
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Hernani Oliveira,
Federal University of Paraná, Brazil
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Contrasting environmental conditions across geographic space might promote

divergent selection, making adaptation to local biotic and abiotic conditions

necessary for populations to survive. In order to understand how populations

adapt to different environmental conditions, studies of local adaptation have

been largely used as an interface to address ecological and evolutionary

questions. Here, we studied populations of Gymnodactylus amarali

(Phyllodactylidae) isolated in rapidly created artificial islands. We combined a

genotyping-by-sequence (GBS) survey and redundancy analyses (RDA) to

investigate genotype–environment associations (GEA), while DAPC, Fst, and

Admixture analyses were used to determine genetic structure. Our hypothesis

is that G. amarali populations on the islands are going through a local adaptation

process and consequently becoming genetically different from the populations

on the mainland. Our results indicate that geographic and environmental

differences are related to genetic variation, as we detected the presence of

two or three distinct genetic lineages in Serra da Mesa, Minaçu, and Colinas do

Sul. Fst analysis shows moderate isolation between Serra da Mesa and Minaçu

(0.082). The RDA pointed out potential local genetic signal correlated with

temperature and precipitation. We identified 230 candidate loci associated

with the environment and at least two locally structured subpopulations (Serra

da Mesa and Minaçu) show significant association with environmental variation.
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1 Introduction

Spatial environmental variation is ubiquitous and has been

increased by anthropogenic forces (Albert et al., 2023).

Contrasting conditions across geographic space can promote

divergent selection (Wadgymar et al., 2022), making adaptation

to local biotic and abiotic conditions necessary for populations to

survive (Savolainen et al., 2013). In order to understand how

populations adapt to different environmental conditions, studies

of local adaptation have been largely used as an interface to address

ecological and evolutionary questions (Hofmeister et al., 2019).

Ecological selection in local populations in regions with

environmental constraints such as divergent selection might

quickly promote populations to move to distinct optimum trait

values (Pyron et al., 2015). As a result of this process, populations

would show weak genetic differentiation and strong morphological

changes if lineage maintains gene flow, but phenotypic plasticity is

common (Hu et al., 2019). Alternatively, populations under strong

divergent landscape selection could present high genetic differences

but low morphological disparity, due to reduce gene flow but high

conservatism in trait optimum (Pyron et al., 2015). Nonetheless,

selection would sort genotypes in each population that has a higher

relative fitness for other genotypes comprising the region pool of

interest (Kawecki and Ebert, 2004).

Ecological specialization resulting from local adaptation may

culminate in speciation when local adaptation is a significant

component of responses to environments going through changes

(Savolainen et al., 2013). For example, climatic and geographic

change caused by human activities is ruthlessly impacting

biodiversity on our planet (Scheffers et al., 2016). Organisms

carrying genetic variation for climate-related traits are expected to

possess the capacity of adapting rapidly to changing environments

(Bay et al., 2018). Commonly, these traits which allow local

adaptations are polygenic quantitative traits, and it is a highly

demanding task to identify the loci that control variation in such

traits (Savolainen et al., 2013). A very important first step aiming at

establishing evidence of local adaptation is the measurement of

genome-wide patterns of variation using, for instance, large-scale

single nucleotide polymorphism (SNP) genotyping arrays

(Schweizer et al., 2016).

Savannas, deserts, semi-arid regions, and other open habitats

are known as high-diversity areas for lizard faunas. The Brazilian

Cerrado is a unique savanna hotspot (Nogueira et al., 2010; Azevedo

et al., 2016) with both daily and seasonal shifts in temperature and

moisture (Vitt et al., 2007). The Maranhão Naked-toed Gecko

Gymnodactylus amarali Barbour (1925) (Phyllodactylidae) is a

termitaria specialist, living in termite mounds – a microhabitat

that buffers the strong variation in temperature and its damaging

effects on organisms’ time of activity. However, populations from

areas where termite mounds are absent were reported using rocky

habitats as refuge (Vitt et al., 2007), which exposes them to higher

temperature and moisture variations. Furthermore, most Cerrado

lizards reproduce during the rainy season and this reproductive

seasonality is determined by fluctuations in arthropod abundance,

which are related to rainfall fluctuations (Colli et al., 2002). Most

reproductive individuals of G. amarali, however, were observed
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during the dry season (Colli et al., 2003). In this study, we

investigate populations of the gecko G. amarali isolated in rapidly

created artificial islands resulting from the flooding of the Serra da

Mesa Hydroelectric Plant reservoir, in Central Brazil.

The Serra da Mesa reservoir flooding started in 1996: 170,000 ha

of area was flooded, valleys were submerged, and hilltops became ~

290 islands (Amorim et al., 2017). Local adaptations may appear

rapidly according to biogeography and studies on contemporary

adaptation (Savolainen et al., 2013). High degrees and rapid onset of

local adaptation are usually expected in isolated populations, which

are generally free from the homogenizing effects of high gene flow

(Hofmeister et al., 2021). However, most studies in this field focused

on rapid adaptation to local conditions in response to new selection

regimes that some taxa encountered in the process of range

expansion (e.g., cane toads, sticklebacks, honeybees, steelhead

trout, deer mice; see Hofmeister et al., 2021). Amorim et al.

(2017) demonstrated in a study analyzing morphology and diet

parameters that only 15 years of isolation were enough for G.

amarali to present a significant head size increase and consequent

ecological niche breadth expansion. Lizards living on the islands

have disproportionally larger heads compared to adjacent mainland

populations. Furthermore, all five island populations presented this

morphology shift independently (Amorim et al., 2017). Due to

ecological release, after the extinction of larger lizards on the

islands, all five populations went through a process of parallel

local adaptation (Amorim et al., 2017).

Herein, we focused on testing for correlations between SNPs

and environmental predictors and genetic divergence between

island and mainland populations in this termite specialist gecko.

We combined a genotyping-by-sequence (GBS) survey and

redundancy analyses to investigate genotype–environment

associations (GEA), while Discriminant Analysis of Principal

Components (DAPC), total genetic variance (Fst), and Admixture

analyses were used to determine genetic structure. Our hypothesis is

that Gymnodactylus amarali populations on the islands are

experiencing local adaptative pressures from natural selection,

and consequently becoming genetically different from the

populations on the mainland. We found support for both spatial

genetic structure (i.e., geographic lineages) and candidate loci

association with climatic factors among sites, including significant

variation for Serra da Mesa populations. These results offer a

direction for future research in this system to identify the

genomic basis and functional differences in selected alleles

between populations.
2 Materials and methods

2.1 Sequencing and bioinformatics

We obtained 46 tissues (liver and muscle) of Gymnodactylus

amarali from the CHUNB and LAFUC collections at the

Universidade de Brasıĺia, from the municipalities of Colinas do

Sul (one individual), Minaçu (20 individuals), and from 10 sites in

and around the Serra da Mesa reservoir (25 individuals), Goiás

state, Brazil (Figure 1; see Appendix S1 for sample numbers,
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localities, and associated data). We extracted genomic DNA using

Qiagen DNEasy kits and visualized the results on a 2% agarose gel.

We sent ~30mg to the UWBC Biotechnology Center for genotype-

by-sequencing (GBS) analysis (Elshire et al., 2011). The samples

were optimized using the ApeKI enzyme for digestion, bead cleanup

for size selection, amplification using 18 PCR cycles, and a post-

PCR normalization step prior to sequencing. We sequenced each

sample for an average of ~6.5 million 150bp paired-end reads using

an Illumina NovaSeq6000. We processed the raw reads to extract

SNP calls using ipyrad 0.9.59 (Eaton and Overcast, 2020) using the

denovo pairgbs pipeline on the GW HPCC Pegasus cluster

(MacLachlan et al., 2020). We used ‘C[W]GC’ to identify the

ApeKI restriction overhang, and employed strict filtering and

trimming for adapter sequence and quality of reads. We generally

used the default parameters for SNP calling (e.g., a depth of 6 for

majority rule and statistical base-calling), with a 90% clustering

threshold as a stringent compromise between over-splitting and

over-lumping of loci as recommended by the authors. We retained

loci called for ~80% of individuals (i.e., 37 of 46), resulting in 2,068

loci and 2,808 SNPs, for a total alignment length of up to 113,439bp

per individual.
2.2 Population structure and
multilocus adaptation

The full SNP matrix corresponds to 46 individuals and 2,808

SNPs, which after filtering out non-polymorphic sites and loci with

more than 20% missing data, resulted in the final dataset of 41

individuals and 2,648 loci. We used this dataset to estimate

heterozygosity, inbreeding coefficient (Fis), and total genetic

variance (Fst). We tested for population structure using the
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DAPC algorithm in the R package ‘adegenet’ (Jombart and

Collins, 2015), which produces a principal-component reduction

of the SNP matrix for which discriminant functions can be used to

estimate membership probability in an optimally-determined

number of clusters. The DAPC is a powerful tool to summarize

the genetic divergence found between groups while disconsidering

within-group variation (Jombart et al., 2010). We determined the

optimal number of clusters by cross-validation and retained the

number of PCs achieving the lowest mean squared error. These

were then compared to the sites (Colinas do Sul, Minaçu, and the 10

sites within Serra da Mesa, five islands and five locations on the

reservoir margin) to determine the extent of local population

structure within Gymnodactylus amarali in the study region (see

Domingos et al., 2014). In addition, we ran the summary genetic

statistics and DAPC without the Colinas do Sul individual

(Supplementary Material). We further tested population structure

using Admixture (Alexander et al., 2009) using cross-validation to

test the best-fit K value to the data.

We then tested for multilocus adaptation using Redundancy

Analysis (RDA) to detect loci under potential selection in a

genotype–environment association framework (Rellstab et al.,

2015; Forester et al., 2018). Recent studies showed that RDA-

based methods are efficient for detection of local adaptation

signatures (Forester et al., 2016). This analysis presented a

combination of low false-positive and high true-positive rates

throughout weak, moderate, and strong multilocus selection when

compared to other methods (Forester et al., 2016), whereas RDA

genome scans presented greater statistical power than scans based

on PCA, by allowing individual-based simulations (Capblancq

et al., 2018).

We predicted that temporal, spatial, and climatic axes in concert

may all have resulted in weakly covarying signatures in the
FIGURE 1

Map showing the three detected clusters: two “mainland” clusters, Minaçu and Colinas do Sul, which are genetically distinct from each other and
from Serra da Mesa.
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molecular data, for which we tested the response of the SNP data to

the multivariate environment for detection of candidate genes

(Schweizer et al., 2016). We employed this multivariate

ordination technique in the R package ‘vegan’ (Oksanen et al.,

2008). The response variable was the 46 individuals by 2,808 SNP

matrix, with the 50,087 missing values imputed as the most

common genotype at each SNP across individuals, since RDA

requires complete entries for all values; for a full description of

this method, see Forester et al. (2018).
2.3 Environmental predictors

Our data set was designed to reflect the relationship between

genetic divergence and the local climate experienced by G. amarali.

For predictor variables, we included a set of weakly-correlated

climatic variables from the 30-second BIOCLIM dataset (Fick and

Hijmans, 2017). Unfortunately, we did not have data collected

locally in the sites at the time specimens were collected. We

identified environmental variation at each sampling location

using the R package ‘raster’ (Hijmans and van Etten, 2012), then

we extracted values for all 19 variables at the 10 sites and estimated

collinearity with r < 0.7 as a cutoff (Dormann et al., 2013). This

yielded a reduced set of four weakly correlated climatic variables

consisting of annual mean temperature (BIO1), isothermality

(BIO3), annual precipitation (BIO12), and precipitation

seasonality (BIO15). These variables presented relatively low

variance inflation factors (<10): BIO1 (VIF = 8.03), BIO3 (2.85),

BIO12 (8.28), and BIO15 (6.43). Annual mean temperature and

isothermality are parameters associated with the diurnal and annual

temperature variation that lizards endure in that region, whereas

annual precipitation and precipitation seasonality inform about the

humidity available in the environment across periods.
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3 Results

3.1 Genetic diversity structure of
Gymnodactylus amarali

Heterozygosity levels vary slightly across sites, Minaçu (Ho =

0.12, He = 0.14) and Colinas do Sul (Ho = 0.12, He = NA) have

slightly higher observed and expected diversity (Minaçu only) of

alleles relative to Serra da Mesa (Ho = 0.11, He = 0.12). It was not

possible to estimate the expected heterozygosity and inbreeding

coefficient (Fis) for Colinas do Sul given that our sampling includes

solely one individual from this locality.

Using the function ‘xvalDapc,’ we detected the optimal number

of PCs achieving the lowest mean squared error as equal to 25.

Then, we used this number of clusters to run the DAPC (Figure 2).

The histogram shows that this division in three subpopulations

explains a large proportion of the genetic variance in G. amarali

(Figure 2). Moreover, the DAPC for these subpopulations show

strong genetic structure and no shared haplotypes (Figure 3),

whereas Admixture identified two subpopulations (Figure 4). The

second-best fit K with lowest error rate was K = 3 (Supplementary

Material), showing alleles of Colinas do Sul within Minaçu.

Individual island and reservoir margin populations are

differentiated from each other. However, the Fst analysis shows

moderate isolation between Minaçu and Serra da Mesa (0.082).

Values of the inbreeding coefficient are higher for Minaçu (Fis =

0.103) than for Serra da Mesa (Fis = 0.064).
3.2 Redundancy analysis

The proportion of the variance explained by the environmental

predictors in the Redundancy Analysis is 37.5% for RDA1, 30.7%
FIGURE 2

Axes 1 and 2 of Discriminant Analysis of Principal Components (DAPC) of 41 individuals from Serra da Mesa and the other two localities: Colinas do
Sul and Minaçu. Analysis eigenvalues are shown inset.
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for RDA2, and 16.4% for RDA3. Isothermality loads positively

whereas annual precipitation, annual mean precipitation, and

precipitation seasonality show negative loadings on axis 1. On

axis 2, annual precipitation loads negatively whereas annual mean

temperature, precipitation seasonality, and isothermality have

positive loadings (Figure 5). The main contrast was related to

precipitation and temperature, which is in accordance with the

Cerrado seasonality. A similar pattern is observed for the

comparisons with RDA1 vs RDA3.
Frontiers in Ecology and Evolution 05
About 8% of the sampled SNPs are associated with environmental

variation. There are SNPs heavily associated with all four variables,

revealing that the estimated genotypes are correlated with local

temperature and precipitation. Among the 230 candidate SNPs

detected, the majority were correlated with temperature variables:

170 SNPs correlated with annual mean temperature (BIO1) and 27

SNPs correlated with isothermality (BIO3). The remaining SNPs were

associated with precipitation: 23 SNPs associated with annual

precipitation (BIO12) and 10 with precipitation seasonality (BIO15).
FIGURE 4

Admixture plot showing the results for K = 2. In brown are individuals from Serra da Mesa and in blue are individuals from Minaçu. Note that seven
individuals from Serra da Mesa were assigned to Minaçu subpopulation. In Serra da Mesa we observed a hybrid with almost 50% representation in
the genome from each subpopulation.
FIGURE 3

Genetic membership plot showing the separation of Gymnodactylus amarali in three subpopulations.
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The Serra da Mesa population is clustered in the right quadrant

showing a strong positive correlation with temperature

(isothermality), whereas the Minaçu population is clustered in the

left quadrant, presenting a positive correlation with both annual mean

temperature and annual precipitation. Although clustered together

with Minaçu population in the DAPC, the single individual from

Colinas do Sul appears isolated. The distance from the other two

populations demonstrates a magnitude of divergence and a strong

correlation with the environmental predictors as well (Figure 6).
4 Discussion

Cases of heritable phenotypic differentiation between local

populations have always been a subject that attracts the attention

of evolutionary biologists and naturalists (Kawecki and Ebert,

2004). Local adaptation plays a crucial role in initiating the
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divergence of incipient species (Kawecki and Ebert, 2004). Several

examples of adaptation have been reported, such as the genomic

mapping of the color polymorphism in the peppered moth Biston

betularia, coat color variation in different mouse species in response

to the variation of the environment background color, and trichome

variation to improve herbivory resistance in Arabidopsis lyrate

(Savolainen et al., 2013). Recent studies with Anolis lizards also

reported rapid directional changes, where after experiencing

extreme cold temperatures, they presented a greater resistance to

the cold due to a shift in gene expression (Campbell-Staton et al.,

2017). Another interesting case involving Anolis describes their

improved capacity of surviving hurricanes in the Caribbean region

because of their larger toepads (Dufour et al., 2019). All these

examples show visibly rapid local adaptation on human timescales,

often in response to human pressures.

Recently published studies on local adaptation by

genotype–environment associations (GEA) were focused on birds
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FIGURE 6

RDA Triplot of specimens, SNPs (small grey points), and variables (vectors) on axes 1 and 2, by site.
FIGURE 5

RDA Triplot of specimens, SNPs (small light grey points), and variables (vectors) on axes 1 and 2, by environmental factors.
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(Bay et al., 2018; Hofmeister et al., 2021), wolves (Schweizer et al.,

2016), and plants (Vangestel et al., 2018). All these papers

investigated genomic variations of metapopulations across the

range of distribution of different species. Although it is not

possible to claim that human interference was responsible for the

genetic differentiation observed, we present herein results with

anthropogenically isolated organisms, where gene flow was

reduced, and rapid genetic morphological and ecological

differentiation has previously been detected (Amorim et al., 2017).

Admixture, DAPC, and Fst detected the presence of distinct

genetic clusters of G. amarali in Serra da Mesa, which is

differentiated from nearby “mainland” populations (i.e., Colinas

do Sul and Minaçu). Our results showed separation among at least

two subpopulations: Serra da Mesa and Minaçu, according to

Admixture, or three subpopulations, recovering Colinas do Sul as

separate from Serra da Mesa andMinaçu. This fine-scale population

structure was not detected in previous range-wide phylogeographic

analyses of the species (see Domingos et al., 2014). We found

potential evidence of genotype association with environmental

conditions for all subpopulations. RDA pointed out possible local

genetic adaptations correlated with temperature and precipitation,

suggesting that lizards might adapt to the climate at each site,

highlighting the effect of Cerrado seasonality on lizard populations

(Françoso et al., 2020). Previous studies with G. amarali in Serra da

Mesa reported head size increase (Amorim et al., 2017) and negative

allometry in the hemipenis lobe in the “island” populations

(Coelho, 2020). Future goals of this project include sequencing

whole-genome data of these populations and testing genome-wide

associations with the environment in a more robust framework.

Adaptive phenotypic plasticity may lead to adaptive phenotypic

differentiation, even without genetic divergence (Kawecki and

Ebert, 2004). Thus, although the geckos living on the islands and

the ones from the margins were clustered together, ecological

release detected on the islands was hypothesized to result from

the local competition of large body-size competitors yielding the

reported morphological differences (Amorim et al., 2017). This was

not reflected in our genetic analyses, which suggested a cluster of

locally restricted genotypes at Serra da Mesa, including sampling

sites on the “islands” and across the reservoir margins as part of the

same subpopulation. It is possible that ongoing gene flow to and

from the islands overrides any hyper-local adaptations. Additional

geographic sampling is needed to robustly test how widespread the

signal of presumable locally adapted genotypes at Serra da Mesa

occurring elsewhere other than Minaçu as shown in Admixture, but

not DAPC, and how frequently and geographically distributed such

locally climate-adapted population structure occurs.

Although the emergence of the local adaptation concept is

relatively well-studied in evolutionary biology, there is still much

room for further investigation. Finding the SNPs associated with

Gene Ontology categories, for instance, the morphological

categories enriched by temperature and precipitation would be a

desirable next step (e.g., Schweizer et al., 2016). We provide here

another piece for the puzzle, complementing de Amorim et al.

(2017) findings, aiming at a deeper comprehension of what is

underlying genetic consequences of the rapid phenotypic

evolution of G. amarali in the Serra da Mesa reservoir.
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In summary, we show that both island and reservoir margin

populations in Serra da Mesa are genetically distinct from nearby

“mainland” sites such as Colinas do Sul and Minaçu. We identified

230 candidate loci associated with the environment and at least two

locally structured subpopulations (Serra da Mesa and Minaçu)

show significant association with environmental variation. Our

results add valuable information about ongoing evolutionary

processes to the previous reports accounting for severe ecological

and morphological changes of this gecko (in preparation; Amorim

et al., 2017; Coelho, 2020). Further study is now needed to untangle

the genomic basis and developmental causes of short- and long-

term genetic and phenotypic variation in these unique populations.
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