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Abstract: An extension of the linear H∞ filter, presented here as the extended H∞ particle filter
(EH∞PF), is used in this work for attitude estimation, which presents a process and measurement
model with nonlinear functions. The simulations implemented use orbit and attitude data from
CBERS-4 (China–Brazil Earth Resources Satellite-4), making use of the robustness characteristics of
the H∞ filter. The CBERS-4 is the fifth satellite of an advantageous international scientific interac-
tion between Brazil and China for the development of remote sensing satellites used for strategic
application in monitoring water resources and controlling deforestation in the Legal Amazon. In the
extended H∞ particle filter (EH∞PF) the nature of the system, composed of dynamics and noises,
seeks to degrade the state estimate. The EH∞PF deals with this by aiming for robustness, using a
performance parameter in its cost function, in addition to presenting an advantageous feature of
using a reduced number of particles for state estimation. The justification for the application of this
method is because the non-Gaussian uncertainties that appear in the attitude sensors impair the
estimation process and the EH∞PF minimizes in signal estimation the worst effects of disturbance
signals without a priori knowledge of them, as shown in the results, in addition to presenting good
precision within the prescribed requirements, with 100 particles representing a processing time
2.09 times less than the PF with 500 particles.

Keywords: extended H∞ particle filter; particle filter; nonlinear state estimation; attitude estimation;
China–Brazil Earth Resources Satellite

1. Introduction

Remote sensing satellite missions require pointing, so an accurate attitude determi-
nation and control system is a dominant factor for mission success. The attitude sensor
determines how a given reference vector is oriented in relation to the satellite system [1].
After processing these vectors computationally, it is then possible to estimate the satellite’s
orientation using attitude estimation techniques. With the advancement in technologies,
the computational power and energy efficiency of microprocessors enables the use of in-
creasingly computationally heavy models [2]. This strategy is especially advantageous in
space systems.
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The main objective of this research is to analyze the feasibility along with the advan-
tages and disadvantages of implementing the EH∞PF for attitude estimation, highlighting
and expanding the properties of the H∞ filter, showing its advantageous characteristics. In
the EH∞PF the nature of the system, composed of dynamics and noises, seeks to deterio-
rate the state estimate, while at the same time seeking robustness through a coefficient of
performance in its respective cost function. These characteristics of the method provide,
with a reduced number of particles, a good processing time and good precision without
sample impoverishment.

The justification for this research is given by the fact that many spacecraft missions, not
only the remote sensing ones such as the CBERS-4 used in this research, necessitate precise
sensor pointing and precise determination and attitude control in real time, which entails
estimating attitude and gyros bias from attitude measurements provided by sensor outputs.
The correct attitude determination directly influences the performance of the attitude
control system and adjacent systems on the satellite that need this information. According
to [3], because the determination of attitude is done using sensors, whose measurements
always include some noise and non-Gaussian uncertainties, stochastic filters are more
suitable approaches. The non-Gaussian uncertainties that appear in the process model are
contained in the gyro’s measurements, which present noise and bias due to post-launch
sensor misalignment, thermal expansion, fading, electro-mechanical degradation, etc. All
these factors cause inaccuracies in the model and deteriorate the attitude estimation process.
Thus, the EH∞PF deals well with this problem as shown in the results of this research.

The EH∞PF algorithm uses the H∞ robust filter concept so that external interference
is overcome [4]. The H∞ filtering minimizes the worst-case estimation error using the
concepts from the famous game theory approach [5–7]. The second-order linearization
for the H∞ filtering was presented more recently in [8]. For the H∞ robust filtering, the
parameter γ has a special meaning for the method; it evaluates the upper threshold level
and verifies the robustness of the H∞ robust filtering for the uncertain interference [3,4].
The performance is associated with the appropriate choice of the γ parameter, which is
directly associated with robustness and the average accuracy of the system [9], where you
should always try to find a balance between these method properties. The finding is that
with a higher the value of γ, the result will be closer to a normal filtering. The lower the
associated γ value, the more intense the filter robustness [4,10].

The CBERS-4 attitude and gyros bias estimation, which makes use of the PROPAT
propagator [11], analyzing and comparing the mean error, standard deviation, root mean
squared error (RMSE), and the processing time cost of the estimation methods used is the
main aim of this research. The simulations are implemented with orbit and attitude data
from 1 September 2015 provided by the Satellite Control Center of the Brazilian National
Institute for Space Research (CCS-INPE). The quaternions are used to represent attitude [12],
and two estimation methods are used and compared—PF and EH∞PF—which are modern
methods that consider both the process model and the noisy measurement model. The
application of these methods in real missions characterizes the main contribution of this
work regarding the state-of-the-art estimation methods.

In aerospace engineering, it is possible to note important contributions related to
the application of estimation methods: Ref. [12] presents a study on the satellite attitude
estimation using the EKF; ref. [13] presents comparisons between two Kalman filters for
nonlinear systems; ref. [14] analyses the results of the EKF in an instant mapping and
localization process; ref. [15] research uses the EKF for attitude and gyros bias estimation
but with real data and with a sampling time less than that the one used in this research;
refs. [16,17] present a spacecraft attitude estimation through UKF, using quaternions and
Euler angles; ref. [18] analyzes the UKF robustness for orbit determination through global
positioning system signals; ref. [19] presents the orbit determination using nonlinear PF
and GPS measurements; ref. [1] makes a comparison between the estimation methods
of UKF, regularized particle filter (RegPF), and extended H∞ filter (EH∞F); and ref. [20]
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presents the Rao-Blackwellized particle filter (RaoBPF) attitude estimation and gyros bias
for the CBERS 4 satellite, evaluating computational processing time cost and precision.

The structure of the article is as follows: Section 2 introduces the problem statement
for nonlinear state estimation. Section 3 presents the general concepts of an extended H∞
particle filter (EH∞PF). Section 4 presents methods applied to gyros bias estimation and
attitude estimation using the CBERS-4 orbit and attitude simulation data. The results are
presented, analyzing the precision of the methods and the processing time of each one.
Section 5 presents some conclusions and final comments.

2. Problem Statement

Assume the process model and the measurement model that represent a system of
nonlinear equations described by:

xxxk+1 = fk(xxxk, uuuk, wwwk)
yyyk = hk(xxxk, υυυk)

(1)

where the term k is the time index, xxxk is the state vector, uuuk is associated with the control
input, wwwk is the process noise, yyyk is the measurement vector, and υυυk is the measurement
noise. The function fk(.) is commonly referred to as process equation, and hk(.) is com-
monly referred to as measurement equation; both functions are time-varying nonlinear
vector systems. Both noises wwwk and υυυk are often considered Gaussian white noise and
independently presented as a well-defined probability density function.

For applications of estimation methods, the process and measurement model may
change from that presented by Equation (1), in which sometimes the process model is
linear and the measurement model is nonlinear, or vice-versa. This happens for attitude
estimation depending on the chosen parameterization. In this work, the attitude kinematic
equation parameterized in quaternions will be used as a process model, which is a linear
system, and the measurement model chosen is a nonlinear system.

2.1. Attitude Representation by Quaternions

The state vector is presented with the attitude representation parameterized in quater-
nion qqq and the gyro bias εεε represented by [21,22]:

xxx =
[

qqq εεε
]T

=
[

q1 q2 q3 q4 εx εy εz
]T (2)

According to [23], the bias is an output component that has characteristics of both
deterministic and stochastic behavior that is not tied to the input the sensor is connected to.

Then, the linear system that represents the process equation of the problem is given
by [12,21]: [

q̇qq
ε̇εε

]
=


1
2

ΩΩΩω 03×3

03×4 03×3

[ qqq
εεε

]
+www (3)

where ωωω =
[

ωx ωy ωz
]T is the angular velocity vector in the body frame, and ΩΩΩω

is an anti-symmetric matrix formed with the components of angular velocity and has
dimension 4× 4, given by [12,21]:

ΩΩΩω =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (4)

In this work, the gyros model (rate integration gyros–RIGs) was used that has the
classic representation [21,22] given by ωωωi = gggi − εεεi + υυυi, where (i = x, y, z), the term gggi(t)
is the gyro output vector, εεεi(t) are the components of the gyros bias defined as an output
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component unrelated to the input to which the sensor is subjected, and υυυi is the white
Gaussian noise process, which covers all remaining non-modeled effects other than the
random noises.

2.2. Mathematical Models of Attitude Sensors

The nonlinear system that represents the measurement equation of the problem is
given by [24]:

yyyk =


arctan

(
−Sy

Sx cos 60◦ + Sz cos 150◦

)
24◦ + arctan

(
Sx
Sz

)
φ
θ

+ υυυk (5)

The first and second rows of the column matrix of Equation (5) contain the information
provided by the digital sun sensor (DSS). This sensor provides the coupled pitch angle (αθ ,
first line term) and the coupled yaw angle (αψ, second line term); the direct measurement
of an attitude angle is not trackable [16,17,24]. The terms Sx, Sy, Sz are the solar vector
components in the body frame, and these sensors are Chinese, made where this angle
argument is associated with the field of view and resolution data sheet.

The third and fourth rows of the column matrix of Equation (5) are the information
provided by the horizon sensor, commonly referred to as infrared earth sensors (IRES) [24].
Here, the roll angle measurement is given by φ and the pitch angle measurement is given
by θ.

More information about the process and measurements equations can be found in [20].

3. The Extended H∞ Particle Filter

The theoretical foundation of an H∞ filter is based on a robust filter implementa-
tion [3,4] with the central goal of estimating the linear combination of the state zzzk, which is
given by

zzzk = LLLkxxxk (6)

where LLLk is a full rank positive definite matrix. Commonly, LLLk = III is used to perform
a direct estimate of the state xxxk, as in the Kalman filter. The state zzzk, when estimated, is
represented with the notation ẑzzk; and the initial state xxx0, when estimated, is represented
with the notation x̂xx0.

The central idea for the design criterion in EH∞PF is to find ẑzzk that minimizes (zzzk − ẑzzk)
for any wwwk, υυυk, and xxx0. The underlying concept brings the idea of a worst-case scenario; in
other words, it is assumed that the nature of the system acts adversely in this estimation
method, so it is necessary to find wwwk, υυυk, and xxx0 to maximize (zzzk − ẑzzk) [3,8]. This extremiza-
tion problem commonly uses a cost function, where it is more convenient to put the terms
wwwk, υυυk, and xxx0 in the denominator, represented by [3]:

J1 =

N −1

∑
k=0
‖zzzk − ẑzzk‖2

SSSk

‖xxx0 − x̂xx0‖2
PPP−1

0
+

N −1

∑
k=0

(
‖wwwk‖2

QQQ−1
k

+ ‖υυυk‖2
RRR−1

k

) (7)

where N is the number associated with the filtering range, and k = 1, 2, ..., N . The notation
‖xxxk‖2

SSSk
is the standard representation of the weighted L2 norm of xxxk, i.e., ‖xxxk‖2

SSSk
= xxxT

k SSSkxxxk.
The expressions PPP0, QQQk, RRRk, and SSSk are the weighting matrices and, by definition, are
symmetric positive matrices associated with the respective problem.
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For the robust filter, the direct minimization of J1 in Equation (7) is not commonly
done; the strategy is to use a performance limit redefining the cost function of the problem
to find an estimate ẑzzk, which results in [1,3]

J1 <
1
γ

(8)

where γ ≥ 0 is the performance bound. Thus, rearranging the Equation (7) with this
limiting factor results in

J = − 1
γ
‖xxx0 − x̂xx0‖2

PPP−1
0

+
N −1

∑
k=0

[
‖zzzk − ẑzzk‖2

SSSk
− 1

γ

(
‖wwwk‖2

QQQ−1
k

+ ‖υυυk‖2
RRR−1

k

)]
< 1

(9)

The min max problem is given by the representation:

J∗ = min
ẑzzk

max
wwwk ,υυυk ,xxx0

J (10)

since υυυk = yyyk − h(xxxk), zzzk = LLLkxxxk, ẑzzk = LLLkx̂xxk and defining S̄SSk = LLLT
k SSSkLLLk. Thus, Equations (9)

and (10) can be rewritten as
J∗ = min

x̂xxk
max

wwwk ,yyyk ,xxx0
J (11)

where
J = − 1

γ
‖xxx0 − x̂xx0‖2

PPP−1
0

+
N −1

∑
k=0

[
‖xxxk − x̂xxk‖2

S̄SSk
− 1

γ

(
‖wwwk‖2

QQQ−1
k

+ ‖yyyk − h(xxxk)‖2
RRR−1

k

)] (12)

According to [25], an optimal H∞ filter is to find an estimate xxxk that minimizes J,
under the condition x̂xx0 = arg min‖J‖∞. Since the analytical solution is by no means
trivial, a suboptimal iterative algorithm is usually used to solve the optimal filter problem
H∞. In this way, we define a borderline value of performance coefficient γ, which meets
‖J‖∞ = sup J ≤ γ2 since ‖J‖∞ is the infinity-norm of J and sup is the supremum of a
set [26].

3.1. Sample

Assuming a system composed of a process model and measurement model, both of
which are nonlinear as shown in Equation (1), the method starts by randomly generating a
considerable number N of state vectors, called particles or sample states, which will be asso-
ciated with the initial probability density function (pdf) represented by
p(xxx0|YYY0) = p(xxx0) [3,27]. These particles or sample states are represented as xxx+(i)

0
(i = 1, 2, ..., N). This start is similar to a PF.

xxx+(i)
0 ∼ p(xxx(i)0 ) (i = 1, 2, ..., N) (13)

3.2. Prediction Step

The particles must be propagated at every step k = 1, 2, ..., N , which must be done
using the process dynamics equation f (.).

xxx−(i)k = fk−1(xxx
+(i)
k−1 , www(i)

k−1) (i = 1, 2, ..., N) (14)

where the www(i)
k−1 is called a noise vector, which is randomly generated using the well known

pdf of wwwk−1 as seed.
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3.3. Update Step

Once all measurements are obtained in time k, the conditional relative probabilities,
also known as likelihood, of each particle xxx−(i)k must be calculated by pdf p(yyyk|xxx

−(i)
k ),

which is obtained intrinsically by contributing the measurement model h(.) and the noise
measurements υυυk, represented by [3,19,20,27].

δ
(i)
k = p(yyyk|xxx

−(i)
k )

δ
(i)
k ∼ δ

(i)
k−1

1

det
(

2πEEE−(i)k

)1/2 exp


−
∣∣∣∣∣∣ỹyy(i)k

∣∣∣∣∣∣2(
EEE−(i)k

)−1

2

 (15)

where ỹyy(i)k = yyyk −HHH(i)
k xxx−(i)k is the measurement residues, and the term that weights the

residues EEE−(i)k = HHH(i)
k PPP−(i)k

(
HHH(i)

k

)T
+ RRRk is the associated covariance matrix.

As a standard procedure, one should always normalize likelihood obtained by Equation (15)
as follows:

δ̃
(i)
k =

δ
(i)
k

∑N
j=1 δ

(j)
k

, (16)

in which it will be guaranteed that the sum of all likelihoods will be unitary.
The update of the covariance matrix and the state vector in this method is done using

the extended H∞ filter measurement update equations presented below.

S̄SS(i)
k =

(
LLL(i)

k

)T
SSS(i)

k LLL(i)
k (17)

KKK(i)
k = PPP−(i)k

(
III − γS̄SS(i)

k PPP−(i)k +
(

HHH(i)
k

)T
RRR−1

k HHH(i)
k PPP(i)

k

)−1(
HHH(i)

k

)T
RRR−1

k (18)

xxx+(i)
k = f (xxx−(i)k , µµµk) + FFF(i)

k KKK(i)
k

(
yyyk − h

(
xxx−(i)k

))
(19)

PPP+(i)
k = FFF(i)

k PPP−(i)k

(
III − γS̄SS(i)

k PPP−(i)k +
(

HHH(i)
k

)T
RRR−1

k HHH(i)
k PPP(i)

k

)−1(
FFF(i)

k

)T
+QQQk (20)

where LLL(i)
k and SSS(i)

k are positive matrices defined with full rank; the process and mea-

surement Jacobians are represented by FFF(i)
k = d f

dxxxk

∣∣∣
xxxk=xxx−(i)k

and HHH(i)
k = dh

dxxxk

∣∣∣
xxxk=xxx−(i)k

; the

performance coefficient γ has a borderline value that must satisfy the Riccati inequality
represented by Equation (21), i.e., the optimized value of x̂xxk will be guaranteed to be a local
minimum of the problem’s cost function [3,8,25]:(

PPP−(i)k

)−1
− γS̄SS(i)

k +
(

HHH(i)
k

)T
RRR−1

k HHH(i)
k > 0 (21)

where Equation (21) must be positive definite.
Finally, the optimal state estimate and the associated error covariance matrix are

calculated as:

x̂xxk =
N

∑
i=1

δ̃
(i)
k xxx+(i)

k (22)

P̂PPk =
N

∑
i=1

δ̃
(i)
k

(
PPP+(i)

k +
(

xxx+(i)
k − x̂xxk

)(
xxx+(i)

k − x̂xxk

)T
)

(23)

A cycle in the EH∞PF is completed with this logic. In summary, Equations (13)–(23)
represent the steps used to obtain the a posteriori moments k from the a priori information
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(k− 1) at a given instant of time. However, some important information about the EH∞PF
is listed here:

i. The EH∞PF proposed here uses N particles with different values analyzing a pos-
sible sample impoverishment, a common problem for PF under the same con-
ditions [3,20]. The idea is to analyze the processing time and the accuracy of
the method.

ii. The weighting matrices QQQk, RRRk, and SSSk in EH∞PF are designed as definite positive
symmetric matrices and do not necessarily need to be diagonal, but the weighting
matrices Q̃QQk and R̃RRk in EKF need to be configured as diagonals [3].

iii. Using the same weighting matrices QQQk and RRRk, it is observed that EH∞PF has more
robust results compared to EKF. According to the theory, the EH∞PF assumes that
the process noise and measurement are both unmodeled, wwwk and υυυk, respectively,
and the initial condition xxx0 will be chosen to maximize the cost function of the
problem, i.e., considering the worst case scenario for the estimation process.

iv. For an H∞ filter, the threshold value of performance bound γ controls the unfa-
vorable conditions of the method. According to [4], in the error estimation of the
method, when the restricted projected parameter γ is reduced, the robustness char-
acteristic of the filter is found. When the parameter γ assumes large values tending
to infinity, the H∞ filter has similar results to the standard Kalman filter.

4. Application and Results

The CBERS is a project for the development of remote sensing satellites administra-
tively coordinated by the Brazilian Space Agency (AEB) and the China National Space
Administration (CNSA), involving the scientific execution coordinated by the Brazilian Na-
tional Institute for Space Research (INPE) and the Chinese Academy of Space Technology
(CAST), which implements a world-class remote sensing system used by Brazil in strategic
applications such as monitoring water resources, mapping the territory of both countries,
and controlling deforestation in the Legal Amazon. In a first stage, the CBERS program
started with two satellites, CBERS-1 and 2. With an agreement between Brazil and China,
in November 2002, three satellites of the same category were built and launched, CBERS-2B,
3, and 4. In May 2015, a protocol for the development and launch of the CBERS 04A [28]
was signed, and, more recently, in April 2023, an agreement was signed with the Chinese
government to deepen scientific cooperation and collaborate on the development of the
new CBERS-6 satellite. This satellite will have a new technology called synthetic aperture
radar (SAR), which will increase and improve the monitoring of the Brazilian territory
and biomes.

4.1. Parameters

The CBERS-4 satellite used in this research, the fifth satellite of the CBERS program,
was launched on 7 December 2014 in a heliosynchronous and frozen orbit (see Figure 1).
This configuration can provide global coverage: with low resolution cameras every 5 days,
with medium resolution cameras every 26 days, and with high resolution cameras every
52 days [29].

In this work, in order to estimate the gyros bias and attitude, simulated orbit and
attitude data from CBERS-4 were used, making use of the PROPAT propagator imple-
mented in MatLab software. The PROPAT functions perform coordinate transformations,
time and ephemeris conversion, orbital propagation, attitude transformations in various
parameterizations, and attitude propagation [11]. The initial orbit and attitude conditions
can be found in detail in [20]. In this article, the scope of the problem is expanded using a
robust estimation method. This is supported by a series of additional simulations, including
method comparison.
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(a) (b)

Figure 1. Representative CBERS-4 orbit configuration, in (a) 3D orbit and (b) the respective groundtrack.

Table 1 presents CBERS-4 orbital parameters used for orbit simulation.

Table 1. CBERS-4 nominal orbital parameters [29].

Variable Description Values

a Semi-major axis (average) 7148.865 km
e Eccentricity 1.1× 10−3

i Inclination 98.504 deg
Ω Right ascension of the 333.3615 deg

ascending node (RAAN)
v Perigee argument 117.4208 deg

tLTDN Local time at the descending 10:30 a.m.
node

τ Orbital period 100.26 min

Table 2 presents the simulation data for the sampling rate ∆; the observation time
span T; the quaternions initial state qqq0 and the gyros bias initial state εεε0 that compose the
initial state vector xxx0; the quaternions variance σσσ2

Pq
and the gyros bias variance σσσ2

Pb
that

compose the initial covariance matrix P0; and γ, the user-specific performance bound for
EH∞PF exclusively.

Table 2. Temporal parameters, CBERS-4 initial state, and initial variance parameters for estima-
tion methods.

Variable Description Values

∆ Sampling rate 0.5 s
T Observation time span 10 min

qqqT
0 Quaternions initial state [0 0 0 1]

εεεT
0 Gyros bias initial state [5.7 4.8 2.6] deg/h

σσσ2
Pq

Quaternions variance 0.25 deg2

σσσ2
Pb

Gyros bias variance 1.0 deg2/h2

γ Specific performance bound 1
3

For CBERS-4, the telemetry data from the sensors arrives at the onboard computer in a
fixed binary word length that translates into floating point values. The data sampling rates
of the sensors are different and come asynchronously: 2 Hz for gyroscopes, 1 Hz for IRES-s,
and 0.25 Hz for DSS-s. These telemetries recorded on board are downlinked and made
available by the control center. We chose in the simulations to use a common sampling rate
for all sensors; we chose gyros sampling rate of 2 Hz or 0.5 s, as shown in Table 2.

These data are used in all estimation methods of this work. It is important to say
that the values of εεε0 are typical drifts simulated for the CBERS-4 application. Thus, the
initial state vector xxx0 and the initial covariance matrix PPP0 started in Table 2 are used in
Equations (24) and (25) below:

xxx0 =
[

qqqT
0 εεεT

0
]T (24)
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PPP0 = diag
(

σσσ2
Pq

σσσ2
Pq

σσσ2
Pq

σσσ2
Pq

σσσ2
Pb

σσσ2
Pb

σσσ2
Pb

)
(25)

where diag(.) means a diagonal matrix.
Table 3 presents the quaternions process noise variance σσσ2

Qq
, the gyros bias process

noise variance σσσ2
Qb

, the DSS measurements noise variance σσσ2
RDSS

, and the IRES measure-
ments process noise variance σσσ2

RIRES
. These variances compose the initial diagonal process

noise covariance matrix QQQ0 and the initial diagonal measurements noise covariance ma-
trix RRR0.

Table 3. CBERS-4 process noises variance parameters and measurements noises variance parameters
for estimation methods.

Variable Description Values

σσσ2
Qq

Quaternions process 0.1× 10−3

noises variance
σσσ2

Qb
Gyros bias process 0.1× 10−5 deg2/h2

noises variance
σσσ2

RDSS
DSS measurements 0.36 deg2

noises variance
σσσ2

RIRES
IRES measurements 0.36× 10−2 deg2/h2

noises variance

These initial process noise covariance matrix QQQ0 and the initial measurements noise
covariance matrix RRR0 are presented in Equations (26) and (27) below.

QQQ0 = diag
(

σσσ2
Qq

σσσ2
Qq

σσσ2
Qq

σσσ2
Qq

σσσ2
Qb

σσσ2
Qb

σσσ2
Qb

)
(26)

RRR0 = diag
(

σσσ2
RDSS

σσσ2
RDSS

σσσ2
RIRES

σσσ2
RIRES

)
(27)

These matrices are used in all estimation methods of this work, and for EH∞PF, the
matrices LLLk = III7×7 and SSSk = III7×7 throughout the simulation, to have the direct estimation
of the state vector according to the theory.

4.2. Filter Performance

Two metrics were defined to evaluate filter performance.

4.2.1. Mean Error

The mean error is represented by Equation (28).

X̄XXk =
1
N

N

∑
i=1

X̃XX(i)
k (28)

where
X̃XX(i)

k = x̂xx(i)k − xxxk (29)

Equation (29) represents the estimation error, the difference between the estimated state
and the true state, and has been used to verify the accuracy of each filter’s estimate.

The respective standard deviation of mean error is represented by:

σσσXk =

√√√√ 1
N − 1

N

∑
i=1

(
X̃XX(i)

k − X̄XXk

)2
(30)
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4.2.2. Root Mean Squared Error

The root mean square error is represented by Equation (31).

¯̄XXXk =

√√√√ 1
N

N

∑
i=1

(
X̃XX(i)

k

)2
(31)

These two metrics were calculated for each iteration over a large number M of Monte
Carlo simulations. It was employed to obtain the mean error, the standard deviation, and
the root mean squared error of the simulation.

4.3. Methodology

The standard PF was implemented using re-sampling in a systematic way to increase
particle diversity [3,30] with the intention of evaluating and measuring the performance of
the proposed EH∞PF. More details about this estimation method and implementation can
be found in [1,20,31]. The mean error, root mean square error (RMSE), and processing time
cost of the estimation methods used were analyzed and compared.

In state estimation simulations, the standard PF used N = 500 and 1000 particles,
and the EH∞PF used N = 10, 25, 50, 100, 200, 300, and 500 particles (all with the specific
performance bound γ = 1

3 ). However, for the PF, only the results with 500 particles
are presented, and for EH∞PF, only the results with 100 particles are presented for the
estimation error state. The results with different particles number were used in scenario
comparison estimation error and for analyzing the processing time cost.

4.4. Results

The attitude and gyros bias estimation error are presented in Figure 2a–f. The results
were obtained in quaternions and transformed into Euler angles (ZYX sequence using roll
φ, pitch θ, and yaw ψ angles), for better interpretation.

Figure 2a–c present only the attitude estimation error for the following estimation
methods: PF (500 particles) in blue, EH∞PF (100 particles and γ = 1

3 ) in red, and the results
together with ±3σ in yellow and magenta, representing a confidence interval considering
the error as a normal probability distribution. In Figure 2d–f are present only the gyros bias
estimation error following the same logic of representation and color code as in Figure 2a.

It is observed in Figure 2a–c that the EH∞PF (100 particles) presents excellent and
competitive precision for the attitude estimation error with a mean close to zero with a
reduced number of particles compared to the PF, with their results within ±3σ standard
deviations. For PF (500 particles), the results for attitude errors in roll and yaw extrapolate
the reference standard deviation, but the attitude error in pitch visually presents a satisfac-
tory result within the standard deviation considered and with precision superior to EH∞PF
(100 particles and γ = 1

3 ).
It is noted in Figure 2d–f that the EH∞PF (100 particles and γ = 1

3 ) presents good
precision for the gyros bias estimation error with results within ±3σ standard deviations.
The PF (500 particles) present good results only for the y-axis gyros bias estimation error in
the limit of the considered standard deviation; for the x-axis gyros bias estimation error
and z-axis gyros bias estimation error, they present results that extrapolate the reference
standard deviation.

Figure 2 shows that in the PF process, the estimation error does not decrease with the
filter process and eventually converges toward a value outside ±3σ. This discrepancy is
associated with the number of particles used. Most of the time, for the PF to obtain good
results, it is necessary to use a high number of particles, as few particles generate a problem
called sample impoverishment.



Remote Sens. 2023, 15, 4052 11 of 15

(a) (d)

(b) (e)

(c) (f)

Figure 2. Graphical representation of the attitude and gyros bias estimation error using different
estimation methods: PF (500 particles) and EH∞PF (100 particles and γ = 1

3 ). Results separated in
the subfigures (a) roll estimation error, (b) pitch estimation error, (c) yaw estimation error, (d) x-axis
gyros bias estimation error, (e) y-axis gyros bias estimation error and (f) z-axis gyros bias estimation
error, for a simulation time of 10 min and a sampling rate of 0.5 s for the sensors.

Monolog graphs (Figure 3a–f) represent the scenarios that make up the estimation
errors between the estimation methods used, facilitating the visualization with the fol-
lowing representation: PF (500 particles) in blue, EH∞PF (100 particles) in red, EH∞PF
(50 particles) in yellow, and EH∞PF (10 particles) in purple. All results for the EH∞PF uses
specific performance bound γ = 1

3 .
Figure 3a–c show that even with 100 particles, the EH∞PF achieved a higher attitude

determination accuracy in roll and yaw angle when compared to PF (500 particles). The
standard PF did not achieve good accuracy even using a considerable number of particles,
except for the pitch estimation error.
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Comparing Figure 3d–f at the beginning of the simulation, the PF presents excellent
results but it loses precision throughout the simulation. In this way, it is observed that the
EH∞PF with 100 particles reached a higher precision and accuracy for gyros bias estimation
error when compared with standard PF.

In general, the EH∞PF loses efficiency using a reduced number of particles, as can be
seen in Figure 3a–f with 10 and 50 particles. For this attitude estimation application, the
EH∞PF with 100 particles showed, in terms of accuracy, competitive and interesting results.

(a) (d)

(b) (e)

(c) (f)

Figure 3. Monolog graphical representation of the attitude and gyros bias estimation error, compari-
son between different particles numbers for different estimation methods, PF and EH∞PF (γ = 1

3 ).
Results separated in the subfigures (a) roll estimation error, (b) pitch estimation error, (c) yaw estima-
tion error, (d) x-axis gyros bias estimation error, (e) y-axis gyros bias estimation error and (f) z-axis
gyros bias estimation error, for a simulation time of 10 min and a sampling rate of 0.5 s for the sensors.
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Tables 4 and 5 shows the mean error, standard deviation, minimal error, maximum
error shown in Figure 2a–f, the RMSE, and peak to peak error in the attitude estimation and
gyros bias estimation error for the PF (500 particles) and EH∞PF (100 particles and γ = 1

3 ).

Table 4. Summary statistical information presented on simulation range, mean error, standard
deviation, minimum and maximum error, root mean square error, and peak-to-peak error for PF.

PF

Mean Error Stand. Dev. Min. Error Max. Error RMSE Peak to Peak Error

φ (deg) −0.1938 0.6552 −2.2954 0.3544 0.3189 0.6299
θ (deg) 0.0063 0.0099 −0.0164 0.0390 0.0162 0.0424
ψ (deg) −0.5745 0.6302 −1.0919 1.7162 1.8425 3.6840

εφ (deg/h) −0.5500 0.3515 −0.8792 0.7237 2.1240 4.2480
εθ (deg/h) 1.1134 0.2754 −0.2004 1.4925 0.1472 2.2971
εψ (deg/h) 0.5042 0.3404 −0.5174 0.7483 0.0982 1.1864

Table 5. Summary statistical information presented on simulation range, mean error, standard
deviation, minimum and maximum error, root mean square error, and peak-to-peak error for EH∞PF.

EH∞PF

Mean Error Stand. Dev. Min. Error Max. Error RMSE Peak to Peak Error

φ (deg) −0.0010 0.0416 −0.1474 0.1409 0.0010 0.320
θ (deg) −0.0007 0.0410 −0.1475 0.2248 0.0009 0.4572
ψ (deg) 0.0085 0.0632 −0.1352 0.7358 0.0049 1.573

εφ (deg/h) −0.2990 0.0118 −0.3307 −0.2769 0.0977 0.2894
εθ (deg/h) −0.3926 0.0027 −0.4069 −0.3797 0.0824 0.1245
εψ (deg/h) −0.4216 0.0093 −0.4386 −0.3614 0.7515 1.4569

With the relation results of the estimation error, we found results of the order of 10−3

degrees on average (see Table 5) for the EH∞PF considered within the design requirements
for pointing error [29].

Table 6 presents the comparative information on data processing time for an Intelr

CoreTM i7 processor with a maximum frequency of 4.10 GHz for the estimation methods
used. In summary, PF (500 particles) has a data processing time for state estimation
2.09 times greater than EH∞PF (100 particles).

Table 6. Comparative information on data processing time.

Nonlinear State Estimation Method Processing Time (s)

PF (N = 500 particles) 47.3310
PF (N = 1000 particles) 243.4860

EH∞PF (N = 10 particles) 4.7782
EH∞PF (N = 25 particles) 5.7672
EH∞PF (N = 50 particles) 11.3551
EH∞PF (N = 100 particles) 22.6254
EH∞PF (N = 200 particles) 46.4539
EH∞PF (N = 300 particles) 73.4110
EH∞PF (N = 500 particles) 132.5640

5. Conclusions

The EH∞PF based on the H∞ filter is premised on minimizing the worst possible effects
and conditions of disturbance signals associated with measurement noise through signal
estimation error without a priori knowledge of these perturbations. The non-Gaussian
uncertainties that appear in the process model are contained in the gyro’s measurements,
which present noise and bias due to post-launch sensor misalignment, thermal expansion,
fading, electro-mechanical degradation, etc. All these factors cause inaccuracies in the
model and deteriorate the attitude estimation process. The EH∞PF proved to be effective
for estimating attitude and showed greater accuracy when compared with the standard PF
and results from previous studies using different estimation methods [1,16,17,20].

In summary, it is concluded that the EH∞PF algorithm implemented in this work
presented an excellent and competitive precision for estimating attitude and gyros bias;
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the estimation error results are within a proposed confidence interval considering the error
with a normalized Gaussian distribution. For EH∞PF with coefficient of performance γ = 1

3
and with only 100 particles, it presents a low data processing time, 2.09 times less than
the standard PF with 500 particles. This represents an alternative to be used in embedded
space systems. Both estimation methods converge without known sample impoverishment
even using a reduced sample number, especially for EH∞PF, with robust and fast results,
providing a kinematic attitude solution in addition to estimating the gyroscope bias with
specified accuracy for the attitude determination control system (ADCS) according to the
project requirements.

Other results that could be presented would be evaluating the variation of performance
threshold values γ as presented in [4] in order to verify the robustness of the EH∞PF method,
as already stated and theoretically validated. Reduced values of the performance coefficient
γ would lead to the characteristic robustness of the filter. If the value of performance
coefficient γ approaches infinity, the EH∞PF would have results similar to the standard
Kalman filter.

In future work, the research group intends to apply the attitude estimation method
to other satellites such as the Amazônia I, from the National Institute for Space Research
(INPE-Brasil); and in a cubesats scenario as for AlfaCrux [32] and SPLASH project—the
Self-DePloyable FLexible AeroSHell for de-Orbiting and Space Re-entry [33]. Applications
in other aerospace engineering dynamic systems will also be implemented, such as in-orbit
estimation using GPS data and in aerodynamic coefficient estimation for unmanned aerial
vehicles (UAV), for example. This application will analyze the precision, computational
processing time cost, and feasibility to embedded systems.
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