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ABSTRACT 

 

BI-FIDELITY SURROGATE MODELING WITH SUBSET SIMULATION FOR 

STRUCTURAL RELIABILITY ASSESSMENT. 

 

João Paulo Silva Lima 

Advisor: Francisco Evangelista Junior  

Graduate Program in Civil and Structural Engineering 

Brasília, 2023. 

 

This thesis presents a novel Bi-Fidelity Multi-task Learning Model based on a Deep Neural 

Network (BFMT-DNN) to address the computational challenge of structural reliability 

analysis applied to complex structures. The main contribution is the development of a novel 

hyperparameter-optimized BFMT-DNN, that considers the advantages of Bayesian 

Optimization, focusing on prediction accuracy, stability, and computational efficiency to 

accesses the reliability of high nonlinear problems. For constructing this surrogate model, the 

study proceeded throughout two stages before. Firstly, is presented a method based on a Bi-

fidelity Kriging surrogate model associated with Subset Simulation for structural reliability 

analysis. The efficiency of the bi-fidelity Kriging model is evaluated using a stiffened panel 

reliability problem that demands high computational costs, such as non-linear finite element 

analysis structural models. The next step proposed a two-stage Bi-Fidelity Deep Neural 

Network surrogate model in association with Subset Simulation to quantify the uncertainty of 

structural analysis and assess the probability of failure of high dimensional rare events. In the 

two steps, the surrogate models can reproduce the non-linear behaviour in the variable's 

uncertainty analysis, reducing the high computational demand of these problems. 

Furthermore, the BF-DNN surrogate model used Bayesian optimization to fine-tunning the 

hyperparameters. The multi-fidelity models used low-fidelity data samples added to the model 

to predict high-fidelity responses, and, when presenting a good correlation between the 

fidelities, the assessment of the proposed method showed that the proposed Multi-fidelity 

Method is a good strategy because it can provide an accurate probability of failure estimation 

with a lower computational cost. A hyperparameter-optimized BFMT-DNN using low-fidelity 

data samples added to the model to predict high-fidelity responses for structural collapse 

behaviour framework is presented in the final analysis. The assessment is realized in an 



vii 

 

offshore wind turbine in extreme conditions and described using non-linear Finite Element 

analysis to obtain multiple outputs. The results show that the proposed multi-fidelity methods 

can give a precise failure probability estimation with less computational cost. 

Keywords: Reliability; Artificial Neural Networks; Multi-task; Multi-fidelity; Non-linear 

Finite Element Analysis 
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RESUMO 

 

MODELAGEM SUBSTITUTA BI-FIDELIDADE COM SIMULAÇÃO DE 

SUBCONJUNTOS PARA AVALIAÇÃO DE CONFIABILIDADE ESTRUTURAL 

 

João Paulo Silva Lima 

Orientador: Francisco Evangelista Junior  

Programa de Pós-Graduação em Estruturas e Construção Civil  

Brasília, 2023. 

 

Esta tese apresenta um novo Modelo de Aprendizagem Multitarefa Bi-Fidelidade baseado em 

uma Rede Neural Profunda (BFMT-DNN) para abordar o desafio computacional da análise de 

confiabilidade estrutural aplicada a estruturas complexas. A principal contribuição é o 

desenvolvimento de um novo BFMT-DNN com hiperparâmetros otimizados, que considera as 

vantagens da Otimização Bayesiana, focando na precisão da previsão, estabilidade e 

eficiência computacional para acessar a confiabilidade de problemas não lineares elevados. 

Para a construção deste modelo substituto, o estudo procedeu ao longo de duas etapas 

preliminares. Primeiramente, é apresentado um método baseado em um modelo substituto de 

Krigagem Bi-fidelidade associado à Simulação de Subconjuntos para análise de 

confiabilidade estrutural. A eficiência do modelo Krigagem Bi-fidelidade é avaliada usando 

um problema de confiabilidade de painel enrijecido que demanda altos custos 

computacionais, como modelos estruturais não lineares de análise de Elementos Finitos. A 

próxima etapa propôs um modelo substituto de Rede Neural Profunda de Bi-fidelidade de 

dois estágios em associação com Simulação de Subconjunto para quantificar a incerteza da 

análise estrutural e avaliar a probabilidade de falha de eventos raros de alta dimensão. Nas 

duas etapas, os modelos substitutos podem reproduzir o comportamento não linear na análise 

da incerteza da variável, reduzindo a alta demanda computacional desses problemas. Além 

disso, o modelo substituto BF-DNN usou a Otimização Bayesiana para ajustar os 

hiperparâmetros. Os modelos de multifidelidade utilizaram amostras de dados de baixa 

fidelidade adicionadas ao modelo para prever respostas de alta fidelidade e, ao apresentar uma 

boa correlação entre as fidelidades, a avaliação do método proposto mostrou que o método 

multifidelidade proposto é uma boa estratégia por fornecer uma probabilidade precisa de 

estimativa de falha com um custo reduzido computacional. Um modelo BFMT-DNN com 
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hiperparâmetros otimizados usando amostras de dados de baixa fidelidade adicionadas ao 

modelo para prever respostas de alta fidelidade para análise de colapso estrutural é 

apresentado na análise final. A avaliação é realizada em uma turbina eólica offshore em 

condições extremas e descrita usando análise não linear de Elementos Finitos para obter 

múltiplas saídas. Os resultados mostram que os métodos de multifidelidade propostos podem 

fornecer uma estimativa precisa da probabilidade de falha com menor custo computacional. 

Keywords: Confiabilidade; Redes Neurais Artificiais; Multitarefa; Multifidelidade; Análise 

não linear de Elementos Finitos 
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ε,σavg Average relative error for the ultimate strength 

ζ Gumbel distribution parameter 

η GEV location parameter 

θ Kriging hyperparameter 

Λ Space of the overall hyperparameters of the Neural Network 

λ* Optimal hyperparameters of the Neural Network 

λBF Sample size ratio between HF and LF inputs 

μ Mean 

μ* Mean value of the material and geometric variables  

ξ GEV distribution scale parameter  

ρ Scaling factor between High and Low-fidelity models 

ρa Density of the air 

ρc Density of the concrete 



xxi 

 

ρs Density of the steel 

σ Variance 

σa 

Uniaxial compressive strength induced by the ship hull girder bending 

moments  

σallow Allowable stress 

σc Compressive strength of the concrete 

σmax Maximum von-Misses Stress 

σt Tensile strength of the concrete 

σy Yield stress  

σz Compressive strength along z axis  

σzu Ultimate compressive strength of the plate 

τ Penalty parameter in the loss function 

υ Poisson’s ratio  

Φ Cumulative distribution function 

φ Gumbel distribution parameter 

ϕ Probability density function 

χu Ultimate capacity calculation model uncertainty 

χs Stress capacity uncertainty factor 

χd Displacement capacity uncertainty factor 

χsite Uncertainty related to the site and atmospheric conditions 

χaero Uncertainty in the aerodynamic properties 

χdyn Model uncertainty related to the structural dynamics 

χmat Uncertainty due to variations in material and geometrical properties 

χwind Model uncertainty in the wind model 

χsim Statistical uncertainty associated with the design process of sampling wind 

conditions with a limited number of simulations 

ψ Correlation between two variables in Kriging and Gaussian Process 

Ψ Correlation matrices in kriging model  

ω Exponential Linear Unit parameter 

 



 

 

1  INTRODUCTION 

As the complexity of facing problems in every field of engineering increases, the solutions get 

equally complex. One of these problems is the structural reliability analysis, which in many 

applications is concerned with estimating the probability of a distinct event of interest, often 

the failure event under prescribed conditions and considering the uncertainties involved, that 

influences some event concerning the performance criterion [1-3].  

Engineers and researchers have well-recognized the importance of reliability in the 

past few decades, and its improvements have concentrated on making the performance 

functions more realistic, using proper strength and loading assessment methods based on 

numerical methods [4]. Furthermore, the limit state functions became implicit for most 

practical engineering problems, requiring different approaches to render them explicit and to 

calculate the reliability index [5, 6]. 

Simulation methods, such as Monte Carlo Simulation (MCS), are an alternative 

technique to assess reliability. However, MCS often requires numerous high-fidelity model 

evaluations to ensure a small coefficient of variation of failure probability, which in complex 

structures, is computationally demanding [3]. The approximate methods, such as the First-

Order or Second-Order Reliability Methods (FORM/SORM) (e.g., [7-9]), utilize the Taylor 

series expansion of the Performance Function to approximate the failure probability. These 

methods reduce the computational demand compared to simulation-based methods. However, 

their results may need significant approximation errors when dealing with highly non-linear 

problems. 

Considering rare events with very small failure probabilities (i.e., on the order 1×10-4 

or less) and complex failure boundaries, advanced simulation methods based on Monte Carlo 

simulation (MCS) with variance reduction techniques can be used to estimate the probability 

of the failure. The MCS method with Importance Sampling (MCS-IS) (e.g. [10-12]) and the 

Subset Simulation (SUS) (e.g. [13-17]) are examples. 

Due to the high cost of structural reliability analysis, surrogate models have been 

widely applied to replace physical experiments or expensive simulations. The surrogate 

models aim to reproduce a similar Performance Function based on limited calculations to 

obtain samples, reducing the computational cost. However, there might be a massive gap 

between the accuracy scale and efficiency to determine the structure's behavior. Many 

surrogate models have been used for reliability analysis, including Bayesian Networks (e.g., 

[18, 19]), Support Vector Machine Models (e.g., [12, 16, 20]), Polynomial Chaos Expansion 
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(PCE) [21], and Radial Basis Functions (RBF) [9, 22]. The Kriging surrogate model has 

gained significant popularity in the reliability analysis community due to its ability to provide 

uncertain information (e.g., [8, 23-25]). Artificial Neural Networks (ANN) are amongst the 

most popular Machine Learning (ML) methods used to generate the response surface in 

structural reliability problems allowing to assess high dimensional problems (e.g., [2, 26, 27]). 

Based on the previous description, finding an effective balance between accurate 

simulation and computational cost is necessary. Consequently, Multi-fidelity surrogate 

approaches have attracted significant attention recently for data regression which maximizes 

the use of cheaper low-fidelity functions to predict high-fidelity outputs. In many scientific 

domains, models with multiple fidelities are available for analyzing the same phenomena of 

interest. The MF-Kriging (e.g. [28-30]) and MF-RBF (e.g. [9, 31]) are examples of MF 

approaches. In complex engineering problems, as an alternative, the different fidelities 

functions can be obtained by varying the mesh resolution (e.g., [9, 32]) or the boundary 

conditions (e.g., [33, 34]) of the Finite Element model.  

In a multiple-output scenario, most surrogates obtain various outputs approximating 

one by one. In this context, multi-tasking surrogates solve tasks simultaneously, sharing 

partially or totally the surrogate structure [35-37]. In addition, an ML model contains model 

parameters and hyperparameters. The model parameters are obtained by fitting the training 

data and defining the hyperparameters. Selecting an optimized model that archives the best 

performance on the data in a reasonable amount of time becomes a problem of optimizing 

these hyperparameters. 

1.1  AIMS AND OBJECTIVES 

 The main goal of this thesis is to propose a hyperparameter-optimized Bi-

Fidelity Multi-task Learning Model based on a Deep Neural Network (BFMT-DNN) 

for the reliability assessment of complex structures with multiple state limits. 

Particularly, this thesis will: 

• Evaluate the mesh dimension and element type influence in different fidelities 

functions construction using Finite Elements Models. 

• Measure the correlation between the high-fidelity and low-fidelities functions 

and the influence of the different fidelities’ datasets in the global accuracy.  

• Propose a reliability analysis of complex structures considering a Bi-fidelity 

Kriging surrogate model.  
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• Propose a Bi-Fidelity Deep Neural Network (BF-DNN) to reproduce the 

performance functions and evaluate the reliability index of complex structures.  

• Propose the novel Bi-Fidelity Multi-task Learning Model based on a Deep 

Neural Network (BFMT-DNN) to reproduce the performance functions and 

measure the reliability of complex systems with multiple outputs.  

1.2  MAIN CONTRIBUITIONS 

The contributions of this thesis are listed as follows: 

• The main contribution is developing a hyperparameter-optimized BFMT-DNN, 

considering the advantages of Bayesian Optimization, focusing on prediction 

accuracy, stability, and computational efficiency to obtain multiple outputs 

using the same surrogate model. 

• In addition, the single-task BF-DNN surrogate model is presented to predict 

high-fidelity outputs, which is associated with the Subset Simulation, allowing 

rare events reliability assessments in high dimensional non-linear problems. 

• Likewise, a bi-fidelity Kriging surrogate model associated with Subset 

simulation is defined to reproduce the performance functions and assess the 

reliability of stiffened panels under axial load. 

1.3  THESIS OVERVIEW 

The thesis structure, divided into three articles, can be summarized as follows: 

• Chapter 2 proposes a reliability analysis of a stiffened panel considering a Bi-

fidelity Kriging as a surrogate model of the performance function.  

• Chapter 3 presents a Bi-Fidelity Deep Neural Network (BF-DNN) to reproduce 

the performance functions and evaluate the reliability index of a stiffened 

panel.  

• Chapter 4 presents the offshore wind turbine reliability analysis proposed in 

the south of Brazil considering a Multi-task Learning Model based on a Bi-

fidelity Deep Neural Network. 

• Chapter 5 summarizes the Conclusions and Future Research. 
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Abstract: A method based on a Bi-fidelity Kriging model is proposed for structural reliability 

analysis. It is based on adding low-fidelity data samples to the model to predict high-fidelity 

values, thus saving computational effort. Distance Correlation develops the correlation 

between the Low and High-fidelity functions, initially proposed to assess the correlation 

between two variables. The bi-fidelity Kriging response surface model's efficiency as a 

surrogate model is assessed for structural reliability problems that demand high computational 

costs, such as non-linear finite element analysis structural models. The efficiency assessment 

is performed by comparing the accuracy of the failure probability predictions based on the 

Subset Simulation and First-order reliability method using the Bi-fidelity Kriging model as a 

surrogate for the performance function. The idea is illustrated by considering a representative 

component of marine structures analyzed by finite element analysis to create bi-fidelity 

scenarios to assess structural reliability with many variables. The results show that the 

proposed multi-fidelity method can provide an accurate failure probability estimation with 

less computational cost. 

Keywords: Structural reliability analysis; Multi-fidelity; Surrogate models; Kriging; Non-

linear finite element analysis. 

2.1  INTRODUCTION 

Structural reliability analysis is a central tool for assessing and designing engineering 

systems. It consists of estimating the probability of failure of a structural system to perform its 

required function under prescribed conditions, considering the uncertainties involved. The 

failure event usually involves many systems, and the failure probability is the probability of 

an undesired performance occurring in those systems.  

In engineering practice, it is challenging to perform multidimensional numerical 

integration when the performance or limit state function involves many random variables. 

Several reliability analysis techniques have been studied to estimate the probability of failure 

with numerical methods and tools that can solve structural reliability problems representing 

the uncertainties involved in designing marine structures [38].  
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Since the establishment of structural reliability theory in the 1970s, its improvements 

have concentrated on making the performance functions (PF) more realistic, using proper 

strength assessment methods based on numerical methods [4]. In general, analytical 

formulations were substituted by finite element analysis (FEA), which are computationally 

demanding in non-linear analysis cases that occur when the collapse is considered. 

Furthermore, the PF became implicit, requiring a different approach to calculating the 

reliability index [8]. 

One approach adopted has been to create a surrogate PF based on a limited number of 

FE calculations reducing the computational burden. Initial formulations used polynomial fits 

[39, 40] and have been done to identify the best types of polynomials to adopt, how many 

sample points to use in the fitting and the choice of the initial set of points to be fitted by the 

surfaces. In marine structural analyses, the response surface method is applied, for example, 

by Kmiecik and Guedes Soares [41], which used polynomial fits in the reliability of 

compressed plates. Mohammad and Shiri [42] utilized the polynomial surfaces to predict the 

limit state function's mooring line tensions and anchor capacities. Dong et al. [43] 

approximated by polynomial surface the effect of position variations on fatigue notch factors 

of welded cruciform joints reliability analysis. 

For smaller failure probabilities and/or complex failure boundaries involved in 

structural reliability problems can be computed efficiently using approximate methods such as 

the first-order or second-order reliability methods (FORM/SORM) (e.g. [7-9]) or using 

advanced simulation methods based on Monte Carlo simulation (MCS) with variance 

reduction techniques as MCS method with importance sampling (MCS-IS) (e.g. [10-12]), the 

directional IS (e.g. [11]), and the Subset Simulation (SUS) (e.g. [13-17]). 

Kriging has been used as an essential method for sampling the points for generating 

response surfaces, and various contributions have appeared to these approaches. Morató and 

Sriramula [23] used Kriging in a reliability study and calibration of safety factors for offshore 

wind turbine support structures. Vosooghi et al. [24] developed a Kriging-based reliability 

analysis of subsea pipelines' critical lateral buckling force. Gaspar et al. [8] studied Kriging's 

efficiency for stiffened panels' reliability analysis. Similarly, in Shi et al. [25], the prediction 

accuracy of the Kriging is assessed to estimate the failure probability of marine structures 

with its application to a stiffened panel. 

Adaptive methods have been proposed in which the points sampled for the response 

surface are decided stepwise. Early efforts proposed by Echard et al. [44] the Adaptive 
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Kriging - Monte Carlo Simulation (AK-MCS) method focused on an iterative approach based 

on MCS and Kriging surrogate model to assess the reliability of structures more efficiently. 

The AK-MCS has derived methods based on variance-reduction techniques as a reference for 

the adaptative methods. IS [10], SUS [17], and directional IS [11] adopted MCS instead. 

Gaspar et al. [3] associated the adaptative method with the Kriging model to reproduce the PF 

of stiffened panels.  

As an alternative to polynomial regression models, approaches based on learning 

models in general and artificial neural networks (ANN) have been proposed [2, 26, 27]. Other 

approaches adopted Bayesian Networks (e.g., [18, 19]), Support Vector Machine Models (e.g., 

[12, 16, 20]), Polynomial Chaos Expansion [21], and Radial Basis Functions [9, 22]. 

The presented surrogate methods are built on the premise that data for the construction 

of the surrogate is available from a single fidelity source, often evaluated through fine high-

fidelity (HF) simulations. However, experimental and computational simulations often are 

costly for many complex marine engineering systems [45]. In contrast, the low-fidelity (LF) 

models reduce either measurement or numerical computational costs but reduce the response's 

accuracy. The multi-fidelity (MF) investigations have proposed incorporating datasets at 

different levels and resolutions considering a multi-fidelity (MF) approximation. The MF 

methods are applied to combine, to some extent, the accuracy of HF solvers with the 

alleviation of the computational cost of many low-fidelity (LF) samples that estimate the 

same output [46, 47]. The bi-fidelity (BF) strategy uses the correlation between an HF model 

and one LF model. 

Compared to the single-fidelity Gaussian methods, the MF Gaussian method leads to 

information sharing across outputs and the asymmetric knowledge transfer from the LF 

outputs to the HF output to estimate the unknown hyperparameters during the surrogate 

modeling for forecasting HF outputs [48]. The core feature of the Gaussian Process surrogate 

model requires prior information [49]. Differently, MF-Kriging does not require prior 

information [28, 50, 51]. Many extensions and improvements of MF-Kriging methods are 

gaining popularity. Qian and Wu [52] provided a hierarchical model framework. Chung and 

Alonso [53] and Han et al. [54] proposed incorporating gradient information in co-Kriging. 

Liu et al. [29] presented an adaptive sampling technique using MF-Kriging. 

Due to its remarkable performance, MF has gained popularity in structural engineering 

applications such as the uncertainty quantification field [34, 49, 55] and the multidisciplinary, 

robust, and multi-objective optimization field [29, 32, 56]. Recently, MF models have also 
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been incorporated into structural reliability engineering issues. Aruna and Ganguli [57] 

developed an MF model based on response surface and uncertainty quantification in the 

context of beam vibrations, combining an FE-LF and HF model. Yoo et al. [9] developed a 

radial basis function MF modeling-based framework for reliability-based design optimization 

of composite structures under linear buckling. Zhang et al. [33] developed an adaptive 

reliability analysis for MF models using the Gaussian process applied to a transmission tower 

problem. The literature shows that other researchers have yet to fully address the development 

of a FE-Bi-fidelity mesh framework to evaluate the reliability of the stiffened panels under 

axial load. 

The main goal of this paper is to propose a bi-fidelity Kriging surrogate model to 

reproduce the performance functions and assess the reliability analysis of complex structures 

such as stiffened panels under axial load. The application tackles a relevant problem in marine 

structures, consisting of a ship structure associated with the hull girder's ultimate strength 

described by a non-linear FE structural model with 13 variables. The correlation measured by 

Distance Correlation (DIC), the influence of the HF and LF dataset in the global accuracy, and 

a comparison of the reliability index predictions based on considering the BF-Kriging 

surrogate models in association with SUS and FORM are presented. The main contribution of 

this paper is the development of a multi-fidelity framework for an essential structural 

component of marine structures, which provides similar accuracy to computationally 

intensive HF modeling, but with considerable computational time savings.  

The remainder of this paper is organized as follows: Section 2 introduces the stiffened 

panel problem and its FE model. Section 3 presents the reliability analysis steps for the 

considered problem and the methodology adopted for this proposal. Section 4 related 

concepts to elaborate the proposed BF-Kriging model; Section 5 discusses results obtained 

from the study extensively; Section 6 draws the main conclusions of the work conducted. 

2.2  STRUCTURAL MODELING FOR STIFFENED PANELS 

The efficiency of MF surrogate models based on an FEA for structural reliability analysis is 

assessed based on an application problem relevant to ship structures, although also applicable 

to box girder bridges. The issue of the reliability of ship structures associated with the hull 

girder's ultimate strength has been formulated in [58] and applied to more complex cases in 

[59-62], including the use of MCS [63]. The collapse strength of plates [41, 64] and stiffened 

panels [38, 65, 66] is critical to the reliability of ship hulls, and thus they have been much 

studied. 
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The problem studied here consists of the reliability assessment of the ultimate strength of a 

typical deck-stiffened plate element under axial compression in the net thickness state 

approach for local corrosion, as shown in Fig. 2.1, as presented by Gaspar et al. [3]. The 

stiffened panel comprises steel plates, transverse girders, and T-type cross-section longitudinal 

stiffeners. 

 

Figure 2.1 – Deck element under uniaxial compression and cross-sections of stiffeners in the stiffened panel. 

For the Suezmax oil tanker considered as a case study in the present reliability 

analysis, the design value for the plate length is a=5450 mm, defined by the stiffener span or 

spacing between transverse frames; plate breadth b=900 mm for the spacing between 

stiffeners in the plate. The midship cross-section modulus at the deck for the corroded 

scantlings is Zv=37.3 m3. The plate and stiffener geometry variables are tp=20.5 mm for the 

plate thickness, dw=400 mm for the web height, bf=100 mm for the flange breadth, tw=9.5 mm 

for the web and tf=14.0 mm for the flange thickness. The material of the plate is AH32 high-

strength steel. This material has Young’s modulus E=206000 MPa, yield stress σy=315 MPa, 

and Poisson’s ratio υ=0.3. 

2.2.1  Performance function 

The plates in the deck are subject to extreme axial compressive loads induced by the ship hull 

girder bending moments. Therefore, their ultimate compressive strength is an essential design 

requirement. The still water and vertical wave-induced bending moments are the primary 

loads that contribute to the longitudinal compressive load applied to a bottom-stiffened panel. 

The magnitude of these loads depends on several factors, such as the load condition of the 

ship, its operational profile, and uncontrollable environmental factors, such as the sea state 
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[67, 68]. Therefore, the safety margin associated with this hull beam failure mode can be 

described by a PF function of the form [64, 65] : 

( ) zu aG x  = −  Equation Chapter 2 Section 1(2.1) 

with σzu the ultimate compressive strength of the plate elements, given as 

( )( )( )M Gmax ,zu u  = x x  (2.2) 

where xM is a vector of basic material variables, xG is a vector of basic geometric variables, 

and the factor χu is an ultimate capacity calculation model uncertainty. The uniaxial 

compressive strength σa induced by the ship hull girder bending moments given by: 

sw wv
a

v

M M

Z


+
=  (2.3) 

where Msw and Mwv are the random vertical still water and wave-induced bending moments, 

respectively. For the proposed model, Msw,max=1483.7 MNm, and Mwv,max=4603.1 MNm were 

computed using the IACS-CSR design formulation [69]. 

2.2.2  Non-linear finite element method for structural analysis 

The Finite Element (FE) analysis of the present study consists of the following steps: (i) 

Definition of the model characteristics and choice of the finite element, (ii) definition of 

imperfections, boundary, and load conditions, (iii) modeling of the structure's geometry, (iv) 

simulation and (v) post-processing and analysis of results. In the present study, the average 

stress-average strain curves that describe the structural behaviour of the plate under uniaxial 

compression is calculated using the FE software ABAQUS. The non-linear structural 

behaviour of the thin plate elements under axial compression is accounted for using the finite 

element S4R available in the finite element code. S4R is a 4-node general-purpose, 

quadrilateral, stress/displacement shell element with reduced integration and a large-strain 

formulation. 

The non-linear material behaviour is modeled using a linear-elastic and ideally-plastic 

material law, neglecting the strain hardening effect. This material law was implemented using 

the Bilinear Isotropic Hardening (BISO). 

Some initial imperfections are applied to the FE model to better represent the 

inevitable deformations of the ship steel structure's complex fabrication and welding process. 

Figure 2.2(a) depicts the considered pattern that analytical functions of the form approximate 

the shapes of these initial imperfections are [70]: 
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• Initial imperfection of local plate panel: 

( )0 , sin sinp op

m z y
w y z w

a b

 
=  (2.4) 

• Initial imperfection of stiffener column-type deflection: 

( )0 sinc oc

z
w z w

a


=  (2.5) 

• Initial imperfection of the stiffener sideways deflection: 

( )0 , sins os

w

x z
w x z w

d a

 
=  

 
 (2.6) 

where wop, woc, and wos are the following design values for the amplitudes given by Paik and 

Kim [71], with wop=b/200 and woc=wos=a/1000. The number of buckling half-waves in the 

longitudinal direction (m) usually is the integer of the ratio of the longer and shorter side of 

the plate m=a/b. The number of half-waves is adopted as the next largest integer, in this case, 

m=7 [2, 8, 25]. The imperfection amplitudes should be considered as a random variable to 

account for the contribution of the weld-induced initial imperfections to the uncertainty of the 

buckling collapse strength predictions. 

 

Figure 2.2 – Description of structural model: (a) Initial geometrical imperfections of the plate (scale factor 50×) 

(b), and Boundary conditions symmetry sections in the FEA. 

According to Xu et al. [72], it is necessary for an adequate extension of the model 

used in the FEA to characterize the structure that surrounds the panel of interest and to reduce 

the uncertainties introduced by the boundary conditions on the final results. The FE structural 

model adopted for the reinforced plate elements is a half-plus half-span (1/2+1/2) model 

implemented by Paik et al. [71], and such an approach has been employed in Gaspar et al. [3]. 

Since the panel is symmetrical, only one of the reinforcements of the reinforced panel with 
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attached plating is analyzed, as shown in Fig. 2.2. The boundary conditions of the stiffened 

panel are represented by , , , , , ,x y z x y zu u u r r r   and are applied as per Fig. 2.2(b). The red 

dashed lines are the symmetry lines of the model, and the blue lines are the stiffener cross-

section at the midspan. For the present analysis, consider the following boundary conditions, 

wh    “0” in i    s    ns   ion   o   o   ion    ons   in   n  “ ”    ns no   s  i  ion:  

• A1-A3 and B1-B3 border (symmetric conditions): [0,1,1,1,1,0]; 

• A1-B1 border (symmetric condition): [1,1,0,0,0,1]; 

• A3-B3 border (symmetric condition): [1,1, dz,0,0,1]; 

• A2-B2 for plate nodes: [1,0,1,1,1,1] 

• A2-B2 for stiffener web nodes: [0,1,1,1,1,1] 

where dz indicates the displacement imposed at the transverse edge. The displacements of 

nodes on borders A1-A3 and B1-B3 along the x-direction are linked. This process safeguards 

uniform displacement even under a point force applied to one of the coupled nodes and avoids 

the local imperfections of the profile. 

2.2.3  Stochastic models for basic random variables 

The ten basic random variables considered in the problem of Section 4 are given, and the two 

random variables considered in the load components of the performance function in 

Eq. 2.1 are shown in Table 2.1, both with their corresponding probability density distribution 

(PDF) and statistical moments mean (μ) and standard deviation (std) of the associated 

distribution functions. 

The ultimate capacity calculation uncertainty factor χu is defined by Hørte et al. [73] 

as the e uncertainty measures dependent upon the methods used to estimate the ultimate 

structural capacity. The authors describe a normal distribution with μ=1.05, and a std=0.1 

represents the model uncertainty χu in the prediction of ultimate capacity. 

The stochastic models adopted for the basic geometric and material properties 

variables and the amplitude of the welding-induced initial imperfections proposed by Gaspar 

et al. [3] are commonly used in structural reliability analysis (e.g. [2, 8, 73]). The design value 

considered for σy=315 MPa corresponds to the probability density function's 5% percentile 

characteristic value of the lognormal distribution with COV=6% and lower limit=0, resulting 

in a mean of μ=348 MPa [74]. It is suggested that the spacing between transverse frames, the 
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midship cross-section modulus, the stiffener web height, and the stiffener flange breadth can 

be treated as deterministic variables. The thicknesses of the attached plating and stiffener 

cross-section should be treated as random variables, as well as the material yield stress and 

Young's modulus. The Poisson's ratio can be treated as a deterministic variable. 

Table 2.1 – Stochastic models of the strength of basic random variables. 

Variable Units P.D. μ 
COV 

(%) 
std 

tp mm Normal 20.50 2.0 0.41 

tw mm Normal 9.50 2.0 0.19 

tf mm Normal 14.00 2.0 0.28 

σy,p MPa Lognormal 348.00 6.0 20.88 

σy,s MPa Lognormal 348.00 6.0 20.88 

Ep MPa Lognormal 206000 6.0 12360 

Es MPa Lognormal 206000 6.0 12360 

wop mm Lognormal 2.30 50.0 1.15 

wos mm Lognormal 2.80 50.0 1.40 

woc mm Lognormal 2.80 50.0 1.40 

Msw MNm Normal 1483.70 29.0 430.30 

Mwv MNm Gumbel 4603.15 9.0 414.30 

χu - Normal 1.05 9.5 0.10 

For the welding-induced initial imperfections amplitudes stochastic modeling, some 

assumptions are usually made regarding the statistical parameters due to the lack of data 

available in the literature. In this study, the probabilistic model for the amplitudes of the initial 

deflections is based on Amlashi et al. [75]. The parameters of the lognormal distributions are 

derived considering the design amplitudes as 95% percentile characteristic values, and the 

coefficient of variation (COV) is assumed to equal 0.50. 

The ship hull girder bending moments are the load basic random variables of the 

problem. The stochastic models adopted for the hull girder vertical bending moments along a 

ship voyage are defined based on Hørte et al. [73] and as specified in IACS [69]. A normal 

distribution with μ=0.7Msw,max and std=0.2Msw,max describes the still water bending moment 

(Msw). 

Considering a reference period Tr=1.0 year for the extreme values of vertical wave-

induced bending moment representative of a North Atlantic crossing, the stochastic model 

proposed by Guedes Soares et al. [58, 67] defines the wave-induced bending moment. The 

peak values of vertical wave-induced bending moment at a random moment are based on a 

two-parameter Weibull distribution with shape parameter k=1 and scale ξ parameter 
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satisfying: 8

,        1 ,  0wv wv maxP M M −   =  where Mwv,max is the maximum vertical wave-induced 

bending moment considered for design purposes [69]. The Gumbel distribution then describes 

the peak values over the Tr: 

( ) exp exp
wve

wv
M wv

M
F M





  − 
= − −  

  
 (2.7) 

 The Gumbel model parameters can be derived based on the initial Weibull distribution 

parameters φ and ζ, by Guedes Soares and Teixeira [76] as 1(ln ) k

cn = and 

1(ln ) ,k k

ck n  −= where nc corresponds to the mean number of load cycles expected over the 

operation period Tr [76]. Typically, the number of wave cycles corresponding to the return 

period is calculated considering an average wave period of Tp=8 s, which is the one that is 

applicable for the areas of the North Atlantic. More details can be found in Hørte et al. [73] 

and Gaspar et al. [65]. 

2.3  RELIABILITY ANALYSIS USING A BF SURROGATE MODEL 

For the reliability analysis of the stiffened panels under axial load considering a BF surrogate 

model, two stages are considered as presented in the Fig. 2.3 flowchart.  

In Stage 01, the Kriging surrogate model is associated with a Finite Element mesh 

analysis to determine the Bi-fidelity Kriging (BF-Kriging) surrogate model. The stages of the 

proposed algorithm may be summarized as follows: 

Stage 01 - Step 1: In the first analysis, the impact of the correlation between LF and 

HF functions considering the Distance Correlation and the magnitude of the cost ratio are then 

investigated. 

Stage 01 - Step 2: Two datasets is adopted to train the surrogate model. A total of nHF 

HF samples are associated with a total of nLF LF observations and is used for fit 

metamodeling of BF data. Therefore, an HF dataset ( ) ( ) ( )

HF,HF ,HF ,HF :, 1tr tr tr

i iD i n=  x y  with 

xtr,HF inputs, and ytr,HF outputs, and an LF dataset ( ) ( ) ( )

LF,LF ,LF ,LF :, 1tr tr tr

i iD i n=  x y  with xtr,LF 

inputs, and ytr,LF outputs are used to estimate the Kriging hyperparameters during the fitting 

stage of the BF-Kriging model; A total of ntest samples with xtest inputs, and ytest,HF are used in 

the dataset ( ) H

( )

, F

) ( :1, ttest test test

i i

tesD i n=  x y  to measure the BF-Kriging accuracy to predict 

HF outputs. The Latin hypercube technique is used for sampling the datasets. 
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Figure 2.3 – Flowchart of the BF-Kriging using finite element mesh. 

Stage 01 - Step 3: In parallel computing, the initial output (0)

,HF ,LF;tr tr tr
 =  y y y  and 

ytest, which consists of the stiffened panel's ultimate strength, is obtained by non-linear FEA.  

Stage 01 - Step 4: A hyperparameter Kriging optimization is realized considering 

Genetic Algorithm (GA). 

Stage 01 - Step 5: Repeat Steps 2 and 3 and the corresponding hyperparameters 

optimization until the convergence criteria are satisfied. To quantify the accuracy of the 

proposed BF-Kriging surrogate model, the Mean relative error (MRE), considering the sum of 

absolute errors divided by the sample size, is given as: 

test , ,

ˆ 1
,

1
.

n test i test i

i
test test i

y y

n y




=

 −
 =
 
 

  (2.8) 
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where 
*

,test iy  denotes the output of the BF-Kriging surrogate model and 
,test iy  the target value 

in the Dtest obtained by FEA. 

Stage 02 – The failure of probability Pf is estimated using the BF-Kriging surrogate 

model in association with the Subset Simulation (Sus) and FORM. The Sus is used to estimate 

the Pf-ref using the FEA, and the FORM method is used to estimate the sensitivity analysis of 

the variables in the reliability analysis. 

Mathematically, the failure of probability Pf can be estimated by solving the multifold 

probability integral defined as: 

( ) ( )( ) ( )
( ) 0

0f
G

P P G f dx


=  =  x
x x x  (2.9) 

where the random vector ( )1 2  ,  ,  ,  nx x x= x  represents the sources of uncertainty in the 

analysis and G(x) is a PF function. In reliability analysis, equating G(x)=0 provides the limit 

state function, which separates the safe region G(x)>0 from the failure region G(x)<0. 

Moreover, f(x) is the joint probability density function of x . To find the local design point 

u*(i) for the structural reliability problem, it is necessary to solve the following constrained 

optimization problem based on the FORM algorithm: 

 arg min | ( ) 0u G= =
u

u* u  (2.10) 

where the design point, u* is the point on G(u)=0 with the shortest distance u  to the origin. 

The u* value defines the so-called Hasofer-Lind reliability index   = u*  and the FORM 

failure probability prediction: 

( )fP  −  (2.11) 

wh    Φ is the standard normal probability distribution function. Sensitivity factors for each 

basic random variable can also be computed based on partial derivatives of the BF-Kriging 

surrogate model at the design point u* [3, 25]: 

( ) *

*

( ) /
, 1, ,

(
.

)

i

i

u
i n =

=

 
= =



u u

u u

u

u
 (2.12) 

 h    gni u   o   h  α-values quantifies the importance of the basic random variables. 

The sign of the sensitivity factor αi (i  ,…n) defines the contribution of variable ui (i  ,…n) 

to the reliability index β, in terms of increase (positive α) or decrease (negative α). 
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2.3.1  Subset simulation for reliability estimation 

A brief introduction of the SS technique, largely following Ref. [13], is expressed. The Subset 

Simulation (SUS) is an adaptive Monte Carlo method proposed estimating small failure 

probabilities in high-dimensional problems, and details can be found in several other studies 

[14-16]. The SUS is based on nested sets 1 2 MF F F  , where FM=F is the failure event, 

and expresses the failure probability Pf as a product of conditional probabilities: 

( )
1 1

2

ˆ P P( | )
M

f F j j

j

P F P F F −

=

= =   (2.13) 

where 
1FP is the first unconditional failure probability computed as the fraction of samples 

exceeding the current threshold level L1, and 
1P( | )j jF F −

are the subsequent conditional 

failure probabilities conditional on exceeding the prior intermediate thresholds in level Lj-1, 

and are computed as the fraction of samples exceeding the threshold level Lj.  

In expressing ˆfP  as a product of larger failure probabilities, SUS creates intermediate 

failure thresholds L before the required zero thresholds. As for SUS, the algorithm starts with 

a direct MCS to estimate 
1FP , while a Markov chain Monte Carlo is used to estimate 

1j jF F
P

−

.  

In SUS, the values F(x(k)), k = 1, ..., Nn, of the Nn samples are in the subset S(1). Crude 

MCS generates the samples independently and identically distributed, assuming the Nataf 

transformation. In contrast, samples in the subsequent subsets are generated by Markov Chain 

Monte Carlo (MCMC) simulation and correlated, considering the dependence of the seeds for 

each Markov chain. The samples falling between two subsequent intermediate failure 

thresholds Lj-1 and Lj constitute a subset. The intermediate failure thresholds must be specified 

to estimate these intermediate failure probabilities. The range of the samples 0s nN p N=  are 

retained in each step and serves as the seed for the Markov chains. The value 0 0.1p =  is often 

used in the literature, which makes F1 a relatively frequent event. 

The authors Au and Beck [13] proposed a Metropolis–Hastings algorithm, and this 

method is popular for simulating the conditional samples in 
1j jF F

P
−

. However, occasionally it 

can lead to degenerate sampling when dealing with models having geometrically complex 

performance functions. Papaioannou et al. [15] proposed a delayed rejection MCMC method 

to alleviate these issues and is used in this study.  

In addition, an approximate COV estimate of the intermediate failure probability in the 

subset is given by [16]: 
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( ) ( )

( ) ( )
1 1

1 1 1 1

1 1
ˆ

1 1
j j

F F n

j

n sF F F F

P P N j

P P N j N



− −

 −  =


= 
 −   


 (2.14) 

where Nn is the number of samples in a subset. The overall COV estimate over the required 

failure probability is: 

1

2

ˆ
ˆ

S

f
iP

N

i

COV 
=

=   (2.15) 

2.4  BI-FIDELITY SURROGATE MODEL FOR RELIABILITY ANALYSIS 

A surrogate model is an approximate model for studying complex input-output relationships 

exhibited by another more complex model. Therefore, as mathematical models are an 

abstraction from the real world, surrogated models are yet another abstraction of that 

mathematical model. To approximate a function f is initially defined as a set of sample data 

computed by a sampling plan at a set of points in the domain of interest determined [28, 77]. 

In this way, the surrogate is trained to predict (interpolate) the outputs resulting from other 

input values not included in the training sample. 

Several MF surrogate models based on different single-fidelity surrogate models have 

been developed to take advantage of both HF and LF models. The variable fidelity analysis is 

an essential tool that makes it possible to break the barriers of computational cost using a 

combination of LF and HF data. 

2.4.1  The Fidelities correlation considering Distance Correlation (DIC) 

Although LF samples are noisy and skewed, they usually correlate strongly with HF samples 

[78]. As such, leveraging this correlation to avoid total reliance on HF data is possible. 

Preview researchers such as Toal [79] and Shi et al. [80] adopted the Pearson correlation 

coefficient, commonly used as an indicator to measure the correlation between two random 

variables, to measure the correlation of the HF and LF functions, which can be calculated as : 

( )

( ) ( )
HF LF

HF LF

cov ,
.

var var

y y
r

y y
=  (2.16) 

Respectively, yHF and yLF are a set of n observations of the HF and LF data for identical inputs 

with finite and positive variances. Since the calculation of r is straightforward, it can just 

measure the linear correlation of the HF and LF functions.  
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Distance correlation (DIC) is introduced by Székely et al. [81-83] to measure the 

dependence between random vectors providing a scalar measure of multivariate independence 

that characterizes independence of random vectors, not necessarily in the same dimension. It 

is more general than the classical Pearson product-moment correlation because the DIC has a 

significant benefit for characterizing a non-linear relationship of random vectors. Moreover, 

DIC satisfies ( )HF LF0 DIC , 1y y   and equals zero if independence holds.  

In the correlation fidelities functions context, Distance covariance (dcov) and DIC are 

dependency measures between two random vectors X and Y, discrete observation points where 

the fidelities yHF and yLF are observed. Moreover, dcov and DIC are defined for vectors of 

arbitrary dimensions, 
pX  , and 

qY  . 

The squared dcov2(X,Y) is defined as a weighted distance between the joint 

characteristic function ( ), ,X Y t s  and the product of the marginals ( )X t  and ( )Y t , 

considering the analyzed vectors t and s. The dcov(X,Y) is then the nonnegative number that 

verifies: 

( ) ( ) ( ) ( ) ( )
22

,dcov , , ,
p q

X Y X YX Y t s t s w t s dtds  
+

= −  (2.17) 

where   stands for the Euclidean norm in 
d

, p and q are the dimensionalities of X and Y, 

and the analyzed vectors t and s. The choice of the weight function is detailed in Lemma 1 of 

Székely et al. [82]. According to the authors, it is natural to choose the weight function given 

by: 

( ) ( )
1

1 1
,

p q

p q p q
w t s c c t s

−
+ +

=  (2.18) 

where cd is half the surface area of the unit sphere in 
d

, determined by 

( ) ( )( )1 2
1 2

l

lc l
+

=  + ,for l , and ( )   is the gamma function.  

Analogously to classical Pearson correlation, the DIC(X,Y) is defined from the 

distance covariance as: 

( )

( )

( ) ( )
( ) ( )

( ) ( )

2

2 2

2 2 2

2 2

cov ,
 if  cov , cov , 0

, cov , cov ,

0  if  cov , cov , 0.

d X Y
d X X d Y Y

DIC X Y d X X d Y Y

d X X d Y Y




= 


=

 (2.19) 

Although the apparent complexity of the definitions in Eq. 2.17 and 2.18, dcov and DIC have 

an empirical simple parameter-free estimator (see Theorem 1, Székely et al. [82]). Given a 
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sample ( ) 
1

,
N

i i i
x y

=
of N observations of the joint random vector (X,Y) , is defined the double-

centered distance matrices A and B as follow: 

, , 2
1 1 , 1

1 1 1
, and

N N N

i j i j il kj kl
l k k l

A a a a a
N N N= = =

= −  −  +   (2.20) 

, , 2
1 1 , 1

1 1 1
,

N N N

i j i j il kj kl
l k k l

B b b b b
N N N= = =

= −  −  +   (2.21) 

where ij i j p
a x x= −  and ij i j q

b y y= − . Then, the sample dcov is the square root of 

2

, ,2
, 1

1
cov .

N

N i j i j
i j

d A B
N =

=   (2.22) 

Similarly, the sample distance correlation is the standardized sample covariance: 

( )

( )

( ) ( )
( ) ( )

( ) ( )

2

2 2

2 2 2

2 2

cov ,
 if  cov , cov , 0

, cov , cov ,

0  if  cov , cov , 0.

N

N N

N N N

N N

d x y
d x x d y y

DIC X Y d x x d y y

d x x d y y




= 


=

 (2.23) 

2.4.2  A BF-Kriging surrogate model 

A more accurate HF dataset with xHF input points and yHF output values associated 

with a less accurate LF dataset with xLF inputs and yLF outputs is necessary to fit a bi-fidelity 

model. According to Forrester and Sóbester [84], to create the BF model considering the 

Kriging surrogate, the formulation of a correction process is simplified if the HF function 

sample locations coincide with a subset of the LF sample locations ( )HF LFx x . Using both 

sets of data, LF and HF, the concatenated sample gives the combined BF set of sample points: 

( ) ( ) ( ) ( )( )LF HF

T
1 1LF

BF LF LF HF HF

HF

, , , , , .
n n 

= = 
 

x
x x x x x

x
 (2.24) 

As with Kriging, the responses in xBF are treated as realizations of a stochastic process. 

The random field is given as  

( )

( )
( )( ) ( )( ) ( )( ) ( )( )( )LF HF

T
1 1LF LF

BF LF LF LF LF AF HF HF HF

HF HF

, , , , , .
n n 

= = 
 

y x
y y x y x y x y x

y x
 (2.25) 

The auto-regressive model of Kennedy and O'Hagan (2000) is adopted, which assumes 

that ( )( ) ( ) ( )( ) HF LF LFcov , 0
i i

=y x y x y x , ( )
 

i
x x . This means that no more can be learned 

about yHF(x(i)) using the LF values as a reference if the value of the HF function at x(i) is 

known.  



20 

 

Consider that the HF model is approximated by scaling the LF model by multiplying it 

with a constant scaling factor ρ and summing it with a Gaussian process Zd(·) that is the 

difference between ρZLF(·) and ZHF(·). 

( ) ( ) ( )HF LF d .Z Z Z= +x x x  (2.26) 

Here ZHF(·) and ZLF(·) are Gaussian processes that represent the local features of the 

HF and LF model, respectively. A Kriging prediction defines the ZLF Gaussian processes. The 

Kriging surrogate model has a mean base term ̂  (the circumflex denotes a maximum 

likelihood estimate, MLE) plus a stationary Gaussian process, Z(x), with zero mean and 

covariance: 

( )( ) ( )( ) ( ) ( )( )2cov , ,
i j i j

y x y x x x   =
 

 (2.27) 

where σ2 is the variance, and ψ(⸱) are correlations between a random variable at the point to 

be predicted and at the sample data points: 

( ) ( )( ) ( ) ( )
ˆ

1

, exp ˆ k
d p

i j i j

k k k

k

x x x x 
=

 
 =

− −


  (2.28) 

where d is the number of design variables and ̂ , ˆ
kp  are spatially related parameters. In 

several situations, it is assumed that ˆ 2kp =  rather than using an MLE. The covariance matrix 

based on the Kriging model is then: 

( ) ( ) 2cov , =  y x y x Ɋ (2.29) 

Similarly, several quantities need to be defined to obtain the BF-Kriging estimator. 

Whereas Kriging is had a covariance matrix (Eq. 2.29), BF-Kriging has a more complex 

covariance matrix involving individual terms associated with both high-fidelity and low-

fidelity models: 

( ) ( )  ( ) ( ) 
( )

( ) ( )  ( ) ( ) ( ) 
( )

( ) ( )  ( ) ( ) ( ) ( ) 
( ) ( )  ( ) ( ) 

LF LF LF LF LF LF LF

2

LF LF LF LF

HF HF LF LF LF LF d LF LF HF

2

LF LF LF HF

HF HF HF HF LF HF d HF LF HF HF

2

LF HF LF HF d HF d HF

2 2

LF LF HF

, cov ,

,

, cov ,

,

, cov ,

cov , cov ,

,

LF

d

cov Z Z

cov Z Z Z

cov Z Z Z Z

Z Z Z Z







 



 

=

=

= +

=

= + +

= +

=

y x y x x x

Ɋ x x

y x y x x x x

Ɋ x x

y x y x x x x x

x x x x

Ɋ x x( ) ( )2

HF d d HF HF,+ Ɋ x x

 (2.30) 
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For example, the notation ( )LF LF HF,Ɋ x x  represents the matrix constituted by the 

correlation coefficient of xHF and xLF. in the low-fidelity Kriging model. The complete 

covariance matrix is given as follows: 

( ) ( )

( ) ( ) ( )

2 2

LF LF LF LF LF LF LF HF

2 2 2 2

LF LF HF LF LF LF HF HF d d HF HF

, ,

, , ,

 

   

 
=   + 

Ɋ x x Ɋ x x
C

Ɋ x x Ɋ x x Ɋ x x
 (2.31) 

The correlations used in the correlation matrices Ψ are presented in Eq. 2.28. Since 

there are two ψLF and ψd correlations, it is necessary to estimate the hyper-parameters θLF, θd, 

pLF, pd, and a scale factor ρ. Therefore, by maximizing the ln-likelihood of the LF data field, 

obtain MLEs for the parameters μLF, 2

LF,  θLF, and pLF: 

( ) ( )( )
( ) ( ) ( )

T 1

LF LF LF LF LF LF LF2LF
LF LF LF LF LF 2

LF

,1
MLE = ln ln det ,

2 2 2

n  




−
− −

− − −
y 1 Ɋ x x y 1

Ɋ x x  (2.32) 

By setting the derivatives of Eq. 2.32 with respect to μLF concerning and 2

LF  to 0 and 

solving, find MLEs of 

( ) ( )
1 1T T

LF LF LF LF LF LF LF LF
ˆ , , , and

− −
= 1 Ɋ x x y 1 Ɋ x x 1 (2.33) 

( ) ( ) ( )
T 12

LF LF LF LF LF LF LF LF LF
ˆ ˆ ˆ, n  

−
= − −y 1 Ɋ x x y 1  (2.34) 

 Substituting Eqs. 2.33 and 2.34 back into ln-likelihood, yields the concentrated ln-

likelihood function: 

( ) ( )( )2LF
LF LF LF LF LF

1
ˆMLE ln ln det , .

2 2

n
= − − Ɋ x x  (2.35) 

Since LFɗ̂  and LFp̂  cannot be obtained theoretically, they can only be obtained by 

numerical maximization of Eq. 2.35. Single-objective Genetic Algorithm (GA) [28] is applied 

in this study. This Gaussian process construction to approximate the ZLF(⸱) with the LF sample 

data in the BF-Kriging model is similar to a single-fidelity Kriging surrogate model. To find 

μd,
2

d ,  d
ˆ ,ɗ  dp̂ , and ρ, define: 

( )HF LF HF= −d y y x  (2.36) 

where yLF(xHF) are the responses of the LF model at the HF locations. If yLF is not available at 

xHF , it is possible to estimate ρ at little additional cost by using Kriging estimates ( )LF HFŷ x , 

using the determined hyper-parameters LFɗ̂  and LF
ˆ .p The ln-likelihood of d, given yLF, is: 
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( ) ( )( )
( ) ( ) ( )

T 1

d d HF HF d2HF
d d LF LF 2

d

,1
ˆMLE ln ln det ,

2 2 2
d

n  




−
− −

= − − −
d 1 Ɋ x x d 1

Ɋ x x  (2.37) 

yielding MLEd of 

( ) ( )
1 1T

d d HF HF d HF HF
ˆ , , , andT

− −
= 1 Ɋ x x d 1 Ɋ x x 1 (2.38) 

( ) ( ) ( )
T 12

d d d HF HF d HF
ˆ ˆ ˆ, n  

−
= − −d 1 Ɋ x x d 1  (2.39) 

with ˆ dɗ, ˆ dp  and ̂  found by maximizing: 

( ) ( )( )2HF
d d HF HF

1
ˆMLE ln ln det ,

2 2
d

n
= − − Ɋ x x  (2.40) 

Likewise, the estimation of d
ˆ ,ɗ  dp̂  and ρ is also obtained by single-objective GA 

maximizing the MLEd.  

Similar to the approach in Kriging, the prediction of a new HF point should be 

consistent with the observed data and the correlation parameters. The new prediction is 

augmented with the existing data, and the likelihood of this augmented data is maximized to 

obtain the MLE for the prediction 
( )( )F

1

H
ˆ n
y

+
x . The new dataset is defined as 

( )
F

1

LF H, ,
T

nT T T+ =
 

X xx x  with values of 
( )( )LF HF HF

1ˆ, ,
T

T T T n+ =
 

y xy y y , and the correlation vector 

that defines the correlation between the observed data and the new prediction is: 

( )( )
( )( ) ( )( )

12

LF LF LF

1 12 2

LF LF HF d d HF

ˆ ˆ ,
.

ˆ ˆ ˆ, ,

n

n n

 

   

+

+ +

 
 =
 
 

+ 

c
x x

x x x x
 (2.41) 

The augmented covariance matrix is: 

2
2

2

LF d
T   

 
=  
 + 

c

c

C
C  (2.42) 

Similar to the single-fidelity Kriging, to maximize 
( )( )HF 1

HF
ˆ n
yMLE

+
x  , it is necessary 

to maximize: 

( ) ( )11
max ,

2

T
f  −= − − −y 1 C y 1  (2.43) 

which may be expressed as: 

( )( ) ( )( )HF HF

1

L

2

HF HF

1 12 2

F

ˆ ˆ
1

max
ˆ ˆ ˆ ˆˆ2 ˆ

T

Tn n

d

f
y y

 

   

−

+ +

− −   
   = −
   



 
 
 − + −

 

y 1 y 1

x x

C c

c
 (2.44) 
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Ignoring terms without 
( )( )HF 1

HF
ˆ n
y

+
x , and set it to 0,  

( )( )( ) ( )
HF

2

1

2 2 2 2

1

HF

LF LF

2 1 1

ˆ1
ˆ ˆ 0

ˆ ˆ ˆ ˆ
d

T

T T

n

d

y
  






−

− −

+ − −
− + = 

+ − + − 
x

c C y 1

c C c c C c
 (2.45) 

Solving for 
( )( )HF 1

HF
ˆ n
y

+
x : 

( )( ) ( )HF

T 1
1 T 1

HF T 1
ˆ ˆ .

n
y x 

−
+ −

−
= + −

1 C y
c C y 1

1 C 1
 (2.46) 

By using the standard stochastic-process approach can also derived the mean-squared 

error ( )2ŝ x  of this predictor: 
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2.5  RESULTS AND DISCUSSION 

In the present section, a representative component of marine structures is presented in Section 

2 to validate the proposed BF-Kriging surrogate model. Specifically, the first analysis 

investigated the correlation between the HF and three different LF models. Then, the 

effectiveness of the number of Dtr,HF, and Dtr,LF training points in the BF-Kriging model is 

explored. After that, the success of the proposed method is examined to assess the 

global σzu approximation considering Dtr,HF, and Dtr,LF points centered at the mean value μ* 

and the reliability of a stiffened panel under axial compression centered at the FORM design 

point x⁎. 

2.5.1  The mesh fidelity selection and validation of the FEM 

The influence of mesh must be studied and refined enough to provide accurate and valid 

results. However, an equilibrium between the precision required and computational effort is 

needed to save computing time. The discretization level of FE models with HF and LF is 

determined through a mesh verification test considering the dimensions to be discretized by 

the FE Method. Consider Nx the number of divisions along the plate x-axis, Ny the number of 

divisions in the stiffener web (y-axis), Nz the number of divisions along the plate and stiffener 

z-axis, and Nts the number of divisions along the flange stiffener x-axis. In the present study, 

Nx = Ny is adopted because they are similar in size, and for all analyses, Nts=2 is adopted. 

The plate with the mean value of the material and geometric variables (μ*) of the 

proposed model under axial compression presented in Table 2.1 is used for a mesh 
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convergence study. After several combinations of mesh size, one combination with Nx=Ny=8 

and Nz=80 is defined as the HF model, depicted in Fig. 2.4(a). Moreover, three sets of division 

numbers are selected as LF models to evaluate the fidelities correlation presented in Table 2.2. 

 

Figure 2.4 – Mesh (a) divisions, (b) HFM mesh size, and (c) LFM mesh size. 

Table 2.2 – Fidelities correlation and cost functions. 

Model Fidelity Nx=Ny Nz Comp. Cost (s) Ratio to HF DIC 

Low 01 2 20 16.200 0.2364 0.975 

Low 02 3 30 17.300 0.252 0.983 

Low 03 4 40 18.200 0.265 0.991 

High 8 80 68.500 1.000 - 

The computational cost in the stiffened panels analysis is the sum of the time for 

geometry and mesh creation, mesh modification, and non-linear analysis. The construction of 

the geometry and mesh presents similar computational costs for all the presented models. 

However, the mesh is modified, applying the initial imperfections at every point. This task 

that the more refined the mesh is, the greater the computational time devoted to it. Unlike the 

HF model, the fewer nodes for the Low 01, Low 02, and Low 03 models did not present a 

significant difference in the computational time of the mesh modification. In addition, the 

computational time of the non-linear analysis is also increased with the refinement of the 

mesh. 

To evaluate the relationship of the mesh fidelities model, a test dataset Dtest with 

ntest=200 is used to determine the DIC correlation parameter. The computational cost 

presented in Table 2.2 is the average time consumed by the Dtest to obtain the σzu output. 

Seemingly the computational costs for the LF models are close, showing that the mesh size 

does not significantly influence the computational time of LF models. Still considering the 

information in Table 2.2, the LF models presented larger values of DIC, indicating a stronger 

relationship between each LF about the HF model. Based on these presented results, the LF 
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Model 03, depicted in Fig. 2.4(b), with Nx=Ny=4 and Nz=40, is adopted as a reference LF 

model in the present study. Fig. 2.5(a) shows the Dtest points, with the HF and LF model 

correlation. 

 

Figure 2.5 – FE results: (a) HF and (b) LF deflection shape and stress distribution, (b) stress-strain. 

Figure 2.5 shows the FE results for the HF and LF analysis assuming the mean value 

of the basic random variables (red filled square), comparing with the Dtest dataset (Fig. 2.5(a)), 

and the stress-strain considering the HF and LF model (Fig. 2.5(b)). The σzu=284.260 MPa 

considering the HF model, and σzu=290.39 MPa considering the LF model. The HF result 

obtained by the proposed FEA model agrees well with the ones obtained by Gaspar et al. [3]. 

2.5.2  Assessment of BF-Kriging models efficiency in global σzu predictions 

The predictive accuracy of the failure probability predictions depends on the σzu prediction of 

the stiffened panel elements. This accurate prediction depends on the number of surrogate 

training points and the hyperparameters of the BF-Kriging model. Therefore, to obtain an 

accurate response surface BF approximation for this example, it is necessary to evaluate the 

Dtr,HF, and Dtr,LF dataset sizes nHF and nLF. The nLF value is determined by multiplying nHF by 

a sample size ratio between HF and LF models (λBF) to obtain the surrogate improvement 

level with potential LF sample points. The potential and impact of the LF sample points were 

evaluated with the HF samples fixed to nHF=500 and 1000 training points, while the infill 

strategy of LF samples is increased as the ratio λBF ranges from 3 to 8. 

The total cost is the number of calls to the performance function Ncall that, based on 

the cost functions, equals the equivalent number of HF samples. The total computational cost 

for each studied case is depicted in Fig. 2.6(a). By plotting PF Ncall in terms of the λBF 

evolution, it can be seen that for each value of nHF, the computational cost and Ncall increase in 
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the associated linear rate. For each value of nHF and comparing the extreme cases of λBF=3 and 

8, Ncall has a similar increase of 73.9%. 

 

Figure 2.6 – The tendency of the global: (a) Computational cost, and (b) relative error of the BF-Kriging 

surrogate model. 

For each fitted BF-Kriging surrogate model under different sample ratios λBF, the 

MRE accuracy metrics are obtained predicting the same Dtest with ntest=200 used in the 

model's correlation analysis. The ˆMRE  accuracy assessment is presented in Fig. 2.6(b). In 

both analyses for the values of nHF, when λBF≤ ,  s  h  nu     o     s     s in    s s,  h  

prediction accuracy of the BF surrogate models improves rapidly. However, when λBF>5, as 

the number of LF samples increases, the models with nHF=500 slightly improve their fit after 

that little to no variation in their metrics. The BF models with nHF=500 provide the best 

prediction accuracy when λBF=8. This scenario affords similar accuracy metrics compared to 

the cases with nHF=1000 and low λBF values. Otherwise, in the model with nHF=1000, the 

increment of λBF guarantees a continuous improvement in the model, accordingly, sufficient 

accuracy to the validation data.  

Considering the presented accuracy results, the case with nHF=1000 and λBF=8 

provides accurate metrics estimates and can be viewed as an appropriate BF-Kriging 

surrogate model to predict the ultimate compressive stress σzu of stiffened panels. Figure 2.7 

depicts a scatter plot of σzu predicted by the FEA model and the BF-Kriging model at the Dtest 

dataset showing the accuracy of the BF-Kriging model approximation. 

Figure 2.7(b) illustrates the relative errors for the Dtest dataset. The selected BF-

Kriging surrogate model has a mean absolute error ˆ 0.41% = , and a coefficient of 

determination 2 0.991R =  that implies that this BF-Kriging surrogate model ensures sufficient 

accuracy in the validation data. Figure 2.7(b) shows that for 95% of the verification points, 
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the squared error satisfies ˆ 1.0%  . Beyond that, σzu=284.402 MPa for the mean value μ* of 

the basic random variables (Table 2.1) obtained by the BF-Kriging model with an ˆ 0.05% =

when compared with the σzu obtained by FEA and described in Section 5.1. 

 

Figure 2.7 – BF-K  g  g    ul        h  σzu of the stiffened plate: (a) predictions compared with the FEA results, 

and (b) mean relative errors. 

2.5.2.1 Sensitivity analysis 

It must be noted that the hyperparameter θl in the BF-Kriging model can reflect the influence 

of the lth design variable on the output in a way. Generally speaking, a larger θl indicates that 

the output varies more dramatically in the lth coordinate direction [28, 77]. Based on the HF 

and LF sets, a sensitivity analysis is first conducted by evaluating the rank-correlation 

coefficients for the response variable concerning the random variables in θ. The resulting 

tornado plots are shown in Fig. 2.8 for both LF and HF models. 

 

Figure 2.8 – Rank-correlation coefficients for the input variables. 

For the global σzu prediction, the variables do not have broadly similar importance on 

the problem and differ significantly in nature and significance. The HF and LF models 

generally agree in their sensitivity indications. For the HF and LF models, the random 
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variables characteristic of the material σy,p, σy,s, Ep, and Es are sensitive to the σzu. In contrast, 

the stiffened panel geometry variables tp, tw, and tf show low sensitivity to the response 

variable in both LF and HF models.  

There is an apparent divergence between the HF and LF model sensitivities for initial 

imperfection amplitudes wos, and woc showing inconsistency in sensitivity between the 

models. Some divergence in the sensitivity can occur between multi-fidelity models due to the 

different nature of their states (e.g., 2D vs. 3D models, models with different domains, coarse 

vs. refined meshes). In this paper's specific case, this behaviour is directly linked to the initial 

deformation that varies with the increase of the FE mesh. An infill strategy can be used in 

cases where there is no agreement on the sensitivity of the variables between the two models 

sampling HF data used for the HF model or to ensure that the LF model is globally accurate. 

However, in the present study, despite the divergence of sensitivities predominantly in the 

initial imperfections, the HF and LF models resulted in acceptable global accuracy, showing 

that both are globally accurate. 

2.5.3  Reliability assessment considering BF-Kriging model 

The assessment of efficiency, accuracy, and fidelity of the BF-Kriging surrogate model in the 

shipbuilding case presented in this paper is also performed through a systematic comparison 

of their accuracy in the approximation of the failure of probability and reliability index of the 

application problem based on SUS and FORM. The FEA is used to obtain the implicit 

performance function (FE-PF). For the FEA+SUS analysis, the initial Nn is set to 3×103 and 

p0  0  ,   so o   h  other intermediate failure events size. For the FEA+FORM, the finite 

difference method determines the partial derivates in Eq. 2.12 for probability prediction. The 

results of the reliability analyses reference values Pf-ref and βref are summarized in Table 2.3. 

The Ncall value is the equivalent number of HF FEA simulations to estimate the failure 

probability, and the total runs are the number of independent simulations to estimate the 

statistics of ˆfP . The relative error for the β is ˆ
ˆ /ref ref

  = −  computed considering the 

̂  predicted by BF-Kriging with the reference βref obtained by FE-PF. The other results 

presented in Table 2.3 are discussed throughout this section. 
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Table 2.3 – FORM design points and sensitivity factors for stiffened panel. 

Method Ncall (runs) ˆ
fP  ̂  ˆMRE (%)


 

FEA+SUS (ref.) 15000 1.48×10-4 3.618 - 

FEA +FORM 1350 9.33×10-5 3.736 3.26 

Kriging+SUS 3000 (50) 1.31×10-4 3.640 0.89 

BF-Kriging+FORM 3120 (50) 1.04×10-4 3.708 2.49 

BF-Kriging+SUS (proposed) 3120 (50) 1.32×10-4 3.650 0.88 

After each BF-Kriging tuned hyperparameter and successfully fitted considering 

different nHF and λBF, the BF-Kriging model is associated with SUS to predict ˆ .fP As 

presented in Step 2 of Fig. 2.3, the values of nHF and λBF are also increased if ˆ 1.0%.

  The 

initial Nn is set to 3×103 and p0  0  ,   so o   h  o h   in      i      i u    v n s siz    n  his 

analysis, the outputs are obtained by the BF-Kriging surrogate model. The predicted ̂  using 

BF-Kriging+SUS are the continuous lines presented in Fig. 2.9(a) w.r.t. the sample ratio λBF. 

Each point is presented with the 95% confidence interval (CI) amplitude of ̂ . The relative 

error 
̂
  is the continuous lines presented in Fig. 2.9(b), comping the ̂  predicted by BF-

Kriging+SUS with the reference βref obtained by FEA+SUS.  

 

Figure 2.9 – Reliability index: (a)           β and, (b) β relative error. 

As displayed in Fig. 2.9, CI becomes narrower as the number of λBF increases due to 

the effect of reducing the standard error of the probability of failure estimations by BF-

Kriging+SUS. Considering the different values of nHF, these BF-Kriging models give bad 

results for a small number of samples and show fluctuation as the number of LF samples 

increases in ̂  prediction in the cases with λBF<7. The models provide less accurate local 

predictions close to the limit state region for these cases. The results curve of the ̂  predicted 
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by BF-Kriging+SUS shows little to no fluctuation in the cases with λBF≥ ,   ovi ing      ive 

values compared with the β results obtained by FEA. However, it is essential to emphasize 

that although the BF-Kriging model with nHF=500 and λBF≥  presents a good local prediction, 

ensuring good accuracies in the ̂  predicted by SUS, it does not ensure satisfactory global 

accuracy results, as shown in Fig. 2.6(b). For the best circumstances with nHF=500, the most 

accurate reliability index is obtained with λBF=8, which shows ˆ 1.73%

 =  when compared 

with βref. When nHF=1000 is considered, the most accurate reliability estimate is obtained with 

λBF=8, which shows a small variability of ˆ 0.88%

 =  about βref. 

From Fig. 2.9, with the rising of nLF and λBF, a better approximation is obtained for the 

reliability metrics of ˆ
fP  and ̂  in the BF model compared to that obtained through the FEA. 

Finally, through the results presented, the chosen convergence criterion accepts the BF model 

with nHF=1000 and λBF=8. This model resulted in a ̂ =3.65 and ˆfP =1.32×10-4. 

Furthermore, BF-Kriging+FORM is also performed to predict ˆ
fP  and ̂ . The 

performance assessment is presented as squares scattered in Fig. 2.9. As depicted in Fig. 2.9b, 

for the most cases evaluated, the MREβ are higher for most of the evaluated cases, showing 

that for this study, BF-Kriging+SUS presented a better prediction of ̂  compared to the 

reference value. However, the BF-Kriging+FORM performance assessment is appropriate to 

evaluate the corresponding design point coordinates of the random variables (i.e., the u* in 

G(x*)=0) even the sensitivity factors (α), based on Eq. 2.12. Also, the value for each variable 

is conceivably compared about the obtained by FE-FORM, given in Table 2.4.  

Analyzing the BF-Kriging results, compared with the reference design point obtained 

by FE-FORM, the design point is similar with a small error. Unlike the Sensitivity analysis in 

Fig. 2.8, which evaluates the influence of variables in the global prediction of zu, the 

sensitivity factors (α) introduced in Table 2.4 show the effect of each variable in the ˆ
fP  

determination. The ultimate capacity model factor χu is the most decisive variable in the ˆfP  

prediction. The basic random variables with a positive contribution to the reliability index are 

the geometry variables (tp, tw , and tf), the yield stress σy,p and Young's modulus Ep of the plate, 

and the yield stress σy,s of the stiffeners. The young modulus Es of the stiffeners, the weld-

induced initial imperfections (wop, wos, and woc), and the load variables (Msw and Mwv) 

contribute negatively to the ˆfP  prediction, as shown in Table 2.4. 
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Table 2.4 – FORM design points and sensitivity factors for stiffened panel. 

Variable 
FE-PF BF-Kriging 

u* x* α u* x* α 

tp -0.156 20.436 0.041 -0.162 20.433 0.043 

tw -0.066 9.487 0.0125 -0.045 9.491 0.0122 

tf -0.025 13.992 0.0045 0.002 14.000 0.004 

σy,p -0.024 346.862 0.0075 0.119 349.878 0.008 

Ep -1.115 1.923e5 0.286 -0.833 1.956e5 0.293 

σy,s -1.061 325.965 0.190 -1.292 321.480 0.187 

Es 0.583 2.129e5 -0.162 0.635 2.136e5 -0.160 

wop 0.793 2.992 -0.259 0.750 2.932 -0.254 

wos 0.982 3.983 -0.304 0.912 3.853 -0.302 

woc 0.074 2.593 -0.029 0.003 2.508 -0.024 

Msw 1.077 52.234 -0.281 1.130 52.843 -0.285 

Mwv 1.825 147.534 -0.502 1.882 148.678 -0.493 

χu -2.263 0.823 0.601 -2.544 0.795 0.607 

The results of the proposed BF-Kriging+SUS and other methods are shown in Table 

2.3. The reduction of computing time is remarkable considering the proposed BF-

Kriging+SUS and compared with the FEA-SUS. The proposed method reduces the Ncall by 

about 80%, getting a similar value of ˆfP . Comparing BF-Kriging+SUS with the FEA-FORM, 

the proposed method needs more Ncall to fit the PF. However, considering the PF is highly 

non-linear, the proposed method ensures a more reliable ˆ
fP  prediction value. The BF-

Kriging+SUS is also compared with the single-fidelity Kriging surrogate model [77], 

previously adopted to predict zu of stiffened panels (e.g. [8, 25]). The proposed method has 

similar ˆfP  prediction value and costs similar Ncall necessary to fit the surrogate accurately. 

 These results mean that for practical applications, a dataset using around 1000 HF and 

8000 LF FEAs can be an initial estimative to accurately fit a BF-Kriging model to make 

reliability predictions for stiffened panels with similar geometry, materials, and boundary 

conditions. Table 2.3 demonstrates that the BF-Kriging+SUS reliability approach has 

advantages over the SUS with FEA-based PF at identical computational effort compared with 

classic surrogate models. In addition, comparing accuracy, the proposed BF-Kriging+SUS 

reliability approach has advantages over the FORM with FEA-based PF, considering highly 

non-linear PF. Furthermore, in highly non-linear applications, the non-linear FEA numerical 

algorithm may produce noisy derivatives due to oscillations of the LSF for slight variations of 
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the input parameters, which can affect the FORM convergence. In these cases, the BF-

Kriging+SUS also has the advantage of obtaining a reliable approximated PF. 

2.6  CONCLUSIONS 

In this paper, a Bi-Fidelity Kriging surrogate model is proposed to become explicit a 13-d 

highly non-linear stiffened panel performance function to facilitate the reliability analysis of 

the presented structure.  

The distance correlation, frequently used for non-linear variables correlation, is 

innovatively imported for constructing spatial correlation functions to estimate the 

relationship between the high and low-fidelity models. Estimating the correlation between the 

fidelities reduces the complexity of the high and low-fidelity models' choice. After the low-

fidelity model selection, the reduction in the computational time provided by the proposed 

BF-Kriging has been up to 75% of the computational cost in the FE analysis. 

Moreover, the present paper shows the influence of the number of high and low-

fidelity data points in the BF-Kriging accuracy for the case study. A global prediction system 

for the ultimate strength is developed, and the BF-Kriging model provides immediate 

solutions to the Finite Element. Moreover, the BF reliability analyses using Subset Simulation 

present accurate results, showing that the BF model allows an excellent local prediction under 

the given performance function.  

Also, the importance of each design variable is evaluated in two different aspects. 

Firstly, it concerned the ultimate strength global output estimated through the corresponding 

BF-Kriging. After that, for reliability index prediction using Subset Simulation and FORM. 

These results suggest that the BF framework can be applied to the reliability analysis 

of structures, using HF associated with low-fidelity samples to predict high-fidelity values. 

This framework provides an acceptable level of accuracy and considerable computation time 

savings compared to the conventional methods that use only high-fidelity samples. 
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Abstract: The present study proposes a two-stage Bi-Fidelity Deep Neural Network surrogate 

model to quantify the uncertainty of structural analysis using low-fidelity data samples added 

to the model to predict high-fidelity responses. This multi-fidelity surrogate model efficiently 

reduces the high computational cost for highly non-linear and high dimensional structural 

reliability problems. The framework is demonstrated using three different representative 

examples. First, it demonstrates the multi-fidelity model's accuracy for approximating a high 

non-linear 20-dimensional standard benchmark function that is hard to approximate with 

other methods and compared with another multi-fidelity neural network framework. In the 

other examples, the multi-fidelity framework is associated with Subset Simulation to 

efficiently estimate rare events considering a benchmark case study including high-

dimensional scenarios, and the third example considers finite element model case studies. The 

proposed framework is also compared with a multi-fidelity Co-Kriging method. The results 

show that the proposed multi-fidelity framework, with its optimized hyperparameters using 

Bayesian Optimization, is an excellent strategy for reducing the number of samples used to 

construct the performance function's surrogate model. Moreover, the proposed framework can 

provide an accurate failure probability estimation with a lower computational cost in high 

non-linear, high dimensional, and rare events. 

Keywords: Multi-fidelity; Artificial Neural Networks; Structural reliability analysis; Non-

linear Finite Element Analysis; Stiffened panel. 

3.1  INTRODUCTION 

Reliability analysis is of significant importance in structural engineering, as it aims to obtain 

the failure probability of a system of interest under uncertainties that influence some event 

concerning some performance criterion [1-3, 7]. Engineers and researchers have well-

recognized the importance of reliability in the past few decades. Its improvements have 

concentrated on making the performance functions more realistic, using proper strength and 

loading assessment methods based on numerical methods [4]. In general, analytical 
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formulations of the performance function (PF) were substituted by finite element assessments. 

The solution of the failure probability integral with accuracy in problems involving non-linear 

limit state functions is computationally demanding [3]. Furthermore, the limit state functions 

became implicit for most practical engineering problems, requiring different approaches to 

render them explicit and to calculate the reliability index [5, 6]. 

Many structural reliability problems can be computed efficiently using approximate 

methods such as the first-order or second-order reliability methods (FORM/SORM) (e.g. [7-

9]) but for very small failure probabilities and complex failure boundaries use can be made of 

advanced simulation methods based on Monte Carlo simulation (MCS) with variance 

reduction techniques as MCS method with importance sampling (MCS-IS) (e.g. [10-12]), the 

directional IS (e.g. [11]), and the Subset Simulation (SUS) (e.g. [13-17]). 

Surrogate models have been widely applied in designs to replace physical experiments 

or expensive simulations, reproducing the PF function based on limited expensive 

calculations to obtain samples to reduce computational burden [8, 22, 85]. Initial formulations 

using polynomial fits [39, 40] have been done to identify the best types of polynomials to 

adopt, how many sample points to use in the fitting, and the choice of the initial set of points 

to be fitted by the surfaces. Methods based on quadratic response surface (e.g. [86]), quadratic 

polynomial–based moving least square (e.g. [87, 88]), and weight regression method (e.g. 

[89]) were applied to approximate the PF. Alternately to polynomial regression models, 

approaches based on the Kriging surrogate model have been proposed to approximate the PF 

[8, 30, 90, 91]. Other approaches adopted Radial Basis Functions [9, 22], Support Vector 

Machine (e.g. [92, 93]), Polynomial Chaos Expansion (e.g. [21, 94, 95]), and Gaussian 

Processes (e.g. [96-98]). 

Artificial Neural Networks (ANN) are amongst the most popular Machine Learning 

(ML) methods used to generate the response surface in structural reliability problems. 

Chojaczyk et al. [2] reviewed and applied ANN models in the reliability analysis of steel 

structures used in the marine industry. Xu et al. [99] and Afshari et al. [100] summarize the 

main applications of ANN variations and ML models in structural reliability problems. 

Typically, an ANN regression model contains model parameters and hyperparameters. 

Selecting an optimal model that achieves the best performance on the data in a suitable 

amount of time becomes a problem of tuning or optimizing these hyperparameters [101-103].  

The above surrogates are based on the fact that data for their construction are available 

from a single-fidelity source, often evaluated through fine high-fidelity (HF) simulations. 
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Indeed, the use of an HF simulation can often provide more reliable and accurate simulation 

results. Using low-fidelity (LF) models to estimate system performance involves significantly 

lower computational requirements using coarse discretization or simplified physics-based 

models. However, LF models may result in inaccurate metamodels or even distorted ones. 

Hence, Multi-fidelity (MF) surrogate approaches have attracted significant attention recently 

for data regression which maximizes the use of cheaper LF models to predict HF outputs [28]. 

The Bi-fidelity (BF) strategy uses the correlation between an HF model and one LF model.  

The ability to handle large data sets and deal with arbitrary non-linearities in high 

dimensions have made ANNs a good candidate for MF regression. Aydin et al. [104] use a 

training strategy starting the ANN with LF computational models and switching to HF 

training data when the overall performance of the ANN stops increasing. Motamed et al. 

[105] and Liu and Wang [106] propose MF NN surrogate models for the uncertainty 

quantification of physical systems described by partial differential equations. Meng and 

Karniadakis [107] developed a 3-step MF Deep neural network (DNN). The first stage train 

LF data and is associated with two HF NNs to define linear and non-linear relationships 

between the LF and HF models. Guo et al. used the 3-step model to approximate input–output 

maps in problems governed by PDEs. Chen et al. [108] used the 3-step MF considering 

Convolutional Neural Networks (CNN), treating the multi-fidelity data as image data and 

processing them using CNN. Applications using the 3-step proposed by Meng and 

Karniadakis [107] in engineering problems can be found in [109-111]. 

The use of MF models has gained popularity in structural engineering applications 

such as multidisciplinary, robust, and multi-objective optimization fields [28, 29, 32, 56] and 

uncertainty quantification fields (e.g., [34, 55, 112]). The applications of MF models in 

reliability analysis have emerged recently. Zhang et al. [33] developed an adaptive reliability 

analysis for MF models using the Gaussian process and applied it to a transmission tower 

problem; however, this method is constrained in treating high-dimensional problems due to 

the general limitation of Gaussian process metamodels. Yi et al. [30] presented an adaptative 

MF kriging algorithm for structural reliability analysis using five examples with low-to-

moderate dimensions. Skandalos et al. [51] used Co-Kriging as a multi-fidelity surrogate 

model for conducting seismic reliability analysis of base-isolated buildings. The Co-kriging 

method has two significant benefits. Firstly, the method can be cast in the Bayesian 

framework, and the regression results naturally include an uncertainty estimation, which is 

usually desirable. Moreover, it is suitable for many applications as a non-parametric 
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regression tool. Nevertheless, the Co-Kriging is unsuitable for high-dimensional drawbacks 

due to the curse of dimensionality.  

Recently, MF frameworks have been proposed for highly non-linear reliability 

problems and rare event simulations. Dhulipala et al. [113] propose active learning based on 

adaptive Subset Simulation (SUS) for robustly predicting small failure probabilities using a 

Gaussian Process active learning function that decides when to call the HF model. In another 

study, Dhulipala et al. estimated the small failure probabilities of an advanced nuclear fuel 

using coupled active learning, MF modeling, and the SUS algorithm. Proppe and Kaupp [114] 

presented efficient MF estimators for rare events by combining multiplicative and additive 

information fusion with importance sampling. 

The main goal of this paper is to associate MF modeling and the SUS algorithm to 

estimate the failure probabilities. The main contribution is developing a hyperparameters-

optimized BF Deep Neural Network (BF-DNN) model for global prediction, allowing similar 

accuracy to the conventional HF modeling, and offering a considerable decrease in dataset 

size and computational time. Comparisons of the failures probability predictions accuracy 

based on SUS through the BF-DNN prediction models as surrogates for the FE-PF are 

presented. The proposed framework is demonstrated in two academic case studies and on 

reliability assessment of the ultimate compressive strength of plate elements typical of the 

deck structure of double-hull oil tanker ships described by a non-linear Finite Element (FE) 

Analysis. A comparison with another MF-DNN model and with the traditional strategy Co-

Kriging is also presented. The main advantage of BF-DNN+SUS is expected to be 

computationally efficient and feasible for dealing with rare events with complex, highly non-

linear implicit performance functions, which require time-consuming numerical procedures in 

high-dimensional practical engineering problems.  

This paper is organized as follows: Section 2 introduces related concepts to elaborate 

on the proposed BF-DNN model and the methodology adopted to propose the reliability 

analysis; The application problem, considered as a numerical example, and the FE model for 

the present study is described in Section 3; In section 4, results obtained from the study are 

discussed extensively; Section 5 draws the main conclusions of the work conducted. 

3.2  PROPOSED BI-FIDELITY DEEP NEURAL NETWORK WITH BAYESIAN 

OPTIMIZATION 

This section outlines the computational framework of the Bi-fidelity Deep Neural Network 

(BF-DNN) to assess structures' uncertainty quantification and failure probability. This 
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network intends to employ a small amount of HF data and a large amount of LF data, both 

generated by FE analysis, to train the surrogate model. 

3.2.1  A bi-fidelity surrogate model 

The variable fidelity analysis is essential for tackling computational costs using a combination 

of LF and HF data. Although LF samples are noisy and somewhat inaccurate, they usually 

correlate strongly with HF samples [78]. As such, it may be possible to leverage this 

correlation to avoid total reliance on HF data correcting the HF model using LF information. 

The combinations of fidelities can be categorized into three groups [115]: (i) 

Adaptation approaches that use adaptation to enhance LF models with information from HF 

models while the computation proceeds; (ii) Fusion strategies that evaluate LF models and HF 

models and then combine information from all outputs and (iii) Filtering approaches that use 

the HF model if the LF model is inaccurate, or when the candidate point meets some criterion. 

Currently, there are several available correction methods, which can be briefly divided 

into three categories [116]: (i) Additive and multiplicative corrections that construct a 

surrogate model of the difference or the ratio between the HF and the LF models; (ii) 

Comprehensive corrections, where both corrections (additive and multiplicative) are used in 

the same bi-fidelity surrogate model; and (iii) Space mapping (input correction) where instead 

of correcting the output of the LF model, it is also possible to correct the input variables.  

Suppose an n-dimensional random vector 
dx  is mapped through a model to obtain 

a desired output y(x). Let yLF(x) and yHF(x) denote the approximated values of y(x) by an LF 

and HF computational model, respectively. In the current study, a fusion MF with a 

comprehensive correction model adopted is expressed as follows: 

( ) ( ) ( ) ( )HF LFy y z=  +x x x x  Equation Chapter (Next) Section 1 (3.1) 

where ρ(x) is a scaling factor that quantifies the correlation between [yHF, yLF], and z(x) the 

corresponding noise. However, one of the main disadvantages of this scheme is that it can 

only handle linear correlation between two fidelity data. In contrast, many interesting cases 

follow non-linear relationships between LF and HF data [107]. A general correlation is 

considered the relation between the two models is expressed as: 

( ) ( )( )HF LF,y F y=x x x  (3.2) 

 where F(·) is an unknown function that maps the LF data to the HF level that is based on the 

input data 
( ) ( )( )( ) HF LF HF HF, :1
i i

y i n x x  , and the output data 
( ) HF HF:1
i

i n y  . 
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3.2.1.1 The Fidelities correlation considering Distance Correlation (DIC) 

Although LF samples are noisy and skewed, they usually correlate strongly with HF samples 

[78]. As such, leveraging this correlation to avoid total reliance on HF data is possible. The 

empirical Distance Correlation (DIC) was introduced by Székely et al. [81, 82] to measure 

associations between two random vectors, not necessarily in the same dimension. As an 

advantage over the classical Pearson product-moment correlation, the DIC has a significant 

benefit for characterizing a non-linear relationship of random vectors. Moreover, DIC satisfies 

( )HF LF0 DIC , 1y y   and equals zero if independence holds. Given a sample ( ) ( ) ( )

1
,

N
i i

HF LF
i

y y
=

of N observations of the joint random vector (yHF,yLF) , is defined the double-centered 

distance matrices A and B as follows: 

, , 2
1 1 , 1

1 1 1
, and

N N N

i j i j il kj kl
l k k l

A a a a a
N N N= = =

= −  −  +   (3.3) 

, , 2
1 1 , 1

1 1 1
,

N N N

i j i j il kj kl
l k k l

B b b b b
N N N= = =

= −  −  +   (3.4) 

where 
( ) ( )i j

ij HF HF p
a y y= −  and 

( ) ( )i j

ij LF LF q
b y y= − . Then, the sample dcov is the square root of 

2

, ,2
, 1

1
dcov .

N

i j i j
i j

A B
N =

=   (3.5) 

Similarly, the sample distance correlation is the standardized sample covariance given by: 

( )

( )

( ) ( )
( ) ( )

( ) ( )

2

LF HF 2 2

LF LF HF HF2 2 2

LF HF LF LF HF HF

2 2

LF LF HF HF

dcov ,
 if dcov , dcov , 0

, dcov , dcov ,

0  if dcov , dcov , 0.

y y
y y y y

DIC y y y y y y

y y y y




= 


=

 (3.6) 

3.2.2  Artificial neural networks for bi-fidelity regression 

To learn the relationship ( )( )LF,F yx x  in Eq. 3.2, an Artificial Neural Network (ANN) 

surrogate model is constructed. According to the literature, different ML methods have been 

applied based on their computational efficiency and accuracy advantages to model an 

unknown function or distribution y(x). Fundamentally, the ANN architecture is specified by 

the number of layers, neurons, activation functions, and the training process. Before the 

learning process, it is essential to define a set of hyperparameter values that achieve the best 

performance on the data in a reasonable amount of time [100]. Hyperparameters differ from 

the internal model parameters, such as the neural network's weights and biases, which can be 

learned from the data during the model training.  
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 This study uses the multi-layer feed-forward perceptron (MLP) to train the data [2, 

100]. Three different datasets are adopted. Namely, a training dataset, 

( ) ( ) ( )

HF,HF ,HF ,HF :, 1tr tr tr

i iD i n=  x y  and ( ) ( ) ( )

LF,LF ,LF ,LF :, 1tr tr tr

i iD i n=  x y , are used to 

estimate the gradients during the training of the neural networks in the two different stages of 

the BF-DNN model. A holdout validation dataset ( ) )

,HF ,LF

( ) ( ( ), :1,i i i

valval val val valD i n=  x y y  is 

applied to optimize the model's hyperparameters, and a test dataset 

( ) ,

( ) ( )

HF ,LF

( ) :1 ,, ,i i

test test test ts

i

e t et stD i n=  x y y  never seen before during training and validation, 

estimates the performance of the final tunned model.  

A Multilevel DNN is applied to capture the non-linear data correlation in a BF context 

and learn the multidimensional function ( ) ( )
T

HF LF,F F F=   x x  using different NNs to model 

these functions. The Bi-Fidelity Deep Neural Network (BF-DNN) is fully connected and 

comprises two stages, each configured as an MLP. The architecture of the NN model is shown 

in Fig. 3.1.  

 

Figure 3.1 – Architecture of the composite neural networks for multi-fidelity modeling. 

As depicted in Fig. 3.1, the BF-DNN model learns the unknown implicit function 

( )( )LF,F yx x  that maps the LF data to the HF level of Eq. 3.2 in the same structure. The 

DNN architecture consists of five levels trained simultaneously: input layer, LF hidden layers, 

concatenate layer, BF hidden layers, and output layer. In the Input Layer are n xtr,LF input 

neurons (shown in purple). The LF Fully Connected Layers (blue) train the yLF function 

considering a non-linear mapping. In the concatenate layer, there are n+1 input neurons 

(shown in green). They are xtr,HF, and yLF(xHF). The BF Fully Connected Layers (yellow) train 

the yHF function considering a non-linear mapping. The output neuron in the Output Layer 
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(orange) is yHF(xHF). As an advantage of this BF-DNN model, the HF input locations should 

not be required to form a subset of the LF input locations.  

According to Fig. 3.1, the first stage (NNLF) learns FLF(x). Before that, it is possible to 

predict the values of the LF function at the training inputs xHF of the HF data inputted in the 

concatenate layer denoted by ( ) ( )( ) LF HF HFLF LF :1
iNN NNF F i n=  x x . Then a second 

stage (NNBF) approximates the HF function yHF(x) based on the input data 

( )( ) ( ) ( )( )( ) LF HF LF H FHF HF F H, , :1
i iNN NNF F i n=  x x x x  and the available HF output data 

( ) ( ) HF HF HFHF :1
i

y i n=  yx  .  

In the ANN, the neuron is a processing element with several inputs and one output. 

Each m neuron receives an input signal vector 
( ) :1
i

i n=  xx  from n input channels. The 

neurons are connected using connection weights w, each containing a bias and an activation. 

The weighted sum of x is calculated by multiplying each element xc by a coefficient wmc, 

indicating the importance of the input channel c. The activation am of the m-neuron is given 

by: 

1

n

m mk n m

c

a w x b
=

= +  (3.7) 

where mb R  is the bias, is a constant corrective term allowing a non-negative activation am. 

The output signal value y is calculated as a function of the activation. Table 3.1 presents some 

activation functions commonly applied in ANN. 

Table 3.1 – Features of activation functions. 

Activation Function Function Domain 

Hyperbolic tangent ( ) ( ) ( )m m m ma a a a

mf a e e e e
− −

= − +  ( )1,1−  

Sigmoid ( ) ( )1 1 ma

mf a e
−

= +  ( )0,1  

Rectified Linear Units (ReLU) ( )
0

0 0

m m

m

m

a a
f a

a


= 


  )0,  

Exponential Linear Unit (ELU) 
( )

( )

0

1 0m

m m

m a

m

a a
f a

e a


= 

− 

 

with parameter 1 =  

( ),−   
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The number of layers and neurons of each multi-layer NN strongly affects the 

predictive accuracy. It is important to emphasize that no specific constraint is imposed on the 

LF model. However, a convergence FE mesh study is necessary to evaluate the correlation 

between the LF and the HF model to guarantee that the resulting model is more accurate. The 

unknown NN parameters are decided by minimizing the following loss function using Root 

Mean Squared Error (RMSE) of the LF and HF Dval in association with weight regularization, 

used as a general technique to reduce overfitting of the Dtr and improve the generalization of 

the model as follow: 

( ) ( )LF HF
2 2

( ) ( ) ( ) ( ) 2

LF LF HF HF1 1
LF HF

1 1
ˆ ˆ ,

n ni i j j

ii j
Loss y y y y w

n n


= =
= − + − +    (3.8) 

where LFŷ , yLF, HFŷ  and yHF denote, respectively, the predicted value of the validation LF in 

the NNLF stage, the real response of the LF point, the predicted value of the validation HF 

in the NNBF stage, and the real response of the validation HF point; τ>0 is a penalty parameter, 

and w denotes weights and biases of neural networks. Once all training data are introduced, 

the backpropagation optimization is utilized to update the weights and biases of the model 

iteratively until the loss function reaches the minimum [111]. 

The loss function can be optimized using a method such as the Adaptive Moment 

Estimation (ADAM) method along with Xavier's initialization method [56, 111]. The ADAM 

is a method for efficient stochastic optimization that only requires first-order gradients with 

little memory requirement, is relatively easy to implement, computationally efficient, and is 

well suited for problems that are large in terms of data or parameters. Moreover, the method is 

designed to combine the advantages of two popular methods for gradient-based optimization: 

Adaptive Subgradient Methods , which works well with sparse gradients, and Root Mean 

Squared Propagation, which works well in online and non-stationary settings [117, 118]. 

3.2.2.1 Hyperparameter optimization based on Bayesian Optimization 

A machine learning model A with a configuration space of the overall hyperparameters Λ 

performs best on a particular problem with an optimal combination of its hyperparameters λ*. 

The space Λ can include both discrete and continuous dimensions. Given a dataset Dtr, the 

goal is to find the best configuration such that: 

( ) ( )max ,
tr

trD D
E L A D







=  (3.9) 

where L(Aλ,Dtr) denotes the validation performance of Aλ on dataset D. 



42 

 

Various optimization techniques can obtain an optimal combination of hyper-parameters. 

Traditionally, manual or automatic techniques (such as random and grid search) have been 

used as hyperparameter optimization [102]. The manual method tends to generate human 

errors and needs expertise. The accuracy in grid search decreases with the increase in the 

number of parameters in the optimization process. Moreover, random search is based on 

random distribution functions, which might miss optimal spots in the investigation. To 

overcome the difficulty in heuristics associated with machine learning models, Bayesian 

Optimization has been leveraged in the hyperparameters selection of DNN [102, 103, 119]. 

Bayesian optimization (BO), derived from the Bayes theorem, is an effective method 

for solving computationally demanding optimization without closed-form solutions [120, 

121]. The BO algorithm adds sample points to the posterior distribution of an objective 

function L(Aλ,Dtr), approximated by a Gaussian process [101, 122]. The GP is a function 

where the variable is a Gaussian distribution:  

( )( )( ) ( ), , .f h GP m h k h h  (3.10) 

 Here m(h) is the distribution's mean function, and k(h,h′  is  h   ov  i n    un  ion o  

two tested points, h and h′   n  his s u  ,  h     é n 5 2  kernel can be helpful in the 

optimization setting [101]. This proposed study chooses the Expected Improvement as an 

acquisition function because it takes work to fall into the local optimum solution [102]. 

Considering an acquisition function, where high values of the acquisition function are 

associated with high values of the objective function, the maximum value of the objective 

function is obtained through an iterative process of maximizing the acquisition function at 

each step of Bayesian optimization. This process continues until the posterior distribution fits 

the actual distribution. 

 The BO algorithm as hyperparameter optimization requires few iterations and a high 

operation speed. In addition, a strong point of the BO algorithm is that it can optimize integers 

and categorical variables, typical in DNN hyperparameters. The details of the BO algorithm 

can be found in [101, 102, 121]. 

In this study, for all examples and both DNN stages, the hyperparameters: the number 

of hidden layers, neurons in each hidden layer, initial learning rate, and activation function, 

are tuned by BO. The hyper-parameters that required optimization (and their ranges) are given 

in Table 3.2. 
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Table 3.2 – The hyperparameters to be optimized with a defined search space. 

Hyperparameter Limits Domain 
Each Layer Size [50,200] Integer 
Number of layers (NNLF) [1,4] Integer 
Number of layers (NNBF) [1,3] Integer 
Activation Function [elu, relu, sigmoid, tanh] Categorical 
Learning rate [5e-3,5e-2] Real 

3.2.3  Subset simulation for failure probability estimation 

The performance function G(x) provides the limit state function when G(x)=0, which 

separates the safe region G(x)>0 from the failure region G(x)<0. Mathematically, for a given 

structural system input parameter 
( ) :1
i

i n=  xx , the parameter Pf can be estimated by 

solving the multifold probability integral defined as: 

( ) ( )( ) ( )0f
F

P P F G f dx= =  = x x x  (3.11) 

where f(x) is the joint probability density function of x. Considering the statistical technique 

of Direct Monte Carlo Sampling (MCS), the failure probability can be estimated as follows: 

( )( )

1

1 N
i

f F

i

P I
N =

=  x  (3.12) 

 where x(1), . . . x(N) are i.i.d. samples from f(x), and IF (x) stands for the indicator function, 

i.e., 

1 if
( )

0 if
F

x F
I

x F


= 


x  (3.13) 

A brief introduction of the SS technique, largely following Ref. [13], will be provided. 

The Subset Simulation (SUS) is an adaptive Monte Carlo method proposed for estimating 

small failure probabilities in high-dimensional problems. The SUS is based on nested sets 

1 2 MF F F  , where FM=F is the failure event, and expresses the failure probability Pf as a 

product of conditional probabilities: 

( )
1 1

2

ˆ P P( | )
M

f F j j

j

P F P F F −

=

= =   (3.14) 

where 
1FP is the first unconditional failure probability computed as the fraction of samples 

exceeding the current threshold level L1, and 
1P( | )j jF F −

are the subsequent conditional failure 

probabilities that are conditional on exceeding the prior intermediate thresholds in level Lj-1, 

and are computed as the fraction of samples exceeding the threshold level Lj.  



44 

 

In expressing ˆfP  as a product of larger failure probabilities, SUS creates intermediate 

failure thresholds L before the required zero thresholds. As for SUS, the algorithm starts with 

a direct MCS to estimate 
1FP , while a Markov chain Monte Carlo is used to define 

1j jF F
P

−

.  

In SUS, the values F(x(k)), k = 1, ..., Nn, of the Nn samples are in the subset S(1). Crude 

MCS generates the samples independently identically distributed assuming the Nataf 

transformation, whereas samples in the subsequent subsets are generated by Markov Chain 

Monte Carlo (MCMC) simulation and correlated, considering the dependence of the seeds for 

each Markov chain. The samples falling between two subsequent intermediate failure 

thresholds Lj-1 and Lj constitute a subset. The intermediate failure thresholds must be specified 

to estimate the intermediate failure probabilities. The range of the samples 0s nN p N=  are 

retained in each step and serves as the seed for the Markov chains. The value 0 0.1p =  is often 

used in the literature, which makes F1 a relatively frequent event. 

Au and Beck [13] proposed a Metropolis–Hastings algorithm, and this method is 

popular for simulating the conditional samples in 
1j jF F

P
−

, but occasionally it can lead to 

degenerate sampling when dealing with models having geometrically complex performance 

functions. Papaioannou et al. [15] proposed a delayed rejection Markov chain Monte Carlo 

method to alleviate these issues, which is used in this study.  

In addition, an approximate COV to estimate the intermediate failure probability in the 

subset is given by [16]: 

( ) ( )

( ) ( )
1 1

1 1 1 1

1 1
ˆ

1 1
j j

F F n

j

n sF F F F

P P N j

P P N j N



− −

 −  =


= 
 −   


 (3.15) 

where Nn is the number of samples in a subset. The overall COV estimate over the required 

failure probability is: 

2

ˆ

1

ˆ .
S

f
i

N

i
P

COV 
=

=   (3.16) 

 The generalized reliability index β is expressed as: 

1ū ( )fP −= −  (3.17) 

where 
1ū (Ŀ)−

 is the inverse CDF function of the standard Gaussian distribution. 
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3.2.4  Reliability analysis using Subset simulation with the BF-DNN model 

This section briefly overviews the BF-DNN model associated with SUS for reliability 

analysis of high-dimensional cases with complex performance functions with multi-fidelity 

modeling of non-linear fidelities correlations. A flowchart, shown in Fig. 3.2, summarizes it.  

 

Figure 3.2 – Flowchart of the BF-DNN model and Reliability analysis. 

Stage 01 develops the BF-DNN framework, and Stage 02 presents the structural 

reliability assessment using SUS. The steps of the proposed algorithm may be summarized as 

follows: 

Stage 01 - Step 1: Generate the initial training database  0 , ,tr val testD D D D=  

randomly by the Latin Hypercube sampling method and calculate the corresponding 

responses 
( )0

,HF ,HF; ; ;tr tr tr val test
 =  y y y y y  by the HF and LF functions. 

Stage 01 - Step 2: Initialize the model and define the initial hyperparameters.  

                                                             

  s    ing
  n    ing    ,  val ,     
 n      u      h  ou  u s

                         

     

s  is i   

ˆ
  

   : P o   i i   o    i u  

no

  s

  n           o   h  

 i s    i u    v n  

wi h        ho 

                 

  ini i  iz  ion

   o            ion

       
  ussi n 
P o  ss

  o  ing 
  i   ion 
s  is i   

n
o

no

 
 s

    u     h          n   s
 o    i iz  

             ov   n 

        n     ining  h        
using    

              s

o   iz  ion    

  s  
i     ion
    h    

 v  u  ion  h  

        o   n   

using  val

 in   unning               s using     si n    i iz  ion

 v  u  ion  h  

        o   n   

using      

  s    ing

 n  n i   

     s   s    

P   o       

 o g   n      i 
   0

      
s  is i   

    n 
   siz 

 
 s



46 

 

Stage 01 - Step 3 and Step 4: Create and train the BF-DNN model using the Dtr 

dataset. In each iteration, the training step is validated using Holdout Validation. Afterwards, 

evaluate the BF-DNN performance using Dval. If the last iteration is reached, the 

hyperparameters optimization ends and turns to Stage 03-Step 7. Otherwise, turn to Stage 01-

Step 5. 

Stage 01 - Step 5 and Step 6: Construct the Gaussian surrogate model and select new 

data points by optimizing the acquisition function, calculating the corresponding functions, 

and augmenting the data. Repeat Steps 3 and 4 with the latest data. 

Stage 01 - Step 7: Evaluate the BF-DNN performance using Dtest. If convergence 

criteria are satisfied, the BF-DNN construction is finished. To quantify the accuracy of the 

proposed BFMT-DNN model is used the sum of the average relative error (εavg) referring to 

the two stages of the BF-DNN is given as: 

( ) ( ) ( ) ( )

LF ,LF HF ,HF

avg ( ) ( )1 1
,LF ,HF

ˆ ˆ1 1test test

i i j j
n ntest test

i ji j
test testtest test

y y y y

n y n y


= =

   − −
   = +
   
   

   (3.18) 

Where ytest,LF and ytest,HF denotes the LF and HF reference value of the Dtest, LFŷ  and HFŷ , the 

LF and HF predicted values by BFMT-DNN. It is considered εavg=0.6% as the stop criterion.  

Stage 02 – Step 1: Generate the first random sample data S(1) using the MCS method. 

The value of Ns depends on the different problems, and it is much smaller than the number 

required by the original MCS method. Approximately samples are needed to estimate a failure 

probability by MCS-based methods. In this paper, the initial Nn is generally set to 3×103, also 

of the other intermediate failure events size. 

Stage 02 – Step 2 and Step 3: In ascending order, select the first 10% random failure 

points and corresponding minimum responses as seeds for each Markov chain. Use the 

MCMC method to generate the new random sample data S(i). 

Stage 02 – Step 4: If Li≥0,  u n  o    g  0 -Step 2. Otherwise, set Li=0. 

Stage 02 – Step 5: Calculate the coefficient of variation ˆ
fP

COV  based on Eq. 3.19. If 

ˆ 0.1
fP

COV  , turn to Stage 03-Step 6. Otherwise, turn to Stage 02-Step 7. 

Stage 02 – Step 6: Expand the Nn = Nn+1×103 size of the random point and then go to 

Stage 03-Step 1. 

Stage 02 – Step 7: Output the final ˆfP . If ˆfP  is satisfied, end the proposed method. 

Otherwise, resample the initial dataset D and turn to Stage 01-Step 1. 
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3.3  APPLICATION TO A MARITME INDUSTRY PROBLEM 

The evaluation of the proposed bi-fidelity surrogate models based on an FE analysis for 

structural reliability analysis is performed based on an application problem of a fundamental 

problem of the shipbuilding industry. The problem studied consists of the reliability 

assessment of the ultimate strength of stiffened panel elements under axial compression, 

which are present in the deck structure of double-hull oil tanker ships as introduced by Gaspar 

et al. [3] and Chojaczyk et al. [2]. Figure 3.3(a) illustrates the model of the stiffened panel 

under the compressive load σz described by a non-linear FE structural model. 

 

Figure 3.3 – Model of the stiffened panel (a) Deck under uniaxial compression in the longitudinal direction, (b) 

geometry of the FE model, and (c) cross-section dimensions.  

3.3.1  Finite Element Model  

The FE analysis of the present study consists of the following steps: (ⅰ) Definition of the 

model characteristics and choice of the finite element, (ⅱ) definition of imperfections, 

boundary, and load conditions, (ⅲ) modeling of the structure's geometry, (ⅳ) simulation and 

(ⅴ) post-processing and analysis of results. 

Considering the BF input values, an output database is obtained for the training points 

via non-linear FEM. These values comprise the ultimate strength results (σzu) for each sample 

x(i). The FE mesh defines the fidelity for the high and low-fidelity models. A mesh 

convergence test determines the convergence of the FE mesh discretization with HF and LF. 

This test is relevant to define the mesh size that guarantees a non-significant reduction in the 

value of yLF, compared to yHF, but with a significant computational time reduction. In the 

present study, the stress-strain curves that describe the structural behaviour of the stiffened 

panel under uniaxial compression are simulated using the FE software ABAQUS. The non-
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linear structural behaviour of the stiffened panel elements under axial compression is 

accounted for using the finite element S4R, a 4-node general-purpose, quadrilateral, 

stress/displacement shell element with reduced integration and large-strain formulation. The 

non-linear material behaviour is modeled using a linear-elastic and ideally-plastic material 

law, neglecting the strain-hardening effect. This material law is implemented using Bilinear 

Isotropic Hardening. Other constitutive models can be used depending on the nature of the 

application [22, 123]. 

The FE structural model adopted for the stiffened panel is a half-plus half-span 

(1/2+1/2) model, depicted in Fig. 3.3(b). The stiffened panel comprises steel plates, transverse 

girders, and T-type cross-section longitudinal stiffeners, as shown in Fig. 3.3(c). Since the 

panel is symmetrical, only one of the reinforcements of the reinforced panel with attached 

plating is analyzed, as shown in Fig. 3.3. This same model was also adopted in [3, 71]. 

In assessing the buckling strength of stiffeners or panels, stresses acting on the 

stiffeners or panels are used assuming that complete structures are in a 50% corroded state for 

assessment on the side of safety according to Common Structural Rules for Bulk Carriers and 

Oil Tankers by [69]. The design values for the corroded condition of the deck stiffened panel 

defined as deterministic variables are a=5450 mm for the stiffener span or spacing between 

transverse frames and b=900 mm for the spacing between stiffeners in the panel. The midship 

cross-section modulus at the deck for the corroded scantlings is Zv=37.3 m3. The plate and 

stiffeners geometry variables are tp=20.5 mm for the plate thickness, dw=400 mm for the web 

height, bf=100 mm for the flange breadth, tw=9.5 mm for the web thickness, and tf=14.0 mm 

for the flange thickness. 

The material of the plate and stiffeners is AH32 high-strength steel. This material has 

Young’s modulus E=206000 MPa, yield stress σy=315.0 MPa, and Poisson's ratio υ=0.3. The 

design value for σy corresponds to a 5% percentile characteristic value from the probability 

density function [74]. 

Symmetry boundary conditions are imposed at the attached plating longitudinal edges 

and the stiffener mid-span transverse sections. The displacement conditions of the stiffened 

panel are represented by [ux, uy, uz, rx, ry, rz] and applied as per Fig. 3.3(b). For the present 

 n   sis,  onsi     h   o  owing  oun      on i ions, wh    “0” in i    s    ns   ion   o  

 o   ion    ons   in   n  “ ”    n no  ons   in :  

• A1-A3 and B1-B3 border (symmetric conditions): [0,1,1,1,1,0]; 

• A1-B1 border (symmetric condition): [1,1,0,0,0,1]; 
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• A3-B3 border (symmetric condition): [1,1, dz,0,0,1]; 

• A2-B2 for plate nodes: [1,0,1,1,1,1] 

• A2-B2 for stiffener web nodes: [0,1,1,1,1,1] 

where dz indicates the displacement imposed at the transverse edge. The displacements of 

nodes on borders A1-A3 and B1-B3 along the x-direction are linked. This process safeguards 

uniform displacement even under a point force applied to one of the coupled nodes and avoids 

the local imperfections of the profile. 

Some initial imperfections are also applied to the FE model to better represent the 

inevitable deformations of the ship steel structure's complex fabrication and welding process. 

The considered pattern is depicted in Fig. 3.4, and analytical functions of the form 

approximate the shapes of these initial imperfections [70]: 

• Initial deflection of local plate panel: 

( )0 , sin sinp op

m z y
w y z w

a b

 
=  (3.19) 

• Initial deflection of stiffener column-type imperfection: 

( )0 sinc oc

z
w z w

a


=  (3.20) 

• Initial deflection of the stiffener sideways imperfection: 

( )0 , sins os

w

x z
w x z w

d a

 
=  

 
 (3.21) 

where wop, woc, and wos are the following design values for the amplitudes given by Paik and 

Kim [71], with wop=b/200 and woc=wos=a/1000. The number of buckling half-waves in the 

longitudinal direction (m) is usually the integer of m=a/b, which is considered m=7. 

 

Figure 3.4 – Initial geometrical imperfections of the stiffened plate (mean amplitudes with scale factor 50×). 
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3.3.2  Performance function 

Stiffened panels are subject to extreme axial compressive loads induced by ship hull girder 

bending moments, and therefore their ultimate compressive strength is an essential design 

requirement. The still water and vertical wave-induced bending moments are the primary 

loads that contribute to the longitudinal compressive stress of the bottom stiffened panel. The 

magnitude of these loads depends on several factors as the load condition of the ship, its 

operational profile, and uncontrollable environmental factors such as the sea state. Therefore, 

the safety margin associated with this hull beam failure mode can be described by a 

performance function of the form [8, 65] : 

( ) zu zaG x  = −  (3.22) 

with σzu the ultimate compressive strength of the stiffened panel elements, given as follows: 

( )( )M Gmax ,zu z = x x  (3.23) 

where xM is a vector of basic material variables, and xG is a vector of basic geometric 

variables. The σza is the uniaxial compressive strength induced by the ship hull girder bending 

moments given by: 

sw wv
za

v

M M

Z


+
=  (3.24) 

where Msw and Mwv are the random vertical still water and wave-induced bending moments, 

respectively, and Zv is the midship cross-section modulus at the deck. 

3.3.3  Random variables definition 

The ten basic random variables considered in the problem of Section 3.2 and the two random 

variables considered in the load components of the performance function in Eq. 3.22 are given 

in Table 3.3. Their corresponding probability density distribution (P.D.), statistical moments 

mean (μ), and standard deviation (std) are presented. 

These basic random variables describe the stiffened panel's geometric and material 

properties and the welding-induced initial imperfection amplitudes. The probabilistic density 

distributions and moments in Table 3.3 are adopted for the structural dimensions, and material 

properties are established in the literature. They are commonly used in structural reliability 

analysis, e.g., [2, 8, 73, 124]. In this study, the probabilistic model for the amplitudes of the 

initial deflections is based on [65, 75]. The parameters of the lognormal distributions are 
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derived considering the design amplitudes as 95% percentile characteristic values, and the 

coefficient of variation (COV) is assumed to equal 0.50. 

Table 3.3 – Random variables for strength and load definition. 

Variable Type Units P.D. μ std COV (%) 
tp 

Strength 

mm Normal 20.50 0.41 2.0 
tw mm Normal 9.50 0.19 2.0 
tf mm Normal 14.00 0.28 2.0 
σyd,p MPa Lognormal 348.00 20.88 6.0 
σyd,s MPa Lognormal 348.00 20.88 6.0 
Ep MPa Lognormal 2.06e5 1.23e4 6.0 
Es MPa Lognormal 206e5 1.23e4 6.0 
wop mm Lognormal 2.30 1.15 50.0 
wos mm Lognormal 2.80 1.40 50.0 
woc mm Lognormal 2.80 1.40 50.0 
Msw 

Load 
MNm Normal 1483.70 430.30 29.0 

Mwv MNm Gumbel 4603.15 414.30 9.0 

The ship hull girder bending moments are the load basic random variables of the 

problem. The statistical parameters adopted for the hull girder vertical bending moments 

along a ship voyage are defined based on Hørte et al. [73] and as specified in IACS [69]. The 

still water bending moment (Msw) is described by a normal distribution with μ=0.7·Msw,max and 

std=0.2·Msw,max, where Msw,max=2119.6 MNm is the maximum still water bending moment 

specified in the ship loading manual. 

Considering a reference period Tr=1.0 years for the extreme values of vertical wave-

induced bending moment representative of a North Atlantic crossing, the stochastic model 

proposed by Guedes Soares et al. [58, 67] defines the wave-induced bending moment. The 

model is based on a two-parameter Weibull distribution to describe the peak values of vertical 

wave-induced bending moment at a random point in time with shape parameter k=1 and scale 

ξ parameter satisfying: 
8

,        1  0wv wv maxP M M − =   , where 
,wv maxM  is the maximum vertical wave-

induced bending moment considered for design purposes [69]. The Gumbel distribution then 

describes the peak values over the Tr: 

( ) exp exp
wve

wv
M wv

M
F M





  − 
= − −  

  
 (3.25) 

 The Gumbel model parameters can be derived based on the initial Weibull distribution 

parameters φ and ζ, by Guedes Soares and Teixeira [76] as 1(ln ) k

cn = and 

1(ln ) ,k k

ck n  −= where cn  corresponds to the mean number of load cycles expected over 

the operation period rT  [76]. The number of wave cycles corresponding to the return period is 

calculated considering an average wave period Tw= 8 s, which is the one that is applicable for 
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the areas of the North Atlantic. More details can be found in Hørte et al. [73] and Gaspar et al. 

[65]. 

3.4  CASES STUDIES 

Next, three representative MF cases are adopted to verify the performance of the proposed 

algorithm, and the association with the SUS to reliability performance is presented. First , the 

effectiveness of this BF-DNN model is demonstrated on various artificial benchmarks and 

compared against commonly used MF methods. In addition, a real-world engineering problem 

experiment, presented in Section 3, validates the proposed BF-DNN surrogate model.  

Examples 1 and 2 assume that the cost ratio between the HF and LF functions is 10:1, 

i.e., cHF=1 and cLF=0.1. Ncall is the total cost, which equals the equivalent number of HF 

samples. The hyperparameters of the BF-DNN, for instance, the parameter to balance the 

Loss function terms (Eq. 3.8), are optimized by hold-out validation and BO. The HF data is 

split into 10% for the validation and 90% for the training. Each optimization iteration is 

stopped after reaching any of the following criteria: achieving a defined RMSE loss function 

or a fixed number of 30000 epochs. The BO algorithm stops after reaching the following: a 

fixed number of 50 iterations or a fixed time is defined as 7.2×105 seg. The regularization is 

fixed 
410 −= . Therefore, the hyperparameters are optimized throughout the layers, and 

global optimization is executed across the validation set, thereby reducing the time taken and 

improving the model's performance. MATLAB is used to optimize the hyperparameters and 

build the BF-DNN model.  

3.4.1  Example 1: 20-dimensional function approximation 

The first example is the 20-d problem presented by Meng and Karniadakis [107], which is 

hard to approximate with other methods and is used to compare the proposed BF-DNN 

framework with another MF-DNN presented by the authors. The following high-dimensional 

functions define the MF setting in this example: 

( ) ( )
20

2
2 2

1H 1

2

F ( 1) 2 ,i i

i

f x x x −

=

= − + −x  (3.26) 

( )
19

LF HF 1

1

0.8 ( ) 0.4 50.i i

i

f y x x x +

=

= − −x  (3.27) 

The random variables  1 2 20, , ,x x x= x  obey the uniform distribution in [-3,3]. The 

authors ([107, 125]) used the 3-step MF-DNN using nHF=5000 and nLF=30000, resulting in 
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Ncall=8000. However, although a good prediction is depicted in [107, 125], the authors present 

no accuracy estimate for the test prediction. 

 The proposed BF-DNN method obtains good accuracy with nLF=25000 and 

nHF=3000, resulting in Ncall =5500. The hyperparameters are tuned according to the search 

space presented in Table 3.2. The optimal parameter combinations of the BF-DNN after the 

BO are presented in Table 3.4. Figure 3.5(a) depicts the results prediction of a Dtest dataset 

with ntest=10000 using only the available nHF=3000 high-fidelity data that does not lead to an 

accurate function approximation. Figure 3.5(b) illustrates the excellent results prediction of 

the Dtest dataset using the obtained BF-DNN. The average relative error ˆ ,

ˆ /ref reff avg
f f f = −  

is used to quantify the accuracy of the predictions, with 
reff  the reference value considered 

and f̂  the predicted value. The selected BF-DNN surrogate model has an average relative 

error ˆ ,
0.877%

f avg
 =  for the HF prediction at Dtest. 

Table 3.4 – Tunned hyperparameters by Bayesian Optimization in Example 01(a). 

nHF nLF Number of 

layers 
Hidden Layer's Size Act. Function Learning rate (×10-3) 

3000 - 1 108 elu 0.87 

3000 25000 (2, 2) [(81 126), (62 55)] (elu, elu) (1.38, 0.91) 

(a) The MF description references to (NNLF, NNBF) and [(NNLF), (NNBF)]. 

 

Figure 3.5 – Approximations of the 20-d function at Dtest using: (a) Single-fidelity DNN, and (b) BF-DNN. 

3.4.2  Example 2: Non-linear performance function 

The proposed strategy for reliability analysis is illustrated with an adaptation of the Griewank 

function in a BF context. The high-dimensional non-linear MF-PF is as follows: 

( ) ( )
1

HF

1

2 1.25 cos
5

dd
i

i

i i

x
f x

= =

 
= +  

 
 x  (3.28) 
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( ) ( )LF HF

1

5
sin ,

11

d
i

i

x
f f

=

 
= +  

 
x x  (3.29) 

All the random variables  1 2, , , dx x x= x  are the independent standard normal 

random variables. The reliability problem is defined as  HFPr 0R f=   . Table 3.5 lists the 

optimal parameter combinations of  5,20,30d = .  

Table 3.5 – Tunned hyperparameters by Bayesian Optimization in Example 02. 

d nHF nLF BO 

iteration 
Number of 

layers 
Hidden Layer's 

Size 
Activation 

Function 
Learning rate 

(×10-3) 

5 100 500 23 (1, 2) [(51), (62 55)] (tanh, elu) (1.38, 0.91) 

20 700 3500 19 (1, 2) [(94), (64 92)] (tanh, elu) (1.32, 0.75) 

30 2000 8000 39 (1, 2) [(134), (89 123)] (elu, elu) (1.06, 0.92) 

It can be noted that the best performances of the three models after hyperparameter 

optimization are with one hidden layer in the NNLF stage. The three models' NNBF stage has 

two hidden layers with ELU as the activation function. The results of the proposed method 

and other methods, including MCS, MCS+SUS, and the commonly used Co-Kriging method 

[8, 28, 29], associated with SUS are summarized in Table 3.6. The same training points are 

shared between the Co-Kriging and the proposed BF-DNN. Each SUS analysis is submitted to 

50 simulation cycles and ˆfP predictions. 

Table 3.6 – Failure probabilities comparisons in Example 02. 

Dimension Method Ncall ˆ
fP  ̂  ( )ˆ %


  Tc (seg) 

5 

MCS (reference) 106 5.63×10-2 1.586 - - 

MCS+SUS 9000 5.64×10-2 1.585 0.063 - 

Co-Krigagem+ SUS 150 5.63×10-2 1.586 0.000 568 

BF-DNN+SUS 

(proposed) 

150 5.64×10-2 1.585 0.063 1620 

20 

MCS 106 2.30×10-3 2.833 - - 

MCS+SUS 12000 2.22×10-3 2.845 0.423 - 

Co-Krigagem+ SUS 1050 2.78×10-3 2.770 2.223 2019 

BF-DNN+SUS 1050 2.81×10-3 2.772 2.153 1862 

30 

MCS 107 3.09×10-4 3.423 - - 

MCS+SUS 15000 3.14×10-4 3.419 0.117 - 

Co-Krigagem+ SUS 2800 3.56×10-4 3.385 1.110 4039 

BF-DNN+SUS 2800 3.52×10-4 3.395 0.818 3117 
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 As illustrated in Table 3.6, the necessary Ncall to obtain accuracy reliability responses 

is significantly smaller than that of MCS and MCS+SUS for all d values. The average relative 

error ˆ
ˆ /ref ref

   = −  is used to quantify the accuracy of the reliability index predictions, 

with 
ref  the reference reliability index considered and ̂  the predicted reliability index. 

Regarding the estimated accuracy, the proposed BF-DNN+SUS performs with slight 

fluctuation than the MCS+SUS and Co-Kriging+SUS. The most critical case is when d=20, 

with ˆ 2.153%

 = . 

The reference Tc in Table 3.6 is the total computational cost for optimizing the BF-

DNN hyperparameters over BO 50 iterations and estimating the Co-Kriging model's 

hyperparameters using GA. For cases with d=5, the Co-Kriging performs in reduced Tc than 

the BF-DNN approach. As the problem's dimensionality increases, the Tc for the BF-DNN 

model increase at a lower rate compared to the Co-Kriging model in estimating the 

hyperparameters. For the case d=20, the Tc of the BF-DNN is slightly less than Co-Kriging. 

However, for the case d=30, the Tc of the BF-DNN is fewer than Co-Kriging to predict a rare 

event. In this case, the Co-Kriging scheme has a 10000×10000 covariance matrix, resulting in 

large computational schemes for the hyperparameters optimization. However, the DNN-BF 

model needed a DNN architecture with a similar size to the low-dimensional BF-DNN cases 

to obtain similar accuracy compared to Co-Kriging. 

3.4.3  Example 3: Stiffened panels by non-linear FE analysis 

This section addresses the real-world engineering problem experiment presented in Section 3 

to validate the proposed BF-DNN surrogate model. Specifically, the first analysis investigates 

the mesh influence on building the HF and LF models. Next, it explor the effectiveness of the 

number of support points in the BF-DNN model training. Then, the success of the proposed 

method is examined to assess the reliability of a stiffened panel under axial compression. 

Also, the BF-DNN+SUS effectiveness in the reliability analysis is compared with the MCS, 

MCS+SUS, and Co-Kriging+SUS. 

3.4.3.1 Bi-fidelity mesh description 

The mesh convergence must be studied and refined for accurate and valid results. 

However, a trade-off between precision and computational time is needed to save computing 

time through mesh convergence. The dimensions used in discretization of the mesh consist 

of: Nx is considered the number of divisions along the x-axis of the plate, Ny is the number of 
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divisions in the stiffener web (y-axis) of the stiffener, Nz is the number of divisions along 

the z-axis of the plate and stiffener, and Nts the number of divisions along the x-axis of the 

flange stiffener. In the present study, Nx=Ny is adopted.  

The stiffened panel with the mean values of the material and geometric variables 

presented in Table 3.3 is used for the mesh convergence study. The number of divisions' 

variation influence and their combinations are shown in Fig. 3.6(a). For all analyses, Nts=2 is 

adopted. These time measurements include the time to preprocess the FE model, adjust the 

finite element mesh to match the initial imperfection condition and solve the FE analysis. 

Four sets of division numbers are selected as LF models to evaluate the fidelities correlation 

presented in Table 3.7. 

 

Figure 3.6 – Mesh assessment (a) convergence analysis and computational cost, and (b) Distance correlation 

between fidelities functions. 

Table 3.7 – Fidelities correlation and cost functions. 

Model 

Fidelity 
Nx=Ny Nz Comp. Cost (s) Ratio to HF DIC 

LFM1 2 20 16.200 0.2364 0.975 
LFM2 3 30 17.300 0.252 0.983 
LFM3 4 40 18.200 0.265 0.991 
LFM4 5 50 27.500 0.400 0.992 
High 8 80 68.500 1.000 - 

The relationship of the mesh fidelities model is evaluated considering a test dataset 

Dtest with ntest=200 to determine the DIC correlation parameter. Considering the information in 

Table 3.7, the LF models presented larger values of DIC, indicating a stronger relationship 

between each LF about the HF model. The LFM3 and LFM4 showed similar DIC values but 

different computational costs. Based on these presented results, the LFM2 is adopted as a 

reference LF model in the present study. Figure 3.6(b) shows the Dtest points with the 

correlation between the HF and LF model. The cost of each fidelity model is the average ratio 
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of computational cost per sample given in Table 3.7, resulting in a cost function cHF=1.00 and 

cLF=0.26. 

Figure 3.7(a) shows the stress-strain curve obtained by the mean value of the basic 

random variables for the HF and LF meshes adopted. The ultimate compressive strength, 

defined as the maximum value of the stress-strain curve considering the HF mesh, is 

σzu=284.26 MPa, and its deformed shape and von Mises stress distribution at collapse are 

shown in Fig. 3.7(b). The results obtained by the HF mesh in this paper adequately reflect the 

ones obtained by [2, 3, 8]. 

 

Figure 3.7 – FE results considering the mean value of the basic random variables: (a) Average stress-strain 

curve, and (b) von-Misses stress (MPa) for the HF and LF condition (displacement with scale factor 20×). 

3.4.3.2 Accuracy and efficiency of the BF-DNN model 

The predictive accuracy of the failure probability predictions depends on the σzu prediction of 

the stiffened panel elements. This accurate prediction, consequentially, depends on the 

number of support points and the characteristics of each multi-layer NN. Therefore, it is 

necessary to evaluate the training sample sizes nLF and nHF to obtain an accurate response 

surface BF approximation for this example. For the BF-DNN assessment, nval=200 and 

ntest=500 are considered. 

The nLF value is the product of nHF by a sample size ratio between HF and LF models 

(λBF) to obtain an accurate response surface approximation. The potential and impact of the 

LF sample points are evaluated with the HF samples fixed to nHF=500, 750, and 1000 support 

points, while the infill strategy of LF samples is increased as the ratio λBF ranges from 2 to 6.  

Figure 3.8 shows the influence of the sample size ratio on Ncall to the performance 

function. By plotting the evolution of Ncall of the performance function in terms of the sample 

ratio (Fig. 3.8(a)), it can be seen that for each value nHF, the computational cost and Ncall 
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increase at a linear rate of associated λBF. Each value of nHF and comparing the extreme cases 

(λBF=2 and 6) Ncall had a similar increase of 69% approximately. 

 

Figure 3.8 – The tendency of (a) the global Ncall a   ( ) εavg accuracy for different sample ratios. 

The accuracy metrics of the BF-DNN cases for performance function approximation 

are obtained with the sum of the metrics of each stage (NNLF and NNBF) of the BF-DNN 

model. The 
avg  (Eq. 3.18), presented in Fig. 3.8(b), is used as a fit measure of the BF-DNN 

surrogate model under different sample ratios λBF.  

About the results presented in Fig. 3.8(b), considering the specific case nHF=500, it is 

clear that by increasing LF samples for λBF>4, the BF-DNN models show a slight 

improvement in the value of the accuracy metrics. However, in BF models with nHF=750 and 

1000, it becomes apparent that the accuracy of the BF surrogate models improves rapidly 

when the rate λBF increase. The results show a trade-off between computational cost and 

accuracy. 

The plots in Fig. 3.8 show that the computational cost and Ncall of the cases nHF=500 

associated with high values of λBF and nHF=750 related to low values of λBF are coinciding. It 

can also be seen when comparing the cases with nHF=750 related to high values of λBF and 

nHF=1000 linked to low values of λBF. Nevertheless, despite having cases with similar 

computational costs and Ncall, cases with lower nHF and higher values nLF produced better 

accuracies. These results show the importance of the assessment of the relation λBF. 

Considering the presented accuracy results, the case with nHF=1000 and λBF=6 

provides accurate metrics estimates and can be regarded as an appropriate BF-DNN surrogate 

model. 

3.4.3.3 Comparison of the accuracy prediction with different BF surrogate 
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Computational experiments with another BF model are investigated to test the proposed 

method's performance. Results are compared mainly with Co-Kriging. The Co-Kriging 

comparison with BF-DNN considers the same initial training points (nHF=1000 and λBF=6) 

shared between the two methods. The prediction for the test sample using the proposed BF-

DNN and Co-Kriging is displayed in Figs. 3.9(a) and 3.9(b) and are linked with the 

parameters presented in Table 3.8. Based on the results, the proposed BF-DNN method 

showed a better adjustment when compared with the Co-Kriging method.  

  

Figure 3.9 – A       a         h  σzu using (a) BF-DNN and (b) Co-Kriging; Relative errors ̂      h  σzu using 

(c) BF- DNN and (d) Co-Kriging. 

Table 3.8 – Reliability results and fit parameters to the best adjustments. 

MF Model R2 
ˆ , (%)avg   

ˆ ,

310std
−     ˆ ,max (%)  Tc (seg) 

BF-DNN 0.9952 0.24 0.23 1.94 3813 

Co-Kriging 0.9800 0.58 0.48 2.63 4283 

Figure 3.9 and Table 3.8 report that the results obtained from BF models from these 

two methods present satisfactory results, but the result from the BF-DNN model is better than 

the Co-Kriging. This improvement in the accuracy metrics can be seen because the BF-DNN 

better fits the design points that predict low σzu values. Figures 3.9(c) and 3.9(d) illustrate the 
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relative errors for the test data sample by a graph. The selected BF-DNN surrogate model has 

an average relative error ˆ , 0.24%avg = , with a maximum prediction relative error of 1.94%. 

The low standard deviation means that the error of test predictions is clustered around the 

mean. For 99.0% of the test points, the relative error in the BF-DNN satisfies ˆ %1.00 = . 

Distinctly, this error is satisfied for 84.0% of the test points in the Co-Kriging method. In the 

Co-Kriging results, the data outputs are more spread out with a small accuracy than the 

metrics obtained for the BF-DNN. 

The reference Tc in Table 3.8 is the total computational cost considered to optimize the 

BF-DNN hyperparameters over BO 50 iterations and to estimate the hyperparameters in the 

Co-Kriging model. In this example, the HF and LF σzu function is highly non-linear, resulting 

in many samples for the surrogate model training. The BF-DNN Tc is slightly less than Co-

Kriging. Due to many samples, the Co-Kriging scheme has a 7000×7000 covariance matrix, 

resulting in a high computational cost for the hyperparameters optimization.  

3.4.3.4 Hyperparameter optimization process 

For each combination between the proposed nHF and λBF, the best DNN is determined by 

applying the BO for tuning and optimizing the hyperparameters. To create the BF-DNN 

model, the NNLF and NNBF stages must be trained to obtain HF outputs through a BF model. 

Therefore, two neural networks are trained simultaneously and combined into one through an 

element-wise operation of the layers in an intermediate position between the two stages. A 

summary of the best hyperparameter combinations for the BF-DNN models is shown in Table 

3.9. Each hyperparameter is described for the two stages, NNLF and NNBF. 

Table 3.9 – Tunned hyperparameters by Bayesian Optimization. 

nHF λBF Number of layers  Hidden Layer's Size 
Activation 

Function 

Learning rate 

[×10-3] 

500 

2 (3, 3) [(175 53 163), (93 54 54)] (elu, elu) (7.5, 5.4) 

3 (3, 3) [(167 129 195), (85 53 53)] (elu, elu) (17.8, 5.8) 

4 (3, 3) [(112 85 196), (92 50 50)] (elu, elu) (17.4, 5.1) 

5 (2, 2) [(187 161), (50 70)] (elu, elu) (13.7, 7.6) 

6 (3, 2) [(51 52 157), (60 197)] (elu, elu) (19.9, 8.2) 

750 

2 (3, 2) [(167 129 195), (54 127)] (elu, elu) (17.8, 6.1) 

3 (2, 2) [(146 173), (175 67)] (elu, elu) (5.0, 13.1) 

4 (3, 2) [(51 52 157), (131 50)] (elu, elu) (19.9, 5.1) 

5 (3, 3) [(69 73 151), (196 61 61)] (elu, elu) (14.3, 8.2) 

6 (3, 2) [(150 61 172), (53 113)] (elu, elu) (8.0, 5.6) 

1000 

2 (3, 2) [(112 85 196), (200 156)] (elu, elu) (17.4, 5.0) 

3 (3, 2) [(51 52 157), (61 122)] (elu, elu) (19.9, 5.0) 

4 (3, 3) [(104 200 79), (51 73 73)] (elu, elu) (39.9, 5.1) 

5 (3, 3) [(51 169 75), (111 65 127)] (elu, elu) (15.4,8.7) 

6 (3, 2) [(170 57 142), (115 199)] (elu, elu) (7.5, 5.1) 
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For each stage in the BF-DNN model, one activation function is optimized and used in 

all hidden layers present in these stages. In observed cases with Sigmoid and Hyperbolic 

tangent activation functions, the training is compromised because of the vanishing gradient 

problem. The ELU and RELU present similar performances, but the results obtained using 

ELU as an activation function are slightly better in all of the best observed feasible BF-DNN. 

The selected BF-DNN model is developed by tuning its hyperparameters. The level of 

precision is used to determine the optimal model using the tuned parameters as given in Table 

3.9. Figure 3.10 shows the progress of the BF-DNN hyperparameter optimization for the 

selected model. The plot in Fig. 3.10 corresponds to the minimum objective obtained for the 

Dval with the trained BF-DNN, considering the sum of the minimum value of the stage in each 

iteration corresponding to the minimum objective, as given by Eq. 3.8. 

 

Figure 3.10 – The progress of Bayesian optimization for tuning hyperparameters of (a) NNLF and (b) NNBF. 

The red line in Fig. 3.10 corresponds to the estimated target values, i.e., the result of 

the surrogate model that determines where to evaluate next. The black line is the observed 

target value of the true objective function. Due to the agreement between the true and 

estimated values, it can be assumed that the estimated function is sufficiently compelling, 

attesting to BO's efficiency in choosing BF-DNN hyperparameters. The best workable point is 

where the observed objective value is the lowest. The score for the minimum objective of 

Lossval=2.96 for the trained BF-DNN is kept at five iterations. 

3.4.3.5 Reliability analysis using BF-DNN model 

The BF-DNN model in the presented stiffened panel problem is also assessed with its ability 

to evaluate the failure probability based on the BF-DNN+SUS association. The FE analysis 

reproduces the implicit performance function (FE-PF). For the FE analysis in association with 

SUS (FEA+SUS), the initial Ns is set to 3×103 and p0  0  ,   so o   h  o h   in      i    

failure events size. The process stops in the 7th iteration with ˆ 0.092
fP

COV = . The values Pf,ref, 
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and βref are summarized in Table 3.10. The SUS analyses are submitted to 50 simulation 

cycles and ˆ
fP  predictions. The BF-DNN+SUS and Co-Kriging+SUS results presented in 

Table 3.10 are discussed throughout this section. 

Table 3.10 – Failure probabilities comparisons in Example 03. 

Method Ncall ˆ
fP  ̂  ( )ˆ %


  

MCS+SUS (reference) 21000 6.77×10-6 4.351 - 

Co-Krigagem+ SUS 2590 5.826×10-6 4.384 0.75 

BF-DNN+SUS (proposed) 2590 6.932×10-6 4.346 0.11 

After each BF-DNN has been optimally tuned and successfully trained, the BF-

DNN+SUS is performed to predict ̂  value. Fig. 3.11(a) depicts ̂  w.r.t. the sample ratio λBF 

for the nHF variations. The average relative error ˆ ,avg
  is presented in Fig. 3.11(b). 

 

Figure 3.11 – Reliability index: (a)           β and (b) β relative error.  

As stated in Fig. 3.11, the cases with nHF=500 give dire predictions for β value when 

compared with cases with different values of nHF. Despite slightly fluctuating ̂  as the λBF 

rate increases, the models with nHF=750 and 1000 drastically reduce the ˆ ,avg
  in the ̂

prediction. However, it is essential to emphasize that although the BF-DNN model with 

nHF=750 and λBF=6 presents good accuracy in the ̂  prediction by SUS, it does not ensure 

satisfactory global accuracy results, as shown in Fig. 3.11(b). For the best circumstances, the 

best global σzu and PF prediction are obtained with nHF=1000 and λBF=6, which offer a small 

variability ˆ ,
0.11%

avg
 =  compared to βref. As displayed in Fig. 3.11(a), CI becomes narrower 

as the number of λBF increases due to the effect of reducing the standard error of the failure 

probability estimations by BF-BFDNN+SUS. 
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The results of the proposed and other methods are shown in Table 3.10. The reduction 

of computing time is remarkable considering the proposed BF-Kriging+SUS and compared 

with the FEA-SUS. The proposed method reduces the Ncall by about 88%, getting a similar 

value of ˆfP . Comparing BF-DNN+SUS with BF-Kriging+SUS, the proposed method has a 

slightly better ˆfP  prediction at similar Ncall costs. 

This approach combines the advantages of the BF-DNN model for approximating the 

true PF and the Subset Simulation for evaluating small failure probabilities. The BF-DNN 

inherits the advantage of the original DNN, but the evaluation of the response function using 

LF models in association with HF models reduces the computational cost. 

3.5  CONCLUSIONS 

This work presents a Bi-Fidelity Deep Neural Network to make explicit Performance 

Function for reliability analysis associated with Subset simulation. This framework's accuracy 

and computational efficiency are demonstrated by its application in reliability analysis in 

several scenarios.  

The use of the low-fidelity sample in the bi-fidelity model has been proven. In the 

Finite Element problem, using the low-fidelity sample, there is a reduction of up to 75% of 

the computational cost in the FE analysis. The accuracy assessments are performed to define 

the best sample configuration that provides a fitted model that best represents the 

Performance Function. 

Most surrogate-based procedures, as the compared Co-Kriging, are a victim of the 

curse of dimensionality that the computation effort increases dramatically since large 

populations are required to assess small probabilities or to fit non-linear Performance 

Function. Based on the results, the optimized BF-DNN solves this problem by simplifying the 

Neural Network architecture using a few Bayesian Optimization iterations.  

Moreover, the BF-DNN+SUS association can express a small failure probability as a 

product of larger conditional failure probabilities of several intermediate failure events (See 

examples 2 and 3). However, even obtaining excellent results for low dimensions (See 

Example 2 with d=5), the time for network preprocessing can be considered expensive. This 

method for solving problems with low variables or non-complex PF should be considered 

with reservation. In addition, the proposed framework needs a large amount of data to train, 

becoming a limitation in a sparse high-fidelity dataset analysis. 
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These results suggest that the proposed bi-fidelity framework can be applied to the 

reliability analysis of complex structures, using few high-fidelity associated with many low-

fidelity samples to predict high-fidelity values. This framework provides an acceptable level 

of accuracy provided by the Bayesian optimization of the hyperparameters and considerable 

computation time savings compared to the conventional methods that use only high-fidelity 

samples. 
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4  MULTI-TASK AND BI-FIDELITY DEEP NEURAL NETWORK ASSOCIATED 

WITH SUBSET SIMULATION FOR STRUCTURAL RELIABILITY ASSESSMENT 

 

 

Abstract: A hyperparameter-optimized Bi fidelity and Multi-task Deep Neural Network 

(BFMT-DNN) using low-fidelity data samples added to the model to predict high-fidelity 

responses for structural collapse behaviour framework is presented in this paper. The 

assessment is realized in an offshore wind turbine in extreme conditions and described using 

non-linear Finite Element analysis to obtain multiple outputs. The low-fidelity model is 

accessed with two different models considering different FE elements. This multi-fidelity 

surrogate model efficiently reduces the high computational cost for highly non-linear and high 

dimensional structural reliability problems, and the multi-task framework allows training one 

model to predict multiple tasks. The proposed BFMT-DNN is associated with Subset 

Simulation to estimate rare events efficiently. The results show that the proposed framework, 

with its optimized hyperparameters using Bayesian Optimization, is an excellent strategy for 

reducing the number of samples used to construct the performance function's surrogate model. 

Moreover, the proposed framework can provide an accurate failure probability estimation 

with a lower computational cost in high non-linear, high dimensional, and rare events. 

Keywords: Artificial Neural Networks; Multi-task; Multi-fidelity; Non-linear Finite 

Element Analysis; Wind Turbines. 

 

4.1  INTRODUCTION 

In 2021, the wind industry brought worldwide cumulative wind power capacity to 837 GW, 

showing year-over-year growth of 12%, only 1.8% behind the record year 2020 [126]. Even 

though the second year of the COVID-19 pandemic, the 93.6 GW of new installations added 

is a clear sign of the incredible resilience and upward trajectory of the global wind industry. 

The main criteria, including the water depth, estimated environmental loads, the cost 

of production and installation, and the complexity of the design, are essential for choosing the 

types of support structures to accommodate the offshore wind turbine (OWT) [127]. 

Structural space frames, such as jackets, offer offshore sites a light and stiff option [128]. 

However, despite aleatoric and epistemic uncertainties in the dynamic loads and material 

properties, the OWT accurate life prediction is complex, and the computation analysis can be 

sensitive to small changes in the input parameters and, consequently, time-consuming [129]. 
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Reliability analysis is of significant importance in structural engineering, as it aims to 

obtain the probability of failure of a system of interest under uncertainties that influence some 

event concerning some performance criterion [1-3, 7]. Engineers and researchers have well-

recognized the importance of reliability in the past few decades, and its improvements have 

concentrated on making the performance functions more realistic, using proper strength and 

loading assessment methods based on numerical methods [4].  

Small failure probabilities and complex failure boundaries involved in structural 

reliability problems can be computed efficiently using approximate methods such as the first-

order or second-order reliability methods (FORM/SORM) (e.g. [7-9]) or using advanced 

simulation methods based on Monte Carlo simulation (MCS) with variance reduction 

techniques as MCS method with importance sampling (MCS-IS) (e.g. [10-12]), the directional 

IS (e.g. [11]), and the Subset Simulation (SUS) (e.g. [13-17]). 

In recent years, many studies have been proposed to assess OWT reliability, such as 

[127, 130-132] . These studies show that the presence of uncertainty is a pertinent condition 

for evaluating the reliability of the OWT structure. Moreover, relevant limit states are 

presented in the OWT structural reliability analysis, such as fatigue, ultimate, and 

serviceability lifetime. In this context, more than one output can be necessary for the OWT 

reliability analysis. 

Although surrogate models have been widely applied in designs to replace physical 

experiments or expensive simulations, they focus on single-fidelity models to reproduce the 

Performance (PF) function based on limited expansive calculations to obtain samples to 

reduce computational burden [8, 22, 85]. Are example of single-fidelity approaches: 

Polynomial Regression Models (e.g. [127, 128]), Kriging (e.g. [8, 85, 130]), Radial Basis 

Functions (RBF) (e.g. [22]), Polynomial Chaos Expansion (e.g. [21, 95]), Maximum Entropy 

(e.g. [133]) and Gaussian Processes (GP) (e.g. [96, 98]). Artificial Neural Networks (ANN) 

are amongst the most popular machine learning methods to generate the response surface and 

solve structural reliability problems. Chojaczyk et al. [2], Xu et al. [99], and Afshari et al. 

[100] summarize the main applications of single-fidelity ANN models in structural reliability 

and safety problems. 

Hence, Multi-fidelity (MF) metamodel approaches have attracted significant attention 

recently for data regression which maximizes the use of cheaper low-fidelity (LF) models to 

predict high-fidelity (HF) outputs [28]. The Bi-fidelity (BF) strategy uses the correlation 

between an HF function and one LF function. The use of MF models has gained popularity in 
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structural engineering applications such as multidisciplinary, robust, and multi-objective 

optimization fields (e.g. [28, 29, 32, 56, 134]), uncertainty quantification fields (e.g. [34, 55, 

112]), and structural reliability (e.g. [30, 33, 57]). Are examples of MF approaches: MF-

Kriging (e.g. [28-30]), MF-RBF (e.g. [9, 31]), and MF-GP (e.g. [56, 134]).  

The ability to handle large data sets and good generalization in precision have made 

ANNs a good candidate for MF regression. Several engineering fields aborded the MF-ANN 

to obtain HF responses, such as optimization (e.g.[56]); propagation (e.g. [125, 135]); and 

uncertainty quantification (e.g. [136, 137]). 

The OWT reliability analysis eventually aims to confront situations where multiple 

tasks must be solved. The surrogates showed earlier obtain various outputs that are 

approximated one by one. In this context, Multi-tasking Learning solves tasks simultaneously 

[35-37]. Also, an ML model contains model parameters and hyperparameters. The model 

parameters are obtained by fitting the training data and defining the hyperparameters. 

Selecting an optimized model that archives the best performance on the data in a reasonable 

amount of time becomes a problem of optimizing these hyperparameters [101-103].  

This paper aims to propose a Bi-Fidelity Multi-task Learning Model based on a Deep 

Neural Network (BFMT-DNN) for structural reliability analysis. The main contribution is 

developing a novel hyperparameter-optimized BFMT-DNN, considering the advantages of 

Bayesian Optimization, focusing on prediction accuracy, stability, and computational 

efficiency. As a numerical example, an offshore wind turbine with a jacket-tower structure 

sited in the south of Brazil is adopted and described using non-linear FE analysis to obtain the 

behaviour under extreme loads. The BFMT-DNN is used to predict the OWT's maximum 

stress and deflection. The LF model is constructed considering two scenarios varying the FE 

mesh size and element type. In addition, this paper presents a 50-year return period in extreme 

conditions of the offshore deep water over the south of Brazil shelf, based on WAVEWATCH 

III hindcast data with a real buoy measurements validation. 

This paper is organized as follows: Section 2 introduces related concepts of Deep 

Neural Networks to elaborate the proposed BFMT-DNN model; Section 3 discusses the 

parametric FEA built for the OWT, highlighting the geometry, mesh, material, and boundary 

conditions used, as well as the validation of the FEA model; The extreme load estimation for 

the OWT through statistical extrapolation methods is also described in Section 3; In section 4, 

results obtained from the study are discussed extensively; Section 5 draws the main 

conclusions of the work conducted. 
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4.2  A BI-FIDELITY AND MULTI-TASK DEEP NEURAL NETWORK 

FRAMEWORK 

This section outlines the computational framework of the Bi-fidelity Multi-task Deep Neural 

Network (BFMT-DNN) to assess structures' uncertainty quantification and failure probability. 

This network intends to employ a small amount of HF data and a large amount of LF data, 

both generated by FEA, to train the surrogate model. The BFMT-DNN is proposed to predict 

the maximum stress and the deflection in wind turbine support structures, learning in a two-

stage method. The problem has been chiefly modeled concerning a single-task learning 

framework. 

4.2.1  Bi-fidelity surrogate model 

The variable fidelity analysis is essential for tackling computational costs using a combination 

of LF and HF data. Although LF samples are noisy and somewhat inaccurate, they usually 

correlate strongly with HF samples [78]. As such, it may be possible to leverage this 

correlation to avoid total reliance on HF data correcting the HF model using LF information. 

The combinations of the fidelities can be categorized into three groups [115]: (i) 

Adaptation approaches that use adaptation to enhance LF models with information from HF 

models while the computation proceeds; (ii) Fusion strategies that evaluate LF models and HF 

models and then combine information from all outputs and (iii) Filtering approaches that use 

the HF model if the LF model is inaccurate, or when the candidate point meets some criterion. 

Currently, there are several available correction methods, which can be briefly divided 

into three categories [116]: (i) Additive and multiplicative corrections that construct a 

surrogate model of the difference or the ratio between the HF and the LF models; (ii) 

Comprehensive corrections, where both corrections (additive and multiplicative) are used in 

the same bi-fidelity surrogate model; and (iii) Space mapping (input correction) where instead 

of correcting the output of the LF model, it is also possible to correct the input variables.  

Suppose an n-dimensional random vector 
dx  is mapped through a model to obtain 

a desired output y(x). Let yLF(x) and yHF(x) denote the approximated values of y(x) by an LF 

and HF computational model, respectively. In the current study, a fusion MF with a 

comprehensive correction model adopted is expressed as follows: 

( ) ( ) ( ) ( )HF LFy y z=  +x x x x  Equation Chapter (Next) Section 1(4.1) 

where ρ(x) is a scaling factor that quantifies the correlation between [yHF, yLF], and z(x) the 

corresponding noise. However, one of the main disadvantages of this scheme is that it can 
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only handle linear correlation between two fidelity data. In contrast, many interesting cases 

follow non-linear relationships between LF and HF data [107]. 

4.2.1.1 The Fidelities correlation considering Distance Correlation (DIC) 

Although LF samples are noisy and skewed, they usually correlate strongly with HF samples 

[78]. As such, leveraging this correlation to avoid total reliance on HF data is possible. The 

empirical Distance Correlation (DIC) is introduced by Székely et al. [81, 82] to measure 

associations between two random vectors, not necessarily in the same dimension. As an 

advantage over the classical Pearson product-moment correlation, the DIC has a significant 

benefit for characterizing a non-linear relationship of random vectors. Moreover, DIC satisfies 

( )HF LF0 DIC , 1y y   and equals zero if independence holds. Given a sample ( )( ) ( )

1
,

N
i i

HF LF
i

y y
=

of 

N observations of the joint random vector (YHF,YLF), is defined the double-centered distance 

matrices A and B as follows: 

, , 2
1 1 , 1

1 1 1
, and

N N N

i j i j il kj kl
l k k l

A a a a a
N N N= = =

= −  −  +   (4.2) 

, , 2
1 1 , 1

1 1 1
,

N N N

i j i j il kj kl
l k k l

B b b b b
N N N= = =

= −  −  +   (4.3) 

where 
( ) ( )i j

ij HF HF p
a y y= −  and 

( ) ( )i j

ij LF LF q
b y y= − . Then, the sample dcov is the square root of 

2

, ,2
, 1

1
dcov .

N

i j i j
i j

A B
N =

=   (4.4) 

Similarly, the sample distance correlation is the standardized sample covariance given 

by: 

( )

( )

( ) ( )
( ) ( )

( ) ( )

2

LF HF 2 2

LF LF HF HF2 2 2

LF HF LF LF HF HF

2 2

LF LF HF HF

dcov ,
 if dcov , dcov , 0

, dcov , dcov ,

0  if dcov , dcov , 0.

y y
y y y y

DIC y y y y y y

y y y y




= 


=

 (4.5) 

4.2.2  Artificial neural networks for multi-task learning 

Machine Learning (ML) uses mathematical algorithms that can recognize patterns and 

similarities in data and use their information to be trained and make predictions about new 

data they have never seen before. As a subset of ML, Deep Learning (DL) recreate the brain's 

structure by creating a network of neurons. As a successful branch of DL, Artificial Neural 

Networks (ANN) apply these concepts to solve and simulate real-world problems and 
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scenarios teaching computers to model an unknown function f(x) from available datasets and 

algorithms. 

 The number of layers, neurons, and activation functions specifies the ANN. The 

neurons consist of internal model parameters weights and biases, the values of which are 

optimized by repeated learning of data [2, 138]. Single Task Learning (ST) updates the neural 

networks internal model parameters using input sequence from only one task involving one 

dataset. Multi-tasking (MT) learning aims at solving more than one problem simultaneously.  

Given t learning tasks  ( )

1

t
i

i
T

=
 where all the tasks or a subset of them are related. In 

the MT Soft Parameter Sharing, each task has its model with some sharable parts. In the MT 

Hard Parameter Sharing approach, the model shares the hidden layers across all tasks. 

This study uses the multi-layer feed-forward perceptron (MLP) to train the data [2, 100]. The 

Bi-fidelity Multi-Task Deep Neural Network (BFMT-DNN) is a customized MT Hard 

Parameter Sharing fully connected structure to capture the relationship between the different 

fidelities and tasks. Considering a multi-task scenario, the non-linear relationship between LF 

and HF data can be considered as follows: 

( ) ( )( )HF HF HF LF HF,F=y x x y x  (4.6) 

where F(·) is an unknown function that maps the LF data to the HF level that is based on the 

input data 
( ) ( )( )( ) HF LF HF HF, :1
i i

i n x y x , yLF(x) is the LF vector data obtained by TLF outputs, 

and yHF(x) is the HF data vector obtained by THF outputs. The BFMT-DNN learns the 

unknown implicit function ( )( )HF LF HF,F x y x  that maps the LF data to the HF level of Eq. 4.1 

in the same structure, as depicted in Fig. 4.1. 

The DNN architecture consists of five levels trained simultaneously: input layer, LF 

hidden layers, concatenate layer, BF hidden layers, and output layer. To capture the multi-task 

learning scenario, MT-DNN aims to help improve the learning of a model for task T(i) by 

using the knowledge in some or all of the tasks [36, 37]. According to Fig. 4.1, the first stage 

(NNLF) learns FLF(xLF). The FLF(xLF) function outputs t learning LF tasks  ( )

LF
1
.

t
i

i
T

=
 Before 

that, it is possible to predict the values of the LF function for each TLF at the training inputs 

xHF of the HF data inputted in the concatenate layer denoted by ( )( ) F

,

F HL HF :1
i tNNF i n x . Then 

the second stage (NNBF) approximates the HF outputs yHF(x) based on the input data 
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( )( ) ( ) ( )( )( ) LF HF LF H FHF HF F H, , :1
i iNN NNF F i n=  x x x x  and the available HF output data 

( ) ( ) ,

HF HF HFHF :1
i t

i n=  yxy . 

 

Figure 4.1 – Architecture of the composite neural networks for the BFMT-DNN model. 

In the ANN, the neuron presented in Fig. 4.1 is a processing element with several 

inputs and one output. Each m neuron receives an input signal vector 
( ) :1
i

i n=  xx  

from n input channels. The neurons are connected, the connection weights w, and each neuron 

contains a bias and an activation. Next, the weighted sum of x is calculated by multiplying 

each element xc by a coefficient wmc, demonstrating the importance of input channel c. The 

activation am of the m-neuron is given by: 

1

n

m mc n m

c

a w x b
=

= +  (4.7) 

where mb R  is the bias, is a constant corrective term which allows having a non-negative 

activation am. The output signal value y is calculated as a function of the activation. Table 4.1 

presents some activation functions commonly applied in ANN. The code described is used as 

a reference in the hyperparameters fine-tuning. 

4.2.2.1 Hyperparameter optimization based on Bayesian Optimization 

The optimization of the hyperparameters is employed to increase the bounds of the fitting 

ability of the machine learning model. Therefore, the main optimization courses mainly 

include the structure of the model, the model training mode, and the hyperparameters of the 

model aspects [139].  
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Table 4.1 – Features of activation functions. 

Activation Function Function Domain 

Hyperbolic tangent ( ) ( ) ( )m m m ma a a a

mf a e e e e
− −

= − +  ( )1,1−  

Sigmoid ( ) ( )1 1 ma

mf a e
−

= +  ( )0,1  

Rectified Linear Units (ReLU) ( )
0

0 0

m m

m

m

a a
f a

a


= 


  )0,  

Exponential Linear Unit (ELU) 
( )

( )

0

1 0m

m m

m a

m

a a
f a

e a


= 

− 

 

with parameter 1 =  

( ),−   

Let A denote a machine learning algorithm with a configuration space of the overall 

hyperparameters Λ. The space Λ can include both discrete and continuous dimensions. Given 

a dataset Dtr, the goal is to find the best configuration such that: 

( ) ( )max ,
tr

trD D
E L A D







=  (4.8) 

where L(Aλ,Dtr) denotes the validation performance of Aλ on the dataset D.  

The unknown hyperparameters are decided by minimizing the following loss function 

using Root Mean Squared Error (RMSE) of the LF and HF Dval as follow: 

( ) ( )LF HF
2 2

( ) ( ) ( ) ( )

LF LF HF HF1 1 1
LF HF

1 1
ˆ ˆ ,

n nt i i j j

i i j
Loss y y y y

n n= = =

 
= − + − 

 
    (4.9) 

where LFŷ , yLF, HFŷ , and yHF denotes, respectively, the predicted value of the validation LF in 

NNLF stage, the real response of the LF point , the predicted value of the validation HF 

in NNBF stage, and the real response of the validation HF point of the t-th task. Once all 

training data are introduced, the backpropagation optimization is utilized to update the 

weights and biases of the model iteratively until the loss function reaches the minimum [111]. 

The loss function can be optimized using a method such as the ADAM method along 

with Xavier's initialization method [56, 111]. The ADAM is a method for efficient stochastic 

optimization that only requires first-order gradients with little memory requirement, is 

relatively easy to implement, computationally efficient, and is well suited for problems that 

are large in terms of data or parameters. Moreover, the method is designed to combine the 

advantages of two popular methods for gradient-based optimization: Adaptive Subgradient 

Method, which works well with sparse gradients, and Root Mean Squared Propagation, which 

works well in online and non-stationary settings [117, 118]. 
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Various optimization techniques can obtain an optimal combination of hyper-

parameters. Traditionally, manual or automatic techniques (such as random and grid search) 

have been used as hyperparameter optimization [102]. The manual method tends to human 

error and needs expertise. The accuracy in grid search decreases with the increase in the 

number of parameters in the optimization process. Moreover, random search is based on 

random distribution functions, which might miss optimal spots in the investigation. To 

overcome the difficulty in heuristics associated with machine learning models, Bayesian 

Optimization has been leveraged in the hyperparameters selection of DNN [102, 103, 119]. 

Bayesian optimization (BO), derived from the Bayes theorem, is an effective method 

for solving computationally demanding optimization without closed-form solutions [120, 

121]. The BO algorithm adds sample points to the posterior distribution of an objective 

function L(Aλ,Dtr), approximated by a Gaussian process [101, 122]. The GP is a function 

where the variable is a Gaussian distribution:  

( )( )( ) ( ), , .f h GP m h k h h  (4.10) 

 Here m(h) is the distribution's mean function, and k(h,h′  is  h  covariance function of 

two tested points, h and h′   n  his s u  ,  h     é n 5 2  kernel can be helpful in the 

optimization setting [101]. This proposed study chooses the Expected Improvement as an 

acquisition function because it takes work to fall into the local optimum solution [102]. 

Considering an acquisition function, where high values of the acquisition function are 

associated with high values of the objective function, the maximum value of the objective 

function is obtained through an iterative process of maximizing the acquisition function at 

each step of Bayesian optimization. This process continues until the posterior distribution fits 

the actual distribution. 

 The BO algorithm as hyperparameter optimization requires few iterations and a high 

operation speed. In addition, a strong point of the BO algorithm is that it can optimize integers 

and categorical variables, typical in DNN hyperparameters. The detail of the BO algorithm 

can be found in [101, 102, 121]. 

In this study, for all examples and both DNN stages, the hyperparameters: the number 

of hidden layers, neurons in each hidden layer, initial learning rate, and activation function, 

are tuned by BO. The hyper-parameters that required optimization (and their ranges) are given 

in Table 4.2. 
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Table 4.2 – The hyperparameters to be optimized with a defined search space. 

Hyperparameter Limits Domain 
Each Layer Size [20,300] Integer 
Number of layers (NNLF) [1,4] Integer 
Number of layers (NNBF) [1,3] Integer 
Activation Function [elu, relu, sigmoid, tanh] Categorical 
Learning rate [5e-3,5e-2] Real 

4.2.3  Subset simulation for failure probability estimation 

The performance function G(x) provides the limit state function when G(x)=0, which 

separates the safe region G(x)>0 from the failure region G(x)<0. Mathematically, for a given 

structural system input parameter 
( ) :1
i

i n=  xx , the parameter Pf can be estimated by 

solving the multifold probability integral defined as: 

( ) ( )( ) ( )0f
F

P P F G f dx= =  = x x x  (4.11) 

where f(x) is the joint probability density function of x. Considering the statistical technique 

of Direct Monte Carlo Sampling (MCS), the failure probability can be estimated as follows: 

( )( )

1

1 N
i

f F

i

P I
N =

=  x  (4.12) 

 where x(1), . . . x(N) are i.i.d. samples from f(x), and IF (x) stands for the indicator function, 

i.e., 

1 if
( )

0 if
F

x F
I

x F


= 


x  (4.13) 

A brief introduction of the SS technique, largely following Ref. [13], is expressed. The 

Subset Simulation (SUS) is an adaptive Monte Carlo method proposed for estimating small 

failure probabilities in high-dimensional problems. The SUS is based on nested sets 

1 2 MF F F  , where FM=F is the failure event, and expresses the failure probability Pf as a 

product of conditional probabilities: 

( )
1 1

2

ˆ P P( | )
M

f F j j

j

P F P F F −

=

= =   (4.14) 

where 
1FP is the first unconditional failure probability computed as the fraction of samples 

exceeding the current threshold level L1, and 
1P( | )j jF F −

are the subsequent conditional failure 

probabilities conditional on exceeding the prior intermediate thresholds in level Lj-1, and are 

computed as the fraction of samples exceeding the threshold level Lj.  
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In expressing ˆfP  as a product of larger failure probabilities, SUS creates intermediate 

failure thresholds L before the required zero thresholds. As for SUS, the algorithm starts with 

a direct MCS to estimate 
1FP , while a Markov chain Monte Carlo is used to define 

1j jF F
P

−

.  

In SUS, the values F(x(k)), k = 1, ..., Nn, of the Nn samples are in the subset S(1). Crude 

MCS generates the samples independently identically distributed assuming the Nataf 

transformation, whereas samples in the subsequent subsets are generated by Markov Chain 

Monte Carlo (MCMC) simulation and correlated, considering the dependence of the seeds for 

each Markov chain. The samples falling between two subsequent intermediate failure 

thresholds, Lj-1 and Lj, constitute a subset. The intermediate failure thresholds must be 

specified to estimate the intermediate failure probabilities. The range of the samples

0s nN p N=  is retained in each step and serves as the seed for the Markov chains. The value 

0 0.1p =  is often used in the literature, which makes F1 a relatively frequent event. 

The authors Au and Beck [13] proposed a Metropolis-Hastings algorithm, and this 

method is popular for simulating the conditional samples in 
1j jF F

P
−

, but occasionally it can 

lead to degenerate sampling when dealing with models having geometrically complex 

performance functions. Papaioannou et al. [15] proposed a delayed rejection Markov chain 

Monte Carlo method to alleviate these issues and is used in this study.  

In addition, an approximate COV to estimate the intermediate failure probability in the 

subset is given by [16]: 

( ) ( )

( ) ( )
1 1

1 1 1 1

1 1
ˆ

1 1
j j

F F n

j

n sF F F F

P P N j

P P N j N



− −

 −  =


= 
 −   


 (4.15) 

where Nn is the number of samples in a subset. The overall COV estimate over the required 

failure probability is: 

2

ˆ

1

ˆ .
S

f
i

N

i
P

COV 
=

=   (4.16) 

 The generalized reliability index β is expressed as: 

1ū ( )fP −= −  (4.17) 

where 
1ū (Ŀ)−

 is the inverse CDF function of the standard Gaussian distribution. 
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4.2.4  Limit state design criteria using BFMT-DNN+SUS 

A novel BFMT-DNN framework is developed in Stage 01, according to Fig. 4.2. For the 

development of the BFMT model for stress and deflection prediction, a surrogate metamodel 

is associated with an FEA. Stage 02 presents the structural reliability assessment. The steps of 

the proposed algorithm may be summarized in the described steps. 

 

Figure 4.2 – Flowchart of the BFMT-DNN model and optimization process. 

 

  

  n    ing

   
  
,  

val
,  

    

                 

  ini i  iz  ion

   o            ion

       
  ussi n 
P o  ss

     

  o  ing 
  i   ion 
s  is i   

                           

no

no

no

no

 
 s

     o o   in

  s s ou  u 

 onsi   ing:

                                         

  s

  s

  s

    u     h          n   s 
 o    i iz   h  

             ov   n 

        n     ining 
 h          

using    

              s

o   iz  ion    

  s  
i     ion
    h    

 v  u  ion  h  

        o   n   

using  val

 in   unning               s using     si n    i iz  ion

 v  u  ion  h  

        o   n   

using      

  s    ing

 u  u  n  win  
si u   o 

   o  n  i     
 o  s  n   o  n s

P         o  u ing using    n   s 

        

         

         

s  is i   

ˆ
  

   : P o   i i   o    i u  

no

  s

  n           o   h  

 i s    i u    v n  

wi h        ho 

  s    ing

 n  n i   

     s   s   

P   o       

 o g   n      i 
 
 
 0

      
s  is i   

    n 
  siz 

         o   o   h  o     ing 

win   u  in   o  

 0         u n    io 



77 

 

Stage 01 - Step 1: Three different datasets  , ,tr val testD D D D= are adopted. Namely, a 

training dataset ( ) ( ) ( )

HF,HF ,HF ,HF :, 1tr tr tr

i iD i n=  x y  and ( ) ( ) ( )

LF,LF ,LF ,LF :, 1tr tr tr

i iD i n=  x y  is 

used to estimate the gradients during the training of the neural networks. A holdout validation 

dataset ( ) )

,HF ,LF

( ) ( ( ), :1,i i i

valval val val valD i n=  x y y  is applied to optimize (fine tuning) the model's 

hyperparameters, and a test dataset ( ) ,

( ) ( )

HF ,LF

( ) :1 ,, ,i i

test test test ts

i

e t et stD i n=  x y y  never seen 

during training and validation, estimates the performance of the final tunned model. The 

database is generated randomly by Latin Hypercube sampling. 

Stage 01 - Step 2: Initialize the model and define the initial hyperparameters.  

Stage 01 - Step 3 and Step 4: Create and train the BFMT-DNN model using the Dtr 

dataset. In each iteration, the training step is validated using Holdout Validation. After, 

evaluate the BFMT-DNN performance using Dval. If the last iteration is reached, the 

hyperparameters optimization ends and turns to Stage 03-Step 7. Otherwise, turn to Stage 01-

Step 5. 

Stage 01 - Step 5 and Step 6: Construct the Gaussian surrogate model and select new 

data points by optimizing the acquisition function, calculating the corresponding functions, 

and augmenting the data. Repeat Steps 3 and 4 with the latest data. 

Stage 01 - Step 7: Evaluate the BF-DNN performance using Dtest. If convergence 

criteria are satisfied, the BF-DNN construction is finished. To quantify the accuracy of the 

proposed BFMT-DNN model is used the sum of the average RMSE (εavg) referring to the two 

stages of the BF-DNN is given as: 

( ) ( )
2 2

( ) ( ) ( ) ( )

avg LF ,LF HF ,HF1 1 1

1 1
ˆ ˆ ,

e testt stn nt i i j j

test testi i j
test test

y y y y
n n


= = =

 
= − + − 

 
    (4.18) 

where 
,LFtesty  and 

,HFtesty  denotes the LF and HF reference value of the Dtest, LFŷ  and LFŷ , the 

LF and HF predicted values by BFMT-DNN. It is considered εavg=1.0% as the stop criterion. 

Stage 02 – Step 1: Define the 50-year extreme values of the wave and wind 

conditions. In addition, are defined the extreme loads of the OWT hub. 

Stage 02 – Step 2: Generate the first random sample data S(1) using the MCS method 

for each task. The value of Nn depends on the different problems, and it is much smaller than 

the number required by the original MCS method. Approximately samples are needed to 

estimate a failure probability by MCS-based methods. In this paper, the initial Ns is generally 

set to 1×103, also of the other intermediate failure events size. 
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Stage 02 – Step 3 and Step 4: In ascending order, select the first 10% random failure 

points and corresponding minimum responses as seeds for each Markov chain. Use the 

MCMC method to generate the new random sample data S(i). 

Stage 02 – Step 5: If Li≥0,  u n  o    g  0 -Step 3. Otherwise, set Li=0. 

Stage 02 – Step 6: Calculate the coefficient of variation ˆ
fP

COV  based on Eq. 4.16. If 

ˆ 0.1
fP

COV  , turn to Stage 03-Step 7. Otherwise, turn to Stage 02-Step 8. 

Stage 02 – Step 7: Expand the Nn = Nn+1×103 size of the random point and then go to 

Stage 03-Step 2. 

Stage 02 – Step 8: Output the final ˆfP . If ˆfP  is satisfied, end the proposed method. 

Otherwise, resample the initial dataset D and turn to Stage 01-Step 1. 

4.3  OFFSHORE WIND TURBINE IN EXTREME CONDITIONS 

Offshore wind turbines (OWTs) are exposed to harsh marine environments. The complex and 

high-demanding environment with non-linear interactions and high variability of loading 

conditions exposes the OWT to uncertainties in the environmental loads. The successful 

deployment of OWTs widely depends on the correct stochastic load's effects estimation and 

the accurate prediction of the components' integrity throughout their service life.  

4.3.1  Site and measurements 

The region of this study is an offshore deep-water site near Rio Grande, a city located in Rio 

Grande do Sul (RS) state in Brazil. The location has a NE-SW coastline orientation (Fig. 4.3), 

and it is characterized by a large shelf (from 110 km to 170 km) with a smooth slope [140].  

 

Figure 4.3 – Map of Brazil showing the location of the measurement. 
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The buoy in Fig. 4.3 is a directional Argus oceanographic buoy deployed at 100 m 

depth at 32°54'S and 50°48'W. The specified data collected between June/2002 and May/2003 

validate the model in Section 4.1. 

Extreme wind and wave conditions can be estimated from a comprehensive database 

measured by in situ buoys or by remote sensing. Nevertheless, in the South Atlantic Ocean, 

the absence of uninterrupted long-term wave data still is a significant obstacle for 

characterizing severe events in these regions and for extrapolating return levels with long 

return periods. With the significant advancements in model physics and numerical resources, 

wind and wave hindcasts generated by numerical wave models offer an alternative source for 

the data and have been widely adopted for wave analysis and ocean engineering when 

validated with measurement data [141-143].  

One of the most referred and successful projects is the Wavewatch III (WW3) third-

generation implemented by NOAA (National Oceanic and Atmospheric Administration) 

[141], which uses a WAVEWATCH III framework driven by NCEP Climate Forecast System 

Reanalysis and Reforecast wind data and operationally releases multi-scale forecast and 

hindcast waves in a global model domain. The NCEP Climate Forecast System Reanalysis 

(CFSR) entails a coupled reanalysis of the atmospheric, oceanic, sea-ice, and land data from 

1979 to 2010 and a forecast run with this reanalysis afterward. This wind and wave hindcast is 

one of the most prevalent methods to forecast spatial wind and wave characteristics by wind 

using wave action conservation theory to characterize the complex temporal-spatial 

relationship between wind and wave [142].  

Wind-wave evolution in third-generation models is described by the wave action 

balance: 

tot
g

SN
c N

t 


+ =


 (4.19) 

which considers all energy fluxes and source terms, represented by physical processes that 

contribute to wind-wave growth. The term cg is the group velocity, ( )( ) ,, kN k F   =  is the 

action density spectrum, F is the variance density spectrum, and σ is the relative radian 

frequency. The function F depends on the wavenumber k, direction θ, time t and space x,y. 

The first term of the left-hand side of Eq. 4.19 represents the rate of net change of wave 

action. The total source term Stot on the right-hand side of the action balance ( Eq.4.19) is all 

considerable energy fluxes contributing to wind-wave evolution. For deep water it is generally 

accepted that the total source terms is based on three main physical processes [144]: 
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,tot in ds nlS S S S= + +  (4.20) 

pointed out that these individual terms have to be further partitioned, where Sin is the 

atmospheric input, Sds is the wave dissipation, Snl is the nonlinear wave-wave interactions. 

The outputs of the Wavewatch III hindcast are the u-component of input wind, the v-

component of input wind, the significant height of combined wind waves and swell (Hs), the 

primary wave mean period (Tp), and the primary wave direction every 3 hours from 1979 to 

2009 (31-year). Figure 4.4 shows the directional wave histograms of the means of Hs, Tp, and 

the directional wind histograms of velocity Vw obtained by Wavewatch III data. The 

predominance of ENE and S incident wave directions can be observed. The wind has high 

intensity and variability. The prevailing wind direction is NE, and the highest intensity is in 

the SW direction.  

 

Figure 4.4 – Wave and wind directional histograms: (a) Hs, (b)Tp, and (c) Vw. 

4.3.2  OWT case study structural modeling 

This section presents the Finite Element Analysis (FEA) development of the jacket offshore 

wind turbine composed of the Offshore Code Comparison Collaboration Continuation (OC4) 

reference jacket structure and the National Renewable Energy Laboratory (NREL) 5 MW 

baseline turbine [145, 146]. The offshore wind turbine device comprises a tower, transition 

piece, support structure, and piles. The first step in FEA modeling is to define all geometrical 

parameters of the model, such as diameters, structural member thicknesses, and other 

geometric data, as described in Fig. 4.5. 
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Figure 4.5 – The OC4 reference OWT. 

As descript by Jonkman et al. [146] and Vorpahl et al. [145], the OC4 is designed for a 

reference site with a water depth of 50 m. The conical tower is 68m high and connected to the 

Transition Piece by bolts and flanges. The support structure is a jacket structure with mud 

braces and four central concrete piles with a penetration depth of 45m being grouted to mud. 

The transition piece between the jacket and tower is a block of concrete penetrated by the 

upper parts of four jacket legs. As the height increases, the tower's diameter, and wall 

thickness decrease. The turbine characteristics are shown in Table 4.3. 
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Table 4.3 – Properties for the NREL 5-MW baseline wind turbine. 

Type Parameter  

Rating 5 MW 

Rotor orientation, configuration Upwind, 3 blades 

Rotor, hub diameter 126m, 3m 

Hub height 90.55m 

Cut-in, cut-out wind speed, rated 3 m/s, 25 m/s, 11.4 m/s 

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm 

Rated tip speed 25 m/s 

Rotor mass 110,000 kg 

Nacelle mass 240,000 kg 

The primary parts of the jacket support structure are mainly made up of steel materials. The 

material of the plate and stiffeners is AH32 high-s   ng h s       his      i   h s Young’s 

modulus E=206000 MPa, density ρs=8500 kg/m3, yield stress σy=315.0 MPa, and Poisson's 

ratio υ=0.3. The transition piece and the pilling are a steel-concrete configuration. This 

material has Young's modulus E=70000 MPa, density ρc =2400 kg/m3, Poisson's ratio υ=0.18, 

compressive strength σc=200.0 MPa and tensile strength σt=10.0 MPa. 

4.3.3  OWT Finite Element Model 

Two different FE models are considered to reproduce the fidelities functions concepts. The 

whole offshore wind turbine structure is modeled by ABAQUS software as shown in Fig. 4.6. 

For the first model (FEM1) depicted in Fig. 4.6(a), the jacket structure is modeled by B31 

beam element, and tower, transition peace and piles are modeled by C3D87 solid element. For 

the second model (FEM2) depicted in Fig. 4.6(b), the jacket and tower structures are modeled 

by the B31 beam element and C3D87 solid element model transition peace and piles.  

The rotor-nacelle assembly, the nacelle, and the tower equipment's mass are introduced 

in the FE model as concentrated point masses. The mesh size is crucial to define the MF 

model and is discussed in the next chapter. 

Constraints are imposed to reproduce the iterations in the different structure's parts. A 

tie constraint between the transition piece and the tower (Fig. 4.6(c)) ties the surfaces 

together, so there is no relative motion between them. In addition, an embedded region 

constraint is also applied between the transition piece and the jacket structure (Fig. 4.6(d)) 

that allows the Transition Peace to act as a host region of the embedded jacket.  
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Figure 4.6 – FE model construction of OC4 Jacket Substructure. 

The jacket is also embedded in the piles (Fig. 4.6(d)). Previous studies (e.g.  [127, 

128]) incorporated the soil-structure interaction, in order to map its response under varying 

input conditions. However, for simplicity, OWT bottom-fixed support structures are used in 

OWT assessment (e.g. [131, 147-149]), where the jacket is fixed to the seabed by grouting 

connected to piles. In the present study, the calculations are assuming that the piles are 

truncated at the seabed, where they are assumed as perfectly clamped at the bottom. The 

grouted connection range between the piles and the jacket is 4.5m above the seabed. 

The non-linear structural analysis is divided into two steps. In the first step, a gravity 

load is applied to define a uniform acceleration in the z direction in the whole model to 

evaluate the inertia and gravitational effects in the structure. The structural behaviour obtained 

by the first step is used by initial geometry for the second step analysis. The aerodynamics 

and environmental loads are applied to get the maximum stress and deflection in the OWT. 

4.3.4  Loads for offshore structures 

According to standard codes DNV–OS–J101 [150] and IEC 61,400–3 [151], the relevant 

loads imposed on OWT support structures can roughly be classified into (i) aerodynamic 

loads transferred from the rotor; (ii) wind loads on the tower; (iii) inertia loads; and (iv) wave 

loads. The scheme of the resulting loads acting in the OWT structure is shown in Fig. 4.7. 
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Figure 4.7 – Environmental actions over the (a) Jacket and tower and (b) the RNA. 

Due to the mass of the support structure, equipment, and the Rotor nacelle assembly 

(RNA) mass at the top of the tower, inertia and gravitational loads are static and dynamic 

loads that can significantly affect the modal frequencies of the OWT support structure and 

contribute to buckling. Therefore they should be considered in the structural analysis of 

support structures [151]. 

Wind loads contain two parts: one is acted on the tower, and the other is acted on the 

blades. Aerodynamic loads are static and dynamic loads that occur due to the airflow and its 

interaction with the stationary and moving parts of the wind turbine. The magnitude of the 

load is dependent upon the average wind speed and turbulence across the rotor plane, the 

rotational speed of the rotor, the density of the air, and the aerodynamic shapes of the wind 

turbine components and their interactive effects, including aeroelastic effects [128, 151, 152]. 

As a result of Aerodynamic analysis, final loads and moments are considered, as 

depicted in Fig. 4.7(b) [128]. The thrust (Fthrust) load was imposed on the support structure 

and applied at the assumed RNA Centre of Mass (CM) in the same direction as the diagonal 

of the base of the jacket. The notable aerodynamic moments (Mtilt and Myaw) represent the hub 

mechanical loading in two orthogonal quantities that can be calculated from parameters such 

as the yaw error and tilt angle. Since the RNA coupled with the blades for the turbine is 

usually large, considerable eccentricity is created due to the lateral span of this assembly 

imposing these moments. 
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Environmental loads are those caused by environmental phenomena, i.e., the set 

produced by wave force and wind force. Wave, wind loads, and rotor thrust vectors are 

applied in the same direction as the jacket base diagonal to produce maximum compression 

and tension effects on the opposite legs [128, 148]. 

Wind load pressure acting on the tower structure is among the essential load sources to 

be considered in the design of a wind turbine support structure [127, 152]. Wind loads on a 

structure result from drag between the structure above sea level and the wind in a given field. 

The wind load is dependent on the mean wind velocity Vw(z) mathematically expressed 

assuming wind speed variation with height above still water level as a power law profile 

[151]: 

,( )

r

r

w rw

z
V Vz

z


 

=  
 

 (4.21) 

where Vw,r is the wind speed at the reference height zr, and αr is the roughness coefficient. For 

offshore locations, it is recommended to apply an exponent αr=0.14 [150]. Wind loads along 

the tower are then determined from the following: 

21
( ) ( ) ( )

2
tower a w wF z C D z V z=  (4.22) 

where ρa is the air density, Cw is the drag coefficient of the tower, taken as 1.0 from [127, 128, 

152], D is the external diameter of the tower at height z. 

 A recognized wave theory for representing wave kinematics shall be applied to 

calculate wave loads. In the present analysis, the kinematics of regular waves is represented 

by Linear Wave Theory (Airy theory) for small-amplitude deep water waves [150, 151]; by 

this theory, the wave profile is represented by a sine function. Morison's Equation can be 

applied to calculate the wave loads for slender structures, such as jacket structure components 

and monopile structures. Morison's Equation assumes that the total wave force exerted on a 

structure can be calculated by the linear superimposition of the drag and inertia forces, 

assuming that: 

( ) ( ) ( ) ( )21 1
, , . ,

4 2
wave w m w dF z D C u z t DC u z t u z t  = +  (4.23) 

where ρw is the density of seawater, Cm and Cd are the coefficient of inertia and drag of the 

piles respectively, taken as 1.6 and 1.0 respectively [150], while ( ),u z t and ( ),u z t  are 

respectively horizontal velocity and acceleration of water particles, which can be obtained 

from linear/Airy wave theory. 
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4.3.5  Ultimate Load Case 

The Design load cases (DLC) should cover a set of design situations considering the most 

severe conditions that an OWT is likely to be subjected to, combining extreme or standard 

external conditions with operational states of the wind turbine or other operating modes. 

Design standard IEC61400-3 [151] defines 32 load cases for the structural design of OWTs, 

covering all the operating conditions of an OWT categorized into two groups, i.e., ultimate 

and fatigue. For simplicity, the ultimate load case in extreme events is considered in this 

study. 

One of the standard IEC test cases is the IEC 61400–3 DLC 6.1 [151], which 

considers the turbine in an extreme wind scenario when the turbine is parked. In this study, it 

is assumed that the critical load case for Ultimate Limit State (ULS) and Serviceability limit 

state (SLS) is defined under the 50-year EWM (extreme wind model) with 50-year RWH 

(reduced wave height). The OWT modeled parked was used as a reference in ULS and SLS in 

previous reliability assessments, e.g., [127, 128, 131, 132, 153-155]. 

The desired turbulent wind is initially specified to model the NREL 5-MW baseline 

wind turbine as an idling rotor. Disabling aerodynamic induction, dynamic stall, and pitch 

control are necessary, which is not valid at large angles of attack. The blade's pitch angle is set 

to a feathered position (90°), and the rotor speed to 0 rpm. Additionally, the condition of the 

generator never starts is to enable. 

The EWM is considered turbulent, and the 10 min average wind speeds as functions of 

z with recurrence periods of 50 years, respectively, shall be given by Eq. 4.21 with 

longitudinal turbulence standard deviation 1 0.11 hubV = [151]. The RWH defines the extreme 

event with a specified return period. Load safety factors for gravitational and other loads 

(such as environmental) are 1.1 and 1.35, respectively. 

Sophisticated numerical models in the time domain have been developed, some under 

code collaborations, to predict the response of OWTs. In this stud, the OpenFAST code [156] 

developed by the National Renewable Energy Laboratory (NREL) is used with the aero-

hydro-servo-elastic simulation code to obtain the Aerodynamic loads in the Hub. A linear 

finite element model with Timoshenko beam elements represents the substructure of the 

OpenFast. The software TurbSim [156], based on the Kaimal Wind Turbulence Model, 

produces the wind turbulence map and the spectra of three orthogonal wind speed 

components [157]. 
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The ULS accounts for the ability of the support structure to resist plastic deformation. 

The equivalent stress is generally determined using the von Mises stress theory for an OWT 

jacket support structure. The performance function of the ultimate limit state based on the von 

Mises criterion is given by: 

( )u s allow site aero dyn mat wind stm maxG x         = −  (4.24) 

where σallow is the allowable stress and σmax is the maximum von-Mises stress. The allowable 

stress is the ratio 
allow y s  = , considering σy the yield strength of the material, and γm the 

safety factor for the material. The factor χs is the stress capacity uncertainty factor, χsite is the 

uncertainty related to the site and atmospheric conditions, χaero is the uncertainty in the 

aerodynamic properties, χdyn is the model uncertainty associated with the structural dynamics, 

χmat is the uncertainty due to variations in material and geometrical properties, χwind is the 

model uncertainty in the wind model, and χsim is the statistical uncertainty associated with the 

design process of sampling wind conditions with a limited number of simulations. 

The deflection tolerance criteria influence the SLS of the OWT. To avoid the 

uncertainties introduced by large deformations, the maximum total deflection measured at the 

top of the tower is allow dL = , where L represents the length of the support structure, and γd 

is the safety factor for the structure. Considering δmax the maximum deflection, the 

performance function of deflection limit state design can be expressed as: 

( )d d allow site aero dyn mat wind stm maxG x         = −  (4.25) 

where the variable χd is the displacement calculation uncertainty.  

4.3.5.1 Blocks Maxima Method to obtain 50-year extreme condition 

In this study, the load cases used in the structural design of offshore wind turbines are the 

ultimate load under 50-year extreme conditions identified by the Block (or Annual) Maxima 

(BMM) and are associated with the use of the generalized extreme value (GEV) distribution. 

This association is widely used for extreme value theory studies [158-160]. 

The Block Maxima, Annual, or Gumbel method is described as follows. Assume that 

the given data yi are maxima, yi=max(xi,1,…,xi,m) where the xi,j may not be observable. If the 

xi,j can be observed, then taking maxima out of certain subperiods is another possibility for 

extracting extreme upper values from a data set. Then, the annual maximum can be regarded 

as the maximum of, e.g., monthly, or specific seasonal maxima. 

The GEV distribution is a family of continuous probability distributions developed 

within extreme value theory. It combines the Gumbel, Fréchet, and Weibull extreme value 
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distributions. The PDF ( (.) ) and CDF ( (.) ) for the generalized extreme value distribution 

with location parameter η, scale parameter ξ, and shape parameter k are: 

( )

( )

11
( ) ( ) exp ( )

( ) exp ( ) , e

,

wh re

kx t x t x

x t x




+=  

 = −

 (4.26) 
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When k<0, the GEV is Type III (Weibull). When k>0, the GEV distribution is Type II 

(Fréchet). If the limit as k approaches 0, the GEV is the mirror image of Type I (Gumbel). The 

T–Year return level zp is giv n      −p)–qu n i   o   h  Φ   , wi h    u n    io  p=1/T 

resulting in: 

( )

1 , if 0
 

log , if 0

k

p

p

p

y k
kz

y k


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 

−
 − −   

= 
 − =


 (4.28) 

where ( ) 1Py log p= − − . More precisely, zp is exceeded by the annual maximum in any 

particular year with probability p. The inference for the return levels is made by the Delta 

method that provides uncertainty bounds with an assumption that the distribution of return 

levels obtained from the MLE estimator follows a Gaussian distribution. The variance of the 

return level is given by [159]: 

( )Var P P P

T zzz V   (4.29) 

where V is the variance-covariance matrix of (σ, μ, ξ) and 

( ) ( )1 2 1, , 1, 1 , 1 logT kP P P
P P P P P

z z z
z k y k y k y y

k

  
 

− − − − −   
  = = − − − −      

 (4.30) 

4.3.6  Stochastic models for basic random variables 

The successful deployment of OWTs largely depends on accurately estimating the effects of 

s o h s i   o  s    ing on  h   ss    n     u           i  ing  h   o  on n s’ in  g i   

throughout their service life. The basic random variables considered in the OWR reliability 

problem are shown in Table 4.4, both with their corresponding probability density distribution 

(PDF) and statistical moments mean (μ) and standard deviation (std) of the associated 

distribution functions. 
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Table 4.4 – Stochastic models of the basic random variables. 

Variable Units P.D. μ 
COV 

(%) 
std 

χs - Lognormal 1.0 5.0 0.05 

χd - Lognormal 1.0 5.0 0.05 

χsite - Lognormal 1.0 10.0 0.10 

χaero - Lognormal 1.0 10.0 0.10 

χdyn - Lognormal 1.0 5.0 0.05 

χmat - Lognormal 1.0 5.0 0.05 

χwind - Lognormal 1.0 10.0 0.10 

χsim - Lognormal 1.0 5.0 0.05 

σy MPa Lognormal 348.00 6.0 20.88 

Ep MPa Lognormal 206000 6.0 12360 

Hs,50 m See Results Section 4.2 

Tp,50  s See Results Section 4.2 

Vw,50  m/s See Results Section 4.2 

Fthrust kN See Results Section 4.3 

Mtilt  kNm See Results Section 4.3 

Myaw  kNm See Results Section 4.3 

The stochastic models for the uncertainties factor variables are based on IEC-CD-TS-

61400-9 [161, 162]. The authors describe a lognormal distribution with μ=1.0 and COV=5%  

to represent the capacity calculation uncertainty factors χs and χd. Similarly, the uncertainty 

factors χsite, χaero, a   χwind follow a lognormal distribution with μ=1.0 and COV=5%. The 

uncertainty factors χdyn, χmat, and χsim follow a lognormal distribution with μ=1.0 and 

COV=10%. 

The design value considered for the steel yield stress σy=315 MPa corresponds to the 

probability density function's 5% percentile characteristic value of the lognormal distribution 

with COV=6% and lower limit=0, resulting in a mean of μ=348 MPa [74]. Young's modulus 

corresponds to the mean characteristic value of the lognormal distribution with COV=6% and 

lower limit=0 [74]. The steel Poisson's ratio can be treated as a deterministic variable. 

The expected extreme wind speed Vw,50, significant wave height Hs,50, and primary 

wave mean period Tp,50 with a return period of 50 years shall be calculated considering the 

return level of the GEV distributions applied in the extrapolation fitting functions. The fitted 

GEV for the peak responses of Vw, Hs, and Tp are estimated by Block Maxima Method. The 

Vw,50, Hs,50, and Tp,50 parameters follow a normal distribution with means equal to the expected 

values and standard deviation calculated by the Delta Method presented in Results Section 

4.2. 
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The IEC standard [151] recommends the 10-minute load samples to estimate the 

probability distribution of the 50-year load of wind turbines through the statistic extrapolation 

method. The detailed statistical procedures are not specified in the IEC standard, so the Block 

Maxima Method is used for the peak extraction. The Ftilt, Mtilt, and Myaw loads estimation 

follow GEV distributions presented in Results Section 4.3. 

4.4  ANALYSIS OF RESULTS 

This section firstly shows the results of validating the ocean wind and wave model-WW3, 

clarifying the model tendency to the study area, and quantifying the model performance in an 

extreme loads scenario. After that, it presents the results of the extreme value analysis based 

on the BMM and GEV methods. Then, a validation of the FE OWT model is realized. In 

sequence, the trained BFMT-DNN model results are presented. Later, an OWT reliability 

analysis considering the BFMT-DNN model is presented. 

4.4.1  Hindcast validation 

The wave and wind hindcasts based on the NCEP/NCAR Reanalysis and WAVEWATCH III 

are validated considering a one-year interval of data collected by the buoy in situ. Figure 4.8 

shows time series comparisons of blended wind speeds and Hs, Tp, and Vw measurements. 

Table 4.5 shows the basic statistic parameters, mean μ and standard deviation sd, compared 

between the two scenarios for the same period. 

 

Figure 4.8 – Numerically and experimentally obtained (a) Hs, (b) Tp, and (c) Vw time series. 
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Table 4.5 – Basic statistical parameters for the Buoy and WW3 measurements. 

Variable 
Buoy Measured Predicted (WW3) 

μ sd μ sd 

Hs (m) 2.2081 0.9662 2.1074 0.8301 

Tp (s) 9.1142 2.3169 8.9510 1.9758 

Vw (m/s) 7.5388 3.7210 7.5501 3.3974 

The results presented in Fig. 4.8 and Table 4.5 show good agreement between 

numerical and experimental results for the Hs, Tp, and Vw parameters. Figure 4.9 shows 

density scatter plots between the measured buoy and numeric WW3 outputs for Hs, Tp, and 

Vw. The black lines are the expected equality between the measured buoy and numerical 

WW3 output. Scatter density diagrams generally show good agreement between numerical 

and experimental results, most notably for Hs and Vw. The resulting scattering shape for Tp 

emphasizes bimodal structures in the ocean wave spectra, in which two dominant frequencies 

and two dominant directions are found, also discussed in [140]. In these cases, differences can 

be observed between measurement and numerical results related to the position, sea, or swell 

parts, where the highest energy is concentrated. 

 

Figure 4.9 – Scatter plot density diagrams of (a) Hs, (b) Tp, and (c) Vw time series. 
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4.4.2  Extreme events on the southern coast of Brazil 

The Block Maxima method with a reference subperiod of six months is used to collect 

the extreme occurrence of Hs, and Vw parameters during the 31 years hindcast. The period Tp, 

the return period corresponding to Hs. After that, each parameter is fitted by the GEV 

function, with the best probability distribution results presented in Table 4.6. The return levels 

associated with the 50-year return period are estimated from the best GEV-fitted distribution 

for each parameter. Figure 4.10 shows the return period estimation. 

Table 4.6 – Best fitted GEV distributions for the wave and wind parameters. 

Variable Unit GEV type k ξ η 

Hs m Weibull -0.043 0.600 5.235 

Tp s Fréchet 0.015 1.065 10.710 

Vw m/s Weibull -0.211 1.519 19.120 

 

Figure 4.10 – Return level estimates based on fitting the GEV distribution to BMM. On the left side, the (a) Hs, 

(c) Tp, and (e)Vw return level. On the right side, the Q-Q plot of (b) Hs, (d) Tp, and (f)Vw. 
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 The black line is the return level over the years, and the dashed red line is the 

confidence interval obtained by the Delta variance method over the years. The small 

confidence intervals for extreme return levels show enough information to predict return 

periods over 50 years. Considering the results presented in Fig. 4.10, it is possible to 

determine the uncertainty under the 50-year parameters. Assuming that the MLE estimator 

follows a Gaussian distribution by the Delta method, the unexpected results in the 

distributions are presented in Table 4.7. 

Table 4.7 – Uncertainty of 50-year wind and wave parameters. 

Variable Unit P.D. μ sd COV 

Hs,50 m Normal 7.400 0.108 0.014 

Tp,50  s Normal 15.000 0.790 0.052 

Vw,50  m/s Normal 31.500 0.168 5.336e-3 

4.4.3  OWT loads scenario in the extreme conditions 

To realize the OWT aerodynamic simulation, the Extreme Wind Model conditions are 

analyzed for 10 min considering as reference the mean value of Hs,50=32.5m/s with 

longitudinal turbulence standard deviation σ1=3.25%. The time step of wind speed history is 

0.05 s. The time history of three orthogonal wind speed components is input in a 17 × 17 

mesh within an area of 200×200 m, as shown in Fig. 4.2, which is sufficient to cover the wind 

turbine rotor and is used to calculate the aerodynamic load of the wind turbine. The original 

10-min simulation is run for 650 s, and the data of the first 50 s is removed to eliminate 

startup transients. The stacked plot in Fig. 4.11 shows the EWM state and load variation over 

the 10-min time series. 

The 10-min peak loads are extracted from the load time history, as shown in Fig. 4.11. 

The BMM is used to extract the peak loads in a subperiod of 5 s. The peak values are 

multiplied by the load safety factors of value 1.35. The GEV fitting functions are used to 

model the extreme load, and the performance of these fitting functions is evaluated through 

peak loads. The probability density functions of the extreme loads are shown in Fig. 4.12, and 

their parameters are presented in Table 4.8. 
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Figure 4.11 – The 10-min time series of wind speed, rotor thrust, tilt and yaw moments, and power generated. 

 

Figure 4.12 – RNA extreme loads probability distribution. 

 

Table 4.8 – Best fitted GEV distributions for the extreme loads. 

Load Unit Direction GEV type k ξ η 

Thrust Force kN (+)z Weibull -0.168 16.9 231.6 

Tilt Moment kNm (  ̶)x Weibull -0.375 342.1 1539.4 

Yaw Moment kNm (+)y Weibull -0.125 349.1 972.2 
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4.4.4  Validation of the OWT FE models 

The validation of the proposed OWT FE models FEM1 and FEM2 offered in Section 3.3 is 

realized considering the benchmarking study of the NREL 5 MW OWT OC4 jacket support 

structures that consider the deflection and the modal frequency analysis by references 

Jonkman et al. [146], and Damiani et al. [148]. The proposed benchmark used to validate 

OWT models has been reported in previous research (e.g., [127, 163]). 

 The deflection scenario assesses the total deflection of the OWT support structure in 

static analysis. In the reference, the case study applies a thrust of 2 MN in the RNA. The RNA 

and tower base displacements are measured and presented in Table 4.9. The modal analysis 

accesses the natural frequencies of the model. The modal frequencies calculated from the 

present FEA model are compared with the reference, and the comparison results are presented 

in Table 4.10.  

Table 4.9 – Deflection validation on OC4 jacket structure in m. 

Site  Reference FEM1 %Diff. FEM2 %Diff. 

tower top  1.209 1.187 1.820 1.164 3.722 

tower base 0.137 0.139 1.460 0.140 2.189 

Table 4.10 – Modal analysis validation on OC4 jacket structure in Hz. 

Site  Reference FEM1 %Diff. FEM2 %Diff. 

1st Fore-aft 0.319 0.325 1.881 0.317 0.627 

1st Side-to-side 0.319 0.325 1.881 0.317 0.627 

2nd Fore-aft 1.194 1.138 4.690 1.146 4.020 

2nd Side-to-side 1.194 1.138 4.690 1.146 4.020 

Reasonable agreement is achieved in all validation sets, with a maximum relative 

difference of 4.69% observed for the 2nd fore-aft and side-to-side frequency modes in the 

FEM1. The maximum relative difference for the FEM2 is 4.02% for the 2nd fore-aft and side-

to-side frequency modes. These results confirm the validity of the developed FE models. 

4.4.5  The bi-fidelity model approach 

This subsection focuses on the MF functions in which fidelities are combined inside the 

surrogate model. One of the fundamental steps of the design under the MF context is the 

ability to efficiently define the HF and LF models and catch the correlation between the 

different fidelities functions that may have some impact on the performance of MF surrogate 

models. The OWT FE model introduced in Subsection 3.3 is used to construct HF and LF 

functions. Figure 4.13 show the mesh convergence for each output. 
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Figure 4.13 –    h    v  g     a al     a       u a    al           h  l        ,  h  (a) σmax a   ( ) δmax 

   v  g          h     1      h    gh      ,  h  ( ) σmax a   ( ) δmax convergence for the FEM2. 

Before HF and LF functions definition, the influence of mesh size (ms) must be 

studied in the FEM1 (Fig. 4.13 (a)) and FEM2 (Fig. 4.13(b)), refining it enough to provide 

accurate and valid results. The OWT reference used in the FE validation (Subsection 4.4) is 

also used for the mesh convergence study. The ms influence in the OWT σmax is shown in Fig. 

4.13(a) and 4.13(b) for the FEM1 and FEM2, respectively. For the OWT δmax, the results are 

depicted in Fig. 4.13(c) and 4.13(d) for the FEM1 and FEM2, respectively. All mesh 

convergence analysis is associated with computational time. 

Considering the results presented in Fig. 4.13 is noticed that FEM1 and FEM2 have 

similar computational time for the most significant ms values because, in these cases, the 

large mesh size and, consequently, the number of finite elements is not predominant in the 

computational cost. However, for refined mesh values (ms<0.8 m), the time for both models 

increases considerably, but FEM1 is slower because the number of elements is considerably 

increased, and consequently, the number of constraints and boundary conditions in the FE 

model. 
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The HF function is defined considering the FEM1 with an accurate mesh. Two 

different LF functions are utilized to identify the advantages and disadvantages of using a 

quicker but less accurate mesh in the FEM1 and a FE simplification in the FEM2 analysis. To 

evaluate the relationship of the mesh fidelities model, a test dataset Dtest is used to determine 

the DIC correlation parameter. Figure 4.14 depicts the correlation between the HF functions 

and each LF function for the σmax and δmax outputs considering Dtest. For the  i   i  ’s 

correlation, a dataset with ntest=200 is considered. Table 4.11 summarize the MF functions and 

their FE characteristics, computational costs, and DIC parameter between the HF and LF 

functions. 

 

Figure 4.14 –      la              h     a          l       h  l        ,  h  (a) σmax a   ( ) δmax correlation 

for the FEM1. On the right side, , the (a) σmax a   ( ) δmax correlation for the FEM2. 

 

Table 4.11 – Fidelities correlation and cost functions. 

Fidelity 

Function 

Mesh size 

[m] 
Comp. Cost [s] Ratio to HF 

DIC 

σmax δmax 

LF1 1.00 59.00 0.198 0.993 0.999 

LF2 0.70 58.00 0.198 0.984 0.999 

HF 0.40 294.00 - - - 
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The computational cost presented in Table 4.11 is the average time consumed by the 

Dtest to run the non-linear FE analysis. The two LF functions share a similar computational 

cost for a fair comparison. Among these two LF functions, both presented a linear correlation 

about δmax, although the LF2 function presented similar δmax values compared to the HF 

function values. About σmax, the compared two different LF functions present different 

correlation behaviors drastically, and the LF1 presented a better DIC correlation value, 

although the DIC is close between the LF functions. 

4.4.6  Accuracy and efficiency of the BFMT-DNN model 

For future analyses, two Bi-fidelity models, BF1 and BF2, are referenced, built through each 

association of the LF1 and LF2 models with the HF model. Before choosing the BFMT-DNN 

model with hyperparameters optimized, it is essential to define the number of support points 

nLF and nHF in the HF and LF training datasets Dtr,HF, and Dtr,LF. For the BFMT-DNN 

hyperparameter optimization process, a validation dataset Dval with nval=200 minimizes the 

loss function over the iterations. The same Dtest dataset used in the DIC is also used to test the 

optimized BFMT-DNN model. 

The nLF value is determined by multiplying nHF by a sample size ratio between HF and 

LF models (λBF) to obtain the improvement level with potential LF sample points. The 

potential and impact of the LF sample points are evaluated with the HF samples fixed to nHF 

=500 support points, while the infill strategy of LF samples is increased as the ratio λBF ranges 

from 2 to 6. The total cost is given by the number of calls to the performance 

function Ncall that, based on the cost functions, equals the equivalent number of HF samples 

given in Table 4.11. Figure 4.15(a) shows the influence of the sample size ratio on Ncall to the 

performance function.  

 

Figure 4.15 – The tendency of (a) the global Ncall, and (b) MAE accuracy for different sample ratios. 
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By plotting the evolution of the Ncall of the performance function in terms of the λBF, it 

can be seen that the Ncall, and consequently the computational cost, increase at a linear rate of 

associated λBF. For each increment of λBF, the value of Ncall increases by 99.0, and comparing 

the extreme cases (λBF=2 and 6), Ncall is increased by 40 and 118% approximately, when 

compared with the Ncall of only the HF samples. 

The accuracy metrics of the BFMT-DNN cases are obtained with the sum of the 

metrics of each stage (NNLF and NNBF) and for each output (δmax and σmax) of the BFMT-DNN 

model as described in the loss definition (Eq. 4.9). The RMSE presented in Fig. 4.15(b) is 

used as a fit measure of the BF-DNN surrogate model under different sample ratios λBF. For 

the nHF=500 , it is clear that the accuracy line presents two slopes for both BF1 and BF2 

models, changing when the λBF=4. For the cases with λBF≤ ,  h      ision in    s s on   

larger scale compared to the cases with λBF>4, where the accuracy improves with the increase 

of the λBF ratio , but more conservatively when compared with the first slope. 

 For all cases, the BF2 presented a better accuracy when compared with the BF1. Also, 

comparing the two different slopes in Fig. 4.15(b), for the cases with λBF≤ ,  h     u     

difference between the BF1 and BF2 models is slight. For the cases with λBF>4, the difference 

between the accuracy values of the two models remains small, but the BF2 model is 

highlighted compared to the BF1 model. These results show the importance of the assessment 

of the relation λBF. Considering the presented accuracy results, the case with nHF=500 

and λBF=6 provides accurate metrics estimates and can be viewed as an appropriate BFMT-

DNN surrogate model for BF1 and BF2 models. 

Figure 4.16 depicts a scatter plot of the OWT problem outputs (σmax and δmax) 

predicted by the HF FEA model and the BFMT-DNN model at the Dtest dataset showing the 

accuracy of the BF1 and BF2 models approximation. Figure 4.17 illustrates the relative errors 

for the Dtest dataset. 

The average relative error ˆ ,
ˆ /ref reff avg
y y y = −  is used to quantify the accuracy of the 

predictions, with yref the reference value considered and ŷ  the predicted value. The BF1 

surrogate model has a mean absolute error ˆ , 0.76%avg =  and ˆ,
0.56%

avg
 =  for the σmax and 

δmax output, respectively. 
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Figure 4.16 – Approximation of the OWT problem outputs in Dtest      h  l        ,  h  (a) σmax a   ( ) δmax 

            u   g  h    1     l   h  (a) σmax a   ( ) δmax predictions using the BF2 model are on the right side. 

 

Figure 4.17 – Relative errors of the OWT problem outputs in Dtest      h  l        ,  h  (a) σmax a   ( ) δmax 

pre         u   g  h    1     l      h    gh      ,  h  (a) σmax a   ( ) δmax predictions using the BF2 model. 
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The BF2 surrogate model has a mean absolute error ˆ , 0.69%avg =  and ˆ,
0.56%

avg
 =  

for the σmax and δmax output, respectively. For both surrogate models and each output (δmax and 

σmax) of the BFMT-DNN model, the coefficient of determination is R2>0.999. In the trained 

BF1 for 88.5% and 96.5% of the Dtest dataset, the absolute error satisfies ˆ 2.0%   and 

ˆ 2.0%

   for the σmax and δmax output, respectively. For the trained BF2, 93% and 96.0% of 

the Dtest dataset satisfy the absolute error condition ˆ 2.0%   and ˆ 2.0%

  . The maximum 

absolute error in the Dtest dataset is ˆ 7.1% =  and ˆ 6.7% = , in the trained BF1. For the 

trained BF2, the maximum absolute error in the Dtest dataset is ˆ 7.0% =  and ˆ 4.8% = . 

The results presented show that the BF1 and BF2 have similar accuracy predictions in the HF 

multi-task outputs, and these results imply that these BFMF-DNN surrogate models ensure 

sufficient accuracy in the global projection of the Dtest data. 

4.4.7  Hyperparameter optimization process 

For each combination between the proposed nHF and the λBF values, the best DNN is 

determined by applying the BO for tuning and optimizing the hyperparameters. To create the 

BFMT-DNN model, the NNLF and NNBF stages must be trained to obtain HF outputs through a 

BF model. Therefore, two neural networks are trained simultaneously and combined into one 

through an element-wise operation of the layers in an intermediate position between the two 

stages. In both stages, the hyperparameters: the number of hidden layers, neurons in each 

hidden layer, initial learning rate, and activation function, are tuned by BO. The category or 

the lower and upper bounds for real and integer-valued variables are given in Table 4.12. 

Table 4.12 – DNN Hyperparameters limits and domain. 

Hyperparameter Limits Domain 

Each Layer Size [20,200] Integer 

Number of layers (NNLF) [1,3] Integer 

Number of layers (NNBF) [1,3] Integer 

Activation Function ['tanh', 'sigmoid', 'relu', 'elu'] Categorical 

Learning rate [1e-4,5e-3] Real 

Each optimization iteration is stopped after reaching any of the following criteria: 

achieving a defined loss function Loss=0.004 for the training Dtr prediction or a fixed number 

of 30000 epochs for each stage. The BO algorithm stops after reaching the following: a fixed 

number of 50 iterations or a fixed time is defined as 7.2×105 seg. Therefore, the 

hyperparameters are optimized throughout the layers, and global optimization is executed 

across the validation set, thereby reducing the time taken and improving the model's 
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performance. A summary of the best hyperparameter combinations out of 50 iterations for the 

BFMT-DNN models is shown in Table 4.13. Each hyperparameter is described for the two 

stages NNLF and NNBF. 

Table 4.13 – Tunned hyperparameters by Bayesian Optimization. 

Model λBF 
Number of layers  

(NNLF, NNBF) 

Hidden Layer's Size 

[(NNLF), (NNBF)] 

Activation 

Function 

(NNLF, NNBF) 

Learning rate 

[×10-3] 

(NNLF, NNBF) 

BF1 

2 (1,2) [(162 0), (85 31)] (Relu, Relu) (0.21, 0.32) 

3 (1,2) [(178 0), (98 25)] (Relu, Elu) (0.23, 0.72) 

4 (1,2) [(125 0), (171 36)] (Relu, Elu) (0.88, 0.17) 

5 (2, 2) [(36 50), (102 34)] (Relu, Elu) (0.24, 0.92) 

6 (2, 2) [(42 54), (91 22)] (Relu, Elu) (0.28, 2.40) 

BF2 

2 (1,2) [(142 0), (63 25)] (Relu, Elu) (0.55, 2.10) 

3 (1,2) [(166 0), (54 20)] (Relu, Elu) (0.64, 4.00) 

4 (2, 2) [(102 132), (80 36)] (Elu, Elu) (2.70, 1.20) 

5 (2, 2) [(83 164), (121 40)] (Elu, Elu) (2.05, 0.81) 

6 (2, 2) [(51 184), (104 63)] (Elu, Elu) (2.70, 1.20) 

Based on Table 4.13 results, it is noted that no optimized DNN reached the upper limit 

of 3 layers for the stages. Furthermore, the LF stages have one layer in the BF1-optimized 

models with λBF≤    o     h s  g  in  h    MT-DNN model, one activation function is 

optimized and used in all hidden layers present in these stages. In observed cases with 

Sigmoid and Hyperbolic tangent activation functions, the training is compromised because the 

number of iterations necessary to achieve the defined loss typically exceeds the fixed number 

of epochs for each stage. On the contrary, they occur for cases with ELU and RELU that 

presented similar performances and alternated in their choices during optimization.  

The selected BFMT-DNN model is developed by tuning its hyperparameters. The level 

of precision is used to determine the optimal model using the tuned parameters as given in 

Table 4.13. Figure 4.18 shows the progress of the BF-DNN hyperparameter optimization for 

the selected model. The plot in Fig. 4.18 corresponds to the minimum objective obtained for 

the Dval with the trained BFMT-DNN, for the BF1 (Fig. 4.18(a)) and BF2 (Fig. 4.18(b)) 

models considering the loss function. 

The red line in Fig. 4.18 corresponds to the estimated target values, i.e., the result of 

the surrogate probability model that determines where to evaluate next. The black line is the 

observed target value of the true objective function. Due to the agreement between the true 

and estimated values, we can assume that the estimated function is sufficiently compelling, 

attesting to BO's efficiency in choosing BFMT-DNN hyperparameters. The best workable 

point is where the observed objective value is the lowest. For the BF1, the score for the 

minimum objective observed of Lossval=9.62×10-3 for the trained BFMT-DNN in the 8th 
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iteration. For the BF2, the score for the minimum objective observed of Lossval=8.90×10-3 for 

the trained BF-DNN in the 24th iteration. 

 

Figure 4.18 –Bayesian optimization progress for tuning hyperparameters of (a) BF1 and (b) BF2. 

4.4.8  Reliability Analysis using BF-DNN model 

The assessment of efficiency, accuracy, and fidelity of the BFMT-DNN surrogate model in the 

offshore engineering case presented in this paper is also performed through a systematic 

comparison of their accuracy in the approximation of the reliability index of the application 

problem based on SUS. The target Pf =10−4, corresponding to a reliability index for OWT 

support structures typically β=3.71 [150]. Hence, in this example, the Pf predictions for the 

σmax and δmax design constraints are based on the safety factors γs and γd.  

The results obtained from the non-intrusive ˆ
fP , and consequently ̂  predictions, 

using the BFMT-DNN+SUS over the safety factors variation in each design constraint are 

depicted in Fig. 4.19. The SUS analyses are submitted to 50 simulation cycles resulting in the 

averages predictions of 
,f avgP  and 

,f avgP  for the σmax and δmax design constraints ˆ
fP

predictions respectively. The averages predictions of 
,avg  and 

,avg   for the σmax and δmax 

design constraints ̂ predictions respectively. The ˆ 0.1
fP

COV   is acquired when Ns is set to 
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Figure 4.19 – Reliability results. On the left side, the average Pf      h  (a) σmax a   ( ) δmax PF. On the right 

    ,  h  av  ag  β     h  ( ) σmax a   ( ) δmax PF. 

For the stress constraint case (ULS), is considered a range for the factor of safety 

 1.48,1.52s  , that presents a considerable variation in the 
,f avgP   and 

,avg   values. 

According to Figs. 4.19(a) and 4.19 (b), the BFMT-DNN+SUS reliability analysis considering 

the LF1 and LF2 models presented similar approximations for the 
,f avgP   and 

,avg   values. 

It is adopted the reference value of γs=1.1 [150] for the present ULS analysis.  

Considering the BFMT-DNN+SUS case with LF1, the average probability for the 

maximum displacement ( ) 6

, 286.36 MPa 4.17 10f avg maxP   − =   with the 95% confidence 

interval 6 6

95%CI [3.55 10 ,4.19 10 ]− −=   . The corresponding reliability index value is 

, 4.45avg  = . For the BFMT-DNN+SUS case with LF2, the average probability for the 

maximum displacement ( ) 6

, 286.36 MPa 4.50 10f avg maxP   − =   with the 95% confidence 

interval 6 6

95%CI [3.83 10 ,5.28 10 ]− −=   , and the corresponding reliability index value is 

, 4.43.avg  =  
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However considering the reference value of γs=1.1 [150] for the present ULS analysis, 

the SUS could not produce results within the region of σmax>286.36 MPa, which the value of 

the Pf of the maximum equivalent stress is expected to be neglected. 

The deformation constraint case (SLS), is considered a range for the factor of safety 

 150.0,220.0d  , that present a considerable variation in the 
,f avgP   and 

,avg   values. As 

depicted in Figs. 4.19(c) and 4.19 (d), the BFMT-DNN+SUS reliability analysis considering 

the LF1 and LF2 models presented similar approximations for the 
,f avgP   and 

,avg   values. 

It is adopted the reference value of γd=200.0 [150] for the present SLS analysis.  

Considering the BFMT-DNN+SUS case with LF1, the average probability for the 

maximum displacement ( ) 5

, 0.69m 2.89 10f avg maxP   − =   with the 95% confidence interval 

5 5

95%CI [2.62 10 ,3.16 10 ]− −=   . The corresponding reliability index value is 
, 4.02avg  = . 

For the BFMT-DNN+SUS case with LF2, the average probability for the maximum 

displacement ( ) 5

, 0.69m 2.73 10f avg maxP   − =   with the 95% confidence interval 

5 5

95%CI [2.47 10 ,2.98 10 ]− −=   , and the corresponding reliability index value is 

, 4.03.avg  =  

4.5  CONCLUSIONS 

This work presented a Bi-Fidelity Multi-task Deep Neural Network to make explicit 

Performance Function for reliability analysis associated with Subset simulation. This 

framework's accuracy and computational efficiency are demonstrated by its application in an 

offshore wind turbine reliability analysis in several Limit State scenarios. The reliability of the 

structure was investigated by defining the uncertainties of the statistical parameters for the 

structural design variables. Statistical analysis between the model and measurements 

highlighted the acceptable representation of the wind and wave fields by Wavewatch 3 

numerical model. 

The use of the low-fidelity samples in the bi-fidelity framework has been proven. In 

the Finite Element problem, using both proposed LF1 and LF2 models in the low-fidelity 

scenario allowed similar accuracy in the implicit performances functions predictions and, 

consequently, in the reliability indicators. In addition, using the same BF-DNN surrogate 

model to create a multi-task scenario to predict many outputs simultaneously demonstrated 

the main advantage of the proposed framework. For practical applications, a dataset using 
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around 500 high and 3000 low-fidelity Finite Element Analysis can be an initial estimative to 

accurately fit BF-MT models to assess the reliability of the wind turbine with similar design 

variables and boundary conditions. 

Most surrogate-based procedures are a victim of the curse of dimensionality that the 

computation effort increases dramatically since large populations are required to assess small 

probabilities or to fit non-linear Performance Function. Based on the results, the optimized 

BFMT-DNN solves this problem by simplifying the Neural Network architecture using a few 

Bayesian Optimization iterations.  

These results suggest that the proposed bi-fidelity framework can be applied to the 

reliability analysis of complex structures under rare events, using few high-fidelity associated 

with many low-fidelity samples to predict HF values. This framework provides an acceptable 

level of accuracy provided by the Bayesian optimization of the hyperparameters and 

considerable computation time savings compared to the conventional methods that use only 

high-fidelity samples. 
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5  CONCLUSIONS 

As introduced in Chapter 1, the need for reducing the computational cost of the reliability 

problems that use high-fidelity non-linear systems was addressed. In particular, it was focused 

on real-world shipbuilding and offshore wind turbine structural reliability problems. The limit 

state-based capacity and structural behavior assessment is a complex process, and simulating 

such processes are typically a computationally intensive task owing to the non-linear 

behavior. Moreover, forward propagation of uncertainties through those complex systems 

requires a large number of simulations and thus is usually computationally prohibitive in a 

realistic scenario. To address such challenges in the complex process, the main objective of 

the work presented in this thesis was to develop a novel multi-fidelity and multi-task deep 

neural network surrogate model to predict multiple outputs in reliability assessment. 

According to the main objective of this thesis, multi-fidelity modeling formulations were 

formulated to reduce the computational cost associated with high-fidelity finite element 

analysis. As mentioned in Chapter 1, the primary objective of the work presented in this thesis 

broke down into five sub-objectives. The conclusions for these sub-objectives are summarized 

in this Section. 

Chapter 2 and Chapter 3 addressed the issue related to the cost of solving the 

reliability assessment of the stiffened panel in the deck under axial load. The mesh 

convergence analysis made it possible to evaluate the correlation between the accuracy of the 

ultimate strength of each model with the average computational time for the studied meshes. 

Chapter 4 presented an offshore wind turbine model where two low-fidelity models were 

evaluated, considering a variation in the mesh size and a simplification of the 3d elements for 

linear elements of beams. Distance Correlation, frequently used for non-linear variables 

correlation, was innovatively imported for constructing spatial correlation functions to 

estimate the relationship between the high and low-fidelity models. Assessing the correlation 

between the fidelities reduces the complexity of the high and low-fidelity models' choice.  

In Chapter 2, the Bi-Fidelity Kriging surrogate model is used to become explicit a 

highly non-linear stiffened panel performance function to facilitate the reliability analysis. 

The BF-kriging was combined with the Subset Simulation, allowing the rare event reliability 

analysis. In the numerical results, after the low-fidelity model selection, the reduction in the 

computational time provided by the proposed BF-Kriging has been up to 75% of the 

computational cost in the Finite Element analysis. It was also shown that the BF-kriging 

method can be cast in the Bayesian framework, and the regression results naturally include an 
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uncertainty estimation, which is usually desirable. Moreover, it is suitable for many 

applications as a non-parametric regression tool. The BF-kriging framework results suggest 

that this surrogate model can be applied to make the performance function explicit in the 

reliability analysis of structures, using high-fidelity associated with low-fidelity samples to 

predict HF values, providing an acceptable level of accuracy and considerable computation 

time savings compared to the conventional methods that use only high-fidelity samples. 

Nevertheless, the Co-Kriging could be more suitable for high-dimensional drawbacks 

due to the curse of dimensionality. Thus, Chapter 3 focused on implementing a BF-DNN for 

the solution of high dimensional and high non-linear problems. The BF-DNN was used to 

make explicit PF for reliability analysis. The Subset Simulation association allowed the rare 

event reliability analysis estimation using conditional probabilities. The BF-DNN solves the 

curse of dimensionality problem by simplifying the neural network architecture using a few 

Bayesian Optimization iterations. The generalizability of the BF-DNN model and Subset 

Simulation association is accessed in two academic case studies and on reliability assessment 

of the ultimate compressive strength of plate elements typical of the deck structure of double-

hull oil tanker ships described by a non-linear Finite Element analysis. These applications 

showed excellent results for high dimensional and non-linear problems considering rare 

events. However, as a disadvantage, this method for solving problems with low variables or 

non-complex Performance Functions should be regarded with reservation and become a 

limitation in a sparse high-fidelity dataset analysis.  

Chapter 4 presented a BFMT-DNN to make explicit PF for reliability analysis 

associated with Subset simulation. This framework's accuracy and computational efficiency 

were demonstrated by its application in a wind turbine reliability analysis in two limit-state 

scenarios. Two low-fidelity frameworks were used to predict the maximum von Misses stress 

and displacement. They obtained similar results in the reliability assessment of the offshore 

wind turbine under different loads. In addition, using the same BF-DNN surrogate model to 

create a multi-task scenario to predict many outputs simultaneously demonstrated the main 

advantage of the proposed framework. Moreover, the reliability of the structure was 

investigated by defining the uncertainties of the statistical parameters for the structural design 

variables. Statistical analysis between the model and measurements highlighted the acceptable 

representation of the wind and wave fields by the WaveWatch 3 numerical model. 

These results suggest that the proposed BFDNN and BFMT-DNN frameworks can be 

applied to the reliability analysis of complex structures under rare events, using a few HF 
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associated with many low-fidelity samples to predict high-fidelity values. These frameworks 

provide an acceptable level of accuracy provided by the Bayesian optimization of the 

hyperparameters and considerable computation time savings compared to the conventional 

methods that use only HF samples. 

5.1  FUTURE WORK 

Some possible future research works are summarized as follows: 

• Considering the stiffened panel example in the multi-fidelity framework, the aspect ratio 

of the plate is about six. In this case, for future analysis, 1/2+1+1/2 span model with 

periodical boundary condition can be used to reproduce the plate buckling in the high-

fidelity model. 

• The current design of offshore wind turbines follows mainly the IEC 61400-3 standard. 

The list of DLCs implied for this standard is comprehensive. The multi-task scenario can 

also be analyzed considering DLCs focused on power production. The buckling ultimate 

limit state of the structure, the fatigue limit state, and the Frequency (modal) limit state 

can be assessed to identify the most critical among them. 

• It is emphasized that the analyses of the wind turbine and recommendations presented do 

not consider the foundation aspect of the design. This issue deserves future investigation. 

• As future work, by use of the conditional samples generated by MCMC simulation and 

SUS, a numerical method can be used to estimate and realize the reliability sensitivity of 

the conditional failure probabilities and estimate the influence of the random variables in 

the reliability assessment. 

• For a long-term future work, a Multi-fidelity Convolutional Neural Networks framework 

can be used to predict HF outputs treating the multi-fidelity data as image data and 

processes them using Convolutional Neural Networks. 
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