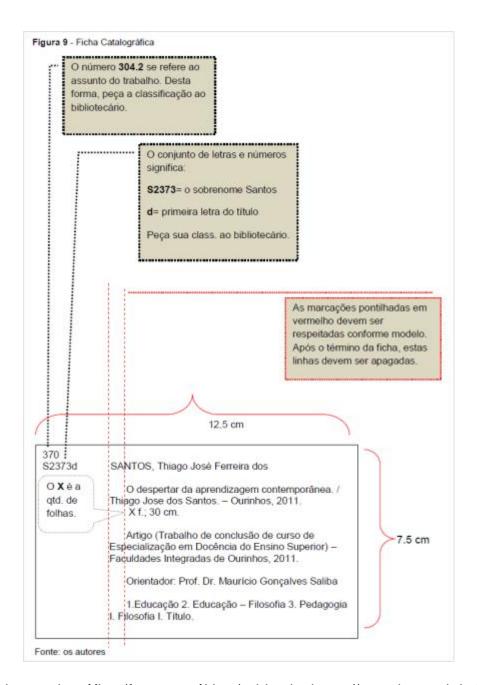


UNIVERSIDADE DE BRASÍLIA FACULDADE DE ECONOMIA, ADMINISTRAÇÃO, CONTABILIDADE E GESTÃO DE POLÍTICAS PÚBLICAS DEPARTAMENTO DE ECONOMIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA PPGECP-MESTPRO

GLAUCIA FRAGA BRETZ VILELA DE ALMEIDA


ANÁLISE DA APLICABILIDADE, DA LEI DE BENFORD, EM AMOSTRAS DE DOCUMENTOS FISCAIS APRESENTADOS NAS PRESTAÇÕES DE CONTAS DE DEPUTADOS FEDERAIS ELEITOS POR MINAS GERAIS.

GLAUCIA FRAGA BRETZ VILELA DE ALMEIDA

ANÁLISE DA APLICABILIDADE, DA LEI DE BENFORD, EM AMOSTRAS DE DOCUMENTOS FISCAIS APRESENTADOS NAS PRESTAÇÕES DE CONTAS DE DEPUTADOS FEDERAIS ELEITOS POR MINAS GERAIS

Dissertação submetida ao Programa de Pós-graduação em Economia da Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Economia.

Orientadora: Prof^a Ana Carolina Pereira Zoghbi

Ficha catalográfica (fazer por último) vide site https://www.bce.unb.br/ficha/

(Modelo – impressão no verso da contracapa – ou folha de rosto)

UNIVERSIDADE DE BRASÍLIA - UnB

Professora Doutora Márcia Abrahão Moura Reitora da Universidade de Brasília

Professor Doutor Enrique Huelva Unternbäumen

Vice-Reitor da Universidade de Brasília

Professor Doutor Lúcio Remuzat Rennó Junior Decano de Pós-Graduação

Professor Doutor José Márcio Carvalho

Diretor da Faculdade de Economia, Administração, Contabilidade e

Gestão de Políticas Públicas

Professor Doutor Roberto de Goes Ellery Júnior Chefe do Departamento de Economia

Professor Doutor Jorge Madeira

Coordenador do Programa Profissional de Pós-Graduação em Economia

GLAUCIA FRAGA BRETZ VILELA DE ALMEIDA

ANÁLISE DA APLICABILIDADE, DA LEI DE BENFORD, EM AMOSTRAS DE DOCUMENTOS FISCAIS APRESENTADOS NAS PRESTAÇÕES DE CONTAS DE DEPUTADOS FEDERAIS ELEITOS POR MINAS GERAIS

Dissertação submetida ao Programa de Pós-graduação em Economia da Universidade de Brasília, como requisito parcial à obtenção do título de Mestre em Economia.

Comissão Examinadora:		
	Prof ^a . Dr ^a . Ana Carolina Pereira Zoghbi PPGECO/UnB (Orientadora)	
	Prof ^a . Dr ^a . Deborah Oliveira Martins dos Reis PPGECO/UnB (Membro Titular Vinculado)	
	Prof. Dr. Raphael Almeida Videira ESPM e PUC/SP (Membro Externo)	
	Prof. Dr. Rafael Terra de Menezes (Suplente)	

AGRADECIMENTOS

Primeiramente, agradeço a Deus que me proporcionou todas as condições para que eu pudesse concluir este trabalho.

Aos meus pais por todo apoio, incentivo e orações para concluir este trabalho.

Ao meu marido pela compreensão por minhas ausências para que pudesse aprimorar meus conhecimentos no curso de mestrado, realizar as tarefas solicitadas e concluir este trabalho.

A Professora Ana Carolina, minha orientadora, que me auxiliou, me apoiou e me acalmou muitas vezes durante toda a elaboração da minha dissertação.

A todos que de alguma forma me apoiou: Muito obrigada!!!

RESUMO

Em uma circunstância de análise e de conformidade de documentos apresentados de processos de reembolso de gastos realizados, torna-se uma tarefa difícil selecionar condições ou metodologias que auxilie as pessoas, quando a finalidade do exame incide sobre grande número de dados digitais. Incorporada, às demais técnicas estatísticas de amostragem utilizadas na Auditoria, a aplicação da Lei de Benford, surge como orientação do trabalho a partir da indicação de registros atípicos. Assim, por meio da análise dos recursos disponíveis e concedido pela Cota para o Exercício de Atividade Parlamentar (CEAP) aos deputados federais, os valores individuais de um conjunto de documentos fiscais foram sujeitos à distribuição da Lei de Benford, sendo suas frequências calculadas, confrontadas com as esperadas, a fim de verificar indícios de anormalidade para primeiro e segundo dígitos de cada comprovante de desembolso. Em ato contínuo, por meio da interpretação dos testes estatísticos empregados, constatamos a existência de desvios significativos, indicativo de números manipulados no processo de prestação de contas de gastos realizados. Contudo, apesar dos desvios em relação distribuição de Benford não serem provas conclusivas de manipulação e a conformidade não assegurar a veracidade dos dados, podem vir a ser utilizados como subsídios para as equipes de auditoria, servindo de direcionador, sobretudo na elaboração do planejamento e determinação da amostra a ser auditada.

Palavras Chaves: Lei de Benford; Prestação de contas; Cota Parlamentar; Anomalias; Auditoria.

ABSTRACT

In a circumstance of analysis and compliance of documents presented for reimbursement processes for expenses incurred, it becomes a difficult task to select conditions or methodologies that help people, when the purpose of the examination concerns a large number of digital data. Incorporated into the other statistical sampling techniques used in the Audit, the application of Benford's Law appears as a guide for the work based on the indication of atypical records. Thus, through the analysis of available resources and granted by the Quota for the Exercise of Parliamentary Activity (CEAP) to federal deputies, the individual values of a set of fiscal documents were subject to the distribution of Benford's Law, with their frequencies calculated, compared with those expected, in order to check signs of abnormality for the first and second digits of each disbursement receipt. Continuously, through the interpretation of the statistical tests used, we found the existence of significant deviations, indicative of manipulated numbers in the process of accounting for expenses incurred. However, although deviations in relation to the Benford distribution are not conclusive evidence of manipulation and compliance does not guarantee the veracity of the data, they can be used as support for audit teams, serving as a guide, especially when preparing planning and determining the sample to be audited.

Keywords: Benford's Law; Accountability; Parliamentary Quota; Anomalies; Audit.

LISTA DE ILUSTRAÇÃO

QUADROS

Quadro 1 - Resumo das aplicações de Lei de Benford	23
GRÁFICOS	
Gráfico 1 - Primeiro dígito com todos os dados	28
Gráfico 2 - Primeiro dígito - todos os dados	30
Gráfico 3 - Primeiro dígito Cidadania	31
Gráfico 4 - Primeiro Dígito - MDB	33
Gráfico 5 - Primeiro dígito - Novo	34
Gráfico 6 - Primeiro dígito - Patriota	- 36
Gráfico 7 - Primeiro dígito - PDT	38
Gráfico 8 - Primeiro dígito - PL	39
Gráfico 9 - Primeiro dígito - Pode	41
Gráfico 10 - Primeiro Dígito - PP	42
Gráfico 11 - Primeiro dígito - PROS	44
Gráfico 12 - Primeiro dígito - PSB	46
Gráfico 13 - Primeiro dígito - PSC	47
Gráfico 14 - Primeiro dígito - PSD	49
Gráfico 15 - Primeiro dígito - PSDB	50
Gráfico 16 - Primeiro dígito - PSOL	52
Gráfico 17 - Primeiro dígito - PT	54
Gráfico 18 - Primeiro dígito - PV	55
Gráfico 19 - Primeiro dígito - Republicano	57
Gráfico 20 - Primeiro dígito - Solidariedade	59
Gráfico 21 - Primeiro dígito - União	61
Gráfico 22 - Primeiro dígito - Gasto 1	63
Gráfico 23 - Primeiro Dígito - Gasto 3	65
Gráfico 24 - Primeiro dígito - Gasto 4	66
Gráfico 25 - Primeiro dígito - Gasto 5	68
Gráfico 26 - Primeiro dígito - Gasto 8	69
Gráfico 27 - Primeiro dígito - Gasto 9	71
Gráfico 28 - Primeiro dígito - Gasto 10	72

Gráfico 29 - Primeiro dígito - Gasto 11	74
Gráfico 30 - Primeiro dígito - Gasto 12	75
Gráfico 31 - Primeiro dígito - Gasto 13	77
Gráfico 32 - Primeiro dígito - Gasto 14	79
Gráfico 33 - Primeiro dígito - Gasto 119	81
Gráfico 34 - Primeiro dígito - Gasto 120	82
Gráfico 35 - Primeiro dígito - Gasto 121	84
Gráfico 36 - Primeiro dígito - Gasto 122	85
Gráfico 37 - Primeiro dígito - Gasto 123	87
Gráfico 38 - Primeiro dígito - Gasto 137	89
Gráfico 39 - Primeiro dígito - Gasto 998	90
Gráfico 40 - Primeiro dígito - Gasto 999	92
Gráfico 41 - Segundo dígito - Todo banco de dados	94
Gráfico 42 - Segundo dígito - Avante	95
Gráfico 43 - Segundo dígito - Cidadania	97
Gráfico 44 - Segundo dígito - MDB	99
Gráfico 45 - Segundo dígito - Novo	101
Gráfico 46 - Segundo dígito - Patriota	103
Gráfico 47 - Segundo dígito - PDT	105
Gráfico 48 - Segundo dígito - PL	107
Gráfico 49 - Segundo dígito - Pode	109
Gráfico 50 - Segundo dígito - PP	111
Gráfico 51 - Segundo dígito - PROS	112
Gráfico 52 - Segundo dígito - PSB	114
Gráfico 53 - Segundo dígito - PSC	116
Gráfico 54 - Segundo dígito - PSD	118
Gráfico 55 - Segundo dígito - PSDB	120
Gráfico 56 - Segundo dígito - PSOL	122
Gráfico 57 - Segundo dígito - PT	123
Gráfico 58 - Segundo dígito - PV	125
Gráfico 59 - Segundo dígito - Republicano	127
Gráfico 60 - Segundo dígito - Solidariedade	129
Gráfico 61 - Segundo dígito - União	131
Gráfico 62 - Segundo dígito - Gasto 1	132

Gráfico 63 - Segundo dígito - Gasto 3	134
Gráfico 64 - Segundo dígito - Gasto 4	136
Gráfico 65 - Segundo dígito - Gasto 5	137
Gráfico 66 - Segundo dígito - Gasto 8	139
Gráfico 67 - Segundo dígito - Gasto 9	141
Gráfico 68 - Segundo dígito - Gasto 10	142
Gráfico 69 - Segundo dígito - Gasto 11	144
Gráfico 70 - Segundo dígito - Gasto 12	146
Gráfico 71 - Segundo dígito - Gasto 13	147
Gráfico 72 - Segundo dígito - Gasto 14	149
Gráfico 73 - Segundo dígito - Gasto 119	151
Gráfico 74 - Segundo dígito - Gasto 120	153
Gráfico 75 - Segundo dígito - Gasto 121	154
Gráfico 76 - Segundo dígito - Gasto 122	156
Gráfico 77 - Segundo dígito - Gasto 123	158
Gráfico 78 - Segundo dígito - Gasto 137	159
Gráfico 79 - Segundo dígito - Gasto 998	161
Gráfico 80 - Segundo dígito - Gasto 999	163
TABELAS	
Tabela 1 - Valores críticos X² 1º e 2º dígitos	27
Tabela 2 - Critérios de conformidade DAM	27
Tabela 3 - Probabilidade esperada $1^{\underline{0}}$ e $2^{\underline{0}}$ dígitos - Lei de Benford	28
Tabela 4 - Resultado dos testes para $1^{\underline{0}}$ dígito - todos os dados	28
Tabela 5 - Resultado dos testes para 1º dígito - Avante	30
Tabela 6 - Resultados testes para 1º dígito - Cidadania	31
Tabela 7 - Resultados dos testes para 1º dígito - MDB	33
Tabela 8 - Resultados dos testes para 1º dígito - Novo	35
Tabela 9 - Resultados dos testes para 1º dígito - Patriota	36
Tabela 10 - Resultados dos testes para 1º dígito - PDT	38
Tabela 11 - Resultados dos testes para 1º dígito - PL	39
Tabela 12 - Resultados dos testes para 1º dígito - Pode	41
Tabela 13 - Resultados dos testes para 1º dígito - PP	43
Tabela 14 - Resultados dos testes para 1º dígito - PROS	44

Tabela 15 - Resultados dos testes para 1º dígito - PSB	46
Tabela 16 - Resultados dos testes para 1º dígito - PSC	48
Tabela 17 - Resultados dos testes para 1º dígito - PSD	49
Tabela 18 - Resultados dos testes para 1º dígito - PSDB	51
Tabela 19 - Resultados dos testes para 1º dígito - PSOL	53
Tabela 20 - Resultados dos testes para 1º dígito - PT	54
Tabela 21 - Resultados dos testes para 1º dígito - PV	56
Tabela 22 - Resultados dos testes para $1^{\underline{0}}$ dígito - Republicano	58
Tabela 23 - Resultados dos testes para 1º dígito - Solidariedade	59
Tabela 24 - Resultados dos testes para 1º dígito - União	61
Tabela 25 - Valores expressivos de X ² por partido	63
Tabela 26 - Resultados dos testes para 1º dígito - Gasto 1	64
Tabela 27 – Resultados dos testes para 1º dígito - Gasto 3	65
Tabela 28 - Resultados dos testes para 1º dígito - Gasto 4	67
Tabela 29 - Resultados dos testes para 1º dígito - Gasto 5	68
Tabela 30 - Resultados dos testes para 1º dígito - Gasto 8	70
Tabela 31 - Resultados dos testes para 1º dígito - Gasto 9	71
Tabela 32 - Resultados dos testes para 1º dígito - Gasto 10	72
Tabela 33 - Resultados dos testes para 1º dígito - Gasto 11	74
Tabela 34 - Resultados dos testes para 1º dígito - Gasto 12	76
Tabela 35 - Resultados dos testes para 1º dígito - Gasto 13	78
Tabela 36 - Resultados dos testes para 1º dígito - Gasto 14	79
Tabela 37 - Resultados dos testes para 1º dígito - Gasto 119	81
Tabela 38 - Resultados dos testes para 1º dígito - Gasto 120	83
Tabela 39 - Resultados dos testes para 1º dígito - Gasto 121	84
Tabela 40 - Resultados dos testes para 1º dígito - Gasto 122	86
Tabela 41 - Resultados dos testes para 1º dígito - Gasto 123	87
Tabela 42 - Resultados dos testes para 1º dígito - Gasto 137	89
Tabela 43 - Resultados dos testes para 1º dígitos - Gasto 998	91
Tabela 44 - Resultados dos testes para 1º dígito - Gasto 999	92
Tabela 45 - Resultados dos testes para 2º dígito - Todos os dados	94
Tabela 46 - Resultados dos testes para 2 ⁰ dígito - Avante	96
Tabela 47 - Resultados dos testes para 2 ⁰ dígito - Cidadania	98
Tabela 48 - Resultados dos testes para 2º dígito - MDB	100

Tabela 49 - Resultados dos testes para 2 ⁰ dígito - Novo	102
Tabela 50 - Resultados dos testes para 2º dígito - Patriota	104
Tabela 51 - Resultados dos testes para 2º dígito - PDT	106
Tabela 52 - Resultados dos testes para 2º dígito - PL	108
Tabela 53 - Resultados dos testes para 2º dígito - Pode	109
Tabela 54 - Resultados dos testes para 2º dígito - PP	111
Tabela 55 - Resultados dos testes para 2º dígito - PROS	113
Tabela 56 - Resultados dos testes para 2º dígito - PSB	115
Tabela 57 - Resultados dos testes para 2º dígito - PSC	117
Tabela 58 - Resultados dos testes para 2º dígito - PSD	119
Tabela 59 - Resultados dos testes para 2º dígito - PSDB	120
Tabela 60 - Resultados dos testes para 2º dígito - PSOL	122
Tabela 61 - Resultados dos testes para 2 ⁰ dígito - PT	124
Tabela 62 - Resultados dos testes para 2 ⁰ dígito - PV	125
Tabela 63 - Resultados dos testes para 2º dígito - Republicano	127
Tabela 64 - Resultados dos testes para 2º dígito - Solidariedade	129
Tabela 65 - Resultados dos testes para 2º dígito - União	131
Tabela 66 - Resultados dos testes para 2º dígito - Gasto 1	133
Tabela 67 - Resultados dos testes para 2º dígito - Gasto 3	135
Tabela 68 - Resultados dos testes para 2º dígito - Gasto 4	136
Tabela 69 - Resultados dos testes para 2º dígito - Gasto 5	138
Tabela 70 - Resultados dos testes para 2º dígito - Gasto 8	139
Tabela 71 - Resultados dos testes para 2º dígito - Gasto 9	141
Tabela 72 - Resultados dos testes para 2º dígito - Gasto 10	143
Tabela 73 - Resultados dos testes para 2º dígito - Gasto 11	144
Tabela 74 - Resultados dos testes para 2 ⁰ digito - Gasto 12	146
Tabela 75 - Resultados dos testes para 2 ⁰ dígito - Gasto 13	148
Tabela 76 - Resultados dos testes para 2º dígito - Gasto 14	150
Tabela 77 - Resultados dos testes para 2º dígito - Gasto 119	152
Tabela 78 - Resultados dos testes para 2 ⁰ dígito - Gasto 120	153
Tabela 79 - Resultados dos testes para 2 ⁰ dígito - Gasto 121	155
Tabela 80 - Resultados dos testes para 2 ⁰ dígito - Gasto 122	156
Tabela 81 - Resultados dos testes para 2 ⁰ dígito - Gasto 123	158
Tabela 82 - Resultados dos testes para 2º dígito - Gasto 137	160

CEAP - Cota para o Exercício de Atividade Parlamentar
DAM - Desvio Absoluto Médio
LNB - Lei Newcomb & Benford
MDB - Movimento Democrático Brasileiro
NOVO - Partido Novo
PDT - Partido Democrático Brasileiro
PL - Partido Liberal
PODE - Podemos
PP - Progressistas
PROS- Partido Republicano da Ordem Social
PSB - Partido Socialista Brasileiro
PSC - Partido Social Cristão
PSD - Partido Social Democrático
PSDB - Partido da Social Democracia Brasileira
PSOL - Partido Socialismo e Liberdade
PT - Partido dos Trabalhadores
PV - Partido Verde
RPA - Recibo de Pagamento Autônomo
SIGEPA - Sistema de Gestão de Passagens Aéreas
UNIÃO - União Brasil

Tabela 83 - Resultados dos testes para $2^{\underline{0}}$ dígito - Gasto 998

Tabela 84 - Resultados dos testes para 2⁰ dígito - Gasto 999

SIGLAS E ABREVIATURAS

161

163

SUMÁRIO

1.	INTRODUÇÃO	17
2.	REFERENCIAL TEÓRICO	19
2.1.	Lei de Newcomb-Benford	19
2.2.	Aplicações da Lei de Benford em trabalhos anteriores	20
3.	METODOLOGIA DE PESQUISA	24
4.	RESULTADOS E ANÁLISES	27
4.1.	Análise do primeiro dígito	28
4.1.1.	Análise do primeiro dígito - todo banco de dados	28
4.1.2.	Análise do primeiro dígito por partido político	30
4.1.2.	Partido político Avante	30
4.1.2.	2. Partido político Cidadania	31
4.1.2.	3. Partido político MDB	33
4.1.2.	4. Partido político Novo	34
4.1.2.	5. Partido político Patriota	36
4.1.2.	6. Partido político PDT	38
4.1.2.	7. Partido Político PL	39
4.1.2.	8. Partido político PODE	41
4.1.2.	9. Partido político PP	42
4.1.2.	10. Partido político PROS	44
4.1.2.	11. Partido político PSB	46
4.1.2.	12. Partido político PSC	47
4.1.2.	13. Partido político PSD	49
4.1.2.	14. Partido político PSDB	50
4.1.2.	15. Partido político PSOL	52
4.1.2.	16. Partido político PT	54
4.1.2.	17. Partido político PV	56
4.1.2.	18. Partido político Republicano	57
4.1.2.	19. Partido político Solidariedade	59
4.1.2.	20. Partido político União	61
4.1.3.	Análise do primeiro dígito por tipo de gasto	63
4.1.3.	1. Análise do primeiro dígito - Gasto 1	63
4.1.3.	2. Análise do primeiro dígito - Gasto 3	65
4.1.3.	3. Análise do primeiro dígito - Gasto 4	66

4.1.3.4.	Análise do primeiro dígito - Gasto 5	68
4.1.3.5.	Análise do primeiro dígito - Gasto 8	69
4.1.3.6.	Análise do primeiro dígito - Gasto 9	71
4.1.3.7.	Análise do primeiro dígito - Gasto 10	72
4.1.3.8.	Análise do primeiro dígito - Gasto 11	74
4.1.3.9.	Análise do primeiro dígito - Gasto 12	75
4.1.3.10.	Análise do primeiro dígito - Gasto 13	77
4.1.3.11.	Análise do primeiro dígito - Gasto 14	79
4.1.3.12.	Análise do primeiro dígito - Gasto 119	81
4.1.3.13.	Análise do primeiro dígito - Gasto 120	82
4.1.3.14.	Análise do primeiro dígito - Gasto 121	84
4.1.3.15.	Análise do primeiro dígito - Gasto 122	85
4.1.3.16.	Análise do primeiro dígito - Gasto 123	87
4.1.3.17.	Análise do primeiro dígito - Gasto 137	89
4.1.3.18.	Análise do primeiro dígito - Gasto 998	90
4.1.3.19.	Análise do primeiro dígito - Gasto 999	92
4.2.	Análise do segundo dígito	94
4.2.1.	Análise do segundo dígito - todo banco de dados	94
4.2.2.	Análise do segundo dígito por partido político	95
4.2.2.1.	Partido político Avante	95
4.2.2.2.	Partido político Cidadania	97
4.2.2.3.	Partido político MDB	99
4.2.2.4.	Partido político Novo	101
4.2.2.5.	Partido político Patriota	103
4.2.2.6.	Partido político PDT	105
4.2.2.7.	Partido político PL	107
4.2.2.8.	Partido político PODE	109
4.2.2.9.	Partido político PP	111
4.2.2.10.	Partido político PROS	112
4.2.2.11.	Partido político PSB	114
4.2.2.12.	Partido político PSC	116
4.2.2.13.	Partido político PSD	118
4.2.2.14.	Partido político PSDB	120
4.2.2.15.	Partido político PSOL	122

4.2.2.	16. Partido político PT	123
4.2.2.	17. Partido político PV	125
4.2.2.	18. Partido político Republicano	127
4.2.2.	19. Partido político Solidariedade	129
4.2.2.2	20. Partido político União	131
4.2.3.	Análise do segundo dígito por tipo de gasto	132
4.2.3.	 Análise do segundo dígito - Gasto 1 	132
4.2.3.2	2. Análise do segundo dígito - Gasto 3	134
4.2.3.	3. Análise do segundo dígito - Gasto 4	136
4.2.3.	4. Análise do segundo dígito - Gasto 5	137
4.2.3.	5. Análise do segundo dígito - Gasto 8	139
4.2.3.0	6. Análise do segundo dígito - Gasto 9	141
4.2.3.	7. Análise do segundo dígito - Gasto 10	142
4.2.3.8	8. Análise do segundo dígito - Gasto 11	144
4.2.3.9	9. Análise do segundo dígito - Gasto 12	146
4.2.3.	10. Análise do segundo dígito - Gasto 13	147
4.2.3.	11. Análise do segundo dígito - Gasto 14	149
4.2.3.	12. Análise do segundo dígito - gasto 119	151
4.2.3.	13. Análise do segundo dígito - Gasto 120	153
4.2.3.	14. Análise do segundo dígito - Gasto 121	154
4.2.3.	15. Análise do segundo dígito - Gasto 122	156
4.2.3.	16. Análise do segundo dígito - Gasto 123	158
4.2.3.	17. Análise do segundo dígito - Gasto 137	159
4.2.3.	18. Análise do segundo dígito - Gasto 998	161
4.2.3.	19. Análise do segundo dígito – Gasto 999	163
5.	CONSIDERAÇÕES FINAIS	165
6.	REFERÊNCIAS	167

1. INTRODUÇÃO

A análise de conformidade em documentos apresentados em processos de reembolso de gastos realizados, selecionar particularidades ou metodologias capazes de conduzir recursos humanos, se torna uma tarefa árdua, quando o objeto de exame incide sobre grande número de dados digitais. Incorporada, às demais técnicas estatísticas de amostragem utilizadas na Auditoria, a aplicação da Lei de Benford, surge como orientação do trabalho a partir da indicação de registros atípicos (Filho, Nunes e Santana, 2021).

Por meio da análise dos recursos disponíveis e concedido pela Cota para o Exercício de Atividade Parlamentar (CEAP) aos deputados federais, os valores individuais de um conjunto de documentos fiscais foram sujeitos à distribuição da Lei de Benford, sendo suas frequências calculadas, confrontadas com as esperadas, a fim de verificar indícios de anormalidade para primeiro e segundo dígitos de cada comprovante de desembolso (Brasil, 2023a).

A pesquisa partiu do seguinte problema: "Será que as amostras, de documentos fiscais, apresentadas nas prestações de contas, de Deputados Federais, eleitos por Minas Gerais, estão em conformidade com a Lei de Benford?".

Tem-se como objeto de pesquisa 92.702 documentos fiscais atribuídos aos 58 deputados federais, de diversos partidos políticos, eleitos no estado de Minas Gerais, no período compreendido de fevereiro de 2019 a janeiro de 2023, respectivo a 56^a Legislatura (Brasil, 2023b).

Diante do exposto, o trabalho tem como objetivo geral, verificar se os valores de um conjunto de dados, formados a partir dos registros das prestações de contas de deputados federais, que comprovam o emprego dos recursos disponíveis e concedido pela Cota para o Exercício de Atividade Parlamentar (CEAP)¹, no período de fevereiro de 2019 a janeiro de 2023, seguem relação com a frequência esperada, para primeiro e segundo dígitos calculados, conforme a Lei de Benford.

Já os objetivos específicos são:

1

¹ A Cota para o Exercício de Atividade Parlamentar (CEAP) regida pelo Ato da Mesa 43/2009, representa o valor mensal que os membros do Poder Legislativo têm direito a receber, em função da sua atividade como parlamentar, para cobrir despesas como passagens aéreas, alimentação, hospedagem, despesas com locomoção, aluguel de escritório para apoio ao mandato, aluguel de carro, combustível, entre outros. Esse valor é feito através do reembolso das despesas realizadas por meio de comprovação dos gastos (Brasil, 2023a).

- Calcular as frequências observadas e confrontá-las com as esperadas, a fim de verificar indícios de anormalidade para primeiro e segundo dígitos de cada comprovante de desembolso;
- Realizar os testes estatísticos verificando se os resultados divergem dos valores críticos para essas medidas, indicando desvios significativos, para o primeiro e segundo dígitos, e
- Analisar os resultados encontrados, constatando a existência da conformidade ou da não conformidade, dos valores individuais de um conjunto de documentos fiscais, apresentadas nas prestações de contas, com a Lei de Benford.

Como justificativa para esse trabalho, buscou-se trazer informações relevantes sobre as aplicações da Lei de Benford, para outros estudiosos que se interessem explorar esse tema, como também, demonstrar aos Auditores que esta Lei, pode servir como direcionador, de possíveis incoerências, na seleção de amostras, auxiliando nos trabalhos iniciais de investigação.

Esta dissertação conta com cinco capítulos, incluindo esta introdução que contextualiza problema de pesquisa, objetivos e justificativa. O segundo capítulo, trata do referencial teórico em que são apresentadas a Lei de Benford e aplicações dessa Lei em trabalhos anteriores, para fundamentar à pesquisa. No terceiro capítulo é apresentada a metodologia de pesquisa; no quarto, à análise dos resultados; no quinto as considerações finais. Por fim, virão as referências.

2. REFERENCIAL TEÓRICO

Esta seção apresenta uma revisão da literatura sobre a Lei de Benford e as aplicações dessa Lei, em trabalhos anteriores.

2.1. Lei de Newcomb-Benford

Esta Lei surgiu com Simon Newcomb (1881) ao observar que as primeiras páginas de seu livro de logaritmo estavam mais usadas que as demais, levando-o a deduzir que em uma lista de números aleatórios o conjunto de números a iniciar-se por "1" seria maior. Assim, publicou suas anotações, contendo uma fórmula para cálculo das frequências esperadas.

Foi em 1938 que a Lei ganhou publicidade quando o físico Frank Benford aprofundando do assunto, utilizou conjuntos de dados de diversas áreas e calculou as frequências relativas de cada primeiro dígito, deduzindo assim a frequência com que os primeiros dígitos (1 a 9) aparecem em conjuntos de números do mundo real. Segundo ele o dígito 1 aparece 30,1% das vezes, enquanto o dígito 9 aparece apenas 4,6% das vezes (Corrar Eyal, 2007).

Carslaw (1988) foi o pioneiro no uso da Lei de Benford para análise de dados financeiros, utilizou-se dos testes estatísticos Z e Qui-Quadrado com foque maior para as ocorrências do segundo dígito, no qual detectou discrepâncias que o levaram a concluir ser devido a arredondamentos de valores.

Hill (1995) teve mais explicações a respeito da distribuição dos dígitos e mediante suas deduções, demonstrou que os segundos dígitos estavam distribuídos mais uniformemente que os primeiros.

Para Nigrini (2000), as desconformidades identificadas pela aplicação da Lei de Benford indicaram interferência humana ou manipulação de dados, podendo ser usado como uma forma de filtro para sinalizar eventuais fraudes financeiras.

Dutschi at al. (2004) sugerem que os auditores utilizem técnicas complementares em suas análises na detecção de fraudes, alertando para existências de diversos sinais de inconsistências tendentes a fraudes, mas que não são necessariamente fraudes.

De acordo com Mancuso (2021), existe um documentário denominado "A Era dos Dados", na NETFLIX, que dedica seu episódio "Dígitos" a uma explicação de forma didática sobre a Lei de Benford. Inclusive, Nigrini ao ser entrevistado, relata que atendendo ao uso da Lei de Benford, foi identificado manipulação de valores, nos relatórios financeiros de 2001 e 2002 da Enron levando, inclusive, a falência da empresa.

As aplicações da Lei de Benford, mais conhecidas, estão relacionadas à Auditoria (Nigrini 2012, Azevedo *et. al.* 2021), mas, ela pode também ser aplicada a Ciência da Terra (Nigrini, 2012), Meio ambiente (Brow, 2005), Eleições (Rabelo, 2016).

A seguir serão citados alguns trabalhos realizados em que foram aplicados a Lei de Benford relacionados à Auditoria.

2.2. Aplicações da Lei de Benford em trabalhos anteriores

De acordo com Costa, Santos e Travassos (2012) foram analisadas 134.281 notas de empenhos emitidas por 60 unidades gestoras, de dois estados do Nordeste brasileiro em 2010. Foram utilizados os testes Z e Qui-Quadrado do primeiro digito ao final e no decorrer do ano que resultaram em desvios relevantes como excessos de valores de notas de empenhos para os dígitos 7 e 8 e escassez nos dígitos 9 e 6, o que sugeri tentativa de driblar à licitação. Esses desvios relacionados aos dígitos 7 e 8 retratam a não conformidade com a Lei de Benford.

Cavalcanti (2015) analisou 163.928 registros de gastos, com cartões de pagamento do governo federal, iguais ou superiores a R\$10,00, em 2013. Foram realizados os testes estatísticos teste Z, Qui-Quadrado, K-S e Desvio absoluto médio para primeiro, segundo e os dois primeiros dígitos, que demonstraram a não conformidade com a Lei de Benford, com exceção dos dígitos 5 e 6 referentes ao primeiro dígito.

Nascimento, Filho e Buscacio (2014) utilizaram a Lei de Benford para avaliar dados educacionais e financeiros na detecção de fraudes em amostras de 30.000 registros referentes ao número total de alunos matriculados nas escolas da rede municipais e estaduais, das áreas urbanas e rurais, em cada município brasileiro, de 2012 e 200.545 registros dos valores das notas de empenhos pagas pela administração direta e indireta nos anos de 2008 a 2012. Utilizando testes estatísticos Teste Z e X² e o P-Valor na análise dos dados referentes aos números de alunos matriculados no ensino fundamental, categoria anos finais, apresentaram conformidade com a Lei de Benford. Em contrapartida, na análise dos valores das notas de empenho constatou-se que o valor crítico do teste x² foi violado nos anos 2008-2012 e do Teste Z foi ultrapassado diversas vezes para o primeiro e para o segundo dígito, apresentando não conformidade com a Lei de Benford. Dessa forma, os testes realizados ajudam na seleção de dados a serem auditados em virtude da conformidade ou não com a Lei de Benford.

Oliveira *et al.* (2015) aplicaram a Lei de Benford nas demonstrações financeiras da Petrobras em amostra de 5.544 saldos dos Balanços Patrimoniais, no período de 2008

a 2015, por meio dos testes estatísticos Teste Z e X², do primeiro ao quarto dígitos. Constatou-se resultados de conformidade com a Lei de Benford para o primeiro digito e diferenças relevantes para o segundo, terceiro e quarto dígitos, caracterizando a não conformidade com a Lei de Benford.

Ganassin, Costa e Wilbert (2016) analisaram 7.037 notas de empenhos emitidas entre 2008 e 2012, do Ministério Público do Distrito Federal e territórios e Ministério Público Militar, usando os testes estatísticos Qui-Quadrado e Teste Z, para o primeiro e o segundo dígito, a cada ano. Os resultados indicaram desvios em relação ao esperado pela Lei de Benford, principalmente nas dispensas de licitação, com maior frequência para as que ocorreram em 2010.

Oliveira e Filho (2016) aplicaram a Lei de Benford na análise das contas da União em amostra de 44.755.087 despesas dos gastos diretos pagos, no período de 2011 a agosto de 2015, através dos testes estatísticos Teste Z e X², do primeiro ao quarto dígitos. Para todos os dígitos, contatou-se a não conformidade com a Lei de Benford, pela existência de valores observados muito acima dos valores esperados. Além disso, recorrendo aos testes realizados para o quarto dígito, foi observado que o Ministério da Ciência, Tecnologia e Informação, seguido do Ministério da Educação, apresentaram significativas distorções em relação aos demais, merecendo exames mais detalhados.

Cella e Zanolla (2018) aplicaram a Lei de Benford em processo de execução de despesas municipais referentes a dois municípios, sendo um com maior transparência e o outro com menor. Foram analisados 3.068 empenhos para os dois municípios para o primeiro quadrimestre de 2016, aplicando os testes estatísticos Teste Z e Qui-Quadrado aos valores totais. Como resultado, o município A (maior transparência) obteve maior conformidade com a Lei de Benford, enquanto o município B (menor transparência) mostrou uma maior divergência entre as frequências observadas e esperadas, ou seja, uma menor conformidade com a Lei de Benford. Por essa razão, o município B tem mais probabilidade de identificar irregularidades na execução das despesas quando comparado com o município A.

Leoni *et al.* (2020) utilizou-se a Lei de Benford no auxílio à detecção de fraudes. Analisou 589 valores de notas de empenho da Academia Militar das Agulhas Negras, para o período de 01/01/2017 a 30/06/2017. Depois de realizados os testes estatísticos teste – Z e X², obteve-se como resultados a conformidade para a Lei de Benford em relação aos primeiros dígitos das notas de empenho, com exceção do dígito 8 para o teste Z. Apesar

da conformidade com a Lei de Benford, não se pode afirmar a existência de fraudes, mas é possível selecionar as notas de empenho que devem ter uma maior atenção.

Sampaio, Figueiredo e Loiola (2021) buscaram verificar indícios de fraudes em compras públicas, por meio da Lei de Benford, em amostra de 37.184 pregões para o período de 2014 a 2018. Utilizando o teste estatístico X² e o P-Valor na análise do primeiro digito dos valores licitados, nos pregões eletrônicos, chegaram ao resultado de não conformidade com a Lei de Benford, principalmente para os pregões com primeiros dígitos 4, 8 e 9, já que foram os que apresentaram maior diferença entre o valor observado e o esperado. Sendo assim, esses pregões poderiam ter uma atenção especial quanto a verificação de indícios de fraude.

Filho, Nunes e Santana (2021) buscaram na Lei de Benford a ferramenta para verificar existência de fraudes em amostra de 56.377 documentos fiscais apresentados nas prestações de contas por Senadores da República. Foram analisados gastos de 81 Senadores da República e seus suplentes, durante o período de 2015 a 2018. Com o auxílio dos testes estatísticos Teste Z, Qui-Quadrado e Desvio Absoluto Médio para primeiro dígito, segundo dígito e dois primeiros dígitos, constatou-se a não conformidade para a Lei de Benford, em atenção especial para os documentos fiscais com dois primeiros dígitos 10, 15, 20, 30, 40, 50, 60,70 e 80 em que se observa elevada divergência entre as frequências observadas e esperadas.

De forma a deixar mais fácil o entendimento, as aplicações serão dispostas de forma resumida a seguir.

Quadro 1 - Resumo das aplicações de Lei de Benford

Autor(es)/AnoAmostraResultadoCosta, Santos e Travassos (2012)Notas de empenhos de dois estados do Nordeste brasileiro, em 2010.Teste Z e X² - Não conformidade para os primeiros dígitos 7 e 8.Cavalcanti (2015)Registros de gastos com cartões de pagamento do governo federalTestes Z, X², K-S e DMA - Não conformidade para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6.Nascimento, Filho e Buscacio (2014)Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².Oliveira et al.Saldos dos BalançosTeste Z e X² - Conformidade para o primeiro
Travassos (2012) brasileiro, em 2010. Cavalcanti (2015) Registros de gastos com cartões de pagamento do governo federal Nascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 Primeiros dígitos 7 e 8. Testes Z, X², K-S e DMA - Não conformidade para primeiro, segundo e dois primeiros dígitos 7 e 8. Testes Z, X², K-S e DMA - Não conformidade para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6. Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
(2012) brasileiro, em 2010. Cavalcanti (2015) Registros de gastos com cartões de pagamento do governo federal Nascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 Drasileiro, em 2010. Testes Z, X², K-S e DMA - Não conformidade para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6. Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
Cavalcanti (2015) Registros de gastos com cartões de pagamento do governo federal Nascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 Testes Z, X², K-S e DMA - Não conformidade para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6. Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
(2015) cartões de pagamento do governo federal para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6. Nascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 para primeiro, segundo e dois primeiros dígitos com exceção dos dígitos 5 e 6. Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
Mascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 dígitos com exceção dos dígitos 5 e 6. Teste Z, X² e P-Valor - Registros de alunos matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
Nascimento, Filho e Buscacio (2014) Registros referentes ao número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 Registros referentes ao número total de alunos e registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
Filho e Buscacio (2014) número total de alunos e registro de notas de empenhos pagas pela administração em 2008 a 2012 matriculados - conformidade com a Lei de Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
(2014) registro de notas de empenhos pagas pela administração em 2008 a 2012 Benford. Já para os registros de notas de empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
empenhos pagas pela empenhos - não conformidade para Lei de Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
administração em 2008 a Benford quanto ao primeiro e segundo dígitos pelos testes Z e X².
2012 dígitos pelos testes Z e X².
O I
Oliveira et al. Saldos dos Balancos Teste Z e X ² - Conformidade para o primeiro
(2015) Patrimoniais da Petrobras dígito e não conformidade para o segundo,
em 2008 - 2015 terceiro e quarto dígitos. Não conformidade
para os primeiros dígitos 7 e 8.
Ganassin, Notas de empenho do MP e Teste Z e X² - Desvios significantes com
Costa e Wilbert territórios, MPM em 2008 - mais frequência no Processo de Dispensa
(2016) 2012. de Licitação em 2010.
Oliveira e Filho Despesas de gastos diretos Teste Z e X² - Não conformidade para todos
(2016) pagos da União em 2011 a os dígitos do primeiro ao terceiro dígitos.
agosto de 2015
Cella e Zanolla Execução de despesas Teste Z e X² - Maior divergência entre as
(2018) municipais de 2 municípios, frequências observadas e esperadas para o
para o 1 ⁰ quadrimestre de município de menor transparência.
2016
Leoni <i>et al.</i> Notas de empenho da Teste Z e X² - Conformidade aos primeiros
(2020) Academia Militar das dígitos das notas de empenho, com exceção
Agulhas Negras no período do dígito 8 para o Teste Z.
de janeiro a junho de 2017
Sampaio, Fraudes em compras Teste X² e P-Valor - Não conformidade com
Figueiredo e públicas, em pregões no a Lei de Benford principalmente para os
Loiola (2021) período de 2014 a 2018. pregões com primeiros dígitos 4, 8 e 9
Filho, Nunes e Fraudes em documentos Teste Z, X² e DMA - não conformidade para
Santana (2021) fiscais das prestações de a Lei de Benford, em especial para os
contas dos Senadores da documentos fiscais, com dois primeiros
República, no período de dígitos 10, 15, 20, 30, 40, 50, 60, 70 e 80 em
2015 a 2018. que se observa elevada divergência entre as
frequências observadas e esperadas.

Fonte: autoria própria

3. METODOLOGIA DE PESQUISA

Neste trabalho a Lei de Benford será aplicada como técnica ou ferramenta para verificar se os valores do conjunto de dados formado a partir dos registros das prestações de contas de deputados federais seguem relação esperada para primeiro e segundo dígitos calculados, conforme a Lei em questão.

Como referido anteriormente, o estudo recai sobre o conjunto de dados formado a partir dos registros individuais, totalizando 102.893 (cento e dois mil, oitocentos e noventa e três) documentos fiscais, provenientes por 58 (cinquenta e oito) deputados federais eleitos por Minas Gerais, no período entre fevereiro de 2019 e janeiro de 2023, que comprovaram o emprego dos recursos disponíveis e concedido pela Cota para o Exercício de Atividade Parlamentar (CEAP), apresentado à Câmara dos Deputados (Brasil, 2023c).

Após a apuração da base de dados foram excluídos os valores inseridos nos comprovantes de gastos que eram inferiores a R\$10,00, ou seja, com menos de dois dígitos à esquerda da parte decimal, restando assim 92.702 (noventa e dois mil, setecentos e dois) registros a serem utilizados como base de dados.

Os testes estatísticos X², DAM e Valor de P, buscam comparar o ajuste das proporções observadas com o das proporções esperadas para o primeiro e segundo dígitos, no caso em questão, servem para verificar a conformidade com a Lei de Benford, podendo conter todos os dígitos ou dígito a dígito (Nigrini, 2012).

A ferramenta utilizada para avaliar as frequências de cada dígito e para realização dos testes X², DAM e Valor de P, para primeiro e segundo dígitos, foi o Software STATA-64 (2023²).

Em seguida faz-se uma pequena explanação sobre cada um dos testes estatísticos que serão utilizados nas análises.

O Teste X² busca avaliar se a totalidade de dados analisada está em conformidade com a Lei de Benford.

Nigrini (2012) reforça que os testes X² são influenciados pelo tamanho da amostra, ou seja, à medida que tamanho da amostra aumenta os desvios são cada vez menos permitidos, por menores que eles sejam.

A estatística DAM é calculada por meio dos Desvios Absolutos Médios (DAM) entre as proporções observadas e esperadas. Não possui limites ou intervalos como na estatística X², para afirmar se o desvio é ou não significativo. Para auxiliar, Nigrini (2012)

propôs um critério de conformidade para DAM considerando os intervalos 0,000 até acima de 0,015 para o 1° dígito e 0,000 até acima de 0,012 para 2° dígito.

Assim, o valor obtido para DAM deve ser comparado com os valores críticos e com os critérios de conformidade, ambos propostos por Nigrini (2012). Ainda este autor propõe que a grande vantagem do cálculo da DAM em relação a X² é não considerar o tamanho da amostra.

O valor de P é calculado para testar se a hipótese nula (H0) está correta, ou seja, que os dados seguem a distribuição de Benford. Como toda probabilidade, o valor de P varia entre 0 e 1.

Um valor crítico de P < 0,05 significa que assumimos como margem de segurança 5% de chances de erro. Deve-se ter cuidado ao interpretar um valor de P por ser um valor influenciado pelo tamanho da amostra. Pode acontecer resultado para valor de P > 0,05, que indica não haver uma diferença significativa (Brasília, 2023).

Os testes estatísticos X², DAM e Valor de P, buscam comparar o ajuste das proporções observadas com o das proporções esperadas para o primeiro e segundo dígitos, no caso em questão, servem para verificar a conformidade com a Lei de Benford, podendo conter todos os dígitos ou dígito a dígito (Nigrini, 2012).

A seguir, relacionaremos as etapas das análises que foram realizadas:

- Na primeira etapa da análise, aplicaram-se os testes X², DAM e valor de P, para primeiro considerando todo o banco de dados, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas;
- Na segunda etapa da análise, aplicaram-se os testes X², DAM e valor de P, para segundo dígito considerando todo o banco de dados, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas;
- Na terceira etapa da análise, aplicaram-se os testes X², DAM e valor de P, para primeiro dígito, por partido político, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas;

² STATA 64 – Disponível https://www.stata.com Acesso em 04/012023

- Na quarta etapa da análise, realizaram-se os testes X², DAM e valor de P, para segundo dígito, por partido político, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas;
- Na quinta etapa da análise, realizaram-se os testes X², DAM e valor de P, para primeiro dígito, por tipo de gasto, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas, e
- Sexta e última etapa realizaram-se os testes X², DAM e valor de P, para segundo dígito, por tipo de gasto, com valores superiores a R\$10,00, buscando comparar o ajuste das proporções observadas com as esperadas.

4. RESULTADOS E ANÁLISES

Os resultados dos testes realizados para primeiro e segundo dígitos foram segmentados para todos os dados, por partido político e por tipo de gasto e demonstrados em tabelas. As proporções observadas e esperadas estão representadas por gráficos conforme modelo de Benford.

Sopesando o nível de significância de 5% podendo a hipótese nula ou ser rejeitada se os valores apurados para X², DAM e Valor de P forem diferentes de seus valores críticos especificados nas Tabelas 1 e 2, ou seja, se os desvios forem considerados significativos.

Tabela 1 - Valores críticos X² 1^o e 2^o dígitos

TESTES	1º DIGITO	2º DIGITO
X ²	15,507	16,919

Fonte: Adaptado de Nigrini (2012)

Tabela 2 - Critérios de conformidade DAM

DÍGITOS	INTERVALO	CONFORMIDADE				
	0,000 a 0,006	Alta conformidade				
1º DÍGITO	0,006 a 0,012	Conformidade aceitável				
1-DIGITO	0,012 a 0,015	Conformidade mínima				
	Acima de 0,015	Sem conformidade				
	0,000 a 0,008	Alta conformidade				
2º DÍGITO	0,008 a 0,010	Conformidade aceitável				
2- DIGITO	0,010 a 0,012	Conformidade mínima				
	Acima de 0,012	Sem conformidade				
Fanta: Adaptada da Nigriai (2012)						

Fonte: Adaptado de Nigrini (2012)

Neste trabalho usamos o valor crítico de P < 0,05, que significa de forma simples que rejeita H0 se o valor de P for menor que 0,05. Já P > 0,05 significa não haver diferença significativa.

Antes de iniciar as análises é preciso deixar claro que o percentual observado é aquele que representa a frequência de cada dígito no conjunto de dados e o percentual esperado é a frequência esperada segundo a Lei de Benford, conforme demonstrado na tabela 3.

Tabela 3 - Probabilidade esperada 1^{0} e 2^{0} dígitos - Lei de Benford

DÍGITO	0	1	2	3	4	5	6	7	8	9
1º DÍGITO		30,10%	17,61%	12,49%	9,69%	7,92%	6,69%	5,80%	5,12%	4,58%
2 <u>º</u> DÍGITO	11,97%	11,39%	10,88%	10,43%	10,03%	9,67%	9,34%	9,04%	8,76%	8,50%

Fonte: Adaptado de Carslaw (1988)

As análises dos resultados foram separadas, por primeiro dígito e segundo dígito.

4.1. Análises do primeiro dígito

4.1.1. Análise do primeiro dígito - todo banco de dados

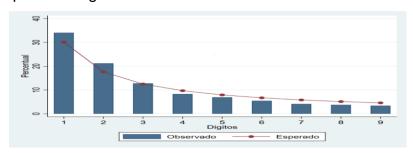


Gráfico 1 - Primeiro dígito com todos os dados

Tabela 4 - Resultado dos testes para 1º dígito - todos os dados

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	31562	34,047	30,103	3,944	3,944	0,0000
2	19646	21,193	17,609	3,584	3,584	0,0000
3	11862	12,796	12,494	0,302	0,302	0,0056
4	7690	8,295	9,691	-1,396	1,396	0,0000
5	6420	6,925	7,918	-0,993	0,993	0,0000
6	5057	5,455	6,695	-1,240	1,240	0,0000
7	3834	4,136	5,799	-1,663	1,663	0,0000
8	3482	3,756	5,115	-1,359	1,359	0,0000
9	3149	3,397	4,576	-1,179	1,179	0,0000
TOTAL	92702	100	100		15,66	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando todos os dados foi de 2734,791, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Utilizando-se da análise dos resultados dos testes de conformidade para o primeiro dígito, todos os dados, foi possível constatar, conforme demostrado no gráfico 1 e tabela 4, que a linha de valores esperados referentes aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que, há um excesso de observações em relação ao que seria esperado pela distribuição de Benford. Isso significa que os números que começam com os dígitos 1, 2 e 3 aparecem mais frequentemente do que o esperado pela distribuição de Benford. E para os demais dígitos 4, 5, 6, 7,8 e 9 a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Analisando o resultado do Teste Qui-Quadrado (X²), verifica-se que o valor calculado excedeu o valor crítico, rejeitando a hipótese nula.

Quanto à análise da DAM, seu resultado foi de 0,1566 superando o valor do limite de 0,015, rejeitando a hipótese nula.

O valor de P extremamente baixo (todos 0,0000; exceto do digito 3 = 0,0056) para todos os dígitos indica que essas diferenças são estatisticamente significativas, apresentando desvios significativos e confirmando que os valores calculados para teste X² para os dígitos 1,2 e 3 rejeitaram a hipótese nula.

Conclui-se, com base nas análises, que o conjunto de dados parece não seguir a Lei de Benford para os primeiros dígitos. Isso pode ser indicativo de que os números foram manipulados ou que há algum outro fator envolvido que faz com que este conjunto de dados se desvie da Lei de Benford. Se essa análise estivesse sendo usada em um contexto de auditoria ou detecção de fraudes, os resultados sugeririam uma investigação mais aprofundada. No entanto, também é importante lembrar que o contexto e o domínio do conjunto de dados são essenciais para interpretar esses resultados.

4.1.2. Análise do primeiro dígito por partido político

4.1.2.1. Partido político Avante

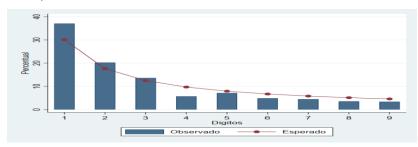


Gráfico 2 - Primeiro dígito - todos os dados

Tabela 5 - Resultado dos testes para 1º dígito - Avante

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2137	37,062	30,103	6,959	6,959	0,0000
2	1168	20,257	17,609	2,648	2,648	0,0000
3	785	13,614	12,494	1,120	1,120	0,0108
4	328	5,689	9,691	-4,002	4,002	0,0000
5	411	7,128	7,918	-0,790	0,790	0,0264
6	281	4,873	6,695	-1,821	1,821	0,0000
7	257	4,457	5,799	-1,342	1,342	0,0000
8	204	3,538	5,115	-1,577	1,577	0,0000
9	195	3,382	4,576	-1,194	1,194	0,0000
TOTAL	5766	100	100		21,453	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido Avante, foi de 313,8495, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito, todos os dados, foi possível constatar, conforme demostrado no Gráfico 2 e Tabela 5, que a linha de valores esperados referentes aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que, há um excesso de observações em relação ao que seria esperado pela distribuição de Benford. Isso significa que os números que começam com os dígitos 1, 2 e 3 aparecem mais frequentemente do que o esperado pela distribuição de Benford. Sendo confirmado pela análise da DAM.

Já para os demais dígitos, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado, pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas. Para o Teste Qui-Quadrado verifica-se que o valor calculado excedeu o valor crítico, rejeitando a hipótese nula. Quanto ao DAM, verifica-se o resultado de 0,21453, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido Avante, observa-se que os três testes se alinham, rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford.

4.1.2.2. Partido político Cidadania

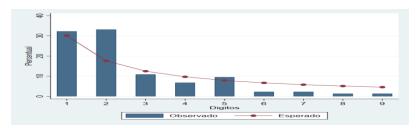


Gráfico 3 - Primeiro dígito Cidadania

Tabela 6 - Resultados testes para 1º dígito - Cidadania

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	71	32,273	30,103	2,170	2,170	0,5083
2	73	33,182	17,609	15,573	15,573	0,0000
3	24	10,909	12,494	-1,585	1,585	0,5410
4	15	6,818	9,691	-2,873	2,873	0,1710
5	21	9,545	7,918	1,627	1,627	0,3804
6	5	2,273	6,695	-4,422	4,422	0,0063
7	5	2,273	5,799	-3,526	3,526	0,0202
8	3	1,364	5,115	-3,752	3,752	0,0082
9	3	1,364	4,576	-3,212	3,212	0,0151
TOTAL	220	MDA			38,74	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, partido Cidadania, foi de 55,850099, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Com o suo da análise dos resultados dos testes de conformidade para o primeiro dígito, todos os dados, foi possível constatar, conforme demostrado no Gráfico 3 e Tabela 6, que a linha de valores esperados referentes aos dígitos 1, 2 e 5 estava abaixo da barra observada indicando que os números que começam com os dígitos 1, 2 e 5 aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os demais dígitos, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foram detectados valores de P referentes aos dígitos 1,3, 4 e 5 superiores a 0,05, que significa que para esses dígitos não há diferenças consideráveis.

O Teste Qui-Quadrado verifica-se que o valor calculado de 55,850099, excedeu o valor crítico de 15,507, rejeitando a hipótese nula.

Quanto ao DAM, verifica-se o resultado de 0,3874, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do partido Cidadania, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 2. Para os dígitos 1, 3, 4 e 5, por apresentarem valores de P maiores que 0,05, não há diferenças significativas. Já para os dígitos 6, 7, 8 e 9 devem ser melhor analisados, por apresentarem desvios importantes.

4.1.2.3. Partido político MDB

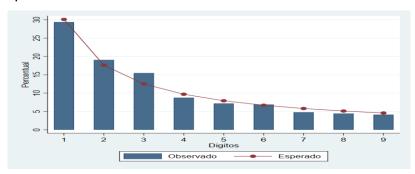


Gráfico 4 - Primeiro Dígito - MDB

Tabela 7 - Resultados dos testes para 1º dígito - MDB

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	934	29,362	30,103	-0,741	0,741	0,3740
2	606	19,051	17,609	1,441	1,441	0,0342
3	492	15,467	12,494	2,973	2,973	0,0000
4	278	8,739	9,691	-0,952	0,952	0,0721
5	228	7,168	7,918	-0,751	0,751	0,1227
6	219	6,885	6,695	0,190	0,190	0,6703
7	152	4,778	5,799	-1,021	1,021	0,0136
8	141	4,433	5,115	-0,683	0,683	0,0834
9	131	4,118	4,576	-0,458	0,458	0,2346
TOTAL	3181	MDA			9,21	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido MDB foi de 42,31405, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade, para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 4 e Tabela 7, que a linha de valores esperados, referentes aos dígitos 2, 3 e 6, estavam abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 5, 7, 8 e 9 a linha de valor esperado estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05). Porém, obtiveram-se para os dígitos 1, 4, 5, 6, 8 e 9, que seus valores de P são maiores que 0,05, significando que não há diferenças importantes para esses dígitos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula. Quanto ao DAM, verifica-se o resultado de 0,0921, estando no limite entre 0,008 e 0,010 possuindo uma conformidade aceitável com a Lei de Benford.

Então, sob a perspectiva do partido MDB, observa-se que os três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas, para Lei de Benford referentes aos dígitos 2 e 3. Para os dígitos 1, 4, 5, 6, 8 e 9, por apresentarem valores de P maiores que 0,05, não há diferenças significativas. Já, para o dígito 7, deve ser melhor analisado, por apresentar desvio expressivo.

4.1.2.4. Partido político Novo

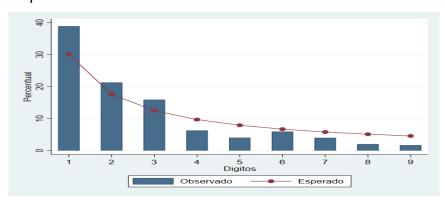


Gráfico 5 - Primeiro dígito - Novo

Tabela 8 - Resultados dos testes para 1º dígito - Novo

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	694	38,88	30,103	8,777	8,777	0,0000
2	380	21,589	17,609	3,679	3,679	0,0001
3	284	15,91	12,494	3,416	3,416	0,0000
4	112	6,275	9,691	-3,416	3,416	0,0000
5	72	4,034	7,918	-3,885	3,885	0,0000
6	106	5,938	6,695	-0,756	0,756	0,2180
7	71	3,978	5,799	-1,822	1,822	0,0007
8	36	2,017	5,115	-3,098	3,098	0,0000
9	30	1,681	4,576	-2,895	2,895	0,0000
TOTAL	1785	MDA			31,744	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido Novo, foi de 209,5261, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Pela análise dos resultados dos testes de conformidade, para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 5 e Tabela 8, que a linha de valores esperados referentes aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 5, 7, 8 e 9 a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), porém, obteve-se uma exceção para o dígito 6, que apesar de estar a linha de valores esperados, acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que em função do seu valor de P estar acima de 0,05, não há diferença significativa para ele.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando assim, em desconformidade com a Lei de Benford.

Então, sob a perspectiva do partido Novo, observa-se que os resultados dos três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1, 2 e 3. Para o dígito 6, por apresentar valor de P maior que 0,05, não há diferença significativa para ele. Já, para os dígitos 4, 5, 7, 8 e 9, devem ser melhores analisados, por apresentarem desvios expressivos.

4.1.2.5. Partido político Patriota

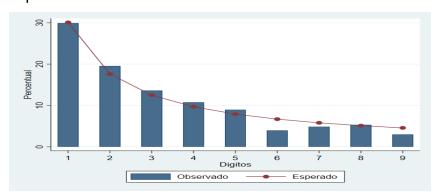


Gráfico 6 - Primeiro dígito - Patriota

Tabela 9 - Resultados dos testes para 1º dígito - Patriota

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1051	29,934	30,103	-0,169	0,169	0,8396
2	687	19,567	17,609	1,958	1,958	0,0026
3	478	13,614	12,494	1,120	1,120	0,0465
4	378	10,766	9,691	1,075	1,075	0,0324
5	315	8,972	7,918	1,054	1,054	0,0225
6	139	3,959	6,695	-2,736	2,736	0,0000
7	171	4,87	5,799	-0,929	0,929	0,0172
8	187	5,326	5,115	0,211	0,211	0,5655
9	105	2,991	4,576	-1,585	1,585	0,0000
TOTAL	3511	MDA			10,837	

Fonte: Dados da pesquisa

O resultado do teste X², para primeiro dígito, considerando partido Patriota foi de 84,37338, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Com a análise dos resultados dos testes de conformidade, para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 6 e Tabela 9, que a linha de valores esperados referente aos dígitos 2, 3, 4,5 e 8 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Sendo confirmado pela análise da DAM a não conformidade com a Lei de Benford.

Já para os dígitos 1, 6, 7 e 9, a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios relevantes. Para os dígitos 1 e 8, verificou-se que seus valores de P são maiores que 0,05, significando que não há diferenças apreciáveis para esses dígitos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford. Quanto ao DAM, verifica-se o resultado de 0,10837, sendo maior que 0,015, rejeitando a hipótese nula.

Então, sob a perspectiva do partido Patriota, observa-se que os resultados dos três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 2, 3, 4 e 5.

Para os dígitos 1 e 8 apresentaram valores de P maiores que 0,05, significando que não há diferenças consideráveis para esses dígitos. Já, para os dígitos 6, 7 e 9, devem ser melhores analisados, por apresentarem desvios importantes.

4.1.2.6. Partido político PDT

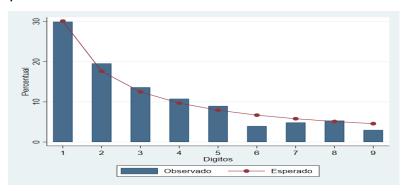


Gráfico 7 - Primeiro dígito - PDT

Tabela 10 - Resultados dos testes para 1º dígito - PDT

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	330	37,931	30,103	7,828	7,828	0,0000
2	154	17,701	17,609	0,092	0,092	0,9291
3	103	11,839	12,494	-0,655	0,655	0,6810
4	53	6,092	9,691	-3,599	3,599	0,0002
5	70	8,046	7,918	0,128	0,128	0,8507
6	29	3,333	6,695	-3,361	3,361	0,0000
7	50	5,747	5,799	-0,052	0,052	1,0000
8	35	4,023	5,115	-1,092	1,092	0,1652
9	46	5,287	4,576	0,712	0,712	0,3293
TOTAL	870	MDA			17,519	

Fonte: Dados da pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PDT, foi de 47,33814, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 7 e Tabela 10, que a linha de valor esperado referente aos dígitos 1, 2, 5 e 9 estava abaixo da barra observada indicando que os números, que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 4, 6, 7 e 8, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente relevantes apresentando desvios significativos. Obtiveram-se exceções para os dígitos 2, 3, 5, 7, 8 e 9 por seus valores de P serem maiores que 0,05, significando que não há diferenças importantes para esses dígitos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,17519, sendo maior que 0,015, rejeitando a hipótese nula.

Então, sob a perspectiva do partido PDT, observa-se que os três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1.

Para os dígitos 2, 3, 5, 7, 8 e 9, apresentaram valores de P maiores que 0,05, revelando que não há diferenças significativas para esses dígitos.

O alerta fica para os dígitos 4 e 6 que devem ser melhores analisados, por apresentarem desvios vultuosos.

4.1.2.7. Partido Político PL

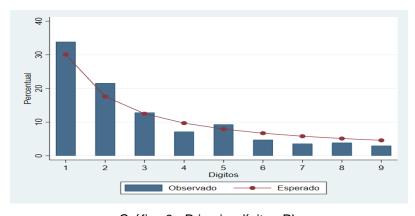


Gráfico 8 - Primeiro dígito - PL

Tabela 11 - Resultados dos testes para 1º dígito - PL

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	4087	33,883	30,103	3,780	3,78	0,0000
2	2607	21,613	17,609	4,004	4,004	0,0000
3	1549	12,842	12,494	0,348	0,348	0,2474
4	865	7,171	9,691	-2,52	2,52	0,0000
5	1121	9,294	7,918	1,376	1,376	0,0000
6	573	4,75	6,695	-1,944	1,944	0,0000
7	434	3,598	5,799	-2,201	2,201	0,0000
8	467	3,872	5,115	-1,244	1,244	0,0000
9	359	2,976	4,576	-1,599	1,599	0,0000
TOTAL	12062	MDA			19,016	

Fonte: Dados da pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PL, foi de 548,8871, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Mediante análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 8 e Tabela 11, que a linha de valor esperado, referente aos dígitos 1, 2, 3 e 5, estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios importantes. Obteve-se exceção para o dígito 3, apesar da linha de valores esperados estarem abaixo da barra observada, indicando excesso desse dígito em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, significando que não há diferenças que se destacam para este digito.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,19016, sendo maior que 0,015, rejeitando a hipótese nula.

Então, sob a perspectiva do partido PL, observa-se que os resultados dos três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1, 2 e 5. O dígito 3 apresentou valor de P maior que 0,05, significando que não há diferença expressiva para esse dígito. Já, para os dígitos 4, 6, 7, 8 e 9, devem ser melhores analisados por apresentarem desvios consideráveis.

4.1.2.8. Partido político PODE

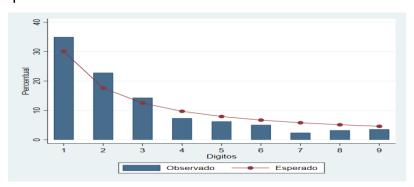


Gráfico 9 - Primeiro dígito - PODE

Tabela 12 - Resultados dos testes para 1º dígito - Pode

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	615	34,983	30,103	4,880	4,88	0,0000
2	401	22,81	17,609	5,201	5,201	0,0000
3	252	14,334	12,494	1,841	1,841	0,0210
4	129	7,338	9,691	-2,353	2,353	0,0006
5	110	6,257	7,918	-1,661	1,661	0,0091
6	89	5,063	6,695	-1,632	1,632	0,0056
7	42	2,389	5,799	-3,410	3,410	0,0000
8	57	3,242	5,115	-1,873	1,873	0,0002
9	63	3,584	4,576	-0,992	0,992	0,0457
TOTAL	1758	MDA			23,843	

Fonte: Dados da pesquisa

O resultado do teste X² para primeiro dígito, considerando partido Pode, foi de 119,9338, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 9 e Tabela 12, que a linha de valor esperado referente aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para o restante dos dígitos a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria almejado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios relevantes.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford, assim como o resultado de DAM foi 0,23843 sendo superior a 0,015, rejeitando a hipótese nula.

Então, sob a perspectiva do partido Pode, observa-se que os três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1, 2 e 3.

O dígito 3 apresentou valor de P maior que 0,05, significando que não há diferença que se destacam para esse dígito. Já, para os dígitos 4, 5, 6, 7, 8 e 9, devem ser melhores analisados por apresentarem desvios importantes.

4.1.2.9. Partido político PP

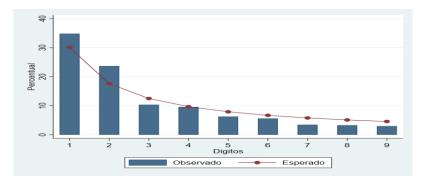


Gráfico 10 - Primeiro Dígito - PP

Tabela 13 - Resultados dos testes para 1º dígito - PP

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	4411	34,82	30,103	4,717	4,717	0,0000
2	3000	23,682	17,609	6,073	6,073	0,0000
3	1309	10,333	12,494	-2,161	2,161	0,0000
4	1215	9,591	9,691	-0,100	0,100	0,7185
5	794	6,268	7,918	-1,650	1,650	0,0000
6	709	5,597	6,695	-1,098	1,098	0,0000
7	440	3,473	5,799	-2,326	2,326	0,0000
8	414	3,268	5,115	-1,847	1,847	0,0000
9	376	2,968	4,576	-1,608	1,608	0,0000
TOTAL	12668	MDA			21,58	

Fonte: Dados da pesquisa

O resultado do teste X², para primeiro dígito, considerando partido PP foi de 747,0008, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 10 e Tabela 13, que a linha de valor esperado referente aos dígitos 1 e 2 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 4, 5, 6, 7, 8 e 9 a linha de valores esperado, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria aguardado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

Este partido obteve-se exceção para o dígito 4 que apesar da linha de valores estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior de 0,05. Em função disso não se pode conclui, que este dígito não siga a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu em muito o valor crítico, rejeitando a hipótese nula, estando em desconformidade com a Lei de Benford. Quanto ao DAM, verifica-se o resultado de 0,21580, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PP, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford.

4.1.2.10. Partido político PROS

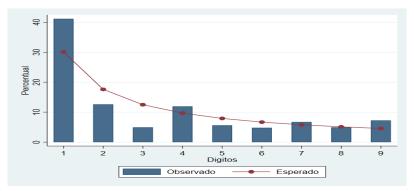


Gráfico 11 - Primeiro dígito - PROS

Tabela 14 - Resultados dos testes para 1º dígito - PROS

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	300	41,152	30,103	11,049	11,079	0,0000
2	92	12,62	17,609	-4,989	4,989	0,0003
3	36	4,938	12,494	-7,556	7,556	0,0000
4	87	11,934	9,691	2,243	2,243	0,0449
5	41	5,624	7,918	-2,294	2,294	0,0196
6	35	4,801	6,695	-1,894	1,894	0,0449
7	49	6,722	5,799	0,922	0,922	0,3021
8	36	4,938	5,115	-0,177	0,177	0,9329
9	53	7,27	4,576	2,694	2,694	0,0013
TOTAL	729	MDA			33,848	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PROS, foi de 98,39509, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 11 e Tabela 14, que a linha de valor esperado referente aos dígitos 1, 4, 7 e 9 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 2, 3, 5, 6 e 8 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios relevantes.

Obteve-se exceção para o dígito 7 que apesar da linha de valores esperados estarem abaixo da barra observada, indicando excesso desse dígito em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, sendo por isso contrário ao resultado de X² que rejeita a hipótese nula. E para o dígito 8, que apesar da linha de valores esperados estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seu valor de P é maior de 0,05. Em função disso, não se pode concluir, que este dígito, não siga a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,33848, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PROS, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para o dígito 7 que teve seu valor de P > 0,05.

4.1.2.11. Partido político PSB

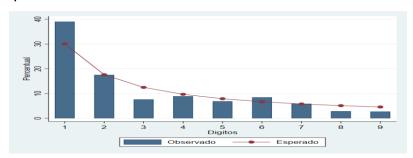


Gráfico 12 - Primeiro dígito - PSB

Tabela 15 - Resultados dos testes para 1º dígito - PSB

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO	VALOR P
2.0	0.0				MÉDIO	•
1	516	36,032	30,103	8,929	8,929	0,0000
2	232	17,549	17,609	-0,060	0,06	1,0000
3	101	7,64	12,494	-4,854	4,854	0,0000
4	118	8,926	9,691	-0,765	0,756	0,3770
5	91	6,884	7,918	-1,035	1,035	0,1693
6	112	8,472	6,695	1,777	1,777	0,0113
7	78	5,9	5,799	0,101	0,101	0,8598
8	38	2,874	5,115	-2,241	2,241	0,0001
9	36	2,723	4,576	-1,853	1,853	0,0008
TOTAL	1322	MDA			21,606	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PSB, foi de 91,68371, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Em análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 12 e Tabela 15, que a linha de valor esperado referente aos dígitos 1 e 6 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 8 e 9, a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios importantes. Obteve-se exceção para o dígito 7 que, apesar da linha de valores esperados estarem abaixo da barra observada indicando excesso desse dígito em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, contrariando que o valor de X² rejeita hipótese nula.

Para os dígitos 2, 4 e 5 que apesar da linha de valor esperado estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seus valores de P são maiores de 0,05, que em função disso não se pode concluir que estes dígitos não sigam a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford. Quanto ao DAM, verifica-se o resultado de 0,21606, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PSB, observa-se que o resultado dos três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para o dígito 7, que possui o valor de P > 0,05, contrariando que o valor de X² rejeita hipótese nula. E para os dígitos 2, 4 e 5 que por terem o valor de P > 0,05, apesar da escassez desses dígitos nas observações não existindo diferenças significativas.

4.1.2.12. Partido político PSC

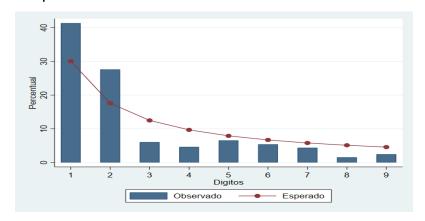


Gráfico 13 - Primeiro dígito - PSC

Tabela 16 - Resultados dos testes para 1º dígito - PSC

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	322	41,388	30,103	11,285	11,285	0,0000
2	215	27,635	17,609	10,026	10,026	0,0000
		·	·	,	,	,
3	47	6,041	12,494	-6,453	6,453	0,0000
4	36	4,627	9,691	-5,064	5,064	0,0000
5	51	6,555	7,918	-1,363	1,363	0,1837
6	42	5,398	6,695	-1,296	1,296	0,1722
7	34	4,37	5,799	-1,429	1,429	0,0914
8	12	1,542	5,115	-3,573	3,573	0,0000
9	19	2,442	4,576	-2,134	2,134	0,0026
TOTAL	778	MDA			42,623	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PSC, foi de 157,5102, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 13 e Tabela 16, que a linha de valor esperado referente aos dígitos 1 e 2 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 4, 5, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando expressivos desvios. Obteve-se exceção para os dígitos 5, 6 e 7 que apesar da linha de valores esperados, estar acima da barra observada, indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores de 0,05. Em função disso, não se pode concluir que estes dígitos não sigam a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford. Já quanto ao DAM verifica-se o resultado de 0,42623, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PSC, observa-se que os três testes se alinham, rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para os dígitos 5, 6 e 7 que por terem o valor de P > 0,05, apesar da escassez desses dígitos nas observações, não se pode concluir que estes dígitos não sigam a distribuição de Benford.

4.1.2.13. Partido político PSD

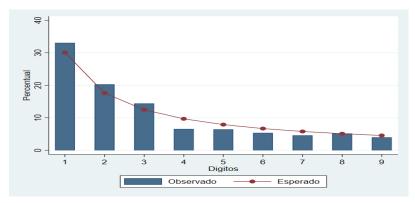


Gráfico 14 - Primeiro dígito - PSD

Tabela 17 - Resultados dos testes para 1º dígito - PSD

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2603	33,075	30,103	2,972	2,972	0,0000
2	1598	20,305	17,609	2,696	2,696	0,0000
3	1135	14,422	12,494	1,928	1,928	0,0000
4	519	6,595	9,691	-3,096	3,096	0,0000
5	509	6,468	7,918	-1,451	1,451	0,0000
6	422	5,362	6,695	-1,333	1,333	0,0000
7	363	4,612	5,799	-1,187	1,187	0,0000
8	407	5,172	5,115	0,056	0,056	0,8179
9	314	3,990	4,576	-0,586	0,586	0,0121
TOTAL	7870	MDA			15,305	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PSD, foi de 223,6967, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 14 e Tabela 17, que a linha de valor esperado referente aos dígitos 1, 2, 3 e 8 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 5, 6, 7 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios também significativos. Obteve-se exceção para o dígito 8 que, apesar da linha de valores esperados estarem abaixo da barra observada indicando excesso desse dígito em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, contrariando que o valor de X² rejeita a hipótese nula.

O resultado do Teste Qui-Quadrado calculado excedeu em muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford. Quanto ao DAM, verifica-se o resultado de 0,15305 sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PSD, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para o dígito 8 que possui o valor de P > 0,05, contrariando que o valor de X² rejeita hipótese nula.

4.1.2.14. Partido político PSDB

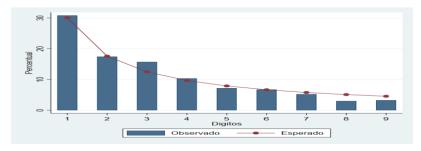


Gráfico 15 - Primeiro dígito - PSDB

Tabela 18 - Resultados dos testes para 1º dígito - PSDB

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1606	30,861	30,103	0,758	0,758	0,2326
2	909	17,467	17,609	-0,142	0,142	0,7989
3	819	15,738	12,494	3,244	3,244	0,0000
4	540	10,377	9,691	0,686	0,686	0,0962
5	376	7,225	7,918	-0,693	0,693	0,0646
6	351	6,745	6,695	0,050	0,050	0,8679
7	274	5,265	5,799	-0,534	0,534	0,1028
8	158	3,036	5,115	-2,079	2,079	0,0000
9	171	3,286	4,576	-1,290	1,290	0,0000
TOTAL	5204	MDA			9,476	

Fonte: Dados da pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PSDB, foi de 116,0425, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 15 e Tabela 18, que a linha de valor esperado referente aos dígitos 1, 3, 4 e 6 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 2, 5, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios consideráveis. Obteve exceções para os dígitos 1, 4, e 6, que apesar da linha de valores esperados estarem abaixo da barra observada, indicando excesso desses dígitos em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, contrariando que o X² rejeita a hipótese nula.

Para os dígitos 2, 5 e 7 que, apesar da linha de valores esperados, estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seus valores de P são maiores de 0,05. Em função disso, não se pode conclui, que estes dígitos não sigam a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,09476 estando no intervalo de 0,006 a 0,012, tendo conformidade aceitável.

Sob a perspectiva do partido PSDB, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para os dígitos 1,4 e 6, que possuem os valores de P > 0,05, contrariando que o valor de X² rejeita hipótese nula, estando conforme a distribuição de Benford. E para os dígitos 2, 4 e 5 que por terem o valor de P > 0,05, apesar da escassez desses dígitos nas observações, não se pode concluir que estes dígitos não sigam a distribuição de Benford.

4.1.2.15. Partido político PSOL

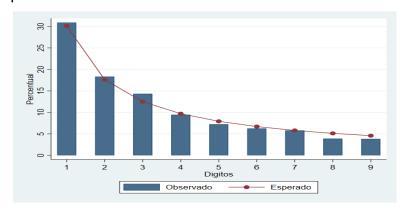


Gráfico 16 - Primeiro dígito - PSOL

Tabela 19 - Resultados dos testes para 1º dígito - PSOL

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	533	30,899	30,103	0,796	0,796	0,4786
2	316	18,319	17,609	0,710	0,71	0,4481
3	247	14,319	12,494	1,825	1,825	0,0239
4	163	9,449	9,691	-0,242	0,242	0,7757
5	125	7,246	7,918	-0,672	0,672	0,3265
6	108	6,261	6,695	-0,434	0,434	0,5001
7	100	5,797	5,799	-0,002	0,002	1,0000
8	67	3,884	5,115	-1,231	1,231	0,0187
9	66	3,826	4,576	-0,750	0,750	0,1494
TOTAL	1725	MDA			6,662	

Fonte: Dados da pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PSOL, foi de 14,25689, sendo seu valor de P 0,0753 e o valor crítico usado de 15,507.

Pela análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 16 e Tabela 19, que a linha de valor esperado referente aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que os números que começam com esse dígito aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 5, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando relevantes desvios. Obteve exceções para os dígitos 1 e 2, que apesar da linha de valores esperados estarem abaixo da barra observada, indicando excesso desses dígitos em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

E para os dígitos 4, 5, 6, 7 e 9 que, apesar da linha de valores esperados estar acima da barra observada indicando uma escassez de observações em relação ao que

seria esperado pela distribuição de Benford, verificou-se também que seus valores de P são maiores de 0,05. Em função disso, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado está abaixo do valor crítico de 15,507, confirmando a hipótese nula, porém seu valor de P está acima de 0,05, o caracteriza que não há diferenças importantes. Quanto ao DAM, verifica-se o resultado de 0,06662, sendo inferior ao limite de 0,015, se aceita a hipótese nula.

Sob a perspectiva do partido PSOL, observa-se com exceção para o dígito 1 e 2, que possui o valor de P > 0,05, contrariando que o valor de X² resulta. E para os dígitos 4, 5, 6, 7 e 9 que por terem o valor de P > 0,05, apesar da escassez desses dígitos nas observações, não havendo diferenças consideráveis.

4.1.2.16. Partido político PT

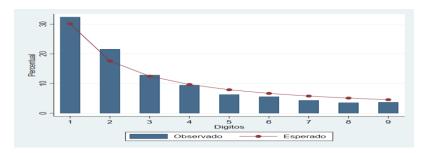


Gráfico 17 - Primeiro dígito - PT

Tabela 20 - Resultados dos testes para 1º dígito - PT

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	5089	32,389	30,103	2,286	2,286	0,0000
2	3396	21,614	17,609	4,005	4,005	0,0000
3	2024	12,882	12,494	0,388	0,388	0,1411
4	1490	9,483	9,691	-0,208	0,208	0,3881
5	993	6,32	7,918	-1,598	1,598	0,0000
6	881	5,607	6,695	-1,087	1,087	0,0000
7	687	4,372	5,799	-1,427	1,427	0,0000
8	563	3,583	5,115	-1,532	1,532	0,0000
9	589	3,749	4,576	-0,827	0,827	0,0000
TOTAL	15712	MDA			13,358	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PT, foi de 402,1524, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 17 e Tabela 20, que a linha de valores esperados referente aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 4, 5, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

Esse partido obteve exceção para o dígito 3 que, apesar da linha de valores esperados estarem abaixo da barra observada indicando excesso desse dígito em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças marcantes. E para o dígito 4 que apesar da linha de valores esperados estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seu valor de P é maior de 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM verifica-se o resultado de 0,13358, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PT, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para o dígito 3 que possui o valor de P > 0,05, contrariando que o valor de X² rejeita hipótese nula. E para o dígito 4 que por ter o valor de P > 0,05, apesar da escassez desses dígitos nas observações, não havendo diferenças ponderosas.

4.1.2.17. Partido político PV

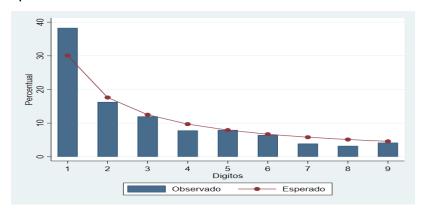


Gráfico 18 - Primeiro dígito - PV

Tabela 21 - Resultados dos testes para 1º dígito - PV

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	816	38,292	30,103	8,189	8,189	0,0000
2	347	16,283	17,609	-1,326	1,326	0,1113
3	255	11,966	12,494	-0,528	0,528	0,4914
4	166	7,79	9,691	-1,901	1,901	0,0027
5	169	7,931	7,918	0,012	0,012	0,9680
6	137	6,429	6,695	-0,266	0,266	0,6647
7	83	3,895	5,799	-1,904	1,904	0,0001
8	69	3,238	5,115	-1,877	1,877	0,0000
9	89	4,176	4,576	-0,399	0,399	0,4068
TOTAL	2131	MDA			16,402	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido PV, foi de 86,9666, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 18 e Tabela 21, que a linha de valores esperados referente ao dígito 1 e 5 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Destaca-se a quantidade elevada do dígito 1 em relação ao dígito 5.

Já para os dígitos 2, 3, 4, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando importantes desvios. Obteve exceção para os dígitos 2, 3, 5, 6 e 9 em que se verificou que seus valores de P são maiores que 0,05, não havendo diferença significativa.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford. Quanto ao DAM verifica-se o resultado de 0,16402, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido PV, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para os dígitos 2, 3, 5, 6 e 9 em que se verificou que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

4.1.2.18. Partido político Republicano

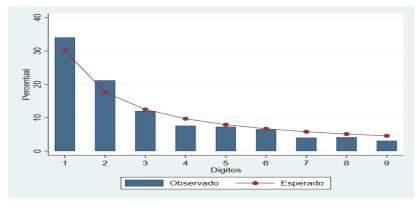


Gráfico 19 - Primeiro dígito - Republicano

Tabela 22 - Resultados dos testes para $1^{\underline{0}}$ dígito - Republicano

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2415	34,048	30,103	3,945	3,945	0,0000
2	1503	21,19	17,609	3,581	3,581	0,0000
3	853	12,026	12,494	-0,468	0,468	0,2431
4	539	7,599	9,691	-2,092	2,092	0,0000
5	518	7,303	7,918	-0,615	0,615	0,0557
6	464	6,542	6,695	-0,153	0,153	0,6347
7	286	4,032	5,799	-1,767	1,767	0,0000
8	295	4,159	5,115	-0,956	0,956	0,0002
9	220	3,102	4,576	-1,474	1,474	0,0000
TOTAL	7093	MDA			15,051	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido Republicano, foi de 209,7765, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 19 e Tabela 22, que a linha de valores esperados referente aos dígitos 1, 2 e 7 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 4, 5, 6, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Obteve exceção para os dígitos 3, 5 e 6, pois seus valores de P são maiores de 0,05, demonstrando que não há diferenças relevantes.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM verifica-se o resultado de 0,15051, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido Republicano, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para os dígitos 3, 5 e 6 que por terem o valor de P > 0,05, apesar da escassez desses dígitos nas observações, não se pode concluir, que estes dígitos, não sigam a distribuição de Benford.

4.1.2.19. Partido político Solidariedade

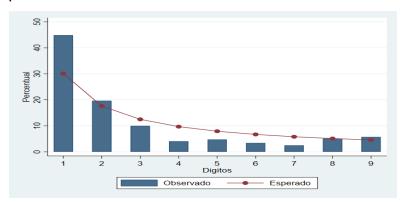


Gráfico 20 - Primeiro dígito - Solidariedade

Tabela 23 - Resultados dos testes para $1^{\underline{0}}$ dígito - Solidariedade

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	794	44,859	30,103	14,756	14,756	0,0000
2	348	19,661	17,609	2,052	2,052	0,0247
3	177	10,000	12,494	-2,494	2,494	0,0012
4	72	4,068	9,691	-5,623	5,623	0,0000
5	84	4,746	7,918	-3,172	3,172	0,0000
6	60	3,390	6,695	-3,305	3,305	0,0000
7	44	2,486	5,799	-3,313	3,313	0,0000
8	90	5,085	5,115	-0,030	0,030	1,0000
9	101	5,706	4,576	1,130	1,130	0,0264
TOTAL	1770	MDA			35,875	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido Solidariedade, foi de 288,6448, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Em análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 20 e Tabela 23, que a linha de valores esperados referente ao dígito 1, 2 e 9 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 3, 4, 5, 6, 7 e 8 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Obteve exceção para o dígito 8 que, apesar da linha de valores esperados estar acima da barra observada indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seu valor de P é maior de 0,05, indicando que não há diferenças significativas para esse digito.

O resultado do Teste Qui-Quadrado foi 288,6448, apresentando o valor de P 0,0000. Verifica-se então que o valor calculado excedeu e muito o valor crítico de 15,507, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,35875, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido Solidariedade, observa-se que os três testes se alinham rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford, com exceção para o dígito 8 que possui o valor de P > 0,05, apesar da escassez desses dígitos nas observações indicando que não há diferenças significativas para esse digito.

4.1.2.20. Partido político União

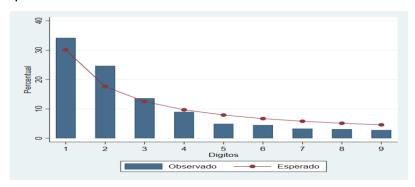


Gráfico 21 - Primeiro dígito - União

Tabela 24 - Resultados dos testes para 1º dígito - União

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2238	34,184	30,103	4,081	4,081	0,0000
2	1614	24,653	17,609	7,044	7,044	0,0000
3	892	13,625	12,494	1,131	1,131	0,0063
4	587	8,966	9,691	-0,725	0,725	0,0472
5	321	4,903	7,918	-3,015	3,015	0,0000
6	295	4,506	6,695	-2,189	2,189	0,0000
7	214	3,269	5,799	-2,530	2,53	0,0000
8	203	3,101	5,115	-2,014	2,014	0,0000
9	183	2,795	4,576	-1,781	1,781	0,0000
TOTAL	6547	MDA			24,510	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando partido União, foi de 522,5308, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 21 e Tabela 24, que a linha de valores esperados referente ao dígito 1, 2 e 3 estava abaixo da barra observada indicando que os números que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os restantes dos dígitos a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente importantes, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM verifica-se o resultado de 0,24510, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Sob a perspectiva do partido União, observa-se que os três testes se alinham, rejeitando a hipótese nula, tendo-se a ausência de conformidade com as frequências esperadas para Lei de Benford.

Após as análises gráficas e análises dos testes Qui-Quadrado, DAM e Valor de P para cada partido político, conclui-se que:

- PSOL obteve excesso do dígito 3 e escassez do digito 8; para dígitos 1,2,4,5,6,7 e 9 apresentaram os valores de P maiores que 0,05, resultando na inexistência de diferenças significativas. Analisando resultado do teste X², sendo o valor de 14,25689, abaixo de 15,507 e seu valor de P 0,0753, maior que 0,05, a princípio o resultado propõe a conformidade com a Lei de Benford e em função do seu valor de P ser maior que 0,05 significando que não há diferenças significativas, não se pode concluir que esses dados não estão em conformidade com a distribuição de Benford. Sendo assim, este partido apresentou não conformidade referente ao dígito 3 e sem diferenças significativas para os dígitos 1, 2, 4, 5, 6, 7 e 9.
- Os dados dos demais partidos políticos, com exceção dos partidos Pode e União, não seguem a distribuição de Benford, porém apresentam a particularidade de conter dígitos em que seus valores de P foram maiores que 0,05. Sendo os dígitos que aparecem com excesso esse valor de P >0,05 identificando inexistência de diferenças significativas.
- Partidos políticos como Avante, Novo, PL, PP, PSD, PT, Republicano, Solidariedade e União chamaram atenção pelos seus valores de X² elevadíssimos, sendo os valores de P 0,0000, o que caracteriza a existência de diferenças significativas entre a distribuição observada e a distribuição de Benford, para o primeiro dígito. Conforme ilustrado a seguir.

Tabela 25 - Valores expressivos de X² por partido

Partido	Valor X ²	Valor de P
NOVO	209,5261	0,0000
REPUBLICANO	209,7765	0,0000
PSD	223,6967	0,0000
SOLIDARIEDADE	288,6448	0,0000
AVANTE	313,8495	0,0000
PT	402,1524	0,0000
UNIÃO	522,5308	0,0000
PL	548,8871	0,0000
PP	747,0008	0,0000

Fonte: autoria própria

• Essas informações, baseadas nos dados por partidos políticos para o primeiro dígito demonstram a não conformidade com a Lei de Benford, demonstram como indicativo que os números podem ter sido manipulados ou que há algum outro fator envolvido, cabendo analise por técnicas complementares e possível investigação de forma mais detalhada.

4.1.3. Análise do primeiro dígito por tipo de gasto

Seguem-se análises para o primeiro dígito, sendo os dados filtrados por tipo de gasto.

4.1.3.1. Análise do primeiro dígito - Gasto 1 - manutenção de escritório de apoio a atividade parlamentar.

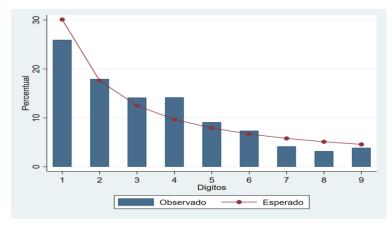


Gráfico 22 - Primeiro dígito - Gasto 1

Tabela 26 - Resultados dos testes para 1º dígito - Gasto 1

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2972	25,95	30,103	-4,153	4,153	0,0000
2	2055	17,943	17,609	0,334	0,334	0,3512
3	1621	14,153	12,494	1,659	1,659	0,0000
4	1626	14,197	9,691	4,506	4,506	0,0000
5	1044	9,116	7,918	1,198	1,198	0,0000
6	846	7,387	6,695	0,692	0,692	0,0035
7	478	4,174	5,799	-1,625	1,625	0,0000
8	367	3,204	5,115	-1,911	1,911	0,0000
9	444	3,877	4,576	-0,699	0,699	0,0003
TOTAL	11453	MDA			16,777	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 1 foi de 506,686, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 22 e Tabela 26, que a linha de valores esperados referente aos dígitos 2, 3, 4, 5 e 6 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os restantes dos dígitos a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios que se destacam. Porém, foi detectado valor de P referente ao dígito 2, superior a 0,05, no qual não há uma diferença significativa entre a proporção observada e estimada.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,1677, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do gasto 1, observa-se que os três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 3, 4, 5 e 6. Para o dígito 2, por apresentar valor de P maior que 0,05, não havendo diferenças significativas. Já para os dígitos 1, 7, 8 e 9 sugere-se que sejam melhor analisados, por apresentarem desvios significantes.

4.1.3.2. Análise do primeiro dígito - Gasto 3 - combustíveis e lubrificantes.

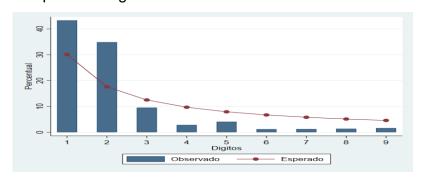


Gráfico 23 - Primeiro Dígito - Gasto 3

Tabela 27 - Resultados testes para 1º dígito - Gasto 3

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	11000	43,299	30,103	13,196	13,196	0,0000
2	8851	34,84	17,609	17,231	17,231	0,0000
3	2422	9,534	12,494	-2,960	2,960	0,0000
4	717	2,822	9,691	-6,869	6,869	0,0000
5	1033	4,066	7,918	-3,852	3,852	0,0000
6	300	1,181	6,695	-5,514	5,514	0,0000
7	318	1,252	5,799	-4,547	4,547	0,0000
8	350	1,378	5,115	-3,737	3,737	0,0000
9	414	1,630	4,576	-2,946	2,946	0,0000
TOTAL	25405	MDA			60,852	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 3, foi de 10879,16, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Pela análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 23 e Tabela 27, que a linha de valores esperados referente aos dígitos 1 e 2 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os restantes dos dígitos 3, 4, 5, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria aguardado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios importantes.

O resultado do Teste Qui-Quadrado calculado excedeu em muito o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM verifica-se o resultado de 0,60852, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 3, observa-se que os resultados dos três testes se alinham rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1 e 2. Já para os dígitos 3, 4, 5, 6, 7, 8 e 9 demonstram necessidade de ser melhor analisados por apresentarem desvios significantes.

4.1.3.3. Análise do primeiro dígito - Gasto 4 - consultorias, pesquisas e trabalho técnico.

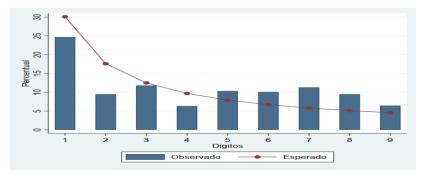


Gráfico 24 - Primeiro dígito - Gasto 4

Tabela 28 - Resultados dos testes para 1º dígito - Gasto 4

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	203	24,696	30,103	-5,407	5,407	0,0006
2	78	9,489	17,609	-8,120	8,12	0,0000
3	97	11,800	12,494	-0,694	0,694	0,5978
4	52	6,326	9,691	-3,365	3,365	0,0008
5	85	10,341	7,918	2,423	2,423	0,0139
6	83	10,097	6,695	3,402	3,402	0,0003
7	93	11,314	5,799	5,515	5,515	0,0000
8	78	9,489	5,115	4,374	4,374	0,0000
9	53	6,448	4,576	1,872	1,872	0,0151
TOTAL	822	MDA			35,172	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 4, foi de 149,1342, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 24 e Tabela 28, que a linha de valores esperados referente aos dígitos 5, 6, 7, 8 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3 e 4, a linha de valores esperados, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando marcantes desvios. Porém, foi detectado valor de P referente ao dígito 3 superior a 0,05 indicando o contrário, que não há diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford, quanto ao DAM, verifica-se o resultado de 0,35172 sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 4, em que foi analisado primeiro dígito de 822 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 5, 6, 7, 8 e 9. Para o dígito 3, por apresentar valor de P maior que 0,05, não há diferenças significativas. Já para os dígitos 1, 2 e 4 cabem melhor análise, por apresentarem desvios significantes.

4.1.3.4. Análise do primeiro dígito - Gasto 5 - divulgação da atividade parlamentar.

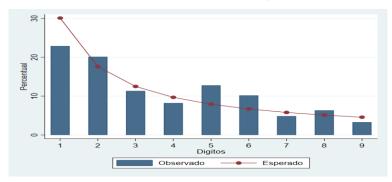


Gráfico 25 - Primeiro dígito - Gasto 5

Tabela 29 - Resultados dos testes para 1º dígito - Gasto 5

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1101	22,890	30,103	-7,213	7,213	0,0000
2	968	20,125	17,609	2,516	2,516	0,0000
3	545	11,331	12,494	-1,163	1,163	0,0146
4	395	8,212	9,691	-1,479	1,479	0,0000
5	615	12,786	7,918	4,868	4,868	0,0000
6	490	10,187	6,695	3,492	3,492	0,0000
7	233	4,844	5,799	-0,955	0,955	0,0041
8	305	6,341	5,115	1,226	1,226	0,0002
9	158	3,285	4,576	-1,291	1,291	0,0000
TOTAL	4810	MDA			24,203	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 5, foi de 387,2721, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 25 e Tabela 29, que a linha de valores esperados referente aos dígitos 2, 5, 6 e 8 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os restantes dos dígitos 1, 3, 4, 7 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos, menores que 0,05, indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,24203, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 5, em que foi analisado primeiro dígito de 4810 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 2, 5, 6 e 8. Já para os dígitos 1, 3, 4, 7 e 9 mostra-se oportuno ser melhores analisados, por apresentarem desvios significantes.

4.1.3.5. Análise do primeiro dígito - Gasto 8 - serviço de segurança, prestado por empresa especializada.

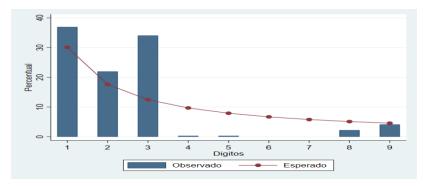


Gráfico 26 - Primeiro dígito - Gasto 8

Tabela 30 - Resultados dos testes para 1º dígito - Gasto 8

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	116	36,943	30,103	6,840	6,840	0,0097
2	69	21,975	17,609	4,366	4,366	0,0454
3	107	34,076	12,494	21,582	21,582	0,0000
4	1	0,318	9,691	-9,373	9,373	0,0000
5	1	0,318	7,918	-7,6	7,600	0,0000
6	0	0,000	6,695	-6,695	6,695	0,0000
7	0	0,000	5,799	-5,799	5,799	0,0000
8	7	2,229	5,115	-2,886	2,886	0,0147
9	13	4,140	4,576	-0,436	0,436	0,8921
TOTAL	314	MDA			65,577	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 8, foi de 221,1852, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 26 e Tabela 30, que a linha de valores esperados referente aos dígitos 1, 2 e 3 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Neste caso, chamou a atenção o valor elevado da diferença entre a frequência observada e a frequência esperada de 21,582, para o dígito 3, com 107 valores analisados.

Já para os dígitos 4, 5, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foi detectado valor de P referente ao dígito 9 superior a 0,05, não havendo diferença significativa para esse dígito.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,65577, sendo superior ao limite de 0,015 rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 8, em que foi analisado primeiro dígito de 314 valores observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, temse a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1, 2 e 3. Chamando atenção para o dígito 3 que apresentou uma frequência observada muito maior que a esperada, sendo a diferença de 21,582. Para o dígito 9, por apresentar valor de P maior que 0,05, não havendo diferença significativa. Já para os dígitos 4, 5, 6, 7 e 8 é conveniente ser melhores analisados, por apresentarem desvios significantes.

4.1.3.6. Análise do primeiro dígito - Gasto 9 - passagem aérea reembolso.

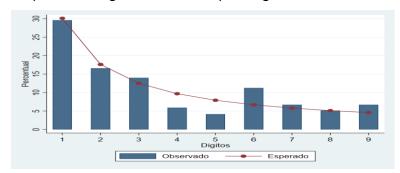


Gráfico 27 - Primeiro dígito - Gasto 9

Tabela 31 - Resultados dos testes para 1º dígito - Gasto 9

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	150	29,586	30,103	-0,517	0,517	0,8465
2	84	16,568	17,609	-1,041	1,041	0,5997
3	71	14,004	12,494	1,510	1,510	0,3133
4	30	5,917	9,691	-3,774	3,774	0,0033
5	21	4,142	7,918	-3,776	3,776	0,0009
6	57	11,243	6,695	4,548	4,548	0,0002
7	34	6,706	5,799	0,907	0,907	0,3913
8	26	5,128	5,115	0,013	0,013	0,9199
9	34	6,706	4,576	2,130	2,130	0,0325
TOTAL	507	MDA			18,216	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 9, foi de 39,27543, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Pela análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 27 e Tabela 31, que a linha de valores esperados referente aos dígitos 3, 6, 7, 8 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os restantes dos dígitos (1, 2, 4 e 5) a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos. Porém, foram detectados valores de P referente aos dígitos 1, 2, 3, 7 e 8 superiores a 0,05, indicando que não há relevantes diferenças.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford. Quanto ao DAM, verifica-se o resultado de 0,18216 sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do gasto 9, em que foi analisado primeiro dígito de 507 valores observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, temse a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 6 e 9.

Para os dígitos 1, 2, 3, 7 e 8, por apresentarem valores de P maiores que 0,05, não se pode concluir que não há diferenças significativas. Já para os dígitos 4 e 5 orientase por melhor análise, por apresentarem desvios significantes.

4.1.3.7. Análise do primeiro dígito - Gasto 10 - telefonia.

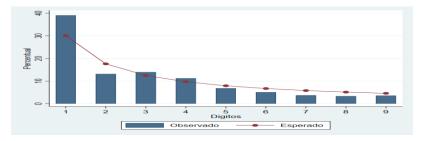


Gráfico 28 - Primeiro dígito - Gasto 10

Tabela 32 - Resultados dos testes para 1º dígito - Gasto 10

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2649	39,088	30,103	8,985	8,985	0,0000
2	892	13,162	17,609	-4,447	4,447	0,0000
3	946	13,959	12,494	1,465	1,465	0,0003
4	761	11,229	9,691	1,538	1,538	0,0000
5	462	6,817	7,918	-1,101	1,101	0,0007
6	345	5,091	6,695	-1,604	1,604	0,0000
7	252	3,718	5,799	-2,081	2,081	0,0000
8	227	3,35	5,115	-1,765	1,765	0,0000
9	243	3,586	4,576	-0,990	0,990	0,0001
TOTAL	6777	MDA			23,976	

O resultado do teste X² para primeiro dígito, considerando Gasto 10, foi de 428,8791, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 28 e Tabela 32, que a linha de valores esperados, referente aos dígitos 1, 3 e 4 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Neste caso, chamou a atenção o valor elevado da diferença entre a frequência observada e a frequência esperada de 8,985, para o dígito 1, com 2649 valores analisados.

Já para os restantes dos dígitos (2, 5, 6, 7, 8 e 9) a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,23976, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 10, em que foi analisado primeiro dígito de 6.777 valores observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1,3 e 4. Já para os dígitos 2, 5, 6, 7, 8 e 9 convém melhor análise por apresentarem desvios significantes.

4.1.3.8. Análise do primeiro dígito - Gasto 11 - serviços postais.

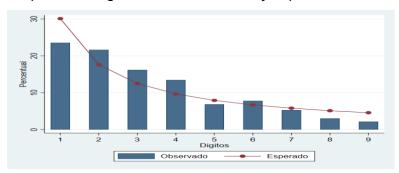


Gráfico 29 - Primeiro dígito - Gasto 11

Tabela 33 - Resultados dos testes para 1º dígito - Gasto 11

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1139	23,557	30,103	-6,546	6,546	0,0000
2	1047	21,655	17,609	4,046	4,046	0,0000
3	783	16,194	12,494	3,700	3,700	0,0003
4	650	13,444	9,691	3,753	3,753	0,0000
5	332	6,867	7,918	-1,051	1,051	0,0066
6	377	7,797	6,695	1,102	1,102	0,0028
7	256	5,295	5,799	-0,504	0,504	0,1396
8	146	3,02	5,115	-2,095	2,095	0,0000
9	105	2,172	4,576	-2,404	2,404	0,0000
TOTAL	4835	MDA			25,201	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 11, foi de 357,2397, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Mediante análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 29 e Tabela 33, que a linha de valores esperados referente aos dígitos 2, 3, 4 e 6 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 5, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente importantes, apresentando desvios significativos. Porém, foi detectado valores de P referente ao dígito 7 superior a 0,05, não havendo diferença significante.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,25201, sendo superior ao limite de 0,015 rejeita-se a hipótese nula.

Desta forma, sob a perspectiva do Gasto 11, em que foi analisado primeiro dígito de 4835 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 2, 3, 4 e 6. Para o dígito 7, por apresentar valor de P maior que 0,05, não havendo diferença significativa. Já para os dígitos 1, 5, 8 e 9 seria oportuno ser melhores analisados, por apresentarem desvios significantes.

4.1.3.9. Análise do primeiro dígito - Gasto 12 - assinaturas e publicações.

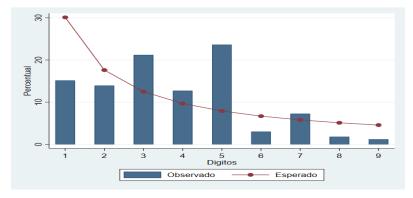


Gráfico 30 - Primeiro dígito - Gasto 12

Tabela 34 - Resultados dos testes para 1º dígito - Gasto 12

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	25	15,152	30,103	-14,951	14,951	0,0000
2	23	13,939	17,609	-3,670	3,670	0,2602
3	35	21,212	12,494	8,718	8,718	0,0020
4	21	12,727	9,691	3,036	3,036	0,1875
5	39	23,636	7,918	15,718	15,718	0,0000
6	5	3,030	6,695	-3,665	3,665	0,0606
7	12	7,273	5,799	1,474	1,474	0,4026
8	3	1,818	5,115	-3,297	3,297	0,0512
9	2	1,212	4,576	-3,364	3,364	0,0375
TOTAL	165	MDA			57,893	

O resultado do teste X² para primeiro dígito, considerando Gasto 12, foi de 88,1192, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 29 e Tabela 33, que a linha de valores esperados, referente aos dígitos 3, 4, 5 e 7 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para o dígito 5 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

Já para os restantes dos dígitos (1, 2, 6, 8 e 9) a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado, pela distribuição de Benford. Chamou-se atenção para o dígito 1 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

No entanto, foram detectados valores de P referente aos dígitos 2, 4, 6, 7 e 8 superiores a 0,05, em função disso não se pode concluir que estes dígitos não sigam a distribuição de Benford.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,57893, sendo superior ao limite de 0,015 rejeita-se a hipótese nula.

Assim, sob a perspectiva do gasto 12, em que foi analisado primeiro dígito de 165 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 3 e 5.

Para os dígitos 2, 4, 6, 7 e 8, por apresentar valor de P maior que 0,05, não ocorreram diferenças relevantes.

Já para os dígitos 1 e 9 observa-se a necessidade de melhor analise por apresentar desvios significantes. Chamou-se atenção para os dígitos 3 e 5 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

4.1.3.10. Análise do primeiro dígito - Gasto 13 - fornecimento de alimentação do parlamentar

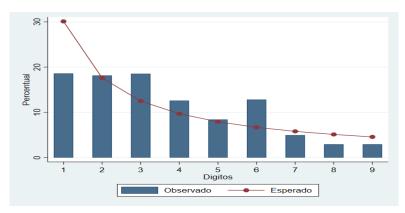


Gráfico 31 - Primeiro dígito - Gasto 13

Tabela 35 - Resultados dos testes para 1º dígito - Gasto 13

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	524	18,608	30,103	-11,495	11,495	0,0000
2	511	18,146	17,609	0,537	0,537	0,4580
3	522	18,537	12,494	6,043	6,043	0,0000
4	355	12,607	9,691	2,916	2,916	0,0000
5	237	8,416	7,918	0,498	0,498	0,3284
6	361	12,820	6,695	6,125	6,125	0,0000
7	140	4,972	5,799	-0,827	0,827	0,0635
8	83	2,947	5,115	-2,168	2,168	0,0000
9	83	2,947	4,576	-1,629	1,629	0,0000
TOTAL	2816	MDA			32,238	

O resultado do teste X² para primeiro dígito, considerando Gasto 13, foi de 435,2732, sendo seu valor de P 0,0000 e o valor crítico de 15,507.

Em análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 31 e Tabela 35, que a linha de valores esperados referente aos dígitos 2, 3, 4, 5 e 6 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para os dígitos 3, 4 e 6 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

Já para os dígitos 1, 7, 8 e 9, a linha de valores esperados, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos. Porém, foram detectados valores de P referente aos dígitos 2, 5 e 7 superiores a 0,05, não havendo diferenças significativas para esses dígitos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,32238, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 13, em que foi analisado primeiro dígito de 2816 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 3, 4 e 6. Para os dígitos 2, 5 e 7, por apresentarem valores de P maior que 0,05, não havendo diferenças significativas. Já para os dígitos 1, 8 e 9 cabe melhor análise por apresentarem desvios significantes. Chamou a atenção para os dígitos 3, 4 e 6 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

4.1.3.11. Análise do primeiro dígito - Gasto 14 - hospedagem, exceto do parlamentar do Distrito Federal.

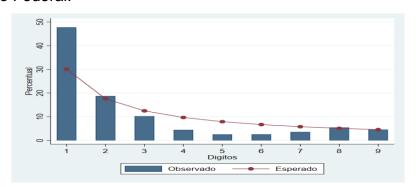


Gráfico 32 - Primeiro dígito - Gasto 14

Tabela 36 - Resultados dos testes para 1º dígito - Gasto 14

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1818	47,742	30,103	17,639	17,639	0,0000
2	715	18,776	17,609	1,167	1,167	0,0612
3	390	10,242	12,494	-2,252	2,252	0,0000
4	170	4,464	9,691	-5,227	5,227	0,0000
5	97	2,547	7,918	-5,371	5,371	0,0000
6	99	2,600	6,695	-4,095	4,095	0,0000
7	137	3,598	5,799	-2,201	2,201	0,0000
8	208	5,462	5,115	0,347	0,347	0,3208
9	174	4,569	4,576	-0,007	0,007	1,0000
TOTAL	3808	MDA			38,306	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 14, foi de 786,1442, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 32 e Tabela 36, que a linha de valores esperados referente aos dígitos 1, 2 e 8 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para o dígito 1 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

Já para os dígitos 3, 4, 5, 6, 7 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foram detectados valores de P referentes aos dígitos 2, 8 e 9 superiores a 0,05, significando que não há diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,38306, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 14, em que foi analisado primeiro dígito de 3808 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1. Para os dígitos 2, 8 e 9, por apresentar valor de P maior que 0,05, não há diferenças significativas.

Já para os dígitos 3, 4, 5, 6 e 7 cabe melhor análise por apresentarem desvios significantes. Chamou-se atenção para o dígito 1 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

4.1.3.12. Análise do primeiro dígito - Gasto 119 - locação ou fretamento de aeronave.

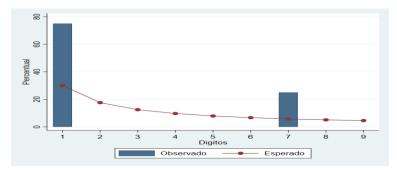


Gráfico 33 - Primeiro dígito - Gasto 119

Tabela 37 - Resultados dos testes para 1º dígito - Gasto 119

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	3	75,000	30,103	44,897	44,897	0,0845
2	0	0,000	17,609	-17,609	17,609	1,0000
3	0	0,000	12,494	-12,494	12,494	1,0000
4	0	0,000	9,691	-9,691	9,691	1,0000
5	0	0,000	7,918	-7,918	7,918	1,0000
6	0	0,000	6,695	-6,695	6,695	1,0000
7	1	25,000	5,799	19,201	19,201	0,2126
8	0	0,000	5,115	-5,115	5,115	1,0000
9	0	0,000	4,576	-4,576	4,576	1,0000
TOTAL	4	MDA			128,196	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 119, foi de 7,785282, sendo seu valor de P 0,4547 e o valor crítico usado de 15,507.

Pela análise dos resultados dos testes de conformidade para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 33 e Tabela 37, que a linha de valores esperados, referente aos dígitos 1 e 7, estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Não tiveram registros dos gastos para os demais dígitos, ficando a análise restrita aos dígitos 1 e 7.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foram detectados valores de P referente aos dígitos 1 e 7 superiores a 0,05, significando que não há diferenças expressivas.

O resultado do Teste Qui-Quadrado calculado foi inferior ao do valor crítico confirmando a hipótese nula, ou seja, estando em conformidade com a Lei de Benford. Porém, o valor de P sendo maior que 0,05, indica que não há diferenças significativas para esses dígitos.

Quanto ao DAM, verifica-se o resultado de 1,28196, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Logo, sob a perspectiva do Gasto 119, em que foi analisado primeiro dígito de 4 valores, observa-se que somente o teste DAM rejeita a hipótese nula, ou seja, tem-se à ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1 e 7.

O resultado dos testes X² inferior ao valor crítico e os valores de P maiores que 0,05 informam que não há diferenças consideráveis, mas não conclui que não estão em conformidade com a Lei.

4.1.3.13. Análise do primeiro dígito - Gasto 120 - locação ou fretamento de veículos automotores.

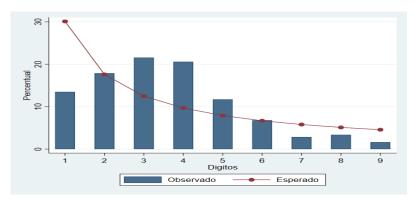


Gráfico 34 - Primeiro dígito - Gasto 120

Tabela 38 - Resultados dos testes para 1º dígito - Gasto 120

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	456	13,499	30,103	-16,604	16,604	0,0000
2	604	17,880	17,609	0,271	0,271	0,6843
3	729	21,581	12,494	9,087	9,087	0,0000
4	696	20,604	9,691	10,913	10,913	0,0000
5	396	11,723	7,918	3,805	3,805	0,0000
6	230	6,809	6,695	0,114	0,114	0,7830
7	97	2,872	5,799	-2,927	2,927	0,0000
8	114	3,375	5,115	-1,74	1,740	0,0000
9	56	1,658	4,576	-2,918	2,918	0,0000
TOTAL	3378	MDA			48,379	

O resultado do teste X² para primeiro dígito, considerando Gasto 120, foi de 1142,490, sendo seu valor de P 0,0000 e o valor crítico de 15,507.

Através da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 34 e Tabela 38, que a linha de valores esperados referente aos dígitos 2, 3, 4, 5 e 6 estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para os dígitos 3 e 4 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

Já para os dígitos 1, 7, 8 e 9, a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foram detectados valores de P referentes aos dígitos 2 e 6 superiores a 0,05, indicando que não há diferenças significativas para esses dígitos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, não estando conforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,48379, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Desta maneira, sob a perspectiva do Gasto 120, em que foi analisado primeiro dígito de 3378 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 3, 4 e 5. Para os dígitos 2 e 6, por apresentarem valores de P maior que 0,05, não há diferenças significativas. Já para os dígitos 1, 7, 8 e 9 demonstram precisar ser melhores analisados por apresentarem desvios significantes. Chamou-se atenção para os dígitos 3 e 4 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.

4.1.3.14. Análise do primeiro dígito - Gasto 121 - locação ou fretamento de embarcações.

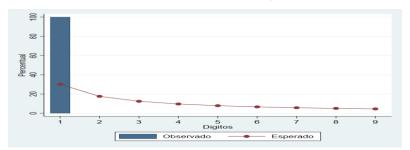


Gráfico 35 - Primeiro dígito - Gasto 121

Tabela 39 - Resultados dos testes para 1º dígito - Gasto 121

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	1	100,000	30,103	69,897	69,897	0,3010
2	0	0,000	17,609	-17,609	17,609	1,0000
3	0	0,000	12,494	-12,494	12,494	1,0000
4	0	0,000	9,691	-9,691	9,691	1,0000
5	0	0,000	7,918	-7,918	7,918	1,0000
6	0	0,000	6,695	-6,695	6,695	1,0000
7	0	0,000	5,799	-5,799	5,799	1,0000
8	0	0,000	5,115	-5,115	5,115	1,0000
9	0	0,000	4,576	-4,576	4,576	1,0000
TOTAL	1	MDA			139,794	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 121, foi de 2,321928, sendo seu valor de P 0,9695 e o valor crítico usado de 15,507.

Em virtude da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 35 e Tabela 39, que a linha de valores esperados, referente ao dígito 1 estava muito abaixo da barra observada indicando que gastos que começam com esse dígito aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Não tiveram registros de gastos para os demais dígitos, ficando a análise restrita ao dígito 1.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente relevantes, apresentando desvios significativos. Todavia, foi detectado valor de P referente ao dígito 1 superior a 0,05, significando ausência de diferenças significativas para esse dígito.

O resultado do Teste Qui-Quadrado calculado foi inferior que o valor crítico confirmando a hipótese nula, porém em função do valor de P ser maior que 0,05, demonstrando que não há diferenças significativas. É importante lembrar que o teste X² varia conforme a amostra. Neste caso como a amostra foi pequena o valor de X² também foi pequeno e inferior ao valor crítico.

Quanto ao DAM, por ser um teste que não varia com o tamanho da amostra, verificou-se o resultado de 1,39794, sendo superior ao limite de 0,015, rejeitando a hipótese nula.

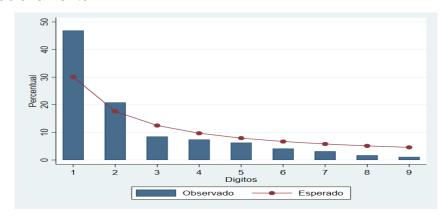


Gráfico 36 - Primeiro dígito - Gasto 122

Tabela 40 - Resultados dos testes para 1º dígito - Gasto 122

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2653	46,898	30,103	16,795	16,795	0,0000
2	1179	20,841	17,609	3,232	3,232	0,0000
3	481	8,503	12,494	-3,991	3,991	0,0000
4	419	7,407	9,691	-2,284	2,284	0,0000
5	355	6,275	7,918	-1,643	1,643	0,0000
6	234	4,136	6,695	-2,559	2,559	0,0000
7	178	3,147	5,799	-2,652	2,652	0,0000
8	96	1,697	5,115	-3,418	3,418	0,0000
9	62	1,096	4,576	-3,480	3,480	0,0000
TOTAL	5657	MDA			40,054	

O resultado do teste X² para primeiro dígito, considerando Gasto 122, foi de 1088,337, sendo seu valor de P 0,0000 e o valor crítico de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 36 e Tabela 40, que a linha de valores esperados, referente aos dígitos 1 e 2, estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequente do que o esperado pela distribuição de Benford. Chamou-se atenção para os dígitos 1 e 2, em função dos valores elevados da diferença entre a frequência observada e a frequência esperada.

Já para os dígitos 3, 4, 5, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,40054, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do Gasto 122, em que foi analisado primeiro dígito de 3378 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1 e 2. Já para os dígitos 3, 4, 5, 6, 7, 8 e 9 devem ser melhores analisados, por apresentarem desvios significantes.

4.1.3.16. Análise do primeiro dígito - Gasto 123 - passagens terrestres, marítimas ou fluviais.

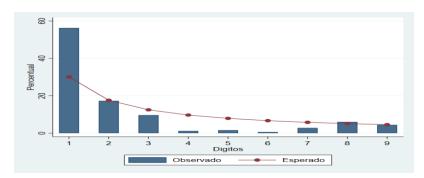


Gráfico 37 - Primeiro dígito - Gasto 123

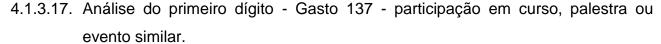
Tabela 41 - Resultados dos testes para 1º dígito - Gasto 123

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	280	56,338	30,103	26,235	26,235	0,0000
2	86	17,304	17,609	-0,305	0,305	0,9063
3	48	9,658	12,494	-2,836	2,836	0,0573
4	6	1,207	9,691	-8,484	8,484	0,0000
5	8	1,610	7,918	-6,308	6,308	0,0000
6	3	0,604	6,695	-6,091	6,091	0,0000
7	14	2,817	5,799	-2,982	2,982	0,0028
8	30	6,036	5,115	0,921	0,921	0,3581
9	22	4,427	4,576	-0,149	0,149	1,0000
TOTAL	497	MDA			54,311	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 123, foi de 214,7647, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Da análise dos resultados dos testes de conformidade para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 37 e Tabela 41, que a linha de valores esperados referente aos dígitos 1 e 8 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para o dígito 1 em função do valor elevado da diferença entre a frequência observada e a frequência esperada.


Já para os dígitos 2, 3, 4, 5, 6, 7 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado, pela distribuição de Benford. Chama-se atenção para os dígitos 4, 5 e 6 pelos valores elevados das diferenças entre a frequência observada e a frequência esperada.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, foram detectados valores de P referentes aos dígitos 2, 3, 8 e 9, superiores a 0,05. Em função disso, não se pode concluir que estes dígitos não sigam a distribuição de Benford, pois não apresentam diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,54311, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Assim, sob a perspectiva do Gasto 123, em que foi analisado primeiro dígito de 497 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se à ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1. Para os dígitos 2, 3, 8 e 9 por apresentar valor de P maior que 0,05, não apresentam diferenças significativas. Já para os dígitos 4, 5, 6 e 7 cabe uma melhor analise por apresentarem desvios significantes.

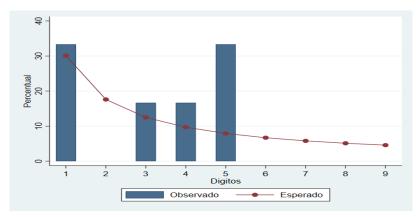


Gráfico 38 - Primeiro dígito - Gasto 137

Tabela 42 - Resultados dos testes para 1º dígito - Gasto 137

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	2	33,333	30,103	3,230	3,230	1,0000
2	0	0,000	17,609	-17,609	17,609	0,5989
3	1	16,667	12,494	4,173	4,173	0,5510
4	1	16,667	9,691	6,976	6,976	0,4575
5	2	33,333	7,918	25,415	25,415	0,0759
6	0	0,000	6,695	-6,695	6,695	1,0000
7	0	0,000	5,799	-5,799	5,799	1,0000
8	0	0,000	5,115	-5,115	5,115	1,0000
9	0	0,000	4,576	-4,576	4,576	1,0000
TOTAL	6	MDA			79,588	

O resultado do teste X² para primeiro dígito, considerando Gasto 137, foi de 7,687916, sendo seu valor de P 0,4645 e o valor crítico de 15,507.

Pela análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 38 e Tabela 42, que a linha de valores esperados referente aos dígitos 1, 3, 4 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Chamou-se atenção para os dígitos 1 e 5 em função do valor elevado das diferenças entre a frequência observada e a frequência esperada.

Não tiveram registros dos gastos para os demais dígitos, ficando a análise para os dígitos 1, 3, 4 e 5.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos. Contudo, foram detectados valores de P referentes aos dígitos 1, 3, 4 e 5 superiores a 0,05, indicando que não há diferenças significativas.

O resultado do Teste Qui-Quadrado calculado foi inferior ao valor crítico 15,507, confirmando a hipótese nula, porém em função do seu valor de P ser maior que 0,05, não há diferenças significativas. É importante lembrar, que o teste X² varia conforme o tamanho da amostra. Neste caso como a amostra foi pequena o valor de X² também foi pequeno e inferior ao valor crítico.

Quanto ao DAM, por ser um teste que não varia em relação ao tamanho da amostra, verifica-se o resultado de 0,79588, sendo superior ao limite de 0,015, rejeitando-se a hipótese nula.

Nesta esteira, sob a perspectiva do Gasto 137, em que foi analisado primeiro dígito de apenas 6 valores, observa-se que somente o teste DAM rejeita a hipótese nula, ou seja, tem-se à ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1, 3, 4 e 5. Porém, o resultado do teste X² mostrou a conformidade com a Lei de Benford, por seu valor ser inferior ao valor crítico e ainda por apresentar valor de P, maior que 0,05, não havendo diferenças significativas.

4.1.3.18. Análise do primeiro dígito - Gasto 998 - passagens aéreas SIGEPA.

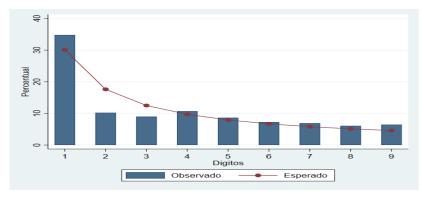


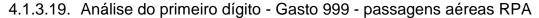
Gráfico 39 - Primeiro dígito - Gasto 998

Tabela 43 - Resultados dos testes para 1º dígitos - Gasto 998

1º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	3093	34,796	30,103	4,693	4,693	0,0000
2	907	10,204	17,609	-7,405	7,405	0,0000
3	799	8,989	12,494	-3,505	3,505	0,0000
4	951	10,699	9,691	1,008	1,008	0,0015
5	767	8,629	7,918	0,711	0,711	0,0141
6	646	7,267	6,695	0,572	0,572	0,0321
7	614	6,907	5,799	1,108	1,108	0,0000
8	539	6,064	5,115	0,949	0,949	0,0001
9	573	6,446	4,576	1,870	1,870	0,0000
TOTAL	8889	MDA			21,821	

O resultado do teste X² para primeiro dígito, considerando Gasto 998, foi de 551,0364, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Por meio da análise dos resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 39 e Tabela 43, que a linha de valores esperados referente aos dígitos 1, 4, 5, 6, 7, 8 e 9 estava abaixo da barra observada indicando gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para os dígitos 1 e 4 em função do valor maior aos demais para a diferença entre a frequência observada e a frequência esperada.


Já para os dígitos 2 e 3 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente importantes, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,21821, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Desta forma, sob a perspectiva do Gasto 998, em que foi analisado primeiro dígito de 8889 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 1, 4, 5, 6, 7, 8 e 9. Já para os dígitos 2 e 3 convém ser melhor analisados, por apresentarem desvios significantes.

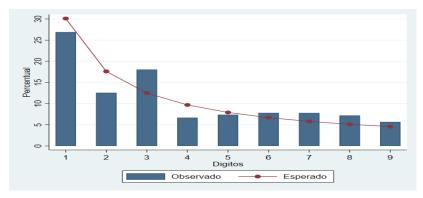


Gráfico 40 - Primeiro dígito - Gasto 999

Tabela 44 - Resultados dos testes para 1º dígito - Gasto 999

1º DÍGITO		PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
1	3377	26,891	30,103	-3,212	3,212	0,0000
2	1577	12,558	17,609	-5,051	5,051	0,0000
3	2265	18,036	12,494	5,542	5,542	0,0000
4	839	6,681	9,691	-3,01	3,010	0,0000
5	926	7,374	7,918	-0,544	0,544	0,0236
6	981	7,812	6,695	1,117	1,117	0,0000
7	977	7,780	5,799	1,981	1,981	0,0000
8	903	7,191	5,115	2,076	2,076	0,0000
9	713	5,678	4,576	1,102	1,102	0,0000
TOTAL	12558	MDA			23,635	

Fonte: Dados de pesquisa

O resultado do teste X² para primeiro dígito, considerando Gasto 999, foi de 903,3012, sendo seu valor de P 0,0000 e o valor crítico usado de 15,507.

Analisando os resultados dos testes de conformidade para o primeiro dígito foi possível constatar, conforme demostrado no Gráfico 40 e Tabela 44, que a linha de

valores esperados referente aos dígitos 3, 6, 7, 8 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Chamou-se atenção para o dígito 3 em função do valor ser maior que os demais para a diferença entre a frequência observada e a frequência esperada.

Já para os dígitos 1, 2, 4, 5 a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford. Chamou-se atenção para os dígitos 1 e 2 em função do valor maior que os demais para a diferença entre a frequência observada e a frequência esperada.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando em não conformidade com a Lei de Benford.

Quanto ao DAM, verifica-se o resultado de 0,23635, sendo superior ao limite de 0,015, rejeita-se a hipótese nula.

Então, sob a perspectiva do gasto 999, em que foi analisado primeiro dígito de 12558 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 3, 6, 7, 8 e 9. Já para os dígitos 1, 2, 4 e 5 deveriam ser melhores analisados por apresentarem desvios significantes. Chamou-se atenção para os dígitos 1, 2 e 3 em função do valor elevado, da diferença entre a frequência observada e a frequência esperada.

4.2. Análises do Segundo Dígito

4.2.1. Análise do segundo dígito - todo banco de dados

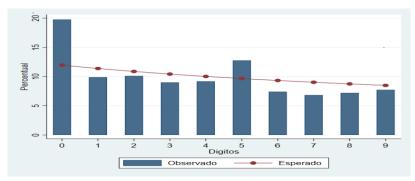


Gráfico 41 - Segundo dígito - Todo banco de dados

Tabela 45 - Resultados dos testes para 2º dígito - Todos os dados

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
Didiro	KEGISTKOS	OBSERVADO	LOI LINADO		MÉDIO	•
0	18330	19,773	11,968	7,805	7,805	0,0000
1	9175	9,897	11,389	-1,492	1,492	0,0000
2	9387	10,126	10,882	-0,756	0,756	0,0000
3	8353	9,011	10,433	-1,422	1,422	0,0000
4	8525	9,196	10,031	-0,835	0,835	0,0000
5	11845	12,778	9,668	3,110	3,110	0,0000
6	6875	7,416	9,337	-1,921	1,921	0,0000
7	6339	6,838	9,035	-2,197	2,197	0,0000
8	6692	7,219	8,757	-1,538	1,538	0,0000
9	7181	7,746	8,500	-0,753	0,753	0,0000
TOTAL	92702	100,000	100,000		21,829	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando todos os dados foi de 7294,184, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito, foi possível constatar, conforme demostrado no Gráfico 41 e Tabela 45, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que gastos que contém esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada, indicando uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Analisando o resultado do Teste Qui-Quadrado, verifica-se que o valor calculado, excedeu muito o valor crítico, rejeitando a hipótese nula.

Quanto ao DAM, verifica-se o resultado de 0,21829, sendo superior ao limite de 0,012, rejeitando-se a hipótese nula.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

Para o segundo dígito conclui-se que, com base nas análises dos resultados, o conjunto de dados não parece seguir a Lei de Benford. Essa particularidade de excessos de segundos dígitos 0 e 5 é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos dos valores.

4.2.2. Análise do segundo dígito por partido político

4.2.2.1. Partido político Avante

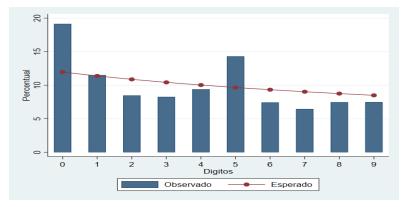


Gráfico 42 - Segundo dígito - Avante

Tabela 46 - Resultados dos testes para 2º dígito - Avante

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
Didiro	KEGIOTKOO	OBOLITADO	LOI LINADO		MÉDIO	•
0	1104	19,147	11,968	7,179	7,179	0,0000
1	664	11,516	11,389	0,127	0,127	0,7559
2	489	8,481	10,882	-2,401	2,401	0,0000
3	477	8,273	10,433	-2,16	2,16	0,0000
4	542	9,4	10,031	-0,631	0,631	0,1145
5	825	14,308	9,668	4,640	4,640	0,0000
6	429	7,44	9,337	-1,897	1,897	0,0000
7	373	6,469	9,035	-2,566	2,566	0,0000
8	431	7,475	8,757	-1,282	1,282	0,0005
9	432	7,492	8,500	-1,008	1,008	0,0057
TOTAL	5766	MDA			23,891	

O resultado do teste X² para segundo dígito, considerando o partido Avante, foi de 517,3972, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Analisando os resultados dos testes de conformidade, para o segundo dígito, foi possível constatar, con97forme demostrado no Gráfico 42 e Tabela 46, que a linha de valores esperados referente aos dígitos 0, 1 e 5 estava abaixo da barra observada indicando que gastos que contém esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 2, 3, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, o segundo dígito 1 teve seu valor de P maior que 0,05, não havendo diferença significativa. O mesmo acontece para o segundo dígito 4, que com uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também, que seu valor de P é maior de 0,05, não havendo diferença significativa.

Quanto ao DAM, verifica-se o resultado de 0,23891, sendo superior ao limite de 0,012, rejeitando-se a hipótese nula.

Analisando o resultado do Teste Qui-Quadrado verifica-se que o valor calculado excedeu muito o valor crítico, rejeitando a hipótese nula, estando em não conformidade coma a Lei de Benford.

Então, sob a perspectiva do partido Avante, em que foi analisado segundo dígito de 5766 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referentes aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, são demonstradas geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos dos valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 1 e 4, por apresentarem Valor de P maiores que 0,05 não apresentam diferenças significativas. Já, para os dígitos 2, 3, 6, 7, 8 e 9 são necessárias análises mais aprofundadas.

4.2.2.2. Partido político Cidadania

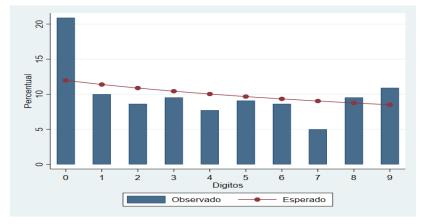


Gráfico 43 - Segundo dígito - Cidadania

Tabela 47 - Resultados dos testes para 2º dígito - Cidadania

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTRUS	OBSERVADO	ESPERADO		MÉDIO	P
0	46	20,909	11,968	8,941	8,941	0,0002
1	22	10,000	11,389	-1,389	1,389	0,5957
2	19	8,636	10,882	-2,246	2,246	0,3298
3	21	9,545	10,433	-0,888	0,888	0,7413
4	17	7,727	10,031	-2,304	2,304	0,3115
5	20	9,091	9,668	-0,577	4,640	0,9090
6	19	8,636	9,337	-0,701	0,701	0,8169
7	11	5,000	9,035	-4,035	4,035	0,0339
8	21	9,545	8,757	0,788	0,788	0,6337
9	24	10,909	8,500	2,409	2,409	0,2247
TOTAL	220	MDA			28,341	

O resultado do teste X² para segundo dígito, considerando o partido Cidadania, foi de 23,23294, sendo seu valor de P 0,0057 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 43 e Tabela 47, que a linha de valores esperados referente aos dígitos 0, 8 e 9 estava abaixo da barra observada indicando que gastos que contém esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 5, 6 e 7 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, os dígitos 8 e 9, mesmo com um excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, de forma que não há diferenças significativas.

O mesmo acontece para os dígitos 1, 2, 3, 4, 5 e 6 que com uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se

também, que seus valores de P são maiores que 0,05, de forma que não há diferenças significativas.

O valor de DAM 0,28341 demonstra que o percentual observado do dígito 0 supera o percentual esperado, confirmando a hipótese nula.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando em não conformidade com a Lei de Benford.

Então, sob a perspectiva do partido Cidadania, em que foi analisado segundo dígito de 220 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 0. Essa particularidade, de excessos de segundos dígitos 0, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos dos valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 1, 2, 3, 4, 5, 6, 8 e 9, por apresentarem Valor de P maior que 0,05, de forma que não há diferenças significativas. Já, para o dígito 7 é necessária uma análise mais aprofundada.

4.2.2.3. Partido político MDB

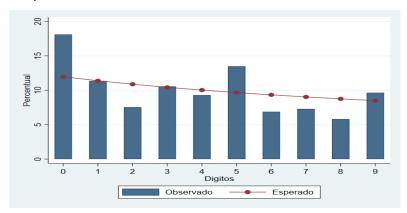


Gráfico 44 - Segundo dígito - MDB

Tabela 48 - Resultados dos testes para 2º dígito - MDB

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	KEGISTKOS	OBSERVADO	LOI LINADO		MÉDIO	•
0	576	18,108	11,968	6,140	6,140	0,0000
1	361	11,349	11,389	-0,040	0,040	0,9777
2	240	7,545	10,882	-3,337	3,337	0,0000
3	336	10,563	10,433	0,130	0,130	0,7941
4	296	9,305	10,031	-0,726	0,726	0,1841
5	429	13,486	9,668	3,818	3,818	0,0000
6	219	6,885	9,337	-2,452	2,452	0,0000
7	232	7,293	9,035	-1,742	1,742	0,0005
8	185	5,816	8,757	-2,941	2,941	0,0000
9	307	9,651	8,500	1,151	1,151	0,0220
TOTAL	3181	MDA			22,477	

O resultado do teste X² para segundo dígito, considerando o partido MDB, foi de 250,0151, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Em análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 44 e Tabela 48, que a linha de valores esperados referente aos dígitos 0, 3, 5 e 9 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 4, 6, 7 e 8 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por ser extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, o dígito 3, mesmo com um excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior de 0,05, de forma que não há diferenças significativas.

O mesmo acontece para os dígitos 1 e 4 que com uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se também que seus valores de P são maiores que 0,05, não havendo diferenças significativas

O valor de DAM de 0,22477 demonstra que o percentual observado dos dígitos 0, 5 e 9, supera o percentual esperado.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando em desconformidade com a Lei de Benford.

Então, sob a perspectiva do partido MDB, em que foi analisado segundo dígito de 3181 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 0, 5 e 9. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, de toda forma, não se pode descartar um exame mais detalhado.

Para os dígitos 1, 3 e 4, por apresentarem valor de P maior que 0,05, não há diferenças significativas. Já, para os dígitos 2, 6, 7 e 8 são necessários uma análise mais aprofundada.

4.2.2.4. Partido político Novo

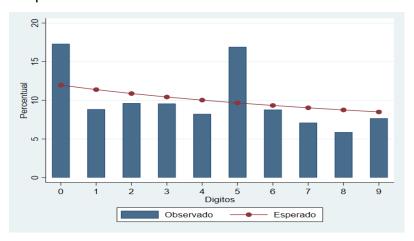


Gráfico 45 - Segundo dígito - Novo

Tabela 49 - Resultados dos testes para 2º dígito - Novo

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTRUS	OBSERVADO	ESPERADO		MÉDIO	P
0	309	17,311	11,968	5,343	5,343	0,0000
1	158	8,852	11,389	-2,537	2,537	0,0006
2	172	9,636	10,882	-1,246	1,246	0,0944
3	171	9,58	10,433	-0,853	0,853	0,2456
4	147	8,235	10,031	-1,796	1,796	0,0104
5	302	16,919	9,668	7,251	7,251	0,0000
6	157	8,796	9,337	-0,541	0,541	0,4640
7	127	7,115	9,035	-1,920	1,920	0,0038
8	105	5,882	8,757	-2,875	2,875	0,0000
9	137	7,675	8,500	-0,825	0,825	0,2186
TOTAL	1785	MDA			25,187	

O resultado do teste X² para segundo dígito, considerando o partido Novo, foi de 185,3962, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 45 e Tabela 49, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 2, 3, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2, 3, 6 e 9 que com uma escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que, seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,25187 demonstra que o percentual observado dos dígitos 0, 5 e 9, supera o percentual esperado.

Assim, sob a perspectiva do partido Novo em que foi analisado segundo dígito de 1785 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 2, 3, 6 e 9, por apresentarem valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 7 e 8 é necessária uma análise mais aprofundada.

4.2.2.5. Partido político Patriota

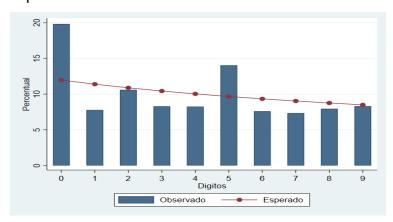


Gráfico 46 - Segundo dígito - Patriota

Tabela 50 - Resultados dos testes para 2º dígito - Patriota

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
_	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
2.00	NEO!O!NOO	0202720	20. 2.0.00		MÉDIO	•
0	696	19,823	11,968	7,855	7,855	0,0000
1	273	7,776	11,389	-3,613	3,613	0,0000
2	372	10,595	10,882	-0,287	0,287	0,6067
3	291	8,288	10,433	-2,145	2,145	0,0000
4	290	8,260	10,031	-1,771	1,771	0,0004
5	493	14,042	9,668	4,374	4,374	0,0000
6	267	7,605	9,337	-1,732	1,732	0,0003
7	258	7,348	9,035	-1,687	1,687	0,0004
8	279	7,946	8,757	-0,811	0,811	0,0945
9	292	8,317	8,500	-0,183	0,183	0,7166
TOTAL	3511	MDA			24,458	

O resultado do teste X² para segundo dígito, considerando o partido Patriota, foi de 342,6058, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 46 e Tabela 50, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 2, 3, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2, 8 e 9 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,24458 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Desta forma, sob a perspectiva do partido Patriota em que foi analisado segundo dígito de 3511 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 0 e 5.

Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, o que não descarta um exame mais detalhado.

Para os dígitos 2, 8 e 9, por apresentarem valor de P maior que 0,05, não há diferenças significativas.

Já, para os dígitos 3, 6 e 7, faz-se necessária uma análise mais aprofundada.

4.2.2.6. Partido político PDT

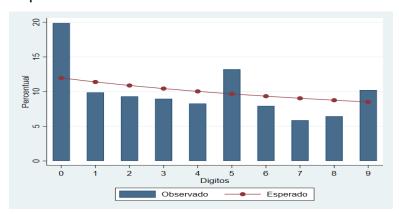


Gráfico 47 - Segundo dígito PDT

Tabela 51 - Resultados dos testes para 2º dígito - PDT

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	Р
2.0	0.0100				MÉDIO	·
0	173	19,885	11,968	7,917	7,917	0,0000
1	86	9,885	11,389	-1,504	1,504	0,1819
2	81	9,31	10,882	-1,572	1,572	0,1417
3	78	8,966	10,433	-1,467	1,467	0,1656
4	72	8,276	10,031	-1,755	1,755	0,0902
5	115	13,218	9,668	3,550	3,550	0,0007
6	69	7,931	9,337	-1,406	1,406	0,1620
7	51	5,862	9,035	-3,173	3,173	0,0007
8	56	6,437	8,757	-2,320	2,320	0,0138
9	89	10,23	8,500	1,730	1,730	0,0683
TOTAL	870	MDA			26,394	

O resultado do teste X² para segundo dígito, considerando o partido PDT, foi de 85,03128, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito, foi possível constatar, conforme demostrado no Gráfico 47 e Tabela 51, que a linha de valores esperados referente aos dígitos 0, 5 e 9 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7 e 8 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 9 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que sus valor de P é maior que 0,05, não havendo diferenças significativas.

Também não houve diferença relevante para os dígitos 1, 2, 3, 4 e 6 que com uma escassez de observações em relação ao que seria esperado, pela distribuição de Benford verificou-se que seus valores de P são maiores que 0,05.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,26394 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PDT em que foi analisado segundo dígito de 870 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se à ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente, por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, de toda forma, não se pode descartar um exame mais detalhado.

Para os dígitos 1, 2, 3, 4, 6 e 9, por apresentarem Valor de P maior que 0,05, não possuindo diferenças significativas. Já, para os dígitos 7 e 8 é necessária uma análise mais aprofundada.

4.2.2.7. Partido político PL

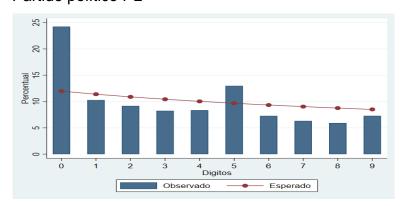


Gráfico 48 - Segundo dígito - PL

Tabela 52 - Resultados dos testes para 2º dígito - PL

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
_				DESVIOS	ABSOLUTO	
DÍGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	Р
0	2922	24,225	11,968	12,257	12,257	0,0000
1	1239	10,272	11,389	-1,117	1,117	0,0001
2	1106	9,169	10,882	-1,713	1,713	0,0000
3	994	8,241	10,433	-2,192	2,192	0,0000
4	1007	8,349	10,031	-1,682	1,682	0,0000
5	1564	12,966	9,668	3,298	3,298	0,0000
6	876	7,262	9,337	-2,075	2,075	0,0000
7	761	6,309	9,035	-2,726	2,726	0,0000
8	715	5,928	8,757	-2,829	2,829	0,0000
9	878	7,279	8,500	-1,221	1,221	0,0000
TOTAL	12062	MDA			31,110	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PL, foi de 2071,452, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 48 e Tabela 52, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico de 16,919, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,31110 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PL em que foi analisado segundo dígito de 12.062 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, do que não se pode descartar um exame mais detalhado, assim como para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9.

4.2.2.8. Partido político PODE

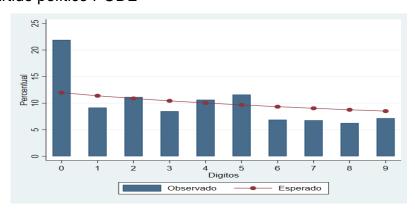


Gráfico 49 - Segundo dígito - PODE

Tabela 53 - Resultados dos testes para 2⁰ dígito - PODE

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	Р
					MÉDIO	
0	385	21,900	11,968	9,932	9,932	0,0000
1	161	9,158	11,389	-2,231	2,231	0,0030
2	196	11,149	10,882	0,267	-0,267	0,7019
3	149	8,476	10,433	-1,957	1,957	0,0063
4	187	10,637	10,031	0,606	0,606	0,4043
5	204	11,604	9,668	1,936	-1,936	0,0077
6	121	6,883	9,337	-2,454	2,454	0,0003
7	119	6,769	9,035	-2,266	2,266	0,0006
8	110	6,257	8,757	-2,500	2,500	0,0001
9	126	7,167	8,500	-1,333	1,333	0,0444
TOTAL	1758	MDA			21,076	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido Pode, foi de 204,1709, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 49 e Tabela 53, que a linha de valores esperados referente aos dígitos 0, 2, 4 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2 e 4 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que sus valor de P é maior que 0,05, não havendo diferenças significantes.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,21076 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido Podemos em que foi analisado segundo dígito de 1758 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se descartando um exame mais detalhado.

Para os dígitos 2 e 4, por apresentarem valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 1, 3, 6, 7, 8 e 9, mostra-se necessária uma análise mais aprofundada.

4.2.2.9. Partido político PP

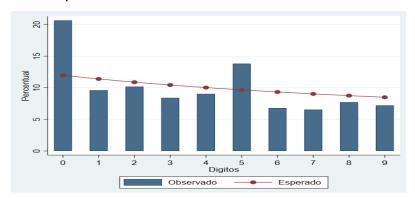


Gráfico 50 - Segundo dígito - PP

Tabela 54 - Resultados dos testes para 2º dígito - PP

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	r
0	2617	20,658	11,968	8,690	8,690	0,0000
1	1218	9,615	11,389	-1,774	1,774	0,0000
2	1290	10,183	10,882	-0,699	0,699	0,0111
3	1065	8,407	10,433	-2,026	2,026	0,0000
4	1144	9,031	10,031	-1,000	1,000	0,0002
5	1750	13,814	9,668	4,146	4,146	0,0000
6	862	6,805	9,337	-2,532	2,532	0,0000
7	829	6,544	9,035	-2,491	2,491	0,0000
8	978	7,720	8,757	-1,037	1,037	0,0000
9	915	7,223	8,500	-1,277	1,277	0,0000
TOTAL	12668	MDA			25,672	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PP, foi de 1341,789, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 50 e Tabela 54, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,25672 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PP em que foi analisado segundo dígito de 12.668 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, do que não se pode descartar um exame mais detalhado.

Para os dígitos 1,2, 3, 4, 5, 6, 7, 8 e 9, encontra-se a necessidade uma análise mais aprofundada.

4.2.2.10. Partido político PROS

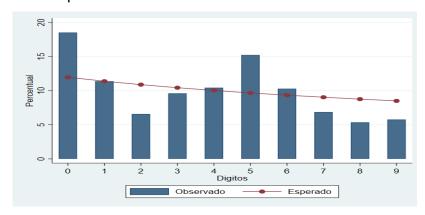


Gráfico 51 - Segundo dígito - PROS

Tabela 55 - Resultados dos testes para 2º dígito - PROS

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL	D=0///00	DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS		Р
					MÉDIO	
0	135	18,519	11,968	6,551	6,551	0,0000
1	83	11,385	11,389	-0,004	0,004	1,0000
2	48	6,584	10,882	-4,298	4,298	0,0001
3	70	9,602	10,433	-0,831	0,831	0,5051
4	76	10,425	10,031	0,394	0,394	0,7114
5	111	15,226	9,668	5,558	5,558	0,0000
6	75	10,288	9,337	0,951	0,951	0,3727
7	50	6,859	9,035	-2,176	2,176	0,0387
8	39	5,350	8,757	-3,407	3,407	0,0006
9	42	5,761	8,500	-2,739	2,739	0,0064
TOTAL	729	MDA			26,909	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PROS foi de 83,02941, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 51 e Tabela 55, que a linha de valores esperados referente aos dígitos 0, 4, 5 e 6 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 4 e 6 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

Da mesma forma para os dígitos 1 e 3 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,26909 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PROS em que foi analisado segundo dígito de 729 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado.

Para os dígitos 1, 3, 4 e 6, por apresentarem valor de P maior que 0,05, não há diferenças significativas. Já, para os dígitos 2, 7, 8 e 9, faz-se necessária uma análise mais aprofundada.

4.2.2.11. Partido político PSB

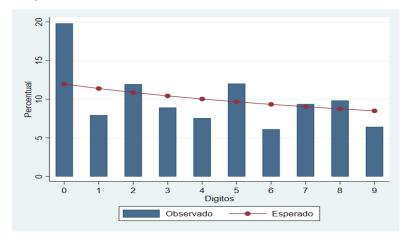


Gráfico 52 - Segundo dígito - PSB

Tabela 56 - Resultados dos testes para 20 dígito - PSB

2º DÍGITO	Nº DE	PERCENTUAL OBSERVADO	PERCENTUAL	DESVIOS	DESVIO ABSOLUTO	VALOR
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	Р
0	262	19,818	11,968	7,850	7,850	0,0000
1	105	7,943	11,389	-3,446	3,446	0,0000
2	158	11,952	10,882	1,070	1,070	0,2161
3	118	8,926	10,433	-1,507	1,507	0,0791
4	100	7,564	10,031	-2,467	2,467	0,0025
5	159	12,027	9,668	2,359	2,359	0,0045
6	81	6,127	9,337	-3,210	3,210	0,0000
7	124	9,380	9,035	0,345	0,345	0,6658
8	130	9,834	8,757	1,077	1,077	0,1728
9	85	6,430	8,500	-2,070	2,070	0,0057
TOTAL	1322	MDA			25,401	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PSB, foi de 124,9455, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 52 e Tabela 56, que a linha de valores esperados referente aos dígitos 0, 2, 5, 7 e 8 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2, 7 e 8 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

Também para o dígito 3 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,25401 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PSB em que foi analisado segundo dígito de 1322 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se descartando um exame mais detalhado.

Para os dígitos 2, 3, 7 e 8, por apresentarem valor de P maior que 0,05, não demonstrou diferenças significativas. Já, para os dígitos 1, 4, 6 e 9, considera-se necessária uma análise mais aprofundada.

4.2.2.12. Partido político PSC

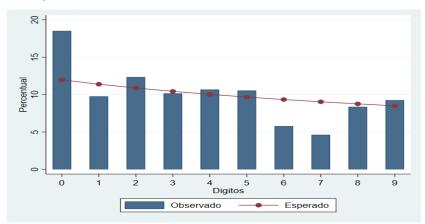


Gráfico 53 - Segundo dígito - PSC

Tabela 57 - Resultados dos testes para 2⁰ dígito - PSC

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	r
0	144	18,509	11,968	6,541	6,541	0,0000
1	76	9,769	11,389	-1,620	1,620	0,1753
2	96	12,339	10,882	1,457	1,457	0,2050
3	79	10,154	10,433	-0,279	0,279	0,8603
4	83	10,668	10,031	0,637	0,637	0,5505
5	82	10,540	9,668	0,872	0,872	0,3959
6	45	5,784	9,337	-3,553	3,553	0,0004
7	36	4,627	9,035	-4,408	4,408	0,0000
8	65	8,355	8,757	-0,402	0,402	0,7511
9	72	9,254	8,500	0,754	0,754	0,4404
TOTAL	778	MDA			20,523	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PSC, foi de 60,02716, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 53 e Tabela 57, que a linha de valores esperados referente aos dígitos 0, 2, 4, 5 e 9 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 6, 7 e 8 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2, 4 e 9 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significantes.

Para os dígitos 1, 3 e 8, com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significantes.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,20523 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Assim, sob a perspectiva do partido PSC em que foi analisado segundo dígito de 778 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, o que não descarta um exame mais detalhado.

Para os dígitos 1, 2, 3, 4, 5, 8 e 9, por apresentarem valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 6 e 7, mostra-se necessária uma análise mais aprofundada.

4.2.2.13. Partido político PSD

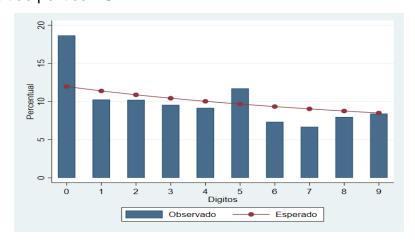


Gráfico 54 - Segundo dígito - PSD

Tabela 58 - Resultados dos testes para 2º dígito - PSD

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	Р
DIGITO	KEOIOTKOO	OBOLITADO	LOI LINADO		MÉDIO	•
0	1469	18,666	11,968	6,698	6,698	0,0000
1	807	10,254	11,389	-1,135	1,135	0,0014
2	805	10,229	10,882	-0,653	0,653	0,0649
3	752	9,555	10,433	-0,878	0,878	0,0104
4	721	9,161	10,031	-0,870	-0,870	0,0101
5	922	11,715	9,668	2,047	2,047	0,0000
6	578	7,344	9,337	-1,993	1,993	0,0000
7	526	6,684	9,035	-2,351	2,351	0,0000
8	628	7,980	8,757	-0,777	0,777	0,0142
9	662	8,412	8,500	-0,088	0,088	0,7928
TOTAL	7870	MDA			15,750	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PSD, foi de 440,0215, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito, foi possível constatar, conforme demostrado no Gráfico 54 e Tabela 58, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 2 e 9 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,15750 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Desta forma, sob a perspectiva do partido PSD em que foi analisado segundo dígito de 7870 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado.

Para os dígitos 2 e 9, por apresentarem valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 1, 3, 4, 6, 7 e 8, demonstra-se a necessidade uma análise mais aprofundada.

4.2.2.14. Partido político PSDB

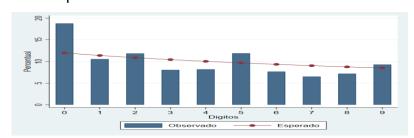


Gráfico 55 - Segundo dígito - PSDB

Tabela 59 - Resultados dos testes para 2⁰ dígito - PSDB

DESVIO

DESVIO

DESVIOS ABSOLUT

DÍGITO REGISTROS OBSERVADO ESPERADO

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL	DESVIOS	ABSOLUTO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DEGVICO	MÉDIO	P
0	978	18,793	11,968	6,825	6,825	0,0000
1	549	10,550	11,389	-0,839	0,839	0,0576
2	617	11,856	10,882	0,974	0,974	0,0260
3	419	8,051	10,433	-2,382	2,382	0,0000
4	426	8,186	10,031	-1,845	1,845	0,0000
5	619	11,895	9,668	2,227	2,227	0,0000
6	399	7,667	9,337	-1,670	1,670	0,0000
7	339	6,514	9,035	-2,521	2,521	0,0000
8	374	7,187	8,757	-1,570	1,570	0,0000
9	484	9,301	8,500	0,801	0,801	0,0415
TOTAL	5204	MDA			21,654	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PSDB, foi de 352,6951, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 55 e Tabela 59, que a linha de valores esperados referente aos dígitos 0, 2, 5 e 9 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6, 7 e 8 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 1 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,21654 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PSDB em que foi analisado segundo dígito de 5204 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 2, 5 e 9. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para o dígito 1, por apresentar Valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 3, 4, 6, 7 e 8, é necessária uma análise mais aprofundada.

4.2.2.15. Partido político PSOL

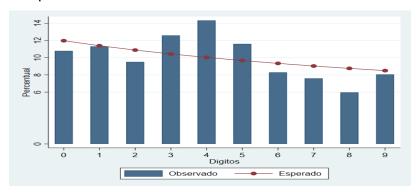


Gráfico 56 - Segundo dígito - PSOL

Tabela 60 - Resultados dos testes para 2º dígito - PSOL

2 0	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	KEOIO IKOO	OBOLITADO	LOI LINADO		MÉDIO	•
0	186	10,783	11,968	-1,185	1,185	0,1378
1	195	11,304	11,389	-0,085	0,085	0,9396
2	164	9,507	10,882	-1,375	1,375	0,0691
3	217	12,58	10,433	2,147	2,147	0,0045
4	247	14,319	10,031	4,288	4,288	0,0000
5	200	11,594	9,668	1,926	1,926	0,0081
6	143	8,29	9,337	-1,047	1,047	0,1473
7	131	7,594	9,035	-1,441	1,441	0,0357
8	103	5,971	8,757	-2,786	2,786	0,0000
9	139	8,058	8,500	-0,442	0,442	0,5455
TOTAL	1725	MDA			16,722	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PSOL, foi de 75,57217, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito é possível constatar, conforme demostrado no Gráfico 56 e Tabela 60, que a linha de valores esperados referente aos dígitos 3, 4 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford. Sendo um excesso maior do dígito 4 em relação aos demais.

Já para os dígitos 0, 1, 2, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 0, 1, 2, 6 e 9 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,16722 demonstra que o percentual observado dos dígitos 3, 4 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PSOL em que foi analisado segundo dígito de 1725 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 3, 4 e 5. Sendo um excesso maior do dígito 4 em relação aos demais, o que não se pode descartar um exame mais detalhado. Para os dígitos 0, 1, 2, 6 e 9, por apresentarem Valor de P maior que 0,05, não se pode concluir que, não havendo diferenças significativas. Já, para os dígitos 7 e 8, é necessária uma análise mais aprofundada.

4.2.2.16. Partido político PT

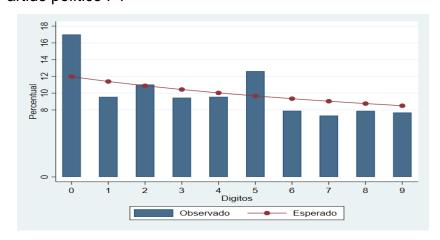


Gráfico 57 - Segundo dígito - PT

Tabela 61 - Resultados dos testes para 2º dígito - PT

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	F
0	2672	17,006	11,968	5,038	5,038	0,0000
1	1500	9,547	11,389	-1,842	1,842	0,0000
2	1733	11,03	10,882	0,148	0,148	0,5472
3	1486	9,458	10,433	-0,975	0,975	0,0001
4	1502	9,560	10,031	-0,471	0,471	0,0494
5	1983	12,621	9,668	2,953	2,953	0,0000
6	1241	7,898	9,337	-1,439	1,439	0,0000
7	1150	7,319	9,035	-1,716	1,716	0,0000
8	1238	7,879	8,757	-0,878	0,878	0,0001
9	1207	7,682	8,500	-0,818	0,818	0,0002
TOTAL	15712	MDA			16,278	

Fonte: Dados de pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PT, foi de 652,1475, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 57 e Tabela 61, que a linha de valores esperados referente aos dígitos 0, 2, e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 2 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,16278 demonstra que o percentual observado dos dígitos 0, 2, e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PT em que foi analisado segundo dígito de 15.712 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundo dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para o dígito 2 por apresentar valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 1, 3, 4, 6, 7, 8 e 9, faz-se necessária uma análise mais aprofundada.

4.2.2.17. Partido político PV

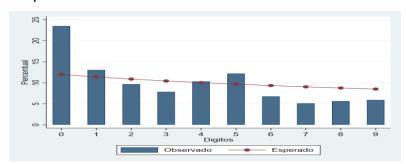


Gráfico 58 - Resultados dos testes para 2^{0} dígito - PV Tabela 62 - Resultados dos testes para 2^{0} dígito - PV

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
				DESVIOS	ABSOLUTO	
DÍGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	Р
0	501	23,510	11,968	11,542	11,542	0,0000
1	278	13,046	11,389	1,657	1,657	0,0186
2	206	9,667	10,882	-1,215	1,215	0,0760
3	167	7,837	10,433	-2,596	2,596	0,0001
4	220	10,324	10,031	0,293	0,293	0,6393
5	260	12,201	9,668	2,533	2,533	0,0001
6	144	6,757	9,337	-2,580	2,580	0,0000
7	109	5,115	9,035	-3,920	3,920	0,0000
8	120	5,631	8,757	-3,126	3,126	0,0000
9	126	5,913	8,500	-2,587	2,587	0,0000
TOTAL	2131	DAM			32,049	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando o partido PV, foi de 365,330, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 58 e Tabela 62, que a linha de valores esperados referente aos dígitos 0, 1, 4 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Constatou-se, para o segundo dígito, que a linha de valores esperados referentes aos dígitos 0, 1, 4 e 5 estava abaixo da barra observada indicando que há um excesso de observações em relação ao que seria esperado pela distribuição de Benford.

Já para os dígitos 2, 3, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 4 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas, e para o dígito 2 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,32049 demonstra que o percentual observado dos dígitos 0, 1 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido PV em que foi analisado segundo dígito de 2131 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 1 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, o que não se pode descartar um exame mais detalhado.

Para os dígitos 2 e 4 por apresentarem Valores de P maior que 0,05, não há diferenças significativas. Já, para os dígitos 1, 3, 4, 6, 7, 8 e 9, convém uma análise mais aprofundada.

4.2.2.18. Partido político Republicano

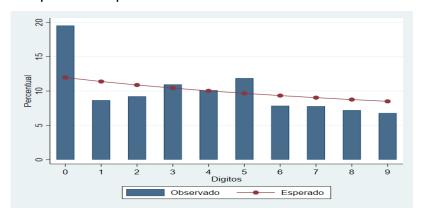


Gráfico 59 - segundo dígito - Republicano

Tabela 63 - Resultados dos testes para 2º dígito - Republicano

2º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	1386	19,540	11,968	7,572	7,572	0,0000
1	615	8,671	11,389	-2,718	2,718	0,0000
2	654	9,22	10,882	-1,662	1,662	0,0000
3	777	10,954	10,433	0,521	0,521	0,1507
4	718	10,123	10,031	0,092	0,092	0,7972
5	842	11,871	9,668	2,203	2,203	0,0000
6	557	7,853	9,337	-1,484	1,484	0,0000
7	552	7,782	9,035	-1,253	1,253	0,0002
8	511	7,204	8,757	-1,553	1,553	0,0000
9	481	6,781	8,500	-1,719	1,719	0,0000
TOTAL	7093	MDA			20,777	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando o partido Republicano, foi de 514,6307, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 59 e Tabela 63, que a linha de

valores esperados referente aos dígitos 0, 3, 4 e 5 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos, todavia, para os dígitos 3 e 4 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças relevantes.

O resultado do Teste Qui-Quadrado calculado excedeu e muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,20777 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido Republicano em que foi analisado segundo dígito de 7093 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se podendo descartar um exame mais detalhado.

Para os dígitos 3 e 4 por apresentarem Valores de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 1, 2, 6, 7, 8 e 9, é necessária uma análise mais aprofundada.

4.2.2.19. Partido político Solidariedade

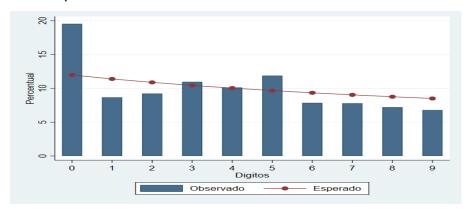


Gráfico 60 - Segundo dígito - Solidariedade

Tabela 64 - Resultados dos testes para 2º dígito - Solidariedade

2º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	414	23,390	11,968	11,422	11,422	0,0000
1	182	10,282	11,389	-1,107	1,107	0,1550
2	190	10,734	10,882	-0,148	0,148	0,8787
3	154	8,701	10,433	-1,732	1,732	0,0159
4	166	9,379	10,031	-0,652	0,652	0,3840
5	224	12,655	9,668	2,987	2,987	0,0000
6	123	6,949	9,337	-2,388	2,388	0,0004
7	110	6,215	9,035	-2,820	2,820	0,0000
8	96	5,424	8,757	-3,333	3,333	0,0000
9	111	6,271	8,500	-2,229	2,229	0,0005
TOTAL	1770	MDA			28,818	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando o partido Solidariedade foi de 276,2635, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Analisando os resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 60 e Tabela 64, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando, que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Constatou-se, para o segundo dígito, que a linha de valores esperados referentes aos dígitos 0 e 5 estava abaixo da barra observada indicando que, há um excesso de observações relacionadas ao que seria esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos, no entanto, para os dígitos 1, 2 e 4 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,28818 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Desta forma, sob a perspectiva do partido Solidariedade em que foi analisado segundo dígito de 1770 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se descartando um exame mais detalhado..

Para os dígitos 1, 2 e 4 por apresentarem valores de P maior que 0,05, não havendo diferenças significativas.

Os dígitos 3, 6, 7, 8 e 9, necessita de uma análise mais aprofundada.

4.2.2.20. Partido político União

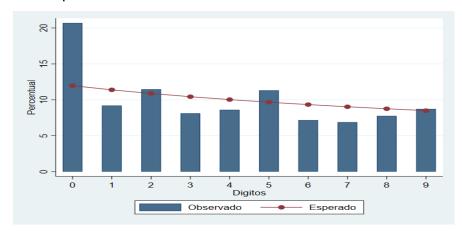


Gráfico 61 - Segundo dígito - União

Tabela 65 - Resultados dos testes para 2º dígito - União

2º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	1355	20,697	11,968	8,729	8,729	0,0000
1	603	9,210	11,389	-2,179	2,179	0,0000
2	751	11,471	10,882	0,589	0,589	0,1265
3	532	8,126	10,433	-2,307	2,307	0,0000
4	564	8,615	10,031	-1,416	1,416	0,0001
5	741	11,318	9,668	1,650	1,650	0,0000
6	470	7,179	9,337	-2,158	2,158	0,0000
7	451	6,889	9,035	-2,146	2,146	0,0000
8	508	7,759	8,757	-0,998	0,998	0,0039
9	572	8,737	8,500	0,237	0,237	0,4921
TOTAL	6547	MDA			22,409	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando o partido União, foi de 585,0272, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 61 e Tabela 65, que a linha de valores esperados referente aos dígitos 0, 2, 5 e 9 estava abaixo da barra observada indicando que esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6, 7, e 8 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Já para os dígitos 2 e 9, com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor de P é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,22409 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do partido União em que foi analisado segundo dígito de 6547 valores, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5 é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, do que não se pode descartar um exame mais detalhado. Para os dígitos 2 e 9 por apresentarem valores de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 1, 3, 4, 6, 7 e 8, mostra a necessidade uma análise mais aprofundada.

4.2.3. Análise do segundo dígito por tipo de gasto

4.2.3.1. Análise do segundo dígito - Gasto 1

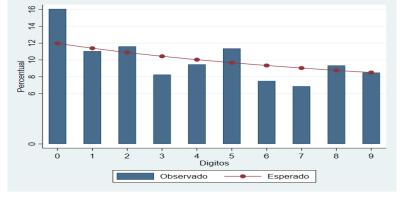


Gráfico 62 - Segundo dígito - Gasto 1

Tabela 66 - Resultados dos testes para 20 dígito - Gasto 1

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	-
0	1841	16,074	11,968	4,106	4,106	0,0000
1	1265	11,045	11,389	-0,344	0,344	0,2513
2	1330	11,613	10,882	0,731	0,731	0,0127
3	945	8,251	10,433	-2,182	2,182	0,0000
4	1085	9,474	10,031	-0,557	0,557	0,0482
5	1301	11,359	9,668	1,691	1,691	0,0000
6	858	7,491	9,337	-1,846	1,846	0,0000
7	786	6,863	9,035	-2,172	2,172	0,0000
8	1070	9,343	8,757	0,586	0,586	0,0279
9	972	8,487	8,500	-0,013	0,013	0,9733
TOTAL	11453	MDA			14,228	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 1 (manutenção de escritório de apoio atividade parlamentar) foi de 363,9947, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Em análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 62 e Tabela 66, que a linha de valores esperados referente aos dígitos 0, 2, 5 e 8 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6, 7 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 1 e 9 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,14228 demonstra que o percentual observado dos dígitos 0, 2, 5 e 8, supera o percentual esperado.

Então, sob a perspectiva do Gasto 1 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 2, 5 e 8, sendo excesso de observações maior pelos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 1 e 9 por apresentarem Valores de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 3, 4, 6 e 7, seria bom uma análise mais aprofundada.

4.2.3.2. Análise do segundo dígito - Gasto 3

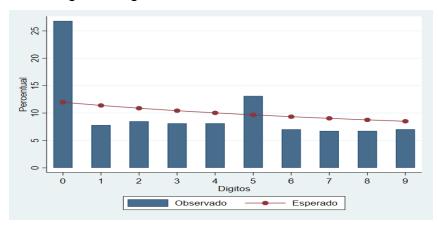


Gráfico 63 - Segundo dígito - Gasto 3

Tabela 67 - Resultados dos testes para 2º dígito - Gasto 3

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	r
0	6812	26,814	11,968	14,846	14,846	0,0000
1	1982	7,802	11,389	-3,587	3,587	0,0000
2	2156	8,487	10,882	-2,395	2,395	0,0000
3	2061	8,113	10,433	-2,32	2,32	0,0000
4	2063	8,12	10,031	-1,911	1,911	0,0000
5	3332	13,116	9,668	3,448	3,448	0,0000
6	1783	7,018	9,337	-2,319	2,319	0,0000
7	1713	6,743	9,035	-2,292	2,292	0,0000
8	1714	6,747	8,757	-2,01	2,010	0,0000
9	1789	7,042	8,500	-1,458	1,458	0,0000
TOTAL	25405	MDA			36,586	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 3 (combustíveis e lubrificantes) foi de 6110,28, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito, foi possível constatar, conforme demostrado no Gráfico 63 e Tabela 67, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,36586 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Então, sob a perspectiva do Gasto 3 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Já, para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9, é necessária uma análise mais aprofundada.

4.2.3.3. Análise do segundo dígito - Gasto 4

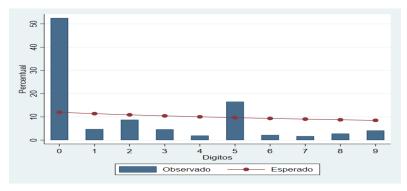


Gráfico 64 - Segundo dígito - Gasto 4

Tabela 68 - Resultados dos testes para 2º dígito - Gasto 4

2º DÍGITO		PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	432	52,555	11,968	40,587	40,587	0,0000
1	39	4,745	11,389	-6,644	6,644	0,0000
2	72	8,759	10,882	-2,123	2,123	0,0500
3	38	4,623	10,433	-5,81	5,81	0,0000
4	16	1,946	10,031	-8,085	8,085	0,0000
5	136	16,545	9,668	6,877	6,877	0,0000
6	18	2,19	9,337	-7,147	7,147	0,0000
7	14	1,703	9,035	-7,332	7,332	0,0000
8	23	2,798	8,757	-5,959	5,959	0,0000
9	34	4,136	8,500	-4,364	4,364	0,0000
TOTAL	822	MDA			94,928	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 4 (consultorias, pesquisas e trabalhos técnicos) foi de 1432,685, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 64 e Tabela 68, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado foi 1432,685, apresentando o valor de P 0,0000. Verifica-se então que o valor calculado excedeu muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,94928 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Assim, sob a perspectiva do Gasto 4 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se descartando um exame mais detalhado. Já, para os demais dígitos se mostra necessária uma análise mais aprofundada.

4.2.3.4. Análise do segundo dígito - Gasto 5

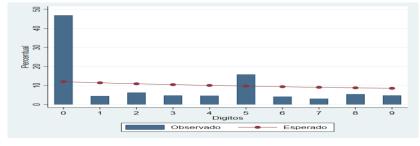


Gráfico 65 - Segundo dígito - Gasto 5

Tabela 69 - Resultados dos testes para 2⁰ dígito - Gasto 5

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	-
0	2253	46,840	11,968	34,872	34,872	0,0000
1	214	4,449	11,389	-6,940	6,940	0,0000
2	301	6,258	10,882	-4,624	4,624	0,0500
3	227	4,719	10,433	-5,714	5,714	0,0000
4	222	4,615	10,031	-5,416	5,416	0,0000
5	759	15,78	9,668	6,112	6,112	0,0000
6	198	4,116	9,337	-5,221	5,221	0,0000
7	147	3,056	9,035	-5,979	5,979	0,0000
8	260	5,405	8,757	-3,352	3,352	0,0000
9	229	4,761	8,500	-3,739	3,739	0,0000
TOTAL	4810	MDA			81,969	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 5 (divulgação da atividade parlamentar) foi de 6133,886, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 65 e Tabela 69, que a linha de valores esperados referente aos dígitos 0 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 2, 3, 4, 6, 7, 8 e 9 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,81969 demonstra que o percentual observado dos dígitos 0 e 5, supera o percentual esperado.

Desta forma, sob a perspectiva do Gasto 5 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se podendo descartar um exame mais detalhado. Já, para os demais dígitos é, necessário uma análise mais aprofundada.

4.2.3.5. Análise do segundo dígito - Gasto 8

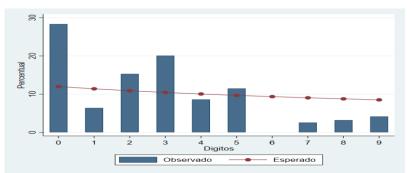


Gráfico 66 - Segundo dígito - Gasto 8

Tabela 70 - Resultados dos testes para 2º dígito - Gasto 8

2º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	89	28,344	11,968	16,376	16,376	0,0000
1	20	6,369	11,389	-5,020	5,02	0,0043
2	48	15,287	10,882	4,405	4,405	0,0180
3	63	20,064	10,433	9,631	9,631	0,0000
4	27	8,599	10,031	-1,432	1,432	0,4524
5	36	11,465	9,668	1,797	1,797	0,2925
6	0	0,000	9,337	-9,337	9,337	0,0000
7	8	2,548	9,035	-6,487	6,487	0,0000
8	10	3,185	8,757	-5,572	5,572	0,0001
9	13	4,140	8,500	-4,360	4,360	0,0043
TOTAL	314	MDA			64,417	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 8 (Serviço de segurança prestado por empresa especializada) foi de 174,6121, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 66 e Tabela 70, que a linha de valores esperados referente aos dígitos 0, 2, 3 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 4, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente relevantes, apresentando desvios significativos. Porém, para o dígito 5 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas, e para o dígito 4 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado foi 174,6121 apresentando o valor de P 0,0000. Verifica-se então que o valor calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O valor de DAM de 0,64417 demonstra que o percentual observado dos dígitos 0, 2 e 3, supera o percentual esperado.

Sob a perspectiva do Gasto 8 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 2 e 3, sendo excesso de observações maior pelo dígito 0. Essa particularidade, de excessos de segundos dígitos 0, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 4 e 5 por apresentarem valores de P maior que 0,05, não havendo diferenças significantes. Já, para os dígitos 1, 6, 7, 8 e 9, bom se mostra uma análise mais aprofundada.

4.2.3.6. Análise do segundo dígito - Gasto 9

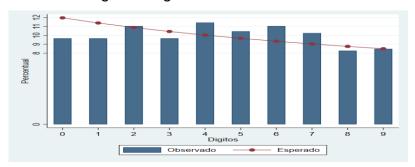


Gráfico 67 - Segundo dígito - Gasto 9

Tabela 71 - Resultados dos testes para 2⁰ dígito - Gasto 9

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
Didiro	KEOIOTKOO	OBOLITADO	LOI LIVADO		MÉDIO	•
0	49	9,665	11,968	-2,303	2,303	0,1156
1	49	9,665	11,389	-1,724	1,724	0,2351
2	56	11,045	10,882	0,163	0,163	0,8866
3	49	9,665	10,433	-0,768	0,768	0,6116
4	58	11,440	10,031	1,409	1,409	0,3001
5	53	10,454	9,668	0,786	0,786	0,5474
6	56	11,045	9,337	1,708	1,708	0,1938
7	52	10,256	9,035	1,221	1,221	0,3519
8	42	8,284	8,757	-0,473	0,473	0,8135
9	43	8,481	8,500	-0,019	0,019	1,0000
TOTAL	507	MDA			10,574	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 9 (passagem aérea reembolso) foi de 7,747934, sendo seu valor de P 0,5597 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 67 e Tabela 71, que a linha de valores esperados referente aos dígitos 2, 4, 5, 6 e 7 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 0, 1, 3, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos, porém, verificou-se que todos os valores de P são maiores que 0,05, não havendo diferenças significativas para eles.

O resultado do Teste Qui-Quadrado calculado é menor que o valor crítico, estando em conformidade a Lei de Benford e seu valor de P maior que 0,05, significando que não há diferenças significativas.

Quanto ao resultado da DAM temos o valor de 0,10574, sendo maior que 0,012. O que nos leva a conclusão da não conformidade com a Lei de Benford.

Então, sob a perspectiva do gasto 9 observa-se que o teste Qui-Quadrado confirma a hipótese nula por seu valor ser menor que o valor crítico e seu valor de P sendo maior que 0,05, não tendo diferenças significativas. Quanto ao teste valor de P para cada dígito e por serem todos maiores que 0,05, não há diferenças significativas para eles, não podendo concluir que não estão em conformidade com a Lei. Já o DAM por ser maior que 0,012, rejeita a hipótese nula. De toda forma, não se pode descartar um exame mais detalhado.

4.2.3.7. Análise do segundo dígito - Gasto 10

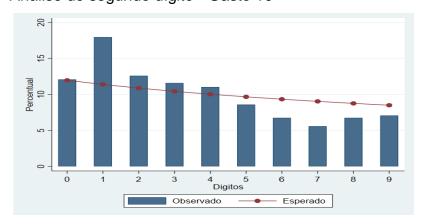


Gráfico 68 - Segundo dígito - Gasto 10

Tabela 72 - Resultados dos testes para 2º dígito - Gasto 10

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	Р
Didire	NEOIOTINO O	OBOLITADO	LOI LIVADO		MÉDIO	·
0	819	12,085	11,968	0,117	0,117	0,7646
1	1218	17,973	11,389	6,584	6,584	0,0000
2	854	12,601	10,882	1,719	1,719	0,0000
3	785	11,583	10,433	1,150	1,15	0,0022
4	748	11,037	10,031	1,006	1,006	0,0006
5	582	8,588	9,668	-1,080	1,080	0,0023
6	457	6,743	9,337	-2,594	2,594	0,0000
7	378	5,578	9,035	-3,457	3,457	0,0000
8	457	6,743	8,757	-2,014	2,014	0,0000
9	479	7,068	8,500	-1,432	1,432	0,0000
TOTAL	6777	MDA			21,153	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 10 (telefonia) foi de 7486,2398, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 68 e Tabela 72, que a linha de valores esperados referente aos dígitos 0, 1, 2, 3 e 4 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 5, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 0 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significantes.

O resultado do Teste Qui-Quadrado calculado excedeu muito o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao resultado da DAM temos o valor de 0,21153, sendo maior que 0,012. O que nos leva a conclusão da não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 10 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 1, 2, 3 e 4. Para o dígito 0 por apresentar Valor de P maior que 0,05, não havendo diferenças significantes. Já, para os dígitos 5, 6, 7, 8 e 9, é necessária uma análise mais aprofundada.

4.2.3.8. Análise do segundo dígito - Gasto 11

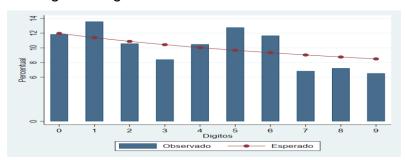


Gráfico 69 - Segundo dígito - Gasto 11

Tabela 73 - Resultados dos testes para 20 dígito - Gasto 11

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	KEGIOTKOO	OBOLITADO	LOI LINADO		MÉDIO	•
0	573	11,851	11,968	-0,117	0,117	0,8247
1	657	13,588	11,389	2,199	2,199	0,0000
2	512	10,589	10,882	-0,293	0,293	0,5330
3	407	8,418	10,433	-2,015	2,015	0,0000
4	507	10,486	10,031	0,455	0,455	0,2922
5	618	12,782	9,668	3,114	3,114	0,0000
6	564	11,665	9,337	2,328	2,328	0,0000
7	331	6,846	9,035	-2,189	2,189	0,0000
8	350	7,239	8,757	-1,518	1,518	0,0001
9	316	6,536	8,500	-1,964	1,964	0,0000
TOTAL	4835	MDA			16,192	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 11 - serviços postais - foi de 177,6561, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 69 e Tabela 73, que a linha de valores esperados referente aos dígitos 1, 4, 5 e 6 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford, constando um excesso de observações maior pelo dígito 5.

Já para os dígitos 0, 2, 3, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 0 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao resultado da DAM temos o valor de 0,16192, sendo maior que 0,012. O que nos leva a conclusão da não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 11, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 1, 4, 5 e 6, sendo excesso de observações maior pelo dígito 5. Essa particularidade, de excessos de segundos dígitos 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para o dígito 0 por apresentar valor de P maior que 0,05, não havendo diferenças significativas. Já, para os dígitos 2, 3, 7, 8 e 9, é necessária uma análise mais aprofundada.

4.2.3.9. Análise do segundo dígito - Gasto 12

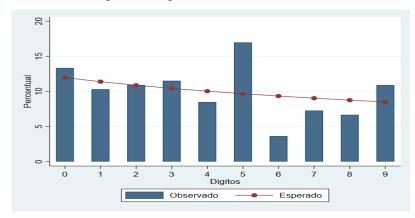


Gráfico 70 - Segundo dígito - Gasto 12

Tabela 74 - Resultados dos testes para 2⁰ digito - Gasto 12

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	-
0	22	13,333	11,968	1,365	1,365	0,5497
1	17	10,303	11,389	-1,086	1,086	0,8060
2	18	10,909	10,882	0,027	0,027	1,0000
3	19	11,515	10,433	1,082	1,082	0,6108
4	14	8,485	10,031	-1,546	1,546	0,6043
5	28	16,970	9,668	7,302	7,302	0,0034
6	6	3,636	9,337	-5,701	5,701	0,0101
7	12	7,273	9,035	-1,762	1,762	0,4985
8	11	6,667	8,757	-2,090	2,090	0,4090
9	18	10,909	8,500	2,409	2,409	0,2629
TOTAL	165	MDA			24,370	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 12 (assinaturas e publicações) foi de 18,36726, sendo seu valor de P 0,0311 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 70 e Tabela 74, que a linha de valores esperados referente aos dígitos 0, 2, 3, 5 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 4, 6, 7, e 8 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para os dígitos 0, 2, 3 e 9 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas. E para os dígitos 1, 4, 6, 7 e 8 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças relevantes.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao resultado da DAM temos o valor de 0,24370, sendo maior que 0,012. O que nos leva a conclusão da não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 12 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 5. Essa particularidade, de excessos de segundos dígitos 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. De toda forma, não se pode descartar um exame mais detalhado. Para os dígitos 0, 1, 2, 3, 4, 6, 7, 8 e 9 por apresentarem valores de P maiores que 0,05, não havendo diferenças significativas.

4.2.3.10. Análise do segundo dígito - Gasto 13

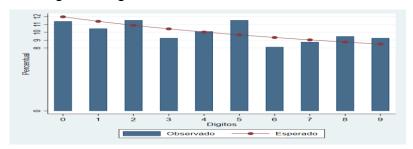


Gráfico 71 - Segundo dígito - Gasto 13

Tabela 75 - Resultados dos testes para 20 dígito - Gasto 13

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	Р
DIGITO	KEGIOTKOO	OBOLITADO	LOI LINADO		MÉDIO	•
0	321	11,399	11,968	-0,569	0,569	0,3682
1	295	10,476	11,389	-0,913	0,913	0,1304
2	325	11,541	10,882	0,659	0,659	0,2629
3	261	9,268	10,433	-1,165	1,165	0,0450
4	285	10,121	10,031	0,090	0,090	0,8754
5	325	11,541	9,668	1,873	1,873	0,0010
6	229	8,132	9,337	-1,205	1,205	0,0276
7	247	8,771	9,035	-0,264	0,264	0,6455
8	267	9,482	8,757	0,725	0,725	0,1718
9	261	9,268	8,500	0,768	0,768	0,1462
TOTAL	2816	MDA			8,231	

O resultado do teste X² para segundo dígito, considerando Gasto 13 (fornecimento de alimentação do parlamentar) foi de 26,09796, sendo seu valor de P 0,0020 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 71 e Tabela 75, que a linha de valores esperados referente aos dígitos 2, 4, 5, 8 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 0, 1, 3, 6, e 7 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos, e, para o dígito 2, 4, 8 e 9 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

Para os dígitos 0, 1, 3, 6 e 7 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico de 16,919, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Quanto ao resultado da DAM temos o valor de 0,08231, sendo menor que 0,012. O que nos leva a conclusão da não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 13, observa-se o teste X² e o Valor de P, rejeitaram a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 5. Essa particularidade, de excesso de segundo dígito 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores. Já o valor de DAM se enquadra no grau de conformidade 0,006 a 0,0012, sendo aceitável a conformidade para Lei de Benford. De toda forma, não se pode descartar um exame mais detalhado.

Para os dígitos 0, 1, 2, 3, 4, 6, 7, 8 e 9 por apresentarem valores de P maior que 0,05, não há diferenças significativas.

4.2.3.11. Análise do segundo dígito - Gasto 14

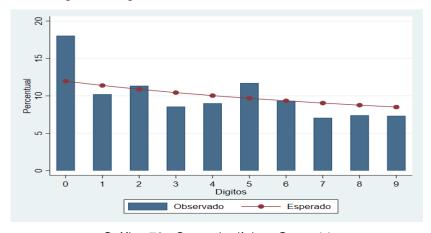


Gráfico 72 - Segundo dígito - Gasto 14

Tabela 76 - Resultados dos testes para 20 dígito - Gasto 14

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO				DESVIOS	ABSOLUTO	
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	Р
0	687	18,041	11,968	6,073	6,073	0,0000
1	389	10,215	11,389	-1,174	1,174	0,0232
2	432	11,345	10,882	0,463	0,463	0,3624
3	326	8,561	10,433	-1,872	1,872	0,0001
4	343	9,007	10,031	-1,024	1,024	0,0354
5	446	11,712	9,668	2,044	2,044	0,0000
6	355	9,322	9,337	-0,015	0,015	0,0000
7	269	7,064	9,035	-1,971	1,971	0,0000
8	282	7,405	8,757	-1,352	1,352	0,0029
9	279	7,327	8,500	-1,173	1,173	0,0089
TOTAL	3808	MDA			17,161	

O resultado do teste X² para segundo dígito, considerando Gasto 14 (hospedagem exceto, do parlamentar do Distrito Federal) foi de 186,422, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 72 e Tabela 76, que a linha de valores esperados referente aos dígitos 0, 2 e 5 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 4, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos. Porém, para o dígito 2 com excesso de observações, em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando à hipótese nula, estando desconforme a Lei de Benford. Quanto ao resultado da DAM temos o valor de 0,17161, sendo superior a 0,012. O que leva a conclusão da conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 14, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, o que não se pode descartar um exame mais detalhado. Para o dígito 2 por apresentar valor de P maior que 0,05, não se pode concluir que, não havendo diferenças significativas. Já, para os dígitos 1, 3, 4, 6, 7, 8 e 9, faz-se necessária uma análise mais aprofundada.

4.2.3.12. Análise do segundo dígito - gasto 119

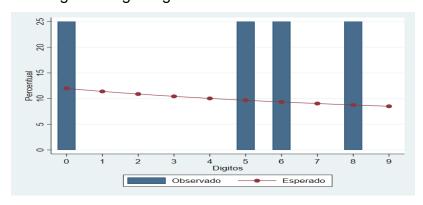
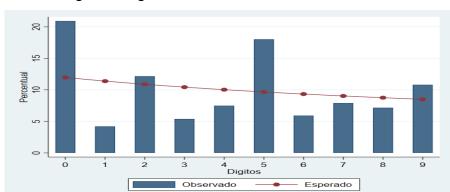


Gráfico 73 - Segundo dígito - Gasto 119

Tabela 77 - Resultados dos testes para 2⁰ dígito - Gasto 119

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	P
0	1	25,000	11,968	13,032	13,032	0,3994
1	0	0,000	11,389	-11,389	11,389	1,0000
2	0	0,000	10,882	-10,882	10,882	1,0000
3	0	0,000	10,433	-10,433	10,433	1,0000
4	0	0,000	10,031	-10,031	10,031	1,0000
5	1	25,000	9,668	15,332	15,332	0,3342
6	1	25,000	9,337	15,663	15,663	0,3244
7	0	0,000	9,035	-9,035	9,035	1,0000
8	1	25,000	8,757	16,243	16,243	0,3069
9	0	0,000	8,500	-8,500	8,500	1,0000
TOTAL	4	MDA			120,54	

O resultado do teste X², para segundo dígito, considerando Gasto 119 (locação ou fretamento de aeronave) foi de 6,207082, sendo seu valor de P 0,7190 e o valor crítico usado de 16.919.


Da análise dos resultados dos testes de conformidade, para o primeiro dígito, foi possível constatar, conforme demostrado no Gráfico 73 e Tabela 77, que a linha de valores esperados referente aos dígitos 0, 5, 6 e 8 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos. Porém, para o dígito 0, 5, 6 e 8 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significantes.

O resultado do Teste Qui-Quadrado calculado foi menor que o valor crítico, afirmando a hipótese nula, estando conforme a Lei de Benford, porém em virtude do seu valor de P ser maior que 0,05, não havendo diferenças significativas.

O resultado para DAM foi de 1,2054, sendo maior que 0,012, resultando na não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 119, observa-se que o teste Qui-Quadrado é influenciado pelo tamanho da amostra e DAM não. Sendo assim, tem-se a conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 5, 6 e 8 pelo teste X² e não conformidade pelo DAM. Quanto ao valor de P, todos foram maiores que 0,05, não havendo diferenças significativas. De toda forma, não se pode descartar um exame mais detalhado.

4.2.3.13. Análise do segundo dígito - Gasto 120

Gráfico 74 - Segundo dígito - Gasto 120

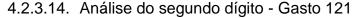
DESVIO 2<u>0</u> Νo DE PERCENTUAL **VALOR PERCENTUAL DESVIOS ABSOLUTO** DÍGITO REGISTROS OBSERVADO **ESPERADO MÉDIO** 707 20,930 11,968 8,962 8,962 0,0000 0 1 142 4,204 11,389 7,185 -7,1850,0000 1,285 2 411 12,167 10,882 1,285 0,0175 3 182 5,388 10,433 -5,045 5,045 0,0000 4 253 7,490 10,031 -2,5412,541 0,0000 5 609 18,028 9,668 8,360 8,360 0,0000 6 200 5,921 9,337 -3,416 3,416 0,0000 7 267 7,904 9,035 -1,131 1,131 0,0208 8 242 7,164 8,757 -1,593 1,593 0,0009 9 365 10,805 8,500 2,305 2,305 0,0000 **TOTAL 3378** 41,823 **MDA**

Tabela 78 - Resultados dos testes para 2º dígito - Gasto 120

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 120 (locação ou fretamento de automotores) foi de 811,2711 sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Através da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 74 e Tabela 78, que a linha de valores esperados referente aos dígitos 0, 2, 5 e 9 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.


Já para os dígitos 1, 3, 4, 6, 7 e 8 a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O resultado para DAM foi de 0,41823, sendo maior que 0,012, resultando na não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 120, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 2, 5 e 9, sendo o excesso de observações bem maiores que os demais. Essa particularidade, de excessos de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referentes a pagamentos e causada por arredondamentos de valores, não se pode descartar um exame mais detalhado. Já, para os dígitos 1, 3, 4, 6, 7 e 8, é necessária uma análise mais aprofundada.

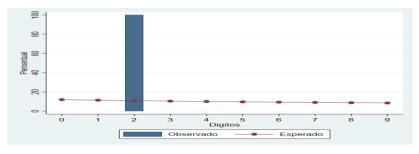


Gráfico 75 - Segundo dígito - Gasto 121

Tabela 79 - Resultados dos testes para 2º dígito - Gasto 121

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO				DESVIOS	ABSOLUTO	
DIGITO	REGISTROS	OBSERVADO	ESPERADO		MÉDIO	Р
0	0	0,000	11,968	-11,968	11,968	1,0000
1	0	0,000	11,389	-11,389	11,389	1,0000
2	1	100,000	10,882	89,118	89,118	0,1088
3	0	0,000	10,433	-10,433	10,433	1,0000
4	0	0,000	10,031	-10,031	10,031	1,0000
5	0	0,000	9,668	-9,668	9,668	1,0000
6	0	0,000	9,337	-9,337	9,337	1,0000
7	0	0,000	9,035	-9,035	9,035	1,0000
8	0	0,000	8,757	-8,757	8,757	1,0000
9	0	0,000	8,500	-8,500	8,500	1,0000
TOTAL	1	MDA			178,236	

O resultado do teste X² para segundo dígito, considerando Gasto 121 (locação ou fretamento de embarcações), foi de 8,189361 sendo seu valor de P 0,5152 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 75 e Tabela 79, que a linha de valores esperados referente ao dígito 2 estava abaixo da barra observada indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, e apresenta desvios relevantes. Para o dígito 2 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado foi 8,189361, apresenta o valor de P 0,5152, verifica-se então que o valor calculado foi menor que o valor crítico, afirmando a hipótese nula estando conforme a Lei de Benford, porém em virtude do seu valor de P ser maior que 0,05, o resultado é ausência de diferenças importantes.

O resultado para DAM foi de 1,78236, sendo maior que 0,012, resultando de não conformidade com a Lei de Benford.

Então, sob a perspectiva do gasto 121, observa-se que o teste Qui-Quadrado por seu valor, ser menor que 06,919 resultando na conformidade para Lei de Benford e para o valor de P ser maior que 0,05 fazendo com que não haja diferenças significativas. Já para o valor de DAM maior que 0,012, rejeita à hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 2, o que não se pode descartar um exame mais detalhado.

4.2.3.15. Análise do segundo dígito - Gasto 122

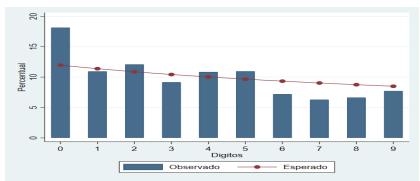


Gráfico 76 - Segundo dígito - Gasto 122

Tabela 80 - Resultados dos testes para $2^{\underline{0}}$ dígito - Gasto 122

2º DÍGITO		PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	1027	18,154	11,968	6,186	6,186	0,0000
1	619	10,942	11,389	-0,447	0,447	0,2955
2	684	12,091	10,882	1,209	1,209	0,0039
3	518	9,157	10,433	-1,276	1,276	0,0015
4	614	10,854	10,031	0,823	0,823	0,0417
5	620	10,960	9,668	1,292	1,292	0,0012
6	407	7,195	9,337	-2,142	2,142	0,0000
7	356	6,293	9,035	-2,742	2,742	0,0000
8	376	6,647	8,757	-2,110	2,110	0,0000
9	436	7,707	8,500	-0,793	0,793	0,0319
TOTAL	5657	MDA			19,020	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 122 (serviços de táxi, pedágio e estacionamento), foi de 319,7703 sendo seu valor de P 0,0000 e o valor crítico de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 76 e Tabela 80, que a linha de valores esperados, referente aos dígitos 0, 2, 4 e 5 estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 1, 3, 6, 7, 8 e 9 a linha de valores esperados, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperada pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente importantes, apresentando desvios significativos. Porém, para o dígito 1 com escassez de observações em relação ao que seria esperado pela distribuição de Benford verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O resultado para DAM foi de 0,19020, sendo maior que 0,012, resultando de não conformidade com a Lei de Benford.

Desta forma, sob a perspectiva do Gasto 122 observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 0, 2, 4 e 5.

Para o dígito 1 por apresentar valor de P maior que 0,05, não havendo diferenças significativas.

Para os dígitos 3, 6, 7, 8 e 9, faz-se necessária uma análise mais aprofundada.

4.2.3.16. Análise do segundo dígito - Gasto 123

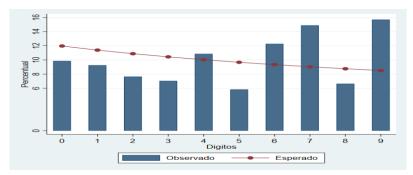


Gráfico 77 - Segundo dígito - Gasto 123

Tabela 81 - Resultados dos testes para 2⁰ dígito - Gasto 123

2 <u>0</u>	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
Didire	NEO!OTROO	OBOLITADO	LOI LIVADO		MÉDIO	•
0	49	9,859	11,968	-2,109	2,109	0,1665
1	46	9,256	11,389	-2,133	2,133	0,1573
2	38	7,646	10,882	-3,236	3,236	0,0208
3	35	7,042	10,433	-3,391	3,391	0,0124
4	54	10,865	10,031	0,834	0,834	0,5499
5	29	5,835	9,668	-3,833	3,833	0,0030
6	61	12,274	9,337	2,937	2,937	0,0304
7	74	14,889	9,035	5,854	5,854	0,0000
8	33	6,640	8,757	-2,117	2,117	0,1117
9	78	15,694	8,500	7,194	7,194	0,0000
TOTAL	497	MDA			33,638	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 123 (passagens terrestres, marítimas ou fluviais), foi de 78,23912 sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 77 e Tabela 81, que a linha de valores esperados referente aos dígitos 4, 6, 7 e 9 estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Já para os dígitos 0, 1, 2, 3, 5 e 8 a linha de valores esperados, estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperada pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos; porém, para o dígito 1 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O resultado para DAM foi de 0,33638, sendo maior que 0,012, resultando de não conformidade com a Lei de Benford.

Então, sob a perspectiva do gasto 123, observa-se que os três testes se alinham, rejeitando à hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente aos dígitos 4, 6, 7 e 9. Para o dígito 1 por apresentar valor de P maior que 0,05, não havendo diferenças significantes. Já, para os dígitos 0, 2, 3, 5 e 8, bom seria uma análise mais aprofundada.

4.2.3.17. Análise do segundo dígito - Gasto 137

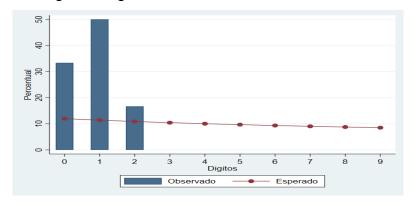


Gráfico 78 - Segundo dígito - Gasto 137

Tabela 82 - Resultados dos testes para 2º dígito - Gasto 137

2 ⁰	Nº DE	PERCENTUAL	PERCENTUAL		DESVIO	VALOR
DÍGITO	REGISTROS	OBSERVADO	ESPERADO	DESVIOS	ABSOLUTO	P
2.0.10	N201011100	0202.1177.20	20, 2,0,00		MÉDIO	·
0	2	33,333	11,968	21,365	21,365	0,1549
1	3	50,000	11,389	38,611	38,611	0,0226
2	1	16,667	10,882	5,785	5,785	0,4991
3	0	0,000	10,433	-10,433	10,433	1,0000
4	0	0,000	10,031	-10,031	10,031	1,0000
5	0	0,000	9,668	-9,668	9,668	1,0000
6	0	0,000	9,337	-9,337	9,337	1,0000
7	0	0,000	9,035	-9,035	9,035	1,0000
8	0	0,000	8,757	-8,757	8,757	1,0000
9	0	0,000	8,500	-8,500	8,500	1,0000
TOTAL	6	MDA			131,522	

O resultado do teste X² para segundo dígito, considerando Gasto 137 (participação em curso, palestra ou evento similar), foi de 14,2726 sendo seu valor de P 0,1130 e o valor crítico usado de 16,919.

Por meio da análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 78 e Tabela 82, que a linha de valores esperados referente aos dígitos 0, 1 e 2 estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas, apresentando desvios significativos; no entanto, para os dígitos 0 e 2 com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado foi menor que o valor crítico, afirmando à hipótese nula, estando conforme a Lei de Benford, porém em virtude do seu valor de P ser maior que 0,05, não havendo diferenças significativas.

O resultado para DAM foi de 1,31522, sendo maior que 0,012, resultando de não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 137, observa-se que o teste Qui-Quadrado resulta da conformidade da Lei de Benford, Valor de P resulta na ausência de diferenças significativas e DAM rejeita a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas para Lei de Benford referente ao dígito 1. De toda forma, não se pode descartar um exame mais detalhado.

4.2.3.18. Análise do segundo dígito - Gasto 998

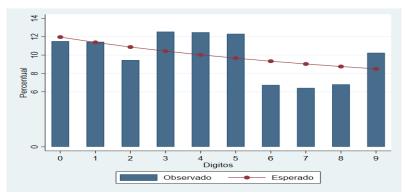


Gráfico 79 - Segundo dígito - Gasto 998

Tabela 83 - Resultados dos testes para 2º dígito - Gasto 998

2º DÍGITO	Nº DE REGISTROS	PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	1024	11,520	11,968	-0,448	0,448	0,1968
1	1018	11,452	11,389	0,063	0,063	0,0226
2	841	9,461	10,882	-1,421	1,421	0,4991
3	1116	12,555	10,433	2,122	2,122	1,0000
4	1110	12,487	10,031	2,456	2,456	1,0000
5	1095	12,319	9,668	2,651	2,651	1,0000
6	599	6,739	9,337	-2,598	2,598	1,0000
7	570	6,412	9,035	-2,623	2,623	1,0000
8	605	6,806	8,757	-1,951	1,951	1,0000
9	911	10,249	8,500	1,749	1,749	1,0000
TOTAL	8889	MDA			18,082	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 998 (passagens aéreas SIGEPA), foi de 377,0539 sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Pela análise dos resultados dos testes de conformidade para o segundo dígito foi possível constatar, conforme demostrado no Gráfico 79 e Tabela 83, que a linha de valores esperados referente aos dígitos 1, 3, 4, 5 e 9, estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado, pela distribuição de Benford.

Já para os dígitos 0, 2, 6, 7 e 8, a linha de valores esperados, estava acima da barra observada, indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos; mas, para o dígito 3, 4, 5 e 9, com excesso de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores são maiores que 0,05, não havendo diferenças significantes, e para os dígitos 0, 2, 6, 7 e 8, com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significantes.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

O resultado para DAM foi de 0,18082, sendo maior que 0,012, resultando na não conformidade com a Lei de Benford.

Então, sob a perspectiva do Gasto 998, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas, para Lei de Benford referente ao dígito 1, não se afastando um exame mais detalhado.

Para os dígitos 0, 2, 3, 4, 5, 6, 7, 8 e 9 por apresentarem valores de P maiores que 0,05, não havendo diferenças significativas.

4.2.3.19 Análise do segundo dígito - Gasto 999

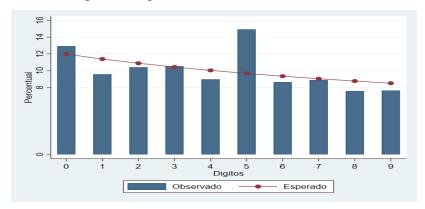


Gráfico 80 - Segundo dígito - Gasto 999

Tabela 84 - Resultados dos testes para 2º dígito - Gasto 999

2º DÍGITO		PERCENTUAL OBSERVADO	PERCENTUAL ESPERADO	DESVIOS	DESVIO ABSOLUTO MÉDIO	VALOR P
0	1622	12,916	11,968	0,948	0,948	0,0012
1	1202	9,572	11,389	-1,817	1,817	0,0000
2	1307	10,408	10,882	-0,474	0,474	0,0882
3	1321	10,519	10,433	0,086	0,086	0,7481
4	1126	8,966	10,031	-1,065	1,065	0,0001
5	1875	14,931	9,668	5,263	5,263	0,0000
6	1083	8,624	9,337	-0,713	0,713	0,0058
7	1115	8,879	9,035	-0,156	0,156	0,5542
8	949	7,557	8,757	-1,200	1,200	0,0000
9	958	7,629	8,500	-0,871	0,871	0,0004
TOTAL	12558	MDA			12,593	

Fonte: Dados da pesquisa

O resultado do teste X² para segundo dígito, considerando Gasto 999 (passagens aéreas RPA), foi de 461,5775, sendo seu valor de P 0,0000 e o valor crítico usado de 16,919.

Analisando os resultados dos testes de conformidade para o segundo dígito, foi possível constatar, conforme demostrado no Gráfico 80 e Tabela 84, que a linha de valores esperados referente aos dígitos 0, 3 e 5, estava abaixo da barra observada, indicando que gastos que começam com esses dígitos aparecem mais frequentemente do que o esperado, pela distribuição de Benford.

Já para os dígitos 1, 2, 4, 6, 7, 8 e 9, a linha de valores esperados estava acima da barra observada indicando que há uma escassez de observações em relação ao que seria esperado pela distribuição de Benford.

Os valores de P confirmam o excesso e a escassez dos números, por serem extremamente baixos (menores que 0,05), indicando que essas diferenças são estatisticamente significativas apresentando desvios significativos; contudo, para o dígito 3 com excesso de observações, em relação ao que seria esperado pela distribuição de Benford, verificou-se que seu valor é maior que 0,05, não havendo diferenças significativas.

Para os dígitos 2 e 7 com escassez de observações em relação ao que seria esperado pela distribuição de Benford, verificou-se que seus valores de P são maiores que 0,05, não havendo diferenças significativas.

O resultado do Teste Qui-Quadrado calculado excedeu o valor crítico de 16,919, rejeitando a hipótese nula, estando desconforme a Lei de Benford.

Então, sob a perspectiva do Gasto 999, observa-se que os três testes se alinham, rejeitando a hipótese nula, ou seja, tem-se a ausência de conformidade com as frequências esperadas, para Lei de Benford referente aos dígitos 0 e 5. Essa particularidade, de excesso de segundos dígitos 0 e 5, é demonstrada geralmente por se tratar de uma base de dados referente a pagamentos e causada por arredondamentos de valores, de toda forma não se pode descartar um exame mais detalhado.

Para os dígitos 1, 4, 6, 8 e 9, por apresentarem valores de P maior que 0,05, não houve diferenças significativas.

5. **CONSIDERAÇÕES FINAIS**

A Lei de Benford tem sido alvo de diversos estudos e aplicações a situações decorrentes do dia a dia, com objetivo de verificar se amostras um conjunto de dados seguem ou não a distribuição de Benford.

Por meio da análise dos recursos disponíveis e concedido pela Cota para o Exercício de Atividade Parlamentar (CEAP) aos deputados federais, os valores individuais de um conjunto de documentos fiscais foram sujeitos à distribuição da Lei de Benford, sendo suas frequências calculadas, confrontadas com as esperadas, a fim de verificar indícios de anormalidade para primeiro e segundo dígitos de cada comprovante de desembolso.

Em relação ao estudo desenvolvido nesse trabalho, foram realizados os testes estatísticos Qui-Quadrado, Desvio Médio Absoluto e Valor de P.

Os dados foram analisados de três modos: Todos os dados; Por partido; e Por tipo de gasto.

Para a base de dados analisada, as frequências observadas dos dígitos mais expressivos, para primeiro e segundo dígitos, se distanciaram da frequência esperada da Lei de Benford. Fato esse, confirmado pelos testes estatísticos realizados.

Neste trabalho, verificou-se através da análise e da aplicação da Lei de Benford, que para os valores individuais de um conjunto de documentos fiscais, os dígitos mais expressivos, referentes ao primeiro e segundo dígitos, não estão em conformidade com a lei de Benford. Deve-se levar em conta que a Lei de Benford possui limitações particulares para dados financeiros, como o tamanho da amostra e o fato de não ser conclusiva, mas sim, servir de uma ferramenta estatística a mais de controle, não podendo descartar um exame mais detalhado através de métodos complementares.

Apesar dos resultados não detectarem a existência de fraudes ou erros, podem ser utilizados como subsídios para as equipes de auditoria, servindo de direcionador, sobretudo na elaboração do planejamento e determinação da amostra a ser auditada.

Pesquisas futuras poderiam explorar a relação da proporção observada e a esperada para os dois primeiros dígitos dos documentos fiscais de gastos registrados, trazendo um maior refinamento dos dados, possibilitando a identificação de alterações e manipulações nos números; e realizar o teste da soma, com intuito de obter uma amostra melhorada, sobre o qual incidiriam exames mais minuciosos, capazes de ratificar ou contrariar os resultados encontrados neste trabalho. Outra pesquisa interessante seria testar a Lei de Benford agregando outros Estados, outros gastos dos deputados federais

e, além disso, adotar uma maior variação ao longo tempo, contemplando o período de mais de uma legislatura.

6. REFERÊNCIAS

AZEVEDO, C. S. *et al.* **A Benford's Law based methodology for fraud detection in social welfare programs**: Bolsa Família analsys. Physica A: Statistical Mechanics and its Applications, 567, 125626. 2021.

BRASIL. Câmara dos Deputados. Transparência: dados abertos - CEAPS. Brasília. 2023. Disponível https://www2.camara.leg.br/transparência/acesso-a-informacao/copy-of-perguntas-frequentes/cota-para-o-exercicio-da-atividade-parlametar. Acesso em 05/08/2023a.

BRASIL. Câmera dos Deputados. Transparência: dados abertos - CEAPS. Brasília 2023. Disponível https://dadosabertos.camara.leg.br. Acesso em 05/08/2023b.

BRASIL. Disponível http://estatisticafacil.org. Acesso em 10/09/2023c.

BROWN, R.J.C. **Benford's law and the screening of analytical data**: the case of pollutant concentrations in ambiente air. The Analyst. Vol. 130, 1280-1285. 2005.

CARSLAW, C. P. **Anomoleis in income numbers**: evidence of goal oriented behavior. 321-327, 1988.

CAVALCANTI, G. H. Aplicação da Lei de Newcomb-Benford na identificação de irregularidades: o exemplo dos gastos com cartões de pagamento do governo federal - CPGF. Revista da Procuradoria Geral do Banco Central, 1-32. 2015.

CELLA, R. S., & ZANOLLA, E. **A Lei de Benford e a transparência**: uma análise das despesas públicas municipais. pp. 332-347. 2018.

COSTA, J. I., SANTOS, J. D., & TRAVASSOS, S. D. **Análise de conformidade dos gastos públicos dos entes Federativos**: Aplicação da Lei de Newcomb-Benford para o primeiro e segundo dígitos dos gastos em dois estados brasileiros. Revista Controladoria e Contabilidade, 187-198. 2012

FILHO, E. C., NUNES, D. M. & SANTANA, C. M., **Lei de Benford**: Uma análise da sua aplicabilidade em uma amostra de documentos fiscais apresentados nas prestações de contas de senadores da república, Revista Brasileira de Ciências Policiais – Brasília, V 12, N.6. pp. 103-126. 2009.

LEONI, R. C. et al. Aplicação da Lei de Newcomb-Benford no auxílio à detecção de fraudes. 1-12. 2020

NASCIMENTO, T. D., FILHO, E. D. & BUSCACIO, L. **Detecção de fraudes**: O uso da Lei de Benford para avaliar dados educacionais e financeiros. XLVI simpósio Brasileiro de Pesquisa Operacional. Salvador. 2014.

NEWCOMB, S. **Note on the frequency of the differente digits in natural numbers**. The American Journal of Matematics. Vol. 4, 39-40, 1881.

NIGRINI, M. J. **Benford's Law**: Aplications for Forensic Accounting Auditing, and Fraud Detection. 160. 2012.

OLIVEIRA, J. J. & FILHO, M. F. **Aplicação da Lei de Newcomb-Benford**: uma análise nas contas da União. pp. 1-16. 2016.

OLIVEIRA, J. J. et al. Aplicações da Lei de Newcomb-Benford nas demonstrações financeiras da Petrobras. pp. 1-18. 2015

RABELO, É. S. G. **A Lei de Benford e Fraudes Eleitorais**: O Caso das Eleições Presidenciais Brasileiras de 2014. 1-95. 2016.

SAMPAIO, A. D., FIGUEIREDO, P. S. & LOIOLA, E. **Compras públicas no Brasil**: Indícios de fraudes usando a Lei de Newcomb-Benford. pp. 1-20. 2021.