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Abstract: The greenstone belts of the Crixás-Goiás Domain are economically important due to
significant epigenetic gold deposits and the potential for under-researched syngenetic deposits. The
gold occurrences associated with the volcanogenic massive sulfide (VMS) deposits in the region
are documented only in the volcanoclastic rocks of the Digo-Digo Formation, Serra de Santa Rita
greenstone belt. The objective of this work is to discuss the efficiency of the induced polarization
methods in the time and frequency domains for differentiating and identifying potentially mineralized
zones in the exhalites associated with the VMS-type gold of the Digo-Digo Formation. Data were
acquired using a multielectrode resistivity meter with the dipole–dipole array and 10 m spacing
between electrodes, as well as different current injection times (250, 1000, and 2000 ms). After the
electrical data processing and inversion, the sections were integrated into ternary red-green-blue and
cyan-magenta-yellow models to highlight areas of high chargeability, low resistivity, and high metal
factor (frequency domain) and, thus, map the higher potential zones to host polarizable metallic
minerals. The geological–geophysical model elaborated from the correlation of electrical and surface
geological data allowed us to identify four anomalous areas related to potential mineralized zones.
The geological data confirm that two targets are associated with the geological contacts between
metamafic and intermediate metavolcanic units and the exhalative horizon. One of the targets
coincides with a sulfide-rich exhalative horizon (VMS), while the last target occurs in the occurrence
area of metaultramafic rocks, where gold mineralization occurrences have not been previously
described, being a promising target for future investigations.

Keywords: electrical prospecting; VMS deposits; Digo-Digo formation

1. Introduction

The deposits of volcanogenic massive sulfide (VMS) usually occur as polymetallic
massive sulfide (>40%) lenses rich in base (Cu, Zn, Pb) and precious (Au and Ag) met-
als. VMS is generated from the focused discharge of hot, metal-rich hydrothermal fluids
associated with hydrothermal ocean floor convection. For this reason, VMS deposits are
generally classified as “Exhalative” deposits. These deposits can also form as either exhal-
ing stratiform or replacement bodies, and commonly have stockwork-type mineralizations
associated with the proximal footwall [1].

There is a strong contrast in physical properties between exhalative horizons and
their host rocks due to the presence of large chalcopyrite and pyrrhotite amounts [2–4].
Such properties include density, magnetic intensity and susceptibility, gravity, electrical
resistance, and acoustical velocity [5]. Due to these different physical properties, gravimetry,
self-potential, magnetics, electromagnetics, and induced polarization methods have been
successfully used for prospecting VMS deposits [5–20].
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Recently, electrical resistivity and induced polarization surveys have been successfully
applied to generate polymetallic targets in the Skellefte mineral district, northern Sweden,
where more than 80 VMS deposits have already been discovered [11,21]. The efficiency
of applying electrical methods to detect VMS mineralization has been previously attested
in works where data acquisition was performed above already known buried ore bodies
through drilling [7,21].

In Brazil, the records of VMS-type deposits are scarce [22–29], possibly due to the lack
of detailed geological mapping and geophysical surveys in areas with geological potential
for these deposits to occur.

The objective of this work is to show the efficiency of the induced polarization in the
time and frequency domains for differentiating and identifying potentially mineralized
zones in exhalites associated with the VMS-type gold in the Digo-Digo Formation, Serra de
Santa Rita greenstone belt, Goiás, Brazil.

2. Area Geology
2.1. Crixás-Goiás Domain

The Crixás-Goiás Domain (CGD) [30], formerly the Archean-Paleoproterozoic Terrain
of Goiás [31,32], is located in the central–west portion of Goiás, and is part of the Tocantins
Province. The province represents a large Brasiliano/Pan-African orogen of the South
American Platform formed by a collision between the Amazonian, Paranapanema, and São
Francisco/Congo cratons during the Brasiliano Orogeny, which led to the amalgamation of
the West Gondwana (Figure 1).Minerals 2023, 13, x FOR PEER REVIEW 3 of 18 

 

 

 
Figure 1. (A) Geotectonic scenario and main subdivisions of the Tocantins Province, Central Brazil, 
emphasizing the Crixás-Goiás Domain in the Brasília Belt (modified from 31). (B) Map of Goiás 
showing the CGD. (C) CGD limits and subdivisions; red polygon represents the area of Figure 2 
(modified from 35). 

Figure 1. (A) Geotectonic scenario and main subdivisions of the Tocantins Province, Central Brazil,
emphasizing the Crixás-Goiás Domain in the Brasília Belt (modified from 31). (B) Map of Goiás
showing the CGD. (C) CGD limits and subdivisions; red polygon represents the area of Figure 2
(modified from 35).
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Figure 2. Geological map of the Serra de Santa Rita greenstone belt (modified from 38); the study
area corresponds to the massive sulfide occurrence on the map (red star).

The CGD was interpreted as an allochthonous microplate amalgamated on the western
margin of the Brasília Belt, in the last evolution stages of the Neoproterozoic orogen [32].
The CGD extends for about 18,000 km2, consisting of approximately 80% of tonalite–
trondhjemite–gneisses-type complexes (TTGs) and 20% of narrow greenstone belts terrains
with Archean to Paleoproterozoic ages [33,34].

The granite–gneiss terrains correspond to six main complexes. In the northern portion,
Anta, Caiamar, Moquém, and Hidrolina are found, whereas in the south of the block are
the Caiçara and Uvá complexes. These complexes have different structural frameworks,
ages, and rock associations [35]. The greenstone belts correspond to five narrow and
irregular belts. In the north part of CGD are located the greenstone belts of Crixás, Pilar,
and Guarinos, while in the south portion are situated the Faina and Serra de Santa Rita
greenstone belts.

2.2. Serra de Santa Rita Greenstone Belt

In the southern portion of the Crixás-Goiás Domain, the Faina and Serra de Santa
Rita greenstone belts are juxtaposed along an N 30◦ E dextral fault (Figure 2), extending
approximately 100 km in length and up to 7 km in width [36,37]. The two greenstone belts
have similar basal sequences, composed of volcanic sequences, but the upper sedimen-
tary records are contrasting and represent different depositional regimes with a probable
Paleoproterozoic age [35,36,38,39].

The basal sequence of the Serra de Santa Rita greenstone belt consists of volcanic rocks
of ultramafic composition, which characterize the Manoel Leocádio Formation, followed by
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mafic and intermediate volcanic rocks of the Digo-Digo Formation [36]. The basal volcanic
sequence was dated in 2.96 and 2.92 Ga [38] and covered by a sedimentary sequence
formed by carbonaceous phyllites, with intercalations of metachert, calc-shists, banded
iron formations, and metagraywacke composing a typical turbiditic sequence [38].

2.3. Digo-Digo Formation

The base of the Digo-Digo Formation consists of mafic metavolcanic rocks repre-
sented by amphibole schists with varying proportions of actinolite, albite, epidote, and
quartz, intercalated with thin layers of feldspathic metatuffs, talc schists, carbonaceous
metapelites, and metacherts [36]. The upper portion of the Digo-Digo Formation consists
of sericite–chlorite–quartz schists with relicts of original pyroclastic textures ranging from
recrystallized ash to coarse tuffs, including abundant layers with lapilli-sized fragments.
The composition of the felsic tuffs varies from predominantly dacitic to rhyolitic [36].
The volcanoclastic rock granulometry tends to increase towards metric exhalative hori-
zons composed of metachert banded with carbonaceous phyllite, rich in pyrite and gold
(0.5 to 2 ppm), or intervals of massive pyrite [35,40]. U-Pb dating in zircons of andesitic
metavolcanic rocks of the Digo-Digo formation indicates an age of 2.97 Ga [41].

2.4. Local Geology

The study area is located at the confluence of Digo-Digo Creek and the Vermelho River,
where the upper portion of the Digo-Digo Formation outcrops and massive sulfide layers
are exposed. To characterize the main geological units and structures, the area was mapped
at a 1:10,000 scale (Figure 3A).
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Figure 3. (A) Detailed geological map of the confluence region of the Digo-Digo Stream with
the Vermelho River. (B) Carbonaceous metachert layer with centimetric scale massive sulfides.
(C) Detail of Figure 3(B), with bands/horizons of coarse-grained pyrite. (D) Polished section of
metachert with pyrite aggregates showing modal composition of 35%–45% pyrite and 45%–55%
quartz. (E) Carbonaceus metachert layer folded.
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In the area, the Digo-Digo Formation is characterized by three distinct stratigraphic
units: (i) a mafic metavolcanic unit; (ii) an intermediate metavolcanic unit; and (iii) an
exhalative unit (see Figure 3A). The boundaries between these units are delineated by
NW-verging thrust faults. Within all these units, the primary tectonic foliation trends in the
northwest direction and typically dips between 300 and 700 degrees to the southwest.

The mafic metavolcanic unit outcrops in the southwest portion of the area and com-
prises mafic schists and amphibolites. The mafic schists consist of varying proportions of
chlorite, epidote, actinolite, and hornblende, sometimes with the presence of magnetite, dis-
seminated sulfides, and boxwork textures. The amphibolites are composed of hornblende,
plagioclase, ±epidote, ±chlorite, and exhibit tectonic foliation marked by the preferential
orientation of hornblende. The metamafic rocks exhibit a transitional geochemical signa-
ture, enriched with light rare earth elements and pronounced negative anomalies of Nb
and Ti, similar to the patterns of oceanic arc basalts. Additionally, the amphibolites have
a high Nb content, showing similarities with Nb-enriched basalts generated in modern
subduction zone environments.

The intermediate metavolcanic unit is composed of metandesites, metatuffs, and rare
subvolcanic bodies of metadiorite. Typically, discontinuous layers of metandesite are in-
terlayered with metatuffs. In less deformed areas, the metandesites display a porphyritic
texture, consisting of euhedral to subhedral phenocrysts of plagioclase (20 to 35%), im-
mersed in a fine matrix (comprising 65 to 80% of the rock) composed of plagioclase, quartz,
muscovite, biotite, and chlorite. When intensely deformed, the original texture is entirely
obliterated, giving way to pervasive tectonic foliation.

Andesitic metatuffs levels occur intercalated with the metandesites and may represent
different episodes of explosive eruption or, alternatively, duplicated and disrupted layers
due to later tectonic processes. In less deformed regions, a diagnostic feature of the
metatuffs is the high content of plagioclase crystals (70%–80%) surrounded by a fine-
grained matrix (20%–30%).

Locally, bodies of diorite occur in association with intermediate and mafic volcanic
rocks. U-Pb analyses on zircons from the metadiorite and metandesite indicate crystalliza-
tion ages of 2.96 and 2.97 Ga [41]. The intermediate metavolcanic rocks exhibit calc-alkaline
affinity with geochemical signatures similar to high-silica adakites [41]. The geochemical
and isotopic signatures of the mafic and intermediate metavolcanic rocks suggest that the
evolution of this supracrustal sequence is linked to the development of a Mesoarchean
volcanic arc [38,41].

The exhalative horizon of the Digo-Digo Formation outcrops near the confluence of the
Digo-Digo Creek with the Vermelho River. It is represented by intercalations of centimeter-
to meter-scale layers of metavolcanics, metacherts, and carbonaceous phyllites. Massive
sulfide lenses, with traces of gold, are hosted within this exhalative horizon (Figure 3B,C).
Decimeter-scale lenticular levels of metachert are interlayered with chlorite schists. These
rocks are generally composed of very fine-grained recrystallized quartz (~30 µm), possibly
containing subordinate amounts of chlorite/muscovite and opaque minerals, as well as
carbonaceous material. The sulfide lenses are hosted in carbonaceous metachert and
comprise 30 to 50% pyrite, 40 to 70% quartz with muscovite and ilmenite as trace minerals.

The main outcrop of the exhalative horizon, which hosts the massive sulfide lenses,
is strongly deformed and exhibits metric to decametric tight asymmetrical folds verging
towards NE (Figure 3D). Apart from the notable gold content found in rock samples from
the massive sulfide lenses, petrographic studies conducted in the exhalative horizons near
the Vermelho River confluence have uncovered gold grains exceeding 5 µm in size. These
grains are hosted within centimeter-scale sericite–albite–chlorite schists of the intermediate
metavolcanic unit [41].

On the northern margin of Vermelho River, the exhalative horizon is in tectonic contact
with the metaultramafic rocks of the Manoel Leocádio Formation, primarily represented by
talc schists and talc–tremolite schists (Figure 3A).
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3. Methodology
3.1. Data Acquisition

The electrical resistivity and chargeability data were acquired over a 550 m section
where massive outcropping sulfide layers are exposed. Three sets of data were acquired
in the same spatial positions due to the difficult access and crossing of the banks of the
Vermelho River (Figure 3A). The SW-NE survey line was positioned perpendicularly to
the main direction of the regional geological structures to reduce the effects of three-
dimensional structures that cannot be accurately modeled via 2D inversions, thus causing
distortions in the electrical resistivity models [29,42–44].

The apparent resistivity and chargeability data were acquired using the Syscal Pro
Switch 72 multi-electrode resistor (Iris Instruments, Orléans, France; Figure 4A). Field
acquisitions were performed using the time and frequency domain IP methods with dipole–
dipole array and 10 m spacing electrodes. In the IP time mode, non-polarizable electrodes
were used at the electrical potential recording points and stainless-steel electrodes at the
electric current injection points.

Minerals 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

dimensional structures that cannot be accurately modeled via 2D inversions, thus causing 
distortions in the electrical resistivity models [29,42–44]. 

The apparent resistivity and chargeability data were acquired using the Syscal Pro 
Switch 72 multi-electrode resistor (Iris Instruments, Orléans, France; Figure 4A). Field ac-
quisitions were performed using the time and frequency domain IP methods with dipole–
dipole array and 10 m spacing electrodes. In the IP time mode, non-polarizable electrodes 
were used at the electrical potential recording points and stainless-steel electrodes at the 
electric current injection points. 

 
Figure 4. (A) Resistivity meter Syscal Pro 72, prepared for acquiring chargeability measurements. 
(B) Stainless steel electrode connected to a multi-cable to perform resistivity measurements (250 and 
1000 ms). (C) Survey line for measuring chargeability on the northeast bank of the Vermelho River. 
(D) Position of the Syscal Pro during resistivity data (250 and 1000 ms) acquisition on the southwest 
bank of the Vermelho River. (E) Spatial configuration of the electric survey line. 

In the IP frequency, 250 and 1000 ms electrical resistivity recording periods were ap-
plied, using multi-electrode systems with stainless steel electrodes (Figure 4B). In both 
surveys, a saline water compound was added to the injection/current record and electrical 
potential points to reduce the high values of contact resistance. 

The survey sections performed with multielectrode systems (250 and 1000 ms) 
reached 56 m depth, while the resistivity and chargeability (2000 ms) acquisition carried 
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(B) Stainless steel electrode connected to a multi-cable to perform resistivity measurements (250 and
1000 ms). (C) Survey line for measuring chargeability on the northeast bank of the Vermelho River.
(D) Position of the Syscal Pro during resistivity data (250 and 1000 ms) acquisition on the southwest
bank of the Vermelho River. (E) Spatial configuration of the electric survey line.
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In the IP frequency, 250 and 1000 ms electrical resistivity recording periods were
applied, using multi-electrode systems with stainless steel electrodes (Figure 4B). In both
surveys, a saline water compound was added to the injection/current record and electrical
potential points to reduce the high values of contact resistance.

The survey sections performed with multielectrode systems (250 and 1000 ms) reached
56 m depth, while the resistivity and chargeability (2000 ms) acquisition carried out simul-
taneously using common cables and porous potential electrodes reached only 32.5 m depth,
limited by the maximum of 10 depth investigation levels of the equipment (Figure 4C–E).

3.2. Data Modeling

The electrical resistivity and chargeability data were reduced and filtered separately
using the software Prosys 2.0 (Iris Instruments):

Electrical resistivity: (1) conversion to absolute values (the negative records correspond
to negative electrical potential measurements that result from a reversal of electrical current);
(2) insertion of topography at each electrode point; and (3) filtering of electrical resistivity
outliers, high values (spikes), null values (caused by the lack of electrical current that
sometimes occurred due to accidental disconnection between the electrodes and cables).
Most of the outliers correspond to the Vermelho River passage places and where colluvial
sediments (boulders) are present on the surface (Figure 5).
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Figure 5. Distribution of the electrical resistivity measurement points in the Digo-Digo Stream
region. Sections of raw and filtered data, obtained with sampling periods of 250, 1000, and 2000 ms.
(A) 250 ms—raw data. (B) 250 ms—filtered data. (C) 1000 ms—raw data. (D) 1000 ms—filtered data.
(E) 2000 ms—raw data. (F) 2000 ms—filtered data.

Chargeability: (1) removal of data where the electric potential decay curves did not
follow an exponential behavior, that is, the temporal windows’ decay curve behaved errati-
cally without monotonous tendencies with patterns different from the assumed Cole–Cole
model; (2) negative or null charge records; and (3) values greater than 100 mV/V so that
the decay curve did not present perfect monotonous tendencies. Figure 6 shows the charge-
ability data recorded in the field (Figure 6A), and after data filtering (Figure 6B). Figure 6C
shows the electric potential decay curves of each registered point, and in Figure 6D, these
are shown after removing the incoherent curves (without exponential decay).
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After filtering, the inverse modeling of 2D data was performed in the Res2Dinv
inversion software [45], which uses least-squares inversion as a standard to minimize the
square of the difference between the measured and calculated resistivities. The apparent
resistivity data were inserted in the program and filtered for a second time using the
exterminate bad datum points tool, followed by the application of the inversion routine.

In the frequency-domain-induced polarization, the apparent resistivity is measured
at two different frequencies commonly varying between 0.1 and 10 Hz, while the result
is presented as a percentage of effective frequency and/or metal factor [45]. The metal
factor (MF) is a standardized parameter used mainly in the frequency-domain-induced
polarization method [34]. Despite not measuring any exclusive physical property, this
parameter is extensively used in mineral exploration as a data display technique [46]. Based
on induced polarization results obtained in the field, ref. [34] suggests that the metal factor
is a much better indicator of the mineralization quantity responsible for causing an IP
anomaly greater than the frequency effects (PFE). The metal factor can be calculated for
both frequency and time domain measurements. In the frequency domain, the metal factor
(MF f ) value is calculated as in Equation (1) [45].

MF f = 105
(

ρdc − ρac

ρ2
ac

)
(1)
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where ρdc and ρac are the resistivity values measured at low and high frequencies, respec-
tively, expressed as ohms per meter. In the time domain, the metal factor is calculated as in
Equation (2) [47,48].

MFt = 103
(

M
ρac

)
(2)

where the chargeability (M) is expressed in milliseconds [46].
The metal factor values were also calculated for the unfiltered data (only the topo-

graphic correction was performed) using the above equations in module (to avoid negative
values). Subsequently, the calculated MF values were filtered to exclude the outliers, points
with extremely high Root Mean Square Error (RMS) values.

For metal factor calculations, the topography was initially inserted in the raw data
to correct the resistivity values. Subsequently, the MF calculation was performed using
module Equation (2) to avoid negative results. Then, outlier MF values or those with
exceedingly high RMS errors were eliminated, aiming to reduce the high variance in MF
data and consequently reduce the RMS error values of the inversion models.

4. Results
4.1. Electrical Resistivity

Six main geoelectric zones with high lateral contrast are observed in the three electrical
resistivity sections (Figure 7) as follows:

i. Thick layer of high resistivity positioned between 0 and 70 m, with values ranging
from 1100 to 9000 ohm·m;

ii. Thick layer of low resistivity positioned between 100 and 215 m, with values ranging
from 7 to 200 ohm·m underlying a thin superficial layer of high resistivity with
values above 7000 ohm·m;

iii. Low resistivity zone position between 215 and 400 m, similar to (ii) but with slightly
higher resistivity values ranging from 65 to 500 ohm·m;

iv. Thick zone of low resistivity associated with zones of medium resistivity ranging
from 25 to 1000 ohm·m, which is better observed in the 250 ms section (Figure 6C),
positioned between 400 and 550 m;

v. Surface zone at the top of the electrical profile with high resistivity, with values
above 7000 ohm·m, extending laterally over almost every profile;

vi. Surface zone in lateral contact with zone (v), with low resistivities varying between
30 and 500 ohm·m, occurring between 410 and 480 m on the surface.

4.2. Chargeability

The chargeability model obtained after the inverse modeling converged with 7.5%
RMS error after four iterations (Figure 8). In Section 2D, there are three main positive
anomalies with values ranging from 45 to 100 mv/V between 100 and 360 m. The three
main anomalies identified have a spatial association with zones (ii) and (iii) that have
the lowest values of resistivity obtained in the survey on the exhalative horizon of the
Digo-Digo Formation. In the IP time section, there is also a vertical anomaly with high
chargeability at a depth of 24 m at a position of 400 m. This anomaly correlates with the
high resistivity zone (3000 and 8000 ohm).

4.3. Metal Factor

After filtering the data, the metal factor calculated using the models (Figure 8) pre-
sented values between 0 and 35,500. Therefore, the RMS error calculated via RES2DINV
reaches approximately 80% due to the high variation (1 to 35,500) in the normalized values
resulting from the metal factor calculations.
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the resistivity data with surface geological data.

The main positive anomalies observed in both metal factor inversions ranged between
20,500 and 35,500 and are spatially associated with the survey central portion, where the
main IP anomalies corresponding to low resistivity areas in the electrical resistivity model
also occur. In general, the anomalies in the MF models had lower values in the time domain
compared to the frequency domain.

The MF time domain model showed three pinnacle-shaped anomalies, with mean
values of 25,500 and greater than 30,000 at certain points in time. The MF frequency domain
model presented two anomalies with values greater than 30,000, the anomalies continue in
the central portion of the data (160–300 m) where values below 10,000 are observed, and the
model geometry of the anomalies approximates a slightly distorted arched layer (Figure 8).
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4.4. Data Correlation

To determine the best subsurface locations that can potentially host mineralizations
associated with massive and disseminated sulfides, the electric models were imported into
the Oasis Montaj 9.1 software to correlate the chargeability, resistivity and metal factor data
(frequency domain).

After that, new interpolations were performed via the Inverse Distance Weighting
(IDW) method and the results showed acceptable correspondence with the models previ-
ously generated in the Res2Dinv software (version 3.71.118). This method assumes that the
value attributed to a non-sampled point is the weighted average of the known neighboring
values and that the weights between the non-sampled and sampled locations are inversely
correlated [49]. The interpolation used cell size values of 2.7 m (approximately 1/2 of the
spacing between points), and the values applied to the slope and power variables are,
respectively, 1 and 2, which correspond to the software standard values.

Subsequently, the new grids were superimposed on the RGB (red-green-blue) and
CMY (cyan-magenta-yellow) spectra, resulting in two ternary models. In these products, the
zones with high chargeability as well as high metal factor and conductivity (low resistivity)
are superimposed, highlighting the areas with the greatest potential for mineralization
associated with the presence of metal sulfides.

In the ternary models (Figure 9), the purple colors in the RGB spectrum and greenish
in the CMY indicate areas with greater potential for mineralization occurrence, while areas
colored green (RGB) and purple/pink (CMY) suggest areas of high resistivity and low
metal factor and chargeability values, indicating zones with properties of non-metallic
materials and possible barren zones.
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Figure 9. Ternary models resulting from the integration of 2D results of electrical resistivity, charge-
ability and metal factor (frequency domain). (A) Electric ternary (RGB); areas with greater potential
to host metallic minerals are colored purple and pink. (B) Electric ternary (CMY); an area with high
potential for mineralization is colored green. (C) Prospective model for the confluence region of
the Digo-Digo stream with Vermelho River; areas with high potential to host metallic minerals are
highlighted in red. More restricted target areas (t1, t2, t3 and t4) are identified by orange circles.

In ternaries, three zones with the characteristics with potential for sulfide mineraliza-
tion occur between (1) 75 and 220 m, (2) 270 and 310 m, and (3) 470 and 490 m, starting at
depths between 10 and 20 m (Figure 9).

5. Discussion and Conclusions

The geological information obtained on the surface is consistent with the respective
lateral variations identified in the electrical resistivity sections.

i. Zone (i) is spatially associated with chlorite–quartz schists from the Digo-Digo Formation;
ii. Zone (ii) correlates spatially with intermediate metavolcanic rocks (sericite–chlorite–

quartz schists);
iii. Zone (iii) refers to the central areas of the survey, has the lowest resistivity val-

ues of the section, and can be spatially correlated to the exhalative horizon with
disseminated to massive levels of pyrite and gold traces.

iv. Zone (iv) occurs to the northeast portion of the Vermelho River, with different
electrical responses and intermediate resistivity values (500–1100 ohms.m) and
spatial correlation with the meta-ultrabasic rocks of the Manoel Leocádio Formation.

v. The zones (v) and (vi) of the model correspond to two superficial layers (top of
the profiles) with different resistivity values; zone (v) corresponds to a layer with
resistivity values between 5000 and 8000 ohms.m that extends laterally over almost
the entire profile, except between 400 and 480 m. These zones are interpreted as a
product of rock weathering (regolith).
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vi. Based on the electrical characteristics of the zones (i to vi), the geological data
obtained on the surface, and their correlations, we propose an interpreted section
with lithologies, structures, and coverage of the electrical resistivity models.

The model integrating the electrical resistivity, chargeability and metal factor (fre-
quency domain) data generated by superimposing the models in the RGB and CMY
spectra enables the determination of the zones with higher potential to host mineraliza-
tions associated with sulfides and, finally, the proposal of a prospective model of the
studied section.

From the prospective model and the areas with potential for mineralization, four
prospective targets were generated (t1, t2, t3 and t4):

• Targets t1 and t2 correspond to possible contact zones with the possible presence of
metallic minerals; t1 is at the contact of chlorite–quartz schists (metabasalts) with
the intermediate metavolcanic rocks, and t2 at the contact between the intermediate
metavolcanic with the exhalative horizon; deposits and mineral occurrences are com-
monly associated with geological contact zones due to metal remobilizations, structural
controls (shear zones), redox reactions and differences in buffering or permeability
between rocks [50].

• The t3 target is hosted in the intercalations of metavolcanic, metacherts and carbona-
ceous phyllites with disseminated to massive sulfide levels containing gold traces, the
target of the present study.

• Target t4 is hosted in the metaultramafic rocks of the Manoel Leocádio Formation,
where previous studies described no associated mineralization; therefore, this target
region has been selected for further investigation.

Some geological structures, such as the possible folding evidenced in the exposure
of rocks from the exhalative horizon, could not be clearly identified in the resistivity
and chargeability data due to the resolution of the acquired data. However, the MF
frequency domain model shows that the zone with anomalous metal factor values presents
a continuous geometry similar to the shape of an open fold of hectametric scale. If the
geometry present in the MF model really corresponds to a geological structure, the fold
observed in the field might be a parasitic fold that can be associated with a larger scale fold
of the metal factor model.

Regarding the differences identified in the acquired data and results in the time and
frequency domains, the following can be observed:

(1) The frequency domain IP data acquired using multi-electrodic systems obtained
electrical resistivity measurements in 80% more points, reaching about 20 m deeper
than in the time domain, and required only 50% of the acquisition time.

(2) The chargeability data had broader and more dispersed anomalies across the section,
while the frequency domain metal factor data showed more restricted and structured
anomalies, but still with good spatial correlation with chargeability and time domain
metal factor data, mainly in the central portion associated with the exhalative horizon
of the Digo-Digo Formation.

In conclusion, in cases of exploration projects that require data acquisition with greater
depths and reduced costs, the frequency domain method using electrical resistivity meters
with relatively low current transmissions was proven to be as efficient as the time domain
data for detecting potential mineralized zones in the Digo-Digo Formation.
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