-mode unfolding of the tensor. The proposed
decomposition not only preserves the initial information contained in the data tensor but
also reduces the storage requirements, which makes easier the tasks of tensor reconstruction.
An algorithm based on the 𝑙2-norm of columns of each unfolding is derived to perform
the CX-tensor decomposition. The proposed algorithm can be seen as an extension of the
algorithm proposed in [90] to higher-order tensors.

3.2 CX decomposition for matrices

First, we need to understand CX decomposition for matrices. Let A ∈ ℝ𝑚×𝑛 be a
matrix and C ∈ ℝ𝑚×𝑐 be a matrix whose columns consist of 𝑐 columns of A. The matrix
Â = CX ∈ ℝ𝑚×𝑛 is a column-based low-rank matrix approximation of A, for some matrix
X ∈ ℝ𝑐×𝑛 [86, 88]. CX decomposition provides a low-rank approximation expressed in a
small number of columns 𝑐 of the original matrix A. Since the columns in A are selected to
form C, the optimization problem for the matrix X to be solved is:

min
X∈ℝ𝑐×𝑛

∥ A − CX ∥2𝐹, (3.5)

where X = C†A. Solving the LS problem (3.5) for X, we provide the “best” approximation of
A as:

Â = CC†A = 𝑃CA, (3.6)

where 𝑃CA is the projection of A onto the subspace spanned by the columns of C with
𝑃C = CC†. The quality of a CX matrix approximation depends on the choice of C and Xwith
the following upper bound for the approximation error [86, 88]:

∥ A − CX ∥2𝐹≤ (1 + 𝜖) ∥ A −A𝑘 ∥2𝐹, (3.7)

where A𝑘 is the best rank-𝑘 approximation of A and 𝜖 is the error parameter.
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A particular case of CX decomposition for a second-order tensor is the CUR decom-
position in which the subsets of columns and rows of the matrix A are extracted. The subset
of 𝑐 columns and 𝑟 rows selected fills the matrices C ∈ ℝ𝑚×𝑐 and R ∈ ℝ𝑟×𝑛, respectively.
Next we calculate a suitable intersection matrixU ≈ C†AR† ∈ ℝ𝑐×𝑟, and estimate a low-rank
approximation Â as [90]:

A ≈ Â = CUR. (3.8)

3.3 CX decomposition for N-order tensors

Based on the CX decomposition previously presented, we developed a generalized
CX decomposition for the tensor case as presented in [91]. Let 𝒴 ∈ ℝ𝐼1×𝐼2×...×𝐼𝑁 be an 𝑁-
order tensor decomposed by means of the Tucker decomposition with multilinear rank-
(𝑅1, 𝑅2, ..., 𝑅𝑁) as:

𝒴 = 𝒢 ×1 A(1) ×2 ... ×𝑁 A(𝑁), (3.9)

where 𝒢 ∈ ℝ𝑅1×𝑅2×...×𝑅𝑁 is the core tensor and A(𝑛) ∈ ℝ𝐼𝑛×𝑅𝑛 are the factor matrices, with
𝑛 ∈ [1, 𝑁]. To perform the CX decomposition for tensors it is necessary to select 𝑃𝑛 columns
of each 𝑛-mode unfolding Y(𝑛) ∈ ℂ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 of 𝒴 in order to reduce the dimensionality
of the tensor 𝒴. Thus, we can rewrite the Tucker decomposition as the CX model, such that:

𝒴 ≈𝒲 ×1 C(1) ×2 ... ×𝑁 C(𝑁), (3.10)

where𝒲 ∈ ℝ𝑃1×𝑃2×...×𝑃𝑁 is the core tensor and C(𝑛) ∈ ℝ𝐼𝑛×𝑃𝑛 contains the selected columns
from each 𝑛-mode unfolding. CX decomposition for each 𝑛-mode matrix unfolding is given
by:

Y(𝑛) ≈ C(𝑛)X(𝑛), (3.11)

with X(𝑛) ∈ ℝ𝑃𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 . The following optimization problem can be solved as:

min
𝒲

∥ 𝒴 −𝒲 ×1 C(1) ×2 ... ×𝑁 C(𝑁) ∥2𝐹 . (3.12)

By minimizing the cost function (3.12) for the core tensor𝒲 ∈ ℝ𝑃1×𝑃2×...×𝑃𝑁 yields:

�̂� = 𝒴 ×1 C(1)† ×2 ... ×𝑁 C(𝑁)†, (3.13)

C(𝑛) must be full column rank to ensure the uniqueness of the pseudo-inverses C(𝑛)†, i.e.,

𝑃𝑛 ≤ 𝐼𝑛, (3.14)

with 𝑛 ∈ [1, 𝑁]. Then, rank(C(𝑛)) = 𝑃𝑛 and C(𝑁)†C(𝑁) = I𝑃𝑛 . The 𝑛-mode matrix unfoldings
of (3.10) are given by:

Ŷ
(𝑛) ≈ C(𝑛)Ŵ

(𝑛) (
C(𝑛+1) ⊗ ... ⊗ C(𝑁) ⊗ C(1) ⊗ ... ⊗ C(𝑛−1))𝑇 , (3.15)

with Ŷ
(𝑛) ∈ ℝ𝐼𝑛×𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 and Ŵ

(𝑛) ∈ ℝ𝑃𝑛×𝑃𝑛+1...𝑃𝑁𝑃1...𝑃𝑛−1 . As for the matrix case, the quality
of CX tensor approximation depends on the choice of matrices C(𝑛) and 𝑃𝑛.
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3.4 Algorithm for CX decomposition of N-order tensors

In this section, an algorithm is proposed to select 𝑃𝑛 columns of each 𝑛-mode matrix
unfolding of the 𝑁-order tensor 𝒴 based on the column selection algorithm for matrices,
described in [90]. This algorithm is based on 𝑙2-norm to select the columns of each 𝑛-mode
unfolding Y(𝑛), where a selection probability is calculated for each column of Y(𝑛) derived
from your 𝑙2-norm. The underlying idea is that if the column of the matrix unfolding Y(𝑛) has
relevant information, this column will have a high probability to be selected for the matrix
C(𝑛). The probabilities 𝑝(𝑛)𝑗 are defined for each column 𝑗 of the matrix unfolding Y(𝑛) as [91]:

𝑝(𝑛)𝑗 =
∥ Y(𝑛)

.𝑗 ∥22
∥ Y(𝑛) ∥2𝐹

, (3.16)

where Y(𝑛)
.𝑗 is the 𝑗-th column of Y(𝑛), 𝑗 ∈ [1, 𝐽] and 𝐽 = 𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1. The probability is

calculated for each column of the 𝑛-mode matrix unfolding Y(𝑛), where the 𝑃𝑛 columns (in
Eq. (3.16)) are selected, with 𝑃𝑛 ≤ 𝐼𝑛. After calculating the estimated probabilities 𝑝(𝑛)𝑗 of
the 𝑗-th column of Y(𝑛), the matrix C(𝑛) is built with the 𝑃𝑛 columns that have the highest
probabilities. The selected columns are scaled as follows:

C(𝑛)
.𝑗𝑝𝑛

=
Y(𝑛)
.𝑗𝑝𝑛√
𝑃𝑛𝑝(𝑛)𝑗𝑝𝑛

, (3.17)

where 𝑗𝑝𝑛 represents the selected columns of the 𝑛-mode matrix unfolding Y
(𝑛), C(𝑛)

.𝑗𝑝𝑛
∈ ℝ𝐼𝑛

is the 𝑗𝑝𝑛-th selected column scaled by 𝑝𝑛 ∈ [1, 𝑃𝑛] and 𝑝(𝑛)𝑗𝑝𝑛
is the probability of the 𝑗𝑝𝑛-th

column. The 𝑃𝑛 scaled columns fill the matrix C(𝑛) ∈ ℝ𝐼𝑛×𝑃𝑛 in the same order in which they
were taken from the original unfolding Y(𝑛). And the core sub-tensor �̂� ∈ ℝ𝑃1×𝑃2×...×𝑃𝑁 is
calculated as Eq. (3.13). The CX algorithm for 𝑁-order tensors is summarized in Table 10.

3.5 Computational complexity

Considering a 𝑁-order hyper cubic tensor 𝒴 ∈ ℝ𝐼×𝐼×...×𝐼 with multilinear-rank
(𝑅, 𝑅, ..., 𝑅), the complexity of CX algorithm is:

𝑂 (𝑁𝐼𝑁 +𝑁𝑃𝐼2 +
𝑁∑

𝑘=1
𝑃𝑘𝐼𝑁−𝑘+1) , (3.18)

flops to get all the factors, where 𝑃 is the number of columns selected. Here, the same
number of columns selected are considered for all matrix unfoldings. The first term in the
CX algorithm complexity is due to the calculation of the probability 𝑝(𝑛)𝑗 for 𝐼𝑁−1 columns of
dimension 𝐼 of each matrix unfolding, the second term is related to the pseudo-inverse of
the matrices C(𝑛) to compute the core tensor and the third term is required to compute the
core tensor by means of 𝑁 matrix multiplications required in (3.13).
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CX algorithm to choose the columnmatrices C(𝑛) and core sub-tensor
𝒲
Input: Tensor 𝒴 , number of columns 𝑃𝑛.
Output: Estimated C(𝑛), X(𝑛), �̂� and 𝒴.
for 𝑛 = 1 ∶ 𝑁
for 𝑗 = 1 ∶ 𝐽
1) Calculate the probability for each column as:

𝑝(𝑛)𝑗 =
∥ Y(𝑛)

.𝑗 ∥22
∥ Y(𝑛) ∥2𝐹

,

end
2) For the matrix C(𝑛):
- Select 𝑃𝑛 columns of each matrix unfolding with highest probabilities;
- Store the column and position;
- Scale 𝑃𝑛 selected columns and store them in matrix C(𝑛) as:
for 𝑗𝑝𝑛 = 1 ∶ 𝑃𝑛

C(𝑛)
.𝑗𝑝𝑛

=
Y(𝑛)
.𝑗𝑝𝑛√
𝑃𝑛𝑝(𝑛)𝑗𝑝𝑛

,

end
end
3) Calculate the core sub-tensor �̂� as:

�̂� = 𝒴 ×1 C(1)† ×2 ... ×𝑁 C(𝑁)†,

4) Construct 𝒴 as:
𝒴 = �̂� ×1 C(1) ×2 ... ×𝑁 C(𝑁).

Table 10 – CX algorithm.

3.6 Simulation results

In this section, we evaluate the performance of the proposed CX algorithm. First, in
Section 3.6.1, the simulations and the considered performance criterion are described. In
Section 3.6.2, the impact of design parameters is studied in terms of reconstructed signal
normalized mean square (NMSE). The results presented in Section 3.6.2 are compared with
the state-of-the-art THOSVD algorithm for the approximation of a third-order tensor.

3.6.1 General description of the simulations

In this section, the description of the simulations is considered. The data tensor is
simulated as in [92]. First, a cubic data tensor 𝒴 ∈ ℝ𝐼×𝐼×𝐼 with multilinear rank-(𝑅, 𝑅, 𝑅) is
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constructed. The core tensor 𝒢 ∈ ℝ𝑅×𝑅×𝑅 is generated in the entry drawn from the Gaussian
distribution. The factor matricesU(𝑛) are generated as:

U(𝑛) = Q𝑛diag
(
1, 2−𝜃, ..., 𝐼−𝜃

)
∈ ℝ𝐼×𝑅, (3.19)

withQ𝑛 being a random orthogonal matrix and 𝜃 controlling the rate of decay of the singular
values. The higher the value of 𝜃, the closer to zero are the elements of the matrix U(𝑛),
ensuring the sparsity of the data matrices. With the generated factor matrices (U(1), U(2),
U(3)), and core tensor (𝒢), the data tensor 𝒳 is simulated as:

𝒳 = 𝒢 ×1 U(1) ×2 U(2) ×3 U(3) ∈ ℝ𝐼×𝐼×𝐼, (3.20)

which is then normalized as:
𝒳𝑛𝑜𝑟𝑚 = 𝒳

∥ 𝒳 ∥𝐹
. (3.21)

The Gaussian noise tensor 𝒱 ∈ ℝ𝐼×𝐼×𝐼 is generated and normalized as 𝒳, such that
𝒱𝑛𝑜𝑟𝑚 = 𝒱

∥ 𝒱 ∥𝐹
and then added to the tensor 𝒳𝑛𝑜𝑟𝑚, generating the data tensor 𝒴 ∈ ℝ𝐼×𝐼×𝐼

as:
𝒴 = 𝒳𝑛𝑜𝑟𝑚 + 𝛼𝒱𝑛𝑜𝑟𝑚, (3.22)

where 𝛼 allows fixing the signal to noise ratio (SNR) calculated as:

SNR = 20log∥ 𝒳𝑛𝑜𝑟𝑚 ∥𝐹
∥ 𝒱𝑛𝑜𝑟𝑚 ∥𝐹

, (3.23)

which gives 𝛼 = ∥ 𝒳𝑛𝑜𝑟𝑚 ∥𝐹
∥ 𝒱𝑛𝑜𝑟𝑚 ∥𝐹

10−SNR∕20. The dimension and the order of tensor 𝒴 are fixed
for 𝐼𝑛 = 𝐼 = 20 and 𝑁 = 3, respectively, to evaluate the approximation. Subsequently, the
estimation of the tensor 𝒴 is performed using the THOSVD and CX algorithms. The number
of selected columns 𝑃𝑛 is equal to the truncated rank 𝑇𝑛 determined for each unfolding,
to compare the results , i.e, 𝑃𝑛 = 𝑇𝑛 = 𝑃 = 𝑇. 𝑇 and 𝑃 are varied such that (𝑃, 𝑇) < 𝑅, to
evaluate which number of columns selected/truncated rank provides the best reconstruction.
The design parameters are the SNR ∈ [10, 30, 50] dB and 𝜃 ∈ [1, 3, 5, 10]. The estimated
model is evaluated by the NMSE, given by:

𝑁𝑀𝑆𝐸 = 1
𝑀

𝑀∑

𝑚=1

∥ 𝒴𝑚 − 𝒴𝑚 ∥
∥ 𝒴𝑚 ∥ , (3.24)

where 𝒴𝑚 is the tensor 𝒴𝑚 estimated at the𝑚-th Monte Carlo run. The NMSE is calculated
by averaging the results over𝑀 = 1000Monte Carlo runs, after truncating the 5% worse
and 5% better values to eliminate the influence of ill-convergence and outliers.

3.6.2 Impact of design parameters

In this section, we evaluate the performance of the proposed algorithm compared
with the state-of-the-art THOSVD algorithm. The results obtained are shown in Figures 10
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and 11 for a tensor of third-order 𝒴 ∈ ℝ20×20×20. The SNR is varied to observe the impact on
the choice of the number of columns or ranks. In Figures 10 and 11 it is possible to verify
that, as expected, the NMSE performance improves as SNR increases.

Figure 10 – NMSE vs. Rank for fixed 𝜃 - THOSVD algorithm.

Figure 11 – NMSE vs. the number of columns selected for fixed 𝜃 - THOSVD algorithm.

Figure 12 shows the comparison between the THOSVD and CX algorithms consider-
ing a fixed SNR to 50 dB and varying 𝜃.

In Figure 12, the performance of the THOSVD algorithm is better than that of the
proposed CX algorithm since THOSVD provides the best low-rank approximation for tensor
reconstruction. With the curves in Figure 12, it is also possible to observe the impact of



70

Figure 12 – NMSE vs. the number of columns selected for different values of angular decay 𝜃 -
THOSVD and CX algorithms.

Algorithms Computational Complexity
CX 𝑂

(
𝑁𝐼𝑁 +𝑁𝑃𝐼2 +∑𝑁

𝑘=1 𝑃𝑘𝐼𝑁−𝑘+1
)

THOSVD 𝑂
(
𝑁𝐼𝑁+1 +𝑁𝑇𝐼2 +∑𝑁

𝑘=1 𝑇𝑘𝐼𝑁−𝑘+1
)

Table 11 – Computational complexity for the THOSVD and CX algorithms.

parameter 𝜃 on the estimation of tensor 𝒴. As 𝜃 increases the singular values of the tensor
decrease rapidly and it is possible to reconstruct the tensor with a small truncated rank. We
can also conclude that when the truncated rank 𝑇 and the number of selected columns 𝑃
are closer to the full tensor rank 𝑅, the reconstruction improves.

Note also that the simulation results show a degradation of the approximation perfor-
mance of the CX algorithm compared with experiments with the THOSVD algorithm, which
is the price to pay for keeping the initial information of the data tensor. However, keeping
the initial information contained in the tensor, as in the proposed solution, allows us to
respect some characteristics of the data like their sparsity and to simplify the interpretation
of results after a classification task, which is not the case with the THOSVD algorithm.

In Table 11, a comparison of the complexities of THOSVD and CX algorithms is
provided by evaluating the cost in relation to the construction of the column matrices, left
singular vector matrices and core tensors. Defining the ratio 𝑂1 = 𝑂𝑇𝐻𝑂𝑆𝑉𝐷∕𝑂𝐶𝑋, which
expresses how many times THOSVD is more computationally demanding than CX for data
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reconstruction. We have

𝑂1 =
𝑁𝐼𝑁+1 +𝑁𝑇𝐼2 +∑𝑁

𝑘=1 𝑇𝑘𝐼𝑁−𝑘+1

𝑁𝐼𝑁 +𝑁𝑃𝐼2 +∑𝑁
𝑘=1 𝑃𝑘𝐼𝑁−𝑘+1

, (3.25)

where we are considering 𝑇 = 𝑃. Note that the complexities of the algorithms are similar, but
typically the CX algorithm requires more columns than the THOSVD algorithm to perform
a better estimate of the tensor, i.e., 𝑇 ≤ 𝑃.

Figure 13 shows the complexity ratio 𝑂1 considering the variation of the number
of selected columns 𝑃 and 𝑁 ∈ [3, 4, 5], i.e. the order of the data tensor with 𝐼 remaining
fixed and equal to 20. Regarding the variation of the number of selected columns note that
increasing 𝑃, the computational complexity of THOSVD compared to CX are similar, as they
differ only by the factor 𝐼 in the first element that is constant. Regarding the variation of the
order of the tensor, increasing N, the closer are the complexities of THOSVD and CX. And
when 𝑃 is close to the tensor rank, the complexity rates are close independent of the tensor
order.

Figure 13 – Complexity ratio between THOSVD and CX algorithms.

3.7 Chapter summary

In this chapter, the second contribution of this thesis was presented. The multidi-
mensional CX decomposition has been proposed to perform a low-rank approximation of an
𝑁-order tensor preserving initial information. For the multidimensional CX decomposition,
an algorithm based on the computation of the probabilities of the columns of each matrix
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unfolding is proposed to perform the reconstruction of the data tensor. This decomposition
allows us to preserve the data tensor information.

Monte Carlo simulation results have illustrated the effectiveness of the proposed
multidimensional CX decomposition compared to the state-of-the-art THOSVD method,
with a similar computation time, and with the advantage of keeping the information of the
original data as needed for TC and tensor reconstruction methods.
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4 Dual-polarized MIMO communica-
tion systems using combined TST-
MSM-Kron coding

In this chapter, some contributions of this research are presented. First, a bibliographic
overview of MIMO communication systems is presented in terms of modeling and coding
schemes. In the second part of the chapter, we present a received signal model. We propose a
new DD-DP MIMO system, which combines a multiple Kronecker product of symbol matrices
with a TST coding, called TST-MSMKron coding. These codings allow us to jointly estimate
transmitted symbols, channel, and channel parameters (steering matrices, and path losses)
through the closed-form algorithms. The channel model is first detailed, where we consider a
URA at both transmitter and receiver. It is represented by a fifth-order PARAFAC decomposition
separated into two parts associated with the vertically (𝑉𝑅)- and horizontally (𝐻𝑅)- polarized
receive antennas, respectively. Then, it is established that the tensor of received signals satisfy
a new coupled nested Tucker-PARAFAC model, whose core tensor is the coding tensor. The
identifiability conditions are established.

4.1 Bibliographic overview of MIMO systems

In the last years, massive MIMO systems have been the subject of intense research
due to their great potential to provide energy efficiency and data rate gains [34]. However,
high-speed wireless transmission has fundamental physical limitations that prevent the
system from providing the best performance. Basic signal processing techniques normally
consider only two dimensions (space and time) which leads to models based on a matrix.
However, often the space domain can be split into more signal dimensions as azimuth and
elevation, while the time domain can be divided into other dimensions, such as frames and
sub-frames or we can also include on its structure other dimensions, for example, frequency,
code and polarization that are not taken into account when matrix decompositions are used
[93].

During the last decade, the use of multilinear algebra for communications systems
has been growing [94]. Tensor decompositions have been extensively used to model received
signals as well as to derive receivers to estimate the channel and symbols by exploiting
various forms of diversity. The two most common tensor decompositions are PARAFAC [39]
and Tucker [40]. PARAFAC decomposition is the most popular one and is extensively used
in wireless communication systems because it presents a conceptual simplicity and a simple
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uniqueness property [50]. There are many systems based on the PARAFAC decomposition
as the single input multiple output (SIMO)-OFDM and the MIMO-OFDM systems in [95];
the direct-sequence code division multiple access (DS-CDMA) uplink system in [96]; the
channel estimation method for millimeter waves in [21]; the single input single output
(SISO)-OFDM system proposed in [97]; MIMO-OFDM systems in [98, 99, 100]; and the
channel tensor with a URA at both, transmitter and receiver proposed in [33]. Regarding
Tucker decomposition, a massive MIMO-OFDM system is proposed in [101]; and a massive
frequency division duplex (FDD) downlink MIMO system with a single BS equipped with a
uniform planar array (UPA) and a single-antenna user, such that the system is presented in
[102], where the channel is modeled by PARAFAC. For all the above works, the received
signals are modeled as PARAFAC or Tucker decompositions that allow the proposition of
semi-blind or supervised receivers to estimate channel and symbol matrices.

When the diversity in MIMO systems is exploited, it means that are created redun-
dancies in the signal by exploiting the random nature of the radio propagation in such a
way that different and independent versions of the same signal reach the destination. There
are many ways to obtain diversity. For example, spatial diversity can be found in wireless
MIMO systems through the use of multiple antennas at the transmit and receive nodes.
The benefit from spatial diversity comes from the redundancies in the transmitted signal,
leading the receive antennas to possibly obtain uncorrelated faded versions of the same
signal increasing the probability of effective reception of the transmitted information. Time
diversity can be obtained via coding where the information is coded and dispersed in the
time domain in different periods so that different parts of the codewords experience roughly
uncorrelated fading. The frequency diversity can be exploited when the channel is frequency-
selective, where the signals are replayed across multiple subcarriers. Since diversity is such
an important resource, a wireless system can use several types of diversity simultaneously
[6].

In recent years, the application of codings with tensor approaches for the design of the
MIMO wireless communication systems has led to the development of new tensor models
such as the PARATUCK-(𝑁1,𝑁) [8], generalized PARATUCK [9, 13], nested PARAFAC [12],
and coupled nested Tucker [14]. Codes based on theKhatri-Rao andKronecker productswere
incorporated into point-to-point MIMO and multi-hop MIMO systems to introduce extra
diversity to the systems [10, 11]. This combination allows the proposition of new received
tensor signals and associated semi-blind receivers. In Table 12 some tensor approaches for
wireless communication systems with their received signals tensor models and codings are
summarized. Sidiropoulos et al. (2000) [47] was the first that combined a DS-CDMAMIMO
system with a coding matrix, where the received signals were modeled by the PARAFAC
decomposition. Sidiropoulos& Budampati (2002) [103] presented the Khatri-Rao space time
(KRST) coding, where a multi-antenna system modeled by the PARAFAC was proposed.
The TST coding was considered in [8] to propose a point-to-point MIMO system using the
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Reference Received signals ten-
sor model

MIMO system Coding

Sidiropoulos et al.
(2000)[47]

PARAFAC DS-CDMA Coding matrix

Sidiropoulos &
Budampati (2002)
[103]

PARAFAC multi-antenna KRST

Favier et al. (2012)
[8]

(2,4)-PARATUCK point-to-point TST

Almeida & Favier
(2013) [7]

nested PARAFAC OFDM D-KRSTF

Da Costa (2014)
[104]

(2,4)-PARATUCK multicarrier TST and allocation
resources

Favier & Almeida
(2014) [9]

generalized
PARATUCK

OFDM-CDMA TSTF and allocation
tensor

Da Costa et al.
(2018) [58]

generalized
PARATUCK

OFDM-CDMA TSTF

De Pinho et al.
(2019) [11]

PARAFAC point-to-point MSMKR

Randriambelonoro
et al. (2021) [12]

nested PARAFAC multipath KRST and MKRSM

Table 12 – Tensor approaches for wireless communication systems.

(2,4)-PARATUCK decomposition. Almeida & Favier (2013) [7] combined the STF and KRST
codings, called double-KRST (D-KRSTF), to propose aMIMO-OFDM systemmodeled by the
nested PARAFAC decomposition. Da Costa (2014) [104] combined TST coding with resource
allocation, where the received signals were modeled as (2,4)-PARATUCK. Also, it considered
an existing multicarrier MIMO wireless system with STF coding to compare against the
proposed system. AMIMOOFDM-CDMA system is proposed by Favier&Almeida (2014) [9]
where a tensor space-time-frequency (TSTF) coding is combined with an allocation tensor.
The received signals are modeled by the generalized PARATUCK decomposition. A MIMO
OFDM-CDMA system combined with TSTF was presented in [58]. The received signal
was modeled by the generalized PARATUCK decomposition. De Pinho et al. (2019) [11]
introduced the MSMKR coding as a particular case of MKRST coding and proposes a point-
to-point MIMO system modeled by PARAFAC. A MIMO system in a time-varying multipath
environment combinedwithKRST andMKRSMcodingswas proposed byRandriambelonoro
et al. (2021) [12]. The system is equipped with ULAs at both, transmit and receiver. The
received signal is modeled by a (𝑁 + 2)-order nested PARAFAC decomposition. The use
of these codings with tensor approaches for the design of MIMO wireless communication
systems has led to the development of new tensor models. Overviews of such MIMO systems
can be found in [58].

Millimeter-wave (mmWave) communication systems are systemswith large antennas
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Reference Received signals
tensor model

mmWave MIMO
system

Coding

Zhou et al. (2017)
[23]

- FD-MIMO precoding matrices

Du et al. (2021)
[105]

optimized nested
PARAFAC

massive KRST

Elganimi et al.
(2022) [106]

- IRS-assited OSTBC

Chang et al.
(2021) [107]

PARAFAC OFDM hybrid precoding

Gherekhloo et al.
(2021) [108]

PARAFAC point-to-point RIS-
aided

precoding and de-
coding matrix

Table 13 – Tensor approaches for mmWave MIMO systems.

arrays at both the transmitter and receiver, they operate in the 30-300 GHz spectrum and
can achieve gigabit-per-second data rates [16, 17, 18]. Massive MIMO system is combined
with mmWave communications to improve system capacity and spectral efficiency. Table
13 summarizes mmWave MIMO systems with their received signals tensor models and
codings. Zhou et al. (2017) [23] considered mmWave FD-MIMO based unmanned aerial
vehicle (UAV) base station (BS) combined with a precoding matrix. Du et al. (2021) [105]
proposed a massive mmWave MIMO system combined with KRST coding and modeled
by the PARAFAC decomposition. An intelligent reflecting surface (IRS)-assisted mmWave
massive MIMO system was proposed by Elganimi et al. (2022) [106] with transmit antenna
selection (TAS) using orthogonal space-time block codes (OSTBC) scheme. Chang et al. (2021)
[107] considered a multiuser OFDM massive mmWave and adopted a hybrid precoding
structure to model the received signals as a low-rank PARAFAC decomposition. A RIS-aided
mmWave MIMO communication system was presented in [108], where the low-rank nature
of mmWave MIMO channels was considered and the received training signals were written
as a low-rank multi-way tensor admitting a PARAFAC decomposition. Systems presented in
Table 13 generally are modeled by the PARAFAC decomposition and consider pilot-assisted
symbols to be transmitted. MmWave systems combined with matrix/tensor coding schemes
still need to be studied.

In this chapter, we propose a new DD-DP MIMO system presented in [109]. This
system is equipped with URAs at both ends of the link, where a new coding based on the
Kronecker product of symbolmatrices is combinedwith a TST coding to transmit the symbols.
Our proposed system differs from the systems in Table 13 by the proposed TST-MSMKron
coding which induces an increase in the diversity gain than the codings used by the systems
presented above, and by the proposition of receivers that can estimate the symbol matrices,
channel and channel parameters due to the signal tensor model proposed, whereas all the
systems in Table 13 requires knowledge of the symbols transmitted (pilot symbols). In the
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Figure 14 – Illustration of an URA at the transmitter (a) and receiver (b).

next sections, the system model will be presented, in terms of the channel model, coding
and received signals tensor.

4.2 System model

Consider a DD-DP MIMO wireless communication system, equipped with uniform
rectangular arrays (URAs) both at the transmitter and receiver, as considered in [33]. The
objective of this section is to present the system model under the standard form, in the
noise-free case:

X = HV, (4.1)

where H, V and X represent respectively matrix unfoldings of the channel tensor, and
of tensors containing the coded signals to be transmitted and the received signals. This
result will be demonstrated via the theoretical developments in the next three subsections,
leading to the system model (4.38). The tensor model of the channel is first detailed. Then,
in Sections 4.2.2 and 4.2.3, new coding and the tensor model of received signals will be
described, respectively.

4.2.1 Channel tensor model

We assume that the receiver and transmitter employ URAs, with cross-polarized
transmit and receive antenna pairs, respectively. Each antenna pair consists of a vertical (V)-
and an horizontal (H)-polarized antenna, as illustrated in Figures 14 (a) and (b), respectively.
Each cross represents a cross-polarized antenna pair [25].

Defining (𝑀𝑅𝑥 ,𝑀𝑅𝑦) and (𝑀𝑇𝑥 ,𝑀𝑇𝑦) as the numbers of receive and transmit antennas,
in directions 𝑥 and 𝑦, respectively, and 𝑀𝑇 = 𝑀𝑇𝑥𝑀𝑇𝑦 and 𝑀𝑅 = 𝑀𝑅𝑥𝑀𝑅𝑦 as the total
numbers of transmit and receive antennas, respectively, the DD-DP channel is represented
as a matrixH ∈ ℂ2𝑀𝑅𝑀𝑇 , partitioned as follows [25]:

H = [ H(𝑉𝑅 ,𝑉𝑇) H(𝑉𝑅 ,𝐻𝑇)

H(𝐻𝑅 ,𝑉𝑇) H(𝐻𝑅 ,𝐻𝑇) ] = [ H(𝑉𝑅)

H(𝐻𝑅) ] , (4.2)
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where the row-blocks H(𝑉𝑅) and H(𝐻𝑅) represent the channels of each polarization at the
receiver, H(𝑉𝑅 ,𝑉𝑇) ∈ ℂ𝑀𝑅×𝑀𝑇 is the sub-channel matrix between V-polarized transmit and
receive antennas, and H(𝑉𝑅 ,𝐻𝑇) ∈ ℂ𝑀𝑅×𝑀𝑇 is the sub-channel matrix between H-polarized
transmit and V-polarized receive antennas. The other two blocks in (4.2) are defined similarly.
Each sub-channelH(𝑟,𝑞), with 𝑟 ∈ {𝑉𝑅, 𝐻𝑅} and 𝑞 ∈ {𝑉𝑇, 𝐻𝑇} is modeled as:

H(𝑟,𝑞) = A𝑅diag
(
b(𝑟,𝑞)

)
A𝑇
𝑇 ∈ ℂ𝑀𝑅×𝑀𝑇 , (4.3)

where 𝑏(𝑟,𝑞)𝑘 is the complex path-loss vector defined as:

b(𝑟,𝑞) =
[
𝑏(𝑟,𝑞)1 ... 𝑏(𝑟,𝑞)𝐾

]𝑇
∈ ℂ𝐾, (4.4)

with 𝑏(𝑟,𝑞)𝑘 the complex path-loss for the 𝑘-th path and the (𝑟,𝑞)-th sub-channel, containing
the polarization and fading effects, and 𝐾 is the number of path between the transmitter
and receiver.

The steering matrices are given by:

A𝑇 = [a𝑇(𝜃1,𝜙1) ... a𝑇(𝜃𝐾,𝜙𝐾)] = A𝑇𝑥 ⋄A𝑇𝑦 ∈ ℂ𝑀𝑇×𝐾, (4.5)

A𝑅 = [a𝑅(𝜓1,𝜗1) ... a𝑅(𝜓𝐾,𝜗𝐾)] = A𝑅𝑥 ⋄A𝑅𝑦 ∈ ℂ𝑀𝑅×𝐾, (4.6)

where A𝑇𝑥 ∈ ℂ𝑀𝑇𝑥×𝐾, A𝑇𝑦 ∈ ℂ𝑀𝑇𝑦×𝐾, A𝑅𝑥 ∈ ℂ𝑀𝑅𝑥×𝐾 and A𝑅𝑦 ∈ ℂ𝑀𝑅𝑦×𝐾 are the steering
matrices in directions 𝑥 and 𝑦, at the transmitter and receiver.

The array steering vectors for the 𝑘-th path are defined as:

a𝑇(𝜃𝑘,𝜙𝑘) = a𝑇𝑥 ,𝑘 ⊗ a𝑇𝑦 ,𝑘 ∈ ℂ𝑀𝑇𝑥𝑀𝑇𝑦 , (4.7)

a𝑅(𝜓𝑘,𝜗𝑘) = a𝑅𝑥 ,𝑘 ⊗ a𝑅𝑦 ,𝑘 ∈ ℂ𝑀𝑅𝑥𝑀𝑅𝑦 , (4.8)

Writing the steering matrices as:

A𝑃 = [a𝑃,1 ... a𝑃,𝐾] ∈ ℂ𝑀𝑃×𝐾, (4.9)

with 𝑃 ∈ {𝑇𝑥, 𝑇𝑦, 𝑅𝑥, 𝑅𝑦}, each steering vector is a Vandermonde vector, function of both
azimuth and elevation angles, such as:

a𝑇𝑥 ,𝑘 =
[
1 𝑒−𝑗𝜔𝑇𝑥,𝑘 ... 𝑒−𝑗𝜔𝑇𝑥,𝑘(𝑀𝑇𝑥−1)

]𝑇
, (4.10)

a𝑇𝑦 ,𝑘 =
[
1 𝑒−𝑗𝜔𝑇𝑦,𝑘 ... 𝑒−𝑗𝜔𝑇𝑦,𝑘(𝑀𝑇𝑦−1)

]𝑇
, (4.11)

a𝑅𝑥 ,𝑘 =
[
1 𝑒−𝑗𝜔𝑅𝑥,𝑘 ... 𝑒−𝑗𝜔𝑅𝑥,𝑘(𝑀𝑅𝑥−1)

]𝑇
, (4.12)

a𝑅𝑦 ,𝑘 =
[
1 𝑒−𝑗𝜔𝑅𝑦,𝑘 ... 𝑒−𝑗𝜔𝑅𝑦,𝑘(𝑀𝑅𝑦−1)

]𝑇
, (4.13)
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which assumes that the reference antennas are placed at the origin. The angular frequencies
are defined as:

𝜔𝑇𝑥 ,𝑘 =
2𝜋(𝑚𝑇𝑥 − 1)𝑑𝑇𝑥sin(𝜙𝑘)cos(𝜃𝑘)

𝜈 , (4.14)

𝜔𝑇𝑦 ,𝑘 =
2𝜋(𝑚𝑇𝑦 − 1)𝑑𝑇𝑦sin(𝜙𝑘)sin(𝜃𝑘)

𝜈 , (4.15)

𝜔𝑅𝑥 ,𝑘 =
2𝜋(𝑚𝑅𝑥 − 1)𝑑𝑅𝑥sin(𝜗𝑘)cos(𝜓𝑘)

𝜈 , (4.16)

𝜔𝑅𝑦 ,𝑘 =
2𝜋(𝑚𝑅𝑦 − 1)𝑑𝑅𝑦sin(𝜗𝑘)sin(𝜓𝑘)

𝜈 , (4.17)

where (𝜙𝑘, 𝜃𝑘) and (𝜗𝑘, 𝜓𝑘) are the DoD and DoA azimuth and elevation angles for the 𝑘-th
path, respectively, 𝜈 is the wavelength, (𝑑𝑇𝑥 , 𝑑𝑇𝑦) and (𝑑𝑅𝑥 , 𝑑𝑅𝑦) are the antenna spacings for
horizontal and vertical units at the transmitter and receiver, respectively.

The structure (4.13) of the steering vectors leads to the following Vandermonde
structure for the steering matrices:

A𝑃 =

⎡
⎢
⎢
⎢
⎢
⎣

1 ⋯ 1
𝑒−𝑗𝜔𝑃,1 ⋯ 𝑒−𝑗𝜔𝑃,𝐾
⋮ ⋮ ⋱

𝑒−𝑗𝜔𝑃,1(𝑀𝑃−1) ⋯ 𝑒𝑗𝜔𝑃,𝐾(𝑀𝑃−1)

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℂ𝑀𝑃×𝐾, (4.18)

where 𝜔𝑃,𝑘 is the 𝑃-th angular frequency along the 𝑘-th path.

Substituting (4.3) into (4.2) gives:

H = [ A𝑅 0
0 A𝑅

]
⎡
⎢
⎣

𝐷1
(
B(𝑉𝑅)

)
𝐷2

(
B(𝑉𝑅)

)

𝐷1
(
B(𝐻𝑅)

)
𝐷2

(
B(𝐻𝑅)

) ⎤⎥
⎦
[ A𝑇 0

0 A𝑇
]
𝑇

, (4.19)

with:
B(𝑉𝑅) =

[
b(𝑉𝑅 ,𝑉𝑇) b(𝑉𝑅 ,𝐻𝑇)

]𝑇
∈ ℂ2×𝐾, (4.20)

B(𝐻𝑅) =
[
b(𝐻𝑅 ,𝑉𝑇) b(𝐻𝑅 ,𝐻𝑇)

]𝑇
∈ ℂ2×𝐾, (4.21)

Using property (2.1), the channelsH(𝑉𝑅) andH(𝐻𝑅) can be written as:

H(𝑉𝑅) = A𝑅
(
B(𝑉𝑅) ⋄A𝑇

)𝑇
, (4.22)

H(𝐻𝑅) = A𝑅
(
B(𝐻𝑅) ⋄A𝑇

)𝑇
. (4.23)

Replacing A𝑇 and A𝑅 by their expressions (4.5) and (4.6), respectively, gives:

H(𝑉𝑅) =
(
A𝑅𝑥 ⋄A𝑅𝑦

) (
B(𝑉𝑅) ⋄A𝑇𝑥 ⋄A𝑇𝑦

)𝑇
, (4.24)

H(𝐻𝑅) =
(
A𝑅𝑥 ⋄A𝑅𝑦

) (
B(𝐻𝑅) ⋄A𝑇𝑥 ⋄A𝑇𝑦

)𝑇
. (4.25)
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=
=

Figure 15 – Global channel tensorℋ modeled as a PARAFAC decomposition.

These equations can be interpreted as matrix unfoldings of two fifth-order tensors
ℋ(𝑉𝑅) andℋ(𝐻𝑅) satisfying the PARAFAC decompositions [[A𝑇𝑥 , A𝑇𝑦 ,A𝑅𝑥 , A𝑅𝑦 ,B

(𝑉𝑅);𝐾]] and
[[A𝑇𝑥 ,A𝑇𝑦 ,A𝑅𝑥 ,A𝑅𝑦 ,B

(𝐻𝑅);𝐾]], respectively, i.e.:

ℋ(𝑉𝑅) = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B
(𝑉𝑅) ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×2, (4.26)

ℋ(𝐻𝑅) = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B
(𝐻𝑅) ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×2. (4.27)

The model (4.26) can also be written as the sum of 𝐾 rank-one tensors:

ℋ(𝑉𝑅) =
𝐾∑

𝑘=1
a𝑇𝑥 ,𝑘◦a𝑇𝑦 ,𝑘◦a𝑅𝑥 ,𝑘◦a𝑅𝑦 ,𝑘◦b

(𝑉𝑅)
.𝑘 , (4.28)

where b(𝑉𝑅).𝑘 ∈ ℂ2, with b(𝑉𝑅)1. =
[
b(𝑉𝑅 ,𝑉𝑇)

]𝑇
, and b(𝑉𝑅)2. =

[
b(𝑉𝑅 ,𝐻𝑇)

]𝑇
. This writing of the

channelℋ(𝑉𝑅) highlights the transmission through 𝐾 paths, between the transmitter and
the V-polarized receive antennas. Similarly, the PARAFAC model (4.27) can be written as
Eq. (4.28), replacing b(𝑉𝑅).𝑘 by b(𝐻𝑅)

.𝑘 , with b(𝐻𝑅)
1. =

[
b(𝐻𝑅 ,𝑉𝑇)

]𝑇
, and b(𝐻𝑅)

2. =
[
b(𝐻𝑅 ,𝐻𝑇)

]𝑇
.

Concatenating the channel tensorsℋ(𝑉𝑅) andℋ(𝐻𝑅) along the fifthmode and defining
B ∈ ℂ4×𝐾 as the row-block concatenation of the matrices B(𝑉𝑅) and B(𝐻𝑅):

B = [ B(𝑉𝑅)

B(𝐻𝑅) ] , (4.29)

the global channel tensorℋ ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4 can be written as:

ℋ = [ ℋ(𝑉𝑅)

ℋ(𝐻𝑅)
] = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4, (4.30)

which is a fifth-order rank-𝐾 PARAFAC decomposition illustrated in Figure 15.

The resulting channel tensor is an extension of the fourth-order one presented in [25],
with a URA at the transmitter and a uniform linear array (ULA) at the receiver. Note that the
considered channel modeling does not take delays and Doppler shifts into account, assuming
the channel bandwidth is sufficiently small and the channel is sufficiently slowly varying
over the transmission duration. In Table 14, the definitions of the channel parameters are
summarized.
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Channel parameters Definitions
𝑀𝑇𝑥 ,𝑀𝑇𝑦 numbers of transmit antennas in directions 𝑥 and 𝑦,

respectively
𝑀𝑇 = 𝑀𝑇𝑥𝑀𝑇𝑦 total number of transmit antennas
𝑀𝑅𝑥 ,𝑀𝑅𝑦 numbers of receive antennas in directions 𝑥 and 𝑦, re-

spectively
𝑀𝑅 = 𝑀𝑅𝑥𝑀𝑅𝑦 total number of receive antennas

𝐾 number of paths
𝜙𝑘, 𝜃𝑘 azimuth and elevation DoD angles for the 𝑘-th path
𝜗𝑘, 𝜓𝑘 azimuth and elevation DoA angles for the 𝑘-th path

Table 14 – Channel parameters.

4.2.2 TST-MSMKron coding

In this section, we present the coding used at the transmitter which combines TST and
MSMKRon codings presented in [109]. This last one can be viewed as the MKronST coding
[10], without prior knowledge of one symbol matrix. It consists in a multiple Kronecker
product of 𝑁 symbol matrices S(𝑛) ∈ ℂ𝐽𝑛×𝑅𝑛 , 𝑛 ∈ [1, 𝑁], each one being formed of 𝑅𝑛 data
streams composed of 𝐽𝑛 symbols each:

S = ⊗𝑁
𝑛=1S

(𝑛) ≜ S(1) ⊗ ... ⊗ S(𝑁) ∈ ℂ𝐽×𝑅, (4.31)

where 𝑅 =∏𝑁
𝑛=1 𝑅𝑛 and 𝐽 =

∏𝑁
𝑛=1 𝐽𝑛. The scalar writing of (4.31) is as follows:

𝑠𝑗,𝑟 =
𝑁∏

𝑛=1
𝑠(𝑛)𝑗𝑛 ,𝑟𝑛 , 𝑗 ∈ [1, 𝐽] , 𝑟 ∈ [1, 𝑅], (4.32)

with 𝑗 = 𝑗(𝑁)𝑁 +
(
𝑗(𝑁−1)𝑁−1 − 1

)
𝐽𝑁 +⋯ +

(
𝑗(1)1 − 1

)∏𝑁
𝑛=2 𝐽𝑛, and 𝑟 = 𝑟(𝑁)𝑁 +

(
𝑟(𝑁−1)𝑁−1 − 1

)
𝑅𝑁 +

⋯ +
(
𝑟(1)1 − 1

)∏𝑁
𝑛=2 𝑅𝑛, where 𝑗

(𝑛)
𝑛 ∈ [1, 𝐽𝑛] and 𝑟(𝑛)𝑛 ∈ [1, 𝑅𝑛] denote the indices 𝑗𝑛 and 𝑟𝑛

in 𝑠(𝑛)𝑗𝑛 ,𝑟𝑛 . This writing (4.32) highlights the way to compute each element of the multiple
Kronecker product matrix S.

The MSMKron coding is combined with a coding tensor 𝒢 ∈ ℂ2𝑀𝑇×𝑅1×...×𝑅𝑁×𝑃 in such
a way that the coded signals form an (𝑁 + 2)-order tensor which satisfies the Tucker model
given by:

𝒱 = 𝒢 ×1 I2𝑀𝑇 ×2 S
(1) ×3 ... ×𝑁+1 S(𝑁) ×𝑁+2 I𝑃 ∈ ℂ2𝑀𝑇×𝐽1×...×𝐽𝑁×𝑃. (4.33)

Note that the core tensor of this decomposition is the coding tensor 𝒢. The coded
signals to be transmitted by the𝑚𝑡-th transmit antenna, during the 𝑝-th time block, and the
𝑗𝑛-th symbol period, with 𝑛 ∈ [1, 𝑁], can be written in scalar form as:

𝑣𝑚𝑡 ,𝑗1,⋯,𝑗𝑁 ,𝑝 =
𝑅1∑

𝑟1=1
⋯

𝑅𝑁∑

𝑟𝑁=1
𝑔𝑚𝑡 ,𝑟1,⋯,𝑟𝑁 ,𝑝

𝑁∏

𝑛=1
𝑠𝑗𝑛 ,𝑟𝑛 , (4.34)
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Steering matrices
A𝑃 = [a𝑃,1 ... a𝑃,𝐾] ∈ ℂ𝑀𝑃×𝐾, for 𝑃 ∈ [𝑇𝑥, 𝑇𝑦, 𝑅𝑥, 𝑅𝑦]

A𝑇 = A𝑇𝑥 ⋄A𝑇𝑦 ∈ ℂ𝑀𝑇×𝐾, with𝑀𝑇 = 𝑀𝑇𝑥𝑀𝑇𝑦
A𝑅 = A𝑅𝑥 ⋄A𝑅𝑦 ∈ ℂ𝑀𝑅×𝐾, with𝑀𝑅 = 𝑀𝑅𝑥𝑀𝑅𝑦

Path-loss matrices
B(𝑟) ∈ ℂ2×𝐾, with 𝑟 ∈ [𝑉𝑅, 𝐻𝑅]

B = [ B(𝑉𝑅)

B(𝐻𝑅) ] ∈ ℂ4×𝐾

Channel matrices and tensors
H(𝑟,𝑞) ∈ ℂ𝑀𝑅×𝑀𝑇 , with 𝑟 ∈ [𝑉𝑅, 𝐻𝑅] and 𝑞 ∈ [𝑉𝑇, 𝐻𝑇]

H(𝑟) ∈ ℂ𝑀𝑅×2𝑀𝑇

H = [ H(𝑉𝑅)

H(𝐻𝑅) ] ∈ ℂ2𝑀𝑅×2𝑀𝑇

ℋ(𝑟) ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×2

ℋ ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4

Symbol matrices
S(𝑛) ∈ ℂ𝐽𝑛×𝑅𝑛 , for 𝑛 ∈ [1,𝑁]
S = S(1) ⊗ ... ⊗ S(𝑁) ∈ ℂ𝐽×𝑅

𝑅 =∏𝑁
𝑛=1 𝑅𝑛, 𝐽 =

∏𝑁
𝑛=1 𝐽𝑛

Tensor space-time coding
𝒢 ∈ ℂ2𝑀𝑇×𝑅1×...×𝑅𝑁×𝑃

Received signals tensor
𝒳 ∈ ℂ2𝑀𝑅×𝐽1×...×𝐽𝑁×𝑃

Table 15 – System matrices and tensors.

with𝑚𝑡 ∈ [1, 2𝑀𝑇]. The following matrix unfolding can be easily deduced:

V2𝑀𝑇×𝑃𝐽 = G2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 ∈ ℂ2𝑀𝑇×𝑃𝐽, (4.35)

where G2𝑀𝑇×𝑃𝑅 ∈ ℂ2𝑀𝑇×𝑃𝑅 is an unfolding of the coding tensor 𝒢, and S is defined in (4.31).
The TST-MSMKron coding increases space-time diversity, as it will be illustrated in the
simulations. Note that the identity matrix I𝑃 ∈ ℝ𝑃×𝑃 in (4.33), which gives the Kronecker
product in (4.35), is associated with 𝑃 repetitions of the symbol matrices via transmission in
𝑃 blocks. The definitions of the system matrices and tensors are summarized in Table 15.

4.2.3 Received signals model

In this section, the tensor model of the received signals is described. In the noise-free
case, the received signals are obtained by transmitting the coded signals tensor (4.33) through
the channelH defined in (4.2), which gives [109]:

𝒳 = 𝒱 ×1 H = 𝒢 ×1 H ×2 S(1) ×3 ... ×𝑁+1 S(𝑁) ×𝑁+2 I𝑃. (4.36)
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Regarding expression (4.36), we conclude that𝒳 represents the (𝑁+2)-order Tucker
model whose core tensor is the coding tensor 𝒢 and the matrix factors are the channelH
and the symbol matrices S(𝑛), 𝑛 ∈ [1, 𝑁] and the identity matrix I𝑃. The signal received by
the𝑚𝑅-th receive antenna, during the 𝑝-th time block, and the 𝑗𝑛-th symbol period, with
𝑛 ∈ [1, 𝑁], can be written as:

𝑥𝑚𝑅 ,𝑗1,⋯,𝑗𝑁 ,𝑝 =
2𝑀𝑇∑

𝑚𝑇=1

𝑅1∑

𝑟1=1
⋯

𝑅𝑁∑

𝑟𝑁=1
𝑔𝑚𝑡 ,𝑟1,⋯,𝑟𝑁 ,𝑝 ℎ𝑚𝑅 ,𝑚𝑇

𝑁∏

𝑛=1
𝑠(𝑛)𝑗𝑛 ,𝑟𝑛 , (4.37)

with𝑚𝑅 ∈ [1, 2𝑀𝑅]. The received signal in (4.36) can also be expressed in terms of mode-1
unfolding:

X2𝑀𝑅×𝑃𝐽 = HG2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 . (4.38)

Note that the transmission via the channelH can be interpreted as a mode-1 linear
transformation, with matrixH, applied to the tensor 𝒱 of coded signals. Considering the
channel blocks defined by (4.24) and (4.25), the received signals for each polarization can be
separated from (4.38) as follows:

X(𝑉𝑅)
𝑀𝑅×𝑃𝐽 = H(𝑉𝑅)G2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 ∈ ℂ𝑀𝑅×𝑃𝐽, (4.39)

X(𝐻𝑅)
𝑀𝑅×𝑃𝐽 = H(𝐻𝑅)G2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 ∈ ℂ𝑀𝑅×𝑃𝐽. (4.40)

From (4.36)-(4.40), we can conclude that the tensor of received signals satisfies an
(𝑁 + 2)-order coupled nested Tucker-PARAFACmodel, as illustrated by means of the blocks
diagram in Figure 16. The PARAFAC part of this model is associated with the channel tensor
ℋ represented by the PARAFAC model (4.30), whose unfoldingH is the factor matrix along
the first mode of 𝒳. That explains the nested Tucker-PARAFAC structure. The coupled
structure is due to the coding that is common to the two components (𝒳(𝑉𝑅), 𝒳(𝐻𝑅)) of 𝒳,
associatedwith theV-polarized (𝒳(𝑉𝑅)) andH-polarized (𝒳(𝐻𝑅)) receive antennas, respectively.
This coupling is composed of the MSMKron and TST coding blocks, as shown on Figure 16.

Combining modes 2 to 𝑁 + 1 of tensors 𝒢 and 𝒳 results in contracted forms 𝒢𝑐 ∈
ℂ2𝑀𝑇×𝑅×𝑃 and 𝒳𝑐 ∈ ℂ2𝑀𝑅×𝐽×𝑃, and the expression (4.36) can be rewritten as:

𝒳𝑐 = 𝒢𝑐 ×1 H ×2 S ×3 I𝑃. (4.41)

Based on the contracted third-order Tucker model (4.41), it is easy to deduce the
following matrix unfoldings of tensor 𝒳:

X𝑃𝐽×2𝑀𝑅 = (I𝑃 ⊗ S)G𝑃𝑅×2𝑀𝑇H
𝑇 ∈ ℂ𝑃𝐽×2𝑀𝑅 , (4.42)

X2𝑃𝑀𝑅×𝐽 = (I𝑃 ⊗H)G2𝑃𝑀𝑇×𝑅S
𝑇 ∈ ℂ2𝑃𝑀𝑅×𝐽, (4.43)

X𝑃×2𝑀𝑅𝐽 = G𝑃×2𝑀𝑇𝑅 (H⊗ S)𝑇 ∈ ℂ𝑃×2𝑀𝑅𝐽. (4.44)

The advantages of this model are:
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...

Coupling
PARAFAC component

MSMKron TST

Figure 16 – Block diagram of the system represented by a coupled nested Tucker-PARAFAC model.

• The path-losses can be obtained separately for each polarization in the reception,
consequently it is possible to identify the received signal and the channel for each
polarization in the reception;

• The TST-MSMKron coding allows for an increase in the space-time diversity that it is
imposed by multiple Kronecker products of symbol matrices combined with the TST
coding;

• The symbol matrices transmitted, the channel, the steering matrices and the path-
losses can be estimated by semi-blind receivers without prior knowledge of the channel,
as long as the TST coding and one symbol of each symbol matrix are known.

4.2.3.1 Uniqueness analysis

System model uniqueness results from uniqueness of the Tucker model (4.36) of the
received signals tensor 𝒳 combined with uniqueness of the PARAFAC decomposition (4.30)
of the channel tensorℋ [109].

As it is well known, Tucker models are generally not essentially unique [40]. Unique-
ness can be obtained by imposing some constraints on the core tensor or the factor matrices.
For the Tucker model (4.41), the core tensor will be assumed to be known at the reception,
which implies uniqueness of the factor matrices up to scaling factors such as [109]:

Ŝ = S𝜆(𝑆), Ĥ = H𝜆(𝐻), 𝜆(𝑆)𝜆(𝐻) = 1 . (4.45)

The channel tensor (4.30) is modeled by a rank-𝐾 PARAFAC decomposition that is
essentially unique if the following sufficient condition is satisfied [51]:

𝑘A𝑇𝑥
+ 𝑘A𝑇𝑦

+ 𝑘A𝑅𝑥
+ 𝑘A𝑅𝑦

+ 𝑘B ≥ 2𝐾 + 2, (4.46)

where 𝑘A is the Kruskal rank of A, i.e., the largest integer such that every set of 𝑘A columns
of A is linearly independent.
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If the condition (4.46) is satisfied, any set of matrices (Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 , B̂) that
satisfy (4.30) are related with the original matrices by:

Â𝑇𝑦 = A𝑇𝑦𝚷𝚲
(𝑇𝑦), Â𝑇𝑥 = A𝑇𝑥𝚷𝚲

(𝑇𝑥),
Â𝑅𝑦 = A𝑅𝑦𝚷𝚲

(𝑅𝑦), Â𝑅𝑥 = A𝑅𝑥𝚷𝚲
(𝑅𝑥),

B̂ = B𝚷𝚲(𝐵), 𝚲(𝑇𝑦)𝚲(𝑇𝑥)𝚲(𝑅𝑦)𝚲(𝑅𝑥)𝚲(𝐵) = I𝐾,
(4.47)

where𝚷 ∈ ℂ𝐾×𝐾 is a permutationmatrix and𝚲(𝑓) are diagonalmatrices,with𝑓 ∈ {𝑇𝑦, 𝑇𝑥, 𝑅𝑦,
𝑅𝑥, 𝐵}. Note that the permutation ambiguity is irrelevant from a practical point of view, since
it corresponds to a permutation of paths. Due to the randomnature of the channel parameters,
the matrices A𝑇𝑥 , A𝑇𝑦 , A𝑅𝑥 , A𝑅𝑦 and B are full rank. Then, in the generic case, condition
(4.46) becomes:

min
(
𝑀𝑇𝑦 ,𝐾

)
+min

(
𝑀𝑇𝑥 ,𝐾

)
+min

(
𝑀𝑅𝑦 ,𝐾

)
+min

(
𝑀𝑅𝑥 ,𝐾

)
+min (4,𝐾) ≥ 2𝐾 + 2. (4.48)

If we assume that all steering and path-loss matrices are full column rank, which
implies 𝐾 ≤ min(𝑀𝑇𝑦 ,𝑀𝑇𝑥 ,𝑀𝑅𝑦 ,𝑀𝑅𝑥 , 4), then the above condition is always satisfied, which
ensures essential uniqueness of the PARAFAC decomposition of the channel tensor. Note
that a small value of 𝐾 results from the sparse nature of the channel. In this work the tensor
rank is assumed to be known. When 𝐾 is unknown, a supplementary step is needed to
estimate the number of paths. The scaling ambiguities can be easily eliminated by exploiting
the Vandermonde structure of the steering matrices (4.18) whose first row is composed of
ones.

4.3 Chapter summary

In this chapter, a DD-DP MIMO wireless system has been proposed with the TST
coding combined with the particular case of the MKronST coding, so-called TST-MSMKron
coding. This coding provides an increase in space-time diversity by multiple Kronecker prod-
ucts of symbol matrices combined with the TST coding.We have shown that the combination
of TST-MSMKron coding with the generalized channel modeled as a 5-order PARAFAC
decomposition to transmit the symbols provides a signal received modeled by the (𝑁 + 2)-
order coupled nested Tucker-PARAFAC model, where the core tensor is the TST coding.
The coupling is due to the coding that is common to the VR- and HR- polarized receive
antennas. The nested structure results from the fact that a matrix unfolding of the channel
tensor constitutes one matrix factor of the Tucker model, the other factors being the steering
and path-loss matrices. The essential uniqueness of the tensor model is insured under mild
conditions.

The contributions in this chapter extend previous works in different ways, either by
using a particular case of MKronST coding or by extending the channel tensor combined
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with the new coding schemes for building tensors of received signals. By exploiting the new
received signal model, semi-blind receivers are derived in Chapter 5 to estimate the symbol
matrices, channel and channel parameters.
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5 Tensor-based semi-blind receivers
for Dual-polarized MIMO commu-
nication systems using combined
TST-MSMKron coding

In this chapter, by exploiting the received signals tensor presented in Chapter 4 and with
the tensor coding knowledge, we propose two-semi blind receivers composed of two steps to joint
estimate symbol matrices, channel and channel parameters (DoA and DoD angles, path-loss
coefficients). These receivers are composed of two stages. In the first one, the information symbols
and the channel are jointly estimated, using either a Bi-ALS algorithm, followed by the KronF
algorithm to separate the symbol matrices, or the THOSVDmethod, which allows to directly
and jointly estimate the symbol matrices and the channel in closed-form. In the second stage,
from the estimated channel, the channel parameters estimation is performed using the JIRAFE
algorithm including a new rectification strategy for taking the Vandermonde structure into
account. Parameter identifiability and computational complexity are analyzed for each receiver.

Monte Carlo simulation results are provided to illustrate the performance of the TST-
MSMKron coding and the impact of design parameters on the system performance and the
behavior of the proposed receivers in terms of SER, channel NMSE and angle MSE.

5.1 Bibliographic overview of receivers for MIMO sys-

tems

In the last years, the proposition of receivers to accurately estimate channels on
massive MIMO systems has increased. The CSI estimation needs to be accurate as it may
affect the performance of transmit beamforming at the transmitters and decoding accuracy
at the receiver [110]. For this, it is necessary to propose receivers that allow estimating the
channel and its parameters with better precision. Receivers can be divided into two classes:
supervised (or pilot-assisted) and unsupervised (or semi-blind). In the first case, training
sequences known by the receiver are used to estimate the channel, which generally implies
a significant training overhead due to pilots transmission [32].

Table 16 summarizes the wireless communication systems presented in Chapter 4,
in Tables 12-13, with their MIMO system type, and receivers. Sidiropoulos et al. (2000) [47]
proposed a blind receiver by combining compression methods and the ALS algorithm to
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estimate the symbols and the channel. A blind CSI recovery receiver was proposed based on
theALS algorithmby Sidiropoulos&Budampati (2002) [103]. Favier et al. (2012) [8] proposed
a blind receiver based on theALS algorithm.Almeida&Favier (2013) [7] proposed a recursive
semi-blind receiver to estimate the symbols and channel. This receiver considers the ALS
algorithm in two steps. Da Costa (2014) [104] proposes three semi-blind receivers based
on the ALS algorithm and Kronecker product to estimate the parameters of a multicarrier
MIMO wireless system with TST/STF coding. Favier & Almeida (2014) [9] proposed three
receivers based on the ALS and Kronecker product least square (KPLS) methods. Of these
receivers, two are semi-blind and one is supervised. Da Costa et al. (2018) [58] proposed
five receivers: three semi-blind and two supervised. The receivers are based on the ALS
and SVD methods. Two semi-supervised receivers in two stages based on the KRF and ALS
algorithms were proposed by De Pinho et al. (2019) [11] to estimate the symbol matrices and
the channel. Randriambelonoro et al. (2021) [12] proposed closed-form semi-blind receivers
based on ALS and KRF methods. Note that the majority of the proposed receivers are blind
or semi-blind, where one matrix, row, or one element of the symbols matrices needs to be
known to estimate the symbols and channel without channel knowledge. The algorithms
considered are based on classical methods such as ALS and SVD.

In terms of mmWave MIMO systems, we can cite some works. Zhou et al. (2017)
[23] proposed a receiver based on the ALS algorithm. The channel parameters, such as the
DoAs and DoDs, time delays and fading coefficients, were extracted based on the estimated
factor matrices. Du et al. (2021) [105] proposed semi-blind receivers based on the ALS and
SVD methods to estimate the compound channel matrix, detect the information symbols
and extract the channel parameters considering the sparse scattering nature of mmWave
channels. Chang et al. (2021) [107] presented an accelerated trilinear alternating least squares
(ATALS) to jointly estimate the multiuser channel parameters via a one-dimensional search.
A tensor-based RIS channel estimationmethod (TenRICE) was proposed by Gherekhloo et al.
(2021) [108] to estimate the matrices using an ALS algorithm. MmWave channels combined
with coding and tensor techniques can improve parameter estimation techniques.

The researches presented above often consider pilot-assisted symbols because they
are interesting only in parameter channel estimation, not considering the complete system
model to be estimated, i.e., the symbols, channel and channel parameters, being a hard
task to solve. An important difference between the systems presented in Table 16 and our
proposed system is related to the a priori information needed to eliminate scaling ambiguities.
The systems presented require knowledge of one element or one row of the channel matrix,
while our system only requires a priori knowledge of one symbol of each symbol matrix,
where the receivers are semi-blind.

In this chapter, we consider the DD-DP MIMO system introduced in [109] and pre-
sented in Chapter 4 to derive two-semi-blind receivers for estimating the transmitted symbols
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Reference MIMO system Receivers
Sidiropoulos et al.
(2000) [47]

DS-CDMA Based on ALS

Sidiropoulos & Bu-
dampati (2002) [103]

multi-antenna ALS

Favier et al. (2012) [8] point-to-point ALS
Almeida & Favier
(2013) [7]

OFDM ALS

Da Costa (2014) [104] multicarrier ALS, ALM and KLS
Favier & Almeida
(2014) [9]

OFDM-CDMA ALS and KPLS

Da Costa et al. (2018)
[58]

OFDM-CDMA KALS, SKALS, KPLS,
KSVD and KALMS

De Pinho et al. (2019)
[11]

point-to-point KRF-KRF, ALS-KRF
and TALS

Randriambelonoro et
al. (2021) [12]

multipath MKRF/LS/ALS and
MKRF/ALS

Zhou et al. (2017) [23] OFDM-MIMOmassive
mmWave

ALS

Du et al. (2021) [105] mm-Wave ITS-ALS, TALS and
SVD-ALS

Chang et al. (2021)
[107]

OFDMmmWave ATALS

Gherekhloo et al.
(2021) [108]

point-to-point RIS-
aided mmWave

TenRICE

Table 16 – Tensor approaches for wireless communication systems.

and channel parameters (DoD and DoA angles, path-loss coefficients). These receivers are
composed of two stages. In the first one, the information symbols and the channel are jointly
estimated, using either a Bi-ALS algorithm, followed by the KronF algorithm to separate the
symbol matrices, or the THOSVD method, which allows directly and jointly estimate the
symbol matrices and the channel in closed-form. In the second stage, from the estimated
channel, the channel parameters estimation is performed using the JIRAFE algorithm. Pa-
rameter identifiability and computational complexity are analyzed for each receiver. In the
next sections, the receivers composed of two stages, computational complexity analysis and
results will be presented.

5.2 Semi-blind receivers for DP MIMO systems using

TST-MSMKron codings

By exploiting the matrix unfoldings (4.42)-(4.44) of the received signals tensor, two
semi-blind receivers are now developed for estimating the symbol matrices, the channel and
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channel parameters (DoA and DoD angles, path-losses). These receivers are composed of
two stages. In the first one, the symbol matrices and the channel are estimated, while in the
second stage, the channel parameters are derived from the estimated channel [109].

5.2.1 Stage 1 - channel and symbol estimation

The Bi-ALS algorithm is used to jointly estimate the MSMKron product S and the
channel matrix unfoldingH. Then, the KronF algorithm is applied to separate the symbol
matrices. The Bi-ALS algorithm results from the following optimization problem deduced
from Eq. (4.41) [109]:

min
S,H

∥ 𝒳𝑐 − 𝒢𝑐 ×1 H ×2 S ×3 I𝑃 ∥2𝐹, (5.1)

where ‖ . ‖𝐹 is the Frobenius norm. Fixing one of the matrix factors (H, S) with its value
estimated at previous iteration, the Bi-ALS method replaces the optimization problem (5.1)
by two LS sub-problems deduced from the matrix unfoldings (4.42) and (4.43), leading to
the alternate minimization of the following LS criteria:

min
H

∥ X𝑃𝐽×2𝑀𝑅 −
(
I𝑃 ⊗ Ŝ[𝑖𝑡−1]

)
G𝑃𝑅×2𝑀𝑇H

𝑇 ∥2𝐹,→ Ĥ
𝑇
[𝑖𝑡], (5.2)

min
S

∥ X2𝑃𝑀𝑅×𝐽 −
(
I𝑃 ⊗ Ĥ[𝑖𝑡]

)
G2𝑃𝑀𝑇×𝑅S

𝑇 ∥2𝐹,→ Ŝ
𝑇
[𝑖𝑡]. (5.3)

The update equations at iteration [𝑖𝑡] are given by:

Ĥ
𝑇
[𝑖𝑡] =

[(
I𝑃 ⊗ Ŝ[𝑖𝑡−1]

)
G𝑃𝑅×2𝑀𝑇

]†
X𝑃𝐽×2𝑀𝑅 ∈ ℂ2𝑀𝑇×2𝑀𝑅 , (5.4)

Ŝ
𝑇
[𝑖𝑡] =

[(
I𝑃 ⊗ Ĥ[𝑖𝑡]

)
G2𝑃𝑀𝑇×𝑅

]†
X2𝑃𝑀𝑅×𝐽 ∈ ℂ𝑅×𝐽. (5.5)

The matrices
[(
I𝑃 ⊗ Ŝ[𝑖𝑡−1]

)
G𝑃𝑅×2𝑀𝑇

]
and

[(
I𝑃 ⊗ Ĥ[𝑖𝑡]

)
G2𝑃𝑀𝑇×𝑅

]
must have full col-

umn rank for ensuring uniqueness of the LS estimates, which implies the following necessary
conditions: 2𝑀𝑇 ≤ 𝑃𝐽 and 𝑅 ≤ 2𝑃𝑀𝑅. To simplify the computation of the estimate Ĥ in
Eq. (5.4), we assume that the matrices G𝑃𝑅×2𝑀𝑇 and S have full column rank which implies:
2𝑀𝑇 ≤ 𝑃𝑅 and𝑅 ≤ 𝐽, respectively.Moreover, to simplify the computation of Ŝ in Eq. (5.5), we
assume that the unfoldingG2𝑃𝑀𝑇×𝑅 is chosen as a full column rank truncated discrete Fourier
transform (DFT) matrix, which allows us to replace its pseudo-inverse by its transconjugate,
implying the necessary condition 𝑅 ≤ 2𝑃𝑀𝑇. We also assume thatH has full column rank,
implying𝑀𝑇 ≤ 𝑀𝑅. Exploiting these assumptions simplify the LS estimates (5.4)-(5.5) as:

Ĥ
𝑇
[𝑖𝑡] =

(
G𝑃𝑅×2𝑀𝑇

)† (I𝑃 ⊗ Ŝ
†
[𝑖𝑡−1])X𝑃𝐽×2𝑀𝑅 , (5.6)

Ŝ
𝑇
[𝑖𝑡] =

(
G2𝑃𝑀𝑇×𝑅

)𝐻 (I𝑃 ⊗ Ĥ
†
[𝑖𝑡])X2𝑃𝑀𝑅×𝐽. (5.7)

The Bi-ALS algorithm (5.6)-(5.7) is a simplified version of (5.4)-(5.5) in terms of
pseudo-inverses computation. However, this simplification is at the price of additional
constraints on the design parameters.
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For deciding the convergence of the Bi-ALS algorithm, we consider the error at the
[𝑖𝑡]-th iteration deduced from (4.42) as:

𝑒𝑟𝑟[𝑖𝑡] =∥ X𝑃𝐽×2𝑀𝑅 −
(
I𝑃 ⊗ Ŝ[𝑖𝑡]

)
G𝑃𝑅×2𝑀𝑇Ĥ

𝑇
[𝑖𝑡] ∥2𝐹 . (5.8)

Convergence at the [𝑖𝑡]-th iteration is declared when this error does not significantly
change between two successive iterations, i.e., |𝑒𝑟𝑟[𝑖𝑡−1] − 𝑒𝑟𝑟[𝑖𝑡]| ≤ 𝜖, where 𝜖 is a predefined
threshold.

As already mentioned, the Tucker model (4.41) is unique up to scalar scaling ambi-
guities defined by Eqs. (4.45). Noting Ĥ and Ŝ the LS estimates (5.4) and (5.5), or (5.6) and
(5.7), at convergence, the estimates after correcting the ambiguities are given by:

̂̂S = Ŝ
(
𝜆(𝑆)

)−1 , ̂̂H = Ĥ𝜆(𝑆). (5.9)

For eliminating these scaling ambiguities, it is sufficient to assume that one element
of S is known a priori, e.g., 𝑠11 = 1. Under this assumption, 𝜆(𝑆) is calculated as: 𝜆(𝑆) = 𝑠11.
The symbol matrices S(𝑛) are then estimated using the KronF algorithm which minimizes
the following LS cost function:

min
S(𝑛) , 𝑛∈{1,...,𝑁}

∥ ̂̂S − S(1) ⊗ ... ⊗ S(𝑁) ∥2𝐹 . (5.10)

This problem is solved by reshaping ̂̂S as a rank-one tensor [60, 61, 54]:

̂̂𝒮 = s(1)◦...◦s(𝑁) ∈ ℂ𝑅1𝐽1×...×𝑅𝑁𝐽𝑁 , (5.11)

where s(𝑛) =vec(S(𝑛)) ∈ ℂ𝑅𝑛𝐽𝑛 , and replacing the cost function (5.10) by:

min
s(𝑛), 𝑛∈[1,𝑁]

∥ ̂̂𝒮 − s(1)◦⋯◦s(𝑁) ∥2𝐹 . (5.12)

This rewriting of the cost function as a rank-one approximation of an𝑁-order tensor
allows to estimate each vectorized form s(𝑛) by calculating the SVD of the mode-𝑛 unfolding
of the tensor ̂̂𝒮 :

̂̂S𝑅𝑛𝐽𝑛×𝑅𝑛+1𝐽𝑛+1...𝑅𝑁𝐽𝑁𝑅1𝐽1...𝑅𝑛−1𝐽𝑛−1 = U(𝑛)𝚺(𝑛)V(𝑛)𝐻, (5.13)

with ŝ(𝑛) chosen as the first left singular vector associated with the dominant singular value
of this mode-𝑛 unfolding, i.e.:

ŝ(𝑛) = U(𝑛)
.1 ∈ ℂ𝑅𝑛𝐽𝑛 . (5.14)

The estimated symbol matrix is then obtained by unvectorizing ŝ(𝑛) as:

Ŝ
(𝑛) = unvec

(
ŝ(𝑛)

)
∈ ℂ𝐽𝑛×𝑅𝑛 . (5.15)
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Bi-ALS-KronF receiver for estimating the symbol matrices S(𝑛) and
the channel H
Input: tensors 𝒳, 𝒢
Output: Estimated symbol matrices ̂̂S(𝑛) and estimated channel ̂̂H.
Step 1 - BiALS algorithm
𝑖𝑡 = 0
1) Randomly initialize S(𝑛)[0] with symbols drawn from the alphabet and 𝑠(𝑛)11 =
1.
2) Update the estimates of S andH using (5.4)-(5.5) or (5.6)-(5.7).
3) Calculate the error (5.8) and |𝑒𝑟𝑟[𝑖𝑡−1] − 𝑒𝑟𝑟[𝑖𝑡]|.
-if |𝑒𝑟𝑟[𝑖𝑡−1] − 𝑒𝑟𝑟[𝑖𝑡]| ≤ 𝜖 or 𝑖𝑡 =maximum number of iterations
- stop
-else 𝑖𝑡 → 𝑖𝑡 + 1;
4) Eliminate the scaling ambiguities.

Step 2 - KronF algorithm
5) Build the rank-one tensor as: ̂̂𝒮 = reshape

( ̂̂S, [𝑅1𝐽1, ..., 𝑅𝑁𝐽𝑁]
)
.

6) Estimate each vector ŝ(𝑛) as the first left singular vector using (5.14), and
unvectorize it using (5.15).
7) Eliminate the scaling ambiguities using (5.16).
8) Project the estimated symbols onto the finite alphabet.

Table 17 – Bi-ALS-KronF receiver.

Assuming 𝑠(𝑛)11 = 1, the scalar ambiguity is corrected by:

̂̂S(𝑛) = Ŝ
(𝑛) (𝜆(𝑛)

)−1 ,with 𝜆(𝑛) = 𝑠(𝑛)11 . (5.16)

The final estimated symbols are obtained after a projection onto the finite alphabet.
The Bi-ALS-KronF algorithm is summarized in Table 17.

5.2.1.1 THOSVD receiver

A second semi-blind receiver is proposed to directly and jointly estimate the channel
and symbol matrices, using a closed-form solution based on the THOSVD algorithm [35].
From the matrix unfolding (4.44), with S replaced by its expression (4.31), the LS estimate of
the multiple Kronecker product is given by [109]:

Y ≜ ˆH⊗ S(1) ⊗ ... ⊗ S(𝑁) =
[
(G𝑃×2𝑀𝑇𝑅)†X𝑃×2𝑀𝑅𝐽

]𝑇 ∈ ℂ2𝑀𝑅𝐽×2𝑀𝑇𝑅. (5.17)

The unfolding G𝑃×2𝑀𝑇𝑅 must have full column rank for ensuring uniqueness of this
LS estimate, which induces the necessary condition: 2𝑀𝑇𝑅 ≤ 𝑃. The symbol matrices S(𝑛)

and channelH are then jointly estimated by means of the KronF algorithm, as in step 2 of
the Bi-ALS-KronF receiver, with the difference that we can now simultaneously estimate all
the matrices (H, S(1),⋯ , S(𝑁)). The THOSVD receiver is summarized in Table 18.
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THOSVD receiver for estimating the symbol matrices S(𝑛) and the
channel H.
Input: tensors 𝒳, 𝒢
Output: Estimated symbol matrices ̂̂S(𝑛) and estimated channel ̂̂H.
1) Calculate the LS estimate Y defined in (5.17).
2) Build the rank-one tensor 𝒴 of size 4𝑀𝑇𝑀𝑅 × 𝑅1𝐽1 × ... × 𝑅𝑁𝐽𝑁 from Y.
3) Compute the SVD of each mode-𝑛 unfolding of 𝒴, and calculate the esti-
mates ŝ(𝑛) = vec(Ŝ(𝑛)) and ĥ = vec(Ĥ) as the first left singular vector of each
mode-𝑛 unfolding.
4) Unvectorize ŝ(𝑛) and ĥ to obtain the estimates Ŝ

(𝑛)
and Ĥ.

5) Eliminate the scaling ambiguities.
6) Project the estimated symbols onto the finite alphabet.

Table 18 – THOSVD receiver.

5.2.1.2 Zero-forcing (ZF)-KronF receiver

To evaluate the impact of design parameters on the system performance, we use
the zero-forcing (ZF)-KronF receiver which assumes a perfect channel knowledge. The
LS estimate Ŝ𝑍𝐹 of S is then calculated using (5.5) or (5.7), withH[𝑖𝑡] replaced by the true
channelH, which gives:

Ŝ
𝑇
𝑍𝐹 =

[
(I𝑃 ⊗H)G2𝑃𝑀𝑇×𝑅

]†
X2𝑃𝑀𝑅×𝐽, (5.18)

or
Ŝ
𝑇
𝑍𝐹 =

(
G2𝑃𝑀𝑇×𝑅

)𝐻 (
I𝑃 ⊗H†)X2𝑃𝑀𝑅×𝐽. (5.19)

As for the Bi-ALS algorithm, use of (5.5) or (5.7) implies the following necessary
conditions: 𝑅 ≤ 2𝑃𝑀𝑅 or 𝑅 ≤ 2𝑃𝑀𝑇 and𝑀𝑇 ≤ 𝑀𝑅, for the ZF-KronF receiver (5.18) and its
simplified version (5.19), respectively. Then, the symbol matrices S(𝑛) are estimated using
the KronF algorithm as in the second step of the Bi-ALS-KronF receiver.

In Table 19, the identifiability conditions for the proposed receivers are summarized.
By comparing the conditions for the Bi-ALS algorithm (5.6)-(5.7) with the ones for the Bi-ALS
algorithm (5.4)-(5.5), we can deduce some implications. Indeed, for the estimate (5.6), the
conditions 2𝑀𝑇 ≤ 𝑃𝑅 and 𝑅 ≤ 𝐽 imply 2𝑀𝑇 ≤ 𝑃𝐽, i.e., the identifiability condition for the
LS solution (5.4). For the estimate (5.7), the conditions 𝑅 ≤ 2𝑃𝑀𝑇 and 𝑀𝑇 ≤ 𝑀𝑅 imply
𝑅 ≤ 2𝑃𝑀𝑅, i.e., the identifiability condition for the LS solution (5.5). In conclusion, if the
identifiability conditions for (5.6)-(5.7) are satisfied, then the ones for the Bi-ALS algorithm
(5.4)-(5.5) are automatically satisfied. Note also that 𝑅 ≤ 2𝑃𝑀𝑇 and 2𝑀𝑇 ≤ 𝑃𝑅 imply
𝑅 ≤ 𝑃2𝑅, which is always satisfied. Therefore, the condition 2𝑀𝑇 ≤ 𝑃𝑅 can be discarded.

We can also conclude that the THOSVD receiver is more restrictive than the Bi-ALS
receivers in the sense that a higher value of 𝑃 is required, which implies a reduction in the
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Receiver Identifiability conditions
Bi-ALS-KronF Eqs. (5.4)-(5.5) 2𝑀𝑇 ≤ 𝑃𝐽; 𝑅 ≤ 2𝑃𝑀𝑅
Bi-ALS-KronF Eqs. (5.6)-(5.7) 𝑅 ≤ min (2𝑃𝑀𝑇, 𝐽); 2𝑀𝑇 ≤ 𝑃𝑅 ;𝑀𝑇 ≤ 𝑀𝑅
THOSVD 2𝑀𝑇𝑅 ≤ 𝑃;
ZF-KronF 𝑅 ≤ 2𝑃𝑀𝑅 or 𝑅 ≤ 2𝑃𝑀𝑇,𝑀𝑇 ≤ 𝑀𝑅

Table 19 – Identifiability conditions for the receivers.

transmission rate. Finally, as the ZF-KronF receiver only estimates the symbol matrices
using the LS solutions (5.18) or (5.19), identifiability conditions are subsets of the ones for
the Bi-ALS-KronF receivers.

5.2.2 Stage 2 - channel parameters estimation using JIRAFE

In this section, the JIRAFE algorithm is presented to estimate the steering vectors
and path-losses from the estimated channel matrix ̂̂H, reshaped as the tensor ̂̂ℋ satisfying
the PARAFAC decomposition (4.30):

̂̂ℋ = reshape
( ̂̂H,

[
𝑀𝑇𝑥 ,𝑀𝑇𝑦 ,𝑀𝑅𝑥 ,𝑀𝑅𝑦 , 4

])
∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4. (5.20)

Exploiting the equivalence between TT and PARAFAC decompositions recalled in
section 2.5.6, the fifth-order estimated channel tensor (5.20) can be rewritten as the following
TT decomposition deduced from (2.75), for 𝑁 = 5:

̂̂ℋ = G(1) ×12 𝒢(2) ×13 𝒢(3) ×14 𝒢(4) ×15 𝐺(5), (5.21)

where G(1) ∈ ℂ𝑀𝑇𝑥×𝐾, 𝒢(2) ∈ ℂ𝐾×𝑀𝑇𝑦×𝐾, 𝒢(3) ∈ ℂ𝐾×𝑀𝑅𝑥×𝐾, 𝒢(4) ∈ ℂ𝐾×𝑀𝑅𝑦×𝐾 and G(5) ∈ ℂ𝐾×4

are the TT-cores, linked with the PARAFAC factors by means of the equivalence relations
(2.142)-(2.143) which become [34, 33]:

G(1) = A𝑇𝑥M
−1
1 , (5.22)

𝒢(2) = ℐ3,𝐾 ×1 M1 ×2 A𝑇𝑦 ×3 M
−𝑇
2 , (5.23)

𝒢(3) = ℐ3,𝐾 ×1 M2 ×2 A𝑅𝑥 ×3 M
−𝑇
3 , (5.24)

𝒢(4) = ℐ3,𝐾 ×1 M3 ×2 A𝑅𝑦 ×3 M
−𝑇
4 , (5.25)

G(5) =M4B
𝑇, (5.26)

whereM𝑛 ∈ ℂ𝐾×𝐾, for 𝑛 ∈ [1, 4], are nonsingular basis-change matrices. The TTHSVD
algorithm, described in section 2.5.5, is used to determine the TT core estimates Ĝ

(𝑘)
, for

𝑘 ∈ [1, 5], and �̂�(𝑘), for 𝑘 ∈ [2, 3, 4].

A new rectification strategy, denoted TR1A𝑖𝑚𝑝 and presented in Table 20, is proposed
to enforce the Vandermonde structure of the steering matrices estimated in presence of
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TR1A𝑖𝑚𝑝 method to rectify an estimated Vandermonde matrix Â ∈
ℂ𝐼×𝐾

Input: Estimated matrix Â
Output: Rectified Vandermonde matrix ̂̂A.
for 𝑘 ∈ [1, 𝐾]
1) Form a rank-one hermitian Toeplitz matrix T𝑘 from the 𝑘-th column Â.𝑘
as: T𝑘 = Â.𝑘Â

𝐻
.𝑘 .

2) Calculate the EVD of T𝑘 = P𝑘D𝑘P
𝐻
𝑘 .

for 𝑖 ∈ [1, 𝐼 − 1]
3) Estimate the angular frequency 𝜔𝑘 associated with the 𝑘-th column of he
Vandermonde matrix as:

�̂�𝑘 =
1

𝐼 − 1 (
𝐼−1∑

𝑖=1

1
𝑖 ∠

(
(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1

)
) .

4) Build the rectified estimated 𝑘-th column ̂̂A.𝑘 as:

̂̂A.𝑘 = [ �̂�1,𝑘 �̂�2,𝑘 ⋯ �̂�𝐼1,𝑘 ]𝑇 with �̂�𝑖,𝑘 = 𝑒−𝑗�̂�𝑘(𝑖−1).

end
end

Table 20 – TR1A𝑖𝑚𝑝 rectification method.

noise, whose elements of the first row are normalized to 1, as in (4.18). This strategy is an
improved version of the Toeplitz rank-one approximation method, proposed in [65] and
denoted TR1A.

Our proposed rectification method consists in constructing a rank-one hermitian
Toeplitz matrix T𝑘 = Â.𝑘Â

𝐻
.𝑘, of size 𝐼 × 𝐼, from each column 𝑘 of an estimated 𝐼 × 𝐾

Vandermonde matrix, and computing its eigenvalue decomposition (EVD) T𝑘 = P𝑘D𝑘P
𝐻
𝑘 to

estimate the 𝑘-th angular frequency.

Unlike the original TR1A method which identifies only one element of the Toeplitz
matrix with its corresponding term in the EVD of the constructed rank-one Toeplitz matrix,
our method exploits the identification of 𝐼 − 1 terms as:

𝑒−𝑗𝜔𝑘 𝑖 = 𝑑𝑘(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1 ⇐⇒ �̂�𝑘 =
1
𝑖 ∠

(
(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1

)
, (5.27)

for 𝑖 ∈ [1, 𝐼−1], where (𝑝𝑘)𝑖,1 denotes the (𝑖,1) element of the eigenvector matrix P𝑘, and the
operator ∠ stands for the angle of its complex scalar argument. Then, the estimated angular
frequency is calculated as an average of these 𝐼 − 1 estimates (A.48) as:

�̂�𝑘 =
1

𝐼 − 1
𝐼−1∑

𝑖=1

1
𝑖 ∠

(
(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1

)
. (5.28)
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JIRAFE algorithm for the estimation of Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 and B̂.
Input: Estimated channel ̂̂H
Output: Estimated matrices Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 and B̂.

1) Reshape the estimated channel matrix ̂̂H as a tensor ̂̂ℋ,

̂̂ℋ = reshape
( ̂̂H,

[
𝑀𝑇𝑥 ,𝑀𝑇𝑦 ,𝑀𝑅𝑥 ,𝑀𝑅𝑦 , 4

])
.

2) Estimate the TT cores by means of the TTHSVD algorithm applied to ̂̂ℋ:

[Ĝ(1), �̂�(2), �̂�(3), �̂�(4), Ĝ(5)]← TTHSVD ( ̂̂ℋ,𝐾).

3) Estimate the factor matrices by means of the RectALS and RectKRF algo-
rithms:

[
M̂1, Â𝑇𝑦 , M̂

−𝑇
2
]
← RectALS

(
�̂�(2), 𝐾

)
,

[
Â𝑅𝑥 , M̂

−𝑇
3
]
← RectKRF

(
�̂�(3), M̂2, 𝐾

)
,

[
Â𝑅𝑦 , M̂

−𝑇
4
]
← RectKRF

(
�̂�(4), M̂3, 𝐾

)
,

Â𝑇𝑥 = Ĝ
(1)
M̂1, B̂ = Ĝ

(5)𝑇
M̂

−𝑇
4 .

4) Rectify Â𝑇𝑥 using TR1A𝑖𝑚𝑝 method in Table 20.

Table 21 – JIRAFE algorithm.

This strategy is applied with the ALS algorithm for estimatingA𝑇𝑦 from the estimated
core �̂�(2), and with the KRF algorithm to estimate A𝑅𝑥 and A𝑅𝑦 , from the estimated cores
�̂�(3) and �̂�(4), respectively, which leads to the RectALS and RectKRF algorithms. Finally,
LS estimates of A𝑇𝑥 and B are deduced from Eqs. (5.22) and (5.26), respectively, with a
rectification of Â𝑇𝑥 . The JIRAFE algorithm is summarized in Table 21.

The azimuth and elevation angles 𝜙𝑘, 𝜃𝑘, 𝜗𝑘 and 𝜓𝑘 are then obtained by means of
the following equations [25]:

�̂�𝑘 = sin−1
⎛
⎜
⎝

√
( 𝜈
2𝜋𝑑𝑇𝑥

�̂�𝑇𝑥 ,𝑘)
2
+ ( 𝜈

2𝜋𝑑𝑇𝑦
�̂�𝑇𝑦 ,𝑘)

2⎞
⎟
⎠
, �̂�𝑘 = tan−1 (𝑑𝑇𝑥 �̂�𝑇𝑦,𝑘

𝑑𝑇𝑦 �̂�𝑇𝑥,𝑘
) , (5.29)

�̂�𝑘 = sin−1
⎛
⎜
⎝

√
( 𝜈
2𝜋𝑑𝑅𝑥

�̂�𝑅𝑥 ,𝑘)
2
+ ( 𝜈

2𝜋𝑑𝑅𝑦
�̂�𝑅𝑦 ,𝑘)

2⎞
⎟
⎠
, �̂�𝑘 = tan−1 (𝑑𝑅𝑥 �̂�𝑅𝑦,𝑘

𝑑𝑅𝑦 �̂�𝑅𝑥,𝑘
) . (5.30)

The Bi-ALS/KronF-JIRAFE and THOSVD-JIRAFE receivers, composed of two stages,
are summarized in Table 22, and illustrated by means of Figure 17.
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Bi-ALS-KronF-JIRAFE and THOSVD-JIRAFE receivers
Input: Tensors 𝒳, 𝒢
Output: ̂̂ℋ, ̂̂S(𝑛), for 𝑛 ∈ [1, 𝑁], Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 and B̂.
Stage 1 - Estimation of the channel and symbol matrices
[ ̂̂H, ̂̂S(𝑛)] ← Bi-ALS-KronF or THOSVD, using the Algorithms in Tables 17
and 18.

Stage 2 - Estimation of the channel parameters
[Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 , B̂]← JIRAFE

( ̂̂ℋ,𝐾
)
, usisng the Algorithm in Table 21.

- Angle estimation[
�̂�𝑘, �̂�𝑘, �̂�𝑘, �̂�𝑘

]
← Eqs. (5.29)-(5.30).

Table 22 – Bi-ALS/KronF-JIRAFE and THOSVD-JIRAFE receivers.

Figure 17 – Block-diagram of the proposed receivers.

5.3 Complexity analysis

In this section, we compare the computational complexity of the proposed semi-blind
receivers, considering that themost expensivematrix operations are the SVD and EVDwhose
complexities are O(𝐼𝐽min(𝐼,𝐽)) for an 𝐼 × 𝐽 matrix and O

(
𝐼3
)
for an 𝐼 × 𝐼 matrix, respectively.

The complexities are evaluated taking the identifiability conditions into account.

Computing the HOSVD of an 𝑁-th-order tensor 𝒳 ∈ ℝ𝐼1×⋯×𝐼𝑁 requires 𝑁 SVDs
of 𝐼𝑛 × 𝐼𝑛+1...𝐼𝑁𝐼1...𝐼𝑛−1 matrices, for 𝑛 ∈ [1,𝑁], inducing the following overall computa-
tional complexity 𝑂

(
(∑𝑁

𝑛=1 𝐼𝑛)
∏𝑁

𝑞=1 𝐼𝑞
)
if 𝐼𝑛 ≤

∏𝑁
𝑞≠𝑛 𝐼𝑞. In particular, the complexity of

the KronF algorithm described in section 2.5.1.2 for estimating the symbol matrices is
O
(
(∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛)
∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
)
.
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Algorithms Computational Complexity
Bi-ALS-KonF 𝑂

(
4𝑀2

𝑇𝑃𝐽
)
+ 𝑂

(
2𝑅2𝑃𝑀𝑅

)
+

(5.4) and (5.5) 𝑂
((∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛
)∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
)

Bi-ALS-KonF 𝑂
(
4𝑀2

𝑇𝑃𝑅
)
+ 𝑂

(
𝑅2𝐽

)
+ 𝑂

(
8𝑀2

𝑇𝑀𝑅
)
+

(5.6) and (5.7) 𝑂
((∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛
)∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
)

THOSVD 𝑂
(
4𝑀2

𝑇𝑅2𝑃
)

+ 𝑂
(
4𝑀𝑇𝑀𝑅𝑅2𝐽2

)
+

𝑂
(
4𝑀𝑅𝑀𝑇(

∑𝑁
𝑛=1 𝑅𝑛𝐽𝑛)

∏𝑁
𝑞=1 𝑅𝑞𝐽𝑞

)

Table 23 – Computational complexity of the Bi-AKS-KronF and THOSVD algorithms.

Algorithms Computational Complexity
ALS 𝑂

(
𝐾2(16𝑀3 +𝑀4)

)

RectALS 𝑂
(
𝐾2(16𝑀3 +𝑀4)

)
+ 𝑂

(
4𝐾𝑀3) ≈ 𝑂

(
𝐾2(16𝑀3 +𝑀4)

)

JIRAFE without
rectification

𝑂
(
4𝐾𝑀4 + 𝐾2𝑀4 + 2𝐾3𝑀 + 𝐾4 + 2𝐾5𝑀

)

JIRAFE with 𝑂
(
4𝐾𝑀4 + 𝐾2𝑀4 + 2𝐾3𝑀 + 𝐾4 + 2𝐾5𝑀

)
+ 𝑂

(
4𝐾𝑀3)

rectification ≈ 𝑂
(
4𝐾𝑀4 + 𝐾2𝑀4 + 2𝐾3𝑀 + 𝐾4 + 2𝐾5𝑀

)

Table 24 – Computational complexity of the ALS/RectALS/JIRAFE algorithms in the second stage.

To compute the PARAFAC decomposition of a tensor 𝒳 ∈ ℝ𝐼1×⋯×𝐼𝑁 assumed to be
of rank 𝑅, using the ALS algorithm, requires to compute 𝑁 LS estimates, which needs to
pseudo-inverse

∏𝑁
𝑞≠𝑛 𝐼𝑞 × 𝑅 matrices, for 𝑛 ∈ [1,𝑁], and induces the overall computational

complexity 𝑂
(
𝑅2∑𝑁

𝑛=1(
∏𝑁

𝑞≠𝑛 𝐼𝑞)
)
, at each iteration. See [111] for more details.

In Table 23, the computational complexities of the algorithms of stage 1 in Figure 17
are compared, i.e., the Bi-ALS-KronF and THOSVD algorithms.

The complexity of the Bi-ALS-KronF (5.6) and (5.7) is lower than that of the Bi-ALS-
KronF (5.4) and (5.5) due to the simplification of the pseudo-inverses in (5.4) and (5.5). Note
that, unlike the complexity of HOSVD, the one for the Bi-ALS algorithms must be multiplied
by the number of iterations needed for convergence, which explains why the computation
time with the closed-form solution (HOSVD algorithm) is generally lower than with the
iterative Bi-ALS algorithms.

Table 24 provides the computational complexity of the ALS, RectALS and JIRAFE
algorithms of stage 2, assuming𝑀𝑇𝑥 = 𝑀𝑇𝑦 = 𝑀𝑅𝑥 = 𝑀𝑅𝑦 = 𝑀, and with the complexity
of the rectification methods given by: 𝐾

(
𝑀3

𝑇𝑥 +𝑀3
𝑇𝑦 +𝑀3

𝑅𝑥 +𝑀3
𝑅𝑦

)
= 4𝐾𝑀3. For the com-

plexity of JIRAFE, see [63]. As previously concluded for the comparison of the Bi-ALS and
HOSVD algorithms, the computation time with the closed-form JIRAFEmethod is generally
much lower than with the ALS and RectALS iterative algorithms due to the great number of
iterations needed for their convergence. The computational complexities of the rectification
algorithms TR1A and TR1A𝑖𝑚𝑝 are the same, equal to 𝑂

(
4𝐾𝑀3), which is negligible with
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respect to the ones of the standard ALS and JIRAFE algorithms.

5.4 Simulation results

In this section, we evaluate the performance of the proposed DD-DP MIMO system
and associated receivers. First, in Section 5.4.1, we describe the simulations and present the
considered performance criteria. In Section 5.4.2, we study the impact of design parameters
on the symbol error rate (SER), using the ZF-KronF receiver. In Section 5.4.3, the proposed
semi-blind receivers are compared in terms of SER, channel normalized mean square error
(NMSE) and reconstructed signal NMSE. Finally, in Section 5.4.4, the results of themultipath
parameters estimation are presented, and a comparison with state-of-the-art methods is
carried out.

5.4.1 General description of the simulations

The noisy received signal tensor 𝒴 is simulated as:

𝒴 = 𝒳 + 𝛼𝒩, (5.31)

where 𝒳 contains the noise-free received signals obtained by means of Eq. (4.36), and𝒩 is
the additive noise tensor whose entries are zero-mean circularly-symmetric complex-valued
Gaussian random variables, with unit variance, and 𝛼 allows to fix the SNR calculated as:

SNR = 20log ∥ 𝒳 ∥𝐹
𝛼 ∥𝒩 ∥𝐹

, (5.32)

which gives 𝛼 = ∥𝒳∥𝐹
∥𝒩∥𝐹

10−SNR∕20. The steering matrices (A𝑇𝑥 ,A𝑇𝑦 ,A𝑅𝑥 ,A𝑅𝑦) are simulated as
Vandermonde matrices, with random realizations of DoD and DoA angles (𝜙𝑘, 𝜃𝑘, 𝜗𝑘, 𝜓𝑘)
following a uniform distribution in [0, 𝜋] rad. At each run, the coefficients of B ∈ ℂ4×𝐾 are
randomly drawn from a complex Gaussian distribution with zero mean and unit variance.
The channelsℋ(𝑉𝑅) andℋ(𝐻𝑅) are simulated using Eqs. (4.26)-(4.27). The symbols to be
transmitted are randomly generated from the 16-QAM (quadrature amplitude modulation)
alphabet, with a uniform distribution. As mentioned before, the coding tensor is designed
for each Monte Carlo run, such as its unfolding G2𝑃𝑀𝑇×𝑅 be a truncated DFT matrix.

The performance criteria, plotted versus the SNR, are calculated as:

NMSE𝒵 =
1
𝐿

𝐿∑

𝑙=1

∥ 𝒵𝑙 − 𝒵𝑙 ∥2𝐹
∥ 𝒵𝑙 ∥2𝐹

, (5.33)

where 𝒵𝑙 is the tensor 𝒵𝑙 estimated at the 𝑙-th run, with 𝒵𝑙 ∈ {ℋ𝑙,𝒳𝑙}. For DoD and DoA
angles estimation, the mean square error (MSE) criterion is calculated as:

MSE𝐷𝑜𝐷 =
1
𝐾

𝐾∑

𝑘=1

(
𝜙𝑘 − �̂�𝑘

)2 +
(
𝜃𝑘 − �̂�𝑘

)2
, (5.34)
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MSE𝐷𝑜𝐴 =
1
𝐾

𝐾∑

𝑘=1

(
𝜗𝑘 − �̂�𝑘

)2 +
(
𝜓𝑘 − �̂�𝑘

)2 . (5.35)

where the MSE is calculated for the estimated angles of transmission (MSE𝐷𝑜𝐷) and of
reception (MSE𝐷𝑜𝐴), respectively. The SER, NMSE and MSE are calculated by averaging the
results over 𝐿 = 5.104 Monte Carlo runs, after truncating the 5% worse and 5% better values
to eliminate the influence of ill-convergence and outliers.

The transmission rate 𝑇𝑅 is given by:

𝑇𝑅 =
∑𝑁

𝑛=1 𝐽𝑛𝑅𝑛 −𝑁
𝑃∏𝑁

𝑛=1 𝐽𝑛
log2 (𝜇) , (5.36)

where
∑

𝑛=1 𝐽𝑛𝑅𝑛 corresponds to the total number of transmitted symbols, 𝑁 is the number
of symbols assumed to be a priori known for ambiguity suppression, and 𝜇 denotes the car-
dinality of the symbol alphabet, i.e., the number of constellation points. Note that increasing
the number 𝐽𝑛 of symbols in the symbol matrix S(𝑛) induces an increase of coding diversity
and a lower transmission rate. On the other hand, an increase of the number 𝑅𝑛 of data
streams leads to an increase of 𝑇𝑅, while an increase of the number 𝑃 of repetitions implies
a decrease of 𝑇𝑅, as shown in Table 25.

5.4.2 Impact of design parameters

First, we evaluate the performance of the proposed system under perfect channel
knowledge, as illustrated in Figures 18(a)-21(b). In this case, the ZF receiver (5.19) is used to
estimate the matrix S, combined with the KronF algorithm to separate the symbol matrices.
The design parameters considered in the simulations are given in Table 25.

Figure 18(a) compares the SER for three different data stream numbers: 𝑅1 = 𝑅2 ∈
[2, 4, 6]. From this figure, it can be concluded that increasing 𝑅1 and 𝑅2 induces a degradation
of symbol estimation, while the transmission rate increases (see Table 25). As expected, this
happens because an increase of 𝑅1 and 𝑅2 implies an increase of the number of symbols
to be estimated, without increasing the number of data in the tensor 𝒴 for performing the
symbols estimation.

Figure 18(b) shows the impact on the SER for different numbers of symbols per data
stream: 𝐽1 = 𝐽2 ∈ [2, 4, 6]. From these simulation results, it can be concluded that the SER
is improved when the numbers of symbols increase, which implies an increase of coding
diversity at reception, since 𝐽1 and 𝐽2 are dimensions of the data tensor, which is not the case
for 𝑅1 and 𝑅2. See Eq. (4.39). On the other hand, the transmission rate decreases as shown in
Table 25.

Figures 19(a) and 19(b) illustrate the impact of numbers of transmit and receive anten-
nas, with: (𝑀𝑇𝑥 , 𝑀𝑇𝑦) ∈ [(2,2), (4,4), (5,5)] and (𝑀𝑅𝑥 ,𝑀𝑅𝑦) ∈ [(3,3), (4,4), (5,5)], respectively.
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Impact of Design Parameters Transmission
rate

Figures

Number of (𝑀𝑇𝑥 ;𝑀𝑇𝑦) = (4,4); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5); Figure
data streams 𝐾 = 2; 𝐽1 = 𝐽2 = 2; 𝑃 = 3; 𝑅1 = 𝑅2 ∈ [2, 4, 6] 𝑇𝑅 =

2; 4.66; 7.33
18(a)

Number of (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (4,4); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5); Figure
symbols per 𝐾 = 2; 𝑅1 = 𝑅2 = 2; 𝑃 = 2; 𝐽1 = 𝐽2 ∈ [2, 4, 6] 𝑇𝑅 = 3; 18(b)
data stream 1.75; 1.22
Number of (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (6,6); 𝐾 = 2; 𝑅1 = 𝑅2 = 2; Figure
transmit 𝐽1 = 𝐽2 = 4; 𝑃 = 2; (𝑀𝑇𝑥 ,𝑀𝑇𝑦) ∈ 𝑇𝑅 = 1.75 19(a)
antennas [(2,2), (4,4), (5,5)]
Number of (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2); 𝐾 = 2; 𝑅1 = 𝑅2 = 2; Figure
receive 𝐽1 = 𝐽2 = 4; 𝑃 = 2; (𝑀𝑅𝑥 ,𝑀𝑅𝑦) ∈ 𝑇𝑅 = 1.75 19(b)
antennas [(3,3), (4,4), (5,5)]
Number of (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (3,3); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (4,4); 𝑇𝑅 = 7; Figure
time blocks 𝐾 = 2; 𝑅1 = 𝑅2 = 4; 𝐽1 = 𝐽2 = 2; 𝑃 ∈ [2, 4, 6] 3.5; 2.33 20(a)

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (3,3); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (4,4); 𝑇𝑅 = 0.87; Figure
m-QAM 𝐾 = 2; 𝑅1 = 𝑅2 = 2; 𝐽1 = 𝐽2 = 4; 𝑃 = 2; 1.31; 1.75; 20(b)

𝑚 ∈ [4, 8, 16, 32] 2.18
𝐍 = 𝟏 ∶ (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (7,7); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) =
(8,8); 𝐾 = 2, 𝑃 = 16, 𝐽1 = 4; 𝑅1 = 9

Number of 𝐍 = 𝟐 ∶ 𝐽1 = 𝐽2 = 4; 𝑅1 = 𝑅2 = 4
symbol 𝐍 = 𝟑 ∶ 𝐽1 = 𝐽2 = 4, 𝐽3 = 1; 𝑅1 = 4, 𝑅2 = 2,

𝑅3 = 9;
𝑇𝑅 = 0.46 Figure

21(a)
matrices 𝐍 = 𝟓 ∶ 𝐽1 = 𝐽2 = 𝐽3 = 𝐽4 = 2, 𝐽5 = 1;

𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 4, 𝑅5 = 3
SER𝑔𝑙𝑜𝑏𝑎𝑙, SER of
S(1) and S(2)

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (4,4), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5), 𝐾 =
𝑃 = 2, 𝑅1 = 𝑅2 = 2, 𝐽1 = 2, 𝐽2 = 8

𝑇𝑅 = 2.25 Figure
21(b)

Comparison (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (3, 3); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (4, 4); 𝑇𝑅 = 1.75; Figure
of the TSTF-
MSMKron

𝑅1 = 𝑅2 = 2; 𝐽1 = 𝐽2 = 4; 𝑃 = 2; 𝐽 = 2; 𝑅 = 7 𝑇𝑂𝑆𝑇𝐵𝐶 =
6.22

22

and OSTBC cod-
ings
Comparison of
the receivers

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (3,3), 𝐾 =
3, 𝑅1 = 𝑅2 = 2, 𝐽1 = 𝐽2 = 4, 𝑃 = 34

𝑇𝑅 = 0.109 Figures
23 - 27

Table 25 – Design parameters for the simulations.

When the number of receive antennas is increased, the quality of symbol estimation is im-
proved, due to an increase of space diversity, via an augmentation of the number of received
signals. The impact of the number of transmit antennas is less important than the one of
receive antennas. Note that the SER is null for SNR > 0 dB. Note also that the transmission
rate does not vary with the antenna numbers.

Figure 20(a) presents the SER for different numbers of time blocks: 𝑃 ∈ [2, 4, 6].
When this number is increased, time diversity of the system is increased and consequently
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Figure 18 – Impact of: (a) data stream numbers and (b) numbers of symbols per data stream.

Figure 19 – Impact of: (a) transmit antennas number and (b) receive antennas number.

the SER is improved. On the other hand, the transmission rate decreases as we can see in
Table 25.

Figure 20(b) compares the SER obtained with four different modulations𝑚-QAM,
𝑚 ∈ [4,8,16,32]. As expected, the SER performance is better when 4-QAM is used, because
the decoding with 4-QAM is easier than with the other modulations, while inducing a lower
transmission rate (see Table 25).

In Figure 21(a), we compare the MSMKron coding for different numbers of symbol
matrices: 𝑁 ∈ [1,2,3,5]. In the case where 𝑁 = 1, i.e., when only a single symbol matrix is
transmitted, then the MSMKron coding simplifies as a TST coding. From this figure, we
conclude that an increase of 𝑁 implies a significant improvement of the SER. The best
performance is obtained with 𝑁 = 5, which provides a gain of 10dB for a SER of 10−3,
in comparison with 𝑁 = 1. These results corroborate the coding gain provided by the
MSMKron coding owing the multiple Kronecker product of symbol matrices, which induces
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Figure 20 – Impact of: (a) time blocks number and (b) modulation (𝑚-QAM).

Figure 21 – (a) Impact of 𝑁 on the SER and (b) SER of individual symbol matrices.

a redundancy augmentation when 𝑁 is increased.

In Figure 21(b), the SER𝑔𝑙𝑜𝑏𝑎𝑙 is compared with the individual SERs of the symbol
matrices S(1) and S(2), considering 𝐽1 = 2 and 𝐽2 = 8. The Kronecker product of S(1) and S(2)

induces a greater redundancy for S(1) than for S(2), since each symbol of S(1) is repeated 8𝑅2
times while each symbol of S(2) is repeated only 2𝑅1 times. As expected, the simulations
results show that the best individual SER is obtained for S(1) with the smallest dimension 𝐽1
with respect to 𝐽2, due to a greater redundancy provided by S(2) in the Kronecker product.
The global SER is close to the individual SER of S(2).

In Figure 22, the proposed TST-MSMKron coding is compared with the OSTBC
coding matrix [112] using a single symbol matrix S ∈ ℂ𝐽×𝑅 instead of a multiple Kronecker
product of symbol matrices. With the OSTBC coding, the symbol matrix is estimated through
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Figure 22 – Comparison of the TST-MSMKron and OSTBC codings.

the ZF receiver as:
Ŝ
𝑇
𝑍𝐹 = (HW)†X, (5.37)

whereW ∈ ℂ2𝑀𝑇×𝑅 is the OSTBC coding matrix and X ∈ ℂ2𝑀𝑅×𝐽. The transmission rate is
given by:

𝑇𝑂𝑆𝑇𝐵𝐶 =
𝐽𝑅
𝑀𝑇

log2(𝜇). (5.38)

where 𝐽𝑅 is the total number of transmitted symbols. For both codings, the number of
transmitted symbols is the same. See the design parameters in Table 25. As expected, from
Figure 22, we conclude that the TST-MSMKron coding gives a better SER than the OSTBC
coding thanks to a greater coding diversity brought by the Kronecker product of symbol
matrices. As a counterpart, the transmission rate with the TSTF-MSMKron coding is smaller
than the one with the OSTBC coding. See Table 25.

Analyzing the above presented numerical results allows us to draw the following
conclusions about the new TST-MSMKron coding:

• space diversity is provided by both the receive antennas (𝑀𝑅) and the coding tensor
𝒢 via the transmit antennas, implying an increase of the dimensions of the received
signals tensor, and a greater redundancy in the transmitted symbols, respectively. See
Eqs. (4.34) and (4.37);

• time diversity is provided by the transmission in 𝑃 blocks which implies a repetition
of transmitted symbols and an increase of the number of received signals;

• coding diversity is introduced by the TST-MSMKron coding which creates a redun-
dancy of each transmitted symbol, while increasing the number of received signals via
the dimensions 𝐽𝑛 of the received signals tensor.
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Figure 23 – SER comparison with THOSVD, Bi-ALS-KronF and ZF receivers.

Space, time and coding diversities are highlighted in the expression (4.39) of received signals,
owing the sums on transmit antennas due to the tensor coding, and on the numbers of
symbols contained in each data stream, as resulting from cross-multiplications between
symbols provided by multiple Kronecker products which define the MSMKron coding.

5.4.3 Comparison of the proposed semi-blind receivers

In the next experiments, we first compare the SERs obtained with the proposed semi-
blind and ZF-KronF receivers (using Eq. (5.19)), as shown in stage 1 of Figure 17. For the
Bi-ALS-KronF receiver, both versions corresponding to Eqs. (5.4)-(5.5) and Eqs. (5.6)-(5.7)
are considered. Then, we compare the performance of semi-blind receivers, in terms of
channel and reconstructed signal NMSEs. For these simulations, the design parameters
have the following values: (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (3,3), 𝐾 = 3, 𝐽1 = 𝐽2 = 4,
𝑅1 = 𝑅2 = 2, 𝑃 = 34.

From Figures 23 and 24, we can conclude that the THOSVD receiver provides better
performance than the Bi-ALS-KronF ones. That is due to the closed-form of THOSVD
allowing to jointly estimate the channel and symbol matrices, while the Bi-ALS-KronF
receivers are composed of two steps, one iterative to estimate (H, S), and one in closed-form
to separate the symbolmatrices from S estimated in the first step. Note also that the simplified
Bi-ALS-KronF receiver (5.6)-(5.7) performs a little better than the other version (5.4)-(5.5)
due to the simplification of the pseudo-inverse calculation. As expected, the ZF-KronF
receiver provides the better SER due to a priori knowledge of the channel.

In Table 23, a comparison of the complexities of Bi-ALS-KronF receiver, both ver-
sions corresponding to Eqs. (5.4)-(5.5) and Eqs. (5.6)-(5.7) and THOSVD is provided. Based
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Figure 24 – (a) Channel NMSE comparison and (b) Reconstructed signal NMSE comparison.

on this table we can define the ratios 𝑂1 = 𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.4)−(5.5)∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.6)−(5.5)1 ,
𝑂2 = 𝑂𝑇𝐻𝑂𝑆𝑉𝐷∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.4)−(5.5) and 𝑂3 = 𝑂𝑇𝐻𝑂𝑆𝑉𝐷∕𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.6)−(5.7), which ex-
presses how many times Bi-ALS-KronF (5.4)-(5.5) is more computational complexity than
Bi-ALS-KronF (5.6)-(5.7) and how many times THOSVD algorithm is more computationally
demanding than Bi-ALS-KronF algorithms. We have

𝑂1 =
𝑖1(4𝑀2

𝑇𝑃𝐽 + 2𝑅2𝑃𝑀𝑅) +
(∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛
)∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
𝑖2(4𝑀2

𝑇𝑃𝑅 + 𝑅2𝐽 + 8𝑀2
𝑇𝑀𝑅) +

(∑𝑁
𝑛=1 𝑅𝑛𝐽𝑛

)∏𝑁
𝑞=1 𝑅𝑞𝐽𝑞

(5.39)

𝑂2 =
4𝑀2

𝑇𝑅2𝑃 + 4𝑀𝑇𝑀𝑅𝑅2𝐽2 + 4𝑀𝑅𝑀𝑇(
∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛)
∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
𝑖1(4𝑀2

𝑇𝑃𝐽 + 2𝑅2𝑃𝑀𝑅) +
(∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛
)∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
(5.40)

𝑂3 =
4𝑀2

𝑇𝑅2𝑃 + 4𝑀𝑇𝑀𝑅𝑅2𝐽2 + 4𝑀𝑅𝑀𝑇(
∑𝑁

𝑛=1 𝑅𝑛𝐽𝑛)
∏𝑁

𝑞=1 𝑅𝑞𝐽𝑞
𝑖2(4𝑀2

𝑇𝑃𝑅 + 𝑅2𝐽 + 8𝑀2
𝑇𝑀𝑅) +

(∑𝑁
𝑛=1 𝑅𝑛𝐽𝑛

)∏𝑁
𝑞=1 𝑅𝑞𝐽𝑞

(5.41)

where 𝑖1 and 𝑖2 are the average numbers of iterations for convergence of the Bi-ALS-KronF
(5.4)-(5.5) and Bi-ALS-KronF (5.6)-(5.7) algorithms, respectively. Figure 25 shows the com-
plexity ratios 𝑂1, 𝑂2 and 𝑂3 calculated using average values for 𝑖1 and 𝑖2 obtained from all the
Monte Carlo runs and considering the variation of the number of time blocks 𝑃 ∈ [34, 40].
From this figure, we can note that even as the number of time blocks increases, the com-
plexities for the three receivers are linear. The Bi-ALS-KronF (5.6)-(5.7) is much less com-
putationally demanding than Bi-ALS-KronF (5.4)-(5.5) and THOSVD algorithms due the
simplification of the pseudo-inverse where this algorithm needs less number of iterations to
converge, such that 𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.4)−(5.5) >> 𝑂𝑇𝐻𝑂𝑆𝑉𝐷 >> 𝑂𝐵𝑖−𝐴𝐿𝑆−𝐾𝑟𝑜𝑛𝐹(5.6)−(5.7).
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Figure 25 – Complexity ratio of THOSVD, Bi-ALS-KronF - Eqs. (5.4) and (5.7) and Bi-ALS-KronF -
Eqs. (5.6)-(5.7) receivers.

5.4.4 Multipath parameters estimation

In this section, we evaluate the performance of the second stage of the proposed
receivers in Figure 17, to estimate themultipath channel parameterswhose values considered
in the simulations are given in Table 25. The MSE performance for angles estimation at
transmission and reception, respectively, obtainedwith the JIRAFEmethod is comparedwith
the one provided by the RectALS algorithm which results from the following optimization
problem:

min
A𝑇𝑥 ,A𝑇𝑦 ,A𝑅𝑥 ,A𝑅𝑦 ,B

∥ℋ − ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B ∥2𝐹 . (5.42)

A comparison is also made of the JIRAFE method without rectification and with the
TR1A and TR1A𝑖𝑚𝑝 rectification methods. Note that the estimated channel used in stage 2 is
the one obtained with the best algorithm in stage 1, i.e., with the THOSVD receiver.

Figures 26(a) and 26(b) present the estimated angles MSE of transmission and recep-
tion, respectively, while Figure 27 plot the path-loss matrix B and reconstructed channel
NMSEs. From Figures 26(a) and 26(b), we can conclude that the JIRAFE method combined
with the TR1A𝑖𝑚𝑝 rectification strategy outperforms the RectALS algorithm. This can be
explained by the noise reduction property of the truncated SVD in the TTHSVD steps, which
makes the JIRAFE method more robust to noise. Another cause is that the RectALS method
is based on a five-step iterative algorithm, while the JIRAFE algorithm uses only a two-step
ALS algorithm.

For the same reasons, Figures 27 (a) and (b) illustrate the superiority of the JIRAFE
algorithm over the RectALS algorithm in terms of both the NMSE of the path-loss matrix
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Figure 26 – Estimated angles MSE comparison of transmission (a) and reception (b).

Figure 27 – (a) Estimated path-losses NMSEs and (b) reconstructed channel NMSEs.

and the reconstructed channel, with the best performance provided by the JIRAFE method
combined with the TR1A𝑖𝑚𝑝 rectification strategy.

5.5 Chapter summary

In this chapter, by exploiting the received signals tensor presented in Chapter 4 and
assuming the TST coding tensor known, two semi-blind receivers in two stages have been
derived to joint estimate the transmitted information symbols, the channel and channel
parameters (DoD and DoA angles, path-loss coefficients). At the first stage, the first receiver
is composed of two steps. The first one is based on the iterative ALS algorithm, while the
second one considers the closed-form KronF algorithm to separate the symbol matrices.
The second receiver is based on the closed-form THOSVD algorithm which can directly and
jointly estimate the channel and symbol matrices. In comparison with the supervised system
in [25] which requires using a pilot sequence to estimate the channel, the proposed receivers
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only need a priori knowledge of one symbol per symbol matrix. Necessary conditions for
system identifiability have been established for each receiver, showing that the THOSVD
receiver is more constraining than the Bi-ALS-KronF one. In the second stage, the estimated
channel is used to estimate the channel parameters by means of the JIRAFE algorithm. A
new rectification method has been proposed for ensuring the Vandermonde structure of
the steering matrices, which allows to improve the accuracy of the DoD and DoA angles
estimation.

Extensive Monte Carlo simulations have allowed to illustrate the impact of all the
design parameters on the SER performance. And the performances of the proposed semi-
blind receivers have been compared in terms of SER, channel NMSE and angles MSE. As
expected, the closed-form receiver outperforms the iterative receiver. Simulation results also
have illustrated the great flexibility of the TST-MSMKron coding, and corroborated the very
good SER performance and of angles estimation obtained with the closed-form THOSVD
algorithm combined with the JIRAFE method.
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6 Conclusions and Perspectives

6.1 Conclusions

This thesis has addressed the study of tensor decompositions and algorithms/semi-
blind receivers applied to data reconstruction and DD-DP FDDMassive MIMO system. In
particular, new tensor models for data compression and for received signals were presented.
The second one combines a particular case ofMKronST codingwith the TST coding and a 5th-
order channel tensor, modeled by PARAFAC decomposition to transmit the symbol matrices.
Based on this model, new semi-blind receivers composed of two steps were proposed that
perform the joint estimation of the symbols, the channel, and the channel parameterswithout
channel knowledge. Performance analysis of each proposed system showed their behavior,
and effectiveness, evaluating the improvements of the techniques addressed. In the sequel,
we provide a brief conclusion of each chapter that has proposed original contributions.

In Chapter 3, we presented the multidimensional CX decomposition to perform
a low-rank approximation of an 𝑁-order tensor preserving initial information. Based on
the proposed tensor model, an algorithm was presented based on the computation of the
probabilities of the columns of each matrix unfolding to perform the reconstruction of the
data that preserves some data tensor information. The simulation results illustrated the
effectiveness of the proposed algorithm in terms of reconstruction compared to the standard
THOSVD method. The proposed algorithm corroborates to have a similar computation time
to the THOSVD and with the advantage of keeping the information of the original data.

In Chapter 4, we presented a new received signal that uses the particular case of
MKronST coding [10] combined with a TST coding and the 5-order channel tensor model to
transmit the symbols. The coding used is called tensor space-time (TST)-Multiple Symbol
Matrices Kronecker (MSMKron) coding, this coding does not require a pre-coding matrix
and allows us to propose semi-blind receivers in two steps to joint estimate symbol matrix,
channel, and channel parameters. Based on the TST-MSMKron coding and the channel
tensor, the signals received were modeled as a new decomposition called (𝑁 + 2)-order
coupled nested Tucker-PARAFAC decomposition, where the core tensor is the TST coding.
The coupling is due to the coding that is common to the 𝑉𝑅− and 𝐻𝑅− polarized receive
antennas. The nested structure results from the fact that a matrix unfolding of the channel
tensor constitutes one matrix factor of the Tucker model, the other factors being the steering
and path-loss matrices. Identifiability conditions were established for the new model. Under
the assumption that the tensor coding is known at the reception, this system model is
essentially unique under mild conditions.
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In Chapter 5, by exploiting the tensor model of the received signals presented in
Chapter 4 and the knowledge of the coding tensor, we present semi-blind receivers in two
steps to joint estimate symbol matrix, channel, and channel parameters (DoD and DoA
angles, path-loss coefficients). In comparison with the supervised system in [25] which
requires using a pilot sequence to estimate the channel, the proposed receivers only need
a priori knowledge of one symbol per symbol matrix. Parameter identifiability conditions
and computational complexity for each receiver were established and compared. In the
first step, the symbol matrices and channel are estimated by means of the Bi-ALS-KronF
or THOSVD algorithms, and in the second step, the estimated channel is used to estimate
the channel parameters (DoD and DoA angles, and path-loss coefficients) by means of
the JIRAFE algorithm which exploits an equivalence between PARAFAC and tensor train
decompositions. A new rectification method was proposed for ensuring the Vandermonde
structure of the steering matrices. Simulation results showed that the semi-blind receiver is
efficient to estimate the symbols, the channel, and the channel parameters and the great
flexibility of the TST-MSMKron coding.

6.2 Perspectives

In the following, we list some perspectives from this thesis:

• Based on the tensor decomposition proposed in Chapter 3, one perspective is the
development of more competitive CX tensor decomposition algorithms in terms of
computational cost, as well as their combination with tensor completion algorithms
related to applications as compressive/compressed sensing [113, 114] and data recon-
struction for Big Data [115];

• Perspectives of Chapter 4 include the extension of this new tensormodel for cooperative
(multi-relay) massive MIMO mmWave cellular systems, with the objective to improve
coverage. More generally, we need to exploit new technologies like reconfigurable
intelligent surfaces (RIS), massive reconfigurable MIMO antennas, and mmWave/THz
technologies, which opens new multidisciplinary research issues at the intersection
of wireless communications, computer science, artificial intelligence, physics, and
mathematics [116];

• We should propose a new coding based on the Kronecker or Khatri-Rao product of the
symbol matrices, and propose new semi-blind receivers to estimate the parameters
based on this new signals received model. This can be considered in order to increase
the transmission rate;

• The proposed FDD MIMO system must be compared to the FDD MIMO systems
presented in the literature to analyze the performance. We must consider the system
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presented in [25] to compare, as it considers the pilot symbols to perform the supervised
estimation of the channel;

• We should consider different scenarios, such as the number of paths 𝐾 > 4, to pro-
pose new semi-blind receivers to estimate the symbol matrices, channel and channel
parameters.
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Introdução

O número de dispositivos conectados à Internet está aumentando exponencialmente
e tecnologias emergentes, como cidades e casas inteligentes já são uma realidade. Aplicações
emergentes, como streaming de TV, serviços de realidade virtual, entre muitas outras exigem
transmissão de dados de alto rendimento e serviços de cobertura mais amplos. Para suportar
os desafios das novas tecnologias, é necessário que sistemas sem fio de sexta geração (6G)
sejam desenvolvidos com novos recursos atraentes, como alto desempenho em termos de
taxa de dados, latência, confiabilidade, cobertura, conectividade maciça e móvel e eficiência
energética [1, 2, 3]. Para o desenvolvimento dos sistemas de rede sem fio 6G, muitos desafios
devem ser enfrentados. A geração de sinal em THz contínuo é difícil porque possui requisitos
mais rigorosos em relação ao tamanho, é um sinal de comunicação de curta distância e tem
mais complexidade no projeto das antena/transmissor, além de altas perdas de caminho de
transmissão e alto custo [5, 6].

No caso de sistemas de comunicação sem fio, a satisfação desses requisitos depende
muito de uma informação precisa do conhecimento do estado do canal (CSI) para compensar
as perturbações causadas pela propagação semfio que induz interações de sinais transmitidos
com o ambiente. Os canais seguemmodelos estatísticos caracterizados por meio de variáveis
aleatórias que variam no tempo. Além do estudo do comportamento do canal, é necessário
o desenvolvimento de técnicas que evitem o desvanecimento profundo do sinal antes de
chegar ao seu destino. Uma alternativa para lidar com esses efeitos presentes nos canais
sem fio é explorar as diversidades de sinal, como espaço, tempo, frequência, codificação e
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diversidades de cooperação. Quando a diversidade nos sistemas MIMO é explorada, significa
que são criadas redundâncias no sinal, explorando a natureza aleatória da propagação de
rádio de tal maneira que as versões diferentes e independentes do mesmo sinal atingem o
destino. Como a diversidade é um recurso tão importante, um sistema sem fio pode usar
vários tipos de diversidade simultaneamente [7].

Durante as últimas décadas, as decomposições tensoriais têm sido utilizadas para
modelar sinais recebidos, bem como derivar receptores para estimar o canal e os símbolos
que exploram várias formas de diversidade. O uso de decomposições tensoriais combinadas
com novas codificações para transmitir sinais são amplamente propostas para introduzir
diversidades extras aos sistemas MIMO ponto a ponto e relé. Alguns exemplos são as codifi-
cações espaço-tempo-frequência (STF), tensor espaço-tempo (TST) e tensor espaço-tempo-
frequência (TSTF) [8, 9, 10] e codificações com base em múltiplos produtos de Khatri-Rao e
Kronecker das matrizes de símbolos [11, 12, 13]. O uso dessas codificações com abordagens
tensoriais para modelar o design do sistema MIMO levou ao desenvolvimento de novos
modelos tensoriais [9, 10, 14, 13, 15] e permite a proposição de receptores semi-cegos para
estimar conjuntamente os símbolos transmitidos e parâmetros do canal, fornecendo um
aumento na taxa de transmissão em comparação com as outras codificações [12].

Os sistemas MIMOmassivos fazem parte dos sistemas sem fio atuais [16]. Eles são
muito importantes no desenvolvimento das redes sem fio 6G, porque precisam lidar com
o manuseio de volumes de dados massivos e conectividade com alta taxa de dados por
dispositivo [1, 2]. Os sistemas MIMOmassivos também fornecem ganhos de desempenho
em termos de confiabilidade e segurança sobre os sistemas de comunicaçãoMIMO existentes
[27, 23]. No entanto, usufruir dessas vantagens na prática depende da estimativa precisa
do CSI, que afeta o desempenho da forma de transmissão de feixe nos transmissores e
precisão da decodificação nos receptores [28]. Para isso, é necessário propor modelos de sinal
recebidos e receptores que permitam estimar o canal e seus parâmetros commelhor precisão.
A modelagem de canais polarizados 3D tem sido objeto de estudo de intensa pesquisa [27],
porque permite explorar a componente do canal na direção de elevação, particularmente útil
para sistemas MIMOmassivos caracterizados por um grande número de antenas. Isso leva a
canais MIMO direcionais duplos (DD), enquanto o uso de uma polarização dupla (DP) leva
a canais MIMO duplo polarizados. Matrizes de antena DP, usando polarizações horizontais
e verticais, podem oferecer grandes ganhos de multiplexação (isto é, capacidade) para os
sistemas MIMO, combinando diversidades de espaço e polarização, como mostrado em [28].
No entanto, estimar os principais parâmetros de um canal DD-DP é um desafio devido ao
grande número de parâmetros de canal a serem estimados. As técnicas de processamento de
sinais baseadas em tensores podem explorar naturalmente a estrutura multidimensional dos
dados e suas múltiplas formas de diversidade, permitindo elaborar algoritmos para receptor
com boas compensações de complexidade de desempenho enquanto operam sobre escolhas
mais relaxadas de parâmetros do que os receptores convencionais baseados em matrizes
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[29].

Nesta tese, abordamos novos receptores semi-cegos para estimar conjuntamente
símbolos, canal e parâmetros do canal em sistemas de comunicação sem fio MIMO DD-DP.
Em particular, uma das principais contribuições desta tese está em torno da proposição de
um novo sistema MIMO DD-DP, equipado com URAs nas duas extremidades do link e com-
binando com as codificações TST e do produto Kronecker de múltiplas matrizes de símbolos,
que chamamos codificação TST-MSMKron. A codificação MSMKron é um caso particular
da codificação MKronST (do inglês, múltiplo Kronecker Space-time) apresentada em [11]. O
tensor do canal é representado por uma decomposição PARAFAC de quinta ordem separado
em duas partes associadas às antenas de recepção verticalmente (VR) e horizontalmente
(HR) polarizadas, respectivamente. Em seguida, é estabelecido que os tensores de sinais
recebidos satisfazem um novo modelo Tucker-PARAFAC aninhado acoplado, cujo tensor
core é o tensor de codificação TST.

Capitalizando esse novomodelo do tensor e o conhecimento do tensor de codificação,
receptores semi-cegos são derivados para estimar os símbolos transmitidos e os parâmetros
do canal (ângulos DOD e DOA e coeficientes de perda de caminho). Esses receptores são
compostos por dois estágios. No primeiro, os símbolos da informação e o canal são estimados
em conjunto, usando um algoritmo demínimos quadrados alternados (Bi-ALS), seguido pelo
algoritmo KronF para separar as matrizes de símbolo ou aplicando o algoritmo THOSVD,
que estima direta e conjuntamente as matrizes de símbolo e o canal de forma fechada. No
segundo estágio, a partir do tensor de canal estimado, os parâmetros do canal são estimados
utilizando o algoritmo JIRAFE combinado com um novo método de retificação que leva em
consideração a estrutura de Vandermonde das matrizes de direção. As condiçoes de identifi-
cabilidade são analisadas para cada receptor. Devido à natureza semi-cega dos receptores
propostos, este trabalho estende a abordagem de [26], que usa um método supervisionado
para estimativa do canal. Para ilustrar o comportamento e a eficácia dos esquemas propostos,
são realizadas extensas simulações de Monte Carlo.

Materiais e Métodos

Nas próximas seções, o modelo do sistema é apresentado, em termos do modelo do
canal, codificação e tensor de sinais recebidos.

Modelo do tensor do canal

Assumimos que o receptor e o transmissor empregam URAs, com pares de antenas
polarizado cruzado de recepção e transmissão, respectivamente. Cada par de antenas con-
siste em uma antena polarizada vertical (𝑉)- e uma polarizada horizontal (𝐻). Definindo
(𝑀𝑅𝑥 ,𝑀𝑅𝑦 ) and (𝑀𝑇𝑥 ,𝑀𝑇𝑦) como onúmero de antenas de recepção e transmissão, nas direções
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𝑥 e 𝑦, respectivamente, e𝑀𝑇 = 𝑀𝑇𝑥𝑀𝑇𝑦 e𝑀𝑅 = 𝑀𝑅𝑥𝑀𝑅𝑦 como o número total de antenas
de transmissão e recepção, o canal DD-DP é representado como uma matrizH ∈ ℂ2𝑀𝑅𝑀𝑇 ,
particionado da seguinte maneira [26]:

H = [ H(𝑉𝑅 ,𝑉𝑇) H(𝑉𝑅 ,𝐻𝑇)

H(𝐻𝑅 ,𝑉𝑇) H(𝐻𝑅 ,𝐻𝑇) ] = [ H(𝑉𝑅)

H(𝐻𝑅) ] , (A.1)

onde os blocosH(𝑉𝑅) eH(𝐻𝑅) representamos canais de cada polarização no receptor,H(𝑉𝑅 ,𝑉𝑇) ∈
ℂ𝑀𝑅×𝑀𝑇 é a matriz do sub-canal entre as antenas de transmissão e recepção V-polarizadas, e
H(𝑉𝑅 ,𝐻𝑇) ∈ ℂ𝑀𝑅×𝑀𝑇 é a matriz do sub-canal entre as antenas de transmissão H-polarizada e
as antenas de recepção V-polarizadas. Os outros dois blocos (A.1) são definidos da mesma
forma. Cada sub-canalH(𝑟,𝑞), com 𝑟 ∈ {𝑉𝑅, 𝐻𝑅} e 𝑞 ∈ {𝑉𝑇, 𝐻𝑇} é modelado como:

H(𝑟,𝑞) = A𝑅diag
(
b(𝑟,𝑞)

)
A𝑇
𝑇 ∈ ℂ𝑀𝑅×𝑀𝑇 , (A.2)

com 𝑏(𝑟,𝑞)𝑘 sendo a perda de caminho complexa para o 𝑘-ésimo caminho e o (𝑟, 𝑞)-ésimo
sub-canal, contendo os efeitos de polarização e desbotamento, e 𝐾 é o número de caminho
entre o transmissor e o receptor. As matrizes de direção são dadas por:

A𝑇 = [a𝑇(𝜃1,𝜙1) ... a𝑇(𝜃𝐾,𝜙𝐾)] = A𝑇𝑥 ⋄A𝑇𝑦 ∈ ℂ𝑀𝑇×𝐾, (A.3)

A𝑅 = [a𝑅(𝜓1,𝜗1) ... a𝑅(𝜓𝐾,𝜗𝐾)] = A𝑅𝑥 ⋄A𝑅𝑦 ∈ ℂ𝑀𝑅×𝐾, (A.4)

ondeA𝑇𝑥 ∈ ℂ𝑀𝑇𝑥×𝐾,A𝑇𝑦 ∈ ℂ𝑀𝑇𝑦×𝐾,A𝑅𝑥 ∈ ℂ𝑀𝑅𝑥×𝐾 eA𝑅𝑦 ∈ ℂ𝑀𝑅𝑦×𝐾 são as matrizes de direção
nas direções 𝑥 e 𝑦, no transmissor e no receptor. Os vetores de direção para o 𝑘-ésimo
caminho são definidos como:

a𝑇(𝜃𝑘,𝜙𝑘) = a𝑇𝑥 ,𝑘 ⊗ a𝑇𝑦 ,𝑘 ∈ ℂ𝑀𝑇𝑥𝑀𝑇𝑦 , a𝑅(𝜓𝑘,𝜗𝑘) = a𝑅𝑥 ,𝑘 ⊗ a𝑅𝑦 ,𝑘 ∈ ℂ𝑀𝑅𝑥𝑀𝑅𝑦 , (A.5)

cada vetor de direção é um vetor de Vandermonde em função dos ângulos de azimute e
elevação. Substituindo (A.2) em (A.1) temos:

H = [ A𝑅 0
0 A𝑅

]
⎡
⎢
⎣

𝐷1
(
B(𝑉𝑅)

)
𝐷2

(
B(𝑉𝑅)

)

𝐷1
(
B(𝐻𝑅)

)
𝐷2

(
B(𝐻𝑅)

) ⎤⎥
⎦
[ A𝑇 0

0 A𝑇
]
𝑇

, (A.6)

com B(𝑉𝑅) =
[
b(𝑉𝑅 ,𝑉𝑇) b(𝑉𝑅 ,𝐻𝑇)

]𝑇
∈ ℂ2×𝐾, B(𝐻𝑅) =

[
b(𝐻𝑅 ,𝑉𝑇) b(𝐻𝑅 ,𝐻𝑇)

]𝑇
∈ ℂ2×𝐾, . Usando

a propriedade (2.1) e substituindoA𝑇 eA𝑅 por suas expressões (A.3) e (A.4), respectivamente,
temos:

H(𝑉𝑅) =
(
A𝑅𝑥 ⋄A𝑅𝑦

) (
B(𝑉𝑅) ⋄A𝑇𝑥 ⋄A𝑇𝑦

)𝑇
, (A.7)

H(𝐻𝑅) =
(
A𝑅𝑥 ⋄A𝑅𝑦

) (
B(𝐻𝑅) ⋄A𝑇𝑥 ⋄A𝑇𝑦

)𝑇
. (A.8)

Essas equações podem ser interpretadas como o desdobramento da matriz de dois
tensores de quinta ordem ℋ(𝑉𝑅) e ℋ(𝐻𝑅) satisfazendo a decomposição PARAFAC [[A𝑇𝑥 ,
A𝑇𝑦 ,A𝑅𝑥 , A𝑅𝑦 ,B

(𝑉𝑅);𝐾]] e [[A𝑇𝑥 ,A𝑇𝑦 ,A𝑅𝑥 ,A𝑅𝑦 ,B
(𝐻𝑅);𝐾]], respectivamente:

ℋ(𝑉𝑅) = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B
(𝑉𝑅) ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×2, (A.9)
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Figure 28 – Tensor do canalℋ modelado como uma decomposição PARAFAC.

ℋ(𝐻𝑅) = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B
(𝐻𝑅) ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×2. (A.10)

Concatenando os tensores do canalℋ(𝑉𝑅) eℋ(𝐻𝑅) ao longo do quintomodo e definindo
B ∈ ℂ4×𝐾 como a concatenação das matrizes B(𝑉𝑅) e B(𝐻𝑅):

B = [ B(𝑉𝑅)

B(𝐻𝑅) ] , (A.11)

o canal do tensor globalℋ ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4 pode ser escrito como:

ℋ = [ ℋ(𝑉𝑅)

ℋ(𝐻𝑅)
] = ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B ∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4, (A.12)

que é uma decomposição PARAFAC de quinta ordem e rank 𝐾 ilustrada na Figura 28.

O tensor de canal resultante é uma extensão do tensor do canal de quarta ordem,
apresentado em [26], com uma URA no transmissor e uma ULA no receptor. Observe que a
modelagem do canal considerada não leva atrasos e mudanças de Doppler em consideração,
assumindo que a largura de banda do canal é suficientemente pequena e o canal varia
suficientemente lentamente em relação à duração da transmissão.

Codificação TST-MSMKron

Nesta seção, apresentamos a codificação usada no transmissor que combina as codifi-
cações TST e MSMKRon. Este último pode ser visto como a codificação MKronST [11], sem
o conhecimento prévio de uma matriz de símbolo. Consiste em um produto de Kronecker de
𝑁 símbolos S(𝑛) ∈ ℂ𝐽𝑛×𝑅𝑛 , com 𝑛 ∈ [1, 𝑁], cada uma sendo formado por 𝑅𝑛 fluxos de dados
compostos por 𝐽𝑛 símbolos cada:

S = ⊗𝑁
𝑛=1S

(𝑛) ≜ S(1) ⊗ ... ⊗ S(𝑁) ∈ ℂ𝐽×𝑅, (A.13)

onde 𝑅 =∏𝑁
𝑛=1 𝑅𝑛 e 𝐽 =

∏𝑁
𝑛=1 𝐽𝑛. A codificação MSMKron é combinada com um tensor de

codificação 𝒢 ∈ ℂ2𝑀𝑇×𝑅1×...×𝑅𝑁×𝑃 de tal maneira que os sinais codificados formam um tensor
de (𝑁 + 2)-ordem que satisfaz o modelo Tucker dado por:

𝒱 = 𝒢 ×1 I2𝑀𝑇 ×2 S
(1) ×3 ... ×𝑁+1 S(𝑁) ×𝑁+2 I𝑃 ∈ ℂ2𝑀𝑇×𝐽1×...×𝐽𝑁×𝑃. (A.14)
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Observe que o tensor do núcleo desta decomposição é o tensor de codificação 𝒢. O
seguinte desdobramento pode ser deduzido:

V2𝑀𝑇×𝑃𝐽 = G2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 ∈ ℂ2𝑀𝑇×𝑃𝐽, (A.15)

onde G2𝑀𝑇×𝑃𝑅 ∈ ℂ2𝑀𝑇×𝑃𝑅 é um desdobramento do tensor de codificação 𝒢, e S é definido
em (A.13). Observe que a matriz de identidade I𝑃 ∈ ℝ𝑃×𝑃 in (A.14), que fornece ao produto
Kronecker em (A.15), está associado a 𝑃 repetições das matrizes de símbolos por transmissão
em blocos 𝑃.

Modelo do sinal recebido

Nesta seção, o modelo tensorial dos sinais recebidos é descrito. No caso sem ruído,
os sinais recebidos são obtidos transmitindo a matriz de sinais codificados (A.15) através do
canalH definido em (A.1), que fornece um modelo do sistema padrão como (4.1):

X2𝑀𝑅×𝑃𝐽 = HV2𝑀𝑇×𝑃𝐽 ∈ ℂ2𝑀𝑅×𝑃𝐽. (A.16)

Substituindo (A.15) em (A.16) leva à equação:

X2𝑀𝑅×𝑃𝐽 = HG2𝑀𝑇×𝑃𝑅 (I𝑃 ⊗ S)𝑇 . (A.17)

Levando em consideração a definição (A.13) de S, concluímos que esta equação
representa um desdobramento de um modelo Tucker de (𝑁 + 2)-ordem cujo o tensor do
núcleo is é a codificação 𝒢 e as matrizes de fatores são canal H, as matrizes de símbolos
S(𝑛), 𝑛 ∈ [1, 𝑁] e a matriz identidade I𝑃. Este modelo de Tucker para o tensor de sinais
recebidos 𝒳 ∈ ℂ2𝑀𝑅×𝐽1×...×𝐽𝑁×𝑃 pode ser deduzido apartir de (A.14) e (A.16) como:

𝒳 = 𝒱 ×1 H = 𝒢 ×1 H ×2 S(1) ×3 ... ×𝑁+1 S(𝑁) ×𝑁+2 I𝑃. (A.18)

Combinando os modos 2 a 𝑁 + 1 dos tensores 𝒢 e 𝒳 resulta na forma contraída
𝒢𝑐 ∈ ℂ2𝑀𝑇×𝑅×𝑃 e 𝒳𝑐 ∈ ℂ2𝑀𝑅×𝐽×𝑃, e a expressão (A.18) pode ser escrita como:

𝒳𝑐 = 𝒢𝑐 ×1 H ×2 S ×3 I𝑃. (A.19)

Com base no modelo Tucker contraído de terceira ordem (A.19), é fácil deduzir os
seguintes desdobramentos para 𝒳:

X𝑃𝐽×2𝑀𝑅 = (I𝑃 ⊗ S)G𝑃𝑅×2𝑀𝑇H
𝑇 ∈ ℂ𝑃𝐽×2𝑀𝑅 , (A.20)

X2𝑃𝑀𝑅×𝐽 = (I𝑃 ⊗H)G2𝑃𝑀𝑇×𝑅S
𝑇 ∈ ℂ2𝑃𝑀𝑅×𝐽, (A.21)

X𝑃×2𝑀𝑅𝐽 = G𝑃×2𝑀𝑇𝑅 (H⊗ S)𝑇 ∈ ℂ𝑃×2𝑀𝑅𝐽. (A.22)



129

Unicidade

A unicidade do modelo do sistema resulta unicidade do modelo Tucker (A.18) do
tensor de sinal recebido 𝒳 combinado com a unicidade da decomposição PARAFAC (A.12)
do tensor do canalℋ. Para o modelo Tucker (A.19),o tensor do núcleo será considerado
conhecido na recepção, o que implica unicidade das matrizes até fatores de escala como:

Ŝ = S𝜆(𝑆), Ĥ = H𝜆(𝐻), 𝜆(𝑆)𝜆(𝐻) = 1 . (A.23)

O tensor do canal (A.12) é modelado pela decomposição PARAFAC de posto 𝐾 que é
essencialmente única se a seguinte condição for satisfeita [47]:

𝑘A𝑇𝑥
+ 𝑘A𝑇𝑦

+ 𝑘A𝑅𝑥
+ 𝑘A𝑅𝑦

+ 𝑘B ≥ 2𝐾 + 2, (A.24)

onde 𝑘A é o posto Kruskal de A, ou seja, o maior número inteiro de tal forma que todo
conjunto de 𝑘A colunas de A seja linearmente independente. Se (A.24) é satisfeita, qualquer
conjunto de matrizes (Â𝑇𝑥 , Â𝑇𝑦 , Â𝑅𝑥 , Â𝑅𝑦 , B̂) que satisfaça (A.12) estão relacionados com as
matrizes originais por:

Â𝑇𝑦 = A𝑇𝑦𝚷𝚲
(𝑇𝑦), Â𝑇𝑥 = A𝑇𝑥𝚷𝚲

(𝑇𝑥),
Â𝑅𝑦 = A𝑅𝑦𝚷𝚲

(𝑅𝑦), Â𝑅𝑥 = A𝑅𝑥𝚷𝚲
(𝑅𝑥),

B̂ = B𝚷𝚲(𝐵), 𝚲(𝑇𝑦)𝚲(𝑇𝑥)𝚲(𝑅𝑦)𝚲(𝑅𝑥)𝚲(𝐵) = I𝐾,
(A.25)

onde𝚷 ∈ ℂ𝐾×𝐾 é a matriz de permutação e𝚲(𝑓) são matrizes diagonais, com 𝑓 ∈ {𝑇𝑦, 𝑇𝑥, 𝑅𝑦,
𝑅𝑥, 𝐵}. Observe que a ambiguidade da permutação é irrelevante do ponto de vista prático, pois
corresponde a uma permutação de caminhos. Devido à natureza aleatória dos parâmetros
do canal, as matrizes A𝑇𝑥 , A𝑇𝑦 , A𝑅𝑥 , A𝑅𝑦 e B são de posto completo. Então, no caso genérico,
a condição (A.24) se torna:

min
(
𝑀𝑇𝑦 ,𝐾

)
+min

(
𝑀𝑇𝑥 ,𝐾

)
+min

(
𝑀𝑅𝑦 ,𝐾

)
+min

(
𝑀𝑅𝑥 ,𝐾

)
+min (4,𝐾) ≥ 2𝐾 +2. (A.26)

Se assumirmos que todas as matrizes de direção e perda de caminho são posto de
coluna completa, o que implica 𝐾 ≤ min(𝑀𝑇𝑦 ,𝑀𝑇𝑥 ,𝑀𝑅𝑦 ,𝑀𝑅𝑥 , 4), então a condição acima é
sempre satisfeita, o que garante a singularidade essencial da decomposição PARAFAC do
tensor do canal. Observe que um pequeno valor de 𝐾 resulta da natureza esparsa do canal.
Neste trabalho, supõe-se que o posto do tensor seja conhecido. Quando 𝐾 é desconhecido, é
necessária uma etapa suplementar para estimar o número de caminhos. As ambiguidades
de escala podem ser facilmente eliminadas, explorando a estrutura de Vandermonde das
matrizes de direção (4.18) cuja primeira linha é composta por uns.

Receptores semi-cegos para systema MIMO DP usando a codificação TST-
MSMKron

Ao explorar os desdobramentos (A.20) e (A.22) o tensor de sinais recebidos, dois
receptores semi-cegos são desenvolvidos para estimar as matrizes de símbolo, o canal e
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os parâmetros do canal (ângulos DoA e DoD, perdas de caminho). Esses receptores são
compostos por dois estágios. No primeiro, as matrizes de símbolo e o canal são estimadas,
enquanto no segundo estágio, os parâmetros do canal são derivados do canal estimado.

Estágio 1 - Estimação do canal e símbolos

Receptor Bi-ALS-KronF

O algoritmo Bi-ALS é usado para estimar conjuntamente o produto MSMKron S
e o desdobramento do canal H. Em seguida, o algoritmo KronF é aplicado para separar
as matrizes de símbolo. O algoritmo Bi-ALS resulta do seguinte problema de otimização
deduzido da Eq.(A.19):

min
S,H

∥ 𝒳𝑐 − 𝒢𝑐 ×1 H ×2 S ×3 I𝑃 ∥2𝐹, (A.27)

Fixando uma dasmatrizes (H, S) om seu valor estimado na iteração anterior, o BI-ALS
substitui o problema de otimização (A.27) por dois sub-problemas de mínimos quadrados
deduzidos dos desdobramentos (A.20) e (A.21), tal que:

min
H

∥ X𝑃𝐽×2𝑀𝑅 −
(
I𝑃 ⊗ Ŝ[𝑖𝑡−1]

)
G𝑃𝑅×2𝑀𝑇H

𝑇 ∥2𝐹,→ Ĥ
𝑇
[𝑖𝑡], (A.28)

min
S

∥ X2𝑃𝑀𝑅×𝐽 −
(
I𝑃 ⊗ Ĥ[𝑖𝑡]

)
G2𝑃𝑀𝑇×𝑅S

𝑇 ∥2𝐹,→ Ŝ
𝑇
[𝑖𝑡]. (A.29)

Para a convergência do algoritmo Bi-ALS, consideramos o erro na [𝑖𝑡]-ésima iteração
deduzido apartir de (A.20) como:

𝑒𝑟𝑟[𝑖𝑡] =∥ X𝑃𝐽×2𝑀𝑅 −
(
I𝑃 ⊗ Ŝ[𝑖𝑡]

)
G𝑃𝑅×2𝑀𝑇Ĥ

𝑇
[𝑖𝑡] ∥2𝐹 . (A.30)

Convergência na [𝑖𝑡]-th iteração é declarada quando |𝑒𝑟𝑟[𝑖𝑡−1] − 𝑒𝑟𝑟[𝑖𝑡]| ≤ 𝜖, onde 𝜖 é
um limiar pré-definido. Considerando as ambiguidade de escala para Ĥ e Ŝ, as estimativas
após corrigir as ambiguidades são dadas por:

̂̂S = Ŝ
(
𝜆(𝑆)

)−1 , ̂̂H = Ĥ𝜆(𝑆). (A.31)

Para eliminar as ambiguidades de escala, é suficiente assumir que um elemento
de S é conhecido a priori, por exemplo, 𝑠11 = 1. Sob essa suposição, 𝜆(𝑆) é calculado como
𝜆(𝑆) = 𝑠11. As matrizes de símbolos S(𝑛) são então estimados usando o algoritmo KronF que
minimiza a seguinte equação:

min
S(𝑛) , 𝑛∈{1,...,𝑁}

∥ ̂̂S − S(1) ⊗ ... ⊗ S(𝑁) ∥2𝐹 . (A.32)

Este problema é resolvido reorganizando ̂̂S como um tensor de posto um [56, 57, 50]:

̂̂𝒮 = s(1)◦...◦s(𝑁) ∈ ℂ𝑅1𝐽1×...×𝑅𝑁𝐽𝑁 , (A.33)
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onde s(𝑛) =vec(S(𝑛)) ∈ ℂ𝑅𝑛𝐽𝑛 , e substituindo (A.32) por:

min
s(𝑛), 𝑛∈[1,𝑁]

∥ ̂̂𝒮 − s(1)◦⋯◦s(𝑁) ∥2𝐹 . (A.34)

Cada forma vetorizada s(𝑛) pode ser estimada calculado a SVDde cada desdobramento
de ̂̂𝒮 :

̂̂S𝑅𝑛𝐽𝑛×𝑅𝑛+1𝐽𝑛+1...𝑅𝑁𝐽𝑁𝑅1𝐽1...𝑅𝑛−1𝐽𝑛−1 = U(𝑛)𝚺(𝑛)V(𝑛)𝐻, (A.35)

com ŝ(𝑛) escolhido como o primeiro vetor singular esquerdo associado ao valor singular
dominante do desdobramento de modo-𝑛, ou seja,:

ŝ(𝑛) = U(𝑛)
.1 ∈ ℂ𝑅𝑛𝐽𝑛 . (A.36)

A matriz de símbolo estimada é obtida "desvetorizando" ŝ(𝑛) como:

Ŝ
(𝑛) = unvec

(
ŝ(𝑛)

)
∈ ℂ𝐽𝑛×𝑅𝑛 . (A.37)

Assumindo 𝑠(𝑛)11 = 1,á ambiguidade escalar é corrigida como:
̂̂S(𝑛) = Ŝ

(𝑛) (𝜆(𝑛)
)−1 ,with, 𝜆(𝑛) = 𝑠(𝑛)11 . (A.38)

Receptor THOSVD

É proposto um segundo receptor semi-cego para estimar direta e conjuntamente as
matrizes de símbolos e canal, usando uma solução de forma fechada baseada no algoritmo
THOSVD [31]. A partir do desdobramento (A.22), com S substituído por (A.13), a estimação
de mínimos quadrados do produto de Kronecker é dado por:

Y ≜ ˆH⊗ S(1) ⊗ ... ⊗ S(𝑁) =
[
(G𝑃×2𝑀𝑇𝑅)†X𝑃×2𝑀𝑅𝐽

]𝑇 ∈ ℂ2𝑀𝑅𝐽×2𝑀𝑇𝑅. (A.39)

O desdobramento G𝑃×2𝑀𝑇𝑅 deve ter um posto de coluna completa para garantir a
unicidade da estimativa de mínimos quadrados, que induz a condição necessária: 2𝑀𝑇𝑅 ≤ 𝑃.
As matrizes de símbolos S(𝑛) e canalH são estimados conjuntamente através do algoritmo
KronF, como na etapa 2 do receptor Bi-ALS-KronF, com a diferença que nós podemos
simultaneamente estimar todas as matrizes (H, S(1),⋯ , S(𝑁)).

Receptor Zero-Forcing (ZF)-KronF

Para avaliar o impacto dos parâmetros de design no desempenho do sistema, usamos
o receptor zero-forcing (ZF)-KronF que assume um conhecimento perfeito do canal. Ŝ𝑍𝐹 de
S é calculado usando (5.5) or (5.7), comH[𝑖𝑡] substituído pelo verdadeiro canalH, tal que:

Ŝ
𝑇
𝑍𝐹 =

[
(I𝑃 ⊗H)G2𝑃𝑀𝑇×𝑅

]†
X2𝑃𝑀𝑅×𝐽. (A.40)

ou
Ŝ
𝑇
𝑍𝐹 =

(
G2𝑃𝑀𝑇×𝑅

)𝐻 (
I𝑃 ⊗H†)X2𝑃𝑀𝑅×𝐽. (A.41)

Em seguida, as matrizes de símbolo S(𝑛) são estimadas usando o algoritmo KronF,
como na segunda etapa do receptor Bi-ALS-KronF.
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Estágio 2 - Estimação dos parâmetros do canal usando JIRAFE

Nesta seção o algoritmo JIRAFE é apresentado para estimar os vetores de direção
e as perdas de caminho a partir do desdobramento do canal estimado ̂̂H, reorganizando-o
como o tensor ̂̂ℋ satisfazendo a decomposição PARAFAC (A.12):

̂̂ℋ = reshape
( ̂̂H,

[
𝑀𝑇𝑥 ,𝑀𝑇𝑦 ,𝑀𝑅𝑥 ,𝑀𝑅𝑦 , 4

])
∈ ℂ𝑀𝑇𝑥×𝑀𝑇𝑦×𝑀𝑅𝑥×𝑀𝑅𝑦×4. (A.42)

Explorar a equivalência entre as decomposições de TT e PARAFAC, o tensor do canal
estimado de quinta ordem (A.42) ode ser reescrito como a seguinte decomposição de TT
deduzida de (2.75), para 𝑁 = 5:

̂̂ℋ = G(1) ×12 𝒢(2) ×13 𝒢(3) ×14 𝒢(4) ×15 𝐺(5), (A.43)

onde G(1) ∈ ℂ𝑀𝑇𝑥×𝐾, 𝒢(2) ∈ ℂ𝐾×𝑀𝑇𝑦×𝐾, 𝒢(3) ∈ ℂ𝐾×𝑀𝑅𝑥×𝐾, 𝒢(4) ∈ ℂ𝐾×𝑀𝑅𝑦×𝐾 e G(5) ∈ ℂ𝐾×4 são os
núcleos TT, ligado aos fatores PARAFACpormeio das relações de equivalência (2.142)-(2.143)
que se tornam [59, 30]:

G(1) = A𝑇𝑥M
−1
1 , G(5) =M4B

𝑇, (A.44)

𝒢(2) = ℐ3,𝐾 ×1 M1 ×2 A𝑇𝑦 ×3 M
−𝑇
2 , (A.45)

𝒢(3) = ℐ3,𝐾 ×1 M2 ×2 A𝑅𝑥 ×3 M
−𝑇
3 , (A.46)

𝒢(4) = ℐ3,𝐾 ×1 M3 ×2 A𝑅𝑦 ×3 M
−𝑇
4 , (A.47)

ondeM𝑛 ∈ ℂ𝐾×𝐾, para 𝑛 ∈ [1, 4], são são matrizes de mudança de base não singulares.
O algoritmo TTHSVD, descrito na Seção 2.5.5, é usado para determinar as estimativas do
núcleo TT Ĝ

(𝑘)
, para 𝑘 ∈ [1, 5], e �̂�(𝑘), para 𝑘 ∈ [2, 3, 4].

Uma nova estratégia de retificação TR1A𝑖𝑚𝑝 é proposta para garantir a estrutura de
Vandermonde das matrizes de direção estimadas na presença de ruído, cujos elementos
da primeira linha são normalizados para 1, como em (4.18). Essa estratégia é uma versão
aprimorada dométodo de aproximação de posto umToeplitz (TR1A) proposto em [62]. Nosso
método de retificação proposto consiste na construção de uma matriz hermitiana Toeplitz
de posto um T𝑘 = Â.𝑘Â

𝐻
.𝑘, de tamanho 𝐼 × 𝐼, aparti de cada coluna 𝑘 de uma matriz de

Vandermonde estimada, calculando sua decomposição de autovalores (EVD) T𝑘 = P𝑘D𝑘P
𝐻
𝑘

para estimar a 𝑘-ésima frequência angular. Ao contrário do método TR1A e identifica apenas
um elemento da matriz Toeplitz com seu termo correspondente no EVD da matriz de posto
1 Toeplitz construída, nosso método explora a identificação de termos de 𝐼 − 1 como:

𝑒−𝑗𝜔𝑘 𝑖 = 𝑑𝑘(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1 ⇐⇒ �̂�𝑘 =
1
𝑖 ∠

(
(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1

)
, (A.48)

para 𝑖 ∈ [1, 𝐼−1], onde (𝑝𝑘)𝑖,1 denota o (𝑖,1) elemento damatriz de autovetorP𝑘, e o operador
∠ significa o ângulo de seu complexo argumento escalar. Em seguida, a frequência angular
estimada é calculada como uma média dessas estimativas de 𝐼 − 1 (A.48) como:

�̂�𝑘 =
1

𝐼 − 1
𝐼−1∑

𝑖=1

1
𝑖 ∠

(
(𝑝𝑘)1,1(𝑝𝑘)∗𝑖+1,1

)
. (A.49)
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Figure 29 – Diagrama em blocos dos receptores propostos.

Essa estratégia é aplicada com o algoritmoALS para estimarA𝑇𝑦 a partir de �̂�(2), e com
o algoritmoKRF algorithm para estimar A𝑅𝑥 e A𝑅𝑦 , a partir de �̂�(3) e �̂�(4), respectivamente,
o que leva aos algoritmos RectALS e RectKRF. Finalmente, a estimação de A𝑇𝑥 e B são
deduzidas aparttir da Eq.(A.44) com a retificação de Â𝑇𝑥 . os receptores Bi-ALS/KronF-
JIRAFE e THOSVD-JIRAFE, compostos de ois estágios, são ilustrados na Figura 29.

Resultados e Discussões

Impacto dos parâmetros de design

Primeiro, avaliamos o desempenho do sistema proposto sob o conhecimento perfeito
do canal, conforme ilustrado nas Figuras 30 (a)-33 (b). Nesse caso, o receptor ZF (A.41)é usado
para estimar S, combinado com o algoritmo KronF para separar as matrizes de símbolos. Os
parâmetros de design considerados nas simulações são fornecidos na Tabela 26.

Figura 30 (a) compara a SER para três números diferentes de fluxo de dados: 𝑅1 =
𝑅2 ∈ [2, 4, 6]. A partir desta figura, pode -se concluir que o aumento de 𝑅1 e 𝑅2 induz
uma degradação da estimativa de símbolos, enquanto a taxa de transmissão aumenta (veja
a Tabela 26). Como esperado, isso acontece porque um aumento de 𝑅1 e 𝑅2 implica um
aumento do número de símbolos a serem estimados, sem aumentar o número de dados no
tensor 𝒴 para realizar a estimação dos símbolos. Figura 30 (b) mostra o impacto na SER
para diferentes números de símbolos por fluxo de dados: 𝐽1 = 𝐽2 ∈ [2, 4, 6]. A partir desses
resultados da simulação, pode -se concluir que a SERmelhora quando o número de símbolos
aumenta, o que implica um aumento da diversidade da codificação na recepção, uma vez
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Impacto
dos

Parametros de design Taxa de
transmissão

Figuras

Número
de

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (4,4), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5),𝐾 =
2,

fluxos de
dados

𝐽1 = 𝐽2 = 2, 𝑃 = 3, 𝑅1 = 𝑅2 ∈ [2, 4, 6] 𝑇𝑅 =
2; 4.66; 7.33

Figure
30(a)

Número
de

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (4,4), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5),𝐾 =
2,

símbolos
por

𝑅1 = 𝑅2 = 2, 𝑃 = 2, 𝐽1 = 𝐽2 ∈ [2, 4, 6] 𝑇𝑅 =
3; 1.75; 1.22

Figure
30(b)

fluxo de
dados
Número
de

(𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (6,6), 𝐾 = 2, 𝑅1 = 𝑅2 = 2,
𝐽1 = 𝐽2 = 4,

antenas
de

𝑃 = 2, (𝑀𝑇𝑥 ,𝑀𝑇𝑦) ∈ [(2,2), (4,4), (5,5)] 𝑇𝑅 = 1.75 Figure
31(a)

transmissão
Número
de

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2), 𝐾 = 2, 𝑅1 = 𝑅2 = 2,
𝐽1 = 𝐽2 = 4,

antenas
de

𝑃 = 2, (𝑀𝑅𝑥 ,𝑀𝑅𝑦) ∈ [(3,3), (4,4), (5,5)] 𝑇𝑅 = 1.75 Figure
31(b)

recepção
Número
de

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (3,3), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (4,4),𝐾 =
2,

blocos de
tempo

𝑅1 = 𝑅2 = 4, 𝐽1 = 𝐽2 = 2, 𝑃 ∈ [2, 4, 6]; 𝑇𝑅 =
7; 3.5; 2.33

Figure
32(a)

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (3,3), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (4,4),𝐾 =
2,

𝑇𝑅 =
0.87; 1.31;

m-QAM 𝑅1 = 𝑅2 = 2, 𝐽1 = 𝐽2 = 4, 𝑃 = 2, 𝑚 ∈
[4, 8, 16, 32]

1.75; 2.18 Figure
32(b)

𝐍 = 𝟏 ∶ (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (7,7); (𝑀𝑅𝑥 ,𝑀𝑅𝑦) =
(8,8); 𝐾 = 2, 𝑃 = 16, 𝐽1 = 4; 𝑅1 = 9

Número
de

𝐍 = 𝟐 ∶ 𝐽1 = 𝐽2 = 4; 𝑅1 = 𝑅2 = 4

matrizes
de

𝐍 = 𝟑 ∶ 𝐽1 = 𝐽2 = 4, 𝐽3 = 1; 𝑅1 = 4, 𝑅2 = 2,
𝑅3 = 9;

𝑇𝑅 = 0.46 Figure
33(a)

símbolos 𝐍 = 𝟓 ∶ 𝐽1 = 𝐽2 = 𝐽3 = 𝐽4 = 2, 𝐽5 = 1;
𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 4, 𝑅5 = 3

SER𝑔𝑙𝑜𝑏𝑎𝑙,
SER of S(1)

and S(2)

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (4,4), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (5,5),𝐾 =
𝑃 = 2, 𝑅1 = 𝑅2 = 2, 𝐽1 = 2, 𝐽2 = 8

𝑇𝑅 = 2.25 Figure
33(b)

comparação
dos recep-
tores

(𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (3,3),𝐾 =
3, 𝑅1 = 𝑅2 = 2, 𝐽1 = 𝐽2 = 4, 𝑃 = 34

𝑇𝑅 = 0.109 Figures
34 - 37

Table 26 – Parametros de design para as simulações.
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Figure 30 – Impacto do: (a) número de fluxos de dados e (b) número de símbolos por fluxo de dados.

Figure 31 – Impacto do: (a) número de antenas de transmissão e (b) número de antenas de recepção.

que 𝐽1 e 𝐽2 ão dimensões do tensor de dados, o que não é o caso de 𝑅1 e 𝑅2. Por outro lado, a
taxa de transmissão diminui conforme mostrado na Tabela 26.

Figuras 31 (a) e 31 (b) illustra o impacto do número de antenas de transmissão e
recepçao, com: (𝑀𝑇𝑥 , 𝑀𝑇𝑦) ∈ [(2,2), (4,4), (5,5)] e (𝑀𝑅𝑥 ,𝑀𝑅𝑦) ∈ [(3,3), (4,4), (5,5)], respecti-
vamente. Quando o número de antenas de recepção aumenta, a qualidade da estimatição
dos símbolos melhora, devido a um aumento da diversidade espacial, através do aumento
do número de sinais recebidos. O impacto do número de antenas de transmissão é menos
importante que o das antenas de recepção. Observe que a SER é nula para SNR > 0 dB.
Observe também que a taxa de transmissão não varia com os números da antena.

Figura 32 (a) apresenta a SER para diferentes números de blocos de tempo: 𝑃 ∈
[2, 4, 6]. Quando esse número aumenta, a diversidade de tempo do sistema aumenta e,
consequentemente, a SER melhora. Por outro lado, a taxa de transmissão diminui. Figura
32 (b) compara a SER obtida com quatro modulações𝑚-QAM diferentes,𝑚 ∈ [4,8,16,32].
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Figure 32 – Impacto do: (a) número de blocos de tempo e (b) modulação (𝑚-QAM).

Figure 33 – (a) Impacto de 𝑁 na SER e (b) SER das matrizes de símbolos individuais.

Como esperado, o desempenho da SER é melhor quando a modulação 4-QAM é usada,
porque 4-QAM é mais fácil de demodular do que as outras modulações, enquanto induz
uma taxa de transmissão mais baixa.

Na Figura 33 (a), comparamos a codificação MSMKron para diferentes números de
matrizes de símbolos: 𝑁 ∈ [1,2,3,5]. No caso em que 𝑁 = 1, ou seja, quando somente uma
matriz de símbolos é transmitida , então a codificação MSMKron se reduz a codificação TST.
A partir desta figura, concluímos que um aumento de 𝑁 implica uma melhoria significativa
da SER. O melhor desempenho é obtido com 𝑁 = 5, que fornece um ganho de 10dB
para uma SER de 10−3, em comparação com 𝑁 = 1. Esses resultados corroboram o ganho
de codificação fornecido pela codificação MSMKron devido aos múltiplos produtos de
kKonecker das matrizes de símbolos, o que induz um aumento de redundância quando 𝑁
aumenta.
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Na Figura 33 (b), a SER𝑔𝑙𝑜𝑏𝑎𝑙 é comparado com as SERs individuais das matrizes de
símbolos S(1) e S(2), considerando 𝐽1 = 2 e 𝐽2 = 8. O produto de Kronecker de S(1) e S(2) nduz
uma redundânciamaior para S(1) do que para S(2), uma vez que cada símbolo de S(1)é repetido
8𝑅2 vezes enquanto cada símbolo de S(2) é repetido somente 2𝑅1 vezes. Como esperado, os
resultados das simulações mostram que a melhor SER individual é obtido para S(1) com a
menor dimensão 𝐽1 em relação a 𝐽2, devido a uma maior redundância fornecida por S(2) no
produto de Kronecker. A SER global está próxima da SER individual de S(2).

Comparação dos receptores semi-cegos propostos

Nos próximos experimentos, comparamos primeiro as SERs obtidas comos receptores
semi-cegos propostos e os receptores ZF-KronF (usando Eq. (A.41)), como mostrado no
estágio 1 da Figura 29. ambas as versões correspondentes às Eqs.(5.4)-(5.5) e Eqs.(5.6)-(5.7)
são consideradas. Em seguida, comparamos a performance dos receptores semi-cegos , em
termos de estimação de canal e reconstrução do sinal através daNMSE. Para essas simulações,
os parâmetros de design têm os seguintes valores: (𝑀𝑇𝑥 ,𝑀𝑇𝑦) = (2,2), (𝑀𝑅𝑥 ,𝑀𝑅𝑦) = (3,3),
𝐾 = 3, 𝐽1 = 𝐽2 = 4, 𝑅1 = 𝑅2 = 2, 𝑃 = 34.

A partir das Figuras 34 e 35,podemos concluir que o receptor THOSVD fornece
melhor desempenho que os receptorers Bi-ALS-KronF. Isso se deve à forma fechada do
THOSVD, permitindo estimar conjuntamente as matrizes de canal e símbolo, enquanto os
receptores Bi-ALS-KronF são compostos de duas etapas, sendo uma iterativa para estimar
(H, S), e uma de forma fechada para separar as matrizes de símbolosa partir de S estimado
na primeira etapa. Observe também que o receptor simplificado Bi-ALS-KronF (5.6)-(5.7)
estima as matrizes um pouco melhor que a outra versão (5.4)-(5.5) devido à simplificação
do cálculo da pseudo-inversa. Como esperado, o receptor ZF-KronF fornece a melhor SER
devido ao conhecimento a priori do canal.

Estimativa de parâmetros de multi-percurso

Nesta seção, avaliamos o desempenho do segundo estágio dos receptores propostos na
Figura 29, para estimar os parâmetros de multi-percurso do canal cujos valores considerados
nas simulações são fornecidos na Tabela 26. O desempenho do MSE para a estimativa de
ângulos obtidos com o método JIRAFE é comparado com o fornecido pelo algoritmo ALS
retificado, que resulta do seguinte problema de otimização:

min
A𝑇𝑥 ,A𝑇𝑦 ,A𝑅𝑥 ,A𝑅𝑦 ,B

∥ℋ − ℐ5,𝐾 ×1 A𝑇𝑥 ×2 A𝑇𝑦 ×3 A𝑅𝑥 ×4 A𝑅𝑦 ×5 B ∥2𝐹 . (A.50)

Também é feita uma comparação do método JIRAFE sem retificação e com os méto-
dos de retificação TR1A and TR1A𝑖𝑚𝑝. Observe que o canal estimado usado no estágio 2 é o
obtido com o melhor algoritmo no estágio 1, isto é, com o receptor THOSVD.
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Figure 34 – Comparação da SER com receptores THOSVD, Bi-ALS-KronF e ZF-KronF.

Figure 35 – (a) Comparação de NMSE do canal e (b) Comparação de NMSE de sinal reconstruído.

Figura 36 apresenta a MSE para os ângulos estimados, enquanto Figuras 37 plotam a
NMSE para reconstrução da matriz de perdas de caminho B e o canal reconstruído. Para
a Figura 36, podemos concluir que o método JiIRAFE combinado com a estratégia de
retificação TR1A𝑖𝑚𝑝 supera os outros algoritmos. Além disso, as três variantes JIRAFE (com
e sem retificação) fornecem MSEs melhores do que os algoritmos ALS e Rectals. Isso pode
ser explicado pela propriedade de redução de ruído do SVD truncado nas etapas do TTHSVD,
o que torna o método JIRAFE mais robusto ao ruído. Outra causa é que os métodos ALS
e rectALS são baseados em um algoritmo iterativo em cinco etapas, enquanto o algoritmo
JIRAFE usa apenas um algoritmo ALS de duas etapas.

Pelas mesmas razões, as Figuras 37 ilustram a superioridade das três variantes do
JIRAFE sobre os algoritmos ALS e rectALS em termos da NMSE da matriz de perda de
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Figure 36 – Comparação da MSE para ângulos estimados.

Figure 37 – (a) NMSEs estimados de perda de caminho e (b) NMSEs do canal reconstruído.

caminho e do canal reconstruído, com amelhor performance fornecida por ométodo JIRAFE
combinado com a estratégia de retificação TR1A𝑖𝑚𝑝. Para Figura 36, também podemos
concluir que levar em consideração a estrutura de Vandermonde na estimativa das matrizes
de direção (ométodo rectALS e JIRAFE com retificação) permitemelhorar significativamente
sua estimativa em comparação com a ALS padrão e o método JIRAFE sem retificação,
induzindo uma melhor estimativa do canal como mostrado na Figura 37 (b).

Conclusão

Nesta tese, apresentamos um novo modelo do sinal recebido que considera um
caso específico da codificação MKronST combinada com a codificação TST e o modelo
do tensor de canal de quinta ordem para transmitir os símbolos, chamada TST-MSMkron.
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Essa codificação não requer uma matriz de pré-codificação e nos permite propor receptores
semi-cegos em duas etapas para estimar conjuntamente as matrizes de símbolos, canal
e parâmetros do canal. Com base na codificação TST-MSMKron e no tensor do canal, os
sinais recebidos foram modelados como uma nova decomposição chamada (𝑁 + 2)-ordem
decomposição Tucker-PARAFAC aninhada acoplada, onde o tensor do núcleo é a codificação
TST. O acoplamento é devido à codificação que é comum aos𝑉𝑟− e𝐻𝑟− antenas de recepção
polarizadas. A estrutura aninhada resulta do fato de que uma matriz desdobra o tensor do
canal constitui um fator matricial do modelo Tucker, os outros fatores sendo as matrizes
de direção e perda de caminho. As condições de identificação foram estabelecidas para o
novo modelo. Sob a suposição de que a codificação do tensor é conhecida na recepção, esse
modelo do sistema é essencialmente único sob condições suaves.

Ao explorar o modelo tensorial dos sinais recebidos e o conhecimento da codificação
TST, apresentamos receptores semi-cegos em duas etapas para a estimativa conjunta das
matrizes de símbolos, canal e parâmetros do canal (ângulos DOD e DOA, coeficientes de
perda de caminho). Em comparação com o sistema supervisionado em [28], que requer o
uso de uma sequência piloto para estimar o canal, os receptores propostos precisam apenas
de um conhecimento a priori de um símbolo de cada matriz de símbolos. As condições
de identificabilidade dos parâmetros e a complexidade computacional para cada receptor
foram estabelecidas e comparadas. Na primeira etapa, as matrizes e o canal de símbolos são
estimados por meio dos algoritmos Bi-ALS-KronF ou THOSVD e, na segunda etapa, o canal
estimado é usado para estimar os parâmetros do canal (ângulos DOD e DOA e coeficientes
das perda de caminho) por meio do algoritmo JIRAFE, que explora uma equivalência entre
pARAFAC e decomposições TT. Um novo método de retificação foi proposto para garantir a
estrutura de Vandermonde das matrizes de direção. Os resultados da simulação mostraram
que o receptor semi-cego é eficiente para estimar os símbolos, o canal e os parâmetros do
canal e a grande flexibilidade da codificação TST-MSMKron.
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