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Resumo

On the rheology and magnetization of dilute magnetic emulsion under small
amplitude oscillatory shear

Autor: Rodrigo Figueiredo Abdo

Orientador: Dr. Taygoara Felamingo de Oliveira (ENM/ UnB)

Programa de Pós Graduação em Programa de Pós-Graduação em Ciências
Mecânicas

Brasília, 6 de abril de 2023

Uma emulsão magnética diluída, sob a ação combinada de um campo magnético
externo e um cisalhamento oscilatório de pequena amplitude é estudado utilizando sim-
ulações numéricas. Nossas simulações consideram um domínio tridimensional onde uma
única gota de ferrofluido superparamagnético é suspensa numa matriz não magnetizável e
diluída. Além disso, a gota é confinada num canal periódico entre placas paralelas onde
o campo magnético externo pode ser imposto em cada uma das direções das coorde-
nadas. O método numérico escolhido baseia-se no método de projeção para as equações
incompressíveis de Navier-Stokes, acrescido de um termo interfacial e magnético, e do
método level-set para a captura da interface. De acordo com o sinal periódico da gota,
estudamos a sua dinâmica, reologia e resposta da magnetização através de uma gama
de frequências angulares, amplitudes da taxa de cisalhamento e intensidades do campo
magnético externo. Verificamos que o campo magnético pode alterar significativamente a
dinâmica e a morfologia da gota, confinando também a gota em regiões de maior ou menor
cisalhamento efetivo. Tal fato implica que o campo magnético pode alterar de forma crítica
as respostas elásticas e viscosas em função da frequência, especialmente quando orientado
na direção da vorticidade, na qual é possível controlar ativamente o tempo de relaxação
da gota. Também a este respeito, o campo magnético causa uma anisotropia de tensões na
sua respectiva direção de aplicação, o que é demonstrado através das diferenças de tensões
normais. Finalmente, embora se trate de uma gota de ferrofluido superparamagnético,
encontramos uma componente periódica fora de fase da magnetização, o que significa que
o tempo de relaxação magnético é finito e está intimamente relacionado com a relaxação
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mecânica.

Palavras-chaves: Oscillatory shear; Magnetic emulsions; Two-phase flow; Level-Set.
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Abstract

ON THE RHEOLOGY AND MAGNETIZATION OF DILUTE MAGNETIC
EMULSION UNDER SMALL AMPLITUDE OSCILLATORY SHEAR

Author: Rodrigo Figueiredo Abdo

Supervisor: Dr. Taygoara Felamingo de Oliveira (ENM/ UnB)

Thesis Proposal in Mechanical Sciences

Brasília, 2023

A dilute magnetic emulsion, under the combined action of an external magnetic field
and a small amplitude oscillatory shear, is studied using numerical simulations. In order
to achieve this, our simulations consider a three-dimensional domain where a single
superparamagnetic ferrofluid droplet is suspended in a non-magnetizable and diluted
matrix. Furthermore, the droplet is confined in a periodic channel between parallel plates
where the external magnetic field can be imposed in each of the coordinate directions.
The chosen numerical method is based on the projection method for the incompressible
Navier-Stokes equations, augmented by an interfacial and magnetic term, and the level-set
method for interface capturing. According to the periodic signal of the droplet, we studied
its dynamics, rheology and magnetization response across a range of angular frequencies,
shear-rate amplitudes, and external magnetic fields. We found that the magnetic field can
significantly change the dynamics and morphology of the droplet, also confining the droplet
to regions of greater or lower effective shear. Such a fact implies that the magnetic field
can critically alter the elastic and viscous responses as a function of frequency, especially
when oriented in the direction of the vorticity, in which it is possible to actively control the
droplet relaxation time. Also in this regard, the magnetic field causes a stress anisotropy in
its respective direction of application, which is shown through the normal stress difference.
Finally, although it is a superparamagnetic ferrofluid droplet, we found an out-of-phase
periodic component of the magnetization, which means that the magnetic relaxation time
is finite and closely related to mechanical relaxation.

Key-words: Oscillatory shear, magnetic emulsions, two-phase flow, Level-Set.
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1 Motivation and background

Emulsions are dispersion systems made up of two or more immiscible liquids, in
which the liquid droplets are considered as the dispersed phase and the liquid medium
the continuous phase (Tadros, 2013). The most striking examples of emulsions are the
classical mixtures of oil-in-water (O/W), water-in-oil (W/O), or even the oil-in-oil (O/O),
such as propylene glycol in paraffinic oil (Pal, 2019). Another system structure is found in
double and multiple emulsions, i.e., emulsions of emulsion, such as W/O/W or O/W/O.
These specific emulsions are known for their extraordinary ability and significant potential
in the encapsulation and controlled release of active substances, separation and extraction
procedures, and microreactors for chemical reactions (Liu et al., 2021).

A great aspect of emulsions, in general, is that despite often being composed of
Newtonian fluids, emulsions present a complex non-Newtonian behavior, presenting a dual
characteristic depending on the shear-rate and shear-strain. The emulsion starts to have
a more predominantly elastic or viscous behavior, depending on the time scale of the
experiment and the properties of the emulsion constituents.

While simple shear is the traditional way of evaluating the properties of fluids
in their natural time scale, oscillatory shear is the most popular deformation mode for
investigating viscoelastic properties. The experiment induces a sinusoidal shear deformation,
in which oscillation frequency determines the time scale and, thus, allows measures of the
stress response.

Based on a small amplitude oscillatory shear experiment, the viscoelastic properties
are the storage (𝐺′) and loss (𝐺′′) moduli. These two parameters decompose time-dependent
stress into real and imaginary parts of a complex number. For a sinusoidal shear deformation,
the storage modulus is in phase with the strain and follows the macroscopic deformation,
consequently storing energy. The loss module is 90∘ out-of-phase with strain and measures
the energy dissipated or lost as heat.

Despite their widespread use and significance in emulsions, our understanding of
stability, which involves the knowledge of viscoelastic properties, remains limited. Improving
our understanding of emulsion stability is essential for the development of high-quality and
stable emulsions with a wide range of applications, such as found in enhanced oil recovery
(Zhou et al., 2019), pipeline transportation of heavy crude oil in water (Ashrafizadeh;
Kamran, 2010) and alternative fuel for diesel engines (Debnath; Saha; Sahoo, 2015). One of
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the most successful fields of application is in the biomedical area, comprising, for example,
drug carrier systems (Shukla et al., 2018). It is worth mentioning that the knowledge of
emulsion properties has also been crucial in preventative and therapeutic solutions against
COVID-19 (Sharma; Singh, 2021; Ashaolu, 2021; Tayeb et al., 2021). Figure 1.1 presents
a schematic representation of an oil-in-water nanoemulsion (O/W NE) of encapsulated
hydrophobic compounds and surface-functionalized biomolecules of O/W NEs proposed
by Tayeb et al. (2021). Drugs, vitamins, colors, dyes, oil or flavors can be encapsulated
and delivered by specific antibodies, polymers, aptamers or a fluorescent probe.

Figure 1.1 – Encapsulated hydrophobic compounds and surface-functionalized
biomolecules of oil-in-water nanoemulsion (Tayeb et al., 2021).

Table 1 presents typical parameters of emulsions found in food applications. It is
important to note that O/W emulsions, such as milk or mayonnaise, form compounds
with completely different physical properties than W/O emulsions, such as butter or
margarine. Properties such as the viscosity of both phases, droplet size distribution,
chemical composition or the interfacial interactions among the phases can drastically
modify the flow characteristics. A key factor to consider is shown in the last column of Tab.
1, which represents the ratio between the volume of the dispersed and continuous phase,
commonly called volume fraction. In the case of dilute emulsions, the particle-particle
interactions are of negligible importance, i.e., the linear scale of the suspension motion
is large compared with the average distance between the particles. In this scenario, for
dilute systems with volume fraction up to 5% (Guido; Shaqfeh, 2019), it is possible to
characterize the entire emulsion by studying only a single droplet, provided that in a
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large periodic domain. One of the most important aspects, in this case, is the fact that
emulsions can be considered as a continuum, in which the macroscopic properties are
obtained through an averaging process of microscopic quantities. This methodology is,
indeed, followed by many authors in many different research fields (Vlahovska, 2011; Raja;
Subramanian; Koch, 2010; Ghigliotti; Biben; Misbah, 2010; Poddar et al., 2019; Mandal
et al., 2018).

Table 1.1 – Typical parameters of emulsions according to Pal (2019)

Food product Disp. phase Cont. phase Vol. fraction (%)
Milk Oil droplets Water 3 to 4
Butter Water droplets Liquid oil and fat crystals About 16
Margarine Water droplets Liquid oil and fat crystals 16 to 50
Mayonnaise Oil droplets Water ≥ 65
Coffee whiteners Oil droplets Water 10 to 16
Salad dressings Oil droplets Water ≥ 30

In parallel, over the years, a great amount of research has been carried out in
an attempt to tune or control the properties of emulsions. Many authors investigated,
experimentally (Pei et al., 2018; Feigl et al., 2007) and numerically (Pimenta; Oliveira,
2021; Stone; Leal, 1990), the use of surfactants in emulsions in order to change the surface
properties or change the local thermodynamic environment. Figure 1.2(a) shows a water
droplet structure surrounded by surfactants with hydrophilic heads and hydrophobic
tails. Similarly, the Pickering emulsions, which provide a more stable system than classic
emulsions obtained with a surfactant (Carvalho-Guimarães et al., 2022) is present in Fig.
1.2(b). In this case, the water droplet is stabilized through interface adsorption by solid
particles, preventing coalescence, sedimentation or the formation of cream (Chen et al.,
2011).

Water Water

a) b)

Figure 1.2 – Surfactant-stabilized water droplet (a) and a Pickering emulsion droplet (b).

Another effective way to achieve the desired properties in a droplet, and consequently
in the emulsion, is by using materials capable of becoming anisotropic under the action
of an external agent. In this case, one of the approaches is based on the use of external
electric or (and) magnetic fields in ferrofluid emulsions.
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Since the conception, formulation and synthesis of a ferrofluid by Steve Papell
(Stephen, U.S. Patent 3 215 572 A, 1963), considerable research attention has been directed
toward this area. Magnetic emulsions are an emerging field of study that combines the
properties of magnetic particles and liquid emulsions. This area of research has garnered
interest due to the unique physical and chemical properties that magnetic emulsions
exhibit, which are not present in traditional emulsions or magnetic particles alone.

a) b)

c)

Figure 1.3 – Magnetic emulsion affected by a uniform magnetic field (a) and (c) (Zakinyan;
Dikansky, 2011; Flament et al., 1996) and simultaneously by electric and
magnetic fields (b) (Dikansky; Zakinyan; Tyatyushkin, 2011).

Both the magnetic and electric fields, depending on their orientation, are capable of
critically altering the dynamics and rheology of the dispersed ferrofluid droplet. Figure 1.3(a)
shows ferrofluid droplets immersed in oil under a uniform magnetic field. The emulsion
droplets become ellipsoidal and aligned along the magnetic field direction. Similarly,
in Fig. 1.3(c), the same phenomenon happens, but in this case, it is evident that the
droplet elongation is related to the intensity of the magnetic field. Figure 1.3(b) shows the
combination of both the magnetic and electric fields. In this case, due to the anisotropy
caused by the external fields, the electric conductivity and magnetic permeability are no
longer a scalar, but a second-order tensor. It is worth mentioning that the same effects, for
example, can also be applied to magnetic Pickering emulsions (Bielas et al., 2022) or in
confined magnetic nanoparticles in double emulsions (Zentner; Concellón; Swager, 2020).

There is ample evidence to support the view that magnetic emulsions can sub-
stantially contribute to the development of new technologies. Some applications were
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reported in many areas, for example, lab-on-a-chip technologies (Hamilton et al., 2018),
magnetic pump and cilia (Meng et al., 2019), externally controlled materials (Andablo-
Reyes; Hidalgo-Álvarez; Vicente, 2011) and treatment of retinal detachment (Mefford
et al., 2007; Voltairas; Fotiadis; Massalas, 2001). There are also applications found in
environmental science, where they have been used for the removal of pollutants from
water. The magnetic droplets can be used to absorb and retain contaminants, and the
external magnetic field can be used to separate the magnetic droplets from the water, thus
purifying the water (Yang et al., 2017).

Figure 1.4 – Schematically representation of the use of magnetic fluids in hyperthermia
for cancer therapy. (a) represents the injection of magnetic nanoemulsion
hydrogel, (b) the solid-like magnetic hydrogel transformation and (c) the
thermal ablation (Wu et al., 2017)

One of the most significant applications of magnetic emulsions is in the field of
biomedicine. Magnetic emulsions have been used for the delivery of drugs to specific sites
within the body, using an external magnetic field to guide the magnetic droplets to the
desired location (Liu; Li; Lam, 2018). The encapsulation of drugs in magnetic droplets
can improve their bioavailability, increase their stability, and reduce their toxicity. This
opens up new opportunities for the treatment of diseases, particularly in hyperthermia
for cancer therapy (Das; Colombo; Prosperi, 2019). Figure 1.4 shows, schematically, how
this technology works. In Fig. 1.4(a), a magnetic nanoemulsion hydrogel (MNH), with
temperature < 25∘ 𝐶, is injected into the tumor tissues. Once in contact with body
temperature (≈ 37∘𝐶), it is transformed into a solid-like magnetic hydrogel, preventing
leakage from the region, see Fig. 1.4(b). By applying an alternating current magnetic field,
the magnetic nanoparticles induce the necrosis of tumor tissue by thermal ablation, Fig.
1.4(c). It is worth mentioning that all this process can be monitored by ultrasound in
real-time, as well (Wu et al., 2017).
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Even though there are several and successful applications of magnetic emulsions
in different contexts, many crucial questions remain unanswered. Few studies in this
research area have sought to examine the droplet dynamics, rheological, and magnetization
properties, especially in oscillatory shear. As an example of the richness of the subject, it was
only recently reported (Cunha et al., 2020b; Abicalil et al., 2021) that, under the combined
action of a uniform magnetic field and simple shear flow, there is a misalignment between
the bulk magnetization and the original external magnetic field for a superparamagnetic
dilute emulsion. Furthermore, promoting a magnetic torque that leads to an antisymmetric
bulk stress tensor. This fact alone can lead to the development or improvement of new
technologies and processes. Also taking into account that these emulsions, as a non-
Newtonian fluid, have viscoelastic and magnetization properties, an even greater field of
application and study is expected.
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2 Literature review

A disperse combination of two immiscible liquids, such as oil and water, is known
as an emulsion. Even while emulsions are often made of Newtonian fluids, their overall
behavior is that of a single non-Newtonian fluid, indicating that they have both viscosity
and elasticity. Thus, they have solid-like and fluid-like behavior, which means that their
viscosity is not constant and varies according to the flow kinematics and the constitution
of the emulsion. Emulsions are especially helpful in a variety of applications, including
the culinary and cosmetic sectors, where they are utilized as the foundation for goods like
milk homogenization (Bai et al., 2021), optimizing the delivery of active pharmaceutical
substances (Jaiswal; Dudhe; Sharma, 2015) and cosmetic products (Kim; Oh; Lee, 2020).

Dilute emulsions have been a topic of interest in the field of physics since the early
20th century, with seminal work done by Albert Einstein in 1906 and 1911 (Einstein,
1906; Einstein, 1911). Einstein’s work laid the foundation for our understanding of dilute
emulsions. In his paper, Einstein considered a dilute emulsion of rigid spheres in a such
way one particle does not influence the neighborhood of others. Based on the viscous
dissipation produced by the flow around a single sphere, Einstein predicted that the
effective viscosity of a dilute emulsion, 𝜂𝑒, increases linearly with the volume fraction, 𝛽,
being 𝜂𝑒 = 𝜂𝑐(1 + 5𝛽/2), where 𝜂𝑐 is the viscosity of the continuous phase.

Taylor (1932) extended Einstein’s work by changing solid for fluid spheres, leading
to 𝜂𝑒 = 𝜂𝑐(1 + 2.5𝛽(𝜆+ 0.4)/(𝜆+ 1)), where 𝜆 is the ratio between the viscosities of the
dispersed and continuous phase. Both Einstein and Taylor works were experimentally
validated, showing an excellent agreement, respectively, for 𝛽 < 3% and 𝛽 < 5% (Pal,
2016).

On the other hand, moderately and highly concentrated emulsions are those in
which the volume fraction exceeds ≈ 2% (Pal, 2011) (although the literature records higher
values, such as 5% (Yang; Shaqfeh, 2018a; Yang; Shaqfeh, 2018b) or 10% (Barnes; Hutton;
Walters, 1989)), reaching volume fractions even greater than the maximum packing volume.
In both cases, the neighboring droplets interact with each other hydrodynamically or are
deformed among each other, losing their spherical shape.

The beauty of dilute emulsions, in contrast to moderately and highly concentrated
emulsions, is that it is only necessary to consider a single droplet mechanism to develop the
macroscopic relationships or bulk properties. Since the works of Einstein and Taylor, there
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is a growing body of research on the macroscopic mechanical properties of heterogeneous
media. Table 2.1 presents a short review of some papers that predicted emulsion properties
based on a single particle system. It is important to note that it is only a list of examples.
Many other works were published along these lines, including the classic works of Taylor
(1934), Oldroyd and Wilson (1953), Batchelor (1970) and the following papers in this
section.

In like manner, Palierne (1990), by studying the effects of interfacial tension,
investigated the linear viscoelastic behavior of diluted and non-diluted emulsions by
introducing an oscillatory shear into the flow. The great contribution of Palierne’s model
was to consider a deformation-dependent interfacial shear, leading to nonisotropic interfacial
stress (Jacobs et al., 1999). His model is well-known for accurately describing molten
polymer mixes at both high and low frequencies (Bousmina, 1999; Jacobs et al., 1999;
Shu et al., 2013). Additionally, his theory allows the previous approaches of Fröhlich and
Sack (1946), Oldroyd and Wilson (1950), Oldroyd and Wilson (1953), Oldroyd and Taylor
(1955) and Kerner (1956) to be generalized.

Analogously, both Cavallo, Guido and Simeone (2003) and Wannaborworn, Mackley
and Renardy (2002) focused their work on the droplet dynamics in dilute emulsion under
small amplitude oscillatory shear flows. They found the same ellipsoidal shape reported by
Taylor (1934) and other authors. The droplet deformation is harmonic and its amplitude
is a linear function of the strain. Furthermore, as the flow is reversed, the droplet is
compressed in the direction of its major axis and extended along the minor axis, i.e.,
the principal axis of the droplet switches from extension to compression, approaching
a spherical shape between the shear cycles. Interestingly, it was reported that the only
breakup mechanism occurred by end pinching at strain peaks, and, as expected, the critical
shear for droplet breakup is higher in oscillatory shear than in simple shear.

Similarly, using the boundary integral method (Siqueira et al., 2017a; Cunha et al.,
2018; Siqueira et al., 2017b) and an asymptotic solution based on the small deformation
theory (Vlahovska; Bławzdziewicz; Loewenberg, 2009), Oliveira and Cunha (2015) reported
a rheological study on droplets with moderate to high viscosity ratios subjected to oscillatory
shear flow, demonstrating that the dynamics, in this case, are dependent on the shear-rate
amplitude, oscillation frequency, and droplet relaxation time. The authors also reported
that by imposing large amplitude oscillatory shear the emulsion stress response displays
high-order harmonics.
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Table 2.1 – Studies on diluted emulsions considering a
single droplet.

Title Journal Short description

Motion and deformation of liquid drops and
the rheology of dilute emulsions in sim-
ple shear flow (Kennedy; Pozrikidis; Skalak,
1994)

Computers and Fluids Study of dilute emulsions using the boundary integral method
to compute the effective stress tensor of appreciably deformed
droplets.

Equation of change for ellipsoidal drops in
viscous flow (Maffettone; Minale, 1998)

Journal of Non-Newtonian
Fluid Mechanics

Phenomenological model for the droplet deformation.

Ellipsoidal model for droplet deformation in
emulsions (Yu; Bousmina, 2003)

Journal of Rheology Ellipsoidal model for droplet deformation for dilute emulsions
composed of Newtonian fluids with an arbitrary viscosity ratio.

Drop breakup in dilute Newtonian emulsions
in simple shear flow: New drop breakup mech-
anisms (Zhao, 2007)

Journal of Rheology Experimental study of droplet breakup in a dilute Newtonian
emulsion of different viscosity ratio under simple shear.

Inertial effects on the rheology of a dilute
emulsion (Raja; Subramanian; Koch, 2010)

Journal of Fluid Mechanics The authors derive an expression for the bulk stress in a dilute
emulsion using a small, but finite Reynolds number.

Rheology of a dilute two-dimensional suspen-
sion of vesicles (Ghigliotti; Biben; Misbah,
2010)

Journal of Fluid Mechanics The paper presents, based on the boundary integral method, a
link between the rheology of dilute suspensions of vesicles and
the constituent particles.

On the rheology of a dilute emulsion in a
uniform electric field (Vlahovska, 2011)

Journal of Fluid Mechanics The author studies the effective emulsion properties such as
coupling of shape distortion, charge convection and stress bases
on an isolated droplet in an external flow.
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Drop deformation and emulsion rheology un-
der the combined influence of uniform electric
field and linear flow (Mandal et al., 2018)

Journal of Fluid Mechanics The paper presents a study on the effect of a uniform electric
field on the emulsion rheology based on an isolated droplet
under the combined presence of an external uniform electric
field and uniaxial extensional flow.

Emulsion rheology for steady and oscillatory
shear flows at moderate and high viscosity
ratio (Oliveira; Cunha, 2015)

Rheol Acta The authors present a complete study using a three-dimensional
boundary integral method for a single droplet to investigate the
emulsions rheology at high viscosity ration in steady, oscillatory
and extensional flow.

Electrorheology of a dilute emulsion of
surfactant-covered drops (Poddar et al., 2019)

Journal of Fluid Mechanics A viscous droplet covered by surfactants is studied using a
three-dimensional numerical model in order to investigate the
bulk emulsion properties in the dilute suspension regime.

Field-induced control of ferrofluid emulsion
rheology and droplet break-up in shear flows
(Cunha et al., 2018)

Physics of Fluids Based on a two-dimensional finite domain size with a single
ferrofluid droplet under a uniform external magnetic field, the
authors investigated how the magnetic field intensity affects
the emulsion rheology under the simple-shear.

Effects of external magnetic fields on the rhe-
ology and magnetization of dilute (Cunha et
al., 2020b)

Physics of Fluids Similar to (Cunha et al., 2018), but the authors investigate the
stress response, the bulk magnetization and magnetic torque
as a contribution of the non-symmetric bulk stress tensor.

Rheology of a dilute ferrofluid droplet sus-
pension in shear flow: Viscosity and normal
stress differences (Ishida; Matsunaga, 2020)

Physical Review Fluids Similar to previous two studies reported by Cunha et al. (2018)
and Cunha et al. (2020b), but in a three-dimensional domain.
The authors present additional results by applying a magnetic
field in the vorticity direction.
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Emulsions can often be manipulated in many ways. However, due to the high
surface energy of the interface, they tend to be thermodynamically unstable (Maphosa;
Jideani, 2018). One alternative to overcome this problem and to make them stable is to
use surfactants (surface active agents) to reduce the interfacial tension. In such cases, the
transport of surfactants over the droplet surface results in complex rheological responses,
being possible to manipulate characteristics such as bulk viscosity, deformation and
surface tension (Pimenta; Oliveira, 2021). The understanding of surfactant dynamics is
a useful knowledge in several fields, such as oil recovery, agriculture, or nanotechnology
(Tiwari; Mall; Solanki, 2018). Closely related are the Pickering emulsions, but in this case,
solid particles are introduced in such a way as to cover the droplet contour, preventing
coalescence and stabilizing the emulsion (Jiang; Sheng; Ngai, 2020). Such technology is
applicable in many areas, e.g., for drug delivery of non-spherical products (Yang et al.,
2017).

An external magnetic field to the emulsion can also be used as a way to manipulate
or control an emulsion. This specific emulsion is known as magnetic emulsion, which is
a liquid-liquid suspension in which one phase, dispersed or continuous, is magnetically
responsive. The most classical example is to use ferrofluid droplets immersed in a non-
magnetizable matrix fluid (Cunha et al., 2018; Cunha et al., 2020b; Abicalil et al., 2021;
Ishida; Matsunaga, 2020; Abdo et al., 2023), but it is not restricted to this application.
Magnetic emulsions can also be composed of oil droplets in ferrofluid (Zakinyan; Dikansky,
2011), with surfactants (Brown et al., 2012) or in magnetic Pickering emulsions (Ma; Zong;
Han, 2021). Due to its potential for use in medical treatments (Voltairas; Fotiadis; Massalas,
2001; Mefford et al., 2007; Liu; Li; Lam, 2018), the production of externally controlled
materials (Andablo-Reyes; Hidalgo-Álvarez; Vicente, 2011; Vicente; Klingenberg; Hidalgo-
Alvarez, 2011; Morillas; Vicente, 2020; Spatafora-Salazar et al., 2021), and applications
in Lab-on-a-Chip devices (Sen et al., 2017; Zhang et al., 2019a; Varma et al., 2016; Ray
et al., 2017), ferrofluid droplet-based emulsions have been the subject of intense research
in recent years. It is possible to actively control the rheology of the materials (Abicalil
et al., 2021; Cunha et al., 2018; Cunha et al., 2020b; Ishida; Matsunaga, 2020; Abdo et
al., 2023), manipulate it in confined systems (Bijarchi et al., 2021; Roodan et al., 2020;
Bijarchi et al., 2020), and actively control heat transfer (Cunha et al., 2020a) by exploring
the interaction with external magnetic fields. In addition, new studies have suggested
using ferrofluid droplets as liquid microrobots for targeted cargo delivery in microsystems
(Fan et al., 2020a; Fan et al., 2020b; Ji et al., 2021; Chen et al., 2021).

Despite the various contexts involving magnetic emulsions, only recently Jesus,
Roma and Ceniceros (2018) published a study combining the simultaneous action of simple
shear and the external magnetic field in a fully three-dimensional domain. The authors
showed the distortions caused by the external magnetic field in the sheared ferrofluid
droplet. In addition, they found that at low-intensity external magnetic fields and weak
flows, the droplet deformation in the shear plane and the vorticity direction have the same
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order. The authors also proposed an equation for the deformation based on the asymptotic
small deformation theory. In the same way, using a two-dimensional domain, Hassan,
Zhang and Wang (2018) showed that the angle of incidence of the external magnetic field
can significantly change the deformation and orientation of the droplet, depending on the
intensity of the magnetic field and the shear imposed.

Cunha et al. (2018), using the level-set and projection methods, investigated a
ferrofluid droplet under the combined effects of the shear flow and external magnetic
field in a two-dimensional domain. The authors showed that the magnetic field can be
used to change the viscosity behavior of a magnetic emulsion from shear-thinning to
shear-thickening, or vice versa, by changing the field application direction. In addition,
for the first time, the authors provided evidence that the magnetic field can change the
conditions for droplet rupture in simple shear flows. In the same fashion, Hassan and
Wang (2019) explored the breakup problem, but with a wider range of the incidence angle
of the external magnetic field. The authors reported that there is a critical magnetic field
incident angle and intensity that promotes, or attenuates, the breakup process.

Cunha et al. (2020b) reported a new formulation for calculating the particle stress
tensor, accounting for both magnetic and capillary stress jumps on the droplet surface. It
was possible to verify small misalignments between the bulk magnetization of the emulsion
and the external magnetic field, leading to the appearance of a magnetic torque and an
asymmetry in the particle stress tensor, regardless of the superparamagnetic constitution
of the ferrofluid droplet.

Ishida and Matsunaga (2020) proposed a three-dimensional model with diluted
ferrofluids droplets dispersed in a non-magnetic fluid considering the external magnetic
field in each of the coordinate directions. In addition to the great agreement with the results
reported by Cunha et al. (2020b), the authors verified the anisotropy of the emulsion,
caused by the magnetic field, by calculating the first and second normal stress differences.

Capobianchi et al. (2021) also investigated dilute magnetic emulsions based on a
single droplet using direct numerical simulations. The authors corroborated the aforemen-
tioned works of Cunha et al. (2020b) and Ishida and Matsunaga (2020) in terms of the
imposed dynamics by the external magnetic field and proposed a constitutive equation for
the viscosity of the emulsion as a function of the magnetic field.

As previously exposed, recent research has focused on the rheology and magnetiza-
tion of magnetic emulsions (Cunha et al., 2018; Cunha et al., 2020b; Ishida; Matsunaga,
2020; Capobianchi et al., 2021), as well as the droplet dynamics (Jesus; Roma; Ceniceros,
2018; Hassan; Zhang; Wang, 2018; Hassan; Wang, 2019), both under the combined action
of simple shear and a uniform external magnetic field. Additionally, complex structures
generated by magnetizable suspended particles under simple or oscillatory shear have
received a lot of attention (Cunha; Rosa, 2021; Rosa; Cunha, 2019; Rosa; Cunha, 2020).
To the author’s knowledge, no research has looked at how the external magnetic field
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affects the rheology and magnetization of diluted emulsions subjected to a small amplitude
oscillatory shear (SAOS).

In order to fill this gap, a preliminary step of this thesis is the study of magnetic
emulsion in simple shear flow with external magnetic fields, which allows comparing the
present results with others available in the literature, providing subsidies for the validation
of our methodology. This initial step was completed in co-authorship with other researchers
and published in Physics of Fluids in 2021 (Abicalil et al., 2021). In this work, in addition
to the proposed validation, the authors also reported the first three-dimensional study
in which it was verified that the magnetization of a suspension of superparamagnetic
ferrofluid can be misaligned in relation to the external field, producing internal torques in
the material and consequently anisotropy of stresses.

The final step, under the same view of the droplet of ferrofluid suspended in a
non-magnetizable and diluted matrix, is to change the input from simple shear to small
amplitude oscillatory shear. The numerical simulation is performed in a three-dimensional
domain using the level-set and projection methods to capture the droplet interface and
solve the Navier-Stokes equations, respectively. The magnetic problem is treated through
the classic Maxwell’s equations, in which the external magnetic field is generated in each
of the coordinate directions, furthermore, the magnetic problem is assumed to be quasi-
stationary, such that no electric currents are induced. We investigated the droplet dynamics
by analyzing its periodic deformation and orientation according to the instantaneous shear
imposed. In order to describe the droplet viscoelastic properties and the capacity of the
magnetic field to induce stress anisotropy, we looked at the droplet shape between the
low and high-frequency limits. We also looked at the oscillatory magnetic torque caused
by the angle between the external magnetic field and the emulsion magnetization. As far
as the authors know, such results have not been reported before. We discovered that the
external magnetic fields can increase or decrease the storage and loss moduli as functions
of frequency, direction and intensity of the magnetic field. Moreover, especially when the
magnetic field is oriented perpendicular to the shear plane, the imposed flow dynamics
cause a change in droplet relaxation time. We also show, by studying the magnetization
properties, that, despite the superparamagnetic ferrofluid droplet, there is a periodic
component of the magnetization signal which is not in-phase with the imposed strain,
revealing that the intrinsic interaction between surface tension, shear stress, and magnetic
field results in a finite magnetic relaxation time. These results have been published in the
Journal of Fluid Mechanics in 2023 (Abdo et al., 2023).

The remainder of this thesis is organized as follows. Chapter 3 presents the problem
statement, the complete description of the small amplitude oscillatory shear and magnetic
emulsions, including the governing equation, non-dimensional parameters and rheological
properties. Chapter 4 presents the numerical method, going through the level-set and
projection methods, mesh discretization, boundary conditions and numerical solvers.
Chapter 5 presents the validation in simple shear, a qualitative and quantitative validation
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concerning droplet breakup and the main results of this thesis in small amplitude oscillatory
shear. Lastly, in Chapter 7 we presented a discussion about the future work.
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3 Mathematical formulation

3.1 Problem statement

The problem analyzed consists of a superparamagnetic (Rosensweig, 2013) and
spherical ferrofluid droplet with initial radius 𝑎, suspended in a continuous phase composed
of a non-magnetizable fluid. The emulsion is inside a channel with dimensions 𝐿𝑥, 𝐿𝑦, and
𝐿𝑧 where the upper and lower plates oscillate in opposite directions with angular frequency,
𝜔, producing an oscillatory shear flow with shear-rate amplitude, �̇�0. The velocity, 𝑢,
produced by the plates over time, is a function of both �̇�0 and 𝜔, so each plate moves with
velocity equals to |𝑢| = (�̇�0/2) cos(𝜔𝑡)𝐿𝑦. The other boundaries are taken as periodic in
order to prevent problems caused by finite sizes. It is worth mentioning that the strain
amplitude is set to 𝛾0 = 0.1 to ensure the SAOS regime, also, the problem is studied for a
dilute emulsion, in the creeping flow limit.

Additionally, both phases have the same viscosity, 𝜂, which implies a viscosity ratio
of 𝜆 = 𝜂𝑑/𝜂𝑐 = 1. The droplet surface is assumed to be free of tensioactive substances
with a constant surface tension coefficient, 𝜎. Furthermore, the ferrofluid droplet interacts
with an external uniform magnetic field 𝐻0, which can be parallel to either the main flow
direction (𝑥), the main velocity gradient direction (𝑦), or the main vorticity direction (𝑧).
The continuous phase has magnetic permeability 𝜇0, assumed to be equal to that of free
space, and, based on the magnetic permeability ratio, set to 𝜁 = 𝜇𝑑/𝜇0 = 2 (Flament et
al., 1996), the disperse phase has magnetic permeability 𝜇𝑑 = 𝜁𝜇0.

The magnetic problem is assumed to be quasi-stationary, such that no electric
currents are induced, and once both phases have the same density 𝜌, the system has neutral
buoyancy. Moreover, the phases are assumed to be incompressible, i.e., the divergence of
velocity is zero, ∇.u = 0. From this perspective, the problem can be consistently described
by the incompressible Navier-Stokes equations augmented by a continuum surface force to
represent a ferrofluid droplet interface, and a magnetic force term, as well.

The interface-capturing method makes use of an implicit function defined for all
x ∈ R𝑛 where the zero isocontour represents the interface, 𝜑(x) = 0. This computational
technique was first introduced by Osher and Sethian (1988), counting on great numerical
advantages and the calculation of the geometric properties of the droplet, such as the
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Figure 3.1 – Schematic illustration of the problem for the external magnetic field, 𝐻0,
parallel to the main velocity gradient direction (y). The domain is of finite
size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧. The magnetic permeability of the continuous and the
ferrofluid phases are, respectively, 𝜇0 and 𝜁𝜇0. A shear flow is imposed on
the system by the top and bottom walls moving in opposite directions with
velocity |𝑢| = �̇�0 cos (𝜔𝑡)𝐿𝑦/2. The droplet surface is determined by the Level
Set function 𝜑(𝑥) = 0. The droplet is shown in a deformed state with major
and minor axes lengths 𝐿 and 𝐵. The droplet’s inclination angle is 𝜃.

curvature, 𝜅. In order to illustrate the proposed study, Fig. 3.1 presents a schematic
drawing of the problem for the external magnetic field in the main velocity gradient
direction.

Since the droplet deforms into an ellipsoidal shape, properties such as the Taylor
deformation, 𝐷 = (𝐿 − 𝐵)/(𝐿 + 𝐵), and the droplet inclination angle (relative to the
x-axis), 𝜃, can be accurately calculated taking advantage of the symmetry of the inertia
tensor, where the eigenvalues are associated with the principal axis: the major, 𝐿, and
minor, 𝐵, axis.

Finally, considering that any change in the boundary conditions is instantly per-
ceived everywhere in the flow due to the Stokes flow condition in the droplet scale, the
rheological properties can be estimated based on the bulk and particle stress tensor pro-
posed by Batchelor (1970). As a consequence, such viscoelastic properties, as 𝐺′ and 𝐺′′,
which decompose the time-dependent particle stress into an in-phase and an out-of-phase
component with respect to the shear, can be calculated with the aid of a fast Fourier
transform (FFT). In parallel, the magnetization properties can be estimated as bulk
quantities, as well, such as the emulsion magnetization and magnetic torques.
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3.2 Small amplitude oscillatory shear

The oscillatory shear experiment is one of the most popular tests employed in order
to study the viscoelastic response of the emulsion on different time scales. In the case of
the small amplitude oscillatory shear, there is a relatively small strain amplitude to ensure
the linear viscoelastic region, which is given by

𝛾 = 𝛾0 sin (𝜔𝑡) , (3.1)

where the velocity profile will be nearly linear in 𝑦 if 𝜔𝜌𝐿2
𝑦/2𝜂0 ≪ 1, which is half of the

ratio between the vorticity diffusion time scale (𝐿2
𝑦𝜌/𝜂) and oscillation time scale (1/𝜔), for

𝜂0 being the zero-shear-rate viscosity (Bird; Armstrong; Hassager, 1987). For an emulsion
composed of two Newtonian phases, the stress response, in this case, is neither in-phase
with the strain (perfectly elastic solid) nor 90∘ out-of-phase (Newtonian fluid), but is
somewhere in between, leading to an in-phase, 𝐺′, and out-of-phase, 𝐺′′, components.

These facts show that a given material can respond with a predominantly elastic
behavior when the elastic modulus, 𝐺′, is greater than the loss modulus, 𝐺′′, and vice
versa. In the same way, it is possible to observe this behavior on 𝜂′, and 𝜂′′ viscosities.
Basically, 𝐺′ → 𝐺 (elastic modulus), 𝐺′′ → 0, for a Hookean solid and 𝜂′ → 𝜂, 𝜂′′ → 0, for
a Newtonian fluid.

Based on the Maxwell’s model, it is worth mentioning that by solving his equation
for 𝐺′ and 𝐺′′ it is possible to find the relaxation time when 𝐺′ = 𝐺′′. Taking into account
this fact, many authors estimate the relaxation time of the system as the inverse of
the angular frequency right on the cross-over point between the curves for 𝐺′ and 𝐺”
(Graebling; Muller; Palierne, 1993; Tadros, 1994).

Palierne (1990) also developed an analytical solution for dilute emulsions, which
successfully describes the viscoelastic properties of a large variety of non-Newtonian
fluids (Bousmina, 1999; Liao et al., 2020; Boudoukhani; Moulai-Mostefa; Hammani, 2020).
According to his model and assuming trivial surface dilatation modulus and surface shear
modulus, the complex shear modulus for a homogeneous dilute emulsion is given by (Pal,
2011)

𝐺*
𝑒(𝜔) = 𝐺*

𝑐(𝜔) + 5𝛽𝐺*
𝑐(𝜔)𝐻*(𝜔) , (3.2)

where 𝛽 is the volume fraction, 𝐺*
𝑐 is the complex shear modulus of the continuous phase,

and the second term on the right-hand side accounts for the dispersed phase contribution.
The term 𝐻*(𝜔) is given by

𝐻*(𝜔) = (𝐺*
𝑑 −𝐺*

𝑐)(19𝐺*
𝑑 + 16𝐺*

𝑐) + (4𝜎/𝑎)(5𝐺*
𝑑 + 2𝐺*

𝑐)
(2𝐺*

𝑑 +𝐺*
𝑐)(19𝐺*

𝑑 + 16𝐺*
𝑐) + (40𝜎/𝑎)(𝐺*

𝑑 +𝐺*
𝑐)
. (3.3)
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Under the assumption that both phases are Newtonian and 𝜆 = 1, they share the
same complex shear modulus 𝜔𝜂𝑖, with 𝑖 =

√
−1. In this case, Eq. 3.2 reduces to

𝐺*
𝑒(𝜔) = 𝐺*

𝑐(𝜔) + 𝛽𝐺*
𝑐(𝜔) 28𝜎/𝑎

35𝐺*
𝑐(𝜔) + 16𝜎/𝑎 . (3.4)

It is interesting to note the term 𝜎/𝑎, in Eq. 3.4, is the one-half of the pressure
difference across the fluid interface for a spherical droplet, according to the Young–Laplace
equation. This fact gives us a great intuition about the time scale of the present phenomena
and would be of great importance in Sec. 3.5.

3.3 Magnetic emulsions

The magnetic problem is based on two conditions: the first one considers a super-
paramagnetic ferrofluid droplet, which means that this specific material can be much more
magnetizable for the same magnetic field than paramagnetic materials. The property that
measures this behavior is called magnetization, M, which denotes the orientation and how
polarized magnetic matter is. The second point is the quasi-stationary condition, where
no electric currents are induced. Furthermore, the relaxation time of the magnetic field is
considered to be negligible with respect to fluid flow and droplet motion.

For a magnetic emulsion submitted to an external magnetic field, H0, the induction
field is the sum of the contribution of the impressed magnetizing field and the local
magnetization, given by

B = 𝜇0(H + M) . (3.5)

But for a superparamagnetic material, with constant magnetic susceptibility, 𝜒,
the magnetization is proportional to the applied magnetic field, M = 𝜒H. To generalize
this definition throughout the entire domain, since the emulsion is also composed of a
non-magnetizable continuous phase, we define 𝜒 as a function of the position vector, x,
giving the Eq. 3.5 a different form

B = 𝜇0(1 + 𝜒(x))H = 𝜇(x)H = 𝜇0𝜁(x)H , (3.6)

for 𝜇(x) = 𝜇0(1 + 𝜒(x)) and 𝜁(x) = 𝜇(x)/𝜇0. Here, 𝜁(x), is also a position-dependent
variable, differently from 𝜁 = 𝜇𝑑/𝜇0, defined in the Problem statement (see Sec. 3.1).
𝜁(x) = 1 outside the ferrofluid material and 𝜁 (or 1+𝜒) inside.

This formulation leads to the Kelvin force per unit of volume form (or magnetic
force per unit of volume)

F𝑚𝑎𝑔 = 𝜇0M.∇H = 𝜇0(𝜁(x) − 1)H.∇H . (3.7)
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With aid of the following identity

∇
[︂1
2𝜇0𝐻

2(𝜁(x) − 1)
]︂

= 𝜇0(𝜁(x) − 1)[H.∇H + H × (∇ × H)] + 1
2𝜇0𝐻

2∇𝜁(x) , (3.8)

and the fact that the applied magnetic field is irrotational, i.e, ∇×H = 0 (Ampère-Maxwell
law), equation 3.7 is now given by

F𝑚𝑎𝑔 = ∇
[︂1
2𝜇0𝐻

2(𝜁(x) − 1)
]︂

− 1
2𝜇0𝐻

2∇𝜁(x) , (3.9)

note that the first term in the right-hand side of Eq. 3.9 accounts for a magnetic pressure
and plays no role other than ensuring a divergence-free velocity. In addition, a surface
force density appears due to the step change in 𝜁(x) at the interface.

Additionally, once ∇ × H = 0, it is possible to associate H with a scalar potential,
𝜓, in the form H = ∇𝜓. Furthermore, making use of the solenoidal condition of B (Gauss’s
law) in Eq. 3.6, the magnetic potential can the obtained from the following relation

∇.(𝜇0𝜁(x)∇𝜓) = 0. (3.10)

Equations 3.7 and 3.9 reveal an important result that is relevant in an attempt
to describe the behavior of a magnetic material. The force per unit of volume can be
described as a function of the stress tensor, ∇.Σ𝑚𝑎𝑔 = F𝑚𝑎𝑔, which leads, for a magnetic
fluid, to a general form of the Maxwell stress tensor (Rosensweig, 2013) for the present
study

Σ𝑚𝑎𝑔 = −1
2𝜇0H2I + BH , (3.11)

note that the spherical term corresponds to the magnetic pressure.

3.4 Two-phase model for incompressible flow

Considering the problem exposed in Fig. 3.1, we can divide the domain into two
distinct regions, the disperse phase, Ω𝑑, and the continuous phase, Ω𝑐. The volume occupied
by the whole domain is represented by the union of both fluids, Ω = Ω𝑐 ∪ Ω𝑑, and the
interface is a film that coexists between the phases, 𝜕Ω = Ω𝑐 ∩ Ω𝑑.

Both fluids are incompressible, and the continuous phase can be expressed by the
classical viscous stress tensor (Batchelor, 2000). In the case of the dispersed phase, the
equivalent stress tensor is the sum of the viscous and the magnetic stress tensor, in Eq.
3.11. In this sense, it is possible to define

ΣΩ𝑐 = −𝑝ℎI + 2𝜂𝑐D , (3.12)
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ΣΩ𝑑
= − (𝑝ℎ + 𝑝𝑚𝑎𝑔) I + 2𝜂𝑑D + BH , (3.13)

where 𝑝ℎ and 𝑝𝑚𝑎𝑔 accounts for the hydrodynamic and magnetic pressure, respectively, Σ is
the second-order stress tensors, I is the unit second-order tensor and D is the second-order
rate of deformation tensor.

It is worth mentioning that, similar to 𝜁(x), the viscosity is also a position-dependent
variable. Tanking this fact into account, it is possible to generalize both constitutive
equations in such a way as to accommodate all these terms in a continuum model, as
proposed by many authors (Cunha et al., 2018; Cunha et al., 2020b; Abicalil et al., 2021)

𝜌(x)𝐷u
𝐷𝑡

= −∇𝑝+ ∇.(2𝜂(x)D) + 𝜇0(𝜁(x) − 1)H.∇H − 𝜎𝜅n̂𝛿(𝑚𝑖𝑛|x − x𝜕Ω|) . (3.14)

Equation 3.14 is the result of the momentum balance in Ω. It is possible to notice
that the local viscosities, 𝜂𝑐 and 𝜂𝑑, were changed by a position-dependent one, 𝜂(x), i.e.,
𝜂(Ω𝑐) = 𝜂𝑐 and 𝜂(Ω𝑑) = 𝜂𝑑. Also, to apply the localization theorem, the surface integral of
the Young-Laplace equation was transformed into a volume integral by inserting the Dirac
delta function.

From these points, the emulsion can be represented by a continuum model. For
example, in the continuous phase, 𝜁(Ω𝑐) = 1 and 𝛿(Ω𝑐) = 0, we have a purely Newtonian
fluid with viscosity 𝜂𝑐, on the other hand, in the dispersed phase, 𝜁(Ω𝑑) = 𝜁 and 𝛿(Ω𝑑) = 0,
revealing a magnetic fluid with viscosity 𝜂𝑑. Finally, if we are in the interface 𝛿(𝜕Ω) = 1.

3.5 Non-dimensional form

The non-dimensional parameters proposed are based on the droplet relaxation
time scale, given by: u* = u𝜂𝑐/𝜎, 𝑡* = 𝑡𝜎/𝜂𝑐𝑎, x* = x/𝑎, 𝑝* = 𝑝𝑎/𝜎, 𝜆*(x) = 𝜂(x)/𝜂𝑐,
𝜌*(x) = 𝜌(x)𝜌𝑐, H* = H/|H0|, 𝜅* = 𝑎𝜅, 𝛿(x)* = 𝑎𝛿(x), D* = D𝜂𝑐𝑎/𝜎 and ∇* = 𝑎∇.

It is worth mentioning that, as commented in Sec. 3.2, the non-dimensional param-
eter for the pressure, 𝑝, is the same as presented in the Palierne model, which corroborates
the adoption of the droplet time scale, furthermore, other authors, such as Oliveira and
Cunha (2015), also used the same time scale for similar problems. Remembering that
the problem is neutral buoyancy and 𝜆 = 1, substituting each value in Eq. 3.14 and
suppressing, for convenience, the superscript * we have

𝜕u
𝜕𝑡

+ u.∇u = −𝐶𝑎

𝑅𝑒
∇𝑝+ 𝐶𝑎

𝑅𝑒
∇.(2D) + 𝐶𝑎𝐶𝑎𝑚𝑎𝑔

𝑅𝑒
(𝜁(x) − 1)H.∇H

−𝐶𝑎

𝑅𝑒
𝜅𝛿[𝑚𝑖𝑛(|x − x𝜕Ω|)]n̂ ,

(3.15)
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where

𝑅𝑒 = 𝜌𝑐�̇�0𝑎
2

𝜂𝑐

, (3.16)

is the ratio between fluid momentum force to viscous shear force, known as the Reynolds
number,

𝐶𝑎 = 𝜂𝑐𝑎�̇�0

𝜎
, (3.17)

the capillary number, corresponding to the ratio between viscous and capillary forces and

𝐶𝑎𝑚𝑎𝑔 = 𝜇0𝑎𝐻
2
0

𝜎
, (3.18)

the magnetic capillary number is the ratio between magnetic and capillary forces. The
velocity and strain are in each wall, respectively

u = 𝐶𝑎

2 cos(𝜔𝑡)𝐿𝑦, (3.19)

𝛾 = 𝐶𝑎

2𝜔 sin(𝜔𝑡)𝐿𝑦, (3.20)

where it is possible to identify the non-dimensional shear and strain-rate amplitude as 𝐶𝑎
and 𝐶𝑎/𝜔, respectively. Also, the non-dimensional version of Eq. 3.4 is given by

𝐺*
𝑒(𝜔) = 𝐺*

𝑐(𝜔) + 28𝛽𝐺*
𝑐(𝜔)

35𝐺*
𝑐(𝜔) + 16 . (3.21)

It is worth noting that the term 𝐶𝑎/𝑅𝑒 is present in practically all terms of Eq.
3.15, lighting the mechanisms acting in the present problem. In fact, the term 𝐶𝑎/𝑅𝑒

can also be described by the Ohnesorge number as 𝑂ℎ2. This non-dimensional group
represents the ratio between the viscous and surface tension forces. As the Ohnesorge
number increases, the more dominant becomes the internal viscous dissipation, conversely,
when 𝑂ℎ decreases, the input energy is converted into surface tension energy (Li, 2008).

3.6 Bulk stress tensor and stress jump

According to Batchelor (Batchelor, 1970), the bulk stress tensor is defined as

Σ𝑏 = 1
𝑉

∫︁
Ω𝑐

−𝑝𝑑𝑉 I + 1
𝑉

∫︁
Ω𝑐

𝜂𝑐(∇u + ∇u𝑇 )𝑑𝑉 + Σ𝐷 , (3.22)

where Σ𝐷 is the particle stress tensor expressed by (Oliveira, 2007)

Σ𝐷 = 1
𝑉

∫︁
𝜕Ω

[xΔf + 𝜂𝑐(𝜆− 1)(un̂ + n̂u)]𝑑Ω, (3.23)

and Δf = (ΣΩ𝑐 − ΣΩ𝑑
).n is the stress jump across the droplet surface.
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Recalling that Eq. 3.9 reduces to a surface force, the jump across the interface is
the balance between capillary and magnetic forces (Cunha et al., 2020b)

Δf = 𝜎𝜅n̂ + 1
2𝜇0𝐻

2∇𝜁(x) , (3.24)

Substituting Eq. 3.24 in Eq. 3.23

Σ𝐷 = 1
𝑉

∫︁
𝜕Ω

[︂
x
(︂
𝜎𝜅n̂ + 1

2𝜇0𝐻
2∇𝜁(x)

)︂
+ 𝜂𝑐(𝜆− 1)(un̂ + n̂u)

]︂
𝑑Ω . (3.25)

A fundamental point to evaluate Eq. 3.25 is to expand the term 𝜁(x). In this case,
we replaced it by 𝜁(𝜑) = 𝜁 + (1 − 𝜁)𝐻(𝜑), where 𝜑 is the level-set function (see Sec. 4.1),
which associates to each x, a positive Euclidean distance to the interface for points outside
the droplet, and a negative one for points inside the droplet. 𝐻 is the classical Heaviside
function, which is set to 1 ∀𝜑 ∈ Ω𝑐 and 0 otherwise.

Consequently, ∇𝜁(x) = (1 − 𝜁)𝛿(𝜑)n̂, where 𝛿 is the Dirac delta function. In this
way, it is worth noting that 𝜆 = 1 and Eq. 3.25 is evaluated over the surface, where
𝛿(𝜑 = 0), leading to the non-dimensional, scaled by 𝜎/𝑎, bulk and particle stress tensor

Σ𝑏 = − 1
𝑉

∫︁
Ω𝑐

𝑝𝑑𝑉 I + 1
𝑉

∫︁
Ω𝑐

(∇u + ∇u𝑇 )𝑑𝑉 + Σ𝐷 , (3.26)

Σ𝐷 = 1
𝑉

∫︁
𝜕Ω

[︂
x
(︂
𝜅− 𝐶𝑎𝑚𝑎𝑔

2 (𝜁 − 1)H2
)︂

n̂
]︂
𝑑Ω . (3.27)

Given the creeping flow limit, where the vorticity spreads instantly throughout
the domain, it is worth mentioning that the particle stress tensor in Eq. 3.27 applies
to non-steady regimes, as well. Accordingly, any change in the boundary conditions is
immediately felt throughout the flow (Oliveira; Cunha, 2015). If the Stokes flow condition
can be assumed in the droplet scale, then Eq. 3.27 can be utilized to compute the particle
stress in the SAOS regime.

Based on the previous paragraph, the right-hand side of Eq. 3.21, which accounts
for the viscoelastic contribution of the dispersed phase, can be compared using the in-phase
and out-of-phase components extracted from the 𝑦𝑥 component of Eq. 3.27. Similarly,
properties such as the first and second normal stress difference can be evaluated by simply
taking 𝑁1 = Σ𝐷

𝑥𝑥 − Σ𝐷
𝑦𝑦 and 𝑁2 = Σ𝐷

𝑦𝑦 − Σ𝐷
𝑧𝑧.

3.7 Droplet geometrical properties

In order to study the geometric properties of the droplet, such as 𝐷 and 𝜃, shown
in Fig. 3.1, it is necessary, assuming the ellipsoidal shape of the droplet (Yu; Bousmina,
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2003; Maffettone; Minale, 1998) to extract its semi-axes. The non-dimensional inertia
tensor, 𝐼*, is given by

I* =
∫︁

𝑉
(r2I − rr)𝑑𝑉 . (3.28)

where r is the Euclidean distance from the centroid of the droplet.

In this case, I* is also symmetric, allowing its decomposition according to its
eigenvalues and eigenvectors, which, in turn, determines the lengths of the axes of the
ellipsoid. For the case where two of the eigenvalues are equal, there is an ellipsoid of
revolution, if all are equal, the ellipsoid is a sphere. Once Eq. 3.28 is computed and its
eigenvalues, Λ1,Λ2 and Λ3, are extracted, it is possible to solve the following system, based
on the non-dimensional moments of inertia of an ellipsoid, to find the lengths, 𝐿,𝐵 and 𝐶,
of the semi-axes.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λ1 = 𝑉

5 (𝐿2 +𝐵2)

Λ2 = 𝑉
5 (𝐵2 + 𝐶2)

Λ3 = 𝑉
5 (𝐶2 + 𝐿2) .

(3.29)

Finally, since the largest eigenvalue corresponds to the minor axis of the ellipsoid,
and the smallest corresponds to the major axis, 𝜃 is found based on the dot product
between the vector (1, 0, 0) and the major semi-axis on the shear plane. Alternatively, it is
possible to use trigonometric properties to find 𝜃.
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4 Numerical methodology

4.1 Level-set

Osher and Sethian (Osher; Sethian, 1988) proposed the Level-Set method based on
the implicit description of surfaces so that the interface has a codimension one (Osher;
Fedkiw, 2003). The Level-Set function can be chosen to be any Lipschitz continuous
function, but in practice, the signed distance function provides improved properties such as
mass conservation and accuracy in geometrical parameters (Gibou; Fedkiw; Osher, 2018).
In this way, defining a signed distance function 𝑑 = 𝑚𝑖𝑛(|x − x𝜕Ω|), the Level-Set function
is, then

𝜑(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑑 for x ∈ Ω𝑑

𝑑 for x ∈ Ω𝑐

0 for x ∈ 𝜕Ω

(4.1)

Imagining an arbitrary point in Ω, the relation between 𝜑 and 𝑑 is

𝜑(x)2 = (x − x𝜕Ω)2 , (4.2)

taking the gradient and simplifying

∇𝜑(x)𝜑(x) = (x − x𝜕Ω) , (4.3)

using the following identity 𝜑(x)n̂ = x − x𝜕Ω

∇𝜑(x) = 𝜑(x)n̂
𝜑(x) = n̂ , (4.4)

|∇𝜑(x)| = 1, , (4.5)

which is one of the main properties of the Level-Set function and makes it possible to write

n̂ = ∇𝜑 , (4.6)
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𝜅 = ∇. (∇𝜑) . (4.7)

In the previous example, the Level-Set function could be written as 𝜑(x) =
√
𝑥2 + 𝑦2 − 𝑎. The same logic could be used to expand this argument to a surface in R4

with the zero contour in R3.

Since Eq. 3.15 is continuous throughout the domain, it is necessary, to avoid
discontinuities across the interface, to smooth the functions responsible for identifying each
phase, such as the Heaviside, briefly presented in Sec. 3.7, and the Dirac delta function.
Both smoothed function are given by (Gibou; Fedkiw; Osher, 2018; Dijk et al., 2013)

𝐻𝜖(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for 𝜑 < −𝜖 ,
1
2 + 𝜑

2𝜖
+ 1

2𝜋
sin

(︁
𝜋𝜑
𝜖

)︁
for − 𝜖 ≤ 𝜑 ≤ 𝜖 ,

1 for 𝜖 < 𝜑 ,

(4.8)

𝛿𝜖(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 𝑓𝑜𝑟 𝜑 < −𝜖 ,
1
2𝜖

+ 1
2𝜖

cos
(︁

𝜋𝜑
𝜖

)︁
𝑓𝑜𝑟 − 𝜖 ≤ 𝜑 ≤ 𝜖 ,

0 𝑓𝑜𝑟 𝜖 < 𝜑 ,

(4.9)

where 𝜖 is the size of the bandwidth and is defined as 𝜖 = 1.5Δ𝑥 (Δ𝑥 in this case means
that 𝜖 is proportional to the mesh size).

By using both Eqs. 4.8 and 4.9, surface and volume integral in each phase can be
calculated according to Eq. 4.11 and 4.10 (Peng et al., 1999), respectively

∫︁
Ω𝑐

𝑓(x)𝐻𝜖(𝜑(x))𝑑𝑉 ,
∫︁

Ω𝑑

𝑓(x)𝐻𝜖(−𝜑(x))𝑑𝑉 , (4.10)

∫︁
𝜕Ω
𝑓(x)𝛿𝜖(𝜑(x))|∇𝜑(x)|𝑑𝑉 , (4.11)

with aid of the 27-point stencil integral (Solomenko et al., 2017)

∫︁
Ω𝑖,𝑗,𝑘

𝑓𝑑Ω ≈ Δ𝑥Δ𝑦Δ𝑧
78

⎛⎝52𝑓𝑖,𝑗,𝑘 +
1∑︁

𝑙=−1

1∑︁
𝑚=−1

1∑︁
𝑛=−1

𝛼𝑙,𝑚,𝑛𝑓𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

⎞⎠ , (4.12)

where 𝛼𝑙,𝑚,𝑛 = 0 if 𝑙 = 𝑚 = 𝑛 = 0, and 𝛼𝑙,𝑚,𝑛 = 1 otherwise.

Since there is no transport, the evolution of 𝜑 can be described by an advection
equation

𝜕𝜑

𝜕𝑡
+ u · ∇𝜑 = 0 , (4.13)

but as the interface moves, the level-set function does not retain its original properties
and progressively deviates from the actual signed distance function and its properties,
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periodically requiring a reinitialized to keep 𝜑 equal to the signed distance. Many models
are described in the literature to solve properly and with accuracy, such as Crossing Times
(Osher, 1993), Fast Marching Method (Tsitsiklis, 1995; Tsitsiklis, 1994), Fast Sweeping
Method (Wong; Leung, 2016), using Hopf-Lax formula (Darbon; Osher, 2016; Royston et
al., 2018) or High-order Constrained Reinitialization (Hartmann; Meinke; Schröder, 2010).
In this work, we use a method described by Peng et al. (1999) with a mass correction
algorithm reported by Sussman and Fatemi (1999).

This methodology consists of creating a narrow band around the interface to
summarize the calculations only in that location. The first region consists of all points
where |𝜑(x)| < 𝛾, being 𝛾 the size of the narrow band. Since the zero contour moves less than
one grid point, the second region is composed of the points where |𝜑(x + y)| < 𝛾; |𝑦| < Δ𝑥,
i.e., the borderlines of the tubes. Figure 4.1A shows the narrow band while Fig. 4.1B the
droplet position. Note that all red region has |𝜑| < 𝛾 and the border has a different color.
This separation is purposeful once 𝜑 is updated over time only in the red region. After the
creation of the narrow band, the new Level-Set function becomes

𝜑𝑛𝑒𝑤 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝛾 𝑖𝑓 𝜑 < 𝛾 ,

𝜑 𝑖𝑓 |𝜑| ≤ 𝛾 ,

𝛾 𝑖𝑓 𝜑 > 𝛾 .

(4.14)

A

B

Figure 4.1 – Narrow band and droplet position from a real simulation. Figure A shows
the region where the tubes are placed and Fig. B the position of the droplet.

That way, instead of calculating the update of 𝜑 across the entire domain, the
solution is focused where it is needed, saving time and making possible costly simulations.
Additionally, the Eq. 4.13 is smoothed by a cut-off function to prevent numerical oscillations
at the tube boundary, as shown
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𝜕𝜑

𝜕𝑡
+ 𝑐(𝜑)u · ∇𝜑 = 0 , (4.15)

𝑐(𝜑) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 𝑖𝑓 |𝜑| ≤ 𝛽 ,

(|𝜑| − 𝛾)2(2|𝛾| + 𝛾 − 3𝛽)/(𝛾 − 𝛽)3 𝑖𝑓 |𝛽| < |𝜑| ≤ 𝛾 ,

0 𝑖𝑓 |𝜑| > 𝛽 ,

(4.16)

for 𝛾 = 6Δ𝑥 and 𝛽 = 3Δ𝑥.

When necessary, the routine of the program can be interrupted so that the distor-
tions originated from Eq. 4.15 are corrected. Therefore, Eq. 4.17 is solved, considering the
borderlines of Fig. 4.1, until it reaches a steady state

𝜕𝜑

𝜕 𝜏
+ 𝑆(𝜑0)(|∇𝜑| − 1) = 0 , (4.17)

where 𝜏 is the virtual time and the subscript 0 denotes the initial Level-Set fuction and
𝑆(𝜑0) is given by

𝑆(𝜑) = 𝜑√︁
𝜑2 + |∇𝜑|2(Δ𝑥)2

. (4.18)

After solving Eq. 4.17, a correction factor, given by Eq. 4.19, is applied to each
grid point 𝑖, 𝑗, 𝑘 to minimize any mass conservation problem and then updates 𝜑.

𝜆𝑖,𝑗,𝑘 = −
∫︀

Ω𝑖,𝑗,𝑘
𝛿𝜖(𝜑)

(︁
𝜑𝑛+1−𝜑𝑛

Δ𝑡

)︁
𝑑𝑉∫︀

Ω𝑖,𝑗,𝑘
𝛿2

𝜖 (𝜑)|∇𝜑|𝑑𝑉
. (4.19)

In summary, first Eqs. 4.15 and 4.17, in this order, are solved using a third-order
TVD Runge-Kutta (Shu; Osher, 1988; Shu; Osher, 1989) with aid of a fifth-order WENO
(Liu; Osher; Chan, 1994; Jiang; Shu, 1996; Jiang; Peng, 2000) to compute 𝜑𝑛 and 𝜑𝑛+1,
respectively. The decision to use a TVD-RK algorithm is due to the ability to solve
conservation laws without introducing oscillations near discontinuities (Olsson; Kreiss;
Zahedi, 2007). Then, Eq. 4.19 is used to compute 𝜆𝑖,𝑗,𝑘 for each grid point and finally the
Level-Set function is corrected using 𝜑𝑛+1 + Δ𝜏𝜆𝛿𝜖(𝜑)|∇𝜑|.

(4.20)

4.2 Projection Method

Based on the Helmholtz-Hodge Decomposition (HHD), Chorin and Téman (Chorin,
1968; Témam, 1969a; Témam, 1969b) reported a non-incremental pressure-correction
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scheme using a first-order time stepping and finite-difference method. The first step is
to approximate the velocity ignoring the irrotational term in the Navier-Stokes equation,
followed by the Poisson equation.

Using a second-order semi-backward difference formula (SBDF2) described by
Badalassi et al. (Badalassi; Ceniceros; Banerjee, 2003) and substituting the position-
dependent variables by the Level-Set function, the projection method of Eq. 3.15 is

1
2Δ𝑡

(︁
3u* − 4u𝑛 + u𝑛−1

)︁
− 𝐶𝑎

𝑅𝑒
∇2u* = G(û) + F𝐶(𝜑) + F𝑀(𝜑, �̂�) , (4.21)

u𝑛+1 = u* − 2𝐶𝑎Δ𝑡
3𝑅𝑒 ∇(𝑞𝑛+1) , (4.22)

∇2𝑞𝑛+1 = 3𝑅𝑒
2𝐶𝑎Δ𝑡∇ · u*, (4.23)

𝑝𝑛+1 = 𝑞𝑛+1 − ∇ · u*, (4.24)

where G, F𝑐 and F𝑚𝑎𝑔 are, respectively, the viscous and convective terms, capillary force
and magnetic force.

G(û) = −û · ∇û − 𝐶𝑎

𝑅𝑒
∇2û + 𝐶𝑎

𝑅𝑒
∇ · [(∇û + ∇û𝑇 )] , (4.25)

F𝑐(𝜑) = −𝐶𝑎

𝑅𝑒
𝜅(𝜑)𝛿𝜖(𝜑)|∇𝜑|n̂, (4.26)

F𝑚𝑎𝑔(𝜑, Ĥ) = 𝐶𝑎𝐶𝑎𝑚𝑎𝑔

𝑅𝑒
[(𝜁(𝜑) − 1)Ĥ.∇Ĥ]. (4.27)

The semi-implicit method used here works quite well for diffusion-dominated
equations. It consists of summing and subtracting the term 𝐶𝑎

𝑅𝑒
∇2u, treating implicitly

one and explicitly the other. As shown in Sec. 3.7, 𝜁(𝜑) is smoothed in the form 𝜁(𝜑) =
𝜁 + (1 − 𝜁)𝐻𝜖(𝜑). Finally, the hat symbol^corresponds to a second order extrapolation in
the form û = 2u2 − u𝑛−1. As a side note, even though Eq. 4.26 is similar to the equivalent
term in Eq. 3.15, there is no direct correspondence between 𝛿(𝑚𝑖𝑛(|x| − x𝜕Ω)) and 𝛿(𝜑).
This relation can be proven noting that (Osher; Fedkiw, 2003)
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𝛿(𝑑) = ∇𝐻(𝜑(𝑑)) · n̂ , (4.28)

where ∇𝐻(𝜑(𝑑)) = 𝛿(𝜑)∇𝜑, resulting in

𝛿(𝑑) = 𝛿(𝜑)∇𝜑 · ∇𝜑
|∇𝜑|

= 𝛿(𝜑)|∇𝜑| . (4.29)

4.3 Discretization and boundary conditions

As long as the proposed problem aims to achieve a second-order scheme, using a
colocated grid is not an option due to the difficulty with pressure-velocity coupling when
a central difference is used. One way of correcting this problem for simple geometries is to
calculate velocity and pressure at different points using a staggered mesh (Ferziger; Perić,
1999; Anderson, 1995; McKee et al., 2008).

x

yz

x(i,j,k)

u(i,j,k)
Hx(i,j,k)

v(i,j,k)
Hy(i,j,k)

w(i,j,k)
Hw(i,j,k)

f (i,j,k)

Figure 4.2 – Three-dimensional unit cell of a staggered grid with the distribution of vectors
and scalar functions.

Figure 4.2 shows a standard unit of the mesh with the respective positions of the
parameters. The vectors u and H are distributed according to their components, and
scalar quantities are, symbolically represented by 𝑓(𝑖, 𝑗, 𝑘), located in the center of the cell.
With the variable centered at cell faces normal to their directions, both pressure gradient
or divergence of velocity can now be calculated avoiding the checkerboard problem.

Based on this scheme, equations described in Sec. 4.2 are now discretized using
centered second-order finite differences, except for the advective term, u · ∇u, which
uses a second-order essentially non-oscillatory (ENO) scheme with upwinding (Osher;
Fedkiw, 2003). The discretization process of Eqs. 4.21, 4.24 and 3.10 leads, for example, to
following systems for the velocity, pressure and the magnetic potential in the 𝑥-direction,
respectively
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𝑎𝑖,𝑗,𝑘𝑢
*
𝑖−1,𝑗,𝑘+𝑏𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗−1,𝑘+𝑐𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗,𝑘−1+𝑑𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗,𝑘+𝑒𝑖,𝑗,𝑘𝑢

*
𝑖+1,𝑗,𝑘+𝑓𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗+1,𝑘+𝑔𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗,𝑘+1 = ℎ𝑖,𝑗,𝑘 ,

(4.30)
for

𝑎𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑥2 ,

𝑏𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑦2 ,

𝑐𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑧2 ,

𝑑𝑖,𝑗,𝑘 = 3
2 + 2𝐶𝑎Δ𝑡

𝑅𝑒Δ𝑥2 + 2𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑦2 + 2𝐶𝑎Δ𝑡

𝑅𝑒Δ𝑧2 ,

𝑒𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑥2 ,

𝑓𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑦2 ,

𝑔𝑖,𝑗,𝑘 = − 𝐶𝑎Δ𝑡
𝑅𝑒Δ𝑧2 ,

ℎ𝑖,𝑗,𝑘 = 2𝑢𝑛
𝑖,𝑗,𝑘 −

𝑢𝑛−1
𝑖,𝑗,𝑘

2 + Δ𝑡[F𝑣(�̂�, 𝜑) + F𝑐(𝜑) + F𝑚𝑎𝑔(𝜑,𝐻𝑥)] ,

(4.31)

𝑎𝑖,𝑗,𝑘𝑞𝑖−1,𝑗,𝑘+𝑏𝑖,𝑗,𝑘𝑞𝑖,𝑗−1,𝑘+𝑐𝑖,𝑗,𝑘𝑞𝑖,𝑗,𝑘−1+𝑑𝑖,𝑗,𝑘𝑞𝑖,𝑗,𝑘+𝑒𝑖,𝑗,𝑘𝑞𝑖+1,𝑗,𝑘+𝑓𝑖,𝑗,𝑘𝑞𝑖,𝑗+1,𝑘+𝑔𝑖,𝑗,𝑘𝑞𝑖,𝑗,𝑘+1 = ℎ𝑖,𝑗,𝑘 ,

(4.32)

𝑎𝑖,𝑗,𝑘 = 1
Δ𝑥2 ,

𝑏𝑖,𝑗,𝑘 = 1
Δ𝑦2 ,

𝑐𝑖,𝑗,𝑘 = 1
Δ𝑧2 ,

𝑑𝑖,𝑗,𝑘 = − 2
Δ𝑥2 − 2

Δ𝑦2 − 2
Δ𝑧2 ,

𝑒𝑖,𝑗,𝑘 = 1
Δ𝑥2 ,

𝑓𝑖,𝑗,𝑘 = 1
Δ𝑦2 ,

𝑔𝑖,𝑗,𝑘 = 1
Δ𝑧2 ,

ℎ𝑖,𝑗,𝑘 = 3𝑅𝑒
2𝐶𝑎Δ𝑡

(︃
𝑢*

𝑖,𝑗,𝑘 − 𝑢*
𝑖−1,𝑗,𝑘

Δ𝑥 +
𝑣*

𝑖,𝑗,𝑘 − 𝑣*
𝑖,𝑗−1,𝑘

Δ𝑦 +
𝑤*

𝑖,𝑗,𝑘 − 𝑤*
𝑖,𝑗,𝑘−1

Δ𝑧

)︃
,

(4.33)

𝑎𝑖,𝑗,𝑘𝜓𝑖−1,𝑗,𝑘+𝑏𝑖,𝑗,𝑘𝜓𝑖,𝑗−1,𝑘+𝑐𝑖,𝑗,𝑘𝜓𝑖,𝑗,𝑘−1+𝑑𝑖,𝑗,𝑘𝜓𝑖,𝑗,𝑘+𝑒𝑖,𝑗,𝑘𝜓𝑖+1,𝑗,𝑘+𝑓𝑖,𝑗,𝑘𝜓𝑖,𝑗+1,𝑘+𝑔𝑖,𝑗,𝑘𝜓𝑖,𝑗,𝑘+1 = ℎ𝑖,𝑗,𝑘 ,

(4.34)
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where

𝑎𝑖,𝑗,𝑘 = 𝜁𝑖−1/2,𝑗,𝑘

Δ𝑥2 ,

𝑏𝑖,𝑗,𝑘 = 𝜁𝑖,𝑗−1/2,𝑘

Δ𝑦2 ,

𝑐𝑖,𝑗,𝑘 = 𝜁𝑖,𝑗,𝑘−1/2

Δ𝑧2 ,

𝑑𝑖,𝑗,𝑘 = −
(︃
𝜁𝑖−1/2,𝑗,𝑘 + 𝜁𝑖+1/2,𝑗,𝑘

Δ𝑥2 + 𝜁𝑖,𝑗−1/2,𝑘 + 𝜁𝑖,𝑗+1/2,𝑘

Δ𝑦2 + 𝜁𝑖,𝑗,𝑘−1/2 + 𝜁𝑖,𝑗,𝑘+1/2

Δ𝑧2

)︃
,

𝑒𝑖,𝑗,𝑘 = 𝜁𝑖+1/2,𝑗,𝑘

Δ𝑥2 ,

𝑓𝑖,𝑗,𝑘 = 𝜁𝑖,𝑗+1/2,𝑘

Δ𝑦2 ,

𝑔𝑖,𝑗,𝑘 = 𝜁𝑖,𝑗,𝑘+1/2

Δ𝑧2 .

ℎ𝑖,𝑗,𝑘 = 0

(4.35)

Finally, the velocity and pressure are updated according to Eqs. 4.22 and 4.24

𝑢𝑛+1
𝑖,𝑗,𝑘+ = 𝑢*

𝑖,𝑗,𝑘 − 2𝐶𝑎Δ𝑡
3𝑅𝑒

𝑞𝑛+1
𝑖+1,𝑗,𝑘 − 𝑞𝑛+1

𝑖,𝑗,𝑘

Δ𝑥 , (4.36)

𝑝𝑛+1 = 𝑞𝑛+1
𝑖,𝑗,𝑘 −

(︃
𝑢*

𝑖,𝑗,𝑘 − 𝑢*
𝑖−1,𝑗,𝑘

𝑑𝑥
+
𝑣*

𝑖,𝑗,𝑘 − 𝑣*
𝑖,𝑗−1,𝑘

𝑑𝑦
+
𝑤*

𝑖,𝑗,𝑘 − 𝑤*
𝑖,𝑗,𝑘−1

𝑑𝑧

)︃
, (4.37)

and the unit normal vector and curvature are given by

𝑛𝑥(𝜑𝑖,𝑗,𝑘) =
𝜑𝑖+1,𝑗,𝑘−𝜑𝑖−1,𝑗,𝑘

2Δ𝑥√︃(︂
𝜑𝑖+1,𝑗,𝑘−𝜑𝑖−1,𝑗,𝑘

2Δ𝑥

)︂2
+
(︂

𝜑𝑖,𝑗+1,𝑘−𝜑𝑖,𝑗+1,𝑘

2Δ𝑦

)︂2
+
(︂

𝜑𝑖,𝑗,𝑘+1−𝜑𝑖,𝑗,𝑘+1
2Δ𝑧

)︂2 (4.38)

𝜅(𝜑) = 𝑛𝑥(𝜑𝑖+1,𝑗,𝑘) − 𝑛𝑥(𝜑𝑖−1,𝑗,𝑘)
2Δ𝑥 + 𝑛𝑦(𝜑𝑖,𝑗+1,𝑘) − 𝑛𝑦(𝜑𝑖,𝑗−1,𝑘)

2Δ𝑦 + 𝑛𝑧(𝜑𝑖,𝑗,𝑘+1) − 𝑛𝑧(𝜑𝑖,𝑗,𝑘−1)
2Δ𝑧 ,

(4.39)

4.4 Boundary conditions

Concerning the boundary conditions, Fig. 4.3 shows, schematically, a macro view
of all these imposed constraints. The planes normal to 𝑦 are composed of a Dirichlet
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boundary condition for velocity, which is given by Eq. 3.19 and Neumann boundary
condition for pressure and magnetic field, given by ∇𝑝 = 0 and ∇𝜓 = H0. Furthermore,
impenetrability and no-slip constraints are present, as well. Eq. 4.40 summarizes all these
imposed conditions for both u and u*.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u* · n|𝜕Ω = u𝑛+1 · n|𝜕Ω ,

t · u*|𝜕Ω = t ·
(︁
u𝑛+1 + 2𝐶𝑎Δ𝑡

3𝑅𝑒
∇(2𝑞𝑛 − 𝑞𝑛−1)

)︁
,

u𝑛+1 · n|𝜕Ω = 0 .

(4.40)

where t represents the tangential vector to the plane.

Lx
Ly

Lz

H0

Periodic
boundary

Periodic
boundary

u
v=w=0
∇p=0
∇y= H0

-u
v=w=0
∇p=0
∇y= H0

Figure 4.3 – Boundary conditions.

For planes normal to 𝑥 and 𝑧 there are periodic boundary conditions, which means
that the respective edges are connected. In this case, for example, for elements whose
derivatives are made using a second-order ENO, it is necessary to expand the mesh beyond
the domain contours, as shown

𝑢0,𝑗,𝑘 = 𝑢𝑛𝑥,𝑗,𝑘 ,

𝑢𝑖−1,𝑗,𝑘 = 𝑢𝑛𝑥−1,𝑗,𝑘 ,

𝑢𝑖−2,𝑗,𝑘 = 𝑢𝑛𝑥−2,𝑗,𝑘 ,

𝑢𝑛𝑥+1,𝑗,𝑘 = 𝑢1,𝑗,𝑘 ,

𝑢𝑛𝑥+2,𝑗,𝑘 = 𝑢2,𝑗,𝑘 ,

(4.41)

where 𝑛𝑥 is the number of nodes (including zero). For a variable that makes use of
fifth-order WENO, for example
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𝜑0,𝑗,𝑘 = 𝜑𝑛𝑥,𝑗,𝑘 ,

𝜑𝑖−1,𝑗,𝑘 = 𝜑𝑛𝑥−1,𝑗,𝑘 ,

𝜑𝑖−2,𝑗,𝑘 = 𝜑𝑛𝑥−2,𝑗,𝑘 ,

𝜑𝑖−3,𝑗,𝑘 = 𝜑𝑛𝑥−3,𝑗,𝑘 ,

𝜑𝑛𝑥+1,𝑗,𝑘 = 𝜑1,𝑗,𝑘 ,

𝜑𝑛𝑥+2,𝑗,𝑘 = 𝜑2,𝑗,𝑘 ,

𝜑𝑛𝑥+3,𝑗,𝑘 = 𝜑3,𝑗,𝑘 ,

(4.42)

For all other cases, such as 𝑞

𝑞0,𝑗,𝑘 = 𝑞𝑛𝑥,𝑗,𝑘 ,

𝑞𝑛𝑥+1,𝑗,𝑘 = 𝑞1,𝑗,𝑘 ,
(4.43)

x

y

x

z

y

z

DomainMesh

A B C

Figure 4.4 – Example of the distribution of variables and ghosts in the 𝑥𝑦 (A), 𝑥𝑧 (B) and
𝑦𝑧 (C) planes of the staggered mesh.

Figure 4.4 shows an exemplified distribution of the vectors and scalar fields in each
plane, where Fig. 4.4A shows the 𝑥𝑦 plane, Fig. 4.4B the 𝑥𝑧 plane and Fig. 4.4C the 𝑦𝑧
plane.

Focusing on the 𝑥𝑦 plane, as shown in Fig. 4.4A, it is possible to see empty symbols
outside the boundary denoting a ghost node, which is essential to compute the centered
derivatives and solve the linear systems. All other planes in Fig. 4.4 present the same
layout with their respective variables. In this case, to impose the boundary conditions
on the wall we use a simple arithmetic mean between the point inside and the ghost, for
example

𝑢𝑔ℎ𝑜𝑠𝑡 + 𝑢𝑖𝑛𝑠𝑖𝑑𝑒

2 = 𝑢𝑤𝑎𝑙𝑙 → 𝑢𝑔ℎ𝑜𝑠𝑡 = 2𝑢𝑤𝑎𝑙𝑙 − 𝑢𝑖𝑛𝑠𝑖𝑑𝑒 . (4.44)
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Applying for 𝑢* on the upper wall, Eq. 4.30 becomes

𝑎𝑖,𝑗,𝑘𝑢
*
𝑖−1,𝑗,𝑘 + 𝑏𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗−1,𝑘 + 𝑐𝑖,𝑗,𝑘𝑢

*
𝑖,𝑗,𝑘−1 + (𝑑𝑖,𝑗,𝑘 − 𝑓𝑖,𝑗,𝑘)𝑢*

𝑖,𝑗,𝑘+

𝑒𝑖,𝑗,𝑘𝑢
*
𝑖+1,𝑗,𝑘 + 𝑓𝑖,𝑗,𝑘(2𝑢*

𝑤𝑎𝑙𝑙) + 𝑔𝑖,𝑗,𝑘𝑢
*
𝑖,𝑗,𝑘+1 = ℎ𝑖,𝑗,𝑘 .

(4.45)

Since we know 𝑢*
𝑤𝑎𝑙𝑙 (Eq. 4.40), it is possible to impose the boundary conditions

that will enable the solution of the linear system. A similar situation happens for pressure
and magnetic field.

4.5 Numerical solvers

In this work, there are two types of linear systems to be solved: the first follows
the pattern of the Poisson equation, as in Eq. 4.23, which results in the linear system
arranged in Eq. 4.32. Similarly, the linear system of Eq. 4.30 shares the same properties.
One of the biggest problems is that this operation takes most of the time in the projection
method. In order to alleviate this problem, a method called Fast Poisson Solver (FPS) was
developed. This technique combines fast Fourier transforms (FFT) and Gauss elimination,
resulting in a tridiagonal system of equations, which can be readily solver using a TDMA
algorithm (Thomas algorithm) (Dodd; Ferrante, 2014).

The second type of linear system to be solved is the one in Eq. 4.34, for the
magnetic potential. In this specific case, 𝜁 is not constant over the domain, making the
use of the FPS algorithm unfeasible. However, it is possible to use another efficient solver
that uses the conjugate gradient algorithm with multigrid preconditioning (McAdams;
Sifakis; Teran, 2010).

Once we set Δ𝑥 = Δ𝑦 = Δ𝑧 the coefficients of the linear system are constant.
Thus, both Eqs. 4.30 and 4.32 can be simplified to

𝑎(𝑞𝑖−1,𝑗,𝑘 + 𝑞𝑖+1,𝑗,𝑘) + 𝑏(𝑞𝑖,𝑗−1,𝑘 + 𝑞𝑖,𝑗+1,𝑘) + 𝑐(𝑞𝑖,𝑗,𝑘−1 + 𝑞𝑖,𝑗,𝑘+1) + 𝑑𝑞𝑖,𝑗,𝑘 = ℎ𝑖,𝑗,𝑘 . (4.46)

The suitable Fourier transform for periodic boundaries in 𝑥 and 𝑧 is given by (Press
et al., 1992)

𝑞𝑖,𝑗,𝑘 = 1
𝑃𝐿

𝑃 −1∑︁
𝑚=0

𝐿−1∑︁
𝑛=0

^̂𝑞𝑚,𝑗,𝑛𝑒
−2𝜋𝑖𝑖𝑚/𝑝𝑒−2𝜋𝑖𝑘𝑛/𝐿 , (4.47)

ℎ𝑖,𝑗,𝑘 = 1
𝑃𝐿

𝑃 −1∑︁
𝑚=0

𝐿−1∑︁
𝑛=0

^̂
ℎ𝑚,𝑗,𝑛𝑒

−2𝜋𝑖𝑖𝑚/𝑝𝑒−2𝜋𝑖𝑘𝑛/𝐿 , (4.48)

where 𝑃 and 𝐿 are the last periodic nodes in the 𝑥 and 𝑦 direction, respectively.
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Substituting Eqs. 4.47 and 4.48 in Eq. 4.46 and simplifying, it is possible to achieve
the following tridiagonal systems of equations

𝑏^̂𝑞𝑚,𝑗−1,𝑛 +
[︂
2𝑎 cos

(︂2𝜋𝑚
𝑃

)︂
+ 2𝑐 cos

(︂2𝜋𝑛
𝐿

)︂
+ 𝑑

]︂
^̂𝑞𝑚,𝑗,𝑛 + 𝑏^̂𝑞𝑚,𝑗+1,𝑛 = ^̂

ℎ𝑚,𝑗,𝑛 , (4.49)

which can be solved using the TDMA algorithm. To recover the solution in the time
domain, it is necessary to apply the inverse FFT.

The second method employs a multigrid cycle, denominated as V-Cycle, as a
preconditioner for the conjugate gradient method. One of the biggest advantages of this
method is that using a V-Cycle algorithm enables a purely geometric scheme, ensuring
robustness and speed.

The V-Cycle algorithm is based on the fact that if the residual is smooth in a
coarse grid, it is possible to extend the solution to a finer grid, in order to achieve the
final solution. In this sense, while the solution is not reached, several interpolation and
smoothing operations are performed on the different meshes, from the finest to the coarsest.
The solution is then calculated on the coarsest grid and the process is reversed to the
finest mesh carrying the solution. Finally, this solution is used as a preconditioner for
the conjugate gradient method. The entire method and the detailed algorithms are well
described by McAdams, Sifakis and Teran (2010) and Abicalil (2021).
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5 Results and discussions

5.1 Dilute magnetic emulsion under simple shear flow

The present results shown in this section are part of the preliminary step discussed
in Ch. 2. The intention here is to show that the proposed methodology is valid and
congruent with the literature in simple shear. The mathematical and numerical model
was generated using the shear characteristic time, 1/�̇� (see Appendix A), and a similar
methodology as in the SAOS presented in this thesis. The related results and parameters
were published in co-authorship in Physics of Fluids 2021 (Abicalil et al., 2021).

In all following cases discussed here, we employ a domain size of 10 × 10 × 7.5
and a corresponding mesh discretization of 128 × 128 × 96 cells. The parameters 𝜆 = 1,
𝑅𝑒 = 0.01 and 𝜁 = 2 are likewise fixed. This domain size is associated with a volume
fraction 𝛽 around 0.56%, which describes a diluted emulsion with negligible magnetic and
hydrodynamic interaction between the droplets. To confirm the absence of confinement and
mesh refinement effects, tests were conducted in a scenario of large droplet deformation
(𝐶𝑎 = 0.15, 𝐶𝑎𝑚𝑎𝑔 = 12). We discovered that differences in droplet deformation, droplet
inclination angle, and reduced viscosity were all smaller than 3% when comparing the
findings obtained with our conventional mesh to those obtained with a more refined mesh
of 192 × 192 × 144 cells. In addition, given the aforementioned parameters, comparisons
with a domain size of 15 × 15 × 11.25, with the same mesh density, produced differences
lower than 1%. As long as Δ𝑡 is small enough to ensure stability, this parameter has
little influence on steady-state results. It is important to note that the analyzed case here
coincides with one of the highest droplet deformations. As a result, we are sure that mesh
refinement and confinement effects have no impact on the data provided here.

The droplet deformation and inclination angle are shown in Fig. 5.1 as a function
of the magnetic capillary number, for different magnetic field directions and capillary
numbers. In close accordance with our findings, data from Ishida and Matsunaga (2020)
are shown alongside our results. The agreement indicates that both strategies are properly
capturing the magnetic and hydrodynamic components of the problem given that the two
studies employ distinct numerical approaches.

The magnetic forces at the interface stretch the droplet in the respective direction

36



0 5 10 15 20 25
Camag

0.0

0.2

0.4

0.6

0.8

D

(a)

0 5 10 15 20 25
Camag

0

10

20

30

40

(b)

0 5 10 15 20 25
Camag

0.0

0.2

0.4

0.6

0.8

D

(c)

0 5 10 15 20 25
Camag

0

20

40

60

80

(d)

0 5 10 15 20 25
Camag

0.0

0.2

0.4

0.6

0.8

D

(e)

0 5 10 15 20 25
Camag

0

10

20

30

40

(f)

Figure 5.1 – Droplet deformation, 𝐷, and inclination angle, 𝜃, as a function of 𝐶𝑎𝑚𝑎𝑔, for
different values of 𝐶𝑎. Figures (a) and (b): external magnetic field in the 𝑥
direction; (c) and (d): 𝑦 direction; (e) and (f): 𝑧 direction. Black markers
represent the results from the present study and the blue markers represent the
results of Ishida and Matsunaga(Ishida; Matsunaga, 2020). Circles correspond
to 𝐶𝑎 = 0.05, squares to 𝐶𝑎 = 0.10, triangles to 𝐶𝑎 = 0.15, and right-pointing
triangle to 𝐶𝑎 = 0.20.

of the external magnetic field, allowing active control of the droplet inclination and
deformation. The droplet deformation and inclination under an external magnetic field
in the 𝑥-direction are shown in Figs. 5.1a and 5.1b, respectively. One can see that the
droplet deformation changes dramatically over the range of magnetic capillary numbers
up to modest magnetic field strengths (𝐶𝑎𝑚𝑎𝑔 ≈ 10). The curves for various values of 𝐶𝑎
begin to converge when the values of 𝐶𝑎𝑚𝑎𝑔 rise above this point, demonstrating that the
magnetic stresses have a major influence on the droplet form. One can notice that with the
droplet inclination, increasing values of 𝐶𝑎𝑚𝑎𝑔 cause the droplet to align with the applied
magnetic field. The inclination angle also exhibits non-monotonic behavior. Higher values
of 𝐶𝑎 result in lesser inclination angles in the absence of magnetic fields (𝐶𝑎𝑚𝑎𝑔 = 0),
but 𝐶𝑎𝑚𝑎𝑔 ≥ 4 exhibits the reverse tendency. There is a transition area, represented by
intermediate values of 𝐶𝑎𝑚𝑎𝑔, where such patterns are less distinct. Smaller values of 𝐶𝑎
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allow for greater dominance of the magnetic field, which accounts for the steeper slope of
𝜃. Also, as suggested by Cunha et al. (2020b), at high values of 𝐶𝑎𝑚𝑎𝑔, the stronger shear
effects, characteristic of larger values of 𝐶𝑎, are more likely to align the droplet at angles
closer to those with no external fields.

Shear-induced effects, however, are still important throughout the whole range
of the external magnetic field (𝐶𝑎𝑚𝑎𝑔) when applied in the 𝑦-direction. Figures 5.1c
and 5.1d illustrate this phenomenon showing how the droplet deformation and inclination
change considerably with 𝐶𝑎. The primary cause of this behavior is that the droplet is
subjected to larger effective shears as it deforms in the direction of the magnetic field,
preventing the dominance of the magnetic effects. Shear-induced and magnetic-induced
elongations are additive in droplet deformation. As a result, it increases with both 𝐶𝑎

and 𝐶𝑎𝑚𝑎𝑔, up until the point of breakup (Cunha et al., 2020b). The inclination angle, 𝜃,
decreases with 𝐶𝑎 and increases with 𝐶𝑎𝑚𝑎𝑔. This behavior results from a balance between
the magnetic forces that try to align the droplet with the external magnetic field and the
shear stresses that attempt to rotate the droplet with the vorticity. It is interesting to
observe that subsequent increases in 𝐶𝑎𝑚𝑎𝑔 only have a little impact on the inclination
angle for 𝐶𝑎𝑚𝑎𝑔 > 6. In fact, with 𝐶𝑎 ≥ 0.15, raising 𝐶𝑎𝑚𝑎𝑔 over 6 may even cause a slight
decrease in inclination angle. This phenomenon results from the droplet being stretched
along the velocity gradient direction, which causes it to experience a greater effective shear.
This increase in effective shear also leads to an earlier onset of droplet breakup, resulting
in breakups for the (𝐶𝑎,𝐶𝑎𝑚𝑎𝑔) pairs (0.15, 16) and (0.2, 8).

As previously stated by Ishida and Matsunaga (2020), the strength of the external
magnetic field has only a small impact on the droplet deformation and inclination angle
for external magnetic fields in the 𝑧-direction, as seen in Figs. 5.1e and 5.1f. The mass
conservation results in a decrease in the droplet cross-section in the shear plane as the
magnetic effects stretch the droplet in the 𝑧-direction. As a result, the droplet is subject
to a lower effective shear and greater interfacial forces due to the increased curvature of
the interface. Due to the reduced droplet deformations and inclination angles that are
closer to 45∘, higher values of 𝐶𝑎𝑚𝑎𝑔 have comparable effects to lowering values of 𝐶𝑎.
The findings for 𝜃, when 𝐶𝑎𝑚𝑎𝑔 > 5 for 𝐶𝑎 = 0.20, and when 𝐶𝑎𝑚𝑎𝑔 > 2 for 𝐶𝑎 = 0.15,
are quite different from those of Ishida and Matsunaga (2020). The findings from Ishida
and Matsunaga (2020) have an apparent discontinuity, which is not present in our results.
Indeed, these discontinuities can be seen at the point where 𝐶𝑎𝑚𝑎𝑔 is strong enough to
align the ellipsoid major semi-axis in the 𝑧-direction, no longer in the shear plane.

In contrast to magnetic fields in the other two directions, magnetic fields in the
𝑧-direction can cause a droplet deformation normal to the shear plane, which can result
in unique droplet morphologies. The droplet exhibits a prolate geometry comparable to
a non-magnetic droplet if the shear-induced deformations are more apparent than the
magnetic-induced ones, as for 𝐶𝑎 = 0.3 and 𝐶𝑎𝑚𝑎𝑔 = 1, for instance. As previously noted
by Ishida and Matsunaga (2020), the droplet once again exhibits a prolate shape if the
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magnetic-induced deformations are more significant than the shear-induced ones, such as
for 𝐶𝑎 = 0.1 and 𝐶𝑎𝑚𝑎𝑔 = 12, for example. Nevertheless, when both deforming processes
are equally strong, as they are when 𝐶𝑎 = 0.6 and 𝐶𝑎𝑚𝑎𝑔 = 16, the droplet is stretched in
two orthogonal directions and distorted into an odd disc-like shape, as illustrated in Fig.
5.2. For the creation of micromaterials with flexible oblate forms, such phenomena may be
of great importance (Zhang et al., 2019b).

Figure 5.2 – Three-dimensional view of a ferrofluid droplet subjected to an external mag-
netic field parallel to the main vorticity direction, with slices crossing the
droplet center projected to the domain boundaries. 𝐶𝑎 = 0.6, 𝐶𝑎𝑚𝑎𝑔 = 16.

We also study the influence of the dispersed phase on the emulsion viscosity, defined
as a reduced viscosity and given by

[𝜂] =
Σ𝐷

𝑦𝑥

𝛽
, (5.1)

where Σ𝐷
𝑦𝑥 is the shear-stress component of the particle stress, given by Eq. 3.25 and scaled

by 𝜂�̇� (See Appendix A), resulting in

Σ𝐷 = 1
𝐿𝑥𝐿𝑦𝐿𝑧

∫︁
Ω

[︂(︂
𝜅

𝐶𝑎
− 𝐶𝑎𝑚𝑎𝑔

2𝐶𝑎 (𝜁 − 1)𝐻2
)︂

xn̂
]︂
𝑑Ω , (5.2)

The reduced viscosity is shown in Fig. 5.3 as a function of 𝐶𝑎𝑚𝑎𝑔 for each of the
three external magnetic field directions for 𝐶𝑎 = 0.2. We confirm a strong agreement
between our findings and those of Ishida and Matsunaga (2020), which further supports
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Figure 5.3 – Reduced viscosity [𝜂] as a function of 𝐶𝑎𝑚𝑎𝑔, for 𝐶𝑎 = 0.2 and external
magnetic fields applied in the 𝑥 (circles), 𝑦 (squares), and 𝑧 (triangles)
directions. Black markers represent the results from the present study and
blue markers represent the results of Ishida and Matsunaga (2020).

the validity of both approaches for both the droplet geometry and emulsion rheology.
There are distinct reduced viscosity behaviors for each direction of the external magnetic
field. Stronger magnetic fields cause the reduced viscosity to dramatically increase when
the field is oriented in the 𝑦-direction. By interacting with areas of higher velocity flow
and exhibiting a larger cross-sectional area relative to the flow direction, the droplet
assumes a shape that imposes additional resistance to the flow as it is deformed along the
magnetic field direction. The behavior of external magnetic fields in the 𝑥-direction is the
opposite. The droplet assumes a structure that provides less resistance to the flow in this
situation as it is deformed along the magnetic field direction. When external magnetic
fields are applied in the 𝑧-direction, the decreased viscosity of the emulsion is only slightly
influenced by variations in magnetic field intensities, with larger values of 𝐶𝑎𝑚𝑎𝑔 causing a
modest reduction in reduced viscosity. As with the shear-thinning behavior of non-magnetic
emulsions, this phenomenon is most likely caused by a reduction in the cross-sectional
area of the droplet in the shear plane, though some of this effect is likely offset by the
stronger capillary forces and their restorative effects on the shape of the droplet.

5.2 Droplet breakup

Droplet breakup is a rich field of research. Many researchers have focused on
describing in detail their mechanism, such as the works of Zhao (2007), Vananroye,
Puyvelde and Moldenaers (2006), Stone (1992), Barai and Mandal (2016). In this section
we focus on presenting a quantitative and qualitative validation, but, more than that, we
present the ability of the present algorithm to capture different physical phenomena, in
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this case, for variable viscosities (see Appendix B).
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Figure 5.4 – Critical capillary number, 𝐶𝑎𝑐𝑟𝑖𝑡 for 0.01 ≤ 𝜆 ≤ 3.5. Circles denote the work
of GRACE (1982), squares the work of Zhao (2007) and the black triangles
the present study.

From this perspective, Fig. 5.4 presents a validation of the critical capillarity, which
denotes the maximum value of 𝐶𝑎 at which the droplet does not break. In Fig. 5.4 it is
possible to see the influence of 𝜆 on the breakup dynamics and three points of the graph
deserve to be highlighted: both the lateral extremes and the minimum point near 𝜆 ≈ 1.
From the minimum point (𝜆 ≈ 1), as we approach the extreme right of the graph, as
𝜆 grows, i.e., the viscosity of the dispersed phase rises several times, the viscous drag
imposed by the continuous phase is not enough to elongate the droplet until its breakup
(Taylor, 1934). For 𝜆 ⪆ 3.6 (Kennedy; Pozrikidis; Skalak, 1994), no matter how high the
viscous stresses are, the droplet simply begins to rotate like a rigid body. At the other
end, the dispersed phase, now with a viscosity several times lower than the continuous
phase, is unable to exert any significant shear stress on the continuous phase, getting a
very long, deformed and narrow body (Taylor, 1934; Hinch; Acrivos, 1980). Between these
points, there is a transition of both behaviors.

Figure 5.5 shows the evolution of the droplet breakup viewed from the velocity
gradient direction. At the first moment, the droplet changes its spherical shape to elongate
until narrow necks are formed near the center of the droplet. The instability of the neck
leads to the pinching off of the bulbs and the formation of daughter drops separated by
smaller satellite drops. This effect is due to the surface tension behavior, which separates
the droplet when it reaches high curvature values. Comparing the experiment on the
left side of Fig. 5.5 with the simulation on the right side, it is possible to notice that
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Figure 5.5 – Comparison of droplet breakup seen in the 𝑥𝑦 plane between the work of
Chang-Zhi and Lie-Jin (2007) and the present study for 𝜆 = 1 and 𝐶𝑎 = 0.42.

the numerical method can capture satisfactorily all the evolution phases of the droplet,
including the satellite drops.

a)

b)

Figure 5.6 – Qualitative comparison between Zhao (2007) experimental results and the
present study of the breakup of the droplet seen from the 𝑥𝑦 plane. (a)
represents the results for 𝜆 = 0.5 and (b) for 𝜆 = 3.5

As a final result, we present a qualitative comparison between two distinct defor-
mation phases for 𝜆 = 0.5, Fig. 5.6(a) and 3.5, Fig. 5.6(b). It is possible to observe an
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excellent agreement between the experimental results and those produced by simulations
in the present study. In Fig. 5.6(a), the simulation was able to reproduce the satellite
droplet surrounded by the two other droplets. In the case of Fig. 5.6(b), it is possible to
see the link formed between the two lateral drops just before the rupture.

5.3 Dilute magnetic emulsion under SAOS

This section investigates how the ferrofluid droplet responds to a small amplitude
oscillatory shear (SAOS) in the presence of a constant external magnetic field. We first
examine how the external magnetic field affects the droplet deformation, defined as
𝐷 = (𝐿 − 𝐵)/(𝐿 + 𝐵), where the major and minor axes are 𝐿 and 𝐵, respectively, as
shown in Fig. 3.1. Additionally, this analysis includes the inclination angle, 𝜃 (see Fig.
3.1), defined as the angle between the major deformation direction in the shear plane and
the 𝑥-axis. All geometrical measurements taken throughout this work are related to the
droplet shape projected in the shear plane, i.e., the 𝑥𝑦 plane crossing the droplet center.
The effects of the external magnetic field on the storage and loss moduli, 𝐺′ and 𝐺′′, and
the first and second normal stress differences, 𝑁1 and 𝑁2, are then our main concerns. We
also present research on how the magnetization of the emulsion reacts to oscillatory strain
under various external magnetic field conditions. We calculate the magnetic susceptibility,
𝜒, the angle between the magnetization and the external field, 𝜃𝑚𝑎𝑔, and the magnetic
torque, 𝜏 𝑚𝑎𝑔. These values were monitored by their in-phase and out-of-phase components
in relation to the strain since they are periodic under oscillatory shear conditions.

All of the investigations in this study were performed on a cubic domain with sides
of 8.125, a discretized mesh of 104 × 104 × 104, and a time step of 4 × 10−3. This domain
size is associated with a volume fraction of approximately 0.78 %, which indicates that the
emulsion is dilute, i.e., both magnetic and hydrodynamic interactions between the droplets
are negligible. As long as 𝑅𝑒 = 10−3 and 𝛾0 = 𝐶𝑎/𝜔 = 0.1, the dimensionless strain
amplitude is minimal, inertial effects are negligible, and the flow regime is compatible with
the linear viscoelasticity limit. Throughout this work, the magnetic permeability ratio is
fixed at 𝜁 = 2.

In order to assure convergence, we assessed how the time step, mesh refinement,
and domain size affected the results for 𝜔 = 10, 𝐶𝑎 = 1.0, and 𝐶𝑎𝑚𝑎𝑔 = 16 for the
magnetic field oriented in the 𝑦-direction. The pair of rheological parameters (𝐺′, 𝐺′′),
which are closely related to the geometric characteristics of the droplet, are used as
parameters for the following analysis. Using Δ𝑡 = 1.0 × 10−3 as the reference case,
we found variations of (0.413%, 2.270%) when raising the time step to 4.0 × 10−3 and
(0.978%, 3.115%) for Δ𝑡 = 8.0 × 10−3. Regarding mesh refinement, we observed relative
variations of (0.710%, 0.738%) for a mesh of 104 × 104 × 104 cells and (0.896%, 2.661%)
for a mesh of 64 × 64 × 64 cells, using a mesh of 208 × 208 × 208 cells as the reference case.
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Lastly, we concentrated on (𝐺′/𝛽, 𝐺′′/𝛽) for the investigation of confinement effects. It
was identified minor fluctuations of (0.39%, 0.46%) when doubling the domain size from
8.125 to 16.25, retaining the same mesh refinement employed throughout this work. Other
variables, such as droplet deformation and inclination angle, showed insignificant variances,
as well. Taking into account that these cases were performed for the most critical values
of 𝜔 and 𝐶𝑎𝑚𝑎𝑔, as well as the small variations found for the tested time steps and mesh
discretizations, it can be concluded that both time step and mesh discretization used did
not significantly affect the results in the subsequent analyses. We can also conclude that
confinement effects are minimal based on the domain size investigation.

5.3.1 Verification

The numerical approach utilized in the present study is comparable to that of
Abicalil et al. (2021), and it has been shown to be valid for the case of ferrofluid droplets
in steady shear flows in the aforementioned work by comparisons with other findings in
the literature (Ishida; Matsunaga, 2020). In this study, we compare the proposed approach
for oscillatory shear flows to Palierne’s analytical solution for dilute emulsions, which
successfully explains the viscoelastic characteristics of a wide range of non-Newtonian
fluids (Bousmina, 1999; Liao et al., 2020; Boudoukhani; Moulai-Mostefa; Hammani, 2020),
and the experimental study of Guido, Grosso and Maffettone (2004).

The contribution of the dispersed phase to the non-dimensional complex shear
modulus of the emulsion is given by the right-hand side of Eq. 3.21, i.e., 28𝛽𝐺*

𝑐/(35𝐺*
𝑐 +16).

By using a Fast Fourier Transform on the periodic signal of Σ𝐷
𝑦𝑥 over time, which is given

by Eq. 3.27, it is possible to extract both parameters since 𝐺′ and 𝐺′′ decompose the
time-dependent particle stress into an in-phase and an out-of-phase component with
respect to the shear.

The comparison between our numerical findings and Palierne’s model for an
emulsion composed of Newtonian fluids with the same viscosity and density can be seen in
Fig. 5.7. As can be observed, both models exhibit great overall agreement, supporting the
validity of our methodology, which also makes use of Batchelor’s particle stress approach
(Batchelor, 1970). Additionally, we discovered that the intersection of curves for 𝐺′ and 𝐺′′

happens at a frequency of 𝜔𝑐𝑝 = 0.45, which corresponds to a relaxation time of 𝑡𝑑 = 2.19.
This finding is in excellent accordance with the model described by Graebling, Muller and
Palierne (1993), where 𝑡𝑑 = 2.20.

The emulsion mostly exhibits the characteristic of a viscous fluid for 𝜔 < 𝜔𝑐𝑝. Since
the droplet relaxation time in this regime is short relative to the oscillation frequency, it
has enough time to adjust to the variations in the shear-rate imposed by the oscillatory
flow. At the limit of 𝜔 → 0, the droplet becomes closer to the steady-state situation for
a simple shear flow with an equal instant shear-rate. As a result, the droplet response
depends mostly on the instantaneous shear-rate at low oscillation frequencies, as evidenced
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Figure 5.7 – Elastic, 𝐺′, and Loss, 𝐺′′, moduli as a function of the non-dimensional angular
frequency, 𝜔. Red circles and squares represent, respectively, our results for
𝐺′ and 𝐺′′. The solid and dashed black lines refer to the model of Palierne
(1990).
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Figure 5.8 – Comparison of the droplet inclination angle and the ratio between the semi-
major axis and the initial radius of the drop (𝐿/𝑎) with the experimental
study of Guido, Grosso and Maffettone (2004) for 𝐶𝑎 = 0.61 and 𝜆 = 6. The
figure is extracted from the stationary regime of both results, the present
study referring to the upper axis and traced in a continuous black line, and
the work of Guido, Grosso and Maffettone (2004) referring to the lower axis
traced with circular marks.

by 𝐺′ ≪ 𝐺′′. On the other hand, as the relaxation time is greater than the oscillation
periods for 𝜔 > 𝜔𝑐𝑝, the droplet response is more sensitive to the instantaneous shear-strain,
resulting in 𝐺′ ≫ 𝐺′′. When applied to high-frequency values (𝜔 > 2), 𝐺′ reaches a plateau
region, with values approaching 0.006158.
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As a complementary validation of the oscillatory case, Fig. 5.8, presents a compar-
ison between the experimental results of Guido, Grosso and Maffettone (2004) and the
simulations of the present study. The first point that is worth mentioning is that both
studies reach the stationary regime at different times. The simulation (top axis) reaches
a steady state about 15 time units before the experiment (bottom axis). However, after
that, there is a complete agreement between both results. It is also worth noting that
the scope of this validation comprises a viscosity ratio other than unity, such theory is
complemented in Appendix B.

5.3.2 Droplet geometrical properties

In this subsection, we explore how the external magnetic field influences the droplet
deformation (𝐷) and inclination angle (𝜃) when applied in the 𝑥, 𝑦 and 𝑧-directions. These
geometrical characteristics were measured across a series of cycles for 𝜔 = 0.10, 1.00 and
10.00, which stand for low, middle, and high oscillation frequencies, respectively.
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Figure 5.9 – Droplet deformation, 𝐷, and inclination angle, 𝜃, over time for the external
magnetic field in the 𝑥 (solid lines) and 𝑦-directions (dash-dotted lines) as a
function of oscillatory shear frequency and 𝐶𝑎𝑚𝑎𝑔. First column for 𝜔 = 0.10,
the second for 𝜔 = 1.00 and the last one for 𝜔 = 10.00. Black lines represent
the flow in the absence of magnetic field blue lines refer to 𝐶𝑎𝑚𝑎𝑔 = 4.00, red
to 𝐶𝑎𝑚𝑎𝑔 = 10.00 and green to 𝐶𝑎𝑚𝑎𝑔 = 16.00.

The deformation and inclination of the droplet over time for various cases with
variable magnetic field direction, oscillatory shear frequency, and magnetic capillary number
are shown in Figs 5.9 and 5.12. The droplet dynamics in the absence of external magnetic
fields is our first point of interest. In figure 5.9(a), the droplet displays a deformation pattern
that is based on cyclic oscillations with a single mode, with frequency 𝜔 and amplitude
≈ 0.01. Lower oscillation frequencies lead to lower shear-rates since the findings presented
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in this study assume a constant oscillation amplitude. The droplet in this instance barely
diverges from its spherical form. Recalling that the droplets incline up to 45∘ relative to
the flow direction under low capillary number regimes helps to understand the behavior
of the inclination angle in the oscillatory shear. This leads us to the conclusion that 𝜃
must be close to either 45∘ or 135∘, depending only on the instant shear-rate direction.
This is because the instant ratio between shear stress and surface tension perceived by the
droplet is compatible with a small capillary number for low frequencies and small strain
amplitudes. Considering this, the droplet inclination oscillates like a binary wave, sharply
varying between 45∘ and 135∘, as shown in Fig. 5.9(d).

Figure 5.9(b) shows that the droplet deformation amplitude increases noticeably
from 𝜔 = 0.10 to 𝜔 = 1.00, with the greater oscillation frequency leading to a higher
characteristic 𝐶𝑎. In contrast to the previous case, shear stresses for 𝜔 = 1 are equivalent
to surface tension, allowing deformation peaks of 𝐷 ≈ 0.05. Despite the slightly wider
fluctuations with 43∘ ⪅ 𝜃 ⪅ 137∘, the binary behavior of 𝜃 remained consistent with the
earlier case. It is clear that in this situation, regardless of the increased shear-rates imposed
by 𝜔, the droplet cannot achieve even higher deformation values due to the short strain
available to it. In this respect, compared with the transition from 𝜔 = 0.10 to 1.00, we find
relatively moderate alterations for 𝐷 and 𝜃 when increasing the frequency from 𝜔 = 1.00
to 10.00 (Fig. 5.9(c)). The peaks in 𝐷 become ≈ 0.5 in this scenario, but the 𝜃 fluctuations
essentially stay unaltered from the case of 𝜔 = 1.00. The surface tension effects caused
by the capillary forces eventually become insignificant for high oscillation frequencies in
comparison to the high shear-rates, making the droplet deformation solely dependent on
the applied strain, with peak deformations being constrained by the strain amplitude.

The effect of an external magnetic field on a ferrofluid droplet subjected to oscillatory
shear affects the droplet motion pattern. As can be observed in Figs. 5.9(a), (b) and (c),
the deformation behavior for external magnetic fields applied in the 𝑥 and 𝑦-directions
is mostly indifferent to the field orientation and the shear frequency. As a result, the
magnetic effects predominate in the deformation of the droplet even for the lowest relative
magnetic field strength studied, which corresponds to 𝐶𝑎𝑚𝑎𝑔 = 4.00. In this approach,
even at large shear-rate frequencies, the droplet deformation exhibits only weak oscillations
after the stationary regime is achieved. It’s interesting to note that the amplitude of these
oscillations is far lower than it would be in the absence of an external field. One can still
see that these variations are slightly more pronounced for the field in the 𝑦−direction.
In this situation, the droplet experiences a larger effective shear as the magnetic field
extends it to areas of faster flow, with the reverse effect happening for fields applied in
the 𝑥−direction (Cunha et al., 2018; Abicalil et al., 2021). The deformation oscillates
around 𝐷 = 0.1369 ± 0.0059 for 𝐶𝑎𝑚𝑎𝑔 = 4.00, 𝐷 = 0.3254 ± 0.0034 for 𝐶𝑎𝑚𝑎𝑔 = 10.00
and 𝐷 = 0.4553 ± 0.0027 for 𝐶𝑎𝑚𝑎𝑔 = 16.00 for 𝜔 = 10.00 and a magnetic field in the
𝑦−direction, indicating a progressive action of the magnetic field in the sense of decreasing
the amplitude of 𝐷.
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Figure 5.10 – Oscillation amplitude for a droplet under an external magnetic field in the
x-direction (a) and y-direction (b) for 𝐶𝑎𝑚𝑎𝑔 = 16.00 and 𝜔 = 10.00. The
droplet is projected into all orthogonal planes alongside the magnitude of
the magnetic field in the 𝑥𝑧 and 𝑥𝑦-planes, with the latter also containing
the magnetic field lines. The 𝑦𝑧-plane shows the velocity field.

Focusing on the droplet inclination angle, Figs. 5.9(d), (e) and (f) show that the
capillary forces are negligible in comparison to the shear and magnetic effects, being
bounded by the small strain amplitudes, defined by 𝛾0 and constant across all cases. The
droplet tends to accommodate in the direction of the magnetic field when 𝜔 = 0.10,
resulting in small oscillations in all cases of 𝐶𝑎𝑚𝑎𝑔. The shear stresses are too weak to
significantly alter the droplet inclination, similar to the deformation. As a result of the
droplet being subjected to higher effective shear-rates in the 𝑦−direction, the amplitude
of the inclination angle oscillations is bigger, though still small, and it gets smaller as
𝐶𝑎𝑚𝑎𝑔 increases. This amplitude for 𝐶𝑎𝑚𝑎𝑔 = 4.00 is 3.33∘ for the field in the 𝑦-direction
and 1.96∘ for the field in the 𝑥-direction. The droplet inclination angle dynamics are quite
similar for both 𝜔 = 1.00 and 10.00. The droplet mostly maintains the alignment with the
field direction and exhibits only minor oscillations for the magnetic field in the 𝑥-direction
for 𝐶𝑎𝑚𝑎𝑔 = 10.00 and 16.00. In this case, the magnetic effects overcome the shear forces,
as illustrated in Fig. 5.10(a). Such oscillations are more noticeable for 𝐶𝑎𝑚𝑎𝑔 = 4.00, with
amplitudes of roughly 7.20∘ for both 𝜔 = 1.00 and 𝜔 = 10.00.

When the field is in the 𝑦-direction, the oscillations are more evident. The curves
for 𝐶𝑎𝑚𝑎𝑔 = 10.00 and 16.00 mainly overlay each other, with amplitudes of approximately
6.16∘ for both 𝜔 = 1.00 and 𝜔 = 10.00, as illustrated in Fig. 5.10(b). These results indicate
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Figure 5.11 – Figure (a) shows the droplet shape for the external magnetic field in z-
direction for 𝑡 = 91.64, 𝜔 = 1.00 and 𝐶𝑎𝑚𝑎𝑔 = 4, 10 and 16, as indicated by
the legend. Figure (b) represents a 3D view of the velocity (𝑦𝑧-plane) and
magnetic field projections (𝑥𝑧 and 𝑥𝑦-planes) together with the magnetic
streamlines around the droplet for 𝐶𝑎𝑚𝑎𝑔 = 16 and 𝜔 = 10.

that the droplet dynamics were saturated with respect to the shear frequency. We verify an
oscillation amplitude of 12.35∘ for both 𝜔 = 1.00 and 𝜔 = 10.00 for 𝐶𝑎𝑚𝑎𝑔 = 4.00. When
analyzing the rheology of the current system in the next subsections, such comprehension
will be crucial.

Since the elongation of the droplet happens perpendicular to the shear plane,
applying magnetic fields in the 𝑧-direction has various effects. Figure 5.11(a) displays the
droplet shape from two angles for various values of 𝐶𝑎𝑚𝑎𝑔. The principal effect is that the
droplet cross-section stays almost circular in the 𝑥𝑦-plane. Additionally, due to the droplet
elongation in the direction of the magnetic field, when 𝐶𝑎𝑚𝑎𝑔 increases, this cross-sectional
area reduces with the conservation of the droplet mass.

The droplet inclination angle in Figs. 5.12(d), (e) and (f) is the first crucial aspect
to be examined. Regardless of 𝐶𝑎𝑚𝑎𝑔 and 𝜔, the droplet oscillates in a binary form since
its near-circular cross-section in the shear plane is comparable to what it would be in the
absence of a magnetic field. Small spikes that result from the change in angle may be seen;
these spikes are also present in the no-field scenario. These are outliers because of the
difficulty of calculating the inclination angles as the cross-sections get smaller and more
circular (when the flow direction is reversing). For 𝐶𝑎𝑚𝑎𝑔 = 16, such spikes are therefore
more pronounced.

49



0.05(a)
0.04

0.03

0.02
D

0.01

0.05

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

00
0 98.7588 90 92 94 96 98 100 99.00 99.2520 40 60 80 100 99.50 99.75 100.00

0 98.7588 90 92 94 96 98 100 99.00 99.2520 40 60 80 100 99.50 99.75 100.00

(d )

(b)

(e)

(c)

( f )

θ

150

100

50

0

150

100

50

0

150

100

50

0

t t t

Figure 5.12 – Droplet deformation, 𝐷, and inclination angle, 𝜃, over time for the external
magnetic field in the 𝑧-direction as a function of oscillatory shear frequency
and 𝐶𝑎𝑚𝑎𝑔. First column for 𝜔 = 0.10, second for 𝜔 = 1.00, and the last one
for 𝜔 = 10.00. Black lines represent the flow in the absence of a magnetic
field, blue lines refer to 𝐶𝑎𝑚𝑎𝑔 = 4.00, red to 𝐶𝑎𝑚𝑎𝑔 = 10.00, and green to
𝐶𝑎𝑚𝑎𝑔 = 16.00.

Smaller values of 𝐶𝑎𝑚𝑎𝑔 result in larger deformation amplitudes for 𝜔 = 0.10, as
shown in Fig. 5.12(a), with peaks of 𝐷 ≈ 0.011 for 𝐶𝑎𝑚𝑎𝑔 = 0 (no magnetic field) and
𝐷 ≈ 0.0081 for 𝐶𝑎𝑚𝑎𝑔 = 16. Figure 5.12(b) shows a comparable dynamic for 𝜔 = 1.00,
but having noticeably larger deformation amplitudes, such as 𝐷 ≈ 0.048 for 𝐶𝑎𝑚𝑎𝑔 = 0
and 𝐷 ≈ 0.043 for 𝐶𝑎𝑚𝑎𝑔 = 16. Figure 5.12(c) shows how the curves collapse at 𝜔 = 10,
becoming identical despite the various values of 𝐶𝑎𝑚𝑎𝑔, with a deformation amplitude of
𝐷 ≈ 0.051. Figure 5.11(b) shows this phenomena for 𝐶𝑎𝑚𝑎𝑔 = 16 and 𝜔 = 10. In order to
look for a potential trend reversal, we also extended this investigation to 𝜔 = 12, however,
we discovered that doing so merely strengthens the convergence of the curves. This finding
implies that magnetic influence has little effect on droplet deformation at high oscillation
frequencies. It should be noted that only the deformation of the droplet in the shear plane
is covered in this analysis. The overall droplet shape is still influenced by the magnetic field
intensity. Larger values of 𝐶𝑎𝑚𝑎𝑔 result in larger droplet elongations in the field direction.
It is interesting to observe in Fig. 5.12(b) that both curves move to the left when 𝐶𝑎𝑚𝑎𝑔

increases. This dynamic may be caused by the droplet tendency to shrink in the shear
plane as 𝐶𝑎𝑚𝑎𝑔 increases, which also results in a reduction in effective 𝐶𝑎 and relaxation
times.

5.3.3 Viscoelastic properties

In this section, we investigate the influence of both the external magnetic fields,
defined by the magnetic capillary number 𝐶𝑎𝑚𝑎𝑔 and the field direction, and the angular
frequency 𝜔 on the emulsion linear viscoelastic properties. As a consequence of the
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geometric dynamics reported in Sec. 5.3.2, the droplet experiences changes in its storage
and loss moduli. In this section, such analyses are based on both symmetric, 𝑆𝑦𝑚(Σ𝐷),
and antisymmetric, 𝐴𝑠𝑦𝑚(Σ𝐷), parts of the particle stress tensor.
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Figure 5.13 – Linear viscoelastic properties, 𝐺′, and 𝐺′′, based on the 𝑦𝑥 component of
𝑆𝑦𝑚(Σ𝐷), for an external magnetic field in x, y, and z directions. The first
column is for 𝐺′ and the second one is for 𝐺′′. The first row represents the
results for 𝑥-direction (circle marks) and 𝑦-direction (squared marks). The
second row shows the results for 𝑧-direction (triangle marks). Black solid
lines are for 𝐶𝑎𝑚𝑎𝑔 = 0 (Palierne, 1990), blue lines are for 𝐶𝑎𝑚𝑎𝑔 = 4, red
ones for 𝐶𝑎𝑚𝑎𝑔 = 10 and green ones for 𝐶𝑎𝑚𝑎𝑔 = 16

The magnetic field in the 𝑥-direction reduces the oscillatory dynamics of the
droplet as well as the actual shear effects. The main effect is when 𝐶𝑎𝑚𝑎𝑔 grows, where the
amplitude of the particle shear stress, Σ𝐷

𝑦𝑥, gradually decreases. Figures 5.13(a) and
(b) show this behavior through the in-phase (𝐺′) and out-of-phase (𝐺′′) components
extracted from 𝑆𝑦𝑚(Σ𝐷). As can be seen, the overall behavior as a function of angular
frequency stays mostly constant and is comparable to the situation in the absence of
magnetic fields despite the vertical displacements of the curves. In the case of 𝜔 → 0.1,
the long oscillation periods provide capillary effects enough time to strongly influence the
droplet shape. As a consequence, the droplet deformation is mostly governed by the instant
shear-rate, resulting in 𝐺′ ≪ 𝐺′′ and a predominantly viscous behavior. Regardless of the
magnetic capillary number, the moment at which 𝐺′ becomes higher than 𝐺′′ occurs at
𝜔𝑐𝑝 ≈ 0.41. As the oscillation frequency rises, there is a progressive change from this viscous
to elastic behavior. The capillary effects on the droplet shape become unimportant at high
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oscillation frequencies. The instantaneous shear-strain controls the droplet deformation
since the time needed for capillary effects to impact the droplet shape is significantly
longer than the oscillation periods. As a result of the 𝐺′ ≫ 𝐺′′, the emulsion exhibits a
mainly elastic characteristic.

An opposite effect is seen in relation to 𝐶𝑎𝑚𝑎𝑔 for external magnetic fields oriented
in the 𝑦-direction. The droplet becomes more elongated in the direction of the velocity
gradient as the magnetic capillary number increases, which exposes it to more effective
shear and leads to higher variations in 𝜃. Figures 5.13(a) and (b) show that when 𝐶𝑎𝑚𝑎𝑔

grows, both the in-phase and out-of-phase components increase, in contrast to the situation
of magnetic fields in the 𝑥-direction. The droplet response is mostly determined by the
instantaneous shear-rate at low oscillation frequencies and by the shear-strain at high
frequencies, much like in the case of magnetic fields in the 𝑥-direction. Similar to what was
discovered for magnetic fields in the 𝑥-direction, the transition point at which 𝐺′ becomes
greater than 𝐺′′ stays constant across the 𝐶𝑎𝑚𝑎𝑔 range despite the rise in viscoelastic
components. We think that the magnetic field does not affect the droplet effective relaxation
time in either direction given that the percentage difference between the droplet relaxation
time for the cases with and without the magnetic field is less than 9%.
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Figure 5.14 – Linear viscoelastic properties, 𝐺′, and 𝐺′′, based on the 𝑦𝑥 component of
𝐴𝑠𝑦𝑚(Σ𝐷), for an external magnetic field in x and y-directions. Circle
marks represents the results for 𝑥-direction and the squared marks ones for
𝑦-direction. Black solid lines are for 𝐶𝑎𝑚𝑎𝑔 = 0 (Palierne, 1990), blue lines
are for 𝐶𝑎𝑚𝑎𝑔 = 4, red ones for 𝐶𝑎𝑚𝑎𝑔 = 10 and green ones for 𝐶𝑎𝑚𝑎𝑔 = 16

For all cases presented in this section, the external magnetic field creates significant
changes in the behavior of the components of the particle stress tensor. The magnetic
field in the 𝑥-direction causes |Σ𝐷

𝑦𝑥| < |Σ𝐷
𝑥𝑦|, while in the 𝑦-direction, |Σ𝐷

𝑦𝑥| > |Σ𝐷
𝑥𝑦|. In

the case of the symmetrical part of the particle stress, there is no phase shift since the
𝑦𝑥 component of the 𝑆𝑦𝑚(Σ𝐷) is given by (Σ𝐷

𝑦𝑥 + Σ𝐷
𝑥𝑦)/2. For 𝐴𝑠𝑦𝑚(Σ𝐷), the same

component in the 𝑥-direction produces a 𝜋 rad phase shift in relation to the 𝑦-direction
once the 𝑦𝑥 component is given by (Σ𝐷

𝑦𝑥 −Σ𝐷
𝑥𝑦)/2, similar to that presented for the magnetic

torque in Sec. 5.3.5.3. Figure 5.14 shows a behavior similar to the presented in Fig. 5.13
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The relaxation times remain unchanged with the same behavior as a function of 𝜔 and
𝐶𝑎𝑚𝑎𝑔.

When the magnetic field is oriented in the 𝑧-direction, a distinct phenomenon takes
place, the first point is that 𝑆𝑦𝑚(Σ𝐷) is already symmetric, i.e., 𝑆𝑦𝑚(Σ𝐷) = Σ𝐷. Figures
5.13(c) and (d) show that the behavior is mixed, with different responses to changes in
𝐶𝑎𝑚𝑎𝑔 depending on the oscillation frequency. Changes in 𝐺′′ are almost unnoticeable
at low angular frequencies, with 𝜔 around 0.1, and both 𝐺′ and 𝐺′′ decrease with rising
𝐶𝑎𝑚𝑎𝑔, but in a considerably less pronounced manner than what was found for the other
two directions. This behavior is similar to that in simple shear flows that have already been
described in the literature (Ishida; Matsunaga, 2020; Abicalil et al., 2021). In contrast,
when 𝐶𝑎𝑚𝑎𝑔 increases, both 𝐺′ and 𝐺′′ rise at high oscillation frequencies (𝜔 → 10).
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Figure 5.15 – 𝑦𝑥 component of the particle stress given by Eq. 3.27 for 𝜔 = 10.00 (dashed
lines), relative to the top and right axes, and 𝜔 = 0.10 (solid lines), relative
to the bottom and left axes. Black, blue, and red colors correspond to
𝐶𝑎𝑚𝑎𝑔 = 0, 4 and 16, respectively.

Figure 5.15 shows the same phenomenon by using the particle shear stress compo-
nent Σ𝐷

𝑦𝑥 for 𝜔 = 0.1 (solid lines) and 𝜔 = 10 (dashed lines). When 𝜔 = 0.1, an increase in
𝐶𝑎𝑚𝑎𝑔 is followed by lower amplitudes in the signal of Σ𝐷

𝑦𝑥, however, when 𝜔 = 10, the
opposite is observed. This leads to the conclusion that the reduction in the viscoelastic
properties is related to the reduction in the amplitude of Σ𝐷

𝑦𝑥 caused by the larger magnetic
capillary numbers at low oscillation frequencies, as shown in Figs. 5.13(c) and (d). In
contrast, the rise in the amplitude of Σ𝐷

𝑦𝑥 with higher 𝐶𝑎𝑚𝑎𝑔 at high oscillation frequencies
causes a stronger interference of the droplet in the flow, leading to the higher viscoelastic
moduli.

It is remarkable to notice that the existence of magnetic fields in the 𝑧-direction
does affect the droplet effective relaxation time, in contrast to what was shown for magnetic
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fields in the 𝑥 and 𝑦-directions. The droplet effective relaxation time was calculated to
be 𝑡 ≈ 2.20, 1.90, 1.62 and 1.45, for 𝐶𝑎𝑚𝑎𝑔 = 0, 4 , 10 and 16, respectively, based on
the crossover points at which 𝐺′ becomes bigger than 𝐺′′. This is a result of the droplet
cross-sectional area decreasing, as was discussed in Sec. 5.3.2 and the previous paragraphs.

The variations in the viscoelastic moduli are caused by adjustments in the balancing
act between various effects. The droplet cross-sectional area decreases as it is stretched in
the 𝑧-direction, putting it under less effective shear and having less of an impact on the
flow at the central shear plane. However, the droplet frontal area in relation to the flow
direction increases due to the rise in length in the 𝑧-direction, which leads the droplet to
contact with a higher proportion of shear planes. According to the discussion in Sec. 5.3.2,
at low oscillation frequencies, there is also a corresponding decrease in the deformation of
the droplet as 𝐶𝑎𝑚𝑎𝑔 increases. Similar to what is seen for simple shear flow (Abicalil et
al., 2021), in this situation the balance of these three effects causes the viscoelastic moduli
to decrease as 𝐶𝑎𝑚𝑎𝑔 increases. For high oscillation frequencies, however, the droplet
deformation becomes indifferent to changes in the magnetic capillary number, a fact that
tips the balancing act between the three aforementioned effects in the opposite direction,
resulting in the observed increases in both viscoelastic moduli with an increasing magnetic
capillary number.

5.3.4 Normal stress difference

The magnetic field generates larger stresses at the droplet tips than in the flattened
areas, as implicitly seen in Sections 5.3.2 and 5.3.3. In accordance with this, we now
go on to the analysis of the droplet anisotropy using the first and second normal stress
differences, denoted, respectively, as 𝑁1 = Σ𝐷

𝑥𝑥 − Σ𝐷
𝑦𝑦 and 𝑁2 = Σ𝐷

𝑦𝑦 − Σ𝐷
𝑧𝑧.

It is possible to see the impact of the magnetic field on the normal stress differences
by analyzing Eq. 3.27. Surface tension works in order to restore the spherical droplet
shape as the magnetic field stretches the droplet in its respective direction. In addition,
the term 𝐻2 is maximized when the surface’s normal vector coincides with the direction
of the magnetic field, which dominates the effects of the surface tension under these
circumstances, and 𝑁1 (or 𝑁2) may shift signs.

𝑁1 and 𝑁2 are shown in Fig. 5.16 as a function of time for 𝜔 = 1.00. Results
for 𝜔 = 0.10 and 10.00 are not included since they are similar to those of the presented
case. Figure 5.16(a) shows that the magnetic field in the 𝑥-direction induces Σ𝐷

𝑥𝑥 < Σ𝐷
𝑦𝑦,

an effect that becomes stronger as 𝐶𝑎𝑚𝑎𝑔 increases, demonstrating the magnetic field’s
capacity to establish a preferred orientation and promote anisotropy. Since the droplet
barely deviates from the magnetic field direction, as illustrated in Sec. 5.3.2, the oscillations
in 𝑁1 decrease as 𝐶𝑎𝑚𝑎𝑔 increases. 𝑁2 is independent of magnetic field strength since there
is no impact on Σ𝐷

𝑦𝑦 and Σ𝐷
𝑧𝑧 components.
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Figure 5.16 – First (solid lines) and second (dashed lines) normal stress differences, scaled
by the volume fraction, for an external magnetic field in the 𝑥 (a), 𝑦 (b)
and 𝑧 (c) directions and 𝜔 = 1.00. Black, blue, red and green colors are,
respectively, for 𝐶𝑎𝑚𝑎𝑔 = 0, 4, 10 and 16.

The symmetrical behavior between 𝑁1 and 𝑁2 in Fig. 5.16(b) shows that both Σ𝐷
𝑥𝑥

and Σ𝐷
𝑧𝑧 were not significantly impacted by the magnetic field in the 𝑦-direction, i.e., the

magnetic field only generated anisotropy in its respective direction. The existence of the
droplet in an area of increased effective shear, as a function of 𝐶𝑎𝑚𝑎𝑔, counterbalances the
magnetic field effect, as shown in Secs. 5.3.2 and 5.3.3. As a result, when the droplet is
primarily aligned with the magnetic field, 𝑁1 peaks coincide with the lowest points of 𝐷,
and the valleys correspond with the places of greatest deformation, where the droplet is
least aligned with the magnetic field.

Figure 5.16(c) shows the third scenario with external magnetic fields pointing in the
𝑧-direction. Since the anisotropies caused by the magnetic field have a little direct impact
on Σ𝐷

𝑥𝑥 and Σ𝐷
𝑦𝑦, 𝑁1 is unaffected in this scenario. Although values of 𝑁1 for magnetic

fields in the 𝑥-direction are mostly opposite and equal in magnitude to 𝑁2 for the present
case, the magnetic field in the 𝑧-direction does not restrict the droplet orientation in the
shear plane. Thus, when the shear flow oscillates, the droplet inclination angle varies as
well, causing variations in Σ𝐷

𝑦𝑦 and, in turn, the oscillations seen in 𝑁2.

These findings suggest that external magnetic fields, as in the simple shear flow in
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two (Cunha et al., 2018; Cunha et al., 2020b) and three dimensions (Ishida; Matsunaga,
2020; Abicalil et al., 2021), are capable of creating large anisotropies in emulsions subjected
to SAOS flows. In conclusion, magnetic fields in the 𝑥-direction led to large negative
values of 𝑁1 with no appreciable changes in 𝑁2. Magnetic fields in the 𝑦-direction led to
large positive values of 𝑁1 and large negative values of 𝑁2. Lastly, magnetic fields in the
𝑧-direction led to large positive values of 𝑁2 with no significant changes in 𝑁1.

5.3.5 Magnetization of dilute emulsions

In this section, we examine the emulsion magnetization under the combined influence
of an external magnetic field and a small amplitude oscillatory shear flow. Despite the
superparamagnetic behavior of the droplet, as stated by Abicalil et al. (2021) for the case
of simple shear flows, there is a misalignment angle, 𝜃𝑚𝑎𝑔, between the bulk magnetization,
⟨M⟩, and the external field, H0, which causes a magnetic torque, 𝜏 𝑚𝑎𝑔.

5.3.5.1 Magnetization

In order to calculate the non-dimensional bulk magnetization, in accordance with
Abicalil et al. (2021) and Cunha et al. (2020b), we have

⟨M⟩ = 1
𝑉

∫︁
𝑉

(𝜁𝜖(𝜑) − 1)H𝑑𝑉 , (5.3)

where the magnetization effects are restricted to the droplet, since 𝜁𝜖(𝜑) = 1 in the
continuous phase.

As can be shown in Sec. 5.3.2 the droplet stays elongated with 𝐷 nearly constant
when the magnetic field is in the 𝑥-direction. The vector ⟨M⟩ has three components, but
only 𝑀𝑦 exhibits a periodic oscillation over time. Similar to this, only the 𝑥-component of
the ⟨M⟩ oscillates for magnetic fields directed in the 𝑦-direction. The magnetization does
not fluctuate in the presence of external magnetic fields in the 𝑧-direction.

The 𝑦 and 𝑥 components of the bulk magnetization for magnetic fields in the 𝑥 and
𝑦-direction, respectively, are shown in Fig. 5.17 for 𝜔 = 1.00. According to Sec. 5.3.2, for
external magnetic fields in the 𝑥-direction, the droplet is constrained in an area of lower
effective shear and maintains a roughly aligned position with the magnetic field. Even if
the average values of ⟨M⟩ grow, the amplitude of 𝑀𝑦 decreases due to the amplitude of 𝜃,
reducing as 𝐶𝑎𝑚𝑎𝑔 increases. Specifically, the average values of ⟨M⟩/𝛽 = 0.8, 0.86 and
0.89, but the peak values of 𝑀𝑦/𝛽 are 0.006, 0.004, and 0.003 for 𝐶𝑎𝑚𝑎𝑔 = 4, 10, and
16, respectively. As a result, 𝑀𝑦 has no impact on the signal of ⟨M⟩, which essentially
stays in a straight line. In the case of external magnetic fields in the 𝑦-direction, the
average values of |⟨M⟩|/𝛽 increase in a similar way and approximately with the same
values as for the case of magnetic fields in the 𝑥-direction. The magnetization amplitude,
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Figure 5.17 – Bulk magnetization scaled by the volume fraction for 𝜔 = 1.00 and 𝐶𝑎𝑚𝑎𝑔 = 4
(blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines). Solid lines
correspond to 𝑀𝑦 for external magnetic fields in the 𝑥-direction, and dashed
lines correspond to 𝑀𝑥 for magnetic fields in the 𝑦-direction.

however, rises with increasing 𝐶𝑎𝑚𝑎𝑔, with a maxima of 𝑀𝑥/𝛽 = 0.012, 0.016 and 0.018
for 𝐶𝑎𝑚𝑎𝑔 = 4, 10 and 16 respectively. As a result, the increase in the droplet deformation
associated with higher values of 𝐶𝑎𝑚𝑎𝑔 leads to increases in the amplitude of 𝑀𝑥. In
this case, even though the amplitude of the droplet inclination angle also decreases with
increasing 𝐶𝑎𝑚𝑎𝑔, this reduction is far less significant than for the case of external magnetic
fields in the 𝑥-direction. In a similar manner, the signal of ⟨M⟩, which is roughly constant,
is not much affected by 𝑀𝑥.

The magnetization signal can be analyzed following a similar methodology to that
employed in Sec. 5.3.3 for the particle shear stress. In this way, we have that

𝑀𝑘 = 𝜒′
𝑘 sin𝜔𝑡+ 𝜒′′

𝑘 cos𝜔𝑡, (5.4)

where 𝑘 designates the magnetization component. 𝜒′
𝑘 is the component in-phase with the

shear-strain and 𝜒′′
𝑘 the component 90∘ out-of-phase, i.e., in-phase with the shear-rate.

Based on the Eq. 5.4, Figs. 5.18 and 5.19 show both the in-phase and out-of-phase
components. The connection with the viscoelastic qualities in Sec. 5.3.3 is the first topic to
be explored. In this sense, there were no appreciable variations in 𝑀𝑘 for 𝜔 ⪆ 1, indicating
a plateau in saturation as a function of 𝐶𝑎𝑚𝑎𝑔. Additionally, we discovered a non-zero 𝜒′′,
demonstrating the existence of an out-of-phase component in the periodic response of the
⟨M⟩ with respect to the applied periodic shear. Consequently, as a result of the emulsions
mechanical response to the periodic shear, the magnetization shows a finite relaxation
time. The frequency in which 𝜒′ and 𝜒′′ are equal is 𝜔 = 0.41, which is precisely the same
frequency in which 𝐺′ = 𝐺′′. That is a piece of strong evidence that the periodic variations
in the droplet shape and orientation at the micro-scale are the origin of the magnetization
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Figure 5.18 – In-phase component of the bulk magnetization, 𝜒′, as a function of angular
frequency for 𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16
(green lines). Solid lines represent 𝜒′

𝑦 for the magnetic field in the 𝑥-direction
and dashed lines 𝜒′

𝑥 for the magnetic field in the 𝑦-direction.
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Figure 5.19 – Out-of-phase component of the bulk magnetization, 𝜒′′, as a function of
angular frequency for 𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and
𝐶𝑎𝑚𝑎𝑔 = 16 (green lines). Solid lines represent 𝜒′′

𝑦 for the magnetic field in
the 𝑥-direction and dashed lines 𝜒′′

𝑥 for the magnetic field in the 𝑦-direction.

relaxation process in diluted magnetic emulsions (the same mechanism originating the
mechanical viscoelastic response). In this sense, the effective magnetic susceptibility, based
on the periodic components and given by given by 𝜒 =

√
𝜒′2 + 𝜒′′2, is larger for high

oscillation frequencies (with the emulsion exhibiting a solid-like behavior) than for lower
oscillation (with the emulsion displaying a liquid-like behavior) frequencies.

It is important to note that regular ferrofluids are expected to approach nonlinear
regimes of magnetization for some of the high values of 𝐶𝑎𝑚𝑎𝑔 (⪆ 10) investigated in this
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study. In experiments with currently workable ferrofluids, one would need to drastically
reduce the interfacial tension to something in the order of 10−3 𝑁/𝑚 by the use of
surfactants and arrange emulsion samples with millimeter-sized droplets in order to achieve
such high 𝐶𝑎𝑚𝑎𝑔 values and still maintain the linear regime.

5.3.5.2 Angle between ⟨M⟩ and H0

Even for a superparamagnetic droplet, M and H0 are not aligned due to the
combined effects of the shear flow and the external magnetic field. The deformation of the
droplet, the strength and the direction of the external magnetic all influence the angle, or
𝜃𝑚𝑎𝑔, between M and H0.
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Figure 5.20 – Angle between ⟨𝑀⟩ and 𝐻0, 𝜃𝑚𝑎𝑔, in degrees, for an external magnetic field
in the 𝑥 (solid lines) and 𝑦-directions (dashed lines), for 𝐶𝑎𝑚𝑎𝑔 = 4 (blue
lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines).

Fig. 5.20 shows 𝜃𝑚𝑎𝑔 for 𝜔 = 1.00. In this case, the previously examined magnetiza-
tion components and 𝜃𝑚𝑎𝑔 are directly related. It is possible to represent this parameter
using both 𝑀𝑥 and 𝑀𝑦, i.e., 𝜃𝑚𝑎𝑔 = sin−1 (𝑀𝑦/|⟨M⟩|) and 𝜃𝑚𝑎𝑔 = sin−1 (𝑀𝑥/|⟨M⟩|) for
magnetic fields in the 𝑥 and 𝑦-directions. Thus, as the droplet, and consequently the mag-
netization vector, are constrained by the magnetic field in the 𝑥-direction, 𝜃𝑚𝑎𝑔 oscillations
become smaller with increasing 𝐶𝑎𝑚𝑎𝑔, with amplitudes of 𝜃𝑚𝑎𝑔 approximately 0.48, 0.28
and 0.17 for 𝐶𝑎𝑚𝑎𝑔 = 4, 10, and 16, respectively. In contrast, the amplitudes tend to
grow with 𝐶𝑎𝑚𝑎𝑔 when the magnetic field is directed in the 𝑦-direction. This is because
the droplet encounters larger effective shear-rates and comparatively smaller decreases in
inclination angle oscillations.

The angle 𝜃𝑚𝑎𝑔 can also be analyzed similarly to the stress and susceptibility, using
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the equation
𝜃𝑚𝑎𝑔 = 𝜃′

𝑚𝑎𝑔 sin𝜔𝑡+ 𝜃′′
𝑚𝑎𝑔 cos𝜔𝑡 , (5.5)

to decompose 𝜃𝑚𝑎𝑔 into components in-phase (𝜃′
𝑚𝑎𝑔) and out-of-phase (𝜃′′

𝑚𝑎𝑔) with the
shear-rate.
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Figure 5.21 – In-phase component of 𝜃𝑚𝑎𝑔, 𝜃′, as a function of angular frequency for
𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines).
Solid lines correspond to magnetic fields in the 𝑥-direction, and dashed lines
correspond to magnetic fields in the 𝑦-direction.
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Figure 5.22 – Out-of-phase component of 𝜃𝑚𝑎𝑔, 𝜃′′, as a function of angular frequency for
𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines).
Solid lines correspond to magnetic fields in the 𝑥-direction, and dashed lines
correspond to magnetic fields in the 𝑦-direction.

The findings are the same as those of the magnetization, including the crossover
point, as can be seen in Figs. 5.21 and 5.22, since 𝜃𝑚𝑎𝑔 is computed as a function of
the magnetization components. Although the equation of 𝜃𝑚𝑎𝑔 represents a non-linear
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relationship to ⟨M⟩, we can rewrite it as 𝜃𝑚𝑎𝑔 = 𝑀𝑦/|⟨M⟩| and 𝜃𝑚𝑎𝑔 = 𝑀𝑥/|⟨M⟩| for small
arguments.

5.3.5.3 Magnetic torque

Due to the misalignment of M and H0, a magnetic torque arises in the fluid. The
conservation of angular momentum is ensured by an opposing hydrodynamic torque that
balances out this magnetic force (Cunha et al., 2020b; Abicalil et al., 2021). Equation
3.27 describes how this produced hydrodynamic torque appears as asymmetries in the
particle stress tensor. In our study, we compute the non-dimensional magnetic torque,
𝜏 𝑚𝑎𝑔, normalized by 𝜎/𝑎, using the following expression (Rosensweig, 2013; Cunha et al.,
2020b; Abicalil et al., 2021)

𝜏 𝑚𝑎𝑔 = 𝐶𝑎𝑚𝑎𝑔⟨M⟩ × H0 , (5.6)

highlighting that 𝜏 𝑚𝑎𝑔 is proportional to both |⟨M⟩| and sin 𝜃𝑚𝑎𝑔 (Abicalil et al., 2021).
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Figure 5.23 – Torque scaled by 𝜎/𝑎 for external magnetic fields in 𝑥 (solid lines) and
𝑦-directions (dashed lines), with 𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red
lines) and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines).

Figure 5.23 presents the magnetic torque scaled by 𝛽 over time for the magnetic
field in 𝑥 (solid lines) and 𝑦-directions (dashed lines). It can be seen that the peaks of
magnetic torque for magnetic fields in the 𝑥-direction correspond to the valleys for fields
in the 𝑦-direction, i.e., they act in opposite directions. As shown in figures 5.9 and 5.10,
during the first half of its oscillation cycle, the droplet always assumes inclination angles in
the range 0∘ < 𝜃 < 90∘, regardless of magnetic field direction. Since the magnetic torque
acts in the direction of aligning the droplet to the magnetic field, this results in a clockwise
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torque for magnetic fields in the 𝑥-direction, and counter-clockwise torques for magnetic
fields in the 𝑦-direction.

The magnetic torque magnitude, 𝜏𝑚𝑎𝑔, scaled by 𝛽, over time for the magnetic
field in the 𝑥 (solid lines) and 𝑦-directions (dashed lines) is shown in Fig. 5.23. As can be
observed, the magnetic torque peaks for fields acting in the 𝑥-direction correspond to the
valleys for fields in the 𝑦-direction, i.e., they act in opposite directions. The droplet always
takes inclination angles in the range 0∘ < 𝜃 < 90∘ throughout the first half of its oscillation
cycle, independent of the direction of the magnetic field, as seen in figures 5.9 and 5.10. A
clockwise torque is produced for magnetic fields in the 𝑥-direction and a counterclockwise
torque is produced for magnetic fields in the 𝑦-direction since the magnetic torque operates
in the direction of aligning the droplet to the magnetic field. For the second half of the
oscillation cycle, both torques act in opposite directions.

For magnetic fields in the 𝑥-direction, raising 𝐶𝑎𝑚𝑎𝑔 from 4 to 10 leads to an
increase in torque amplitude, with the magnetization magnitude outweighing the decrease
in the angle between ⟨M⟩ and H0. This is readily seen in Fig. 5.23. However, due to the
reduction in 𝜃𝑚𝑎𝑔 and increase in magnetization, an additional increase in 𝐶𝑎𝑚𝑎𝑔 to 16
does not appreciably alter the torque amplitude. In the 𝑦-direction, increases in 𝐶𝑎𝑚𝑎𝑔

cause increases in magnetization and 𝜃𝑚𝑎𝑔, which in turn increases torque amplitude for
external magnetic fields.
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Figure 5.24 – In-phase, 𝜏 ′, component of the torque scale by 𝜎𝛽/𝑎 as a function of angular
frequency for 𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines) and 𝐶𝑎𝑚𝑎𝑔 = 16
(green lines). Solid lines are for the magnetic field in the 𝑥-direction and
dashed lines are for the magnetic field in the 𝑦-direction.

Focusing on the signal of the non-dimensional magnetic torque, it can be decomposed
using the definition

𝜏𝑚𝑎𝑔

𝛽
= 𝛼

[︃
𝜏 ′

𝛽
sin𝜔𝑡+ 𝜏 ′′

𝛽
cos𝜔𝑡

]︃
, (5.7)
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Figure 5.25 – Out-of-phase, 𝜏 ′′, component of the torque scale by 𝜎𝛽/𝑎 as a function
of angular frequency for 𝐶𝑎𝑚𝑎𝑔 = 4 (blue lines), 𝐶𝑎𝑚𝑎𝑔 = 10 (red lines)
and 𝐶𝑎𝑚𝑎𝑔 = 16 (green lines). Solid lines are for the magnetic field in the
𝑥-direction and dashed lines are for the magnetic field in the 𝑦-direction.

where 𝜏 ′ and 𝜏 ′′ are the in-phase and out-of-phase components with the strain, also
normalized by 𝜎/𝑎. As seen in figure 5.23, the magnetic field in the 𝑥-direction produces a
𝜋 rad phase shift in relation to the 𝑦-direction, which implies negative amplitudes in the
decomposition. Therefore, in order to compare the in-phase and out-of-phase components
for both magnetic field orientations, we adopt 𝛼 = −1 when the magnetic field is in
𝑥-direction and 𝛼 = 1 for magnetic fields in the 𝑦-direction.

Figures 5.24 and 5.25 show both of the aforementioned torque components. As can
be seen, the general behavior is comparable to that seen for the magnetization components
and 𝜃𝑚𝑎𝑔 in terms of angular frequency, including the crossover point at the same oscillation
frequency. Notably, the in-phase component exhibits a gradual rise in the plateau area,
with torques for the magnetic field in the 𝑥-direction of around 0.03, 0.044 and 0.046 for
𝐶𝑎𝑚𝑎𝑔 = 4, 10 and 16, correspondingly. Given this situation, it is clear that the rise in
𝐶𝑎𝑚𝑎𝑔 from 10 to 16 is not substantial due to 𝜃𝑚𝑎𝑔 cancels out the increase in magnetization
magnitude. The plateau region for the magnetic field in the 𝑦-direction corresponds to
torques of around 0.05, 0.17, and 0.31 for 𝐶𝑎𝑚𝑎𝑔 = 4, 10, and 16, respectively. The curves
for 𝐶𝑎𝑚𝑎𝑔 = 16 and magnetic fields in the x-direction are interestingly almost identical to
those for 𝐶𝑎𝑚𝑎𝑔 = 4 and magnetic fields in the y-direction.
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6 Conclusions

The current work presented a three-dimensional computational analysis of a dilute
ferrofluid emulsion exposed to a small amplitude oscillatory shear flow and an external
magnetic field. The domain was discretized using the finite-difference method, with the
interface captured using the level-set method and a semi-implicit projection method to
solve the Navier-Stokes equations.

We assessed the droplet behavior in relation to the angular frequency, magnetic field
direction and strength. We set the strain amplitude to 𝛾0 = 0.1, producing a small amplitude
oscillatory shear flow, in order to guarantee a linear regime and avoid the formation of
any higher harmonics. These assumptions allowed the evaluation of the morphological,
rheological, and magnetization behaviors of the emulsion, including droplet geometry,
viscoelastic characteristics, normal stress differences, and magnetization characteristics
such as bulk magnetization, the angle between ⟨M⟩ and H0, and the magnetic torque.

In terms of the morphology of the emulsion, we discovered that droplet deformation
is mainly indifferent to the magnetic field direction, whether it is in the 𝑥 or 𝑦-directions,
with rising 𝐶𝑎𝑚𝑎𝑔 leading to even more droplet deformation. However, depending on the
magnetic field direction, the droplet behavior in terms of its inclination angle did change
dramatically. The droplet is constrained to areas of smaller effective shear for magnetic
fields in the 𝑥-direction, attenuating the effects of the flow on the droplet and lowering the
inclination angle amplitude. The droplet is stretched alongside the main velocity gradient
for magnetic fields in the 𝑦-direction, putting it under more effective shear and causing
larger inclination angle amplitudes. In both situations, the inclination angle decreases as
the magnetic capillary number grows.

When the magnetic field was oriented in the 𝑧-direction, a novel phenomenon has
been seen. The droplet in this case is elongated perpendicular to the shear plane while
staying almost circular in the shear plane, barely affecting the oscillations of 𝜃. Although
increased magnetic capillary numbers result in smaller deformations for low oscillation
frequencies, this impact reduces the effective relaxation time of the droplet, which causes
the deformation curves to converge into one for high oscillation frequencies.

The viscoelastic properties are therefore a direct result of these behaviors based
on these geometric dynamics. The emulsion displayed a mainly viscous behavior at low
frequencies, with 𝐺” ≪ 𝐺′, for magnetic fields in the 𝑥 and 𝑦-directions. High oscillation
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frequencies led 𝐺′ to a plateau region, where 𝐺′ ≫ 𝐺”, corresponding to an elastic behavior,
i.e., a Hookean solid. Additionally, it shows that the crossover point between 𝐺′ and 𝐺” is
not significantly different, indicating that the droplet effective relaxation time is unaffected
by both the 𝑥 and 𝑦 magnetic fields. Despite these similarities, the magnetic field in the
𝑥-direction reduces both viscoelastic components as 𝐶𝑎𝑚𝑎𝑔 rises, which is a direct result
of the magnetic field constriction of the droplet. Both viscoelastic components increase
with 𝐶𝑎𝑚𝑎𝑔 in the 𝑦-direction since the magnetic field projects the droplet into an area
with a larger effective shear-rate. For magnetic fields in the 𝑧-direction, there is a balance
between the influence of the droplet area in the shear plane and its projected area in
the flow. Smaller deformations at low oscillation frequencies lead to a reduction in both
viscoelastic components with increasing 𝐶𝑎𝑚𝑎𝑔. In contrast, at high oscillation frequencies,
the convergence of the droplet deformations as 𝐶𝑎𝑚𝑎𝑔 increases leads to increases in both
viscoelastic moduli.

Regarding the normal stress differences, we found that the anisotropies produced
by the magnetic field depend only on its strength and direction.

The droplet dynamics have a direct impact on the magnetization characteristics.
While the bulk magnetization grows as 𝐶𝑎𝑚𝑎𝑔 increases, confinement effects caused by
the magnetic field in the 𝑥-direction reduce the impact on the periodic component of
the bulk magnetization vector and, as a result, on 𝜃𝑚𝑎𝑔. Given that the reduction in
𝜃𝑚𝑎𝑔 is overcome by the rise in bulk magnetization, there is a magnetic torque that
grows with 𝐶𝑎𝑚𝑎𝑔 and aligns the droplet with the magnetic field. As the magnetic field
intensity rises in the 𝑦-direction, the droplet elongates to an area with a greater effective
shear rate, increasing the bulk magnetization magnitude, the periodic component of the
magnetization vector, and, therefore, the angle between ⟨M⟩ and H0. As 𝐶𝑎𝑚𝑎𝑔 grows,
there is an increasing magnetic torque occurring. It is important to note that all of
these properties had the same crossover point, demonstrating a strong dependency on
⟨M⟩, 𝜃𝑚𝑎𝑔, and 𝜏 𝑚𝑎𝑔 on the droplet interfacial properties. The droplet also exhibits a
finite magnetization relaxation time while being superparamagnetic due to its interfacial
dynamics.
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7 Future work

Within the possible ways to expand the present study, there are two main aspects to
be explored and consolidated about magnetic emulsions. The first point is the improvement
of the algorithm implemented in this study. Although the results are in complete agreement
with the experimental and theoretical models, it is still necessary to increase the versatility
of computational models in order to expand their applicability. Thus, a suggestion is
to migrate the present algorithm, for example, for a coupled level set/volume-of-fluid
(CLSVOF) (Sussman; Puckett, 2000) and combine the advantages of each method. Still,
on this topic, it is strongly recommended to optimize the code for both serial and parallel
processing.

The second main point is related to the physics of the problem. Future studies
on the current topic presented in this thesis are therefore suggested in order to elucidate
other behaviors. Within this perspective the first one would be to evaluate the influence
of capillary number within the linear regime of viscoelasticity, i.e., to verify how 𝐺′ and
𝐺′′ change for the same frequency when varying the strain amplitude and the magnetic
capillarity number. It would also be possible to verify the influence of the magnetic field on
the limit of linear viscoelasticity or even if it is possible that the magnetic field changes the
dilute emulsion behavior based on the magnetic interaction among the ferrofluid droplets.

The prospect of the present thesis serves as a continuous impulse for spur to future
research. It is possible to migrate the present work to the LAOS regime (Large amplitude
oscillatory shear) and investigate the influence of the magnetic field and oscillatory field
in the pattern of formation of larger harmonics. Or, with a small change in dynamics,
implement LAOE (Large amplitude oscillatory extensional) to quantify the dynamics,
rheology and magnetization properties in the emulsion.

Finally, as another suggestion for further work, it is possible to investigate the
emulsion response in a simultaneous combination of magnetic field and oscillatory flow, with
simple or compound droplets. Another area to be explored concerns magneto hyperthermia,
where the main objective would be to explore the thermodynamic properties of the droplet
in the presence of an oscillating magnetic field. Finally, exploring the possible effects of an
electric field in all these previous combinations and conditions is extremely relevant and
constitutes an important objective in the scope of future works.
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A Shear characteristic time

In order to present the mathematical and numerical model used in Sec. 5.1, this
appendix is intended to give a more detailed explanation about the approach based on the
shear characteristic time for 𝜆 = 1.

The non-dimensional parameters are as follow: u* = u/�̇�𝑎, 𝑡* = 𝑡�̇�, x* = x/𝑎,
𝑝* = 𝑝/𝜌𝑐𝑎

2�̇�2, 𝜆*(x) = 𝜂(x)/𝜂𝑐, 𝜌*(x) = 𝜌(x)𝜌𝑐, H* = H/|H0|, 𝜅* = 𝑎𝜅, 𝛿(x)* = 𝑎𝛿(x),
D* = D/�̇� and ∇* = 𝑎∇. Substituting each value in Eq. 3.14 and suppressing, for
convenience, the superscript *, we have

𝜕u
𝜕𝑡

+ u.∇u = −∇𝑝+ 1
𝑅𝑒

∇.(2D) + 𝐶𝑎𝑚𝑎𝑔

𝐶𝑎𝑅𝑒
(𝜁(x) − 1)H.∇H

− 1
𝐶𝑎𝑅𝑒

𝜅𝛿(|x − x𝜕Ω|)n̂ .
(A.1)

Here, in this cases, the non-dimensional parameters are the same as in Sec. 3.5:
𝑅𝑒, 𝐶𝑎 and 𝐶𝑎𝑚𝑎𝑔. The only difference is that instead of using the shear-rate amplitude,
�̇�0, it is used the shear-rate, �̇�, i.e., 𝑅𝑒 = 𝜌𝑐�̇�𝑎

2/𝜂𝑐, 𝐶𝑎 = 𝜂𝑐𝑎�̇�/𝜎 and 𝐶𝑎𝑚𝑎𝑔 = 𝜇0𝑎𝐻
2
0/𝜎

The upper and botom wall velocities in Fig. 3.1 are given by

u = ±𝐿𝑦

2 . (A.2)

Also substituting the non-dimensional parameters in Eqs. 3.22 and 3.25, we found
the non-dimensional bulk stress tensor scaled by 𝜂𝑐�̇�

Σ𝑏 = − 1
𝑉

∫︁
Ω𝑐

𝑝𝑑𝑉 I + 1
𝑉

∫︁
Ω𝑐

(∇u + ∇u𝑇 )𝑑𝑉 + Σ𝐷 , (A.3)

Σ𝐷 = 𝑅𝑒

𝑉

∫︁
𝜕Ω

[︂
x
(︂
𝜅

𝐶𝑎
− 𝐶𝑎𝑚𝑎𝑔

2𝐶𝑎 (𝜁 − 1)H2
)︂

n̂
]︂
𝑑Ω . (A.4)

The reduced viscosity, in Eq. 5.1, is defined as (Schramm, 2014)

[𝜂] =
𝜂𝑏

𝜂𝑑
− 1
𝛽

= 𝜂𝑏 − 𝜂𝑐

𝜂𝑐𝛽
, (A.5)
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where 𝜂𝑏 is the viscosity of the emulsion. Once 𝜂𝑏 = Σ𝑏:𝑦𝑥/�̇� and 𝜂𝑐 = Σ𝑐:𝑦𝑥/�̇�, the equation
reduces to

[𝜂] = Σ𝑏:𝑦𝑥 − 𝜂𝑐�̇�

𝜂𝑐�̇�𝛽
. (A.6)

Noting that, in simple shear,

Σ𝑏:𝑦𝑥 =
∫︁

Ω𝑐

𝜂𝑐
𝜕u
𝜕𝑦
𝑑Ω𝑐 + Σ𝐷

𝑦𝑥 = 𝜂𝑐�̇� + Σ𝐷
𝑦𝑥 , (A.7)

Eq. A.6 reduces to

[𝜂] =
Σ𝐷

𝑦𝑥

𝜂𝑐�̇�𝛽
, (A.8)

which is given, taking advantage of the non-dimensional form of Σ𝐷
𝑦𝑥, as

[𝜂] =
Σ𝐷

𝑦𝑥

𝛽
, (A.9)

The projection method follows the same methodology as described in Sec. 4.2. In a
similar way, the boundary conditions in Sec. 4.4, but without the term 𝐶𝑎/𝑅𝑒 in Eq. 4.40.
The equations are given by

1
2Δ𝑡

(︁
3u* − 4u𝑛 + u𝑛−1

)︁
− 1
𝑅𝑒

∇2u* = G(û) + F𝐶(𝜑) + F𝑀(𝜑, �̂�) , (A.10)

u𝑛+1 = u* − 2Δ𝑡
3 ∇(𝑞𝑛+1) , (A.11)

∇2𝑞𝑛+1 = 3
2Δ𝑡∇ · u*, (A.12)

𝑝𝑛+1 = 𝑞𝑛+1 − ∇ · u*, (A.13)

where G, F𝑐 and F𝑚𝑎𝑔 are

G(û) = −û · ∇û − 1
𝑅𝑒

∇2û + 1
𝑅𝑒

∇ · [(∇û + ∇û𝑇 )] , (A.14)

F𝑐(𝜑) = − 1
𝐶𝑎𝑅𝑒

𝜅(𝜑)𝛿𝜖(𝜑)|∇𝜑|n̂, (A.15)
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F𝑚𝑎𝑔(𝜑, Ĥ) = 𝐶𝑎𝑚𝑎𝑔

𝐶𝑎𝑅𝑒
[(𝜁(𝜑) − 1)Ĥ.∇Ĥ]. (A.16)

The discretization follows the same methodology as described in Sec. 4.3, needing
only few adaptations in the linear systems. Finally, as an additional information, there is
a relation between both characteristic times. Comparing both the relaxation times and
angular frequencies in its respective scales, it is possible to write

𝑡𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝑡𝑠ℎ𝑒𝑎𝑟

= 𝜔𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜔𝑠ℎ𝑒𝑎𝑟

= 𝜂𝑐𝑎�̇�

𝜎
= 𝐶𝑎 . (A.17)

By applying Eq. A.17 in Eq. 3.20, it follows immediately that the amplitude in the
shear time scale is 1/𝜔𝑠ℎ𝑒𝑎𝑟. Since the strain amplitude is the same regardless the time
scale, i.e., �̇�0,𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = �̇�0,𝑠ℎ𝑒𝑎𝑟, both simulations can be interchanged between time scales by
changing the angular frequency. For example, �̇�0 = 0.1, 𝜔𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 5 and 𝐶𝑎 = 0.3 in the
droplet time scale is equivalent to �̇�0 = 0.1, 𝜔 = 10 and 𝐶𝑎 = 0.3 in the shear time scale.

Comparing the bulk stress in Eqs. 3.26 and A.3, it is also possible to write

Σ𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 𝐶𝑎Σ𝑠ℎ𝑒𝑎𝑟. (A.18)
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B Variable viscosity

The variable viscosity can be implemented by taking into account the term 𝜆(x)
into Eqs. 4.21 and A.10. The full form is given by

∇ · (2𝜆(x)D) = ∇ · (𝜆(x)(∇u + ∇u𝑇 )) . (B.1)

Developing the term in index notation, we have

∇ · (𝜆(x)(∇u + ∇u𝑇 )) = 𝜕

𝜕𝑥𝑘

(︃
𝜆(x) 𝜕𝑢𝑖

𝜕𝑥𝑘

+ 𝜆(x)𝜕𝑢𝑘

𝜕𝑥𝑖

)︃
, (B.2)

which results in the 𝑥, 𝑦 and 𝑧-directions, respectively, for the velocity field u = (𝑢, 𝑣, 𝑤)
and 𝑖, 𝑗, 𝑘 being the grid index.

2 𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑢

𝜕𝑥

)︃
+ 𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑢

𝜕𝑦
+ 𝜆(x)𝜕𝑣

𝜕𝑥

)︃
+ 𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑢

𝜕𝑧
+ 𝜆(x)𝜕𝑤

𝜕𝑥

)︃
, (B.3)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑣

𝜕𝑥
+ 𝜆(x)𝜕𝑢

𝜕𝑦

)︃
+ 2 𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑣

𝜕𝑦

)︃
+ 𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑣

𝜕𝑧
+ 𝜆(x)𝜕𝑤

𝜕𝑦

)︃
, (B.4)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑤

𝜕𝑥
+ 𝜆(x)𝜕𝑢

𝜕𝑧

)︃
+ 𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑤

𝜕𝑦
+ 𝜆(x)𝜕𝑣

𝜕𝑧

)︃
+ 2 𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑤

𝜕𝑧

)︃
. (B.5)

Based on the previous equations, the discretization of each term is:

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑢

𝜕𝑥

)︃
=

(︁
𝜆𝜕𝑢

𝜕𝑥

)︁
𝑖+1/2

−
(︁
𝜆𝜕𝑢

𝜕𝑥

)︁
𝑖−1/2

Δ𝑥 = 𝜆𝑖+1,𝑗,𝑘(𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖,𝑗,𝑘(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘)
(Δ𝑥)2

(B.6)

𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑢

𝜕𝑦

)︃
=

(︁
𝜆𝜕𝑢

𝜕𝑦

)︁
𝑗+1/2

−
(︁
𝜆𝜕𝑢

𝜕𝑦

)︁
𝑗−1/2

Δ𝑦 =

𝜆𝑖+1/2,𝑗+1/2,𝑘(𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗−1/2,𝑘(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗−1,𝑘)
(Δ𝑦)2

(B.7)
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𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑣

𝜕𝑥

)︃
=

(︁
𝜆 𝜕𝑣

𝜕𝑥

)︁
𝑗+1/2

−
(︁
𝜆 𝜕𝑣

𝜕𝑥

)︁
𝑗−1/2

Δ𝑦 =

𝜆𝑖+1/2,𝑗+1/2,𝑘(𝑣𝑖+1,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗−1/2,𝑘(𝑣𝑖+1,𝑗−1,𝑘 − 𝑣𝑖,𝑗−1,𝑘)
Δ𝑦Δ𝑥

(B.8)

𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑢

𝜕𝑧

)︃
=

(︁
𝜆𝜕𝑢

𝜕𝑧

)︁
𝑘+1/2

−
(︁
𝜆𝜕𝑢

𝜕𝑧

)︁
𝑘−1/2

Δ𝑧 =

𝜆𝑖+1/2,𝑗,𝑘+1/2(𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗,𝑘−1/2(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘−1)
(Δ𝑧)2

(B.9)

𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑤

𝜕𝑥

)︃
=

(︁
𝜆𝜕𝑤

𝜕𝑥

)︁
𝑘+1/2

−
(︁
𝜆𝜕𝑤

𝜕𝑥

)︁
𝑘−1/2

Δ𝑥 =

𝜆𝑖+1/2,𝑗,𝑘+1/2(𝑤𝑖+1,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗,𝑘−1/2(𝑤𝑖+1,𝑗,𝑘−1 − 𝑤𝑖,𝑗,𝑘−1)
Δ𝑧Δ𝑥

(B.10)

𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑣

𝜕𝑦

)︃
=

(︁
𝜆𝜕𝑣

𝜕𝑦

)︁
𝑗+1/2

−
(︁
𝜆𝜕𝑣

𝜕𝑦

)︁
𝑗−1/2

Δ𝑥 = 𝜆𝑖+1,𝑗,𝑘(𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖,𝑗,𝑘(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘)
(Δ𝑥)2

(B.11)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑣

𝜕𝑥

)︃
=

(︁
𝜆 𝜕𝑣

𝜕𝑥

)︁
𝑖+1/2

−
(︁
𝜆 𝜕𝑣

𝜕𝑥

)︁
𝑖−1/2

Δ𝑥 =

𝜆𝑖+1/2,𝑗+1/2,𝑘(𝑣𝑖+1,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘) − 𝜆𝑖−1/2,𝑗+1/2,𝑘(𝑣𝑖,𝑗,𝑘 − 𝑣𝑖−1,𝑗,𝑘)
(Δ𝑦)2

(B.12)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑢

𝜕𝑦

)︃
=

(︁
𝜆𝜕𝑢

𝜕𝑦

)︁
𝑖+1/2

−
(︁
𝜆𝜕𝑢

𝜕𝑦

)︁
𝑖−1/2

Δ𝑦 =

𝜆𝑖+1/2,𝑗+1/2,𝑘(𝑢𝑖,𝑗+1,𝑘 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖−1/2,𝑗+1/2,𝑘(𝑢𝑖−1,𝑗+1,𝑘 − 𝑢𝑖−1,𝑗,𝑘)
Δ𝑦Δ𝑥

(B.13)

𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑣

𝜕𝑧

)︃
=

(︁
𝜆𝜕𝑣

𝜕𝑧

)︁
𝑘+1/2

−
(︁
𝜆𝜕𝑣

𝜕𝑧

)︁
𝑘−1/2

Δ𝑧 =

𝜆𝑖+1/2,𝑗,𝑘+1/2(𝑣𝑖,𝑗,𝑘+1 − 𝑣𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗,𝑘−1/2(𝑣𝑖,𝑗,𝑘 − 𝑣𝑖,𝑗,𝑘−1)
(Δ𝑧)2

(B.14)

𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑤

𝜕𝑦

)︃
=

(︁
𝜆𝜕𝑤

𝜕𝑦

)︁
𝑘+1/2

−
(︁
𝜆𝜕𝑤

𝜕𝑦

)︁
𝑘−1/2

Δ𝑥 =

𝜆𝑖,𝑗+1/2,𝑘+1/2(𝑤𝑖,𝑗+1,𝑘 − 𝑤𝑖,𝑗,𝑘) − 𝜆𝑖+1/2,𝑗,𝑘−1/2(𝑤𝑖,𝑗+1,𝑘−1 − 𝑤𝑖,𝑗,𝑘−1)
Δ𝑧Δ𝑥

(B.15)
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𝜕

𝜕𝑧

(︃
𝜆(x)𝜕𝑤

𝜕𝑧

)︃
=

(︁
𝜆𝜕𝑤

𝜕𝑧

)︁
𝑘+1/2

−
(︁
𝜆𝜕𝑤

𝜕𝑧

)︁
𝑘−1/2

Δ𝑧 = 𝜆𝑖+1,𝑗,𝑘(𝑢𝑖+1,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖,𝑗,𝑘(𝑢𝑖,𝑗,𝑘 − 𝑢𝑖−1,𝑗,𝑘)
(Δ𝑥)2

(B.16)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑤

𝜕𝑥

)︃
=

(︁
𝜆𝜕𝑤

𝜕𝑥

)︁
𝑖+1/2

−
(︁
𝜆𝜕𝑤

𝜕𝑥

)︁
𝑖−1/2

Δ𝑥 =

𝜆𝑖+1/2,𝑗,𝑘+1/2(𝑤𝑖+1,𝑗,𝑘 − 𝑤𝑖,𝑗,𝑘) − 𝜆𝑖−1/2,𝑗,𝑘+1/2(𝑤𝑖−1,𝑗,𝑘 − 𝑤𝑖−1,𝑗,𝑘)
(Δ𝑥)2

(B.17)

𝜕

𝜕𝑥

(︃
𝜆(x)𝜕𝑢

𝜕𝑧

)︃
=

(︁
𝜆𝜕𝑢

𝜕𝑧

)︁
𝑖+1/2

−
(︁
𝜆𝜕𝑢

𝜕𝑧

)︁
𝑖−1/2

Δ𝑦 =

𝜆𝑖+1/2,𝑗,𝑘+1/2(𝑢𝑖,𝑗,𝑘+1 − 𝑢𝑖,𝑗,𝑘) − 𝜆𝑖−1/2,𝑗,𝑘+1/2(𝑢𝑖−1,𝑗,𝑘+1 − 𝑢𝑖−1,𝑗,𝑘)
Δ𝑧Δ𝑥

(B.18)

𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑤

𝜕𝑦

)︃
=

(︁
𝜆𝜕𝑤

𝜕𝑦

)︁
𝑗+1/2

−
(︁
𝜆𝜕𝑤

𝜕𝑦

)︁
𝑗−1/2

Δ𝑦 =

𝜆𝑖,𝑗+1/2,𝑘+1/2(𝑤𝑖,𝑗+1,𝑘 − 𝑤𝑖,𝑗,𝑘) − 𝜆𝑖,𝑗−1/2,𝑘+1/2(𝑤𝑖,𝑗,𝑘 − 𝑤𝑖,𝑗−1,𝑘)
(Δ𝑦)2

(B.19)

𝜕

𝜕𝑦

(︃
𝜆(x)𝜕𝑣

𝜕𝑧

)︃
=

(︁
𝜆𝜕𝑣

𝜕𝑧

)︁
𝑗+1/2

−
(︁
𝜆𝜕𝑣

𝜕𝑧

)︁
𝑗−1/2

Δ𝑧 =

𝜆𝑖,𝑗+1/2,𝑘+1/2(𝑣𝑖,𝑗,𝑘+1 − 𝑣𝑖,𝑗,𝑘) − 𝜆𝑖,𝑗−1/2,𝑘+1/2(𝑤𝑖,𝑗−1,𝑘+1 − 𝑤𝑖,𝑗−1,𝑘)
Δ𝑦Δ𝑧

(B.20)
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