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Abstract

Vegetation pattern formation is a widespread phenomenon in resource-limited environments, but the driving mechanisms are largely
unconfirmed empirically. Combining results of field studies and mathematical modeling, empirical evidence for a generic pattern-
formation mechanism is demonstrated with the clonal shrub Guilandina bonduc L. (hereafter Guilandina) on the Brazilian island of
Trindade. The mechanism is associated with water conduction by laterally spread roots and root augmentation as the shoot grows—a
crucial element in the positive feedback loop that drives spatial patterning. Assuming precipitation-dependent root–shoot relations,
the model accounts for the major vegetation landscapes on Trindade Island, substantiating lateral root augmentation as the driving
mechanism of Guilandina patterning. Guilandina expands into surrounding communities dominated by the Trindade endemic, Cyperus
atlanticus Hemsl. (hereafter Cyperus). It appears to do so by decreasing the water potential in soils below Cyperus through its dense
lateral roots, leaving behind a patchy Guilandina-only landscape. We use this system to highlight a novel form of invasion, likely to
apply to many other systems where the invasive species is pattern-forming. Depending on the level of water stress, the invasion
can take two distinct forms: (i) a complete invasion at low stress that culminates in a patchy Guilandina-only landscape through a
spot-replication process, and (ii) an incomplete invasion at high stress that begins but does not spread, forming isolated Guilandina
spots of fixed size, surrounded by bare-soil halos, in an otherwise uniform Cyperus grassland. Thus, drier climates may act selectively
on pattern-forming invasive species, imposing incomplete invasion and reducing the negative effects on native species.
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Significance Statement

Understanding the mechanisms by which water-limited vegetation self-organizes in spatial patterns is highly significant in the
current era of climate change, as spatial patterning improves the resilience of ecosystems to drier climates. However, empirical
confirmation of theoretically proposed mechanisms hardly exists, and the implications of vegetation patterning to other ecological
processes of high concern, such as species invasion, have eluded consideration. We address both problems by studying a model
of a shrubland–grassland system on Trindade Island, where a pantropical shrub, Guilandina bonduc L., displaces an endemic sedge,
Cyperus atlanticus Hemsl., via spatial patterning. We provide evidence for a basic mechanism of vegetation patterning associated
with lateral root spread and predict that spatial patterning under severe water stress can halt the shrub’s invasion.

Introduction
Ecosystems in resource-limited environments often respond to re-
source scarcity by self-organizing in spatial patterns of biomass
and resources (1). A much studied context of spatial self-
organization in ecology is water-limited landscapes, where a va-
riety of regular and irregular vegetation patterns have been ob-
served, including nearly periodic gap, stripe, and spot patterns (2).
Model studies explain the emergence of such patterns from

uniform vegetation in terms of a positive feedback loop between
vegetation growth in incidental patches of denser vegetation and
net water transport toward these patches from surrounding ar-
eas of sparser vegetation (3, 4). Vegetation growth increases the
amount of water drawn from the surrounding areas, which, in
turn, accelerates growth further. This feedback loop is scale-
dependent in the sense that it combines activated vegetation
growth at short scales and inhibited growth at longer scales,
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thereby amplifying small nonuniform perturbations to form peri-
odic patterns (1, 5).

The most studied case of water transport is overland water flow
as a result of increased water infiltration rates in denser vegeta-
tion patches (6, 7). Increased infiltration has been attributed to
factors such as higher soil porosity due to denser roots and lower
density of soil crusts (8, 9). Another mechanism of water transport,
increasingly discussed in recent years, is lateral soil-water diffu-
sion in loose top soil layers, such as sandy soils or gravel (10–13).
In that case, the water transport is associated with the develop-
ment of soil-water gradients as a result of higher transpiration in
denser vegetation patches.

Another water-transport mechanism is water conduction by
laterally extended roots. In this case, enhanced water transport
toward patches of denser vegetation has been associated with
the positive correlation between shoot and root growth; as plants
grow, their roots extend in the lateral directions and take up
more water from the surrounding areas (14, 15). Unlike the scale-
dependent feedback associated with overland water flow and soil-
water diffusion, that associated with water conduction by lateral
roots—the root-augmentation feedback—has hardly been studied
empirically, despite its generic nature (16–18).

Self-organizing vegetation patterns have been extensively
studied (1, 19–23), but far fewer studies have addressed the im-
plications for community dynamics (24–28). Lacking, in particu-
lar, are studies of range expansion or invasion, in which the tar-
get plant species is capable of self-organization in spatial pat-
terns (29), and questions addressing the effects of spatial self-
organization on these processes have not been explored.

An interesting candidate system for both demonstrating the
root-augmentation feedback and studying the impact of spatial
self-organization on range expansion or invasion is Trindade Is-
land, where Guilandina bonduc L. (hereafter Guilandina), a clonal
pantropical shrub, is found to displace the endemic sedge Cyperus
atlanticus Hemsl. (hereafter Cyperus), leaving behind a Guilandina-
only patchy landscape, as indicated by Fig. 1. To our knowledge,
Guilandina is native to Trindade, and thus not an “exotic invader”.
However, the mechanism by which it rapidly expands after the
removal of livestock and its patchy displacement of Cyperus may
well apply to ecosystems where patchy displacement of a native
species is driven by exotic invaders (30). We, therefore, refer to
this form of displacement as “patchy invasion”. Aerial images of
Trindade Island, as shown in Fig. 1, suggest that the invasion is
patchy (31, 32), leaving behind a self-organized patterned state
of Guilandina spots surrounded by halos of bare soil and dead
Cyperus.

In this paper, we use the Trindade Guilandina–Cyperus ecosys-
tem as a case study for demonstrating the hypothesized root-
augmentation feedback in a real ecosystem and for highlighting
the role of spatial patterning in invasion dynamics. We accom-
plish this goal by combining empirical observations with math-
ematical modeling of a woody–herbaceous system that captures
the root-augmentation feedback as the dominant mechanism of
spatial self-organization.

Results
Evidence for a root-augmentation feedback
The rationale behind the evidence we provide for the root-
augmentation feedback as the major driver of Guilandina’s pat-
terning is as follows. We use empirical observations of abiotic and
biotic factors in Trindade Island, such as water as the growth-

Fig. 1. Patchy invasion at low altitudes on Trindade Island. (A) An image
from 2013 November, showing spots of Guilandina surrounded by halos
of bare soil and dead Cyperus isolated by a matrix of uniform Cyperus. (B)
An image from 2019 October, showing radially expanded Guilandina
spots and their halos, and gradual displacement of Cyperus. (C) A
blow-up of an area of advanced invasion in image (B), where Guilandina
spots have completely displaced Cyperus.

limiting resource, soil characteristics, Guilandina’s lateral root
spread, clonal reproduction, and others, to construct the model.
We then use the model to study the dynamics of Guilandina’s pat-
terning at the single-patch scale and at the landscape scale, and
confront model results with empirical observations at different
sites of Trindade Island. A strong agreement between model pre-
dictions and empirical observations can provide compelling evi-
dence for the dominant role of the root-augmentation feedback
in Guilandina’s patterning.

The Trindade ecosystem
Trindade is a volcanic, tropical island in the Atlantic Ocean, ly-
ing roughly 1,200 km east of the Brazilian coast. The climate of
Trindade Island is atypical of climates in which water-based veg-
etation patterning is expected. The island has a tropical climate
without a true dry season (33), with average annual rainfall of
1476 mm at low altitudes (National Oceanographic Data Bank of
the Brazilian Navy) and increased rainfall rates at higher altitudes.
However, because of warm annual average temperatures (25.3◦C),
the coarse volcanic soils, and Guilandina’s dense lateral roots, the
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Fig. 2. Two characteristic aspects of Guilandina at the low-altitude sites.
(A) Lateral root extension far beyond the canopy. The root was dug up
from a soil depth of 6 cm and is about 8 m long. It starts at the Guilandina
patch in the upper part of the image and extends through a bare-soil
area and an area of the dead Cyperus. (B) Distant sprouting of a
Guilandina clone from a laterally extended root of the parent plant. The
clone is located in the halo of the parent plant, but has sprouted at an
earlier stage of the invasion process, possibly when the sprout was still
in a Cyperus-covered area where the water potential is higher.

water potentials in the top-soil layers at low-elevation bare-soil
areas can be below −3.0 MPa (34), and, thus, highly limiting.

Guilandina bonduc, synonymous with Caesalpinia bonducella, is
in a pantropical genus of lianas and scandent shrubs charac-
terized by unisexual flowers and few-seeded, oval-shaped dehis-
cent fruits, and are often armed with rigid trichomes or prickles.
The seeds are hard and globose and adapted for long-distance
oceanic dispersal by flotation (35). The first recording of Guilandina
in Trindade Island was in 1916 (36). On Trindade, Guilandina gen-
erally grows as a short, spreading shrub, with clones expanding
laterally in exceptionally circular patterns, and new clones ap-
pearing a few tens of meters from apparent parent plants. We
observed young germinants from seeds on Trindade, based on
the presence of cotyledons, but our observations in the field in-
dicate vegetative reproduction of new individuals is far more
common.

The spatial expansion of Guilandina and concomitant spatial
patterning at low elevation does not appear to be driven by plant–
soil feedback or allelopathy, based on plants grown experimen-
tally in soils collected under and outside of Guilandina patches (34).

Patch-scale observations
Four sites in Trindade Island have been studied, one at a high
altitude (site 1, circa 600 m) and three at a low altitude (sites
2 to 4, circa 60 to 100 m), as illustrated by Fig. S1 in the Sup-
plementary Material. In the absence of Guilandina, Cyperus forms
nearly uniform vegetation coverage, with a few other grasses and
forbs mixed in. The form of Guilandina patches depends on ele-
vation. At low elevations (sites 2 to 4), Guilandina forms spot-like
patches consisting of circular aboveground biomass distributions
surrounded by bare-soil halos (Fig. 1). Underneath the halos of
bare soil, dense Guilandina roots are found, as shown in Fig. S2 in
Supplementary Material. Fig. 2A shows an example of an exposed
root extending throughout the bare-soil halo.

Although the low-altitude sites feature moderately sloped ter-
rains, the round shape of isolated Guilandina patches suggests that
runoff does not play a dominant role; otherwise, we would expect
to observe elongated, arc-like patches, oriented perpendicular to
the slope (37). Another indication for this is the absence of dead

Guilandina

Cyperus

A

Mixed Guilandina-Cyperus

B

Fig. 3. Spatial patterns at high altitudes. (A) Adjacent Guilandina-only
and Cyperus-only patches. (B) Mixed Guilandina–Cyperus patch. In both
cases, the land is fully covered by vegetation apart from sporadic small
bare-soil patches.

plants at the lower lying edges of Guilandina patches, which would
indicate runoff loss to lower vegetation patches and migration
uphill (2). The absence of significant runoff may be attributed to
high infiltration rates of surface water into the soil because of the
coarse nature of the volcanic soil and the increased soil porosity
by the presence of roots in all areas, including the bare-soil ha-
los. The bare-soil halos are surrounded by dead-Cyperus halos of
different widths, indicating invasion processes have recently oc-
curred or are still occurring.

Measurements of soil-water potentials indicate much lower
values in the bare-soil halos than in either the Cyperus or the Gui-
landina zones (indicating lower water availability), as indicated by
Fig. S3 in Supplementary Material. The lowest single soil-water
potential measurement was also in a bare-soil halo, −4.8 MPa.

At high elevations, Guilandina does not form distinct spatial
patches; it is much more intermixed with Cyperus, and soil cores
show that Guilandina roots do not expand into surrounding vege-
tation as they do at lower elevations [see Supplementary Material
and Fig. S2, and Ref. (34)], presumably because of much higher
precipitation and soil depth.

Our field observations found that Guilandina’s clones in the low-
altitude sites sprout at several distances along the root system
from the mother plant, producing new individuals at different
points of the expanding roots. Fig. 2B shows an example of such
a clone. This pattern of clonal expansion is presumably via root
suckers (38), as observed in other Caesalpinia species (39). The long-
distance clonal expansion is likely a result of the low water poten-
tial in the bare-soil halos that surround Guilandina patches and
the higher potential beyond these halos, as shown by our mea-
surements (see Fig. S3 in Supplementary Material).

Landscape-scale observations
Landscape-scale patterns depend on water availability. At high
altitudes where water availability is high, full vegetation cover-
age is typically observed. The vegetation often forms mosaics of
Guilandina patches, Cyperus patches, and mixed Guilandina–Cyperus
patches. Fig. 3 shows examples of such patches. There is no indi-
cation of Guilandina’s self-organization in spatial patterns devoid
of Cyperus. At low altitudes, isolated Guilandina spots surrounded
by bare-soil halos in an otherwise uniform Cyperus grassland, or
areas of nearly regular Guilandina spot patterns in otherwise bare
soil devoid of Cyperus, are common (Fig. 1). The spots in these areas
are of a comparable size and distance to their neighbors, with no
indications of external heterogeneities that might dictate them.
A spatial statistical analysis, such as calculating pair-correlation
functions (40, 41), is not possible because of the insufficient num-
ber of spots for such an analysis.
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Modeling the Trindade ecosystem
We use a continuum modeling approach (42), where all state
variables are continuous functions of space and time, that solve
a system of integro-partial differential equations for four state
variables: aboveground biomasses of Guilandina, B1, and Cyperus,
B2, soil-water content, W, and surface water H, all in units of
kg/m2 (43). In constructing the model, we make use of three ele-
ments of the Trindade ecosystems: (i) vegetation growth is limited
by water availability, (ii) Guilandina can develop long lateral roots,
and (iii) Guilandina patches expand by clonal growth with nonlo-
cal sprouting of new clones. The first element motivates the use of
the model platform developed in (43) (see also (3)) for vegetation
pattern formation in water-limited systems. The second element
guides us to include nonlocal root-kernel terms that account for
water conduction by laterally spread roots and capture the root-
augmentation feedback of Guilandina. The third element guides us
to include a nonlocal clonal-growth kernel to describe sprouting
of new Guilandina clones at a distance. In addition, we make use of
the apparent absence of significant runoff to simplify the model
by eliminating overland water dynamics, i.e., the equation for the
surface water variable H. We verified that this simplification does
not affect the results we report here, as long as the infiltration
rates in bare soil and in vegetation patches are comparable and
high enough relative to the rates of water uptake by the plants’
roots and biomass growth. We refer the reader to the "Materials
and Methods" section for a full description of the model.

We distinguish between high- and low-altitude sites in
Trindade Island by controlling two main parameters: the precip-
itation (mean-annual-rainfall) rate, P, and the lateral root exten-
sion per unit aboveground biomass, E—a measure for the plant’s
investment in growing laterally extended roots relative to the in-
vestment in growing shoots. The mean annual rainfall at a low
altitude is assumed to be in the range of 1250 to 1500 mm/y, and
to increase with altitude. Exact values at high altitudes are not
known, since only one weather station exists on the island; we
assume a precipitation range of 1500 to 1750 mm/y. Large (small)
E values represent Guilandina’s phenotypes with long (short) lat-
eral roots in low (high) altitudes where soil-water availability is
low (high). Differences between the low-altitude sites 2 to 4 can
still be captured by varying the precipitation rate within the afore-
mentioned range.

Model analysis
The model has four spatially uniform stationary states: a bare-soil
state devoid of any vegetation (BS), a Guilandina-only state (GU),
a Cyperus-only state (CU), and a mixed Guilandina–Cyperus state
(MU). Their existence and stability properties depend on model
parameters; in particular, the parameters we use to distinguish
between low- and high-altitude sites are P (precipitation rate) and
E (lateral root extension). The possible existence of a nonuniform
stationary (Turing) instability, induced by the root-augmentation
feedback, can be studied using linear stability analysis (22) of the
uniform Guilandina-only state. Such an analysis yields a disper-
sion relation, σ = σ (k; E, P), which provides information about the
growth rates, λ = Re(σ ), of periodic perturbations of wavenumber
k (wavelength 2π/k) for various values of P and E. The existence
of a nonuniform stationary instability, for a given value of E, can
be proven by identifying the critical wavenumber and precipita-
tion values, kc and Pc, at which the conditions σ = λ (i.e., σ is real
valued), λ = 0, dλ/dk = 0, and d2λ/dk2 < 0 are satisfied. These con-
ditions guarantee that as P is decreased below a critical value, Pc,
a periodic mode of a critical wavenumber, kc > 0, begins to grow

Fig. 4. Growth rates of periodic perturbations about the uniform
Guilandina-only state. Above a critical precipitation threshold, Pc,
perturbations of any wavenumber k (or wavelength 2π/k) decay to zero,
implying stability of the uniform Guilandina-only state to any
sufficiently small perturbation. As this threshold is traversed, by
decreasing the precipitation rate P, perturbations of wavenumbers kc

and close to it begin to grow, leading to the destabilization of the
uniform Guilandina-only state and the development of periodic
Guilandina-only patterns.

monotonically in time, as shown in Fig. 4. The growth of this mode
results in the formation of Guilandina-only stationary periodic pat-
terns (GP). A similar analysis of the mixed Guilandina–Cyperus state
(MU) yields the threshold at which the mixed state goes through a
Turing instability to mixed Guilandina–Cyperus stationary periodic
patterns (MP).

The existence and stability ranges of the various system states
at low and high altitudes for 1D systems are summarized in the
bifurcation diagrams shown in Fig. 5. According to the bifurca-
tion diagram for low altitudes (Fig. 5A), where roots are laterally
extended, there is a wide precipitation range where the uniform
Cyperus state (CU) and periodic Guilandina pattern (GP) are alter-
native stable states. In this range, solutions describing isolated
Guilandina spots in an otherwise uniform Cyperus grassland are
possible (22, 43). Indeed, 2D model simulations confirm the exis-
tence of stable isolated spot solutions, as shown in Fig. 6A. These
model results, based on the assumption of the root-augmentation
feedback as the dominant pattern-forming feedback at low alti-
tudes (high E values), are in accord with empirical low-altitude
observations of isolated circular Guilandina patches surrounded by
bare-soil halos in an otherwise uniform Cyperus grassland. These
model halos should be interpreted as including the dead-Cyperus
halos in the low-altitude sites as dead vegetation is counted as
zero (live) biomass. The model also predicts the possible existence
of periodic Guilandina-only patterns (dark green solution branch
in Fig. 5A), as indicated by the 2D simulation result shown in
Fig. 6B. These patterns coexist with the single-spot pattern shown
in Fig. 6A and were obtained using different initial conditions. The
periodic Guilandina-only patterns predicted by the model are con-
sistent with the observed patterns shown in Fig. 1C.

According to the bifurcation diagram for high altitudes (Fig. 5B),
where roots are laterally confined, a wide tri-stability range of all
three uniform states, GU, CU, and MU, exists. In this tri-stability
range, Guilandina patches or mixed Guilandina–Cyperus patches in
a Cyperus-only grassland, fully covering the soil, are among the
possible states, which is consistent with Fig. 6C. These states rep-
resent long transients, as the patch boundaries (fronts) are not
stationary in general (44) (see arrows in Fig. 6C). The transient dy-
namics eventually converge to one of the three possible uniform
states, depending on the precipitation value. Periodic Guilandina-
only patterns, as found at low altitudes, are not found at high
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Fig. 5. Partial bifurcation diagrams of low and high altitudes showing
stationary solutions. At low altitudes (A), the lateral extent of the roots
is large (E1 = 16 [m2/kg]), while at high altitudes (B), it is small (E1 =
5 [m2/kg]). In both cases, solution branches are shown for a wide
precipitation range of 0 to 2000 mm/y, but the actual ranges for the two
altitudes are much smaller and are estimated by the blue shaded
regions. Solid (dashed) lines indicate stable (unstable) solutions. Large
circles represent nonuniform stationary instabilities, from which
patterned solution branches bifurcate. Though a patterned Cyperus-only
branch exists, its range in P is too small to be plotted on this scale.

Guilandina Cyperus Bare soil Mixed Guilandina-Cyperus

Fig. 6. Model simulations showing spatial patterns at low and high
altitudes. (A) A stationary Guilandina spot in a uniform Cyperus grassland
at low altitudes. (B) A nearly stationary Guilandina pattern at low
altitudes. (C) Growing mixed Guilandina–Cyperus patches in a Cyperus
grassland at high altitudes in a tristability range of uniform Guilandina,
uniform Cyperus, and uniform mixed Guilandina–Cyperus states. The
arrows denote the directions in which state boundaries move.
Parameters: (A), (B) P = 1000 [mm/y], E1 = 16 [m2/kg], SD1 = 0.5 [m]; (C) P
= 1600 [mm/y], E1 = 5 [m2/kg], SD1 = 0.01 [m]. Other parameters are
specified in Table 1.

latitudes because of the small lateral extent of the roots. An inter-
esting numerical finding is that the boundary between Guilandina
and Cyperus patches appears unstable, as it encourages simulta-
neous growth of the two species to form an intermediate patch of
the mixed Guilandina–Cyperus state that grows at the expense of
the original two patches (see arrows in Fig. 6C).

Summary of evidence for a root-augmentation feedback
The patch-scale empirical observations suggest that out of the
three scale-dependent feedback that the model captures, only the
root-augmentation feedback is relevant to the Trindade ecosys-
tem, and only at low altitudes. Using parameters that reflect
that situation, we found that the model reproduces the main
landscape-scale observations at the two altitudes: (i) at low al-
titudes, sparse Guilandina spots surrounded by bare-soil halos in
an otherwise uniform Cyperus grassland, as well as areas of dense
Guilandina spots in bare soil—devoid of Cyperus (compare Figs. 1
and 6A and B); and (ii) at high altitudes, full vegetation coverage by
a Cyperus grassland with Guilandina patches or mixed Guilandina–
Cyperus patches of various sizes and shapes (compare Figs. 3 and
6C).

Patchy invasion
Ecological invasions occur when species establish themselves in
native ranges of other species outside their normal range. The lo-
cal establishment of an invasive species consists of two distinct
phases. The first involves the local growth of the invasive species
from low densities, outcompeting the native species, to form an
initially small invasive-species patch or spot. The second phase
involves the spatial spread of this patch into the rest of the na-
tive range, often referred to as “geographical spread” (45). Several
forms of geographic spread can be distinguished, including a con-
tinuous spread by means of a propagating front that bounds a
simply-connected domain of the invasive species, and discontin-
uous spread involving the recruitment of new patches at a dis-
tance, through long-distance seed dispersal or clonal sprouting.
The latter has been referred to as “patchy invasion” (46, 47). Patchy
invasion may not necessarily result in a patchy state of the inva-
sive species, as the patches that form may grow and merge into
ever bigger patches until a spatially uniform state results. This is
the case, for example, with the cordgrass Spartina alterniflora Loisel,
which grows on intertidal mudflats. Each recruit germinates from
a single seed and grows rhizomatously into a circular patch. These
patches, initially isolated from one another, expand and eventu-
ally coalesce to form a continuous meadow (48). The invasion of
Guilandina is also patchy, through long-distance clonal sprouting,
but unlike S. alterniflora, it does form a patchy state after displacing
Cyperus.

The capability of Guilandina to form spatial patterns has an im-
portant effect on the invasion process; the second phase of spa-
tial spread can be of two types, incomplete invasion, resulting in
spatial coexistence of the two species, Guilandina and Cyperus, and
complete invasion, resulting in total exclusion of Cyperus. This is un-
like the case of invasive species that are incapable of forming pat-
terns, such as S. alterniflora; in this case, once the spatial spread
begins, it continues all the way to exclusion. This intricate behav-
ior of pattern-forming invasive species is rooted in the pattern-
formation phenomenon of spot replication, observed experimen-
tally in various contexts, including chemical reactions (49), gas-
discharge systems (50), and vibrated dense suspensions (51), and
studied theoretically using various mathematical models (52–
55). Spot replication occurs in a bistability range of uniform and
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Fig. 7. Threshold of spot replication. Close-up of the 1D bifurcation
diagram in Fig. 5 showing the bistability range of uniform Cyperus
(yellow line) and Guilandina (dark green line) patterns. Within this range,
a stable stationary single Guilandina-spot solution exists for P < Pinv ≈
1202.6 [mm/y] (gray line). Beyond this threshold, a single Guilandina spot
initiates the sprouting of new spots, as shown in the two insets,
triggering spot-replication dynamics.

patterned states where solutions representing a single spot, or a
bunch of isolated spots, exist. It is triggered by an instability of
the single-spot solution and convergence to a coexisting stable
periodic-pattern solution.

In the present case, the uniform state is formed by Cyperus and
the patterned state by Guilandina. As shown in the bifurcation di-
agram for 1D solutions in Fig. 5, the two states form a very wide
bistability range along the precipitation axis. The single-spot so-
lution corresponds to an isolated Guilanidina spot in an otherwise
uniform Cyperus grassland. The stable part of its solution branch
is shown by the gray line in the 1D bifurcation diagram of Fig. 7.
That stable part does not extend through the entire bistability
range of uniform Cyperus and patterned Guilanidina states; beyond
a precipitation threshold P = Pinv, the solution becomes unsta-
ble or ceases to exist (shaded area in Fig. 7). The existence of the
threshold Pinv (in 2D curvature corrections should be considered)
is highly significant. Below the threshold, small Guilanidina spots
expand in time, form halos of bare soil, and approach an asymp-
totic fixed size, but further geographical spread does not occur, as
shown by the 2D simulations in the top part of Fig. 8A (see also
Movie M1 in Supporting Material); the spots are incapable of trig-
gering the emergence of new spots in their neighborhood, and,
consequently, the Cyperus species is not excluded. By contrast,
above that threshold, Guilanidina spots do trigger the formation
of new spots in their neighborhoods, leading to complete invasion
and total exclusion of Cyperus, as shown by the snapshots in the
bottom part of Fig. 8A (see also Movie M2 in Supporting Material).

This invasion form by pattern-forming species should be con-
trasted with the invasion by a non-pattern-forming species, where
no threshold, P = Pinv, for geographic spread exists; once invasive-
species spots are formed and begin to expand, they eventually
lead to complete exclusion of the native species, as shown in
Fig. 8B. The intermediate form of incomplete invasion and asymp-
totic species coexistence does not exist in this case as there is no
stable single-spot state.

Fig. 8. Snapshots of model simulations showing invasion dynamics by
pattern-forming and non-pattern-forming species. (A) The invasion
dynamics of a pattern-forming species take two forms. At sufficiently
low precipitation, P = 1000 [mm/y] < Pinv (high water stress), the invasion
is incomplete; initially, small Guilandina spots expand, develop halos,
and converge to asymptotic spots of fixed size. At higher precipitation, P
= 1400 [mm/y] > Pinv (low water stress), the invasion is complete; the
same initial conditions develop into a Guilandina spot pattern devoid of
Cyperus through a process of spot replication. (B) Invasion dynamics of a
non-pattern-forming species in a bistability range of uniform native and
invasive states take a single form. Once invasive-species spots begin to
expand, they keep expanding and coalesce with neighbor spots to form
a uniform invasive species state. Initial conditions in (A) and (B) are
identical: Four very small Guilandina-only spots were added to a uniform
Cyperus-only background state. Parameters for all panels are given in
Table 1, except for the changed parameters in (B). The most significant
change is a sharp decrease of the root-augmentation parameter E1 from
16 to 2 [m2/kg], a value for which the root-augmentation feedback is too
weak to produce patterns. Other parameters have been adjusted as
follows: P = 1400 [mm/y], K1 = 1.75 [kg/m2], M1 = M2 = 9.05 [1/y], �1 =
�2 = 0.08 [(1/mm)/y], �1 = 5 [(m2/kg)/y], SG1 = 0.01[m], SD1 = 0.1[m],
W∗

2 = 0.5[kg/m2], and DW = 1 [m2/y].
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Discussion
The evidence we present here for root-augmentation feedback
consists of three elements: (i) empirical findings at the single-
plant level that are used to motivate a mathematical model of
vegetation pattern formation where water conduction by later-
ally spread roots is the dominant water transport mechanism; (ii)
model studies that upscale that information to the level of a fully
developed patch-up to the landscape level of many patches; and
(iii) confrontation of model predictions with empirical observa-
tions at both levels at different sites. The strong agreement be-
tween predicted and observed patch-level and landscape-level be-
haviors provides compelling evidence for the root-augmentation
feedback as the driving pattern formation mechanism in the
Trindade ecosystem.

More generally, the root-augmentation feedback is likely to play
a dominant role in water-limited ecosystems that satisfy the fol-
lowing two conditions: (i) plant species having lateral roots that
extend well beyond their canopies (56); and (ii) soil types that are
loose enough to allow the infiltration of surface water into bare
soil and form water reservoirs within the reach of laterally ex-
tended roots. These conditions act against the pattern-forming
feedback associated with overland water flow and soil-water dif-
fusion; the infiltration of surface water into bare soil reduces over-
land water flow, and water uptake by laterally spread roots re-
duces lateral soil-water gradients and thus soil-water diffusion.

The Trindade ecosystem also exemplifies a so-far-unstudied
form of patchy invasion—incomplete invasion. At precipitation
rates below a characteristic threshold (Pinv), the Guilandina inva-
sion begins but does not spread; it rather remains in the form
of isolated Guilandina spots of fixed size in an otherwise Cyperus
grassland. Above this threshold, these spots generate new Guilan-
dina spots in their neighborhoods, a process that repeats itself un-
til the native species, Cyperus, is completely excluded. The thresh-
old Pinv reflects an instability of a single Guilandina spot solution
and convergence to a coexisting periodic solution through a spot-
replication process.

Spot replication in other contexts usually manifests itself by
the deformation of the circular spot shape followed by spot split-
ting. This is unlike the birth of new distant spots that is typical of
Guilandina’s spot replication. Nevertheless, both cases share the
same bifurcation structure—bistability of uniform and patterned
states and an instability of a single-spot state, which implies a
shift from a single-spot state to a patterned state through a pro-
cess of spot replication. That universal bifurcation structure is
responsible for the two forms of invasion, complete and incom-
plete, irrespective of the particular form of the spot replication,
spot splitting, or birth of distant spots, and irrespective of the
scale-dependent feedback that generates the patterned state. In
the present case, Guilandina self-organizes in spatial patterns by
the root-augmentation feedback, and new spots are born at a dis-
tance by nonlocal root suckers, but the same forms of invasion
are expected with other species and soil types, where different
scale-dependent feedback applies, e.g., that associated with over-
land water flow or soil-water diffusion, as well as modes of spatial
spread, such as seed dispersal.

The effects of climate change on species invasion are attract-
ing increasing interest, and attempts to estimate the responses of
both native and invasive species and, thus, the integrated impact
of climate change on the invasion process, are being made (57).
Our analysis of the invasion dynamics of pattern-forming species
suggests a new response form where drier climates act selectively
on the invasive species, imposing an incomplete invasion and,
thereby, reducing the negative effects on the native species.

Materials and methods
Empirical methods
Root distributions
We measured the distribution of roots of Guilandina (between 2015
December and 2016 February) at each of the four sites (Fig. S1). In
sites 4 to 22, we selected one patch of Guilandina, the bare zone
halo around it, and the Cyperus zone surrounding the bare zone. In
site 1, where halos are absent, we selected samples in soil zones
covered by Guilandina and Cyperus and in soil zones not covered
by any of the species. We collected four soil samples from each
of these zones. For each sample, a cylindrical hollow metal tube,
40 cm in length and 10 cm in diameter, was driven into the soil,
then the soil core was removed from the tube and subdivided into
10-cm-long subsamples. Each subsample was sieved, and roots of
Guilandina with diameter 2 mm or less were removed, dried at 50◦C
for 72 h, and weighed. We also followed and excavated dozens of
large (3 to 5 cm in circumference) roots of Guilandina extending
beyond the patches to determine if they extended into the bare-
soil zones and Cyperus zones.

Soil water potential
Soil water potentials were measured at the four sites over 32 days
between 2015 December and 2016 February. Sampling was con-
ducted eight times at each of the four sites. For each day, we
took measurements at 9:00 am, 12:00 pm, 2:30 pm, and 12:00 am,
at depths of 4 to 5 and 9 to 10 cm in soils under Guilandina, in
the bare soil, and in soils under Cyperus zones. For each site–
zone–date–depth combination, we collected two replicates and
analyzed them separately. Each soil sample was stored in a her-
metically sealed capsule and transported to the laboratory at
the Trindade Island Scientific Station, where soil water potentials
were recorded with a Water Potential Meter WP4C (Decagon de-
vices), within 12 h of soil collection. The dew point sensor inside
the WP4C is the measure of water potential and is accurate to
0.05 MPa from 0 to −5 MPa and 1% from −5 to −300 MPa (58).

Modeling root-augmentation feedback
In modeling the root-augmentation feedback, we focus on two es-
sential elements: nonlocal water uptake by laterally spread roots
and root augmentation as the shoot grows (15, 22). We model
these elements by introducing a kernel function Gi(X, X′, T ) =
Gi [|X − X′|/Si(Bi(X, T ))], i = 1, 2, where X = (X,Y ) are the space co-
ordinates in the lateral directions and T is time. The kernel Gi rep-
resents the spatial distribution of the root zone of the ith species
that is functional in water uptake. The point in space X is the shoot
location, and X′ is a distant point where uptake occurs. As |X − X′|
increases beyond the characteristic length Si, which represents
the lateral extension of the root zone, G tends to zero. The root
augmentation as the shoot grows is captured by allowing Si to be
a monotonically increasing function of the aboveground biomass
Bi.

In the present study, we consider the functional range of the
roots, represented by the root kernel Gi, to be of Gaussian type,

Gi = 1
2πS2

Gi

exp
(

− |X − X′|2
2Si(Bi(X, T ))2

)
, i = 1, 2, (1)

and take Si = SGi
(1 + EiBi ), where SGi

is the lateral root system
size when the shoot emerges, and Ei is the root’s augmentation
per unit aboveground (shoot) biomass. We can then write the
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following expressions for the vegetation growth rate:

G(i)
B = �i

∫
�

Gi(X, X′, T )W(X′, T )dX′ (2)

and water uptake rate:

G(i)
W = �i

∫
�

Gi(X′, X, T )Bi(X′, T )dX′ (3)

of species i, where �i is a biomass-growth coefficient per unit soil
water and �i is a water-uptake coefficient per unit biomass.

Finally, the root distribution of Cyperus is laterally confined
compared to that of Guilandina. For both simplicity and computa-
tional efficiency, we therefore take the limit SG2 → 0, which gives
the following local expressions for the growth and uptake rates of
species 2, respectively (3):

G(2)
B = �2W1(1 + E2B2)2, G(2)

W = �2B2(1 + E2B2)2 . (4)

Modeling nonlocal sprouting
We model the new clones that emerge at a distance from the
mother plant as root suckers, that is, shoots springing from the
roots of the mother plant where water availability is high enough.
We distinguish between root suckers and “potential root suckers”,
where the latter refer to nodes along the roots that do not sprout
and grow shoots because of insufficient water availability, such
as in the bare-soil halos (Fig. S3 in Supplementary Material). To
model the distribution of potential root suckers, we do not use
the root kernel, G1 of Eq. 1, because that kernel represents the dis-
tribution of Guilandina’s roots that are active in water uptake for
the mother plant. That distribution has a shorter range than the
physical root distribution because part of the water taken up by
the roots is allocated to the root suckers. On the other hand, the
likelihood of finding a potential root sucker on a mother-plant’s
root at a given location is significantly lower than the likelihood
of solely finding that root passing at this location. We therefore
model the distribution �1 of potential root suckers using a kernel
with fat tails that is nevertheless much narrower than the root
kernel G1. A possible choice is the Cauchy distribution (59)

�1 = 1
2π

⎡
⎢⎣ SD1(

|X − X′|2 + S2
D1

)3/2

⎤
⎥⎦ , (5)

where the width of the distribution, as quantified by the param-
eter SD1 , is typically much smaller than S1(B1) for grown plants
(B1 > 0). Other choices of fat-tail distributions that yield nonlocal
sprouting are possible and therefore the particular form of the
distribution is of lesser significance.

We now model the growth rate, D1, of a Guilandina’s root sucker
at a point X by

D1 = 	1
W(X, T )

W(X, T ) + W∗
1

∫
�

�1(|X − X′|)B1(X′, T )dX′ . (6)

In these equations, 	1 represents the potential root-sucker growth
rate (in units of 1/y) in the absence of water limitation, and W∗

1 is
the soil-water content at which the root sucker exploits half of its
growth potential. Note that the growth rate, D1, depends on water
availability (60), which increases outside the dense range of the
root zone (see Fig. S3 in Supplementary Material), and thus favors
the emergence of root suckers sufficiently far from the mother
plant.

Full model equations
The high infiltration rates of surface water into the soil (see Patch-
scale observations) suggest that overland water flow is negligible
and allows the elimination of the equation for the surface water
H as described in earlier studies (3, 22). We are then left with the
following three equations for the aboveground biomass densities
of Guilandina, B1, and Cyperus, B2, and for the soil-water content,
W, where all variables are in units of kg/m2, and are functions of
space X = (X,Y ) and time T in units of meters and years, respec-
tively:

∂Bi

∂T
= G(i)

B (Bi,W )Bi (1 − Bi/Ki ) − MiBi + Di(Bi,W ),

i = 1, 2, (7a)

∂W
∂T

= P − L(B1, B2 )W − W
∑

i

Gi
W (Bi ) + DW�W , (7b)

where � = ∂2/∂X2 + ∂2/∂Y2. In Eq. 7a, for simplicity, D2 is as-
sumed to have the same functional form as D1, except that in
this case it represents a dispersal kernel with a short dispersal
range, SD2 , of Cyperus seeds (60). The particular choice of this ker-
nel has an insignificant effect on the results. The parameters Ki

in this equation represent growth limitations not associated with
water availability, such as self-shading (61), and the parameters
Mi represent rate reduction of aboveground biomass growth due
to mortality, resource allocation to reproduction, etc. In Eq. 7b, P
is the precipitation rate, DW is the soil-water diffusion rate, and L
is a biomass-dependent soil-water evaporation rate,

L = N

(
1 −

∑
i

RiBi(X, T )/Ki

)
. (8)

In this expression, N is the evaporation rate in bare soil and the
parameters Ri � 1 (i = 1, 2) quantify the contributions of the two
species to the reduction of the evaporation rate by shading.

A description of all model parameters, their units, and their val-
ues is given in Table 1. Deviations from these values are explicitly
specified wherever they are relevant.

Model analysis
We solved the model Eq. 7 numerically by implementing a pseudo-
spectral method with Runge–Kutta fourth-order time stepping
[see, for instance, Ref. (62)]. This enabled us to compute diffusion
and convolution terms as less expensive multiplications in Fourier
space. The term G(1)

B , however, is not a convolution due to the B1

dependence of G1, and so we used the method of Gilad et al. (63)
to approximate it as a linear combination of convolutions. Gilad
et al. (63) showed that this approximation can achieve a high level
of accuracy using a relatively small number of convolutions. We
used a linear combination of five convolution terms in our model
simulations to achieve a reasonable trade-off between accuracy
and computational efficiency.

The model Eq. 7a is highly nonlocal due to the inclusion of
the fat-tailed dispersal kernel (5). As such, the implicitly imposed
periodic boundary conditions associated with spectral methods
meant that it was necessary to run invasion simulations (see
Fig. 7) on an extended domain to avoid unrealistic boundary in-
teractions with nonlocal invasion fronts. To facilitate the large
computational expense of this, we implemented our spectral al-
gorithms on a graphics processing unit (GPU) using the Python
package CuPy (64), which allowed us to solve the model quickly
on much larger domains.

Bifurcation diagrams were constructed by numerically contin-
uing uniform solutions using the software package AUTO-07p
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Table 1. Description of model parameters in Eq. 7.

Symbol Description Units Value

P Precipitation mm/y variable
Ei Lateral root augmentation per unit (aboveground) biomass m2/kg 16 (5)
Ki Maximum standing biomass kg/m2 0.7 (0.35)
Mi Biomass decay rate due to mortality and other factors 1/y 7.05 (7.05)
N Evaporation rate in bare soil 1/y 15
�i Coefficient of biomass-growth rate per unit soil water (1/mm)/y 0.06 (0.16)
�i Coefficient of water-uptake rate per unit aboveground

biomass
(m2/kg)/y 15 (5)

Ri Coefficient of evaporation reduction due to shading — 0.1 (0.1)
	1 Potential root-sucker growth rate of Guilandina 1/y 3.125
	2 Potential dispersal rate of Cyperus 1/y 3.125
DW Lateral diffusion rate of soil moisture m2/y 0.5
SG1 Lateral root-system size of Guilandina’s seedlings m 0.5
SD1 Width of Guilandina’s potential root sucker distribution m 0.5
SD2 Characteristic dispersal range of Cyperus m 0.01
W∗

1 Soil-water content at half Guilandina’s root sucker potential
growth rate

kg/m2 0.5

W∗
2 Soil-water content at half potential dispersal rate of

Cyperus
kg/m2 2.0

These parameters capture the patchy invasion behavior observed on the low-altitude slopes of Trindade Island. Values associated with species i = 1 (i = 2) are
unbracketed (bracketed).

(65). Computational difficulties associated with the numerical
continuation of integro-partial differential equations meant that
nonuniform solution branches were calculated by solving the
model equations via the spectral method described previously,
and not in AUTO-07p. For this reason, unstable sections of nonuni-
form solution branches are not included in our bifurcation dia-
grams. Accuracy of stable branches was achieved by allowing so-
lutions to evolve to an asymptotic steady state; numerically, we
ensured that the mean absolute error between solutions at con-
secutive time steps was less than some acceptable tolerance.
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