
  
 

 

 

SENSOR DEVICE ON LATERAL PASSING DISTANCE: A CASE STUDY WITH 

UNSUPERVISED LEARNING MODEL TO ESTIMATE HAZARDOUS AREAS 

FOR BICYCLE MOBILITY  

 

LUIZ MARCEL SILVA DE MELLO 

 

 

 

 
DISSERTAÇÃO DE MESTRADO/TESE DE DOUTORADO EM TRANSPORTES 

 



 ii 

UNIVERSIDADE DE BRASÍLIA 

FACULTY OF TECHNOLOGY 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING 

  

  

 

  

  

SENSOR DEVICE ON LATERAL PASSING DISTANCE: A 

CASE STUDY WITH UNSUPERVISED LEARNING MODEL 

TO ESTIMATE HAZARDOUS AREAS FOR BICYCLE 

MOBILITY  

  

LUIZ MARCEL SILVA DE MELLO 
  

  

  

  

ADVISOR: MICHELLE ANDRADE 

  

  

  

MASTER’S THESIS IN TRANSPORTATION 

  

  

BRASÍLIA/DF: October/2023 
  

  



 iii 

UNIVERSIDADE DE BRASÍLIA 

FACULTY OF TECHNOLOGY 

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING  

  

  

SENSOR DEVICE ON LATERAL PASSING DISTANCE: A CASE 

STUDY WITH UNSUPERVISED LEARNING MODEL TO ESTIMATE 

HAZARDOUS AREAS FOR BICYCLE MOBILITY 

   

LUIZ MARCEL SILVA DE MELLO  

  

MASTER'S THESIS SUBMITTED TO THE GRADUATE PROGRAM IN 

TRANSPORTATION OF THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL 

ENGINEERING OF THE FACULTY OF TECHNOLOGY, AT THE UNIVERSITY OF 

BRASÍLIA, AS PART OF THE REQUIREMENTS TO OBTAIN THE MASTER'S 

DEGREE IN TRANSPORTATION. 

  

APPROVED BY: 

  

____________________________________________ 

MICHELLE ANDRADE, Ph.D. (UnB) 

ADVISOR 

  

____________________________________________ 

LI WEIGANG, Ph.D. (UnB) 

INTERNAL EXAMINER  

_____________________________________________ 

JORGE TIAGO BASTOS, Ph.D. (UFPR) 

EXTERNAL EXAMINER 

 

BRASÍLIA/DF, October, 2023. 

 



 iv 

CATALOG FORM 

MELLO, LUIZ MARCEL SILVA de 

Sensor Device on Lateral Passing Distance: a case study with unsupervised learning model 

to estimate hazardous areas for bicycle mobility. Brasília, Distrito Federal, 2023. xii, 63p., 

210 x 297 mm (ENC/FT/UnB, Master, Transportation, 2023). 

Master’s Thesis – University of Brasília. Faculty of Technology. Department of Civil and 

Environmental Engineering. 

1. Bicycle Safety                            2. Lateral Passing Distance 

         3. Machine Learning                       4. Intelligent transportation 

I. ENC/FT/UnB                              II. Título (série) 

  

REFERENCE  
MELLO, L. M. S. DE (2023). Sensor Device on Lateral Passing Distance: a case study with 

unsupervised learning model to estimate hazardous areas for bicycle mobility. Publicação 

T.DM-009/2023. Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, 

Brasília, DF, 74 p. 

 

COPYRIGHT 

AUTHOR: Luiz Marcel Silva de Mello 

THESIS TITLE: Sensor Device on Lateral Passing Distance: a case study with unsupervised 

learning model to estimate hazardous areas for bicycle mobility. 

DEGREE: Mestre/Master    

YEAR: 2023 

   

Permission is granted to the University of Brasília to reproduce copies of this master’s thesis 

and to lend or sell such copies for academic and scientific purposes only. The author reserves 

other publishing rights, and no part of this master’s thesis may be reproduced without written 

authorization from the author. 

 

____________________________________________ 

Luiz Marcel Silva de Mello  -   marcelsmello@gmail.com 
Anexo SG-12, 1° andar. Campus Universitário Darcy Ribeiro 

Asa Norte: Brasília: Distrito Federal: 70910-900: Brasil; e-mail: ppgt@unb.br   



 v 

  

  

  

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

  
  

“There is never any end. There are always new sounds to imagine and new feelings to get at. And always, there 

is the need to keep purifying these feelings and sounds so that we can see what we have discovered in its pure 

state. So that we can see more and more clearly what we are. In that way, we can give those who listen to the 

essence the best of what we are. But to do that at each stage, we have to keep on cleaning the mirror.” 

-     John Coltrane 
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ABSTRACT 

Sensor Device on Lateral Passing Distance: a case study with an unsupervised learning 

model to estimate hazardous areas for bicycle mobility 

 
Commuting by bicycle is widely increasing worldwide. As an active transportation 

mode, cycling can potentially reduce traffic congestion and air pollution. Also, promoting an 
active lifestyle can improve public health and make cities more human-friendly. Although, the 
quantity of occurrences and fatalities with cyclists is still worrisome.  

 
The Surrogate Safety Measures (SSM) are promising indicators for assessing traffic safety with 
measures based on these traffic conflicts. The word “surrogate” is used because the measures 
are based not on crashes but on traffic conflicts. Also, network screening ensures an efficient 
identification of hazardous sites to reduce the number and severity of crashes. This 
methodology can be conducted using either a reactive or a proactive approach. Regarding the 
proactive approaches, bicycles instrumented with sensors became increasingly usable for 
research in the mobility field. By using a portable and multi-functional sensing device is 
possible to collect bicycle trajectory data and Lateral Passing Distance (LPD) using various 
sensors connected to a database system.  
 
Therefore, the current research aims to estimate and define hazardous areas for active mobility 
by applying unsupervised machine learning algorithms (k-means and DBSCAN) based on a 
sensor device for data collection. The Lateral Passing Distance (LPD) results collected between 
bicycles and vehicles were related to the cyclist data. Beyond the clustering investigation, a 
correlation between the features has identified how the data interacted among them.  
 
Some of this data includes velocity, curse elevation, altitude, accelerometer, and gyroscopic 
information from a field operational data collection on the street. The methodology was applied 
to a case study regarding the Brasília city center avenue with a shared pathway around the local 
City Park. Therefore, this study aims to propose a methodological and data-driven approach to 
bicycle safety using machine learning algorithms. Regarding the general data, 25% of the 
readings are less than 139.62cm for the LPD. When the clustering model was applied, 25% of 
the LPD readings were less than 100.13cm; for the second quartile, 50% were less than 
193.69cm. It indicates critical LPD for one of the clusters with 75 readings, considering the 
threshold of 150cm for the minimal lateral clearance distance law adopted in Brazil.  
 
Keywords: Bicycle Safety; Lateral Passing Distance; Machine Learning; Intelligent 
Transportation.  
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RESUMO 

Dispositivo Sensor Na Distância Lateral De Ultrapassagem: Um Estudo De Caso Com 

Modelo De Aprendizado Não Supervisionado Para Estimar Locais De Risco À 

Mobilidade Por Bicicleta 

 
A locomoção por bicicleta está aumentando significativamente em todo o mundo e como um 
modo de transporte ativo o ciclismo pode potencialmente reduzir o congestionamento do 
tráfego e a poluição do ar. Além disso, promover um estilo de vida ativo pode melhorar a saúde 
pública e tornar as cidades mais amigáveis para as pessoas. No entanto, a quantidade de 
ocorrências e fatalidades envolvendo ciclistas ainda é preocupante. 
 
As Medidas de Segurança Substitutas (SSM) são indicadores promissores para avaliar a 
segurança no tráfego com base em conflitos, em vez de sinistros e acidentes. O termo 
"substitutas" é usado porque as medidas se baseiam em conflitos de tráfego e não em sinistros. 
Além disso, a triagem de rede garante uma identificação eficiente de locais perigosos para 
reduzir o número e a gravidade dos sinistros. Portanto, essa metodologia pode ser realizada 
tanto por uma abordagem reativa quanto por uma abordagem proativa. No que diz respeito às 
abordagens proativas, bicicletas instrumentadas com sensores tornaram-se cada vez mais úteis 
para pesquisas no campo da mobilidade. Por meio de um dispositivo de detecção portátil e 
multifuncional, é possível coletar dados de trajetória de bicicletas e a Distância Lateral de 
Ultrapassagem (LPD) usando variados sensores conectados a um sistema de banco de dados. 
 
Dessa forma, o presente estudo tem como objetivo estimar áreas de risco para a mobilidade 
ativa, aplicando algoritmos de aprendizado de máquina não supervisionado (K-Means e 
DBSCAN) com base em dispositivos sensores para a coleta de dados. Os resultados da 
Distância Lateral de Ultrapassagem (LPD) coletados entre bicicletas e veículos foram então 
relacionados aos dados do ciclista. Além da pesquisa de clusterização, foi realizada a correlação 
entre as características para identificar como os dados interagiam entre si. 
 
Alguns desses dados incluem velocidade, elevação do percurso, altitude, informações do 
acelerômetro e giroscópio a partir de uma coleta de dados naturalística na rua. A metodologia 
foi aplicada a um estudo de caso em uma avenida do centro da cidade de Brasília, em torno do 
Parque da Cidade. Por fim, este estudo objetiva uma aplicação metodológica e analítica de 
segurança cicloviária orientada a dados através da utilização de algoritmos de aprendizado de 
máquina. Em relação aos dados gerais, 25% das leituras relativas à distância lateral de 
passagem tiveram menos de 136,36 cm. Quando o modelo de agrupamento é aplicado, 25% 
dessas leituras tiveram menos de 100,13 cm; para o segundo quartil, 50% tiveram menos de 
193,69 cm. Isso indica uma LPD crítica para um dos grupos com 75 leituras, quando 
considerado o limite de 150 cm para a distância mínima de afastamento lateral estabelecido 
pela legislação brasileira.  
 
Keywords: Segurança da Bicicleta; Distância Lateral de Ultrapassagem; Aprendizado de 
Máquina; Transporte Inteligente.  
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1 INTRODUCTION 

1.1 CONTEXT AND BACKGROUND 

Commuting by bicycle is widely increasing worldwide. As an active transportation 

mode, cycling can potentially reduce traffic congestion and air pollution. Also, promoting an 

active lifestyle can improve public health and make cities more human-friendly (VANPARIJS 

et al., 2015; MUELLER et al., 2015; LI et al., 2015). Although, the quantity of occurrences 

and fatalities with cyclists is still worrisome (WORLD HEALTH ORGANIZATION, 2018). 

Due to the high number of crashes with active mobility, a practical approach is vital to provide 

greater confidence for decision-making regarding road safety involving the overtaking of 

bicycles by vehicles.  

 

The types of crashes involving active mobility (e.g., pedestrians and bicyclists) yield small 

sample sizes that can result in inconclusive or unreliable crash-based safety evaluations. These 

small sample can be due to the lack of registration on accidents. Therefore, many safety 

professionals and engineers have adopted the Traffic Conflicts Technique (TCT) to measure 

the conflict's severity and recommend corrective actions for crash prevention. Thus, the 

Surrogate Safety Measures (SSM) are promising indicators for assessing traffic safety with 

measures based on these traffic conflicts (LORD et al., 2021). The word “surrogate” is used 

because the measures are based not on crashes but on conflicts. 

 

In this regard, critical Lateral Passing Distance (LPD) events between motor vehicles and 

bicycles have the potential to be used as bicycle-oriented SSM indicators for safety evaluation. 

Some SSMs were already validated with crash frequency and the number of cyclists injured, 

demonstrating a positive and moderate correlation between critical LPD events and crashes 

(BERNADES et al., 2023). 

 

The LPD between bicycles and motor vehicles is a crucial perspective for cyclist safety 

(DOZZA et al., 2016; LAMONDIA & DUTHIE, 2012). Feeling safe and comfortable is 

essential to the extensive use of the facilities. In this context, a recent systematic review focused 

on the factors influencing the LPD between bicycles and motorized traffic (Rubie et al., 2020). 

It indicates that on-road vehicle-cyclist passing distances have been investigated in several 
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previous studies (WALKER, 2007; LOVE et al., 2012; SAVOLAINEN et al., 2012; CHUANG 

et al., 2013; WALKER et al., 2014; MEHTA et al., 2015; HAWORTH et al., 2018; BECK et 

al., 2019; AMPE et al., 2020; FEIZI et al., 2021; MACKENZIE et al., 2021). 

 

Moreover, concerning the overtaking measurement, various research objectives show that 

instrumented bicycles are a valuable, effective, and critical tool in cycling safety research. Also, 

it was possible to distinguish factors that have been indicated to affect passing behavior 

(GADSBY & WATKINS, 2020; FEIZI et al., 2021; MACKENZIE et al., 2021). 

 

Furthermore, Machine Learning (ML) and Internet of Things (IoT) techniques in Intelligent 

Transport Systems (ITS) can conduct the studies for data-driven safety analysis. Thus, 

unsupervised Learning algorithms have been applied in hazardous site identification, like 

clustering models and Kernel Density Estimation (KDE), as some standard geospatial methods 

for analysis (NGUYEN et al., 2018; ZANTALIS et al., 2019; WANG et al., 2019; ZANTALIS, 

F. et al., 2019; LORD et al., 2021). The clustered areas are classified as hazardous spots for 

safety improvement. 

 

The use of technology has made connectivity between various transportation system elements 

attainable. Likewise, with the proliferation of devices, sensors, and open-source information, 

it is possible to develop devices that address different data collection challenges and improve 

the ITS perspective (ANG & SENG, 2016; GUERRERO-IBÁÑEZ et al., 2018; LIM et al., 

2018; OZBAY et al., 2018; BERNARDES et al., 2019; BERNARDES & OZBAY, 2023).  

 

Lastly, network screening ensures an efficient identification of hazardous sites to reduce the 

number and severity of crashes. This methodology can be conducted using either a reactive or 

a proactive approach. The reactive approach relies on analyses of historical crash data. In 

contrast, the proactive approach relies on analyses and identification of geometric and 

operational characteristics highly associated with crash risk but not necessarily with crashes 

(AASHTO, 2010). The present research uses the proactive approach in the analysis to develop 

a methodology to identify high risk spots for cyclists, as could be checked in the following 

objectives session. 
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1.2 OBJECTIVE 

Bicycles instrumented with sensors became increasingly usable for research in the 

mobility field. Using a portable and multi-functional sensing device is possible to collect 

bicycle trajectory data and Lateral Passing Distance (LPD) using various sensors connected to 

a database system or a memory card (GADSBY et al., 2020; BERNARDES et al., 2019).  

 

Therefore, the current research aims to estimate and define hazardous areas for bicycle mobility 

by applying unsupervised machine-learning algorithms based on a sensor device for data 

collection. The Lateral Passing Distance results collected among bicycles and vehicles were 

related to the cyclist data. Some of this data includes velocity, curse elevation, accelerometer, 

and gyroscopic information through a field operational data collection on the street. The 

methodology was applied to a case study in Brasília city center avenue regarding a shared 

pathway around the local City Park. Specific objectives include: 

 

● Collect field operational data using the BSafe360 Sensor Device for the specified 

research location; 

● Procedure a data treatment and wrangling for exploratory data analysis (EDA); 

● Apply unsupervised Machine Learning algorithms to cluster various features related to 

the dataset and estimating hazardous areas; 

● Compare the performance for different machine learning models on clustering; 

● Elaborate a Systematic Literature Review on the Lateral Passing Distance collection 

procedure with ultrasonic sensors and Internet of Things. 

● Make all the algorithms and script manipulation of this study publicly available on the 

internet for future research. 

1.3 METHODOLOGICAL RESEARCH AND SESSIONS 

The last section presented the research objectives, introducing the context and methods 

employed. The following session presents the systematic literature review for the Lateral 

Passing Distance (LPD) collection procedure evolving the databases, criteria, and temporal 

approach used. Then the paper's key findings are presented as well as the data collection setups 

and data analysis procedures, and hardware and software chosen are addressed.  
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Also, a literature review regarding Machine Learning technics is addressed. The use of 

unsupervised learning models to cluster risk areas for mobility is presented. The following 

section shows the data collection methodology with the area characterization for the study and 

the description of the field procedure. Finally, a discussion about the results and approaches, 

as well as a comparison between clustering models is presented, besides the research 

conclusions and limitations, followed by topics for future research. The research schema is 

presented in the Figure 1.1, bellow. 

 

 
Figure 1.1 Research schema 
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2 LITERATURE REVIEW 

2.1 REVIEW INTRODUCTION 

Traffic conflict events were defined once as “a driver takes evasive action, brakes or 

weaves to avoid a collision” (PERKINS & HARRIS, 1967). The Traffic Conflicts Technique 

(TCT) procedure was conceived as a systemic approach for observing and measuring crash 

potential. Since Perkins & Harris, TCT has gained popularity as a diagnostic tool used to 

determine appropriate safety countermeasures at high crash locations and as an evaluative tool 

for safety treatments. 

 

Thus, the Surrogate Safety Measures (SSM) are promising indicators for assessing traffic safety 

with measures based on these traffic conflicts (LORD et al., 2021; BERNARDES et al., 2023). 

The word “surrogate” is used because the measures are based not on crashes but on traffic 

conflicts. In this regard, critical Lateral Passing Distance (LPD) events between motor vehicles 

and bicycles have the potential to be used as bicycle-oriented SSM indicators for safety 

evaluation. 

 

The following contents covered in this session are based on a systematic literature review 

regarding sensors in Lateral Passing Distance measurement, considering publications until 

2021. This systematic review limited this data and aimed to include only studies with collecting 

procedures in field realized until the pandemic moment: march 2020. The isolation policies 

regarding the COVID-19 pandemic in the following years could influence and affecting 

practical researches on streets due to the increase of remote work and new routines, changing 

the commuting general behavior. 

 

Furthermore, based specially on an extensive literature review on this theme (RUBIE et al., 

2020), the book “Highway Safety Analysis and Modeling” (LORD et al., 2021); a paper review 

on Machine Learning and IoT in Smart Transportation (ZANTALIS et al., 2019); and in a 

validate proposal correlation between LPD and crashes historical data (BERNARDES et al., 

2023). 
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2.2 SENSOR ON BICYCLE SAFETY FOR LATERAL PASSING DISTANCE DATA 

2.2.1 Databases 

For this study, three databases were used in the methodology: Google Scholar, Scopus, 

and Web of Science. The review followed the preferred reporting items for systematic reviews 

and meta-analysis protocols (PRISMA-P) 2015 statement (MOHER et al., 2015). 

  

The first database consulted was Google Scholar. It was selected to broaden the search due to 

the more significant number of results. The term “Bicycle Passing Distance” was first tried and 

resulted in 165.000 documents. After that, the string combination “bicycle OR cyclist” AND 

“passing distance OR overtaking” was inserted and resulted in 408 documents. These 

documents are listed in order of relevance from keywords, and selected meaning 10% of the 

sample with 49 documents. This selection was exported in .CSV file. From these 49 documents, 

a new term, "sensor," was inserted to filter how many were explicitly measured regarding it. 

The new search resulted in 22 documents. 

  

The second, the Scopus database, was searched into “TITLE-ABS-KEY” (titles, abstracts, and 

keywords) terms. The combination of strings and terms used was: (bicycle OR cyclist) AND 

(passing OR overtaking AND (distance)). It resulted in 164 documents. Moreover, the added 

term “sensor” generated a new result, delimiting the articles into twelve. The third one was the 

Web of Science database. The primary collection was searched through topics in the same 

combination: (bicycle OR cyclist) AND (passing distance OR overtaking), resulting in 133 

articles. Furthermore, with the addition of the term “sensor,” the final result was eight articles. 

The search was finalized in May 2021. This study limited this data and aimed to include only 

research with collecting procedures until the pandemic moment, march 2020, concerning the 

probable influence on that. 

  

A keyword delimitation methodology is represented in Figure 2.1. It also tested the use of the 

keyword “Passing behavior,” but it was perceived that it did not return a significant difference 

in the final result. 
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Figure 2.1 Keyword delimitation methodology 

2.2.2 Inclusion Criteria 

The results from the databases were merged, and 10 duplicate articles were excluded. 

The literature review included research published in English and in a peer-reviewed format. 

Additionally, the primary method for measuring passing distance was required to be the use of 

an ultrasonic sensor device. GPS sensors or video records were considered only as 

supplementary sources in this search, not as primary methods. GPS sensors and video 

recordings were considered supplementary in this search, rather than primary sources. 

Additionally, articles employing alternative approaches, such as simulators, or focusing on a 

driver's perspective or other perspectives unrelated to bicycle safety, were excluded. Reports, 

documentation, and Ph.D. these were likewise not taken into account. 

 

Regarding the COVID-19 pandemic in the early 2020s, this research focused on studies that 

provided practical procedures in the field and limited the search for publications up until the 

beginning of 2021, focusing on procedures conducted prior to the pandemic. The isolation 

policies related to the COVID-19 pandemic in the subsequent years could have influenced and 

impacted some practical research on streets due to the rise of remote work and new routines, 

altering commuting behavior and limiting regular displacements. Therefore, a total of 15 papers 

were eligible for inclusion. The systematic review methodology through the databases is 

presented in Figure 2.2, and the totals follow the keywords and strings used. 

  

The kind of studies concerning the perspective of the driver was not considered in the present 

review. Black et al. (2020) used vehicle-mounted ultrasonic sensors, and the findings suggest 
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that bicyclists should incorporate additional visibility aids to encourage safer passing distances 

of vehicles at nighttime. Rossi et al. (2021) found that an onboard real-time coaching program 

can improve the safety of maneuvers involving passing cyclists using vehicle-mounted 

ultrasonic sensors. These approaches can lead toward to Autonomous Vehicles (AV) theme 

regarding the interaction between cars and bicycles. 

 
Figure 2.2 Systematic Review Methodology through bases, keywords, and strings 

2.2.3 Keywords and temporal data analysis 

This review covers a roughly decade-long timeframe. Since 2007, research involving 

instrumented bicycles has become more commonplace, but 2 articles were published yearly. 

However, a significant shift occurred in 2013 when the use of instrumented bicycles gained 

momentum, resulting in a minimum of nine articles per year (MACKENZIE et al., 2021; 

GADSBY, 2020).  

 

Up until then, the majority of research involving instrumented bicycles primarily relied on 

video recordings and the use of Global Positioning System (GPS). The use of ultrasonic sensor 

devices to measuring passing distance is a relatively recent development.  Figure 2.3 shows the 

correlation between the index and the author’s keywords concerning included articles classified 

by time. 
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By using the VOS viewer software, a bibliographic data map was created. The totality of the 

articles has been joined into a unique base on the Scopus database, and a file was generated 

with the result of all searches from the combination of Google Scholar, Scopus, and Web of 

Science. It applied analysis of co-occurrence filtering the keywords (author’s and Index’s 

ones). It used the whole counting method, and the minimum number of keywords occurrences 

chosen was two. It results in a total of fifty-two keywords meeting the threshold. The lines 

between the points show the strength of the co-occurrences. The total author's keywords are 

51, and the total Index keywords are 186. 

 
Figure 2.3 Temporal theme analysis regarding the author’s and index keywords 

By employing the freely available software VOS viewer (BLACK et al., 2020) was possible to 

trace the historical evolution of sensor usage in the context of the passing distance and bicycle 

safety. Notably, the yellow area on the right of the graph represents the most recent period, and 

the keyword “sensors” is closely associated with these recent papers, dating around 2019 and 

2021. This trend illustrates the increasing research interest in recent years, likely influenced by 

the emergence of Smart Cities, the Internet of Things (IoT), Autonomous Vehicles, Machine 

sensors 
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Learning Techniques, and the growing utilization of sensors for behavior studies, bicycle 

safety, and transportation planning. Figure 2.4 displays the most related terms linked to the 

keyword “sensors” during these recent periods. 

 

 
Figure 2.4 Keyword relationship regarding the timeline 

Concerning the publication per country, Figure 2.5 illustrates the contributions of eight 

countries. The United States (USA) maintained a prominent position in research related to 

passing distance using ultrasonic sensor devices. Although, the United Kingdom (UK) has been 

widely cited in research throughout this decade, particularly for a naturalist experiment that 

employed an instrumented bicycle to collect proximity data from overtaking motorists 

(WALKER, 2007) with 158 citation indexes (SCOPUS, 2021).  

 

Additionally, this author has numerous prior publications in the field of bicycle safety. In 

addition to the UK and USA, Australia, Canada, Belgium, Portugal, Taiwan, and Sweden have 

also made contributions to this area. Figure 2.5 further displays the publication by country in 

terms of the number of citations. 
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Figure 2.5 No. of publications and citations per country 

The number of publications was organized in Figure 2.6 concerning the journal source. The 

SCImago Journal score was added to compare which of these publications has significant 

ratings around the last three years of ranking. The “Accident Analysis and Prevention” was the 

journal with the most significant number of publications in this review (7 papers); however, 

the “Transport Reviews” is the one with the highest SCImago score, and it keeps increasing 

through the years. Moreover, Figure 2.7 presents a geographic distribution of the publications. 

 

 
Figure 2.6 Number of Publications per Journal and year concerning the SCImago impact factor 
score 
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Figure 2.7 Geographic distribution of the countries during the last decade, per publication 

2.2.4 Studies Results and Methodologies 

The vehicle-cyclist passing distance has been investigated in several previous studies, 

and naturalistic driving data provide valuable information about how car drivers overtake 

cyclists (VAN ECK & WALTMAN, 2010). Rubie et al. (2020) identified some of these studies 

concerning the passing event. Gadsby & Watkins (2020), Feizi et al. (2021), and Mackenzie et 

al. (2021) focus on the factors influencing the passing distance. The majority of these papers 

are from the decade chosen, mainly from the last years until 2021. The ones which specifically 

approach the use of ultrasonic sensors to measure the lateral distance will be present in this 

section. Table 2.1 shows the main characteristic of the studies in this review. 

 

The studies included in this review primarily focused on naturalistic experimental research that 

utilized instrumented bicycles before the COVID-19 pandemic to investigate various aspects 

of passing behavior between vehicles and cyclists in relation to Lateral Passing Distance 

(LPD). The rationale for selecting this specific period was explained earlier. 

 

It is worth noting that several additional studies related to this approach were analyzed, which 

contributed to a deeper understanding of topics such as crashes between automobiles and 

bicycles, clearance distance laws, machine learning techniques for traffic crashes, driver 

behavior during overtaking, and bicycle safety. However, these studies were not included in 

the present review due to specific criteria and methodology employed for the systematic 

review. To present the studies in a chronological order spanning the decade from 2011 to 2021, 

this section provides a brief summary of each study. 
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Table 2.1 Characteristic methodologies of the studies 

Study 
No. of 

events 

No. of 

trips 

No. of 

riders 

Distance 

(km) 

Distance 

Sensor 
GPS Video 

Mackenzie et al. (2021) 16,476 465 23 6,531 ✓ ✓  

Feizi et al. (2021) 2,838 Unknown 2 Unknown ✓  ✓ 
Ampe et al. (2020) 1,423 19 2 Unknown ✓ ✓  
Gadsby & Watkins (2020) Unknown 75 Unknown Unknown ✓ ✓ ✓ 
Beck et al. (2019) 18,527 422 60 5,302 ✓ ✓ ✓ 
Mehta et al. (2015; 2019) 5,227 Unknown Unknown Unknown ✓ ✓ ✓ 
Bernardes et al. (2019) 74 1 1 1.45 ✓ ✓ ✓ 
Dozza et al. (2016) 235 Unknown 2 84.6 ✓ ✓ ✓ 
Walker et al. (2014) 5,69 67 1 Unknown ✓  ✓ 
Chapman & Noyce (2012; 2014) 1,300 Unknown Unknown Unknown ✓ ✓ ✓ 
Shackel & Parkin (2014) 500 Unknown Unknown Unknown ✓  ✓ 
Chuang et al. (2013) 1,380 34 34 Unknown ✓ ✓ ✓ 
Bahmankhah et al. (2020) Unknown Unknown Unknown Unknown ✓ ✓ ✓ 

 

Initially, Chapman & Noyce (2012) collected real-time interaction data between bicycles and 

motorized vehicles on rural roads. Vehicles types were also observed and counted. They found 

that drivers operated in a technically unsafe manner by frequently performing passing 

maneuvers outside designated areas. The study also found that bicycle lanes (paved shoulders) 

directly affected the likelihood of a driver committing a moving violation, with violation rates 

four to six times lower when a paved shoulder was available. 

 

Then, Chuang et al. (2013) identified factors influencing motorists' passing decisions and 

cyclists' behaviors. Bicyclists exhibited less stability when passed by buses, and longer passing 

times led to more cautious but less stable riding behaviors.  

 

In the next year, Walker et al. (2014) tested different outfits worn by bicyclists and found that 

altering appearance had limited influence on passing distances. Infrastructure improvements 

and education may be more effective in promoting safe passing. A motive for this study was to 

test Walker’s (2007) hypothesis that the reduced passing proximities seen when a bicyclist 

wore a helmet might have been caused because drivers take helmeted riders to be more 

experienced or in control. 
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Right away, Chapman & Noyce (2014) developed a model showing how driver behavior varied 

with road characteristics during overtaking maneuvers involving bicycles. The model showed 

that driver behavior can be adjusted by including or excluding geometric elements. It is these 

geometric elements, such as road grade, shoulder presence and width, marked centerline, and 

road design speed that significantly affect how drivers use a rural roadway, especially when 

overtaking a bicycle. 

 

Then, Shackel & Parkin (2014) also reported that the results provide evidence for the design 

and management of roads to better accommodate cyclists. The research presented is based on 

previous research and fills gaps considering the presence of bike lanes on 20 mph and 30 mph 

roads, different lane widths, different lane markings, type of vehicle, vehicle squad and traffic 

in the opposite direction. It concluded that lower speed limits and removing centerline 

markings could reduce overtaking speeds and increase comfort for cyclists.  

 

Mehta et al. (2015) found that passing distances were significantly smaller on roads without 

dedicated bike lanes, leading to more unsafe passing maneuvers. The setup installed was 

capable to measure the lateral distance when overtaking takes place, as well as capturing the 

location, bicycle speed, and event time. It was found that the lateral separation between cyclists 

and motor vehicles is significantly smaller on facilities without exclusive bike lanes. For two-

lane facilities without bike lanes, 12% of all passing maneuvers were unsafe, compared with 

only 0.2% unsafe passing maneuvers. These results suggest that introducing dedicated bike 

lanes not only improves safety for cyclists but also reduces the number of potential conflicts 

between motorized vehicles that arise from lane-changing or encroaching vehicles that are 

passing cyclists. 

 

Afterwards, Dozza et al. (2016) used a LIDAR and two cameras to assess driver behavior 

during overtaking maneuvers. A LIDAR is a system consisting of a laser beam rotating at high 

speed to scan the environment. That sensor mounted on an instrumented bicycle provided 

continuous and high-resolution information about the overtaking maneuver, making it possible 

to identify and analyze critical phases of the overtaking maneuver along with their 

corresponding driver comfort zones. Oncoming vehicles had the greatest impact on passing 

maneuvers. Neither vehicle speed, lane width, shoulder width, nor posted speed limit 

significantly affected the driver comfort zone or the overtaking dynamics in this study. 
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Hereafter, Mehta et al. (2019) estimated the number of expected unsafe passing events on roads 

without bike lanes. Drivers provided smaller passing distances during restricted passing events, 

and the proposed method can also be used to evaluate the ‘cycling safety level of service’ on 

different road categories. It found that the probability of observing unsafe passing events on 

urban arterials without on street bicycle lanes is much higher when passing events are 

restricted. It was observed that when on-street bike lanes are not available: 1) drivers tend to 

provide smaller passing distances during restricted passing events; 2) a much higher proportion 

(29%) of restricted passing events were unsafe, compared to that of unrestricted passing events 

(11%); and 3) a much higher proportion of unrestricted passing events (73%) were 

encroachment or far lane passing compared to that of restricted passing events (38%). 

 

Beck et al. (2019) found that a significant proportion of passing events were close passing 

events, and the introduction of dedicated bike lanes improved cyclist safety. Beck et al. (2019) 

have also identified that road infrastructure had a substantial influence on the distance that 

motor vehicles provide when passing cyclists. They used a hierarchical linear model to 

investigate the relationship between a motor vehicle and infrastructure characteristics and 

passing distance. It concluded that from a large sample of events in which a motor vehicle 

passed a cyclist, one in every 17 passing events was a close passing event (<100 cm), and in 

higher speed zones (over 60 km/h), one in every three was a close passing event (<150 cm). 

 

Thereat, Bernardes et al. (2019) developed a portable sensing device to collect bicycle safety 

data and identified locations where drivers approached bicycles closely. The use of cheaper 

and smaller components resulted in a product that is portable and proper for mass data 

collection. Gadsby et al. (2020) also investigated the different tools of measurement to study 

behavior, safety, and maintenance using a range of sensors like GPS, cameras, ultrasonics, 

LIDAR, gyroscope, and go on. It mentioned that there are benefits and trade-offs for each 

choice. Lateral distance sensors cannot tell the researcher about the type of vehicle, but the data 

can be process faster. 

 

At this time, Bahmankhah et al. (2020) proposed a methodology to estimate the human power 

required for cycling but lacked detailed information for further investigation. And, Ampe et al. 

(2020) used a mixed-effect regression representing a cyclist without a child, a cyclist with a 

child bike seat, and a cyclist with a child bike trailer and found that drivers adapt their passing 
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behavior when overtaking cyclists with children, but this effect varies depending on time of 

day and traffic density. At long last, Feizi et al. (2021) showed that passing distances were 

greater in locations with a five-foot passing law and on 3-lane roadways compared to 2-lane 

roadways.  

 

Moreover, through regression analyses, Mackenzie et al. (2021) showed differences between 

passing distance and compliance with the minimum passing distance when associated with road 

classification, bike lane presence, and speed limit. 12.3 % of non-compliant passing events 

were identified on roads zoned more than 60 km/h (high-speed roads). On roads zoned 60 km/h 

or less (low-speed roads), there were 2.8 % non-compliant. Passing distances were generally 

greater on roads with a lower (hierarchy) classification. The presence of a bike lane was found 

to increase the average passing distance across all the road classifications. 

  

Road classification is likely to be associated with a number of factors that have previously been 

identified as having an influence on passing distance such as number of lanes (MEHTA et al., 

2015), lane width (LOVE et al., 2012), speed differential (CHUANG et al., 2013), presence of 

parked vehicles (BECK et al., 2019), and presence of oncoming vehicles (KAY et al., 2014; 

MEHTA et al., 2015), and type of centreline (SAVOLAINEN et al., 2012; KAY et al., 2014). 

  

Also, Feizi et al. (2021) explored the effects of bicycle facilities, the number of lanes, passing 

distance laws, and vehicle type. They demonstrated that overtaking distances in the locations 

with a five-foot passing law were significantly greater than those with a three-foot law or no 

specific law, in all types of roadway configuration. Besides, analysis using a two-sample t-test 

mean comparison indicated that the average passing distance in 2-lane roadways (M = 5.69 ft.) 

was significantly less than that in 3-lane roadways (M = 6.21 ft.). Whereas shared-use lanes or 

a higher share of heavy vehicles are associated with significantly closer passing distances. They 

also surveyed to study the driver's awareness of passing distance laws and drives the perception 

of a safe overtaking maneuver, which illustrated the drivers are poorly informed about the 

presence or passing laws. 

  

Overall, the studies emphasize the importance of dedicated bike lanes. Therefore, road 

classification is likely to be associated with a number of factors that have previously been 

identified as having an influence on passing distance such as number of lanes (MEHTA et al., 

2015), lane width (LOVE et al., 2012), speed differential (CHUANG et al., 2013), presence of 
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parked vehicles (BECK et al., 2019), and presence of oncoming vehicles (KAY et al., 2014; 

MEHTA et al., 2015), and type of centerline (SAVOLAINEN et al., 2012; KAY et al., 2014).  

 

Moreover, factors that have been indicated to affect passing behavior include roadway and 

geometric design (SAVOLAINEN et al., 2012; SHACKEL & PARKIN, 2014; FOURNIER et 

al., 2020), whether the bicyclist was wearing a helmet (WALKER, 2007), type of vehicle (DE 

CEUNYNCK et al., 2017), traffic volume (LI et al., 2012), speed (LLORCA et al., 2017; 

CHUANG et al., 2013), the presence of a share the road sign (KAY et al., 2014; HØYE et al., 

2016), and driver distraction (FENG et al., 2018). 

 

In summary, these studies provide insights into passing behavior between vehicles and cyclists, 

emphasizing the influence of various factors such as road infrastructure, vehicle speed, lane 

width, presence of oncoming vehicles, and the presence of bike lanes. The findings highlight 

the importance of dedicated bike lanes, lower speed limits, and infrastructure improvements in 

promoting safer interactions between motorists and cyclists. 

 

a Experimental Setup 

Different range approaches were utilized in the studies, employing various types of 

sensors. Mackenzie et al. (2021) used a dual ultrasonic distance sensor system that recorded 

distinct "footprints" during vehicle passing events, enabling automatic detection through a 

software algorithm. The sensors collected distance data at a frequency of 20 times per second 

(20 Hz) and were positioned on the bicycle axis. 

 

Most studies employed a frequency of 10 Hz for ultrasonic surveys (WALKER et al., 2014; 

BECK et al., 2019; AMPE et al., 2020; FEIZI et al., 2019). Mackenzie et al. (2021) noted that 

the 20 Hz frequency might be insufficient to detect very fast passing vehicles, and the algorithm 

used for identifying passing events could be affected by a constant flow of varying data when 

multiple vehicles pass simultaneously. Dozza et al. (2016) also used a 20 Hz frequency but 

employed a LIDAR system (Hokuyo UXM-30LXH-EWA). 

 

Regarding specific sensors, Feizi et al. (2021) used a Codaxus C3FT sensor positioned on the 

handlebar. Ampe et al. (2020) utilized a MaxBotix MB1200 XL-MaxSonar-EZ0 temperature-

compensated ultrasonic distance sensor (±1cm accuracy), similar to the design in Walker et al. 
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(2014), placed on the axis of the luggage rack. Beck et al. (2019) employed a MaxBotix 

MB1230 XL-MaxSonar-EZ3 sensor positioned under the saddle.  

 

Chapman & Noyce (2012) utilized a MaxBotix MaxSonar LV-EZ1 model, and Chuang et al. 

(2013) also used a MaxBotix sensor but did not specify the model. Figure 2.8 shows an example 

of the ultrasonic sensor used (a) and sample results of the measured beam pattern on a 30-cm 

grid (b), demonstrating the sensor's range capability when detecting dowels of varying 

diameters in front of it. 

  
 

 

Figure 2.8 Ultrasonic sensor and sample result (a and b), MaxBotix Inc. (2021) 

 

Global Positioning System (GPS) was utilized in several studies (DOZZA et al., 2015; 

CHUANG et al., 2013; MEHTA et al., 2015; BECK et al. 2019; AMPE et al., 2020; 

MACKENZIE et al., 2021; BERNARDES et al., 2019; RUBIE et al., 2020; SHACKEL & 

PARKIN 2014). The chosen frequency for the most of these papers was 1 Hz, except for one 

(FEIZI et al., 2019), which used 0.5Hz. Moreover, the GPS-related devices included a Garmim 

Forerunner 201 (MACKENZIE et al., 2021), and an Adafruit Ultimate GPS FeatherWing 

(BECK et al. 2019). 

 

Additionally, videos recordings were also conducted. A single GoPro 9 camera was used on 

the handlebars (BECK et al. 2019; FEIZI et al., 2019). Two GoPro Hero cameras, operating at 

30 frames per second (fps), were used - one facing forward and one backward (DOZZA et al., 

2015). Moreover, video recordings were employed to calibrate the sensor array and investigate 

individual passing observations on the handlebar (MEHTA et al., 2015; SHACKEL & 

PARKIN, 2014). A Viosport POV 1.5 camera was positioned sideways, adjacent to the 

ultrasonic distance sensor, for vehicle type identification and passing speed calculation at 30 

fps (CHAPMAN & NOYCE, 2014). Furthermore, five car DVR black boxes cameras, 

(a) Ultrasonic sensor MB1200 XL-

MaxSonar EZ0 
   (b) Beam pattern 
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operating at 30 fps were used (CHUANG et al., 2013). Lastly, two Oregon Scientific ATC2K 

helmet cameras (RUBIE et al., 2020). 

 

The use of IoT technologies in instrumented bicycles enables connectivity between 

transportation system elements and addresses data collection challenges. With the availability 

of IoT devices, sensors, and open-source information, devices can be developed to handle these 

challenges (BERNARDES et al., 2019; Bahmankhah et al., 2020). These technologies generate 

significant amounts of data, requiring techniques for data acquisition, cleaning, aggregation, 

modeling, and interpretation in large-scale sensor-based systems. The application of big data 

models in networked systems has been demonstrated in studies focused on urban environments, 

facilitating the creation of smart and Intelligent Transportation Systems (ITS) (ANG & SENG, 

2016; GUERRERO-IBÁÑEZ et al., 2018). 

b Hardware systems 

Portable logging devices like Arduino and Raspberry Pi have become cost-effective 

options for building instrumented bikes, enabling research in this field (Gadsby & Watkins, 

2020). Raspberry Pi, a Linux-based single-board computer, has been widely used in research 

projects, including as a data acquisition system for riding dynamics in human-powered vehicles 

(DOZZA et al., 2016; OZBAY et al., 2018; AMBROZ, 2017). Bernardes et al. (2019) 

employed two ultrasonic sensors connected to a Raspberry Pi to collect bicycle trajectory data 

and lateral distances, utilizing a specially designed 3D-printed enclosure. 

 

Arduino, another open-source hardware, is pre-programmed with a boot loader for easy 

program uploading. Amper et al. (2020) used an Arduino Uno prototyping computer with 

customized software, while Beck et al. (2019) utilized an Arduino microprocessor with 

Adafruit Feather M0 Adalogger. Walker et al. (2014) housed the sensor, Arduino, and batteries 

inconspicuously in a small plastic box mounted on the bicycle's luggage rack. The sensor data 

was recorded to an SD card using an Arduino Uno prototyping computer with dedicated 

software. 

c Data Analysis and Software 

Data from sensors and GPS were stored in a database and queried using SQL, 

specifically through SQLite3 (MACKENZIE et al., 2021; BERNARDES et al., 2019). This 

allowed for online data transfer when sensors had a network connection, enabling remote 
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analysis of historical and real-time data. A dashboard with a lateral distances data map was 

created using Tableau. 

 

Data analysis was conducted using Stata, SAS, R Statistical Software, MATLAB, and SPSS 

(BECK et al., 2019; FEIZI et al., 2019; SAVOLAINEN et al., 2012). MATLAB was used to 

process CSV files from the SD card and apply a low-pass filter for bicycle accelerations 

(DOZZA et al., 2016). Python code was developed to read data from ultrasonic sensors and 

GPS receivers and combine them into a single file (BERNARDES et al., 2019). The ST-

matching method in Python with OpenStreetMap was used for GPS data map matching (BECK 

et al., 2019). C programming was used to develop software for data collection (DOZZA et al., 

2016). 

 

Regression analyses, including generalized linear regression, logit regression, and Probit 

Model, were performed (MACKENZIE et al., 2021; FEIZI et al., 2021). Cohen's kappa 

statistics were used for assessment (BECK et al., 2019). Spectral and descriptive statistical 

analyses were conducted to characterize normal cycling dynamics (DOZZA et al., 2016). The 

operating system used was a Debian distribution of Linux (DOZZA et al., 2016). Moreover, 

VISSIM Traffic Microsimulation software was utilized for a simulation study on vehicle 

platooning and passing events (SHACKEL & PARKIN, 2014). Instruments were connected to 

a laptop running LabView software for data acquisition (CHUANG et al., 2013). 

 

2.3 MACHINE LEARNING, UNSUPERVISED LEARNING ALGORITHMS AND 

STATISTICS FOR DATA ANALYSIS 

Machine Learning is the development of algorithms and statistical models that enable 

computer systems to improve their performance on a specific task through learning from data, 

without being explicitly programmed. In essence, it's about computers learning patterns and 

making predictions or decisions based on data. In Machine Learning, Unsupervised Learning 

is an algorithm method in which the model is not given any labeled training samples. Instead, 

the model is only given a dataset and must learn to find patterns or relationships without 

guidance.  
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These algorithms discover patterns or relationships in a dataset that might not be immediately 

apparent. Some common applications of unsupervised learning include clustering, anomaly 

detection, and dimensionality reduction. One of the main distinctions between unsupervised 

and supervised learning is that the model does not have a predefined goal or objective in 

unsupervised learning. Instead, it must discover the structure of the data on its own and learn 

to identify patterns or relationships within the data. (KUBAT 2017; ZANTALIS et al., 2019) 

 

Unsupervised learning algorithms are commonly used in cases where it is difficult or 

impossible to label the training data or where the goal is to discover patterns or relationships 

in the data that might not be directly evident.  

 

Clustering models and Kernel Density Estimation (KDE) are typical geospatial methods 

applied in hazardous site identification (LORD et al., 2021). The present research uses K-

Means and DBSCAN clustering algorithms to estimate and identify geospatial areas that might 

need special attention relating to the Lateral Passing Distance (LPD). Also, it uses KDE to 

analyze some cluster details. 

2.3.1 K-Means Clustering Model 

K-means clustering is a nonhierarchical clustering technique used to analyze patterns 

in the distribution of crashes and identify hazardous sites. It is an unsupervised method to 

classify elements into discrete groups based on their similarities or discovered conventions 

(JAIN et al., 1999; KIM & YAMASHITA, 2007; ANDERSON, 2009; MAURO et al., 2013; 

SELVI & CAGLAR, 2018; ZANTALIS, F. et al., 2019; LORD et al., 2021).  

 

This algorithm, which Mac Queen introduced in 1967, is a cyclical algorithm in which clusters 

are constantly recalculated until the most suitable solution is acquired. The objective of the K-

means algorithm is to divide a dataset composed of n data objects into k clusters determined 

depending on preliminary information or by using mathematical technics.  

 

The mathematical technics help minimize a criterion known as inertia or within-cluster sum-

of-squares. Each cluster is represented by the mean of samples in the clusters called "centroids." 

It aims to minimize the inertia or Within-Cluster Sum of Squares (WCSS) and maximize the 

Between-Cluster Sum of Squares (BCSS). In other words, for the intra-cluster similarity of 

events to be high and the inter-cluster similarity of events to be low. Inertia can be 
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acknowledged as a measure of how internally coherent clusters are. For that, the Euclidean 

distances between each centroid are calculated by equation 1. 

 

𝑑𝑒𝑢𝑐(𝑥, 𝑦) 	= 	,∑ 	!
"#1 (𝑥" − 𝑦")	2                                  (1) 

 

While using K-Means, the research needs to define the number of K clusters before the 

procedure starts; and the metric used to calculate the distances (e.g., Euclidian). The present 

study uses the Euclidian distance due the spreading characteristic of the data, regarding being 

also a common choice straightforward to implement and measures the straight-line distance 

between two points in a multi-dimensional space. Given the "p" and "q" objects, the distance 

between the dimensions is calculated by equation 2. 

 

𝑑(𝑝, 𝑞) 	= 	,(𝑝$ − 𝑞$)	2 +	(𝑝% − 𝑞%)	2 +⋯+ (𝑝" − 𝑞")	2 +⋯+ (𝑝! − 𝑞!)	2             (2) 

 

K-means has three iterative stages. The first stage chooses the initial centroids, with the primary 

method being to choose samples from the dataset. After initialization, K-means consists of 

looping between the two other steps. The first one assigns each sample to its nearest centroid. 

The second step creates new centroids by taking the mean value of all of the samples assigned 

to each previous centroid. The difference between the old and the new centroids is computed, 

and the algorithm repeats these last two steps until this value is less than a threshold. In other 

words, it repeats until the centroids do not move significantly (ARTHUR & VASSILVITSKII 

2006). 

a Discovering the Optimal Number of Clusters 

The elbow method is a heuristic used to determine the optimal number of clusters for a 

K-means clustering analysis. It works by fitting the K-means model with different values of K 

and measuring the within-cluster sum of squared errors (WCSS) for each model. The WCSS 

measures the compactness of the clusters, with a lower WCSS indicating more compact 

clusters. The elbow method looks for an "elbow" in the plot of WCSS versus the number of 

clusters. 

 

The idea is that the WCSS will decrease as the number of clusters increases, but at some point, 

the improvement in WCSS will begin to diminish, forming an "elbow" in the plot. The number 



 23 

of clusters at the elbow is considered to be the optimal number of clusters for the K-means 

model. An example cab is seen below in Figure 2.9. 

 
Figure 2.9 Inertias - WCSS vs. the number of cluster 

To use the elbow method is needed to fit the K-means model with a range of values for K and 

plot the WCSS versus K. However, in some cases, the WCSS plot may not have a clear elbow, 

making it difficult to determine the optimal number of clusters. In these cases, it may be 

necessary to use additional techniques or domain knowledge to determine the appropriate 

number of clusters. 

 

The Elbow Method to discover the optimal number of clusters is calculated using, where 𝐶& is 

the 𝑘'ℎ cluster and W(𝐶&) is the within-cluster variation (equation 3). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	(	∑ 	&
&#1 𝑊(𝐶&))                                       (3) 

2.3.2 Density-Based Spatial Clustering of Applications with Noise - DBSCAN 

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm views clusters as areas of high-density separated by low-density areas. Clusters 

found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are 

convex-shaped. It does not require you to specify the number of clusters in advance, as it can 

automatically determine the number of clusters based on the characteristics of the data 

(ZANTALIS et al., 2019). 
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The DBSCAN works regarding the core samples, which are examples that are in areas of high 

density. A cluster is therefore a set of core samples, each close to the other (measured by some 

distance measure) and a set of non-core samples that are close to a core sample (but are not 

themselves core samples).  

 

There are two parameters to the algorithm: epsilon (Eps) and minimal samples (min_samples). 

Eps is the maximum distance between two points in the same cluster, and min_samples is the 

minimum number of points required to form a cluster. These parameters define what is dense 

mathematically. Higher min_samples or lower eps indicate the higher density necessary to form 

a cluster. 

2.3.3 Statistical Validations 

a  T-test and ANOVA 

One way to calculate the statistical significance of the results of a clustering model is 

to use a hypothesis test to determine whether the differences between the clusters are 

statistically significant. This can be done by low-density the means of the clusters and using a 

t-test or ANOVA (Analysis of Variance) test to determine whether the differences between the 

means are statistically significant. 

 

To conduct a t-test firstly is needy to calculate the mean and standard deviation of the variables 

for each cluster. Then, these values are used to calculate the t-statistic and the p-value for each 

variable. If the p-value is less than a predetermined threshold (such as 0.05 for a 95% 

confidence), it can be concluded that the differences between the means are statistically 

significant. Nevertheless, to conduct an ANOVA test the same procedure is applied, but in this 

regard, it is possible to compare two or more groups; the F-statistic and the p-value is calculated 

in this case. 

 

Moreover, these tests assume that the data is usually distributed and that the variances of the 

groups are equal. If these assumptions are not met, it may need to use a non-parametric test, 

such as the Mann-Whitney U test to determine the statistical significance of the clusters. 
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b Kolmogorov-Smirnov (K-S) test 

The Kolmogorov-Smirnov (K-S) test is a nonparametric statistical test used to 

determine whether a sample comes from a population with a specific probability distribution. 

It is based on the maximum difference between the cumulative distribution function (CDF) of 

the sample and the CDF of the reference distribution. 

 

The K-S test is a general test that can be used to compare any continuous distribution, including 

normal, uniform, exponential, and others. It is widely used in many fields, including physics, 

biology, economics, and engineering, to test hypotheses about the underlying distribution of a 

dataset. 

 

The test compares the sample's empirical CDF with the theoretical CDF of the reference 

distribution. The empirical CDF is a proportion of the sample where it is less than or equal to 

each value in the sample. Theoretical CDF is the expected proportion of the sample that would 

be less than or equal to each value in the sample based on the reference distribution. 

 

If the sample comes from the reference distribution, then the empirical CDF and the theoretical 

CDF should be very similar. If the sample does not come from the reference distribution, then 

the empirical CDF and the theoretical CDF will significantly differ. The K-S test measures the 

maximum difference between the two CDFs and calculates a p-value based on this difference. 

If the p-value is below a predetermined threshold (usually 0.05, for a 95% confidence), then 

the null hypothesis (that the sample comes from the reference distribution) is rejected. 

 

2.3.4 Kernel Density Estimation 

The Kernel Density Estimation (KDE) is a used approach for hazardous site selection 

because of its accuracy and consistency in prediction (ANDERSON, 2009; KUO et al., 2013; 

THAKALI et al., 2015). The KDE can define the extent of the risk of a threshold, like crashes 

in road safety. Using this method, the risk surrounding each target can be calculated, and the 

risk density is defined. When the distance is closer to zero, the risk density reaches the highest 

value and decreases with increased distance. 
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The KDE graph is a representation of the distribution of a continuous variable. The shape of 

the curve can give an idea of the distribution of the data, and the position of the peak(s) provides 

an idea of the center of the distribution. For example, a bell-shaped curve indicates a normal 

distribution, while a skewed curve indicates a skewed distribution. 

 

The shape of a function can be estimated through its kernel density estimates as follows in 

equation 4. 
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Where x is the variable of interest; h is the bandwidth that controls the amount of smoothing; 

d is the dimension, and K(.) is the kernel function. Basically, the KDE smooths each data point 

xi into small density bumps and then adds all these small bumps together to obtain the final 

density estimate (LORD et al., 2021). 

 

2.3.5 Features Correlation - Spearman Coefficient 

The Spearman rank correlation coefficient (ρ) is a statistical measure of the strength 

and direction of the relationship between two variables. It is often used to determine the degree 

to which two variables are related and the direction of the relationship (positive or negative). 

This was used to see the relationship between different variables. 

 

The coefficient is calculated using the ranks of the data rather than the raw data values. This 

makes it well-suited for use with ordinal data (data that is ranked or ordered but not necessarily 

evenly spaced) or data that is not normally distributed. It ranges from -1 to 1. A value of -1 

indicates a perfect negative correlation, a value of 0 indicates no correlation, and a value of 1 

indicates a perfect positive correlation. It is represented by the equation 5. 
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                                     (5) 

 

where d is the difference between the ranks of the two variables, n is the number of data points 

and ∑ is the sum of the squared differences. 
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3 METHODOLOGY  

3.1 DATA COLLECTION METHODOLOGY 

The present section consists of the collection and analysis methodology of data from 

trips made on a bicycle in Brasília city center. The area chosen for research was the avenue 

around the City Park at the city center. More details about this choice and the area 

characteristics are presented in the following sessions.  The data were collected using the sensor 

system and platform BSafe360, developed by the researchers Suzana Duran Bernardes, 

Abdullah Kurkcu, and Kaan Ozbay from the New York University (NYU) Tandon School of 

Engineering (BERNARDES et al., 2019; BERNARDES & OZBAY, 2023). The data were 

manipulated and analyzed in Python and SQL programming and database languages.  

3.1.1 Sensor device: BSafe360 Architecture 

The BSafe360 is a lightweight, portable device with multiple sensors made to be 

installed on a bicycle, as shown in Figure 3.1 below. It is composed of: a microcomputer called 

Raspberry Pi, which performs the reading, storage, and transfer of data from the sensors; two 

ultrasonic sensors to measure the distance of the bike to objects to its left and right; a GPS 

receiver and antenna for tracking the bike's trajectory; a gyroscope and accelerometer sensor 

that reads the bike's position and acceleration vectors; and a portable charger that allows the 

BSafe360 to run for more than 2 hours. 

 

 
 

 (a) BSafe360 sensor installed on Bicycle       (b) Bicycle used in the data collection 
Figure 3.1 Equipment used for data collection 



 28 

Concerning the data collection, the device was used along the entire route collecting 

information. Also, the data is collected and sent to the server when the device was connected 

to the internet.  

 

Moreover, from the server, it is possible to see the device's location on a map, in real time. 

Also, the aggregated and non-aggregated readings in line graphs, and readings in tables if it is 

connected to internet during the trip.  

 

It is possible to export and download the raw data from the platform in CSV format. However, 

if there is no internet connection when riding a bike is possible to obtain the data by connecting 

the Raspberry Pi device to a computer or turning it on in a pre-configured wi-fi connection. 

This was the option adopted by this research, regarding that all the data is written on a memory 

card. 

 

The device includes an ultrasonic sensor Figure 3.2; an accelerometer, and a gyroscope (Figure 

3.3). And a GPS, as shown in Figure 3.1, positioned outside the case. 

 
Figure 3.2 Ultrasonic Sensor Unit 

 
Figure 3.3 Accelerometer and Gyroscope MPU6050 
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3.1.2 Data Collection Procedures 

a Environmental conditions 

Aiming to get proper inputs to the research, the data collection was performed only on 

clean days, without rain, and with good visibility conditions. It was collected in the lunch hours, 

with a significant mobility flush for analysis between vehicles and cyclists: between 12:00 PM 

and 1:00 PM. This period of time was chosen regarding the high volume of commuting in this 

area from people getting off and arriving from their chores, configuring a local peak time.  

 

Before using the sensor for collection, the researcher collected data through some exploratory 

rides to discover the area's characteristics and measure the average time, travel, road 

infrastructure, as well as the traffic conditions. 

 

Moreover, this study collected 175 minutes of data, of which 100 minutes were used for the 

analysis, the rest of it was discarded due to not completely fill the research conditions or have 

been used only for exploratory analysis. Also, in the same way, approximately 65 km were 

traced in total, and 40 km were used in the analysis. The data collection procedures were always 

by completing an entire lap around the City Park. For each day of collection was procedure one 

lap collecting data. 

 

Therefore, values not used in the analysis were removed because of the data adjustments, tests 

on the route by exploratory analysis, and system errors. 

 

b  Researcher Characteristics for Data Collection 

Regarding maintaining the same behavior on cycling, this study proposed all the data 

collected by the same researcher: a male 34 years old, 1.91 meters tall. For every ride, it was 

used the same white bicycle, with a white T-shirt and helmet. This pattern's objective is to 

avoid any possible influence of clothes it could have in the research results (Walker, I., 2007). 

Regarding the ride, was tried to maintain the same distance from the edge throughout the route, 

around 60 cm. 
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c Survey Region Characterization: Brasília, Brazil 

The Brasília City Park (Parque da Cidade Sarah Kubitschek de Brasília) is a public park 

at the city center of Brasília in the Asa Sul neighborhood, Federal District. It was founded in 

the seventies and has 420 hectares. It is wide used by cyclists for leisure and for performance 

sport cycling training. So, the park has an avenue surrounding the area, connecting the principal 

neighbors in the capital, like Sudoeste, Asa Sul, Octogonal, the Commercial Center Sector with 

shopping, hotels, schools, and big companies, and the central axis of the capital with 

governmental buildings and services centers. The avenue general characteristics are: 
 

● The complete route is 9.80 kilometers long; 

● The whole mean travel time is about 25 minutes; 

● The shared cycle lane follows the right side of the road; 

● There are cycle marks through the pathway indicating the shared lane; 

● There are cycle signs through the road indicating the shared lane; 

● The velocity limit is 60 kilometers per hour; 

● Each lane has 3.50 meters, with two lanes (7.0m) in each direction; 

● There are six intersections for the entrance and exit of the park area. 

 

The road consists of a shared lane at the right corner of the road. The shared lane typology is 

one in which there is no physical separation between the cyclist's and the car's rolling path, 

having just an occasional marking on the pavement as it can see as follows. The road profile 

and the shared lane is presented in the Figure 3.4, Figure 3.5 and Figure 3.6. 
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Figure 3.4 Location of the survey region from the Federal District (Brasília great area) 

perspective 

 

Figure 3.5 Location of the survey region from the Federal District (Brasília great area) 
perspective - Google Maps 

 

 

Figure 3.6 Road profile with four lanes of 3,5m 
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Regarding the land use, the City Park is surrounded by residential (Asa Sul, Sudoeste, 

Octogonal), and miscellaneous (residential, commercial, governmental) use. Also, there is a 

dense commercial and education (schools and universities) concentrated in some parts, 

provoking intense traffic rush three times a day: at the beginning of the morning, at the lunch 

hour, and in the evening.  

This research procedures the collection at the lunch hour regarding it has an intense high-

volume traffic concentrate at small period of time, involving different land-uses that impact 

considerably the avenue around. The survey location for the study is presented in Figure 3.7, 

the dots represent some data collected around the route. The land use, around the survey 

location is also presented in the Figure 3.8, as follows. 

 

Figure 3.7 Location of the survey region from the Federal District (Brasília great area) 
perspective 

N 
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Figure 3.8 Land use around the City Park 

d Traffic Volume Correlation 

For further analysis, the traffic volume was collected manually. Since, the 

Transportation Department of Brasília only have data from places with electronic inspection 

equipment and The Park area does not have an electronic traffic equipment, there was no 

volume information registered concerning this area. 

 

The collections were made on the seventh of December 2022, the same hour as the collections 

made on bicycles using the BSafe360 equipment. The volunteers were divided into three points 

to collect at the same time for 30 minutes, separating the amount into fifteen minutes. 

 

The Park has six entrance and exit points, indicated in orange circles on Figure 3.9. This study 

manually collected simultaneous data from three points, as shown in blue Figure 3.9. Regarding 

these points, it was possible to measure the volume between the orange points 1(orange) and 

2(orange) for collection 1(blue). 3 (orange) and 4 (orange) for collection 2 (blue); And 6 

(orange) to 1 (orange) for point 3 (blue). Therefore, it was not possible to make a full correlation 

analysis between the volume and the results from the Sensor Device considering the existence 

of other three points when considering the park area as a closed traffic system. 
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Figure 3.9 Collection points and Park entrances/exits 

However, the traffic volume values are presented in Table 3.1. Also, a correlation between 

these points is presented below in Figure 3.10. These patches were isolated for correlation 

analysis.  

 

Table 3.1 Traffic Volume in three points from the city park 

Point 1 Point 2 Point 3 

12:30 to 12:45  12:30 to 12:45  12:30 to 12:45  

automobiles: 88 automobiles: 102 automobiles: 316 

motorcycles: 5 motorcycles: 4 motorcycles: 28 

others: 2 others: 2 others: 5 

12:45 to 13:00 12:45 to 13:00 12:45 to 13:00 

automobiles: 101 automobiles: 110 automobiles: 291 

motorcycles: 8 motorcycles: 7 motorcycles: 20 

others: 1 other: 1 other: 0 

total: 189 automobiles y 13 

motorcycles 

total: 212 automobiles y 11 

motorcycles 

total: 607 automobiles y 48 

motorcycles 
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Figure 3.10 Spearman Correlation between Traffic Volume and other features 

 

There is a weak negative correlation between the traffic volume and the lateral passing distance 

of -011. It means that, for this dataset, the more the traffic volume increases, the LPD decreases, 

indicating small distances between automobiles and bicycles. From these results, it can be 

inferred that high volume provokes more risk approximations.  

 

However, more data need to be collected concerning all the points. Furthermore, some studies 

indicate a high correlation between traffic volume and hazardous lateral passing distances 

(MEHTA et al., 2015). 

e Crash Historical Correlation 

Additionally, was possible to obtain data for crashes between 2019 and 2020 from the 

Transportation Department of Brasília. The low quantity of historical crash data due to a 

possible lack of registration regarding the incidents, limited the analysis with the correlation 

feature. However, in the following Figure 3.11, and Figure 4.9, on the results topic, it is possible 

to see a similarity between the crashes that happened in these last two years against the location 

of the red cluster, which indicates the small lateral passing distance.  

 

However, it cannot be correlated because it requires more crash data. Nonetheless, other studies 

seek this validation, demonstrating a correlation between the number of crashes and surrogate 
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safety measures, such as the lateral passing distance between vehicles and bicycles 

(BERNARDES et al., 2023). 

 
Figure 3.11 Crash registration involving cyclists in 2019 and 2020 

3.2 DATA ANALYSIS METHODOLOGY 

This study aims for a data-driven safety analysis; all the methodology has the data as 

input to incorporate the principles and techniques of machine learning. The methodology starts 

with the field operational cycling data collection; this step was presented at the last session. 

After collecting the data, it can be sent directly to the database with a wi-fi connection or sent 

simultaneously to the server in a live connection. This research chooses the methodology of 

sending it asynchronously, after the collections.  

 

An algorithm written in Python is responsible for group the data from the sensors and system 

and sending it to the database owned by New York University (NYU) as soon as it is connected 

to the internet. The data is queried from the database through SQL and manipulated in Tableau 

software to eliminate any segment outside the route and null or zero latitude and longitude 

records. After that, the dataset is downloaded and inserted into a Python notebook for 

manipulation. The following Table 3.2 presents the data feature description collected. 

 

The data regarding the ultrasonic sensor for the lateral passing distance measure was 

manipulated to consider the accurate distance of the bicycle to the automobiles, regarding the 
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handlebar and the BSafe360 equipment mounted on the frame of the bicycle. Therefore, was 

subtracted 25 cm from it, 20cm from the distance of half the handlebar width, and more than 

5cm of erroneous collections on cycling activities, for example, when sometimes a hand pass 

in front of the sensor registering some value. Therefore, LPD readings are also top-limited to 

700cm, concerning the width of the one-direction way (two lanes of 3.5m) and the limited 

range of the ultrasonic sensor. 

 

The data about traffic volume was collected manually at three points of the city park since the 

national traffic department did not have it for this location. Also, the national traffic department 

collected data about crashes involving cyclists. However, this data needed more quantity to 

apply to the models in this research. So, these data regarding crashes and traffic volume were 

not considered into the clustering model as follows. 

 

Table 3.2 Unit and Data Description 

FEATURE UNIT DESCRIPTION SOURCE 

latitude degrees Global Positioning System: 
Latitude GPS 

longitude degrees Global Positioning System: 
longitude GPS 

us_lpd centimeters 
Ultrasonic Sensor reading: 
Lateral Passing Distance 
(LPD) 

Ultrasonic Sensor 

speed meters/second Rate of movement - velocity GPS 

climb meters Elevation level GPS 

accex meter per squared seconds 
Accelerations of the bicycle 
in X axis as a function of 
gravity 

Accelerometer 
MPU6050 

accey meter per squared seconds 
Accelerations of the bicycle 
in Y axis as a function of 
gravity 

Accelerometer 
MPU6050 

accez meter per squared seconds 
Accelerations of the bicycle 
in Z axis as a function of 
gravity 

Accelerometer 
MPU6050 

gyrox degrees per second Rotation of the bicycle in the 
X axis 

Gyroscope 
MPU6050 

gyroy degrees per second Rotation of the bicycle in the 
X axis 

Gyroscope 
MPU6050 

gyroz degrees per second Rotation of the bicycle in the 
X axis 

Gyroscope 
MPU6050 
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4 RESULTS AND DISCUSSION 

This session presents the results concerning the clustering models and the data analysis. 

Beforehand, some data analysis will be presented to understand the approach and the data 

behavior from the bicycle safety perspective. 

4.1 EXPLORATORY DATA ANALYSIS 

Considering all the data utilized for this analysis, totalizing 160 readings with nine features, 

the mean of the principal target of the research, Lateral Passing Distance (LPD), was 259.52cm, 

with a standard deviation of 155.39cm. This data is the filtered result following the 

considerations presented in the last session. For further analysis, these results were clustered 

regarding the features relations for analysis using unsupervised learning algorithms in the next 

session, Table 4.1. 

 

Table 4.1 Lateral Passing Distance (LPD) Statistics (160 readings) 

LPD Statistics LPD (cm) 

Mean 261.13 

Standard Deviation 154.53 

Minimal 35.63 

25% 139.62 

50% 238.78 

75% 351.08 

Maximum 693.17 

 

Concerning the variance, these values show a significant variation among the data. 

Nonetheless, the quartiles indicate that 25% of the readings are less than 139,62cm; for the 

second quartile, 238.78cm and 75% are less than 351.08cm. It demonstrates that values above 

it might be outliers and diverge from the distribution. It can be confirmed by looking at the 

histogram with a kernel density estimation below, Figure 4.1.  
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Figure 4.1 Histogram with a KDE for Lateral Passing Distance 

 

Aiming to observe the behavior between variables, a scatterplot was used between them. When 

relating LPD to Climb and Speed, the following correlation was obtained by fitting a regression 

model to observe the resulting curve on a 95% confidence interval. The LPD in centimeters is 

on the y-axis, and the climb (meters per second) and speed (meters per second) data are on the 

x-axis, Figure 4.2 below. The curve shows the data behavior regarding some variables and it 

can be inferred that in ascendent movements (climb enhance from 0.0 m/s to +0.2 m/s), the 

LPD tends to decrease.  Also, the LPD is greater on higher velocities ranges. It will be analyzed 

further forward.  

 

 
Figure 4.2 95% confidence interval regression between LPD and Climb/Speed variables 
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4.1.1 Correlation Analysis - Spearman Coefficient 

Aims to understand the correlation between the features to access the best possibilities 

to apply the modeling and check if some feature has a particular influence, this study uses 

Spearman coefficient correlation.  

 

The Spearman Coefficient ranges from -1 to 1. It indicating the strongest correlation at either 

direction (e.g., negative or positive). For the analysis, the coefficients close to zero indicate no 

correlation between variables. Coefficients between 0.10 and 0.20 has a weak correlation, 

between 0.20 and 0.40 has a moderate correlation, and above 0.40 has a strong correlation. The 

correlations are described as follows, in the Figure 4.3. 

 
Figure 4.3 Spearman Correlation Matrix between variables 

4.1.2 LPD vs. Climbing 

Assuming the threshold of 150 cm, regarding the minimal lateral clearance distance law 

adopted in Brazil, the percentage of values in ascending movement is 4.38% bigger than in 

downhill routes. This relation is presented in Figure 4.3, above.  

 

The "us_lpd" feature has a weak negative correlation (-0.11) compared to the "climb" feature. 

The more the bicycle goes on ascendent movement, the more likely the "us_lpd" decreases. It 
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represents fewer LPD measures on ascent movements, which means more possible risk 

approaches between bicycles and automobiles. Figure 4.4 shows more significant velocity 

values in a stronger red color. It shows light colors in ascendent routes. Figure 4.5 presents the 

altitude elevation, indicating the difference on the terrain impacting the speed. 

 

 
Figure 4.4 Relationship between speed and LPD 

 
Figure 4.5 Altitude elevation 

The "climb" feature has a moderate negative correlation (-0.23) compared to the "speed" 

feature. The "climb" variable represents how much the terrain changes going up or down 

through the route. The more the bicycle goes on ascendent movement, the more likely the 

"speed" decreases, needing more effort by the cyclist. The terrain elevation varies from 1077.54 

to 1143.42 meters altitude, a 65.88m variation (height above mean sea level). 

4.1.3 LPD vs. Speed 

The "us_lpd" feature has a weak positive correlation (0.15) compared to the "speed" 

feature. The more the bicycle goes fast, the more likely the "us_lpd" increases. It represents 

more significant LPD measures on faster movements, which means less possible risk 
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approaches between bicycles and automobiles. Figure 4.4. shows the relation between LPD 

and speed, with more significant velocity values in a stronger red. Smallest the speed, the 

lighter the red color. Also, the closer the motor vehicle passes to the cyclist, the biggest the red 

circle, alluding to high risk. The farthest the automobile passes, the smaller the red circle. 

4.1.4 Acceleration and Rotation correlation 

There is no significant correlation between the accelerometer and gyroscope output 

regarding the speed and the LPD. However, when the feature "climb" is analyzed, there is a 

weak positive correlation regarding the "accex" (+0.19) and "gyrox" (+0.16). A moderate 

positive correlation in "gyroy" (+0.20) and a weak negative correlation in "accey" (-0.14).  

 

These results may indicate that from the cyclist's perspective, there is more bicycle movement 

in the axis mentioned above in ascend routes, influencing the clustering results proposed. It can 

be explained because of the movement of the cyclist applying force on the pedal, pendulum 

around bicycle. These relations can be better observable in the graphs in appendix A, presenting 

a 95% confidence interval regression. 

 

Nevertheless, these values are used only concerning the clustering model to look for similarities 

between clusters; this study will not analyze the details of these parameters, indicating 

recommendations for future researches. Although these features can be used for plenty of 

analysis (Ghadge 2015).  

4.2 CLUSTERING RESULTS AND COMPARISON 

4.2.1 K-means 

The K-mean clustering algorithm groups the features with more similar characteristics 

regarding the distance between these variables. Therefore, for the K-means model is necessary 

to choose the number of clusters beforehand applying the method. This was chosen using a 

mathematical formulation to find the minimal inertia possible. The Elbow Method for the 

optimal number of clusters was applied to the features.  

 

Comparing Figure 4.6 and Figure 4.7 is possible to observe the difference in the inertias values 

and curve behavior when the data is normalized. In k-mean clustering, the normalization in the 

data is recommended because of the sensibility to variation. The Silhouette Score Method was 
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applied for the normalized Elbow graph because it is not showing a decisive number of clusters 

(a slope at the curve) (Table 4.2).  

 

 
Figure 4.6 Elbow Method applied before the feature normalization 

 

 
Figure 4.7 Elbow Method applied regarding the feature normalization 

 

A sample regarding the five possibilities with greater silhouette score is showing bellow, Figure 

4.8. It is possible to observe that the patterns in some locations are repeatedly coming up on 

clusters behaviors. 
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Table 4.2 Silhouette Score 

Number of clusters Average Silhouette Score 

3 0.1373810613722346 

4 0.1335622825469365 

5 0.11906506152453945 

6  0.1017479904810742 

7 0.12336039022830236 

8 0.11294442496204284 

9 0.11252040848623253 

10 0.13343487289993053 

15 0.11902445668169791 

 

 
Figure 4.8 Comparison between clusters 

 

Although the biggest silhouette score (0.1374) is the optimum number of clusters: three 

clusters. Therefore, the following results are obtained using three clusters (the three colors) in 

the algorithm model, relating all the features, Figure 4.9. The representation is in the same 

format as the route, indicating the data collection around the Brasília city park. The LPD 

indicates the distance through the motor vehicles and bicycles in centimeters, more the 

circumference is, more the lateral passing distance. 
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Figure 4.9 Clustering result for K-Means 

Observing the clustering behaviors presented in Figure 4.9 is possible to infer some 
common patterns that will be discussed. 
 
Moreover, the small circles in Clustering Results image indicate small LPDs; respectively, the 

more significant the circumference, the bigger the LPD. The colors represent the three clusters. 

The clusters are separately analyzed as follows, and Table 4.3 presents the amount of reading 

from each cluster. Also, Table 4.4 indicates the statistical information for each group. 

 

Table 4.3 Readings of the clusters 

Cluster Readings 

2. orange  46 

1. red  75 

3. blue  39 

 

Table 4.4 LPD Statistics for the clusters 

 samples Mean(cm) Std(cm) Min(cm) 25%(cm) 50%(cm) 75%(cm) Max(cm) 
3. Blue 
Cluster 39.00 313.94 172.04 63.54 183.73 311.86 463.45 693.17 

2. Orange 
Cluster  46.00 305.41 161.78 52.96 164.24 285.25 404.91 648.89 
1. Red 
Cluster  75.00 206.51 120.35 35.63 100.13 193.69 287.83 663.03 
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The red cluster had 75 readings with 206.51cm of mean Lateral Passing Distances (LDP) and 

120.35cm of standard deviation. Also, 25% of the readings were less than 100.13cm; for the 

second quartile, 50% were less than 193.69cm; and 75% of the reading was less than 287.83cm.  

 

Aiming to distinguish the distribution between the cluster's results, a Kernel Density Estimation 

(KDE) was elaborated, Figure 4.10. A KDE graph is a graphical representation of the 

distribution for a continuous variable. It is a non-parametric way to estimate a random variable's 

Probability Density Function (PDF).  

 

The orange cluster had 46 readings with 305.41cm of mean LPD and 161.78cm of standard 

deviations. With 25% of the readings less than 164.24cm; for the second quartile, 50%, 

285.25cm; and 75% of the reading less than 404.91cm. 

 

The blue cluster had 39 readings with 313.94cm of mean LPD and 172.04cm of standard 

deviations. With 25% of the readings less than 183.73cm; for the second quartile, 50%, 

311.86cm; and 75% of the reading less than 463.45cm. 

 

 
Figure 4.10 Kernel Density Estimation (KDE) for the Clusters 

 

From the KDE graph, the shape of the curve and the position of the peak(s) can give an idea of 

the distribution of the data. For example, a bell-shaped curve indicates a normal distribution, 

while a skewed curve indicates a skewed distribution. The position of the peak(s) gives an idea 

of the center of the distribution. Looking at the Figure 4.10, the peak of the red cluster is smaller 

than 150cm, representing a value below the defined by law for LPD in Brazil. 
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Furthermore, the cluster orange and blue have similar distributions regarding the Lateral 

Passing Distance (LPD). Aimed to analyze the distribution of LPD in the clusters based on the 

Kernel Density Estimation (KDE) to assess the difference between them was process two-

sample Kolmogorov-Smirnov test for goodness of fit between clusters, by an α = 0,05, Table 

4.5. 

 

The results show a similarity between distributions on the orange and the blue cluster regarding 

the Lateral Passing Distance and the discrepancy between them to the red cluster. It indicates 

that the optimal number of clusters for this dataset might be two groups, as the mathematical 

silhouette method resulted before. The red cluster is presented in the Figure 4.11, as follows. 

 
Table 4.5 Kolmogorov-Smirnov test between LPD of the Clusters 

KS Test Between Clusters Statistic p-value 

blue and orange 0.1276 0.8238 

orange and red 0.3202 0.0042 

blue and red 0.3394 0.0038 

 

a)  K-means Clustering Results - Red Cluster  

 
Figure 4.11 Red Cluster Visualization 

The red cluster has the minor mean value for the Lateral Passing Distance (206.51cm) with a 

minimum value of 35.63cm and a std of 120.35cm, which might indicate more risk for the 
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cyclist compared to other clusters. This cluster is the focus of this research, focusing in areas 

with larger interactions between modals regarding the LPD. 

 

Furthermore, it indicates the area with the most significant climb positive mean value; the 

elevation in this cluster varies from 1077 meters to 1143 meters, demonstrating that it is in an 

ascent path most of the way. Data description for the Red Cluster is in Table 4.6. As follows, 

the data description for the orange cluster (Table 4.7) and for the blue cluster (Table 4.8). Also, 

the orange cluster is presented in the Figure 4.12, and the blue cluster in the Figure 4.13. 

 
Table 4.6 Data description for the Red Cluster 

index accex accey accez climb gyrox gyroy gyroz us_lpd speed 

count 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 

mean 2.71 8.72 -3.03 0.02 01.03 -1.05 4.67 206.51 5.73 

std 2.94 2.99 3.44 0.06 19.56 8.93 11.01 120.35 1.80 

min -2.73 1.00 -11.69 -0.10 -75.81 -27.74 -20.53 35.63 0.00 

25% 0.49 6.82 -5.69 -0.03 -8.87 -7.06 -2.36 100.13 4.67 

50% 2.62 8.69 -3.27 0.02 -0.35 -1.98 4.49 193.69 5.75 

75% 05.09 10.50 -0.90 0.06 14.14 4.15 11.96 287.83 6.84 

max 8.45 16.99 6.96 0.15 51.44 22.73 34.89 663.03 8.91 
 

b)  K-means Clustering Results - Orange Cluster  

 
Figure 4.12 Orange Cluster Visualization 
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Table 4.7 Data description for the Orange Cluster 

index accex accey accez climb gyrox gyroy gyroz us_lpd speed 

count 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 

mean 5.8027 2.4324 -1.6007 0.0012 46.1031 11.6373 -3.7984 302.871 7.9931 

std 3.6623 5.3804 5.8168 0.091 58.113 23.9871 26.6173 174.8356 1.4065 

min -3.5889 -13.1585 -1.4358 -0.199 -10.3969 -41.9618 -82.9771 63.54 4.761 

25% 3.9265 0.6895 -4.4221 -0.065 16.5267 1.3664 -14.3664 160.03 6.757 

50% 5.8778 3.5937 -2.1548 0.015 26.8931 7.3511 -2.3893 297.7 8.15 

75% 7.9703 5.1882 0.6656 0.061 49.9542 18.4885 10.6947 451.22 9.167 

max 14.224 10.0149 19.6127 0.195 250.1298 101.7176 56.771 693.17 10.257 

 

 

c) K-means Clustering Results - Blue Cluster  

 
Figure 4.13 Blue Cluster Visualization 

 

Table 4.8 Data description for the Blue Cluster 

index accex accey accez climb gyrox gyroy gyroz us_lpd speed 

count 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 

mean -2.6107 11.4746 -6.0617 -0.0507 -27.6343 -12.3555 -12.9323 305.4096 8.2485 

std 4.0497 3.7935 4.747 0.0755 38.597 14.4352 24.1817 161.7827 1.3665 

min -11.9471 1.7358 -17.03 -0.245 -190.6412 -69.2901 -88.2672 52.96 4.727 

25% -4.8794 9.1219 -9.396 -0.0928 -37.5973 -16.0172 -26.105 164.2375 7.6722 

50% -2.3571 12.0632 -5.527 -0.0585 -18.3588 -10.5382 -6.9962 285.25 8.516 

75% 0.1808 14.1156 -2.5863 -0.0105 -6.7538 -3.1985 6.7118 404.915 9.239 

max 7.9966 19.1177 5.3367 0.134 28.1756 7.2977 17.7405 648.89 10.626 
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4.2.2 Density-Based Spatial Clustering of Applications with Noise - DBSCAN 

The DBSCAN model finds core samples of high density and expands clusters from 

them. Aimed to compare performance for a more appropriate cluster model to this study, the 

DBSCAN algorithm was also applied regarding the collected data. This model is good for data 

that contains clusters of similar density. For performing the DBSCAN is necessary to specify 

two parameters: Eps and MinPts. Eps is the maximum distance between two points in the same 

cluster, and MinPts is the minimum number of points required to form a cluster, the neighbor 

common distances. 

It is worth noting that DBSCAN is sensitive to the choice of Eps and MinPts, and finding the 

optimal values for these parameters can be challenging. In practice, it may be necessary to 

experiment with different values to find the best results. This study uses an interactive 

mathematical algorithm to randomly combine six different Epsilons into fifteen Minimal Points 

given a ninety combination to get the optimum values for clustering, as shown below. The 

whole algorithm written in Python is presented in the annexes. 

 

1. Input for the Epsilons: 

epsilons = np.linspace(0.01, 1, num=15) 

epsilons 

Output: 

array([0.01      , 0.08071429, 0.15142857, 0.22214286, 0.29285714, 

       0.36357143, 0.43428571, 0.505     , 0.57571429, 0.64642857, 

       0.71714286, 0.78785714, 0.85857143, 0.92928571, 1.       ]) 

 

2. Input for the Minimal Samples: 

min_samples = np.arange(2, 20, step=3) 

min_samples 

Output: 

array([ 2,  5,  8, 11, 14, 17]) 

 

3. Input for the number of combinations 

import itertools 

combinations = list(itertools.product(epsilons, min_samples)) 

N = len(combinations) 
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N 

Output 

90 

 

Regarding the same dataset used in the K-means algorithm, the results to DBSCAN method is 

presented as follows (Table 4.9). 

 

Table 4.9 DBSCAN results from clustering 

Best Epsilon 0.4342 

Best Minimal Samples 2 

Best Score -0.48985380 

 

After running the DBSCAN algorithm, it is possible to examine each cluster label assigned to 

each data point. Which can be either a positive integer (indicating that the point belongs to a 

cluster) or a negative, -1 (indicating that the point is considered noise and does not belong to 

any cluster). To interpret the results, it is possible to count the number of points in each cluster 

and visualize the clusters using a scatter plot graph or another visualization method. 

 

The results (Table 4.10) shows that the DBSCAN model needed better to fit this specific 

research question regarding the dataset. Most of the data fit into the noise values; furthermore, 

the silhouette score was -0.489853, indicating a bad clustering operation. 

 

Table 4.10 DBSCAN number of points in each cluster 

Noise values -1 156 

Borders values 0 3 

Clustered 1 2 

 

The visualization (Figure 4.14) shows that the clustering method does not work well in this 

case. It is further discussed in the next session, comparing the application of the two models. 
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Figure 4.14 DBSCAN Clustering Visualization 

4.2.3 K-Means VS. DBSCAN: Results summary 

For this research and regarding the dataset provided from the sensor device collection, 

the K-Means clustering algorithm had a better performance than DBSCAN. The K-Means 

model clustered the dataset into 3 clusters with a silhouette score of 0.13826682 against a -

0.48985380 score from DBSCAN (Table 4.11). 

 

Table 4.11 Unsupervised Learning Models Comparison 

Unsupervised Model Model Score No. 
Clusters 

DBSCAN -0.48985380 3 

K-Means 0.13826682 3 

 

Considering the calculus method mentioned earlier for DBSCAN, the limited amount of data 

can significantly impact the model's performance. The data were scattered along the route, 

making it impossible to create clusters using the nearby neighbor's clustering method, 

increasing the noise related. 

 

Considering the perspective of data volume and the types of features involved, such as 

coordinates, velocity, and distances, as well as the use of georeferenced information, K-Means 

clustering proved to be a better choice for this context. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 CONCLUSIONS 

This research aimed to estimate hazardous areas for bicycle mobility by utilizing an 

unsupervised machine-learning algorithm based on a sensor device for data collection. The 

Lateral Passing Distance (LPD) data collected among bicycles and vehicles were related to a 

variate cyclist data. Some of this data includes bicycle velocity, curse elevation, global 

positioning system (GPS) coordinates, acceleration, and gyroscopic information through a field 

operational data collection on the street.  

 

The methodology was applied to a case study in Brasília's downtown avenue regarding a shared 

pathway around the principal local City Park, the Parque da Cidade Sarah Kubitchek. The road 

is 14 kilometers long, with two 3.50 meters lanes each way, one of it shared with cyclists. The 

total distance to complete all the lap was about 9.80 kilometers. Four entire laps on different 

days, always at the same time, were used in this research. 

 
The data were collected using the BSafe360 Sensor Device from the C2SMART Center 

(NYU), employing a proactive research approach. It worth to note that field operational data 

collection practices can occasionally be hazardous, particularly when automobiles are passing 

too close to bicycles. However, implementing a sensor device proved valuable in gathering 

data for active mobility research. It enabled researchers to capture real-world data and gain 

insights into bicycle and vehicle interaction dynamics, enhancing the understanding of safety 

issues in cycling environments. 

 

After data cleaning and exploratory analysis, 160 Lateral Passing Distances (LPD) readings 

were included. The descriptive statistics reveal that 25% of the LPD readings were less than 

139.62cm, 50% were less than 238.78cm, and 75% of the readings were less than 351.08cm. 

These statistics provided a snapshot of the LPD values across the entire dataset and were 

obtained through an exploratory data analysis before applying the clustering models. 

 

During the exploratory analysis, the LPD feature exhibited a weak negative correlation (-0.11) 

with the Climb feature during the general analysis. This suggests that as the bicycle encounters 

ascendent movements, the LPD tends to decrease. In other words, fewer LPD measurements 
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during ascents indicated a higher likelihood of risky proximity between bicycles and 

automobiles. Considering the threshold of 150cm, which aligns with the minimal lateral 

clearance distance law adopted in Brazil, the percentage of values in the ascending movement 

was found to be 4.35% greater than that in downhill routes. It can be seen more significantly 

in the clustering analysis. These findings highlight the importance of addressing safety 

concerns and implementing bigger measures to ensure sufficient lateral clearance during 

ascents, where the risk of close encounters between bicycles and vehicles appears to be higher. 

 

These results indicate that from the cyclist's perspective, there is more movement in the lateral 

bicycle axis on ascending routes. It can be explained regarding the lateral movement of the 

bicycle and cyclist by applying force on the pedal and pendulum around it to move uphill. 

 

Moreover, relating the LPD with speed, it had a positive correlation (+0.14). It assumes a small 

LPD with lower rates, as in climbing movements. The speed vs. climb relation had a moderate 

negative correlation (-0.23), with less rate in ascendant moves. However, these values were 

better correlated with the cluster models applied. 

 

The application of an unsupervised learning model proved to be a valuable research tool for 

the analysis of lateral passing distance, enabling clustering information based on multiple 

variables. 

 

Through the modeling process, distinct patterns were identified in the data, forming three 

clusters. The particular interest is the red cluster, which exhibited the lowest indices for LPD 

and was predominantly located in ascendent areas with high traffic volume. 

 

Further analysis of the red cluster revealed essential statistics. It consisted 75 readings with a 

mean LPD by 206.51cm and a standard deviation of 120.35cm. Additionally, 25% of the LPD 

readings were less than 100.13cm, while 50% were below of 193.69cm in the second quartile. 

These statistics indicate critical LPD within this cluster, particularly when considering the 

minimal lateral clearance distance law adopted in Brazil, which has a threshold of 150cm. 

These were concentrated in strategy locals for the local mobility. 
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The volume of automobiles at a specific point is much higher than at other locations. This area 

is entirely located in the red cluster, indicating the lowest LPD and highest risk to bicycle-

shared mobility in general.  

 

Overall, these findings highlight the significance of the clustering model in identifying 

hazardous areas with insufficient LPD, especially in ascendant regions with high traffic 

volume. It emphasizes the need for safety improvements in these areas to ensure compliance 

with the minimal lateral clearance distance regulations, in a infrastructure perspective. 

 

The methodology employed could be applied to other spots in the city to estimate hazardous 

areas for active mobility. The findings of this study can help transportation planners and 

policymakers applying the method aiming to make informed decisions to improve the safety 

of cycling infrastructure, and road safety in general. 

 

Finally, all the script used in this research is available online. The access link is in the appendix 

session. 

5.2 RESEARCH LIMITATIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

Some limitations were observed in this research. It will be presented in this session, 

aiming to recommend best practices for future research, leading to a more effective and 

evidence-based interventions to improve road safety regarding the cycling infrastructure. 

 

First, using a single researcher for data collection aimed to minimize behavioral variation from 

a mobility perspective was a limitation. This approach resulted in the limited time available for 

more data collection, since obtaining a larger volume of data would enhance the machine 

learning model's performance and provide a more robust statistics analysis. 

 

Moreover, low significance of crash registered data. The crash register obtained from the public 

organization had limited significance within the provided temporal window. Validating the 

results obtained by the clustering model through additional temporal analyses would be 

valuable (BERNARDES et al., 2023). This would enhance the confidence and reliability of the 

findings. 
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Furthermore, challenges in measuring traffic volume. Traffic volume is a relevant feature for 

this analysis. However, accurately measuring the volume at the six entrances and exits of the 

City Park area simultaneously proved to be challenging. Since the avenue around the City Park 

operates as a closed system, being possible the complete measurement of vehicles within it, a 

larger number of volunteers is required. This research collected data from three points 

simultaneously. Still, this study did not consider it in the analysis as a feature of the cluster 

model, limiting a comprehensive understanding of the entire system. Future research should 

explore methods to measure traffic volume effectively or consider the complete system, 

whether in this location, for a more conclusive analysis. 

 

Since some studies suggest that introducing dedicated bicycle lanes improves cyclists' safety 

and reduces potential conflicts between motorized vehicles. These conflicts arise from lane-

changing or encroaching vehicles that are passing cyclists (MEHTA et al., 2015). 

 

Therefore, one recommendation for future research is to use the presented methodology to 

compare different bicycle lane infrastructures. Also, it is recommended to proceed on more 

locations with a significant historical crash to compare the results with the number of cyclists 

involved in collisions with vehicles. Regarding the unsupervised learning model, it is 

recommended to apply DBSCAN with more data collected. Thus, it is possible to analyze the 

behavior regarding the density incidence. It can result in better clustering results regarding the 

clustering score by the algorithm. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Acknowledgments 

The author would like to express gratitude to Suzana Duran Bernardes, researcher at 

the New York University (NYU), and her advisor, Kaan Ozbay, from the Tandon School of 

Engineering, for providing the equipment through a research partnership between the 

universities. Additionally, appreciation is extended to the University of Brasília for enabling 

this study and numerous other researches endeavors.   



 57 

REFERENCES 

AASHTO (2010) Highway Safety Manual, first ed. American Association of State Highway and Transportation 

Officials, Washington, D.C. 

ALDRED, R. & A. GOODMAN (2018) Predictors of the frequency and subjective experience of cycling near 

misses: Findings from the first two years of the UK Near Miss Project. Accident Analysis and Prevention, 

v. 110, p. 161-170. 

AMBROŽ, M. (2017) Raspberry Pi as a low-cost data acquisition system for human powered vehicles. 

Measurement, v. 100, p. 7–18. 

AMPE, T.; B. de GEUS; I. WALKER; B. SERRIEN; B. TRUYEN; H. DURLET & R. MEEUSEN (2020) The 

impact of a child bike seat and trailer on the objective overtaking behavior of motorized vehicles passing 

cyclists. Transportation Research Part F: Traffic Psychology and Behaviour, v. 75, p. 55-65. 

ANDERSON, T.K., (2009) Kernel density estimation and k-means clustering to profile road accident hotspots. 

Accident Analysis and Prevention. 41 (3), 359e364. 

ANG L-M., K.P. SENG (2016) Big sensor data applications in urban environments. Big Data Research, 4 , pp. 1-

12. 

ANN FORSYTH & KRIZEK, K. (2011) Urban Design: Is there a Distinctive View from the Bicycle?, Journal of 

Urban Design. 

ARTHUR, D. & VASSILVITSKII, S. (2006) “k-means++: The advantages of careful seeding”. Proceedings of 

the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied 

Mathematics. 

BACCHIERI, G., J D BARROS, A, MOTTA, J & GIGANTE, D et al. (2009) Cycling to work in Brazil: Users 

profile, risk behaviors, and traffic accident occurrence. Accident Analysis and Prevention. TY  - JOUR 

BERNARDES, S. D.; A. KURKCU & K. OZBAY (2019) Design, Implementation and Testing of a New Mobile 

Multi- Function Sensing Device for Identifying High-Risk Areas for Bicyclists in Highly Congested Urban 

Streets. Mobi SPC, Halifax, Canada. 

BERNARDES, S. D. & OZBAY, K. (2023) Derivation Of Surrogate Safety Measures From Lateral Passing 

Distance Between Vehicles And Bicycles. TRB Annual Meeting 2023, TRBAM-23-04188. 

BERNARDES, S. D. & OZBAY, K. (2023) BSafe-360: An All-in-One Naturalistic Cycling Data Collection Tool. 

Sensors. 2023, 23, 6471. 

BAHMANKHAH, B.; P. FERNANDES; J. FERREIRA; J. BANDEIRA; J. SANTOS & M. C. COELHO (2020) 

Assessing the overtaking lateral distance between motor vehicles and bicycles-influence on energy 

consumption and road safety. Advances in Intelligent Systems and Computing, 1083 AISC, p. 174-189. 

BECK, B.; D. CHONG; J. OLIVIER; M. PERKINS; A. TSAY; A. Rushford & M. Johnson (2019) How much 

space to drivers provide when passing cyclists? Understanding the impact of motor vehicle and 

infrastructure characteristics on passing distance. Accident Analysis and Prevention, v. 128, p. 253–260. 

BLACK, A. A.; R. DUFF; M. HUTCHINSON; I. NG; K. PHILLIPS; K. ROSE; A. USSHER & J. M. WOOD 

(2020) Effects of night-time bicycling visibility aids on vehicle passing distance. Accident Analysis and 

Prevention, v. 144, p. 105636. 



 58 

CHAPMAN, J. & D. A. NOYCE (2012) Observations of driver behavior during overtaking of bicycles on rural 

roads. Transportation Research Record: Journal of the Transportation Research Board, v. 2321, p. 38–

45. 

CHAPMAN, J. R. & D. A. NOYCE (2014) Influence of roadway geometric elements on driver behavior when 

overtaking bicycles on rural roads. Journal of Traffic and Transportation Engineering (English Edition), 

v. 1, p. 28–38. 

CHUANG, K. H.; C. C. HSU; C. H. LAI; J. L. DOONG & M. C. JENG (2013) The use of a quasi-naturalistic 

riding method to investigate bicyclists’ behaviors when motorists pass. Accident Analysis and Prevention, 

v. 56, p. 32–41. 

DE CEUNYNCK, T.; B. DORLEMAN; S. DANIELS; A. LAURESHYN; T. BRIJS; E. HERMANS & G. Wets 

(2017) Sharing is (s)caring? Interactions between buses and bicyclists on bus lanes shared with bicyclists. 

Transp. Res. Part F: Traffic Psychology and Behaviour, v. 46, 301–315.  

DOZZA, M.; R. SCHINDLER; G. BIANCHI-PICCININI & J. Karlsson (2016) How do drivers overtake cyclists? 

Accident Analysis and Prevention, v. 88, p. 29-36. 

FEIZI, A.; J.-S. Oh; V. KWIGIZILE and S. Joo (2019) Cycling environment analysis by bicyclists’ skill levels 

using instrumented probe bicycle (IPB). International Journal of Sustainable Transportation, v. 14, n. 9, 

p. 722-732. 

FENG, F.; S. BAO; R. C. HAMPSHIRE & M. DELP (2018) Drivers overtaking bicyclists—An examination using 

naturalistic driving data. Accident Analysis and Prevention, v. 115, p. 98–109. 

FORSYTH, A. & K. J. KRIZEK (2011a) Promoting walking and bicycling: Assessing the evidence to assist 

planners. Built Environment. v. 37, n. 4, p. 429-446. 

FORSYTH, A, and K. J. KRIZEK (2011b) Urban Design: Is there a Distinctive View from the Bicycle? Journal 

of Urban Design, v. 16, n. 4, p. 531-549.  

FOURNIER, N., BAKHTIARI, S., VALLURU, K.D., CAMPBELL, N., CHRISTOFA, E., ROBERTS, S., 

KNODLER Jr, M. (2020). Accounting for drivers’ bicycling frequency and familiarity with bicycle 

infrastructure treatments when evaluating safety. Accident Analysis and Prevention, 137, 105410. 

GHADGE, M. D. PANDEY & D. KALBANDE (2015) "Machine learning approach for predicting bumps on 

road," International Conference on Applied and Theoretical Computing and Communication Technology 

(iCATccT), 2015, pp. 481-485. 

GADSBY, A. & K. WATKINS (2020) Instrumented bikes and their use in studies on transportation behaviour, 

safety, and maintenance. Transportation Reviews, v. 40, p.774–795.  

GUERRERO-IBÁÑEZ, J.; S. ZEADALLY & J. CONTRERAS-CASTILLO (2018) Sensor Technologies for 

Intelligent Transportation Systems. Sensors, v. 18, n. 4, p. 1212. 

GUSTAFSSON, L., & ARCHER, J. (2013). A naturalistic study of commuter cyclists in the greater Stockholm 

area. Accident Analysis and Prevention, 58, 286–298. 

HAWORTH, N.; K. C. HEESCH; A. SCHRAMM & A. K. DEBNATH (2018) Do Australian drivers give female 

cyclists more room when passing? Journal of Transport and Health, v. 9, p. 203–211. 

HØYE, A.; A. FYHRI & T. BJØRNSKAU (2016) Shared Road is double happiness: evaluation of a “Share the 

road” sign. Transportation Research Part F: Traffic Psychology and Behaviour, v. 42, p. 500–508. 



 59 

HUERTAS-LEYVA, P., DOZZA, M., & BALDANZINI, N. (2018) Investigating cycling kinematics and braking 

maneuvers in the real world: E-bikes make cyclists move faster, brake harder, and experience new 

conflicts. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 211–222.  

JAIN, A.K.; MURTY, M.N.; FLYNN, P.J. (1999). Data clustering: A review. ACM Comput. Surv. (CSUR) 1999, 

31, 264–323. 

KAY, J. J.; P. T. SAVOLAINEN; T. J. GATES & T. K. DATTA (2014) Driver behavior during bicycle passing 

maneuvers in response to a share the road sign treatment. Accident Analysis and Prevention, v. 70, p. 92–

99. 

KOVACEVA, JORDANKA., Gustav NERO, Jonas BÄRGMAN, Marco DOZZA (2019) Drivers overtaking 

cyclists in the real-world: Evidence from a naturalistic driving study, Safety Science, Volume 119, 2019, 

Pages 199-206. 

KIM, K., YAMASHITA, E.Y., (2007) Using a k-means clustering algorithm to examine patterns of pedestrian 

involved crashes in honolulu, Hawaii. J. Adv. Transport. 41 (1), 69e89. 

KUBAT, M. (2017) An Introduction to Machine Learning; Springer: Cham, Switzerland, 2017. 

KURKCU, A. & K. OZBAY (2017) Estimating Pedestrian Densities, Wait Times, and Flows with Wi-Fi and 

Bluetooth Sensors. Transportation Research Record. 2644(1): p. 72-82. 

LIM, C., Kwang-Jae KIM, Paul P. MAGLIO, (2018) Smart cities with big data: Reference models, challenges, 

and considerations, Cities, Volume 82, 2018, Pages 86-99. 

LAMONDIA, J. & J. DUTHIE (2012) Analysis of factors influencing bicycle-vehicle interactions on urban 

roadways by ordered probit regression. Transportation Research Record, v. 2314, p. 81–88. 

LI, C.; S. SUN & J. GUO (2015) Evaluation the impacts of bicycle-sharing systems on carbon emission 

reductions-empirical study in Beijing. Presented at 94th Annual Meeting of the Transportation Research 

Board, Washington, D.C. 14 p.  

LI, Z.; W. WANG; P. LIU; J. BIGHAM and D. R. RAGLAND (2012) Modeling bicycle passing maneuvers on 

multilane separated bicycle paths. Journal of Transportation Engineering, v. 139, n. 1, p. 57–64. 

Lim, CHIEHYEON., Kwang-Jae KIM, Paul P. MAGLIO (2018), Smart cities with big data: Reference models, 

challenges, and considerations, Cities, Volume 82, 2018, Pages 86-99. 

LLORCA, C.; A. ANGEL-DOMENECH; F. AGUSTIN-GOMEZ & A. GARCÍA (2017) Motor vehicles 

overtaking cyclists on two-lane rural roads: analysis on speed and lateral clearance. Safety Science, v. 92, 

p. 302–310. 

LORD, D.; X. QIN & S. R. GEEDIPALLY (2021) Highway Safety Analysis and Modeling. Elsevier: Oxford, UK.  

LOVE, D. C.; A. BREAUD; S. BURNS; J. MARGULIES; M. ROMANO & R. LAWRENCE (2012) Is the three-

foot bicycle passing law working in Baltimore, Maryland? Accident Analysis and Prevention. V. 48, p. 

451-456. 

MACKENZIE, J. R. R.; J. K. DUTSCHKE and G. Ponte (2021) An investigation of cyclist passing distances in 

the Australian Capital Territory, Accident Analysis and Prevention, Volume 154, 2021. 

MAURO, R., De LUCA, M., DELL’ACQUA, G., (2013) Using a k-means clustering algorithm to examine 

patterns of vehicle crashes in before-after analysis. Mod. Appl. Sci. 7 (10), 11. 

MEHTA, K.; B. MEHRAN and B. HELLINGA (2015) Evaluation of the Passing Behavior of Motorized Vehicles 

When Overtaking Bicycles on Urban Arterial Roadways. Transportation Research Record: Journal of the 



 60 

Transportation Research Board, No. 2520, Transportation Research Board, Washington, D.C., 2015, pp. 

8–17. 

MEHTA, K.; B. MEHRAN & B. HELLINGA (2019) A methodology to estimate the number of unsafe vehicle 

cyclist passing events on urban arterials. Accident Analysis and Prevention, v. 124, p. 92–103. 

MOHER, D.; L. SHAMSEER; M. CLARKE; D. GHERSI; A. LIBERATI; M. PETTICREW & L. A. Stewart 

(2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 

statement. Systematic Reviews, v. 4, v. 1. 

MUELLER, N.; D. ROJAS-RUEDA; X. BASAGAÑA; M. CIRACH; T. COLE-HUNTER; P. DADVAND; D. 

DONAIRE-GONZALEZ; M. FORASTER; M. GASCON; D. MARTINEZ, & M. NIEUWENHUIJSEN 

(2015) Health impacts related to urban and transport planning: A burden of disease assessment. 

Environment International, v. 91, p. 138-146. 

NGUYEN, H., KIEU, L.-M., WEN, T. & CAI, C. (2018) Deep learning methods in transportation domain: a 

review. IET Intell. Transp. Syst., 12: 998-1004. 

OZBAY, K.; A. KURKCU & H. YANG (2018) Portable and Integrated Multi-Sensor System for Data-Driven 

Performance Evaluation of Urban Transportation Networks. Transport Research International 

Documentation - TRID. 

ROSSI, R.; F. ORSINI; M. TAGLIABUE; L. L. Di STASI; G. De Cet and M. Gastaldi (2021) Evaluating the 

impact of real-time coaching programs on drivers overtaking cyclists. Transportation Research Part F: 

Traffic Psychology and Behaviour, v. 78, n. 1, p. 74-90. 

RUBIE, E.; N. HAWORTH; D. TWISK & N. YAMAMOTO (2020) Influences on lateral passing distance when 

motor vehicles overtake bicycles: A systematic literature review. Transport Reviews, v. 40 n. 6, pp. 754 

773. 

SAVOLAINEN, P.; T. GATES; R. TODD; T. DATTA & J. MORENA (2012) Lateral placement of motor 

vehicles when passing bicyclists. Transportation Research Record: Journal of the Transportation 

Research Board, v. 2314, n. 1. 

SELVI, H.Z., CAGLAR, B., (2018) Using cluster analysis methods for multivariate mapping of traffic accidents. 

Open Geosci. 10 (1), 772e781. 

SCHRAMM, A., HAWORTH, N., HEESCH, K., WATSON, A., & DEBNATH, A. (2016) Evaluation of the 

Queensland minimum passing distance road rule. Department of Transport and Main Roads. 

SHACKEL, S. C. & J. PARKIN (2014) Influence of road markings, lane widths and driver behaviour on proximity 

and speed of vehicles overtaking cyclists. Accident Analysis and Prevention, v. 73, p. 100–108. 

VANPARIJS, J.; L. I. PANIS; R. MEEUSEN & B. de GEUS (2015) Exposure measurement in bicycle safety 

analysis: A review of the literature. Accident Analysis and Prevention, v.84, p.9-19. 

VAN ECK, N. J. & L. WALTMAN (2010) VOSViewer: Visualizing Scientific Landscapes [Software]. Available 

from https://www.vosviewer.com 

ZANTALIS, F. S.; KOULOURAS, G.; KARABETSOS, S.; KANDRIS, D. (2019). A Review of Machine 

Learning and IoT in Smart Transportation. Future Internet 2019, 11, 94. 

WESTERHUIS, F., & de WAARD, D. (2016) Using Commercial GPS Action cameras for Gathering natura- listic 

cycling data. Journal of the Society of Instrument and Control Engineers, 55(5), 422–430.  



 61 

WALKER, I. (2007) Drivers overtaking bicyclists: Objective data on the effects of riding position, helmet use, 

vehicle type and apparent gender. Accident Analysis and Prevention, v. 39, n.2, p.417-425.  

WALKER, I.; I. GARRARD & F. JOWITT (2014) The influence of a bicycle commuter’s appearance on drivers’ 

overtaking proximities: An on-road test of bicyclist stereotypes, high-visibility clothing and safety aids in 

the United Kingdom. Accident Analysis and Prevention, v. 64, p. 69–77. 

WANG, Y.; ZHANG, D.; LIU, Y.; BO DAI, LEE, L, H.; Enhancing transportation systems via deep learning: A 

survey, Transportation Research Part C: Emerging Technologies, Volume 99, 2019. 

WORLD HEALTH ORGANIZATION (2018) Global status report on road safety 2018. Geneva, Switzerland. 

 

  



 62 

APPENDIX A 

All the Python script used for the exploratory data analysis, unsupervised learning model 

application, statistics, and visualizations are available in this GitHub repository, as well as the 

data: 

https://github.com/marcellmello/msc-bicycle-safety 

 

 
Figure A.1 Relation between the 3-axis accelerometer, gyroscope, and Lateral Passing 
Distance (LPD) 
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Figure A.2 Relation between the 3-axis accelerometer, gyroscope and Climb 


